WorldWideScience

Sample records for americium tellurides

  1. 1976 Hanford americium accident

    International Nuclear Information System (INIS)

    Heid, K.R.; Breitenstein, B.D.; Palmer, H.E.; McMurray, B.J.; Wald, N.

    1979-01-01

    This report presents the 2.5-year medical course of a 64-year-old Hanford nuclear chemical operator who was involved in an accident in an americium recovery facility in August 1976. He was heavily externally contaminated with americium, sustained a substantial internal deposition of this isotope, and was burned with concentrated nitric acid and injured by flying debris about the face and neck. The medical care given the patient, including the decontamination efforts and clinical laboratory studies, are discussed. In-vivo measurements were used to estimate the dose rates and the accumulated doses to body organs. Urinary and fecal excreta were collected and analyzed for americium content. Interpretation of these data was complicated by the fact that the intake resulted both from inhalation and from solubilization of the americium embedded in facial tissues. A total of 1100 μCi was excreted in urine and feces during the first 2 years following the accident. The long-term use of diethylenetriaminepentate (DTPA), used principally as the zinc salt, is discussed including the method, route of administration, and effectiveness. To date, the patient has apparently experienced no complications attributable to this extensive course of therapy, even though he has been given approximately 560 grams of DTPA. 4 figures, 1 table

  2. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  3. Americium in water and sediments

    International Nuclear Information System (INIS)

    Coughtrey, P.J.; Jackson, D.; Jones, C.H.; Thorne, M.C.

    1984-01-01

    Data for americium 241 in aquatic environments are presented derived from areas contaminated solely by global fallout, and also from areas contaminated by radioactive waste discharges. For several water bodies, in particular the Mediterranean, comprehensive data are given characterising the inputs, distribution, geochemical behaviour and biological availability of americium. Many data are also reported for concentrations of americium in North European coastal waters (e.g. English Channel, North Sea, Irish Sea, Baltic Sea, Barents Sea and the Eastern Atlantic). Much of the discussion in this section is in terms of the behaviour of americium relative to plutonium. (Auth.)

  4. Recycling of americium

    International Nuclear Information System (INIS)

    Hagstroem, Ingela

    1999-12-01

    Separation of actinides from spent nuclear fuel is a part of the process of recycling fissile material. Extracting agents for partitioning the high level liquid waste (HLLW) from conventional PUREX reprocessing is studied. The CTH-process is based on three consecutive extraction cycles. In the first cycle protactinium, uranium, neptunium and plutonium are removed by extraction with di-2-ethylhexyl-phosphoric acid (HDEHP) from a 6 M nitric acid HLLW solution. Distribution ratios for actinides, fission products and corrosion products between HLLW and 1 M HDEHP in an aliphatic diluent have been investigated. To avoid addition of chemicals the acidity is reduced by a tributylphosphate (TBP) extraction cycle. The distribution ratios of elements present in HLLW have been measured between 50 % TBP in an aliphatic diluent and synthetic HLLW in range 0.1-6 M nitric acid. In the third extraction cycle americium and curium are extracted. To separate trivalent actinides from lanthanides a method based on selective stripping of the actinides from 1 M HDEHP is proposed. The aqueous phase containing ammonia, diethylenetriaminepentaacetic acid (DTPA) and lactic acid is recycled in a closed loop after reextraction of the actinides into a second organic phase also containing 1 M HDEHP. Distribution ratios for americium and neodymium have been measured at varying DTPA and lactic acid concentrations and at varying pH. Nitrogen-donor reagents have been shown to have a potential to separate trivalent actinides from lanthanides. 2,2':6,2''-terpyridine as extractant follows the CHON-principle and can in synergy with 2-bromodecanoic acid separate americium from europium. Distribution ratios for americium and europium, in the range of 0.02-0.12 M nitric acid, between nitric acid and 0.02 M terpyridine with 1 M 2-bromodecanoic acid in tert-butylbenzene (TBB) was investigated. Comparison with other nitrogen-donor reagents show that increasing lipophilicity of the molecule, by substitution of

  5. Americium-241 - ED 4308

    International Nuclear Information System (INIS)

    Ammerich, M.; Frot, P.; Gambini, D.; Gauron, C.; Moureaux, P.; Herbelet, G.; Lahaye, T.; Le Guen, B.; Pihet, P.; Rannou, A.; Vidal, E.

    2012-12-01

    This sheet presents the characteristics of Americium-241, its origin, and its radio-physical and biological properties. It briefly describes its use in nuclear medicine. It indicates its dosimetric parameters for external exposure, cutaneous contamination, and internal exposure due to acute contamination or to chronic contamination. It indicates and comments the various exposure control techniques: ambient dose rate measurement, surface contamination measurement, atmosphere contamination. It addresses the means of protection: premise design, protection against external exposure and against internal exposure. It describes how areas are delimited and controlled within the premises: regulatory areas, controls to be performed. It addresses the personnel classification, training and medical survey. It addresses the issue of wastes and effluents. It briefly recalls the administrative procedures related to the authorization and declaration of possession and use of sealed and unsealed sources. It indicates regulatory aspects related to the road transport of Americium-241, describes what is to be done in case of incident or accident (for the different types of contamination or exposure)

  6. Plutonium and americium separation from salts

    International Nuclear Information System (INIS)

    Hagan, P.G.; Miner, F.J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution

  7. Transmutation of Americium in Fast Neutron Facilities

    OpenAIRE

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on c...

  8. Metabolism of americium-241 in dairy animals

    International Nuclear Information System (INIS)

    Sutton, W.W.; Patzer, R.G.; Mullen, A.A.; Hahn, P.B.; Potter, G.D.

    1978-10-01

    Groups of lactating cows and goats were used to examine americium-241 metabolism in dairy animals. Following either single oral or intravenous nuclide doses, samples of milk, urine, blood, and feces were taken over a 168-hr collection period and the americium concentrations were determined by gamma counting. Gastrointestinal uptake of americium by both cows and goats was estimated to be 0.014% of the respective oral doses. The cumulative percentage of oral dose transported to milk and urine was 4.4 x 10 -4 and 1.1 x 10 -3 respectively for cows and 4.4 x 10 -3 and 1.2 x 10 -3 respectively for goats. The relatively high americium concentrations noted in caprine milk following the oral doses are discussed. Plasma concentrations of americium decreased rapidly following all intravenous injections. The average percentage of injected americium transferred to milk, urine, and feces was 3, 6, and 2% respectively for cows and 2, 4, and 2% respectively for goats. In both intravenously dosed groups, approximately 30% of all americium released from the body was found in the urine during the first 24 hrs after injection. All animals were sacrificed 8 to 9 days after dosing. Bovine bone retained the greatest fraction of the administered dose followed by the liver. However, liver retained the greatest amount of americium in the goats following both oral and intravenous doses. Comparisons are presented between americium-241 and plutonium-238 transport in dairy cows

  9. Hafnium germanium telluride

    Science.gov (United States)

    Jang, Gyung-Joo; Yun, Hoseop

    2008-01-01

    The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. PMID:21202163

  10. Hafnium germanium telluride

    Directory of Open Access Journals (Sweden)

    Hoseop Yun

    2008-05-01

    Full Text Available The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetrahedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps.

  11. Production of americium isotopes in France

    International Nuclear Information System (INIS)

    Koehly, G.; Bourges, J.; Madic, C.; Nguyen, T.H.; Lecomte, M.

    1984-12-01

    The program of productions of americium 241 and 243 isotopes is based respectively on the retreatment of aged plutonium alloys or plutonium dioxide and on the treatment of plutonium targets irradiated either in CELESTIN reactors for Pu-Al alloys or OSIRIS reactor for plutonium 242 dioxide. All the operations, including americium final purifications, are carried out in hot cells equipped with remote manipulators. The chemical processes are based on the use of extraction chromatography with hydrophobic SiO 2 impregnated with extracting agents. Plutonium targets and aged plutonium alloys are dissolved in nitric acid using conventional techniques while plutonium dioxide dissolutions are performed routine at 300 grams scale with electrogenerated silver II in 4M HNO 3 at room temperature. The separation between plutonium and americium is performed by extraction of Pu(IV) either on TBP/SiO 2 or TOAHNO 3 /SiO 2 column. Americium recovery from waste streams rid of plutonium is realized by chromatographic extraction of Am(III) using mainly TBP and episodically DHDECMP as extractant. The final purification of both americium isotopes uses the selective extraction of Am(VI) on HDDiBMP/SiO 2 column at 60 grams scale. Using the overall process a total amount of 1000 grams of americium 241 and 100 grams of americium 243 has been produced nowadays and the AmO 2 final product indicates a purity better than 98.5%

  12. Cadmium telluride photovoltaic radiation detector

    Science.gov (United States)

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  13. Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, David Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Skidmore, Bradley Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    Acqueous Chloride mission is to recover plutonium and americium from pyrochemical residues (undesirable form for utilization and storage) and generate plutonium oxide and americium oxide. Plutonium oxide is recycled into Pu metal production flowsheet. It is suitable for storage. Americium oxide is a valuable product, sold through the DOE-OS isotope sales program.

  14. Formation of americium and europium humate complexes

    International Nuclear Information System (INIS)

    Minai, Y.; Tominaga, T.; Meguro, Y.

    1991-01-01

    Binding constants of americium and europium with a humic acid were determined to study if complex formation of trivalent actinide-humates affects dissolved species of the actinides in hydrosphere. The purified humic acid was characterized by means of UV-vis, IR, and pH titration, indicating high carboxylate capacity and low aromaticity. Binding constants of americium and europium humates were determined at pH 4.6 and 6.0 by solvent extraction using 241 Am or 152 Eu as a tracer. The binding constants for americium-humate obtained preliminarily suggest that complexes with humic acid are not negligible in speciation of trivalent actinides in hydrosphere. The obtained binding constants were nearly identical with those determined previously by the same procedures, but with humic acids of different origin and compositions. (author)

  15. Biosorption of americium by alginate beads

    International Nuclear Information System (INIS)

    Borba, Tania Regina de; Marumo, Julio Takehiro; Goes, Marcos Maciel de; Ferreira, Rafael Vicente de Padua; Sakata, Solange Kazumi

    2009-01-01

    The use of biotechnology to remove heavy metals from wastes plays great potential in treatment of radioactive wastes and therefore the aim of this study was to evaluate the biosorption of americium by alginate beads. Biosorption has been defined as the property of certain biomolecules to bind and remove selected ions or other molecules from aqueous solutions. The calcium alginate beads as biosorbent were prepared and analyzed for americium uptaking. The experiments were performed in different solution activity concentrations, pH and exposure time. The results suggest that biosorption process is more efficient at pH 4 and for 75, 150, 300 Bq/mL and 120 minutes were necessary to remove almost 100% of the americium-241 from the solution. (author)

  16. New Fecal Method for Plutonium and Americium

    International Nuclear Information System (INIS)

    Maxwell, S.L. III

    2000-01-01

    A new fecal analysis method that dissolves plutonium oxide was developed at the Westinghouse Savannah River Site. Diphonix Resin (Eichrom Industries), is used to pre-concentrate the actinides from digested fecal samples. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin, which effectively extracts plutonium and americium from acidic solutions containing hydrofluoric acid. After resin digestion, the plutonium and americium are recovered in a small volume of nitric acid that is loaded onto small extraction chromatography columns, TEVA Resin and TRU Resin (Eichrom Industries). The method enables complete dissolution of plutonium oxide and provides high recovery of plutonium and americium with good removal of thorium isotopes such as thorium-228

  17. New fecal method for plutonium and americium

    International Nuclear Information System (INIS)

    Maxwell, S.L.; Fauth, D.J.; Nichols, S.T.

    2001-01-01

    A new fecal analysis method that dissolves plutonium oxide was developed at the Westinghouse Savannah River Site. Diphonix Resin R (Eichrom Technologies), is used to pre-concentrate the actinides from digested fecal samples. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin R , which effectively extracts plutonium and americium from acidic solutions containing hydrofluoric acid. After resin digestion, the plutonium and americium are recovered in a small volume of nitric acid that is loaded onto small extraction chromatography columns, TEVA Resin and TRU Resin (Eichrom Technologies). The method enables complete dissolution of plutonium oxide and provides high recovery of plutonium and americium with good removal of thorium isotopes such as 228 Th. (author)

  18. Transmutation of Americium in Fast Neutron Facilities

    International Nuclear Information System (INIS)

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on core's safety parameters. Applying the SAS4A/SASSYS transient analysis code, it is demonstrated that the power rating needs to be reduced by 6% for each percent additional americium introduction into the reference MOX fuel, maintaining 100 K margin to fuel melting, which is the most limiting failure mechanism. Safety analysis of a new Accelerator Driven System design with a smaller pin pitch-to-diameter ratio comparing to the reference EFIT-400 design, aiming at improving neutron source efficiency, was also performed by simulating performance for unprotected loss of flow, unprotected transient overpower, and protected loss-of-heat-sink transients, using neutronic parameters obtained from MCNP calculations. Thanks to the introduction of the austenitic 15/15Ti stainless steel with enhanced creep rupture resistance and acceptable irradiation swelling rate, the suggested ADS design loaded with nitride fuel and cooled by lead-bismuth eutectic could survive the full set of transients, preserving a margin of 130 K to cladding rupture during the most limiting transient. The thesis concludes that efficient transmutation of americium in a medium sized sodium cooled fast reactor loaded with MOX fuel is possible but leads to a severe power penalty. Instead, preserving transmutation rates of minor actinides up to 42 kg/TWh th , the suggested ADS design with enhanced proton source efficiency appears like a better option for americium transmutation

  19. Preparation of americium source for smoke detector

    International Nuclear Information System (INIS)

    Ramaswami, A.; Singh, R.J.; Manohar, S.B.

    1994-01-01

    This report describes the method developed for the preparation of 241 Am source for smoke detector. Americium was electrodeposited from iso-propyl alcohol medium on silver backing. Thin layer of gold (few hundred micro gram thick) was plated on the americium source to make it safe for handling. The thickness of plated gold was such that the alpha radiations from the 241 Am source could escape out of the gold layer and cause ionisation in the surrounding air. The performance of the prepared sources were checked in a smoke detector and was found to be satisfactory and comparable to the imported sources. (author). 1 refs., 2 figs., 1 tab

  20. Redox chemistry of americium in nitric acid media

    International Nuclear Information System (INIS)

    Picart, S.; Jobelin, I.; Armengol, G.; Adnet, JM.

    2004-01-01

    The redox properties of the actinides are very important parameters for speciation studies and spent nuclear fuel reprocessing based on liquid-liquid extraction of actinides at different oxidation states (as in the Purex or Sesame process). They are also very useful for developing analytical tools including coulometry and redox titration. This study addressed the americium(IV)/americium(III) and americium(VI)/americium(V) redox couples, focusing on exhaustive acquisition of the thermodynamic and kinetic parameters of americium oxidation at an electrode in a complexing nitric acid medium. (authors)

  1. 1976 Hanford americium exposure incident: psychological aspects

    International Nuclear Information System (INIS)

    Brown, W.R.

    1982-01-01

    Accidents involving exposure to radiation or radioactive materials may involve an unusual degree of emotional trauma. Methods that may be employed in dealing with such trauma are discussed in relation to a specific accident in which a radiation worker was injured and seriously contaminated with americium-241

  2. Americium migration in basalt and implications to repository risk analysis

    International Nuclear Information System (INIS)

    Rickert, P.G.

    1980-01-01

    Experiments were performed with americium as a minor component in groundwater. Batch adsorption, migration through column, and filtration experiments were performed. It was determined in batch experiments that americium is strongly adsorbed from solution. It was determined with filtration experiments that large percentages of the americium concentrations suspended by the contact solutions in batch experiments and suspended by the infiltrating groundwater in migration experiments were associated with particulate. Filtration was determined to be the primary mode of removal of americium from infiltrating groundwater in a column of granulated basalt (20 to 50 mesh) and an intact core of permeable basalt. Fractionally, 0.46 and 0.22 of the americium component in the infiltrating groundwater was transported through the column and core respectively. In view of these filtration and migration experiment results, the concept of K/sub d/ in the chromatographic sense is meaningless for predicting americium migration in bedrock by groundwater transport at near neutral pH

  3. Procedure for the analysis of americium in complex matrices

    International Nuclear Information System (INIS)

    Knab, D.

    1978-02-01

    A radioanalytical procedure for the analysis of americium in complex matrices has been developed. Clean separations of americium can be obtained from up to 100 g of sample ash, regardless of the starting material. The ability to analyze large masses of material provides the increased sensitivity necessary to detect americium in many environmental samples. The procedure adequately decontaminates from rare earth elements and natural radioactive nuclides that interfere with the alpha spectrometric measurements

  4. The relative physiological and toxicological properties of americium and plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.E.; Busch, E.; Johnson, O. [and others

    1951-11-15

    The relative physiological and toxicological properties of americium and plutonium have been studied following their intravenous administration to rats. The urinary and fecal excretion of americium was similar to that of plutonium administered as Pu(N0{sub 3}){sub 4}. The deposition of americium the tissues and organs of the rat was also similar to that observed for plutonium. The liver and the skeleton were the major sites of deposition. Zirconium citrate administered 15 minutes after injection of americium increased the urinary excretion of americium and decreased the amount found in the liver and the skeleton at 4 and 16 days. LD{sub 30}{sup 50} studies showed americium was slightly less toxic when given in the acute toxic range than was plutonium. The difference was, however, too slight to be important in establishing a larger tolerance does for americium. Survival studies, hematological observations, bone marrow observations, comparison of tumor incidence and the incidence of skeletal abnormalities indicated that americium and plutonium have essentially the same chronic toxicity when given on an equal {mu}c. basis. These studies support the conclusion that the tolerance values for americium should be essentially the same as those for Plutonium.

  5. Investigation of americium-241 metal alloys for target applications

    International Nuclear Information System (INIS)

    Conner, W.V.; Rockwell International Corp., Golden, CO

    1982-01-01

    Several 241 Am metal alloys have been investigated for possible use in the Lawrence Livermore National Laboratory Radiochemical Diagnostic Tracer Program. Several properties were desired for an alloy to be useful for tracer program applications. A suitable alloy would have a fairly high density, be ductile, homogeneous and easy to prepare. Alloys investigated have included uranium-americium, aluminium-americium, and cerium-americium. Uranium-americium alloys with the desired properties proved to be difficult to prepare, and work with this alloy was discontinued. Aluminium-americium alloys were much easier to prepare, but the alloy consisted of an aluminium-americium intermetallic compound (AmAl 4 ) in an aluminum matrix. This alloy could be cast and formed into shapes, but the low density of aluminum, and other problems, made the alloy unsuitable for the intended application. Americium metal was found to have a high solid solubility in cerium and alloys prepared from these two elements exhibited all of the properties desired for the tracer program application. Cerium-americium alloys containing up to 34 wt% americium have been prepared using both co-melting and co-reduction techniques. The latter technique involves co-reduction of cerium tetrafluoride and americium tetrafluoride with calcium metal in a sealed reduction vessel. Casting techniques have been developed for preparing up to eight 2.2 cm (0.87 in) diameter disks in a single casting, and cerium-americium metal alloy disks containing from 10 to 25 wt% 241 Am have been prepared using these techniques. (orig.)

  6. Surface complexation modeling of americium sorption onto volcanic tuff.

    Science.gov (United States)

    Ding, M; Kelkar, S; Meijer, A

    2014-10-01

    Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways. Published by Elsevier Ltd.

  7. Self-irradiation and oxidation effects on americium sesquioxide and Raman spectroscopy studies of americium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Horlait, Denis [CEA, DEN, DTEC/SDTC/LEMA, F-30207 Bagnols-sur-Cèze Cedex (France); Caraballo, Richard [CEA, DEN, DTCD/SECM/LMPA, F-30207 Bagnols-sur-Cèze Cedex (France); Lebreton, Florent [CEA, DEN, DTEC/SDTC/LEMA, F-30207 Bagnols-sur-Cèze Cedex (France); Jégou, Christophe [CEA, DEN, DTCD/SECM/LMPA, F-30207 Bagnols-sur-Cèze Cedex (France); Roussel, Pascal [Unité de Catalyse et Chimie du Solide, UMR 8012 CNRS, Ecole Nationale Supérieure de Chimie de Lille BP 90108, 59652 Villeneuve d’Ascq Cedex (France); Delahaye, Thibaud, E-mail: thibaud.delahaye@cea.fr [CEA, DEN, DTEC/SDTC/LEMA, F-30207 Bagnols-sur-Cèze Cedex (France)

    2014-09-15

    Americium oxides samples were characterized by X-ray diffraction (XRD) and Raman spectroscopy, with an emphasis on their structural behavior under oxidation and self-irradiation. Raman spectra of americium dioxide (AmO{sub 2}) and sesquioxide (Am{sub 2}O{sub 3}) were obtained for the first time. With the help of literature data on isostructural oxides, Raman signatures of Ia-3 C-type Am{sub 2}O{sub 3} and P-3m1 A-type Am{sub 2}O{sub 3} are identified. For AmO{sub 2,} a clear band is noted at 390 cm{sup −1}. Its nature is compared to that of the other actinide dioxides. Am{sub 2}O{sub 3} evolution under ambient conditions and against {sup 241}Am α self-irradiation was monitored by powder XRD. The sample, initially composed of A-type Am{sub 2}O{sub 3} as major phase as well as C2/m B-type and C-type structures as minor phases, progressively oxidizes to Fm-3m AmO{sub 2−δ} over a few months. On the basis of diffractogram refinements, evolutions of unit cell volumes caused by self-irradiation are also determined and discussed. - Graphical abstract: The evolution of americium oxide under ambient conditions was monitored using XRD (X-ray diffraction) and Raman spectroscopy. After a thermal treatment under reducing conditions, a polyphasic sample mainly composed of A- and C-type americium sesquioxides is evidenced by XRD and Raman spectroscopy. The sample then evolves through two processes: oxidation and self-irradiation. The first one provokes the progressive appearance of F-type americium dioxide while the initial phases disappear, whereas the main effect of the second is a structural swelling with time. - Highlights: • The first Raman spectroscopy measurements on americium oxides were performed. • Observed Am{sub 2}O{sub 3} Raman bands were identified thanks to data on analogue compounds. • AmO{sub 2} assumed T{sub 2g} band presents a shift compared to the actinide dioxide series. • Am{sub 2}O{sub 3} evolution under self-irradiation and oxidation was also

  8. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  9. Rise time spectroscopy in cadmium telluride detectors

    International Nuclear Information System (INIS)

    Scharager, Claude; Siffert, Paul; Carnet, Bernard; Le Meur, Roger.

    1980-11-01

    By a simultaneous analysis of rise time and pulse amplitude distributions of the signals issued from various cadmium telluride detectors, it is possible to obtain informations about surface and bulk trapping, field distribution within the detectors, as well as charge collection and transport properties. These investigations have been performed on both pure and chlorine doped and materials for various surfaces preparation conditions [fr

  10. Higher Americium Oxidation State Research Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Goff, George S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shehee, Thomas C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hobbs, David T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-18

    The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained under the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non

  11. Feasibility of the fabrication of americium targets

    International Nuclear Information System (INIS)

    Haas, D.; Somers, J.

    1999-01-01

    The paper compares the processes used at ITU for the fabrication of americium targets for transmutation: powder mixing process, sol-gel method and the infiltration by an active solution of inactive pellets. The advantages of the latter process, related mainly to the lower level of dust formation, are stressed. Moreover, the radiological constraints on the fabrication as a function of Am content and of selected fabrication process are evaluated. As conclusion, the feasibility of Am target fabrication has been demonstrated on a laboratory scale, based on experimental results evaluation. The penalties due to radiological constraints in a semi-industrial process are acceptable. The future developments consist in the construction of a laboratory fully dedicated to minor actinides fuel pins or targets fabrication. (author)

  12. Americium/Curium Disposition Life Cycle Planning Study

    International Nuclear Information System (INIS)

    Jackson, W.N.; Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-01-01

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS)

  13. Plutonium and Americium Geochemistry at Hanford: A Site Wide Review

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Felmy, Andrew R.

    2012-08-23

    This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

  14. Americium/Curium Disposition Life Cycle Planning Study

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, W.N. [Westinghouse Savannah River Company, AIKEN, SC (United States); Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  15. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    Science.gov (United States)

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  16. Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Kyle Shelton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimball, David Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Skidmore, Bradley Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    These are a set of slides intended for an information session as part of recruiting activities at Brigham Young University. It gives an overview of aqueous chloride operations, specifically on plutonium and americium purification/recovery. This presentation details the steps taken perform these processes, from plutonium size reduction, dissolution, solvent extraction, oxalate precipitation, to calcination. For americium recovery, it details the CLEAR (chloride extraction and actinide recovery) Line, oxalate precipitation and calcination.

  17. 1976 Hanford americium-exposure incident: external decontamination procedures

    International Nuclear Information System (INIS)

    Jech, J.J.; Berry, J.R.; Breitenstein, B.D.

    1982-01-01

    An accident resulted in the deposition on an injured workman's skin surfaces, in acid-burned areas and in lacerations, of something in excess of 6 mCi americium-241. The external decontamination procedures used, the change in americium content of the skin during the course of treatment, and some of the unusual problems encountered from the extrusion of foreign material and flaking of skin and scar tissue are described

  18. Preparation of americium metal of high purity and determination of the heat of formation of the hydrated trivalent americium ion

    International Nuclear Information System (INIS)

    Spirlet, J.C.

    1975-10-01

    In order to redetermine some physical and chemical properties of americium metal, several grams of Am-241 have been prepared by two independent methods: lanthanum reduction of the oxide and thermal dissociation of the intermetallic compound Pt 5 Am. After its separation from excess lanthanum or alloy constituent by evaporation, americium metal was further purified by sublimation at 1100 deg C and 10 -6 Torr. Irrespective of the method of preparation, the americium samples displayed the same d.h.c.p. crystal structure. As determined by vacuum hot extraction, the oxygen, nitrogen and hydrogen contents are equal to or smaller than 250, 50 and 20 ppm, respectively. The heats of solution of americium metal (d.c.h.p. structure) in aqueous hydrochloric acid solutions have been measured at 298.15+-0.05K. The standard enthalpy of formation of Am 3+ (aq) is obtained as -616.7+-1.2 kJ mol -1 [fr

  19. Cadmium zinc telluride charged particle nuclear detectors

    International Nuclear Information System (INIS)

    Toney, J.E.; James, R.B.; Antolak, A.

    1997-02-01

    This report describes the improvements in understanding of transport phenomena in cadmium zinc telluride radiation sensors achieved through studies of alpha particle response and spatially resolved photoconductivity mapping. Alpha particle response waveforms and photocurrent profiles both indicate non-uniformities in the electric field which may have detrimental effects on detector performance. Identifying and eliminating the sources of these nonuniformities will ultimately lead to improved detector performance

  20. Citric complexes, neodymium citrate and americium citrate

    International Nuclear Information System (INIS)

    Bouhlassa, Saidati.

    1981-06-01

    The behaviour of neodymium and americium has been studied in citric aqueous medium by two methods: solvent extraction of elements at tracer scale as chelates and by potentiometry. So range of pH and concentrations of elements and citric acid never reached before have been explored: 10 -7 -1 M, 10 -10 -3 , Csub(H3 Cit) -1 M, 1 2 O; AmCit, xH 2 O; NdCit 2 Co(NH 3 ) 6 , 8H 2 O; AmCit 2 Co(NH 3 ) 6 , xH 2 O and Nd 3 (OH) 4 (Cit) 4 NH 4 (Co(NH 3 ) 6 ) 2 , 18H 2 O. Their spectroscopic and crystallographic characteristics have been listed and studied. The nephelauxetic effect has been estimated from citric complexes as well as from citrates of these elements. The structure of the complexes in solution has been discussed on the basis of analysis of hypersensitive transition in different complexes [fr

  1. Applicability of insoluble tannin to treatment of waste containing americium

    International Nuclear Information System (INIS)

    Matsumura, T.; Usuda, S.

    1998-01-01

    The applicability of insoluble tannin adsorbent to the treatment of aqueous waste contaminated with americium has been investigated. Insoluble tannin is considered highly applicable because it consists of only carbon, hydrogen and oxygen and so its volume can be easily reduced by incineration. This report describes measurements of the americium distribution coefficient in low concentration nitric acid. The americium distribution coefficients were found to decrease with increasing concentration of nitric acid and sodium nitrate, and with increasing temperature. At 25 C in 2.0 x 10 -3 M HNO 3 , the distribution coefficient was found to be 2000 ml g -1 . The adsorption capacity was determined by column experiments using europium as a simulant of americium, and found to be 7 x 10 -3 mmol g -1 -dried tannin in 0.01 M HNO 3 at 25 C, which corresponds to approximately 1.7 mg- 241 Am/g-adsorbent(dried). The prospect of applying the adsorbent to the treatment of aqueous waste contaminated with americium appears promising. (orig.)

  2. A process for the recovery of americium from analytical wastes

    International Nuclear Information System (INIS)

    Brossard, P.; Kwinta, J.; Schwander, Y.

    1984-12-01

    The object of the present work is to define a procedure for the extraction of americium contained in hundreds of liters of liquid analytical wastes. The main objective is to produce wastes for which the americium concentration is lower than 0,5 mg/l, the operations being carried out in glove boxes. Dihexyl N, N-diethylcarbamylmethylene phosphonate (DHDECMP) is used for the extraction of americium. Experimental laboratory results and procedure design are described. Distribution coefficient, DHDECMP concentration, addition of TBP, influence of PH and temperature are studied. A bank of mixer-settlers appears to be the most appropriate laboratory equipment to handle large volume of solution with a good efficiency

  3. The selective extraction of americium from high level liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Adnet, J.M.; Donnet, L.; Brossard, P.; Bourges, J.

    1996-12-31

    One of the possible ways selected by CEA for the partitioning of minor actinides from solutions containing fission products is the selective extraction of the oxidized species. This papers deals with the latest developments in the electrochemical oxidation of americium in nitric media to the oxidation states (IV) and (VI). Oxidized americium is generated and stabilized through the use of poly anionic ligands such as the phospho tungstate. With in view the use of such ligands in the treatment of real liquid wastes, the complexation of several metallic ions has been investigated A first experiment done with a real liquid waste to prove the possibility to selectively extract the oxidized americium is presented. (authors). 8 refs.

  4. Synergistic extraction behaviour of americium from simulated acidic waste solutions

    International Nuclear Information System (INIS)

    Pathak, P.N.; Veeraraghavan, R.; Mohapatra, P.K.; Manchanda, V.K.

    1998-01-01

    The extraction behaviour of americium has been investigated with mixtures of 3-phenyl-4-benzoyl-5-isoxazolone (PBI) and oxodonors viz. tri-n-butyl phosphate (TBP), tri-n-octyl phosphine oxide (TOPO) and di-n-butyl octanamide (DBOA) using dodecane as the diluent from 1-6 M HNO 3 media. It is observed that D Am remains unaltered with PBI concentration (in the range 0.06-0.1 M) at 1.47 M TBP in the entire range of HNO 3 concentration. PBI and TBP in combination appears more promising compared to other synergistic systems. The possibility of using this mixture for americium removal from high level liquid waste solution has been explored. Extraction studies indicated that prior removal of uranium by 20% TBP in dodecane is helpful in the quantitative recovery of americium in three contacts. Effect of lanthanides on D Am is found to be marginal. (orig.)

  5. Tellurium self-diffusion and point defects in lead telluride

    International Nuclear Information System (INIS)

    Simirskij, Yu.N.; Firsova, L.P.

    1982-01-01

    Method of radioactive indicators was used to determine factors of tellurium self-diffusion in lead telluride with different deviation of the composition from stoichiometric in the range of enrichment by tellurium. It was found that at 973 K factors of tellurium self-diffusion in lead telluride depend slightly on the vapor pressure of tellurium equilibrium with solid phase

  6. Covalency in Americium(III) Hexachloride.

    Science.gov (United States)

    Cross, Justin N; Su, Jing; Batista, Enrique R; Cary, Samantha K; Evans, William J; Kozimor, Stosh A; Mocko, Veronika; Scott, Brian L; Stein, Benjamin W; Windorff, Cory J; Yang, Ping

    2017-06-28

    Developing a better understanding of covalency (or orbital mixing) is of fundamental importance. Covalency occupies a central role in directing chemical and physical properties for almost any given compound or material. Hence, the concept of covalency has potential to generate broad and substantial scientific advances, ranging from biological applications to condensed matter physics. Given the importance of orbital mixing combined with the difficultly in measuring covalency, estimating or inferring covalency often leads to fiery debate. Consider the 60-year controversy sparked by Seaborg and co-workers ( Diamond, R. M.; Street, K., Jr.; Seaborg, G. T. J. Am. Chem. Soc. 1954 , 76 , 1461 ) when it was proposed that covalency from 5f-orbitals contributed to the unique behavior of americium in chloride matrixes. Herein, we describe the use of ligand K-edge X-ray absorption spectroscopy (XAS) and electronic structure calculations to quantify the extent of covalent bonding in-arguably-one of the most difficult systems to study, the Am-Cl interaction within AmCl 6 3- . We observed both 5f- and 6d-orbital mixing with the Cl-3p orbitals; however, contributions from the 6d-orbitals were more substantial. Comparisons with the isoelectronic EuCl 6 3- indicated that the amount of Cl 3p-mixing with Eu III 5d-orbitals was similar to that observed with the Am III 6d-orbitals. Meanwhile, the results confirmed Seaborg's 1954 hypothesis that Am III 5f-orbital covalency was more substantial than 4f-orbital mixing for Eu III .

  7. The ingestion of plutonium and americium by range cattle

    International Nuclear Information System (INIS)

    Blincoe, C.; Bohman, V.R.; Smith, D.D.

    1981-01-01

    The intake of plutonium and americium in the diet of cattle grazing on plutonium contaminated desert range was determined. Daily feed intake of the grazing animals was also determined so that the amount of nuclides ingested daily could be ascertained. Soil ingested by range cattle constituted the principal and possibly only source of ingested plutonium and americium and resulted in a daily intake of 3600-6600 pCi 238 Pu, 85,000-400,000 pCi 239 Pu, and 11,000-31,000 pCi 241 Am daily. Determining transuranic intake by direct measurement and from the composition and contamination of the diet gave identical results. (author)

  8. Apparent resistivity of detector grade cadmium telluride

    International Nuclear Information System (INIS)

    Siffert, P.; Rabin, B.; Tabatabai, H.Y.; Stuck, R.

    1977-01-01

    The resistivity of both chlorine compensated and undoped cadmium telluride, grown by the THM or programmed solution growth techniques, have been measured by several methods. Values up to 10 9 Ω.cm have been reached for these P-type samples, in agreement with the literature. However, when used in the detector manufacturing, the total depletion layer thickness at a certain voltage was much less as expected, indicating much lower real resistivities. The origin of this effect is probably due to fast polarization. A procedure is proposed to evaluate quickly the real extension of the depletion layer thickness

  9. 1976 Hanford americium exposure incident: overview and perspective

    International Nuclear Information System (INIS)

    Thompson, R.C.

    1982-01-01

    Salient features of the 1976 Hanford americium exposure incident are discussed. Comparisons are made with previous human and animal exposure data, and conclusions drawn relative to the injured workman, to health physics practices, and to the adequacy of current exposure limits

  10. Determination of plutonium, americium and curium in the marine environment

    International Nuclear Information System (INIS)

    Grenaut, CLaude; Germain, Pierre; Miramand, Pierre.

    1982-01-01

    The method used in the Laboratory for plutonium, americium and curium determination in marine samples (water, sediments, animals, plants) is presented. It is a modification of a procedure based on adsorption on ion exchange resins developed by other authors. The preliminary preparation of the samples, the radiochemical procedures and electrodeposition are described so as to be used as a practical handbook [fr

  11. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  12. Mercury telluride as a zero-gap semiconductor

    International Nuclear Information System (INIS)

    Berchenko, N.N.; Pashkovskij, M.V.

    1976-01-01

    The paper presents a review of main properties of mercury telluride which is a representative of a new class of substances - gapless semiconductors. The causes leading to the appearance of a gapless state in mercury chalcogenides are considered; it is demonstrated that the main role in the formation of the inverse band structure belongs to relativistic corrections. The specific properties of mercury telluride are associated with the zero forbidden band, p-like nature of electron states of the conduction band and its nonparabolicity, resonance states of impurities and anomalies of dielectric permittivity. Conditions of forbidden band appearing in mercury telluride under the effect external factors are analyzed

  13. Kinetics and mechanism of oxidation of americium(III) to americium(VI) in dilute phosphoric acid solutions

    International Nuclear Information System (INIS)

    Milyukova, M.S.; Litvina, M.N.; Myasoedov, B.F.

    1980-01-01

    The reaction between trivalent americium and a mixture of silver with ammonium persulfate in 0.1-3M H 3 PO 4 solutions was studied. Hexavalent americium was found to be the product of interaction under these conditions. Americium oxidation is described with a first order equation with rate constants k=18.7 hr -1 and k=8.74 hr -1 for 0.1-0.5M and 1M H 3 PO 4 , respectively. The activation energy calculated from the temperature dependence of the rate of americium oxidation by a mixture of Ag 3 PO 4 with (NH 4 ) 2 S 2 O 8 is 9.1 kcal/mole. The stability of Am(VI) in 0.1-1M H 3 PO 4 was studied. No reduction of Am(VI) over a period of 30-40 hrs was observed; after that the reduction of Am(VI) follows a zero order law with the apparent rate constant k=0.0036 hr -1 . The mechanism of Am(III) oxidation with a mixture of silver and ammonium persulfate is discussed. (author)

  14. Americium extraction by alkylpyrocatechin from alkaline salt solutions

    International Nuclear Information System (INIS)

    Karalova, Z.K.; Rodionova, L.M.; Myasoedov, B.F.

    1984-01-01

    Effect of iron, aluminium, calcium, and sodium nitrates on americium extraction by 0.1 mol/l DOP solution [4-(α-α dioctylethyl) pyrocatechin] in toluene from a mixture of 2 mol/l NaOH with 0.1 mol/l EDTA has been investigated. It has been shown that americium extraction does not change essen-- tially in the presence of salts that permits to use DOP for Am extraction from alkaline solutions in the presence of outside salts. Verification of the above method of extraction of radioactive isotopes has been carried out. According to the data obtained double extraction provides a preparation of alkaline solutions practically free from radioactive isotopes. DOP application for Am extraction from alkaline salt solutions allows one to carry out repeated Am concentration and separation from accompanying elements. Conditions, under which Fe(3)-Am(3) pair separation coefficient achieves nx10 2 -10 4 , have been found out

  15. Contribution to the study of higher valency states of americium

    International Nuclear Information System (INIS)

    Langlet, Jean.

    1976-01-01

    Study of the chemistry of the higher valencies of americium in aqueous solutions and especially the autoreduction phenomenon. First a purification method of americium solutions is studied by precipitation, solvent extraction and ion exchange chromatography. Studies of higher valency states chemical properties are disturbed by the autoreduction phenomenon changing Am VI and Am V in Am III more stable. Stabilization of higher valency states, characterized by a steady concentration of Am VI in solution, can be done by complexation of Am VI and Am V ions or by a protecting effect of foreign ions. The original medium used has a complexing effect by SO 4 2- ions and a protecting effect by the system S 2 O 8 2- -Ag + consuming H 2 O 2 main reducing agent produced by water radiolysis. These effects are shown by the study of Am VI in acid and basic solutions. A mechanism of the stabilization effect is given [fr

  16. Method for removal of plutonium impurity from americium oxides and fluorides

    Science.gov (United States)

    FitzPatrick, J.R.; Dunn, J.G.; Avens, L.R.

    1987-02-13

    Method for removal of plutonium impurity from americium oxides and fluorides. AmF/sub 4/ is not further oxidized to AmF/sub 6/ by the application of O/sub 2/F at room temperature thereto, while plutonium compounds present in the americium sample are fluorinated to volatile PuF/sub 6/, which can readily be separated therefrom, leaving the purified americium oxides and/or fluorides as the solid tetrafluoride thereof.

  17. Research program on development of advanced treatment technology for americium-containing aqueous waste in NUCEF

    International Nuclear Information System (INIS)

    Mineo, Hideaki; Matsumura, Tatsuro; Tsubata, Yasuhiro

    1996-10-01

    A research program was prepared on the development of an advanced treatment process for the americium-containing concentrated aqueous waste in NUCEF, than allows americium recovery for the reuse and the reduction of TRU waste generation. A preliminary analysis was conducted on the separation requirements based on the components estimated for the waste. An R and D strategy was proposed from the view to reduce TRU waste generated in the processing that the highest priority is given on the control of TRU leakage such as americium into the effluent stream after americium recovery and the minimization of salt used in the separation over the decontamination of impurities from americium. The extraction chromatographic method was selected as a candidate technology for americium separation under the principle to use reagents that are functional in acidic conditions such as bidentate extractants of DHEDECMP, CMPO or diamides, considering the larger flexibilities in process modification and possible multi-component separation with compact equipment and the past achievements on the recovery of kg quantities of americium. Major R and D items extracted are screening and evaluation of extractants for americium and plutonium, optimization of separation conditions, selection of denitration method, equipment developments and development of solidification methods of discarded americium after reuse and of various kinds of separation residues. In order to cope these items, four steps of R and D program were proposed, i.e., fundamental experiment in beaker-scale on screening and evaluation of extractants, flowsheet study in bench-scale using simulated and small amount of americium aqueous waste solution to evaluate candidate process, americium recovery test in iron-shielded cell to be installed in NUCEF. It is objected to make recovery of 100g orders of americium used for research on fundamental TRU fuel properties. (J.P.N.)

  18. Ingestion Pathway Transfer Factors for Plutonium and Americium

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-07-28

    Overall transfer factors for major ingestion pathways are derived for plutonium and americium. These transfer factors relate the radionuclide concentration in a given foodstuff to deposition on the soil. Equations describing basic relationships consistent with Regulatory Guide 1.109 are followed. Updated values and coefficients from IAEA Technical Reports Series No. 364 are used when a available. Preference is given to using factors specific to the Savannah River Site.

  19. 1976 Hanford americium-exposure incident: decontamination and treatment facility

    International Nuclear Information System (INIS)

    Berry, J.R.; McMurray, B.J.; Jech, J.J.; Breitenstein, B.D.; Quigley, E.J.

    1982-01-01

    An injured worker, contaminated with over 6 mCi of americium-241, required special treatment and housing for 4 months. This paper is a description of the design and management of the facility in which most of the treatment and housing occurred. The problems associated with contamination control, waste handling, supplies, and radiological concerns during the two-stage transfer of the patient from a controlled situation to his normal living environment are discussed in detail

  20. Americium-241: the most useful isotope of the actinide elements

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1984-01-01

    Used extensively in nuclear gauges and in many other areas, this man-made element (Atomic Number 95) was first isolated in weighable amounts during World War II. Americium is now a very useful by-product of the nuclear industry and is produced in kilogram amounts by appropriate recovery, separation and purification processes. A review will be presented of its discovery, nuclear and chemical properties, and uses, with emphasis on its production process and separations chemistry

  1. Extraction separation of americium and curium. A review

    International Nuclear Information System (INIS)

    Petrzilova, H.

    1976-11-01

    A survey is given of extraction systems suitable for transplutonium element separation and preparation as well as for the practical application of their nuclear properties. Methods are discussed in detail of separating the actinide and the lanthanide fractions from fission and corrosion products and of separating americium from curium. The description is completed with flowsheets showing the separation of transplutonium elements from irradiated targets and waste solutions after spent fuel reprocessing. (L.K.)

  2. Ingestion Pathway Transfer Factors for Plutonium and Americium

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    Overall transfer factors for major ingestion pathways are derived for plutonium and americium. These transfer factors relate the radionuclide concentration in a given foodstuff to deposition on the soil. Equations describing basic relationships consistent with Regulatory Guide 1.109 are followed. Updated values and coefficients from IAEA Technical Reports Series No. 364 are used when a available. Preference is given to using factors specific to the Savannah River Site

  3. On the structure of thorium and americium adenosine triphosphate complexes

    International Nuclear Information System (INIS)

    Mostapha, Sarah; Berton, Laurence; Boubals, Nathalie; Zorz, Nicole; Charbonnel, Marie-Christine; Fontaine-Vive, Fabien; Den Auwer, Christophe; Solari, Pier Lorenzo

    2014-01-01

    The actinides are chemical poisons and radiological hazards. One challenge to better appraise their toxicity and develop countermeasures in case of exposure of living organisms is to better assess pathways of contamination. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, nucleotides and in particular adenosine triphosphate nucleotide (ATP) may be considered critical target building blocks for actinides. Combinations of spectroscopic techniques (Fourier transformed Infra Red [FTIR], Electro-spray Ionization Mass Spectrometry [ESI-MS], and Extended X-ray Absorption Fine Structure [EXAFS]) with quantum chemical calculations have been implemented in order to assess the actinides coordination arrangement with ATP. We describe and compare herein the interaction of ATP with thorium and americium; thorium(IV) as a representative of actinide(IV) like plutonium(IV) and americium(III) as a representative of all heavier actinides. In the case of thorium, an insoluble complex is readily formed. In the case of americium, a behavior identical to that described previously for lutetium has been observed with insoluble and soluble complexes. The comparative study of ATP complexation with Th(IV) and Am(III) shows their ability to form insoluble complexes for which a structural model has been proposed by analogy with previously described Lu(III) complexes. (authors)

  4. On the structure of thorium and americium adenosine triphosphate complexes.

    Science.gov (United States)

    Mostapha, Sarah; Fontaine-Vive, Fabien; Berthon, Laurence; Boubals, Nathalie; Zorz, Nicole; Solari, Pier Lorenzo; Charbonnel, Marie Christine; Den Auwer, Christophe

    2014-11-01

    The actinides are chemical poisons and radiological hazards. One challenge to better appraise their toxicity and develop countermeasures in case of exposure of living organisms is to better assess pathways of contamination. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, nucleotides and in particular adenosine triphosphate nucleotide (ATP) may be considered critical target building blocks for actinides. Combinations of spectroscopic techniques (Fourier transformed Infra Red [FTIR], Electrospray Ionization Mass Spectrometry [ESI-MS], and Extended X-ray Absorption Fine Structure [EXAFS]) with quantum chemical calculations have been implemented in order to assess the actinides coordination arrangement with ATP. We describe and compare herein the interaction of ATP with thorium and americium; thorium(IV) as a representative of actinide(IV) like plutonium(IV) and americium(III) as a representative of all heavier actinides. In the case of thorium, an insoluble complex is readily formed. In the case of americium, a behavior identical to that described previously for lutetium has been observed with insoluble and soluble complexes. The comparative study of ATP complexation with Th(IV) and Am(III) shows their ability to form insoluble complexes for which a structural model has been proposed by analogy with previously described Lu(III) complexes.

  5. The EFTTRA-T4 experiment on americium transmutation

    CERN Document Server

    Konings, R J M; Dassel, G; Pijlgroms, B J; Somers, J; Toscano, E

    2000-01-01

    In the EFTTRA-T4 experiment the irradiation behaviour of a target containing americium dispersed in MgAl sub 2 O sub 4 was studied. Pellets containing 10-12 wt% sup 2 sup 4 sup 1 Am were fabricated by the infiltration method. However, it was found that the americium, intended to be present as AmO sub 2 sub - sub x , formed a compound, probably AmAlO sub 3 , during sintering. The T4 target was irradiated in the High Flux Reactor (HFR) Petten from August 1996 to January 1998 (358.4 fpd's). Post-test burn-up calculations indicated that the sup 2 sup 4 sup 1 Am concentration is reduced to 4% of the initial value at the end of the irradiation. The fraction of the initial americium atoms that were fissioned is 28%. Non-destructive and destructive examinations of the target indicated that swelling of the target pellets occurred. This is attributed to accumulation of helium, produced by alpha decay of sup 2 sup 4 sup 2 Cm that occurs in the transmutation scheme of sup 2 sup 4 sup 1 Am.

  6. Gut uptake factors for plutonium, americium and curium

    International Nuclear Information System (INIS)

    Harrison, J.D.

    1982-01-01

    Data on estimates of the absorption of plutonium, americium and curium from the human gut based on measurements of uptake in other mammalian species are reviewed. It is proposed that for all adult members of the public ingesting low concentrations of plutonium in food and water, 0.05% would be an appropriate value of absorption except when the conditions of exposure are known and a lower value can be justified. For dietary intakes of americium and curium, the available data do not warrant a change from the ICRP value of 0.05%. For newborn children ingesting americium, curium and soluble forms of plutonium, a value of 1% absorption is proposed for the first 3 months of life during which the infant is maintained on a milk diet. It is proposed that a value of 0.5% should be used for the first year of life to take account of the gradual maturation of the gut. In considering the ingestion of insoluble oxides of plutonium by infants, it is proposed that absorption is taken as 0.1% for the first 3 months and 0.05% for the first year. (author)

  7. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  8. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    Science.gov (United States)

    Ganguly, Shreyashi; Zhou, Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-12-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2- xSb xTe 3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2- xSb xTe 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.

  9. Properties of Nitrogen-Doped Zinc Telluride Films for Back Contact to Cadmium Telluride Photovoltaics

    Science.gov (United States)

    Shimpi, Tushar M.; Drayton, Jennifer; Swanson, Drew E.; Sampath, Walajabad S.

    2017-08-01

    Zinc telluride (ZnTe) films have been deposited onto uncoated glass superstrates by reactive radiofrequency (RF) sputtering with different amounts of nitrogen introduced into the process gas, and the structural and electronic transport properties of the resulting nitrogen-doped ZnTe (ZnTe:N) films characterized. Based on transmission and x-ray diffraction measurements, it was observed that the crystalline quality of the ZnTe:N films decreased with increasing nitrogen in the deposition process. The bulk carrier concentration of the ZnTe:N films determined from Hall-effect measurements showed a slight decrease at 4% nitrogen flow rate. The effect of ZnTe:N films as back contact to cadmium telluride (CdTe) solar cells was also investigated. ZnTe:N films were deposited before or after CdCl2 passivation on CdTe/CdS samples. Small-area devices were characterized for their electronic properties. Glancing-angle x-ray diffraction measurements and energy-dispersive spectroscopy analysis confirmed substantial loss of zinc from the samples where CdCl2 passivation was carried out after ZnTe:N film deposition.

  10. Extraction of pentavalent americium by di(2-ethylhexyl)phosphoric acid

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Myasoedov, B.F.; Frenkel, V.Ya.

    1983-01-01

    Conditions have been found for the extraction of americium(V) by HDEHP in octane from acetate buffer solutions at pH 4.5-5.0 in the presence of ammonium persulphate which was necessary to stabilize oxidized americium under these conditions. The effect of the nature of a solvent on the extraction coefficient of americium(V) was studied. Macroamounts of americium(V) were extracted by 0.5M HDEHP in octane. The absorption spectrum of americium(V) in the extract has been recorded. The stability of americium(V) in the organic phase was evaluated. The absence of interfering influence of the anions of phosphotungstic acids on the extraction of americium(V) by 0.5M HDEHP in octane makes it possible to separate americium(V) from trivalent actinides during one extraction from acetate solutions at pH 4.5-5.0 in the presence of 10 -3 M potassium phosphotungstate; the separation factor is about 10 3 . (author)

  11. Airborne plutonium-239 and americium-241 concentrations measured from the 125-meter Hanford Meteorological Tower

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height

  12. Surface tension and contact angles of molten cadmium telluride

    Science.gov (United States)

    Balasubramanian, R.; Wilcox, W. R.

    1990-01-01

    The surface tension and contact angle of molten cadmium telluride (CdTe) were measured as a function of temperature by the sessile drop technique. A FORTRAN code was developed to calculate the surface tension of sessile drops, with the contact angle ranging from O to 180°. The wetting of cadmium telluride melt was studied on different surfaces. The surface tension of cadmium telluride was about 160 ±5 dynes · cm-1[1.6 m-1] at the melting point of 1093°C. The contact angle of CdTe melt was about 65° on a quartz optical flat, 75° on commercial fused quartz, and 125° on boron nitride coated quartz.

  13. Robotic sample preparation for radiochemical plutonium and americium analyses

    International Nuclear Information System (INIS)

    Stalnaker, N.; Beugelsdijk, T.; Thurston, A.; Quintana, J.

    1985-01-01

    A Zymate robotic system has been assembled and programmed to prepare samples for plutonium and americium analyses by radioactivity counting. The system performs two procedures: a simple dilution procedure and a TTA (xylene) extraction of plutonium. To perform the procedures, the robotic system executes 11 unit operations such as weighing, pipetting, mixing, etc. Approximately 150 programs, which require 64 kilobytes of memory, control the system. The system is now being tested with high-purity plutonium metal and plutonium oxide samples. Our studies indicate that the system can give results that agree within 5% at the 95% confidence level with determinations performed manually. 1 ref., 1 fig., 1 tab

  14. Implications of plutonium and americium recycling on MOX fuel fabrication

    International Nuclear Information System (INIS)

    Renard, A.; Pilate, S.; Maldague, Th.; La Fuente, A.; Evrard, G.

    1995-01-01

    The impact of the multiple recycling of plutonium in power reactors on the radiation dose rates is analyzed for the most critical stage in a MOX fuel fabrication plant. The limitation of the number of Pu recycling in light water reactors would rather stem from reactor core physics features. The case of recovering americium with plutonium is also considered and the necessary additions of shielding are evaluated. A comparison between the recycling of Pu in fast reactors and in light water reactors is presented. (author)

  15. Effect of 241-americium on bone marrow stroma

    International Nuclear Information System (INIS)

    Heuvel, R. van den

    1990-01-01

    The regulation of haemopoiesis occurs via complex interactions between the stroma and the haemopoietic cells. An attempt to further clarifying the mechanisms and the exact role of the stroma in the regulation was made in a study. Results revealed that the murine bone marrow stromal cells are highly radiosensitive after injection with 241-americium and can thus be considered as a target population after internal contamination. In addition, observations are made which may be important for risk estimation for the developing animal and during pregnancy. Contamination in utero and by lactation shows persistent damage up to 1 year after contamination at an average annual dose of 5 cGy. (author)

  16. Use of cadmium telluride solar cells and environmental aspects

    International Nuclear Information System (INIS)

    Karus, M.; Wittassek, R.; Linden, W.

    1990-05-01

    Cadmium telluride solar cells for power generation may give rise to environmental pollution with cadmium in the event of incidents during fabrication, fires during operation or inappropriate disposal after use. Fires may liberate more than 50% of cadmium contained; disposal at municipal landfills and sufficient contact with water may even release 100% of cadmium. According to the waste disposal regulations in force, cadmium telluride cells, because of their cadmium content and the high risk of cadmium liberation on contact with water, must be disposed of in underground storages of category six. (orig.) [de

  17. Solubility of americium-241 in in vitro bovine ruminal-gastrointestinal fluids and predicted tissue retention and milk secretion of field-ingested americium-241

    International Nuclear Information System (INIS)

    Barth, J.

    1978-01-01

    The alimentary solubility and behavior of americium-241 were studied in an artificial rumen and simulated bovine gastrointestinal fluids. Rumen juice was augmented with americium-241 nitrate solution and incubated for 24 hours. This juice was successively converted by the addition of bile and enzymes and adjustment of the pH to simulate the digestive stages of the abomasum, duodenum, jejunum, and lower small intestine. Fluid samples were collected from each of these digestive stages and radioanalyzed for soluble americium-241. Shortly after the addition of americium-241 to rumen juice, an average of 15.3% remained soluble while 7.2% remained soluble following the incubation period. The solubility decreased to 5.3% following the abomasal period and increased to 11.6% and 20.0% when maintained at pH 4.0 and 5.0, respectively, in the duodenal phase. The solubility increased to 52% during the jejunal incubation period and was reduced to 44.8% during the lower intestinal incubation period. The sharp rise in americium-241 solubility during the jejunal incubation perid was found to be due mainly to the action of bile. Predictions of tissue retention and milk secretion of americium-241 ingested by grazing cattle at Area 13 of the Nevada Test Site are included

  18. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    International Nuclear Information System (INIS)

    Ganguly, Shreyashi; Zhou Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-01-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2−x Sb x Te 3 ) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2−x Sb x Te 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties. - Graphical abstract: PbTe nanoparticles introduced into p-type Bi 2 Te 3 by incipient wetness results in decreased lattice thermal conductivity, but also acts as an electronic dopant, resulting in an overall decrease in thermoelectric performance. Highlights: ► Composites of PbTe nanoparticles in Bi 2−x Sb x Te 3 were formed by incipient wetness. ► PbTe nanoparticles leads to decreased κ l , consistent with phonon scattering. ► PbTe nanoparticles lead to decreased S and ρ, due to increased carriers. ► Collateral doping from PbTe leads to decreased ZT with increasing concentration. ► Immiscible systems are preferred for improved ZT.

  19. Analysis of americium, plutonium and technetium solubility in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Seiji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-08-01

    Safety assessments for geologic disposal of radioactive waste generally use solubilities of radioactive elements as the parameter restricting the dissolution of the elements from a waste matrix. This study evaluated americium, plutonium and technetium solubilities under a variety of geochemical conditions using the geochemical model EQ3/6. Thermodynamic data of elements used in the analysis were provided in the JAERI-data base. Chemical properties of both natural groundwater and interstitial water in buffer materials (bentonite and concrete) were investigated to determine the variations in Eh, pH and ligand concentrations (CO{sub 3}{sup 2-}, F{sup -}, PO{sub 4}{sup 3-}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -} and NH{sub 4}{sup +}). These properties can play an important role in the complexation of radioactive elements. Effect of the groundwater chemical properties on the solubility and formation of chemical species for americium, plutonium and technetium was predicted based on the solubility analyses under a variety of geochemical conditions. The solubility and speciation of the radioactive elements were estimated, taking into account the possible range of chemical compositions determined from the groundwater investigation. (author)

  20. Plutonium and americium in the foodchain lichen-reindeer-man

    International Nuclear Information System (INIS)

    Jaakkola, T.; Hakanen, M.; Keinonen, M.; Mussalo, H.; Miettinen, J.K.

    1977-01-01

    The atmospheric nuclear tests have produced a worldwide fallout of transuranium elements. In addition to plutonium measurable concentrations of americium are to be found in terrestrial and aquatic environments. The metabolism of plutonium in reindeer was investigated by analyzing plutonium in liver, bone, and lung collected during 1963-1976. To determine the distribution of plutonium in reindeer all tissues of four animals of different ages were analyzed. To estimate the uptake of plutonium from the gastrointestinal tract in reindeer, the tissue samples of elk were also analyzed. Elk which is of the same genus as reindeer does not feed on lichen but mainly on deciduous plants, buds, young twigs, and leaves of trees and bushes. The composition of its feed corresponds fairly well to that of reindeer during the summer. Studies on behaviour of americium along the foodchain lichen-reindeer-man were started by determining the Am-241 concentrations in lichen and reindeer liver. The Am-241 results were compared with those of Pu-239,240. The plutonium contents of the southern Finns, whose diet does not contain reindeer tissues, were determined by analyzing autopsy tissue samples (liver, lung, and bone). The southern Finns form a control group to the Lapps consuming reindeer tissues. Plutonium analyses of the placenta, blood, and tooth samples of the Lapps were performed

  1. Uptake and recovery of americium and uranium by Anacystis biomass

    International Nuclear Information System (INIS)

    Liu, H.H.; Jiunntzong Wu

    1993-01-01

    The optimum conditions for the uptake of americium and uranium from wastewater solutions by Anacystis nidulans cells, and the recovery of these radionuclides were studied. The optimum pH range for both actinides was in the acidic region between 3.0 and 5.0. In a pH 3.5 solution with an algal biomass of 70 μg/mL, up to 95% of the Am and U were taken up by the cells. However, the uptake levels were lowered considerably when ethylene dinitrilotetraacetic acid (EDTA) or iron or calcium ions were present in the solutions. Most of the radionuclides taken up by the cells could also be desorbed by washing with salt solutions. Of nine salt solutions tested, ammonium carbonate was the most effective. Our experiments using algal biomass to remove radionuclides from wastewater showed that about 92% of americium and 85% of uranium in wastewater could be taken up by algal biomass, from which about 46% of the Am and 82% of the U originally present in the wastewater could be recovered by elution with a salt solution. 17 refs., 7 figs., 2 tabs

  2. Extraction of americium of different oxidation states in two-phase aqueous system based on polyethylene glycol

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Frenkel', V.Ya.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-01-01

    Americium extraction in different oxidation states in two-phase aqueous system based on polyethylene glycol is investigated. Conditions for quantitative extraction of americium (3) and americium (5) from ammonium sulfate solutions within pH=3-5 interval in the presence of arsenazo 3 are found. Composition of the produced americium complexes with reagent is determined; americium (3) interacts with arsenazo 3 in ammonium sulfate solutions with the formation of MeR and Me 2 R composition complexes. Absorption spectrum characteristics of americium (3) and- (5) complexes with arsenazo 3 in ammonium sulfate solutions and extracts based polyethylene glycol aqueous solutions are given. Molar extinction coefficients of americium complexes with arsenazo (3) in these solutions are determined

  3. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  4. Synthesis of copper telluride nanowires using template-based ...

    Indian Academy of Sciences (India)

    using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4·81,. 8·93, 21, 24·55, 42·5 and 80·1, respectively. The results unequivocally prove that copper telluride nanowires can be fabricated as chemical sensors with enhanced sensitivity and reliability. Keywords. CuTe ...

  5. Synthesis of copper telluride nanowires using template-based ...

    Indian Academy of Sciences (India)

    Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic solution of copper (II) sulphate (CuSO4.5H2O) and tellurium oxide (TeO2) on a copper substrate by template-assisted electrodeposition method. The electrodeposition was conducted at 30 °C and the length of nanowires was ...

  6. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    High-temperature thermoelectric behavior of lead telluride. M P SINGH1 and C M BHANDARI2. 1Department of Physics, University of Allahabad, Allahabad 211 002, India. 2Indian Institute of Information Technology, Allahabad 211 002, India. E-mail: singhmps74@rediffmail.com; cmbhandari@yahoo.com. MS received 16 ...

  7. Rare earth elements during diagenesis of abyssal sediments: analogies with a transuranic element americium

    International Nuclear Information System (INIS)

    Boust, D.

    1987-03-01

    One of the possibilities for the storage of high-level radioactive wastes consists in burying them into abyssal sediments, the sediments being supposed to barrier out radionuclides migration. The objective of the work was to estimate the efficiency of sediment barrier with respect to americium. As there is no americium in abyssal sediments, an indirect approach was used: the behaviour of the rare earth elements, the best natural analogs of americium. They were analysed in a 15 m long core, from the Cap Verde abyssal plateau. The terrigenous phase derived from the African continent was modified by short-term processes (1-1000 years); the intermediate rare earth elements were dissolved. Mineral coatings, enriched in rare earth appeared. After burial, the evolution continued at a much slower rate (10 5 - 10 6 years). The rare elements of the mineral coatings derived from the dissolution of the terrigenous phase and from an additional source, deeper in the sediment column. The fluxes of rare earth elements from sediment to water column were estimated. In suboxic sediments, the dissolved particulate equilibrium was related to redox conditions. The short-term reactivity of americium was studied in laboratory experiments. Simple americium migration models showed that the sediments barrier was totally efficient with respect to americium. In the conditions, neptunium 237 a daughter product of americium 241 could induce fluxes of 10 16 atoms per year per ton of stored waste (10 -8 Ci y-1), during millions years, towards the water column [fr

  8. Thin films and solar cells of cadmium telluride and cadmium zinc telluride

    Science.gov (United States)

    Ferekides, Christos Savva

    The objectives of this dissertation are to investigate (1) the metalorganic chemical vapor deposition (MOCVD) and properties of cadmium telluride (CdTe) and cadmium zinc telluride (Cd(1-x)Zn(z)Te) films and junctions, and their potential application to solar cells, and (2) the fabrication and characterization of CdTe solar cells by the close spaced sublimation (CSS) technique. CdTe and Cd(1-x)Zn(x)Te films have been deposited by MOCVD on a variety of substrates at 300-400 C. The effect of the deposition parameters and post deposition heat treatments on the electrical, optical, and structural properties have been investigated. Heterojunctions of the configuration CdTe/transparent conducting semiconductor (TCS) and Cd(1-x)Zn(x)Te/TCS have been prepared and characterized. CdTe(MOCVD)/CdS and Cd(1-x)Zn(x)Te(E sub g = 1.65eV)/Cd(1-x)Zn(x)S solar cells with efficiencies of 9.9 percent and 2.4 percent, respectively have been fabricated. The as-deposited CdTe(MOCVD)/CdS junctions exhibited high dark current densities due to deflects at the interface associated with small grain size. Their characteristics of the Cd(1-x)Zn(x)Te junctions degraded with increasing Zn concentration due to the crystalline quality and very small grain size (0.3 microns) in films with high ZnTe contents (greater than 25 percent). No effective post-deposition heat treatment has been developed. CdTe/CdS solar cells have also been fabricated by the close spaced sublimation (CSS). Significant improvements in material and processing have been made, and in collaboration with fellow researchers an AM1.5 conversion efficiency of 13.4 percent has been demonstrated, the highest efficiency ever measured for such devices. The highest conversion efficiency for the CdTe(CSS)/CdS solar cell was achieved by reaching high open-circuit voltages and fill factors, while the short-circuit current densities were moderate. These results indicate that further improvements to increase the short-circuit current densities

  9. Analysis of biological samples for americium and curium

    International Nuclear Information System (INIS)

    Miglio, J.J.

    1976-01-01

    A method of analyzing biological materials by liquid scintillation counting for americium and curium which greatly reduces the contribution from 40 K is described. The method employs an extractant liquid scintillation cocktail using N,N,N-trioctyl-N-methyl-ammonium chloride as the extractant. Instrument as well as tissue backgrounds are reduced. The lowered backgrounds allow picocurie level samples to be analyzed by liquid scintillation counting instead of alpha pulse height analysis. The samples are reduced to a carbon-free ash and then dissolved in 8M LiNo 3 which is also 10 -2 M in HNO 3 . An aliquot is placed in a liquid scintillation vial along with the extractant-scintillator, shaken and counted

  10. Pretreatment of americium/curium solutions for vitrification

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1996-01-01

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to the heavy isotope programs at Oak Ridge National Laboratory. Prior to vitrification, an in-tank oxalate precipitation and a series of oxalic/nitric acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Pretreatment development experiments were performed to understand the behavior of the lanthanides and the metal impurities during the oxalate precipitation and properties of the precipitate slurry. The results of these experiments will be used to refine the target glass composition allowing optimization of the primary processing parameters and design of the solution transfer equipment

  11. Determination of the oxygen-metal-ratio of uranium-americium mixed oxides

    International Nuclear Information System (INIS)

    Bartscher, W.

    1982-01-01

    During the dissolution of uranium-americium mixed oxides in phosphoric acid under nitrogen tetravalent uranium is oxidized by tetravalent americium. The obtained hexavalent uranium is determined by constant potential coulometry. The coulombs measured are equivalent to the oxygen in excess of the minimum composition of UO 2 x AmO 1 . 5 . The total uranium content of the sample is determined in a subsequent coulometric titration. The oxygen-metal ratio of the sample can be calculated for a given uranium-americium ratio. An excess of uranium dioxide is necessary in order to suppress the oxidation of water by tetravalent americium. The standard deviation of the method is 0.0017 O/M units. (orig.) [de

  12. In-line measurement of plutonium and americium in mixed solutions

    International Nuclear Information System (INIS)

    Li, T.K.

    1981-01-01

    A solution assay instrument (SAI) has been developed at the Los Alamos National Laboratory and installed in the plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument is designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and Am/Pu ratios. For a 25-mL sample, the assay precision is 5 g/L within a 2000-s count time

  13. About thermo-electric properties of bismuth telluride doped by gadolinium

    International Nuclear Information System (INIS)

    Akperov, M.M.; Ismailov, Sh.S.; Shukyurova, A.A.

    2004-01-01

    Results of study of the Gd impurities effect on the bismuth telluride thermo-electric properties are presented. The experiment was carried out within the temperature range T=300-700 K. It is determined, that at temperature increase the energy level is appreciably closing up to bismuth telluride forbidden zone which makes up 0.16-0.24 eV. Such anomalous energy properties of gadolinium in telluride affect on material thermoelectric properties

  14. Biochemical fractionation and cellular distribution of americium and plutonium in the biomass of freshwater macrophytes

    International Nuclear Information System (INIS)

    Zotina, T.A.; Kalacheva, G.S.; Bolsunovsky, A.Ya.

    2011-01-01

    Accumulation of americium ( 241 Am) and plutonium ( 238,242 Pu) and their distribution in cell compartments and biochemical components of the biomass of freshwater aquatic plants Elodea canadensis, Ceratophyllum demersum and Myrioplyllum spicatum and aquatic moss Fontinalis antipyretica have been investigated in laboratory experiments. Americium and plutonium taken up from water by Elodea canadensis apical shoots were mainly absorbed by structural components of plant cells (90% for 241 Am; 89% for 238 Pu and 82-87% for 242 Pu). About 10-18% of isotope activity was recorded in the cytosol fraction. The major concentration (76-92%) of americium was bound to cell wall cellulose-like polysaccharides of Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum and Fontinalis antipyretica, 8-24% of americium activity was registered in the fraction of proteins and carbohydrates, and just a minor concentration (<1%) in the lipid fraction. The distribution of plutonium in the biomass fractions of Elodea was similar to that of americium. Hence, americium and plutonium had the highest affinity to cellulose-like polysaccharides of cell walls of freshwater submerged macrophytes. (author)

  15. Distribution of uranium, americium and plutonium in the biomass of freshwater macrophytes

    International Nuclear Information System (INIS)

    Zotina, T.A.; Kalacheva, G.S.; Bolsunovsky, A.YA.

    2010-01-01

    Accumulation of uranium ( 238 U), americium ( 241 Am) and plutonium ( 242 Pu) and their distribution in cell compartments and biochemical components of the biomass of aquatic plants Elodea canadensis, Ceratophyllum demersum, Myrioplyllum spicatum and aquatic moss Fontinalis antipyretica have been investigated in laboratory batch experiments. Isotopes of uranium, americium and plutonium taken up from the water by Elodea canadensis apical shoots were mainly absorbed by cell walls, plasmalemma and organelles. A small portion of isotopes (about 6-13 %) could be dissolved in cytoplasm. The major portion (76-92 %) of americium was bound to cell wall cellulose-like polysaccharides of Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum and Fontinalis antipyretica, 8-23 % of americium activity was registered in the fraction of proteins and carbohydrates, and just a small portion (< 1%) in lipid fraction. The distribution of plutonium in the biomass fraction of Elodea was similar to that of americium. Hence, americium and plutonium had the highest affinity to cellulose-like polysaccharides in Elodea biomass. Distribution of uranium in the biomass of Elodea differed essentially from that of transuranium elements: a considerable portion of uranium was recorded in the fraction of protein and carbohydrates (51 %). From our data we can assume that uranium has higher affinity to carbohydrates than proteins. (authors)

  16. Distribution of uranium, americium and plutonium in the biomass of freshwater macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.A.; Kalacheva, G.S.; Bolsunovsky, A.YA. [Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk (Russian Federation)

    2010-07-01

    Accumulation of uranium ({sup 238}U), americium ({sup 241}Am) and plutonium ({sup 242}Pu) and their distribution in cell compartments and biochemical components of the biomass of aquatic plants Elodea canadensis, Ceratophyllum demersum, Myrioplyllum spicatum and aquatic moss Fontinalis antipyretica have been investigated in laboratory batch experiments. Isotopes of uranium, americium and plutonium taken up from the water by Elodea canadensis apical shoots were mainly absorbed by cell walls, plasmalemma and organelles. A small portion of isotopes (about 6-13 %) could be dissolved in cytoplasm. The major portion (76-92 %) of americium was bound to cell wall cellulose-like polysaccharides of Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum and Fontinalis antipyretica, 8-23 % of americium activity was registered in the fraction of proteins and carbohydrates, and just a small portion (< 1%) in lipid fraction. The distribution of plutonium in the biomass fraction of Elodea was similar to that of americium. Hence, americium and plutonium had the highest affinity to cellulose-like polysaccharides in Elodea biomass. Distribution of uranium in the biomass of Elodea differed essentially from that of transuranium elements: a considerable portion of uranium was recorded in the fraction of protein and carbohydrates (51 %). From our data we can assume that uranium has higher affinity to carbohydrates than proteins. (authors)

  17. The Cadmium Zinc Telluride Imager on AstroSat

    Science.gov (United States)

    Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Pawar, P.; Rao, A. R.; Hingar, M. K.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Patil, M. H.; Arora, Y. K.; Sinha, S.; Priya, P.; Samuel, Essy; Sreekumar, S.; Vinod, P.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Seetha, S.; Subbarao, K.

    2017-06-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17^' over a 4.6° × 4.6° (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ˜ 100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  18. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation

    Directory of Open Access Journals (Sweden)

    H. Julian Goldsmid

    2014-03-01

    Full Text Available Bismuth telluride and its alloys are widely used as materials for thermoelectric refrigeration. They are also the best materials for use in thermoelectric generators when the temperature of the heat source is moderate. The dimensionless figure of merit, ZT, usually rises with temperature, as long as there is only one type of charge carrier. Eventually, though, minority carrier conduction becomes significant and ZT decreases above a certain temperature. There is also the possibility of chemical decomposition due to the vaporization of tellurium. Here we discuss the likely temperature dependence of the thermoelectric parameters and the means by which the composition may be optimized for applications above room temperature. The results of these theoretical predictions are compared with the observed properties of bismuth telluride-based thermoelements at elevated temperatures. Compositional changes are suggested for materials that are destined for generator modules.

  19. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. [University of South Florida, Tampa, FL (United States)

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  20. Fission-product tellurium and cesium telluride chemistry revisited

    International Nuclear Information System (INIS)

    McFarlane, J.; LeBlanc, J.C.

    1996-11-01

    The chemistry of fission-product tellurium is discussed with a focus on conditions in an operating CANDU reactor and in an accident scenario, i.e., a loss of coolant accident (LOCA). Cesium telluride, Cs 2 Te, is likely to be one of the most abundant tellurium species released to containment. Available thermodynamic data on gas phase Cs 2 Te is not complete; hence the volatility of cesium telluride was studied by Knudsen-cell mass spectrometry. Cesium telluride was found to vapourize incongruently, becoming more tellurium-rich in the condensed phase as vapourization progressed. Vapour-phase species that were observed were elemental cesium and tellurium, CsTe, Cs 2 Te, Cs 2 Te 2 and Cs 2 Te 3 . Second-law enthalpies and entropies were obtained for many of these species, and a third-law value, ΔH 298 o , of 186 ± 2 kJ·mol -1 was obtained for Cs 2 Te. (author)

  1. Selective dissolution of americium by ferricyanide ions in basic aqueous solutions

    International Nuclear Information System (INIS)

    Meyer, D.; Fouchard, S.; Simoni, E.

    2000-01-01

    Americium exhibits a soluble form in aqueous alkaline media under oxidizing conditions which is not the case for the other Transplutonium Elements (TPE). This property can be exploited for High Level Liquid Waste (HLLW) treatment to extract Am, one of the main radionuclides responsible for the long term radiotoxicity of nuclear waste. The Soluble Am compound can be obtained by adding a concentrated basic solution of ferricyanide ions (Fe(CN) 6 3- ) to a trivalent americium hydroxide precipitate. The method allows complete and rapid extraction of americium via its soluble form in alkaline solutions. Under these conditions, other TPE and lanthanides remain in the solid state as precipitates of highly insoluble trivalent hydroxides. In the case of dissolution involving large amounts of americium, the formation of the soluble americium species is followed by the appearance of a reddish precipitate in the basic solution. Dissolution of the reddish solid in NaOH or NaOH/Fe(CN) 6 3- media demonstrated the existence of a media dependent solubility of the precipitate, and therefore the existence of at least two forms of soluble Am. Spectroscopic studies (UV-visible, EXAFS-XANES) of this reddish solid led to the determination of an Am oxidation state (pentavalent americium) and its possible formula (Na 2 AmVO 2 (OH) 3 .nH 2 O). Electrochemical studies show that the only possible oxidation reaction of trivalent americium in the working media yields the pentavalent form, and that the hexavalent state is unattainable. Stoichiometric and spectroscopic studies show that not all the ferricyanide ions required for complete dissolution of Am remain in the free Fe(CN) 6 3- form. This observation supports the view that this dissolution of Am(III) solid compound is much more complex than a simple oxidation by the ferricyanide ions. The existence of a molecular interaction between Am(V)O 2 + and ferricyanide ions is highly probable. This work demonstrates that the selective dissolution

  2. Effect of americium-241 on luminous bacteria. Role of peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrova, M., E-mail: maka-alexandrova@rambler.r [Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk (Russian Federation); Rozhko, T. [Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk (Russian Federation); Vydryakova, G. [Institute of Biophysics SB RAS, Akademgorodok 50, 660036 Krasnoyarsk (Russian Federation); Kudryasheva, N. [Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk (Russian Federation); Institute of Biophysics SB RAS, Akademgorodok 50, 660036 Krasnoyarsk (Russian Federation)

    2011-04-15

    The effect of americium-241 ({sup 241}Am), an alpha-emitting radionuclide of high specific activity, on luminous bacteria Photobacterium phosphoreum was studied. Traces of {sup 241}Am in nutrient media (0.16-6.67 kBq/L) suppressed the growth of bacteria, but enhanced luminescence intensity and quantum yield at room temperature. Lower temperature (4 {sup o}C) increased the time of bacterial luminescence and revealed a stage of bioluminescence inhibition after 150 h of bioluminescence registration start. The role of conditions of exposure the bacterial cells to the {sup 241}Am is discussed. The effect of {sup 241}Am on luminous bacteria was attributed to peroxide compounds generated in water solutions as secondary products of radioactive decay. Increase of peroxide concentration in {sup 241}Am solutions was demonstrated; and the similarity of {sup 241}Am and hydrogen peroxide effects on bacterial luminescence was revealed. The study provides a scientific basis for elaboration of bioluminescence-based assay to monitor radiotoxicity of alpha-emitting radionuclides in aquatic solutions. - Highlights: {yields} Am-241 in water solutions (A = 0.16-6.7 kBq/L) suppresses bacterial growth.{yields} Am-241 (A = 0.16-6.7 kBq/L) stimulate bacterial luminescence. {yields} Peroxides, secondary radiolysis products, cause increase of bacterial luminescence.

  3. Americium/Curium Melter 2A Pilot Tests

    International Nuclear Information System (INIS)

    Smith, M.E.; Fellinger, A.P.; Jones, T.M.; Miller, C.B.; Miller, D.H.; Snyder, T.K.; Stone, M.E.; Witt, D.C.

    1998-05-01

    Isotopes of americium (Am) and curium (Cm) were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. These highly radioactive and valuable isotopes have been stored in an SRS reprocessing facility for a number of years. Vitrification of this solution will allow the material to be more safely stored until it is transported to the DOE Oak Ridge Reservation for use in research and medical applications. To this end, the Am/Cm Melter 2A pilot system, a full-scale non- radioactive pilot plant of the system to be installed at the reprocessing facility, was designed, constructed and tested. The full- scale pilot system has a frit and aqueous feed delivery system, a dual zone bushing melter, and an off-gas treatment system. The main items which were tested included the dual zone bushing melter, the drain tube with dual heating and cooling zones, glass compositions, and the off-gas system which used for the first time a film cooler/lower melter plenum. Most of the process and equipment were proven to function properly, but several problems were found which will need further work. A system description and a discussion of test results will be given

  4. Density of simulated americium/curium melter feed solution

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.

    1997-09-22

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70{degrees} C. The measured density decreased linearly at a rate of 0.0007 g/cm3/{degree} C from an average value of 1.2326 g/cm{sup 3} at 20{degrees} C to an average value of 1.1973g/cm{sup 3} at 70{degrees} C.

  5. Density of simulated americium/curium melter feed solution

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1997-01-01

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70 degrees C. The measured density decreased linearly at a rate of 0.0007 g/cm3/degree C from an average value of 1.2326 g/cm 3 at 20 degrees C to an average value of 1.1973g/cm 3 at 70 degrees C

  6. Americium adsorption on the surface of macrophytic algae

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F.P.; Fowler, S.W.

    1985-01-01

    Data are presented on the rates at which americium (Am) deposits upon blade surfaces of three benthic algal species (Ulva rigida, Fucus vesiculosus and Gigartina stellata) following short-term exposures (1-6 h). Am is taken up in direct proportion to the ambient radionuclide concentration in sea water. Uptake by the green alga was 3 to 5 times greater than that for the brown and red species. Experimental evidence indicated that Am accumulation is a passive process and that adsorption takes place mainly on the thin outer organic coating of the seaweed. The Am transport coefficients are quite similar to that previously found for the naturally occurring ..cap alpha..-emitter /sup 210/Po, but are an order of magnitude lower than a plutonium transport coefficient reported in the literature. Release of labelled extracellular products associated with the algal surface coating is considered to be responsible for the rapid loss of Am observed previously in macroalgae and may in fact serve as a mechanism for transferring Am to filter feeding zooplankton. (author).

  7. Americium adsorption on the surface of macrophytic algae

    International Nuclear Information System (INIS)

    Carvalho, F.P.; Fowler, S.W.

    1985-01-01

    Data are presented on the rates at which americium (Am) deposits upon blade surfaces of three benthic algal species (Ulva rigida, Fucus vesiculosus and Gigartina stellata) following short-term exposures (1-6 h). Am is taken up in direct proportion to the ambient radionuclide concentration in sea water. Uptake by the green alga was 3 to 5 times greater than that for the brown and red species. Experimental evidence indicated that Am accumulation is a passive process and that adsorption takes place mainly on the thin outer organic coating of the seaweed. The Am transport coefficients are quite similar to that previously found for the naturally occurring α-emitter 210 Po, but are an order of magnitude lower than a plutonium transport coefficient reported in the literature. Release of labelled extracellular products associated with the algal surface coating is considered to be responsible for the rapid loss of Am observed previously in macroalgae and may in fact serve as a mechanism for transferring Am to filter feeding zooplankton. (author)

  8. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  9. Preparation and characterization of cadmium telluride. Study of nuclear spectrometers

    International Nuclear Information System (INIS)

    Cornet, Alain.

    1976-01-01

    Cadmium telluride single crystals have been grown by three different methods: zone refining, Bridgman and travelling heater method (THM). Characterization has been undertaken especially on the THM ingots by different methods, including time of flight, thermally stimulated current and thermoluminescence. A theoretical level scheme approach has been used to establish the mechanism of self-compensation with halogens. Finally nuclear radiation detection has been prepared and investigated. The following parameters have been considered: detector efficiency, energy resolution, stability in time and under irradiation. Structure suppressing polarization effects in chlorine compensated THM samples are presented [fr

  10. The rapid determination of americium curium, and uranium in urine by ultrafiltration

    International Nuclear Information System (INIS)

    Stradling, G.N.; Popplewell, D.S.; Ham, G.J.; Griffin, R.

    1975-01-01

    The rapid ultrafiltration method developed for the assay of plutonium has been extended to the determination of americium, curium and uranium in urine. The limits of detection for americium and curium, and uranium are 0.09 and 0.12 dm -1 l -1 respectively, and the analysis time excluding counting less than 2 hours. The method can therefor be effectively used as a rapid screening procedure. When the reference level for plutonium is exceeded, the α activity may require to be characterised. The single ultrafiltration technique must be modified for turbid urine samples. The method is inappropriate, except for uranium, when the urine contains DTPA. (author)

  11. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  12. Thin film cadmium telluride and zinc phosphide solar cells

    Science.gov (United States)

    Chu, T.

    1984-10-01

    The deposition of cadmium telluride films by direct combination of the cadmium and tellurium vapor on foreign substrates is described. Nearly stoichiometric p-type cadmium telluride films and arsenic-doped p-type films were prepared reproducibly. Major efforts were directed to the deposition and characterization of heterojunction window materials, indium tin oxide, fluorine-doped tin oxide, cadmium oxide, and zinc oxide. A number of heterojunction solar cells were prepared, and the best thin-film ITO/CdTe solar cells had an AMI efficiency of about 7.2%. Zinc phosphide films were deposited on W/steel substrated by the reaction of zinc and phosphine in a hydrogen flow. Films without intentional doping had an electrical resistivity on the order of 10(6) ohm-cm, and this resistivity may be reduced to about 5 x 10(4) ohm-cm by adding hydrogen chloride or hydrogen bromide to the reaction mixture. Lower resistivity films are deposited by adding a controlled amount of silver nitrate solution on to the substrate surface. Major efforts are directed to the deposition of low-resistivity zinc selenide to prepare ZnSe/An3P2 heterojunction thin-film solar cells. The zinc selenide films deposited by vaccum evaporation and chemical vapor deposition techniques are all of high resistivity.

  13. Spectral analysis techniques for characterizing cadmium zinc telluride polarization modulators

    Science.gov (United States)

    FitzGerald, William R.; Taherion, Saeid; Kumar, F. Joseph; Giles, David; Hore, Dennis K.

    2018-04-01

    The low frequency electro-optic characteristics of cadmium zinc telluride are demonstrated in the mid-infrared, in the spectral range 2.5-11 μm. Conventional methods for characterizing the dynamic response by monitoring the amplitude of the time-varying light intensity do not account for spatial variation in material properties. In such cases, a more revealing method involves monitoring two distinct frequency components in order to characterize the dynamic and static contributions to the optical retardation. We demonstrate that, while this method works well for a ZnSe photo-elastic modulator, it does not fully capture the response of a cadmium zinc telluride electro-optic modulator. Ultimately, we show that acquiring the full waveform of the optical response enables a model to be created that accounts for inhomogeneity in the material that results in an asymmetric response with respect to the polarity of the driving voltage. This technique is applicable to broadband and fixed-wavelength applications in a variety of spectral ranges.

  14. Ore petrology and geochemistry of Tertiary gold telluride deposits of the Colorado mineral belt

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, J.A.; Romberger, S.B.

    1985-01-01

    Epithermal gold telluride deposits from the Colorado mineral belt share a number of similarities: relationship to alkalic stocks; high fluorine and CO/sub 2/ content; and similar paragenesis. Petrography of deposits in the Jamestown, Cripple Creek, and La Plata districts has resulted in a composite paragenesis: early Fe-Cu-Pb-Zn sulfides + hematite; tetrahedrite; high Te tellurides; low Te tellurides; late native gold. Fluid inclusion studies suggest telluride deposition occurred below 200/sup 0/C from low salinity. Gangue and alteration mineralogy indicates the ore fluids were near neutral pH during telluride deposition. The presence of hematite and locally barite suggest relatively oxidizing conditions. Evaluation of thermodynamic stabilities of tellurides and aqueous tellurium species indicates that progressive oxidation is consistent with the observed ore mineral paragenesis. Available data on gold bisulfide and chloride complexes suggest neither were important in the transport of gold in these systems. Thermodynamic data suggest the ditelluride ion (Te/sub 2//sup 2 -/) predominates in the range of inferred physiochemical conditions for the transport and deposition of gold in these systems. Inferred complexes such as AuTe/sub 2//sup -/ could account for the gold transport, and oxidation would be the most effective mechanism of precipitation of gold telluride or native gold. Published data suggest the associated alkalic stocks may be the ultimate source of the metals, since they are enriched in Au, Ag, Te, As, and Bi.

  15. The study and development of cadmium telluride detectors for gamma ray spectrometry

    International Nuclear Information System (INIS)

    Knispel, Gerard

    1970-01-01

    The purpose of this work is the study of possibility of cadmium telluride's utilisation in gamma ray spectroscopy. This material has some superiorities in comparison with germanium which is utilised in (Ge Li) structures. In a first chapter we study the interaction of rays with matter in the particular case of cadmium telluride. The range of α and β rays in the some way as the effect cross section of gamma ray versus energy are deducted from data tabulated for tin which has a density and an atomic weight very near. The problems related with creation and collection of charges in a cadmium telluride structure are discussed in the same way as the resolution in nuclear spectroscopy, acting the different parameters characterising the detector. In the second chapter, after some indications in the metallurgy of cadmium telluride, we describe the realisation of several structures types, evaporation of a cadmium telluride's layer, diffusion of gold or copper, metal semiconductor contact. Measures of current-voltage characteristics and capacity allow the determination of possibility of nuclear detection with this structures and state precisely some parameters. In the third chapter range's measures of α rays are compared with the first chapter's theoretical results. Results of α ray spectroscopy obtained with three detectors are described and show the possibility of cadmium telluride in this way. Detection of gamma ray at last justify the choice of this material, but the results obtained here show the progress to do in cadmium telluride metallurgy. (author) [fr

  16. Medical management after contamination and incorporation of americium in occupational exposure. Medizinische Massnahmen nach Kontamination und Inkorporation von Americium bei beruflicher Strahlenexposition

    Energy Technology Data Exchange (ETDEWEB)

    Gensicke, F.; Stopp, G.; Scheler, R.; Klucke, H.; Czarwinski, R.; Naumann, M.; Hoelzer, F.; Ott, R.; Schmidt, I. (Staatliches Amt fuer Atomsicherheit und Strahlenschutz, Berlin (Germany, F.R.). Abt. Strahlenschutzmedizin)

    1990-10-01

    In handling with an ampule of {sup 241}Am-nitrate solution one person received an contamination of the body surface, especially the face and the hairs, and an internal contamination of americium. The paper presents the results obtained in medical management to reduced the contamination of the skin and of the incorporated radionuclide. The radioactivity of the body surface could be reduced up to small local areas. After treatment with DTPA (Ditripentat) the internal exposure decrease about 83%. (orig.).

  17. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  18. Adsorption-desorption characteristics of plutonium and americium with sediment particles in the estuarine environment: studies using plutonium-237 and americium-241

    International Nuclear Information System (INIS)

    Murray, C.N.; Fukai, R.

    1975-01-01

    The particle formation of plutonium and americium, their adsorption onto fresh water sediments and the desorption from the sediments in sea water were studied in the Laboratory under simulated river-estuary conditions, using γ-emitting plutonium-237 and americium-241. The results of the experiments show that the particle formation of plutonium depends on its valence states, on pH and on the salinity of the medium. For river water at pH4, some 25%, 20% and 30% of the added 237 Pu was in particulate form, larger than 0.45 μm, for Pu (III), Pu (IV) and Pu (VI), respectively, while 65%, 90% and 50% of the respective valence states was associated with particles at pH 8. In sea water the general pattern remains similar, although Pu (VI) is more soluble in sea water owing to higher ligand concentrations for carbonate and bicarbonate complexes. The pH-dependency of particle formation of Am (III) is more steep than that of plutonium and seems to be influenced by colloidal substances occurring in the experimental media. The adsorption-desorption characteristics of plutonium and americium with the sediment in river water as well as sea water reflect the characteristics of their particle formation, being dependent upon such properties as valence states, the pH and salinity of the medium. A sewage effluent added to the media has small but measurable effects on the adsorption-desorption processes of plutonium. (author)

  19. Preparation and study of the properties of lead telluride and cadmium telluride diodes for use in nuclear spectrometry

    International Nuclear Information System (INIS)

    Lancon, R.

    1969-01-01

    This work studies the possibility of using high atomic number compound semiconductors, like lead telluride and cadmium telluride as to realize nuclear radiation detectors, specially in gamma ray spectrometry because of their high absorption coefficient. The problems related to the preparation of binary compounds are exposed. Experiments on PbTe show the influence of the conditions of preparation on the electrical properties of the semiconductor which are greatly dependent on the stoichiometry of the compound. PbTe surface-barrier diodes were realized and have been used to study the surface properties of this semiconductor. These diodes cannot detect nuclear radiations because of the too weak resistivity of our material. Different types of devices made of Cd Te have been studied. One of these diodes has been used as an alpha particle detector. We explain the relative poor performances of that detector by the presence of lattice defects in Cd Te where charge carriers may recombine themselves. By analysing the properties of gold diffused Cd Te diodes we identified this defect, the cadmium vacancy, the presence of which is due to the deviation from stoichiometry during the preparation of the material. (author) [fr

  20. Total and Compound Formation Cross Sections for Americium Nuclei: Recommendations for Coupled-Channels Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-11

    Calculations for total cross sections and compound-nucleus (CN) formation cross sections for americium isotopes are described, for use in the 2017 NA-22 evaluation effort. The code ECIS 2006 was used in conjunction with Frank Dietrich's wrapper `runtemplate'.

  1. Evaluation of the readsorption of plutonium and americium in dynamic fractionations of environmental solid samples

    DEFF Research Database (Denmark)

    Petersen, Roongrat; Hou, Xiaolin; Hansen, Elo Harald

    2008-01-01

    extractions. The degree of readsorption in dynamic and conventional batch extraction systems are compared and evaluated by using a double-spiking technique. A high degree of readsorption of plutonium and americium (>75%) was observed in both systems, and they also exhibited similar distribution patterns...

  2. Migration ability of plutonium and americium in the soils of Polessie State Radiation-Ecological Reserve

    International Nuclear Information System (INIS)

    Svetlana Ovsiannikova; Maryna Papenia; Katsiaryna Voinikava; Galina Sokolik; Sergey Svirschevsky; Justin Brown; Lindys Skipperud

    2010-01-01

    The physicochemical forms of radionuclides in soils determine the processes of their entry into the soil solutions, redistribution in the soil profile, soil-plant and soil-ground or surface waters transfer as well as spreading outside the contaminated area. The vertical distribution of plutonium and americium and their physicochemical forms in soils of Polessie State Radiation-Ecological Reserve (PSRER) were studied with the aim of establishing the potential for radionuclide migration. Samples of alluvial soddy-podzolic and peaty soils with a low (1-3%) and relatively high (∼80% of dry sample mass) content of organic matter have been selected for investigation. A method employing sequential selective extraction has been used for analysis of radionuclide physicochemical forms in the soils. Activity concentrations of 238 Pu, 239,240 Pu and 241 Am in the samples were determined via radiochemical analysis with alpha-spectrometric identification of radionuclides. The results indicate that the main proportion of plutonium and americium remains in the 0-20 cm soil layer. The inventories of mobile and biologically available forms of plutonium and americium, expressed as a percentage of the total radionuclide content in soil, lie in the ranges of 1.1-9.4 and 2.7-29% respectively. Greater proportions of mobile and biologically available forms of radionuclides appear to be associated with mineral soil as compared to organic soil. In both mineral and organic soils, the portion of mobile americium is higher than plutonium. The inventories of mobile forms of plutonium and americium increase with the depth of soils. (author)

  3. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  4. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  5. Effect of thallium impurity on hole scattering in lead telluride

    International Nuclear Information System (INIS)

    Kajdanov, V.I.; Nemov, S.A.

    1981-01-01

    Hole mobility in PbTe monocrystalline specimens in the temperature range from 4.2 to 300 K has been investigated. Detected is a sharp increase in scattering cross section of light and heavy holes in the specimens having the Hall hole concentration p approximately (5+-9)x10 19 cm -3 explained by resonant scattering into a band of quasilocal states of thallium located lower than the ceiling of heavy carrier zone by 0.01+-0.01 eV. Very large differences in resonant scattering of current carriers into the quasilocal states of In and Tl in PbTe result from the inertial polarizability of a crystal. The same mechanism is used to explain long-lived relaxation of zone electron concentration in lead telluride and Pbsub(1-x)Snsub(x)Te doped with indium [ru

  6. Interaction and diffusion transport of americium in soils

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028, Barcelona (Spain)

    2014-07-01

    The final disposal of High Level Radioactive Wastes (HLRW) is based on its long-term storage in underground facilities located in geological stable sites with a multi-barrier system, the so called Deep Geological Repositories (DGR), that will keep HLRW confined for >10.000 years. After this period of time, leachates rich in long-live radioisotopes might escape from DGR and start to transport towards the biosphere. There is still a lack of information concerning the interaction and transport in soils of some radionuclides present in HLRW, especially for radionuclides that present a high sorption, such as americium (Am). Having reliable information about the mobility of radionuclides in soils is crucial in order to develop risk assessment models and to take proper decisions in case of soil contamination. The aim of the present work was, by means of laboratory scale experiments, to study the interaction and, for first time, to evaluate the diffusion transport of {sup 241}Am in soils. The {sup 241}Am interaction in soils was assessed by applying sorption batch assays to 20 soil samples with contrasted edaphic properties which allowed us to quantify the solid-liquid distribution coefficient (K{sub d}) and desorption percentage. K{sub d} (Am) values ranged from 10{sup 3} to 10{sup 5} L kg{sup -1} and desorption percentages were always less than 2% which denoted a high capacity of the soil to incorporate the Am and a low reversibility of the sorption process. The influence of soil properties in {sup 241}Am interaction was studied by means of multiple linear and multivariate regressions. Although a single correlation between K{sub d} (Am) values and a soil property was not found, the main properties affecting {sup 241}Am interaction in soils were soil pH, carbonate and organic matter contents in the soil. Finally, additional batch assays at different controlled pH were done to study Am sorption as a function of the contact solution pH. A variation of the Am sorption

  7. Structural characterisations and mechanistic investigations of the selective dissolution of americium by the ferricyanide ions in alkaline media. Application for the partitioning americium curium

    International Nuclear Information System (INIS)

    Fouchard, Sebastien

    2000-01-01

    Americium exhibits a high solubility form in basic media under oxidant conditions, unlike the other Transplutonium elements (TPE). This property can be used in the frame of High Level Liquid Waste (HLLW) treatment in order to extract preferentially the americium element, the main responsible of the long term radiotoxicity of the nuclear waste. This soluble compound can be obtained by addition of a concentrated basic solution of Fe(CN) 6 3- ions on Am(OH) 3 precipitates. This technique enables a rapid extraction of Am by the synthesis of this soluble form in alkaline solutions. Under these conditions, the other TPE remain in the solid state as trivalent hydroxide solids, strongly insoluble. In the case of dissolutions involving large amounts of Am(OH) 3 , the formation of the soluble complex is concomitant with the appearance of a reddish precipitate in the basic solution. Dissolution experiments which were carried out on this solid in NaOH/Fe(CN) 6 3- have demonstrated the dependency of the solubility equilibria with the media. Spectroscopic studies (UV Visible, XAS) on the precipitate have enabled the determination of the chemical structure and the oxidation state of the americium in the solid: Na 2 Am(V)O 2 (OH) 3 ,nH 2 O. Electrochemical studies on the americium solution have confirmed that the oxidation of Am(OH) 3 by the Fe(CN) 6 3- ions in basic media could only lead to the pentavalent form. A stoichiometric study carries out between a AmO 2 + ion and one Fe(CN) 6 3- ion and the spectroscopic characterisation of this reaction have demonstrated that the Fe(CN) 6 3- ion didn't remain as an un-complexed form in solution after the alkaline mixing. These results tend to prove that this dissolution of Am(OH) 3 is much more complex than a simple oxidation by the Fe(CN) 6 3- ions. The existence of molecular interactions between AmO 2 + and Fe(CN) 6 3- has been postulated and a mechanistic scheme has been proposed in order to explain the appearance of the soluble

  8. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning

    1986-01-01

    of the Irish Sea) to Spitsbergen. 241Am found in Arctic waters probably originates from the decay of fallout 241Pu and, like Pu, tentatively has a residence time of the order of several years. Americium from Sellafield has an estimated mean residence time of 4–6 months in Scottish waters.......Plutonium and americium have been measured in surface waters of the Greenland and Barents Seas and in the northern North Sea from 1980 through 1984. Measurements in water and biota, Fucus, Mytilus and Patella, were carried out in North-English and Scottish waters in 1982 and Fucus samples were...... collected from the Irish coast in 1983. Fallout is found to dominate as a source of 239+240Pu north of latitude 65°N, while for 238Pu a substantial fraction originates from European nuclear fuel reprocessing facilities. The 238Pu/239+240Pu isotope ratio provides clear evidence of the transport of effluent...

  9. Biochemical behaviour of plutonium and americium and geochemical modelling of the soil solution

    International Nuclear Information System (INIS)

    Bryan, N.D.; Livens, F.R.; Horrill, A.D.

    1994-01-01

    Field observations suggest that plutonium and americium in the environment are present in very different chemical forms in the interstitial waters of an intertidal sediment. Thermodynamic modelling using the PHREEQE code predicts that plutonium is present entirely in oxidation state (V) as the PuO 2 CO 3 - ion, whereas americium is present entirely in oxidation state (III), largely as the uncharged Am(OH)CO 3 species, but with significant concentrations of the Am 3+ and the AmSO 4 + ions. There are, however, differences between these predictions and others published for a very similar system which apparently arise from uncertainties in the thermodynamic data. Field data cannot resolve these differences unambiguously. (author) 29 refs.; 3 tabs

  10. High-purity germanium detection system for the in vivo measurement of americium and plutonium

    International Nuclear Information System (INIS)

    Tyree, W.H.; Falk, R.B.; Wood, C.B.; Liskey, R.W.

    1976-01-01

    A high-purity germanium (HPGe) array, photon-counting system has been developed for the Rocky Flats Plant Body-Counter Medical Facility. The newly improved system provides exceptional resolutions of low-energy X-ray and gamma-ray spectra associated with the in vivo deposition of plutonium and americium. Described are the operational parameters of the system and some qualitative results illustrating detector performance for the photon emissions produced from the decay of plutonium and americium between energy ranges from 10 to 100 kiloelectron volts. Since large amounts of data are easily generated with the system, data storage, analysis, and computer software developments continue to be an essential ingredient for processing spectral data obtained from the detectors. Absence of quantitative data is intentional. The primary concern of the study was to evaluate the effects of the various physical and electronic operational parameters before adding those related entirely to a human subject

  11. Electrodeposition of americium on a liquid cadmium cathode from a molten salt bath

    International Nuclear Information System (INIS)

    Laplace, A.; Lacquement, J.; Maillard, C.; Donner, L.

    2004-01-01

    A high-activity experiment involving the electrode position of americium on a liquid cadmium cathode from a LiCl-KCl eutectic with about 3 g of AmO 2 was conducted in a shielded cell in the ATALANTE complex. After describing the electrolyzer and the experimental conditions, the authors discuss the preparation of the LiCl-KCl-AmCl 3 solution and briefly review its electrochemical properties. It was clearly confirmed that Am(III) reduction on an inert solid cathode occurs in two steps forming Am(II) before Am(0), whereas only one reduction step was observed on liquid cadmium. The main results of this study concern americium electrode position on the liquid cadmium cathode (recovery yields, current densities, problems encountered). The solvent properties of cadmium for actinide/lanthanide separation are discussed. (authors)

  12. Determination of americium and plutonium in autopsy tissue: methods and problems

    International Nuclear Information System (INIS)

    Boyd, H.A.; Eutsler, B.C.; McInroy, J.F.

    1979-01-01

    The current methods used by the tissue analysis program at LASL for the determination of americium and plutonium in autopsy tissue are described. Problems affecting radiochemical yield are discussed. Included are problems associated with sample preparation, separation of plutonium from large amounts of bone ash, and reagent contamination. The average 242 Pu tracer yield for 1800 Pu determinations is 78 +- 12%. The average 242 Am tracer yield is 85 +- 7% for 40 determinations

  13. Final Radiological Assessment of External Exposure for CLEAR-Line Americium Recovery Operations

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Adam C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Belooussova, Olga N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hetrick, Lucas Duane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-12

    Los Alamos National Laboratory is currently planning to implement an americium recovery program. The americium, ordinarily isotopically pure 241Am, would be extracted from existing Pu materials, converted to an oxide and shipped to support fabrication of americium oxide-beryllium neutron sources. These operations would occur in the currently proposed Chloride Extraction and Actinide Recovery (CLEAR) line of glove boxes. This glove box line would be collocated with the currently-operational Experimental Chloride Extraction Line (EXCEL). The focus of this document is to provide an in-depth assessment of the currently planned radiation protection measures and to determine whether or not further design work is required to satisfy design-goal and ALARA requirements. Further, this document presents a history of americium recovery operations in the Department of Energy and high-level descriptions of the CLEAR line operations to provide a basis of comparison. Under the working assumptions adopted by this study, it was found that the evaluated design appears to mitigate doses to a level that satisfies the ALARA-in-design requirements of 10 CFR 835 as implemented by the Los Alamos National Laboratory procedure P121. The analyses indicate that extremity doses would also meet design requirements. Dose-rate calculations were performed using the radiation transport code MCNP5 and doses were estimated using a time-motion study developed in consort with the subject matter expert. A copy of this report and all supporting documentation are located on the Radiological Engineering server at Y:\\Rad Engineering\\2013 PROJECTS\\TA-55 Clear Line.

  14. Quantitative determination of americium and curium in solutions using potassium tungstophosphate

    International Nuclear Information System (INIS)

    Chistyakov, V.M.; Baranov, A.A.; Erin, E.A.; Timoaeev, G.A.

    1990-01-01

    Two methods of americium (4) and curium (4) titration-replacement and redox ones - have been considered. According to the replacement method thorium nitrate solution was used as a titrant and the final point of titration was determined spectophotometrically. Using the method developed, on the basis of experimental data, the composition of thorium (4) complex with potassium tungstophosphate was determined. In case of the redox titration sodium nitrite was used, and the final titration point was indicated either spectrophotometrically or potentiometrically

  15. Medical management after contamination and incorporation of americium in occupational exposure

    International Nuclear Information System (INIS)

    Gensicke, F.; Stopp, G.; Scheler, R.; Klucke, H.; Czarwinski, R.; Naumann, M.; Hoelzer, F.; Ott, R.; Schmidt, I.

    1990-01-01

    In handling with an ampule of 241 Am-nitrate solution one person received an contamination of the body surface, especially the face and the hairs, and an internal contamination of americium. The paper presents the results obtained in medical management to reduced the contamination of the skin and of the incorporated radionuclide. The radioactivity of the body surface could be reduced up to small local areas. After treatment with DTPA (Ditripentat) the internal exposure decrease about 83%. (orig.) [de

  16. Experimental studies to validate model calculations and maximum solubility limits for Plutonium and Americium

    International Nuclear Information System (INIS)

    2017-01-01

    This report focuses on studies of KIT-INE to derive a significantly improved description of the chemical behaviour of Americium and Plutonium in saline NaCl, MgCl 2 and CaCl 2 brine systems. The studies are based on new experimental data and aim at deriving reliable Am and Pu solubility limits for the investigated systems as well as deriving comprehensive thermodynamic model descriptions. Both aspects are of high relevance in the context of potential source term estimations for Americium and Plutonium in aqueous brine systems and related scenarios. Americium and Plutonium are long-lived alpha emitting radionuclides which due to their high radiotoxicity need to be accounted for in a reliable and traceable way. The hydrolysis of trivalent actinides and the effect of highly alkaline pH conditions on the solubility of trivalent actinides in calcium chloride rich brine solutions were investigated and a thermodynamic model derived. The solubility of Plutonium in saline brine systems was studied under reducing and non-reducing conditions and is described within a new thermodynamic model. The influence of dissolved carbonate on Americium and Plutonium solubility in MgCl 2 solutions was investigated and quantitative information on Am and Pu solubility limits in these systems derived. Thermodynamic constants and model parameter derived in this work are implemented in the Thermodynamic Reference Database THEREDA owned by BfS. According to the quality assurance approach in THEREDA, is was necessary to publish parts of this work in peer-reviewed scientific journals. The publications are focused on solubility experiments, spectroscopy of aquatic and solid species and thermodynamic data. (Neck et al., Pure Appl. Chem., Vol. 81, (2009), pp. 1555-1568., Altmaier et al., Radiochimica Acta, 97, (2009), pp. 187-192., Altmaier et al., Actinide Research Quarterly, No 2., (2011), pp. 29-32.).

  17. Adsorption-Desorption Characteristics of Plutonium and Americium with Sediment Particles in the Estuarine Environment

    International Nuclear Information System (INIS)

    Murray, C.N.; Fukai, R.

    1976-01-01

    The particle formation of plutonium and americium, their adsorption onto fresh water sediments and the desorption from the sediments in sea water were studied in the Laboratory under simulated river-estuary conditions, using γ-emitting plutonium-237 and americium-241. The results of the experiments show that the particle formation of plutonium depends on its valence states, on pH and on the salinity of the medium. For river water at pH4, some 25%, 20% and 30% of the added 237 Pu was in particulate form, larger than 0.45pm, for Pu (III), Pu (IV) and Pu (VI), respectively, while 65%, 90% and 50% of the respective valence states was associated with particles at pH 8. In sea water the general pattern remains similar, although Pu (VI) is more soluble in sea water owing to higher ligand concentrations for carbonate and bicarbonate complexes. The pH-dependency of particle formation of Am (III) is more steep than that of plutonium and seems to be influenced by colloidal substances occurring in the experimental media. The adsorption-desorption characteristics of plutonium and americium with the sediment in river water as well as sea water reflect the characteristics of their particle formation, being dependent upon such properties as valence states, the pH and salinity of the medium. A sewage effluent added to the media has small but measurable effects on the adsorption-desorption processes of plutonium. (author)

  18. Bis(2-ethylhexyl)sulfoxide as an extractant for americium(III) from aqueous nitrate media

    International Nuclear Information System (INIS)

    Shukla, J.P.; Kedari, C.S.

    1992-01-01

    Solvent extraction separation of Am(III) from dilute aqueous nitrate media into n-dodecane by bis(2-ethylhexyl)sulfoxide (BESO) has been investigated over a wide range of experimental conditions. Very poor extractability of Am(III) necessitated the use of calcium nitrate as the salting-out agent. Effects of certain variables such as acidity, extractant concentration, salting-out agent concentration, organic diluents on the metal extraction by BESO have been examined in detail. By increasing the concentration of BESO in organic phase or calcium nitrate in aqueous phase, nearly quantitative extraction of americium even from moderate acidity is accomplished. Slope analyses applied to Am(III) distribution experiments from acidic nitrate solutions indicate predominant formation of the trisolvated organic phase complex, Am(NO 3 ) 3 *3BESO for which equilibrium constant is found to be, log K x = 1.99. Extraction behavior of Am(III) has also been evaluated in the presence of several water-miscible polar organic solvents to study their possible synergistic effects on its extraction. Extractability of americium increased 5 to 10-fold with increasing concentration of some of these additives, with maximum enhancement being observed in the presence of acetone or acetonitrile. Recovery of BESO from loaded americium is easily obtained using dilute nitric acid as the strippant. (author) 30 refs.; 2 figs.; 5 tabs

  19. Fabrication of uranium-americium mixed oxide pellet from microsphere precursors: Application of CRMP process

    Science.gov (United States)

    Remy, E.; Picart, S.; Delahaye, T.; Jobelin, I.; Lebreton, F.; Horlait, D.; Bisel, I.; Blanchart, P.; Ayral, A.

    2014-10-01

    Mixed uranium-americium oxides are one of the materials envisaged for Americium Bearing Blankets dedicated to transmutation in fast neutron reactors. Recently, several processes have been developed in order to validate fabrication flowchart in terms of material specifications such as density and homogeneity but also to suggest simplifications for lowering industrial costs and hazards linked to dust generation of highly contaminating and irradiating compounds. This study deals with the application of an innovative route using mixed oxide microspheres obtained from metal loaded resin bead calcination, called Calcined Resin Microsphere Pelletization (CRMP). The synthesis of mixed oxide microsphere precursor of U0.9Am0.1O2±δ is described as well as its characterisation. The use of this free-flowing precursor allows the pressing and sintering of one pellet of U0.9Am0.1O2±δ. The ceramic obtained was characterised and results showed that its microstructure is dense and homogeneous and its density attains 95% of the theoretical density. This study validates the scientific feasibility of the CRMP process applied to the fabrication of uranium and americium-containing materials.

  20. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22 0 C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90 0 C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22 0 C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables

  1. Brief review of cadmium telluride-based photovoltaic technologies

    Science.gov (United States)

    Başol, Bülent M.; McCandless, Brian

    2014-01-01

    Cadmium telluride (CdTe) is the most commercially successful thin-film photovoltaic technology. Development of CdTe as a solar cell material dates back to the early 1980s when ˜10% efficient devices were demonstrated. Implementation of better quality glass, more transparent conductive oxides, introduction of a high-resistivity transparent film under the CdS junction-partner, higher deposition temperatures, and improved Cl-treatment, doping, and contacting approaches yielded >16% efficient cells in the early 2000s. Around the same time period, use of a photoresist plug monolithic integration process facilitated the demonstration of the first 11% efficient module. The most dramatic advancements in CdTe device efficiencies were made during the 2013 to 2014 time frame when small-area cell conversion efficiency was raised to 20% range and a champion module efficiency of 17% was reported. CdTe technology is attractive in terms of its limited life-cycle greenhouse gas and heavy metal emissions, small carbon footprint, and short energy payback times. Limited Te availability is a challenge for the growth of this technology unless Te utilization rates are greatly enhanced along with device efficiencies.

  2. Enhancement of the thermoelectric performance of oxygen substituted bismuth telluride

    Science.gov (United States)

    Van Quang, Tran; Kim, Miyoung

    2017-12-01

    We carried out first-principles calculations based on density functional theory and the semi-classical Boltzmann transport theory to study the effect of oxygen substitution on the electronic structure and thermoelectric properties of bismuth telluride. The newly formed compound, Bi2O2Te, is found to be a narrow bandgap semiconductor with the bandgap of Eg = 0.13 eV. The presence of a flat band close to the valence band maximum gives rise to a steep slope of density of states near Fermi energy, leading to a significant enhancement of the Seebeck coefficient. As a result, the thermoelectric power factor of Bi2O2Te is significantly improved by controlling the carrier concentration, and the maximum power factor increased with temperature. Assuming the experiment-thermal conductivity, Bi2O2Te exhibits a high figure of merit of ZT ˜1.27 around 600 K for the p-type doping, which matches or exceeds ZT of the state-of-the-art thermoelectric materials in this temperature range. This suggests that Bi2O2Te with p-type doping is a new promising material for use in the moderate-temperature thermoelectric energy conversion.

  3. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-12-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid.

  4. Theoretical study of bismuth-doped cadmium telluride

    Science.gov (United States)

    Menendez-Proupin, E.; Rios-Gonzalez, J. A.; Pena, J. L.

    Cadmium telluride heavily doped with bismuth has been proposed as an absorber with an intermediate band for solar cells. Increase in the photocurrent has been shown recently, although the overall cell efficiency has not improved. In this work, we study the electronic structure and the formation energies of the defects associated to bismuth impurities. We have performed electronic structure calculations within generalized density functional theory, using the exchange-correlation functional HSE(w) , where the range-separation parameter w has been tuned to reproduce the CdTe bandgap. Improving upon previous reports, we have included the spin-orbit interaction, which modifies the structure of the valence band and the energy levels of bismuth. We have found that interstitial Bi (Bii) tends to occupy Cd vacancies, cadmium substitution (BiCd) creates single donor level, while tellurium substitution (BiTe) is a shallow single acceptor. We investigate the interaction between these point defects and how can they be combined to create a partially filled intermediate band. Supported by FONDECYT Grant 1130437, CONACYT-SENER SUSTENTABILIDAD ENERGETICA/project CeMIE-Sol PY-207450/25 and PY-207450/26. JARG acknowledges CONACYT fellowship for research visit. Powered@NLHPC (ECM-02).

  5. Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics

    Science.gov (United States)

    Li, Guodong; Aydemir, Umut; Wood, Max; Goddard, William A., III; Zhai, Pengcheng; Zhang, Qingjie; Snyder, G. Jeffrey

    2017-07-01

    Lanthanum telluride (La3Te4) is an n-type high-performance thermoelectric material in the high temperature range, but its mechanical properties remain unknown. Since we want robust mechanical properties for their integration into industrial applications, we report here quantum mechanics (QM) simulations to determine the ideal strength and deformation mechanisms of La3Te4 under pure shear deformations. Among all plausible shear deformation paths, we find that shearing along the (0 0 1)/ slip system has the lowest ideal shear strength of 0.99 GPa, making it the most likely slip system to be activated under pressure. We find that the long range La-Te ionic interactions play the predominant role in resisting shear deformation. To enhance the mechanical strength, we suggest improving the long ionic La-Te bond stiffness to strengthen the ionic La-Te framework in La3Te4 by a defect-engineering strategy, such as partial substitution of La by Ce or Pr having isotypic crystal structures. This work provides the fundamental information to understand the intrinsic mechanics of La3Te4.

  6. A cadmium-zinc-telluride crystal array spectrometer

    International Nuclear Information System (INIS)

    McHugh, H. R.; Quam, W.; DeVore, T.; Vogle, R.; Weslowski, J.

    2003-01-01

    This paper describes a gamma detector employing an array of eight cadmium-zinc-telluride (CZT) crystals configured as a high resolution gamma ray spectrometer. This detector is part of a more complex instrument that identifies the isotope,displays this information, and records the gamma spectrum. Various alarms and other operator features are incorporated in this battery operated rugged instrument. The CZT detector is the key component of this instrument and will be described in detail in this paper. We have made extensive spectral measurements of the usual laboratory gamma sources, common medical isotopes, and various Special Nuclear Materials (SNM) with this detector. Some of these data will be presented as spectra. We will also present energy resolution and detection efficiency for the basic 8-crystal array. Additional data will also be presented for a 32-crystal array. The basic 8-crystal array development was completed two years ago, and the system electronic design has been imp roved recently. This has resulted in significantly improved noise performance. We expect to have a much smaller detector package, using 8 crystals, in a few months. This package will use flip-chip packaging to reduce the electronics physical size by a factor of 5

  7. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  8. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Kulsi, Chiranjit; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal (India); Kargupta, Kajari [Chemical Engineering Department, Jadavpur University, Kolkata-700032, West Bengal (India)

    2016-04-13

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S{sub 1}) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S{sub 2}). But due to a substantial increase in the electrical conductivity (σ) of the film (S{sub 2}) over the pellet (S{sub 1}), the power factor and the figure of merit is higher for sample S{sub 2} than the sample S{sub 1} at room temperature.

  9. Precision timing detectors with cadmium-telluride sensor

    Science.gov (United States)

    Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2017-09-01

    Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

  10. Deposition and characterization of p-type cadmium telluride films

    Science.gov (United States)

    Chu, T. L.; Chu, S. S.; Firszt, F.; Naseem, H. A.; Stawski, R.

    1985-08-01

    Cadmium telluride is a direct-gap semiconductor with a room-temperature energy gap of 1.5 eV. It is a promising photovoltaic material, and single-crystalline homojunction and heterojunction solar cells have been prepared and characterized. Relatively short minority carrier diffusion length (1-2 microns) can be tolerated due to a short optical absorption length, and, for this reason, CdTe is particularly suited for thin-film devices. The fabrication of thin-film solar cells is based on the use of p-type CdTe films. The present investigation has the objective to prepare CdTe films with controlled properties in a reproducible manner, taking into account a utilization of the reaction of Cd and Te vapor on the surface of heated substrates in a hydrogen (or helium) atmosphere in a gas-flow system. Attention is given to details of film deposition, and CdTe films on graphite, W/graphite, mullite, and glass substrates.

  11. Development of a cadmium telluride pixel detector for astrophysical applications

    Science.gov (United States)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Cook, Walter R.; Mao, Peter H.; Rana, Vikram R.; Ishikawa, Shin-Nosuke; Ushio, Masayoshi; Aono, Hiroyuki; Watanabe, Shin; Sato, Goro; Kokubun, Motohide; Takahashi, Tadayuki

    2009-08-01

    We are developing imaging Cadmium Telluride (CdTe) pixel detectors optimized for astrophysical hard X-ray applications. Our hybrid detector consist of a CdTe crystal 1mm thick and 2cm × 2cm in area with segmented anode contacts directly bonded to a custom low-noise application specific integrated circuit (ASIC). The CdTe sensor, fabricated by ACRORAD (Okinawa, Japan), has Schottky blocking contacts on a 605 micron pitch in a 32 × 32 array, providing low leakage current and enabling readout of the anode side. The detector is bonded using epoxy-gold stud interconnects to a custom low noise, low power ASIC circuit developed by Caltech's Space Radiation Laboratory. We have achieved very good energy resolution over a wide energy range (0.62keV FWHM @ 60keV, 10.8keV FWHM @ 662keV). We observe polarization effects at room temperature, but they are suppressed if we operate the detector at or below 0°C degree. These detectors have potential application for future missions such as the International X-ray Observatory (IXO).

  12. 76 FR 46288 - Adequacy Determination for Colorado Springs, Cañon City, Greeley, Pagosa Springs, and Telluride...

    Science.gov (United States)

    2011-08-02

    ... Springs, Ca[ntilde]on City, Greeley, Pagosa Springs, and Telluride; Carbon Monoxide and PM 10 Maintenance... transportation conformity purposes: ``Revised Carbon Monoxide Attainment/Maintenance Plan Colorado Springs... Springs Attainment/Maintenance Area,'' and ``Revised PM10 Attainment/Maintenance Plan Telluride [[Page...

  13. Special features of self-compensation of halogen donor action in lead telluride

    International Nuclear Information System (INIS)

    Kajdanov, V.I.; Nemov, S.A.; Ravich, Yu.I.; Dereza, A.Yu.

    1985-01-01

    Specific features of self-compensation of halogen donor action in lead telluride are investigasted. Lead telluride samples with chlorine additions (with tellurium excess) and, besides, with bromine- and iodine additions were studied in order to reveal general regularities in alloyind with all halogen donor impurities. Experimental dependences of the difference between the electron and hole concentrations (n-p) in PbTe as a function of an amount of introduced halogen impurities (Ni) are presented for samples with a maximum compensation at 295 K. General features of the n-p=f(Ni) dependence are presented for all halogens. The hypothesis on the kinetic mechanism of increasing the efficiency of self-compensation of halogen donor action in lead telluride is suggested

  14. A method and device for generating semi-insulating cadmium telluride

    International Nuclear Information System (INIS)

    Marfaing, Yves; Triboulet, Robert; Marfaing, Gerard; Cornet, Alain; Siffert, Paul.

    1973-01-01

    The present invention relates to a method and a device for preparing cadmium telluride in precise stoichiometric proportions. The invention consists in carrying out a series of three syntheses and re-crystallizations of cadmium telluride starting from a mixture in stoichiometric proportions, the last two crystallization steps being characterized in that one of them is carried out at high temperature whereas the other is carried out at a lower temperature, in the presence of a tellurium bath so as to minimize crystal defects. This applies to the manufacture of diodes for ionization chambers, nuclear of infrared detectors and electro-optical modulators [fr

  15. Fabrication of Nanovoid-Imbedded Bismuth Telluride with Low Dimensional System

    Science.gov (United States)

    Chu, Sang-Hyon (Inventor); Choi, Sang H. (Inventor); Kim, Jae-Woo (Inventor); Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Stoakley, Diane M. (Inventor)

    2013-01-01

    A new fabrication method for nanovoids-imbedded bismuth telluride (Bi--Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi--Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.

  16. Cadmium zinc telluride detector for low photon energy applications

    Science.gov (United States)

    Shin, Kyung-Wook; Wang, Kai; Reznic, Alla; Karim, Karim S.

    2010-04-01

    Cadmium Zinc Telluride (CdZnTe or CZT) is a polycrystalline radiation detector that has been investigated over the years for a variety of applications including Constellation X-ray space mission [1] and direct-conversion medical imaging such as digital mammography [2]. Due to its high conversion gain and low electron-hole pair creation energy (~4.43 eV) [3], it has found use in high end, photon counting medical imaging applications including positron emission tomography (PET), computed tomography (CT) and single photon emission computed tomography (SPECT). However, its potential in low photon energy applications has not been fully explored. In this work, we explore the capacity of the CZT material to count low photon energies (6 keV - 20 keV). These energies are of direct relevance to applications in gamma ray breast brachytheraphy and mammography, X-ray protein crystallography, X-ray mammography and mammography tomosynthesis. We also present a design that integrates the CZT direct conversion detector with an inhouse fabricated amorphous silicon (a-Si:H) thin film transistor (TFT) passive pixel sensor (PPS) array. A CZT photoconductor (2 cm x 2 cm size, 5-mm-thick) prepared by the traveling heat method (THM) from RedlenTM is characterized. The current-voltage characteristics reveal a resistivity of 3.3 x 1011 Ω•cm and a steady state dark current in the range of nA. Photocurrent transients under different biases and illumination pulses are studied to investigate photogeneration and the charge trapping process. It is found that charge trapping plays a more significant role in transient behavior at low biases and low frequency.

  17. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  18. Physics of plutonium and americium recycling in PWR using advanced fuel concepts

    International Nuclear Information System (INIS)

    Hourcade, E.

    2004-01-01

    PWR waste inventory management is considered in many countries including Frances as one of the main current issues. Pu and Am are the 2 main contents both in term of volume and long term radio-toxicity. Waiting for the Generation IV systems implementation (2035-2050), one of the mid-term solutions for their transmutation involves the use of advanced fuels in Pressurized Water Reactors (PWR). These have to require as little modification as possible of the core internals, the cooling system and fuel cycle facilities (fabrication and reprocessing). The first part of this paper deals with some neutronic characteristics of Pu and/or Am recycling. In a second part, 2 technical solutions MOX-HMR and APA-DUPLEX-84 are presented and the third part is devoted to the study of a few global strategies. The main neutronic parameters to be considered for Pu and Am recycling in PWR are void coefficient, Doppler coefficient, fraction of delayed neutrons and power distribution (especially for heterogeneous configurations). The modification of the moderation ratio, the opportunity to use inert matrices (targets), the optimisation of Uranium, Plutonium and Americium contents are the key parameters to play with. One of the solutions (APA-DUPLEX-84) presented here is a heterogeneous assembly with regular moderation ratio composed with both target fuel rods (Pu and Am embedded in an inert matrix) and standard UO 2 fuel rods. An EPR (European Pressurised Reactor) type reactor, loaded only with assemblies containing 84 peripheral targets, can reach an Americium consumption rate of (4.4; 23 kg/TWh) depending on the assembly concept. For Pu and Am inventories stabilisation, the theoretical fraction of reactors loaded with Pu + Am or Pu assemblies is about 60%. For Americium inventory stabilisation, the fraction decreases down to 16%, but Pu is produced at a rate of 18.5 Kg/TWh (-25% compared to one through UOX cycle)

  19. Accumulation of americium-241 in the biomass of aquatic plants of the Yenisei river: experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.A.; Bolsunovsky, A.Y.A.; Bondareva, L.G. [Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk (Russian Federation)

    2004-07-01

    Due to the operation of the Mining-and-Chemical Combine (Krasnoyarsk-26), which has been manufacturing weapons-grade plutonium for several decades, the Yenisei River is contaminated with transuranic elements (including {sup 241}Am). {sup 241}Am was found in the riverside soil, sediment and in the biomass of aquatic plants (Bolsunovsky et al., 1999, 2002). Aquatic plants are an important link in the migration of radionuclides in an aquatic ecosystem. In laboratory experiments, we investigated accumulation of {sup 241}Am by the submerged macrophyte from the Yenisei River: the pond weed (Elodea canadensis) and the aquatic moss (Fontinalis antipyretica), and release of {sup 241}Am from the biomass. The content of {sup 241}Am was measured on a Canberra (USA) gamma-spectrometer. The experiments showed that specific accumulation and concentration factors of {sup 241}Am in the plants were in inverse proportion to their biomass. We obtained new data on release of {sup 241}Am from the biomass of macrophyte. Americium-241 was more firmly fixed in the biomass of the aquatic moss. In 12 months, the biomass of the aquatic moss released about 30% of the initial americium activity into the water. To compare, the biomass of the pond weed released into the water medium up to 64% of the initial {sup 241}Am activity in 1.5 4 months. The release rate was dependent on the decomposition rate of the plant biomass. The experiments showed that submerged macrophyte of the Yenisei River can accumulate considerable activities of {sup 241}Am and retain americium for long periods of time in biomass. (author)

  20. Speciation of americium in seawater and accumulation in the marine sponge Aplysina cavernicola.

    Science.gov (United States)

    Maloubier, Melody; Michel, Hervé; Solari, Pier Lorenzo; Moisy, Philippe; Tribalat, Marie-Aude; Oberhaensli, François R; Dechraoui Bottein, Marie Yasmine; Thomas, Olivier P; Monfort, Marguerite; Moulin, Christophe; Den Auwer, Christophe

    2015-12-21

    The fate of radionuclides in the environment is a cause of great concern for modern society, seen especially in 2011 after the Fukushima accident. Among the environmental compartments, seawater covers most of the earth's surface and may be directly or indirectly impacted. The interaction between radionuclides and the marine compartment is therefore essential for better understanding the transfer mechanisms from the hydrosphere to the biosphere. This information allows for the evaluation of the impact on humans via our interaction with the biotope that has been largely undocumented up to now. In this report, we attempt to make a link between the speciation of heavy elements in natural seawater and their uptake by a model marine organism. More specifically, because the interaction of actinides with marine invertebrates has been poorly studied, the accumulation in a representative member of the Mediterranean coralligenous habitat, the sponge Aplysina cavernicola, was investigated and its uptake curve exposed to a radiotracer (241)Am was estimated using a high-purity Ge gamma spectrometer. But in order to go beyond the phenomenological accumulation rate, the speciation of americium(III) in seawater must be assessed. The speciation of (241)Am (and natural europium as its chemically stable surrogate) in seawater was determined using a combination of different techniques: Time-Resolved Laser-Induced Fluorescence (TRLIF), Extended X-ray Absorption Fine Structure (EXAFS) at the LIII edge, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron Microscopy (SEM) and the resulting data were compared with the speciation modeling. In seawater, the americium(III) complex (as well as the corresponding europium complex, although with conformational differences) was identified as a ternary sodium biscarbonato complex, whose formula can be tentatively written as NaAm(CO3)2·nH2O. It is therefore this chemical form of americium that is

  1. Uptake of plutonium and americium by barley from two contaminated Nevada Test Site soils

    International Nuclear Information System (INIS)

    Schulz, R.K.; Tompkins, G.A.; Leventhal, L.; Babcock, K.L.

    1976-01-01

    Barley (Hordeum vulgare, Var. Atlas 68) plant uptake of Pu 239 , Pu 240 , and Am 241 was studied using two soil samples collected from widely separated areas of the Nevada Test Site. Each area had been previously contaminated with plutonium and americium as a result of a separate high explosive (nonnuclear) detonation of a device containing plutonium. The plants were grown on 3-kg soil samples in a controlled environment chamber. The plutonium concentration ratio (plutonium concentration in dry plant tissue/plutonium concentration in dry soil) was in the order of 10 -5 for plant vegetative material. The plutonium concentration ratio for the grain was 20 to 100 times lower than that in the vegetative material. Concentration ratios for americium were in the order of 10 -4 for vegetative growth and 25 to 75 times lower for the grain. These results imply that americium is more available to plants than plutonium. Plutonium-bearing particles were identified in a soil sample using an autoradiographic technique and then separated from the soil samples. The Pu 239 oxide equivalent diameters of plutonium-bearing particles could be described by a log-normal distribution function in the range of 0.2 to 0.7 μm. The actual diameters of the particles were 2 to 3 times the PuO 2 equivalent diameter. Microprobe analyses of the surface region of particles greater than 2 μm showed the following order of abundance: U, Pu is greater than O is greater than Al is greater than Si is greater than Fe is greater than Mg. Photographs obtained with a scanning electron microscope revealed that some of the particles are quite irregular and have large specific surface areas which might enhance solubility and plant uptake

  2. Fabrication of uranium–americium mixed oxide pellet from microsphere precursors: Application of CRMP process

    Energy Technology Data Exchange (ETDEWEB)

    Remy, E. [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Picart, S., E-mail: sebastien.picart@cea.fr [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Delahaye, T. [Fuel Cycle Technology Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Jobelin, I. [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Lebreton, F.; Horlait, D. [Fuel Cycle Technology Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Bisel, I. [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Blanchart, P. [Heterogeneous Materials Research Group, Centre Européen de la Céramique, F-87068 Limoges (France); Ayral, A. [Institut Européen des Membranes, CNRS-ENSCM-UM2, CC47, University Montpellier 2, F-34095 Montpellier cedex 5 (France)

    2014-10-15

    Highlights: • Dust free process for (U,Am)O{sub 2} transmutation target fabrication. • Synthesis of U{sub 0.9}Am{sub 0.1}O{sub 2} mixed oxide microspheres from ion exchange resin. • Fabrication of dense U{sub 0.9}Am{sub 0.1}O{sub 2} pellet with 95% TD from mixed oxide microspheres. - Abstract: Mixed uranium–americium oxides are one of the materials envisaged for Americium Bearing Blankets dedicated to transmutation in fast neutron reactors. Recently, several processes have been developed in order to validate fabrication flowchart in terms of material specifications such as density and homogeneity but also to suggest simplifications for lowering industrial costs and hazards linked to dust generation of highly contaminating and irradiating compounds. This study deals with the application of an innovative route using mixed oxide microspheres obtained from metal loaded resin bead calcination, called Calcined Resin Microsphere Pelletization (CRMP). The synthesis of mixed oxide microsphere precursor of U{sub 0.9}Am{sub 0.1}O{sub 2±δ} is described as well as its characterisation. The use of this free-flowing precursor allows the pressing and sintering of one pellet of U{sub 0.9}Am{sub 0.1}O{sub 2±δ}. The ceramic obtained was characterised and results showed that its microstructure is dense and homogeneous and its density attains 95% of the theoretical density. This study validates the scientific feasibility of the CRMP process applied to the fabrication of uranium and americium-containing materials.

  3. Recovery of Americium-241 from lightning rod by the method of chemical treatment

    International Nuclear Information System (INIS)

    Cruz, W.H.

    2013-01-01

    About 95% of the lightning rods installed in the Peruvian territory have set in their structures, pose small amounts of radioactive sources such as Americium-241 ( 241 Am), fewer and Radium 226 ( 226 Ra) these are alpha emitters and have a half life of 432 years and 1600 years respectively. In this paper describes the recovery of radioactive sources of 241 Am radioactive lightning rods using the conventional chemical treatment method using agents and acids to break down the slides. The 241 Am recovered was as excitation source and alpha particle generator for analysing samples by X Ray Fluorescence, for fixing the stainless steel 241 Am technique was used electrodeposition. (author)

  4. Comparison of acid leachate and fusion methods to determine plutonium and americium in environmental samples

    International Nuclear Information System (INIS)

    Smith, L.L.; Markun, F.; TenKate, T.

    1992-06-01

    The Analytical Chemistry Laboratory at Argonne National Laboratory performs radiochemical analyses for a wide variety of sites within the Department of Energy complex. Since the chemical history of the samples may vary drastically from site to site, the effectiveness of any analytical technique may also vary. This study compares a potassium fluoride-pyrosulfate fusion technique with an acid leachate method. Both normal and high-fired soils and vegetation samples were analyzed for both americium and plutonium. Results show both methods work well, except for plutonium in high-fired soils. Here the fusion method provides higher accuracy

  5. Influence of biofilms on migration of uranium, americium and europium in the environment

    International Nuclear Information System (INIS)

    Baumann, Nils; Zirnstein, Isabel; Arnold, Thuro

    2015-01-01

    The report on the influence of biofilms on migration of uranium, americium and europium in the environment deals with the contamination problems of uranium mines such as SDAG WISMUT in Saxonia and Thuringia. In mine waters microorganisms form a complex microbiological biocoenosis in spite of low pH values and high heavy metal concentrations including high uranium concentrations. The analyses used microbiological methods like confocal laser scanning microscopy and molecular-biological techniques. The interactions of microorganism with fluorescent radioactive heavy metal ions were performed with TRLFS (time resolved laser-induced fluorescence spectroscopy).

  6. Rad Calc III: Radioanalysis calculation program for plutonium and americium determination

    International Nuclear Information System (INIS)

    Blackadar, J.M.; Wong, A.S.; Stalnaker, N.D.; Willerton, J.R.

    2000-01-01

    The radiochemistry team of the Analytical Chemistry Group has supported nuclear materials production and management programs at Los Alamos National Laboratory since the 1940s. Routinely, plutonium and americium contents in various matrices (such as metals, oxides, process solutions, and waste streams) are determined by direct alpha and gamma analyses. Over the years, analysts have written a number of computer programs to calculate analytical results. In 1999, the program was enhanced and upgraded to produce Rad Calc III. The new program, written in Visual Basic 4.0, corrects limitations of previous versions, offers enhanced features, and incorporates user suggestions to customize the program and make it more user friendly

  7. Recovery of americium from slag and crucible wastes and its purification

    International Nuclear Information System (INIS)

    Michael, K.M.; Dabholkar, G.M.; Vijayan, K.; Ramamoorthy, N.; Narayanan, C.V.; Jambunathan, U.; Kapoor, S.C.

    1990-01-01

    A method of recovery and purification of americium-241 from slag waste streams is described. Extraction of Am from slag solution of 0.16 M HNO 3 was carried out by tri-n-butyl phosphate. After stripping with acetic acid, Am was precipitated at pH 1. This was followed by metathesis to remove Ca. Final separation of Pu from Am solution was achieved by anion exchange method using Dowex 1x4 anion exchange resin. Details of large scale recovery of Am from slag are also described. (author). 12 refs., 11 tabs., 1 fig

  8. Distribution coefficients for plutonium and americium on particulates in aquatic environments

    International Nuclear Information System (INIS)

    Sanchez, A.L.; Schell, W.R.; Sibley, T.H.

    1982-01-01

    The distribution coefficients of two transuranic elements, plutonium and americium, were measured experimentally in laboratory systems of selected freshwater, estuarine, and marine environments. Gamma-ray emitting isotopes of these radionuclides, 237 Pu and 241 Am, were significantly greater than the sorption Ksub(d) values, suggesting some irreversibility in the sorption of these radionuclides onto sediments. The effects of pH and of sediment concentration on the distribution coefficients were also investigated. There were significant changes in the Ksub(d) values as these parameters were varied. Experiments using sterilized and nonsterilized samples for some of the sediment/water systems indicate possible bacterial effects on Ksub(d) values. (author)

  9. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning

    1986-01-01

    collected from the Irish coast in 1983. Fallout is found to dominate as a source of 239+240Pu north of latitude 65°N, while for 238Pu a substantial fraction originates from European nuclear fuel reprocessing facilities. The 238Pu/239+240Pu isotope ratio provides clear evidence of the transport of effluent...... of the Irish Sea) to Spitsbergen. 241Am found in Arctic waters probably originates from the decay of fallout 241Pu and, like Pu, tentatively has a residence time of the order of several years. Americium from Sellafield has an estimated mean residence time of 4–6 months in Scottish waters....

  10. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids.

    Science.gov (United States)

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-10-01

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because

  11. Study of the extraction and the purification of americium and trivalent actinides contained in effluents with supported liquid membranes

    International Nuclear Information System (INIS)

    Guillou, P.

    1990-12-01

    The supported liquid membrane technique is studied and developed for americium recovery from uranium or plutonium matrices and decontamination of liquid radioactive wastes. First tests on uranium-nickel solutions with a flat membrane showed the easiness of the operation and the efficiency of the process. Acid-resistant (10 N), interchangeable elements with hollow fibers, are developed and also a computerized automatic device. The different tests on americium solutions demonstrate the feasibility and the reliability of the system. Influence of various parameters on transfer kinetics is investigated

  12. Thin-film cadmium telluride photovoltaics: ES and H issues, solutions, and perspectives

    International Nuclear Information System (INIS)

    Zweibel, K.; Moskowitz, P.; Fthenakis, V.

    1998-02-01

    Photovoltaics (PV) is a growing business worldwide, with new technologies evolving towards potentially large-volume production. PV use produces no emissions, thus offsetting many potential environmental problems. However, the new PV technologies also bring unfamiliar environment, safety, and health (ES and H) challenges that require innovative solutions. This is a summary of the issues, solutions, and perspectives associated with the use of cadmium in one of the new and important PV technologies: thin-film, cadmium telluride (CdTe) PV, which is being developed and commercialized by several companies including Solar Cells Inc. (Toledo, Ohio), BP Solar (Fairfield, California), and Matsushita (Japan). The principal ES and H issue for thin-film cadmium telluride PV is the potential introduction of cadmium--a toxic heavy metal--into the air or water. The amount of cadmium in thin-film PV, however, is quite small--one nickel cadmium flashlight battery has about as much cadmium (7 g) as a square meter of PV module using current technology--and a typical cordless power tool will have 5--10 batteries. CdTe modules are also very well sealed, limiting the chance of release. Nonetheless, minimizing the amount of cadmium in cadmium telluride modules and preventing the introduction of that cadmium into the environment is a top priority for National Renewable Energy Laboratory researchers and cadmium telluride PV manufacturers

  13. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo

    2016-01-01

    Bismuth antimony telluride (BixSb2-xTe3, 0.4 room-temperature thermoelectric power generation. In this work, p-type Bi0.4Sb1.6Te3 samples were prepared under various conditions (temperature, holding time, and ramp...

  14. Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium.

    Science.gov (United States)

    Pore, Viljami; Hatanpää, Timo; Ritala, Mikko; Leskelä, Markku

    2009-03-18

    Atomic layer deposition (ALD) of metal selenide and telluride thin films has been limited because of a lack of precursors that would at the same time be safe and exhibit high reactivity as required in ALD. Yet there are many important metal selenide and telluride thin film materials whose deposition by ALD might be beneficial, for example, CuInSe2 for solar cells and Ge2Sb2Te5 for phase-change random-access memories. Especially in the latter case highly conformal deposition offered by ALD is essential for high storage density. By now, ALD of germanium antimony telluride (GST) has been attempted only using plasma-assisted processes owing to the lack of appropriate tellurium precursors. In this paper we make a breakthrough in the development of new ALD precursors for tellurium and selenium. Compounds with a general formula (R3Si)2Te and (R3Si)2Se react with various metal halides forming the corresponding metal tellurides and selenides. As an example, we show that Sb2Te3, GeTe, and GST films can be deposited by ALD using (Et3Si)2Te, SbCl3, and GeCl2 x C4H8O2 compounds as precursors. All three precursors exhibit a typical saturative ALD growth behavior and GST films prepared at 90 degrees C show excellent conformality on a high aspect-ratio trench structure.

  15. Synthesis and characterization of cadmium manganese telluride: a semimagnetic ternary alloy

    International Nuclear Information System (INIS)

    Adhikari, T.; Basu, S.

    1993-01-01

    Polycrystalline cadmium manganese telluride (Cd ( 1-x)Mn x Te) was synthesized by the vertical Bridgman method. Compositional analysis was done by X-ray studies and optical absorption to indicate x=0.23. XPS, ac and dc susceptibility studies are also presented. (author). 12 refs., 2 figs

  16. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the

  17. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  18. Transmutation of americium and curium incorporated in zirconia-based host materials

    Energy Technology Data Exchange (ETDEWEB)

    Raison, P.E. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Combustibles; Haire, R.G. [Oak Ridge National Lab., TN (United States)

    2001-07-01

    Presented are studies involving the incorporation of americium and curium in zirconia-based materials. First explored was the pseudo ternary system AmO{sub 2}-ZrO{sub 2}-Y{sub 2}O{sub 3}. It was determined that selected Y-CSZ materials can incorporate significant quantities of americium oxide and remain cubic single-phase. The cell parameters of these fluorite-type products were established to be linear with the AmO{sub 2} content. The Cm{sub 2}O{sub 3}-ZrO{sub 2} system was also investigated. It was found that at 25 mol% of CmO{sub 1.5}, the Cm(III) stabilized zirconia in its cubic form (a = 5.21 {+-}0.01 Angstrom). At higher and lower concentrations, diphasic materials were encountered. At 50 mol% of CmO{sub 1.5}, a pyrochlore oxide - Cm{sub 2}Zr{sub 2}O{sub 7} - is formed (a = 10.63 {+-}0.02 Angstrom). (author)

  19. Fuel cycle covariance of plutonium and americium separations to repository capacity using information theoretic measures

    International Nuclear Information System (INIS)

    Scopatz, Anthony; Schneider, Erich; Li, Jun; Yim, Man-Sung

    2011-01-01

    A light water reactor, fast reactor symbiotic fuel cycle scenario was modeled and parameterized based on thirty independent inputs. Simultaneously and stochastically choosing different values for each of these inputs and performing the associated fuel cycle mass-balance calculation, the fuel cycle itself underwent Monte Carlo simulation. A novel information theoretic metric is postulated as a measure of system-wide covariance. This metric is the coefficient of variation of the set of uncertainty coefficients generated from 2D slices of a 3D contingency table. It is then applied to the fuel cycle, taking fast reactor used fuel plutonium and americium separations as independent variables and the capacity of a fully-loaded tuff repository as the response. This set of parameters is known from prior studies to have a strong covariance. When measured with all 435 other input parameters possible, the fast reactor plutonium and americium separations pair was found to be ranked the second most covariant. This verifies that the coefficient of variation metric captures the desired sensitivity of sensitivity effects in the nuclear fuel cycle. (author)

  20. Contribution to the prediction of americium, plutonium and neptunium behaviour in the geosphere: chemical data

    International Nuclear Information System (INIS)

    Robouch, P.

    1989-01-01

    An exhaustive bibliographic review on hydrolysis of americium gives the stability constants, at zero ionic strength. No evidence of Am(OH) 4 - formation was found by solubility studies up to pH 2 (CO 3 ) 3 characterised by its X-ray diffraction pattern is studied at a high ionic strength. All the published results on Am in carbonate media are reinterpreted using these stability constants (Am-OH-CO 3 complexes are not needed). No evidence of Am(CO 3 ) 4 5- formation was found by spectrophotometry up to 3M. Literature results are used to determine the formal redox potentials at pH = 9.4 and to calculate the formation constants, at zero ionic strength. The formation of complexes between americium and humic materials (purified fulvic and humic acids) has been studied by a spectrophotometric technique. The results are interpreted by the formation of a 1:1 complexe. Solubility of the solid PuO 2 (CO 3 ) is measured in bicarbonate media at high ionic strength, to obtain the solubility product and formation constants of the PuO 2 (CO 3 ) i 2-2i complexes [fr

  1. Production of a square geometry Americium standard source for use with photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Priscila; Geraldo, Bianca; Raele, Marcus P.; Marumo, Júlio T.; Vicente, Roberto; Zahn, Guilherme S.; Genezini, Frederico A., E-mail: priscila3.costa@usp.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In the development of a thermal neutron detector using a square photodiode and a thin boron film, a radioactive calibration source with the same geometry was needed. An americium-243 standard source was produced by electrodeposition aiming at the calibration of a PIN-type silicon photodiode with a detection area of 10 x 10 mm{sup 2}. To produce the samples two tests were performed. In the first test, a square stainless steel plate (10 x 10 mm{sup 2}) was fixed on the surface of the conventional plate, which was removed after deposition. To reduce the loss of activity of the source, in the second test nail polish was applied on the silver plate leaving only an area of 10 x 10 mm{sup 2} without varnish coating. Once the electrodeposition process was completed, the activity concentration measurement was performed by alpha particle spectrometry. The first method presented a lower activity when compared to the total activity of Am-243 added initially. For the second method, the total activity was concentrate in the exposed square region (without nail polish). The results showed that it is possible to obtain a square geometry source; furthermore, the surrounding nail polish was not contaminated by {sup 243}Am. The comparison of these two approaches indicated that the second method was more efficient as it was possible to concentrate all the americium activity in the delimited square area. (author)

  2. Comparison of Americium-Beryllium neutron spectrum obtained using activation foil detectors and NE-213 spectrometer

    International Nuclear Information System (INIS)

    Sunny, Sunil; Subbaiah, K.V.; Selvakumaran, T.S.

    1999-01-01

    Neutron spectrum of Americium - Beryllium (α,n) source is measured with two different spectrometers vis-a-vis activation foils (foil detectors) and NE-213 organic scintillator. Activity induced in the foils is measured with 4π-β-γ sodium iodide detector by integrating counts under photo peak and the saturation activity is found by correcting to elapsed time before counting. The data on calculated activity is fed into the unfolding code, SAND-II to obtain neutron spectrum. In the case of organic scintillator, the pulse height spectrum is obtained using MCA and this is processed with unfolding code DUST in order to get neutron spectrum. The Americium - Beryllium (α,n) neutron spectrum thus obtained by two different methods is compared. It is inferred that the NE-213 scintillator spectrum is in excellent agreement with the values beyond 1MeV. Neutron spectrum obtained by activation foils depends on initial guess spectrum and is found to be in reasonable agreement with NE-213 spectrum. (author)

  3. The distribution of plutonium-239 and americium-241 in the Syrian hamster following its intravenous administration as citrate

    International Nuclear Information System (INIS)

    Rodwell, P.; Stather, J.W.

    1978-01-01

    Actinide distribution in various tissues and the skeleton of hamsters by liquid scintillation counting or isotope dilution. For plutonium 57% of activity was concentrated in the skeleton and more than 90% in the liver and skeleton after seven days. For americium the liver retained more than 50% of total activity and 25% was excreted in urine within seven days. (U.K.)

  4. Single-phase cadmium telluride thin films deposited by electroless electrodeposition

    International Nuclear Information System (INIS)

    Khrypunov, G.; Klochko, N.; Lyubov, V.; Li, T.; Volkova, N.

    2010-01-01

    Full text : Today cadmium telluride (CdTe) is a leading base material for the fabrication of thin film solar cells. Equally with the creation of traditional thin film photovoltaic devices on the base of CdTe in recent years several approaches have been investigated to develop solar cells with extremely thin (80-500 nm) CdTe absorber (so-called ηE(eta)-solar cells) that offer the potential to reduce recombination losses in the base layers and thus use low cost materials. Until today the CdTe depositions for the η-solar cells manufacture were performed by vapour phase epitaxy under dynamical vacuum at working temperature 750 degrees Celsium or by electrodeposition in the special electrochemical cell equipped with the potentiostat. Development research of simple and inexpensive method for obtaining of the single-phase stoichiometric cadmium telluride films has required an improvement of the electroless electrodeposition technique, which theretofore was characterized by some disadvantages, namely, the CdTe films were polluted by free tellurium additions and the composition of the films was Cd:Te=55:45. So, for the showing up the synthesis of doped or stoichiometric cadmium telluride films conditions and in order to decide the problem of the deposition of single-phase CdTe layers it was researched the electrochemical processes going during electroless electrolysis in sulfate solutions with different acidities and CdSO 4 concentrations. Some film samples during deposition were illuminated by 500 W halogen lamp. Deposition time was 10-15 min. The phase composition and structure of the deposited films were determined by XRD-method, the average sizes of the crystalline grains in the films were estimated using Debye-Scherer formula. The transmittance spectra of the samples were measured by double beam spectrophotometer in the spectral range of 0.6-1.1 μm. Surface morphology of the films was researched by scanning electron microscopy. By means of analysis of the

  5. Worldwide bioassay data resources for plutonium/americium internal dosimetry studies

    International Nuclear Information System (INIS)

    Miller, G.; Bertelli, L.; Little, T.; Guilmette, R.; Riddell, T.; Filipy, R.

    2005-01-01

    Full text: Biokinetic models are the scientific underpinning of internal dosimetry. These models describe how materials of interest taken into the body by various routes (for example inhalation) are transported through the body, allowing the modelling of bioassay measurements and the estimation of radiation dose. The International Commission on Radiation Protection (ICRP) publishes biokinetic models for use in internal dosimetry. These models represent the consensus judgement of a committee of experts, based on human and animal data. Nonetheless, it is important to validate biokinetic models using directly applicable data, in a scientifically transparent manner, especially for internal dosimetry research purposes (as opposed to radiation protection), as in epidemiology studies. Two major goals would be to determine individual variations of model parameters for the purpose of assessing this source of uncertainty in internal dose calculations, and to determine values of workplace specific parameters (such as particle solubility in lung fluids) for different representative workplaces. Furthermore, data on the observed frequency of intakes under various conditions can be used in the interpretation of bioassay data. All of the above may be couched in the terminology of Bayesian statistical analysis and amount to the determination of the Bayesian prior probability distributions needed in a Bayesian interpretation of bioassay data. The authors have direct knowledge of several significant databases of plutonium/americium bioassay data (including autopsy data). The purpose of this paper is to acquaint the worldwide community with these resources and to invite others who may know of other such databases to participate with us in a publication that would document the content, form, and the procedures for seeking access to these databases. These databases represent a tremendous scientific resource in this field. Examples of databases known to the authors include: the

  6. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  7. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  8. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J. [Physics Department at Illinois Institute of Technology, Chicago, IL 60616 and High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Accelerator Science Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Physics Department at Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  9. Mechanism of manganese (mono and di) telluride thin-film formation and properties

    Science.gov (United States)

    Sharma, Raj Kishore; Singh, Gurmeet; Shul, Yong Gun; Kim, Hansung

    2007-03-01

    Mechanistic studies on the electrocrystallization of manganese telluride (MnTe) thin film are reported using aqueous acidic solution containing MnSO 4 and TeO 2. Tartaric acid was used for the inhibition of hydrated manganese oxide anodic growth at counter electrode. A detailed study on the mechanistic aspect of electrochemical growth of MnTe using cyclic voltametry is carried out. Conditions for electrochemical growth of manganese mono and di telluride thin films have been reported using cyclic voltammetric scans for Mn 2+, Te 4+ and combined Mn 2+ and Te 4+. X-ray diffraction showed the formation of polycrystalline MnTe films with cubic, hexagonal and orthorhombic mixed phases. MnTe film morphology was studied using scanning electron microscope. Susceptibility and electrical characterization supports the anti-ferromagnetic behavior of the as-deposited MnTe thin film.

  10. Joining of Half-Heusler and Bismuth Tellurides for Segmented Thermoelectric Generators

    DEFF Research Database (Denmark)

    Ngan, Pham Hoang; Han, Li; Christensen, Dennis Valbjørn

    2018-01-01

    Segmented generators where the p- or n-type legs are formed by joining materials in series enables each material to operate in their most efficient temperature range. Here, we have fabricated and characterized segmented thermoelectric p- and n-type legs based on bismuth tellurides and half......-Heusler alloys p-type Hf0.5Zr0.5CoSn0.2Sb0.8 and n-type Ti0.6Hf0.4NiSn. A two-step process was introduced to join the half-Heusler to the bismuth tellurides to form a segmented structure which was then characterized for its thermoelectric and structural properties. The output power generation was characterized...

  11. Complex formation of trivalent americium with salicylic acid at very low concentrations

    International Nuclear Information System (INIS)

    Melanie Mueller; Margret Acker; Steffen Taut; Gert Bernhard; Forschungszentrum Dresden-Rossendorf, Dresden

    2010-01-01

    For the first time, the complexation of americium(III) with salicylic acid was studied at trace metal concentrations using a 2.0 m Long Path Flow Cell for UV-vis spectroscopy. The detection limit of Am(III) in aqueous solution at pH 3.0 was found to be 5 x 10 -9 M. Two Am(III)-salicylate complexes were formed at pH 5.0 in 0.1 M NaClO 4 , indicated by a clear red shift of the absorption maximum. The absorption spectra obtained from spectrophotometric titration were analyzed by means of factor analysis and complex stabilities were calculated to be log β 110 = 2.56 ± 0.08 and log β 120 = 3.93 ± 0.19. (author)

  12. Plutonium and americium concentrations and vertical profiles in some Italian mosses used as bioindicators

    International Nuclear Information System (INIS)

    Testa, C.; Desideri, D.; Meli, M.A.; Guerra, F.; Degetto, S.; Jia, G.; Gerdol, R.

    1998-01-01

    We have examined the uptake of actinide elements Am and Pu by different species of lichen and moss collected in two locations (Urbino, Central Italy; Alps region, North-east Italy). Plutonium and americium were separated and determined by extraction chromatography, electrodeposition and alpha-spectrometry. This paper summarizes our results with a special emphasis on the vertical profiles of these actinides in two different species of mosses. Several 1-2 cm depth sections were obtained and dated by 210 Pb method. A typical peak for 239,240 Pu and 241 Am was found in the very old moss species ('Sphagnum Compactum') at a depth corresponding to the period 1960-1970 which was the period characterized by the maximum nuclear weapon tests. In a younger moss species ('Neckeria Crispa') no peak was observed and the regression curves showed that Am is more mobile than 239,240 Pu and 238 Pu. (author)

  13. The uptake of plutonium-239, 240, americium-241, strontium-90 into plants

    International Nuclear Information System (INIS)

    Popplewell, D.S.; Ham, G.J.; Johnson, T.E.

    1984-01-01

    This report describes the results of measurements on the uptake of plutonium, americium, strontium-90 and caesium-137 into peas, beet, oats, sweet corn, tomatoes and vegetable marrow grown in tubs containing radioactively-contaminated silts. The silts had been taken from an area of West Cumbria commonly referred to as the Ravenglass estuary. The experiments are categorised as being carried out under non-standard conditions because of the manner in which the radioactivity came to be incorporated into the growth medium. The growth medium was representative of conditions which could arise when the estuarine silt moves inland under the influence of wind and tide and mixes with the adjacent farm land. The silt had been contaminated by radioactive effluents from the nuclear fuels reprocessing plant at Sellafield and this contamination had been brought about by natural means. (Auth.)

  14. Separation of trivalent americium and europium by purified Cyanex 301 immobilized in macro porous polymer

    International Nuclear Information System (INIS)

    Jing Chen; Veltkamp, A.C.; Booij, A.S.

    2002-01-01

    High separation ability of purified Cyanex 301 towards trivalent americium over europium in liquid-liquid extraction is confirmed. Solvent 2-nitrophenyl octyl ether (NPOE) lowered the partitioning of Am 3+ but remained the separation ability over europium. Solvent toluene and 3-octanone lowered the separation factor to ∼ 1000. It is feasible to separate Am 3+ from Eu 3+ by Cyanex 301 which was immobilized in the macro porous polymer (MPP). 3-Octanone is a suitable solvent for dissolving NH 4 OH-saponified Cyanex 301 and MPP is a suitable solid supported material for column operation. A five-step column experiment demonstrated the feasibility to separate Am 3+ from Eu 3+ in column which was packed with Cyanex 301-impregnated MPP. (author)

  15. Spectral properties of americium(III) in silicate matrices. Concentration-dependent up-conversion emission

    International Nuclear Information System (INIS)

    Assefa, Zerihun; Haire, R.G.; Stump, N.

    2002-01-01

    We have been pursuing the spectroscopic properties of actinide ions in silicate matrices. One facet of these studies involves the behavior of Stokes and anti-Stokes emissions exhibited by Am 3+ in these hosts. Several attributes have been found to influence the spectral profile, which include excitation wavelength, laser power, and dopant-concentration. Excitation with the 514.5 nm (19435 cm -1 ) line of argon laser provides anti-Stokes emissions at 21100 and ∼19920 cm -1 in the borosilicate matrices. This up-conversion was found to proceed through a multi-photon scheme, and the efficiency increases with increased dopant concentration. Based on our concentration-dependent studies, the up-conversion is suggested to involve a cross-relaxation process [( 5 D 1' , 7 F 0' ) ( 7 F 6' , 7 F 2' )] between neighboring americium ions. (author)

  16. Standard practice for The separation of americium from plutonium by ion exchange

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice describes the use of an ion exchange technique to separate plutonium from solutions containing low concentrations of americium prior to measurement of the 241Am by gamma counting. 1.2 This practice covers the removal of plutonium, but not all the other radioactive isotopes that may interfere in the determination of 241Am. 1.3 This practice can be used when 241Am is to be determined in samples in which the plutonium is in the form of metal, oxide, or other solid provided that the solid is appropriately sampled and dissolved (See Test Methods C758, C759, and C1168). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Magnesium ionophore II as an extraction agent for trivalent europium and americium

    Energy Technology Data Exchange (ETDEWEB)

    Makrlik, Emanuel [Czech Univ. of Life Sciences, Prague (Czech Republic). Faculty of Environmental Sciences; Vanura, Petr [Univ. of Chemistry and Technology, Prague (Czech Republic). Dept. of Analytical Chemistry

    2016-11-01

    Solvent extraction of microamounts of trivalent europium and americium into nitrobenzene by using a mixture of hydrogen dicarbollylcobaltate (H{sup +}B{sup -}) and magnesium ionophore II (L) was studied. The equilibrium data were explained assuming that the species HL{sup +}, HL{sup +}{sub 2}, ML{sup 3+}{sub 2}, and ML{sup 3+}{sub 3} (M{sup 3+} = Eu{sup 3+}, Am{sup 3+}; L=magnesium, ionophore II) are extracted into the nitrobenzene phase. Extraction and stability constants of the cationic complex species in nitrobenzene saturated with water were determined and discussed. From the experimental results it is evident that this effective magnesium ionophore II receptor for the Eu{sup 3+} and Am{sup 3+} cations could be considered as a potential extraction agent for nuclear waste treatment.

  18. Donor impurity self-compensation by neutral complexes in bismuth doped lead telluride

    International Nuclear Information System (INIS)

    Ravich, Yu.I.; Nemov, S.A.; Proshin, V.I.

    1994-01-01

    Self-compensation is calculated of impurity doping action in semiconductors of the A 4 B 6 type by neutral complexes, consisting of a vacancy and two impurity atoms. Complexes entropy is estimated and the thermodynamic potential is minimized in the concentration of single two-charge vacancies and complexes. Calculation results are compared with experimental data, obtained when lead telluride doping by bismuth. Account for complex formation improves agreement theory with experiment. 4 refs., 1 fig

  19. Diagnostic Genesis Features of Au-Ag Selenide-Telluride Mineralization of Western Java Deposits

    Directory of Open Access Journals (Sweden)

    Euis Tintin Yuningsih

    2016-01-01

    Full Text Available DOI: 10.17014/ijog.3.1.67-76The ore mineralogy of the westernmost part of West Java such as Pongkor, Cibaliung, Cikidang, Cikotok, and Cirotan are characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, whereas the eastern part of West Java including Arinem and Cineam deposits are dominated by silver-gold tellurides. Mineralogy of Se-type deposits at Pongkor, Cikidang, Cibaliung, Cisungsang, and Cirotan and Te-type deposits at Arinem and Cineam shows their different geochemical characteristics. Mineralogical and geochemical differences can be explained by variation of physico-chemical conditions that existed during gold-silver deposition by applying the phase relation among sulfide, telluride, and selenide mineral association in the deposits. The relative values of ƒSe2(g, ƒTe(g, and ƒS2(g control the actual presence of selenide or telluride minerals within the West Java deposits, which also depend on their concentrations in the hydrothermal fluid. Even though the concentration of selenium in the hydrothermal fluid of Te-type deposits might have been similar or even higher than that in the Se-type, early substitution of selenium in the sulfide minerals prevents its concentration in the hydrothermal fluid to the levels for precipitating selenide minerals. Therefore, early sulfide mineral deposition from reduction fluids will not increase the ƒSe2(g/ƒS2(g ratio to form selenide minerals in Te-type deposits of Arinem and Cineam, other than selenium-bearing sulfide mineral such as Se-bearing galena or Se-bearing pyrargyrite-proustite.

  20. Use of a Soluble Anode in Electrodeposition of Thick Bismuth Telluride Layers

    Science.gov (United States)

    Maas, M.; Diliberto, S.; de Vaulx, C.; Azzouz, K.; Boulanger, C.

    2014-10-01

    Integration of thermoelectric devices within an automotive heat exchanger could enable conversion of lost heat into electrical energy, contributing to improved total output from the engine. For this purpose, synthesis of thick bismuth telluride (Bi2Te3) films is required. Bismuth telluride has been produced by an electrochemical method in nitric acid with a sacrificial bismuth telluride anode as the source of cations. The binary layer grows on the working electrode while the counter-electrode, a Bi2Te3 disk obtained by high frequency melting, is oxidized to BiIII and TeIV. This process leads to auto-regeneration of the solution without modification of its composition. The thickness of films deposited by use of the Bi2Te3 anode was approximately 10 times that without. To demonstrate the utility of a soluble anode in electrochemical deposition, we report characterization of the composition and morphology of the films obtained under different experimental conditions. Perfectly dense and regular Bi2Te3 films (˜400 μm) with low internal stress and uniform composition across the cross-section were prepared. Their thermoelectric properties were assessed.

  1. Separation of oxidized americium from lanthanides by use of pillared metal(IV) phosphate-phosphonate hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.D.; Clearfield, A. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Borkowski, M.; Reed, D.T. [Los Alamos National Laboratory, Carlsbad, NM (United States). Earth and Environmental Sciences Div.

    2012-07-01

    Closing the nuclear fuel cycle in the US poses many challenges, one of which is found in the waste streams, which contain both trivalent lanthanides and actinides. The separation of americium from the raffinate will dramatically reduce the long-term radiotoxicity of the waste. The sorption of americium in both the tri- and pentavalent oxidation states was observed for four M(IV) phosphate-phosphonate ion exchange materials in nitric acid at pH 2. High selectivity was observed for reduced Am(III) with K{sub d} values ca. 6 x 10{sup 5} mL/g, while the K{sub d} values for Am(V) were much lower. A new method of synthesizing and stabilizing AmO{sub 2}{sup +} to yield a lifetime of at least 24 h in acidic media using a combination of sodium persulfate and calcium hypochlorite will be described.

  2. Separation of oxidized americium from lanthanides by use of pillared metal(IV) phosphate-phosphonate hybrid materials

    International Nuclear Information System (INIS)

    Burns, J.D.; Clearfield, A.; Borkowski, M.; Reed, D.T.

    2012-01-01

    Closing the nuclear fuel cycle in the US poses many challenges, one of which is found in the waste streams, which contain both trivalent lanthanides and actinides. The separation of americium from the raffinate will dramatically reduce the long-term radiotoxicity of the waste. The sorption of americium in both the tri- and pentavalent oxidation states was observed for four M(IV) phosphate-phosphonate ion exchange materials in nitric acid at pH 2. High selectivity was observed for reduced Am(III) with K d values ca. 6 x 10 5 mL/g, while the K d values for Am(V) were much lower. A new method of synthesizing and stabilizing AmO 2 + to yield a lifetime of at least 24 h in acidic media using a combination of sodium persulfate and calcium hypochlorite will be described.

  3. Upper limits to americium concentration in large sized sodium-cooled fast reactors loaded with metallic fuel

    International Nuclear Information System (INIS)

    Zhang, Youpeng; Wallenius, Janne

    2014-01-01

    Highlights: • The americium transmutation capability of Integral Fast Reactor was investigated. • The impact from americium introduction was parameterized by applying SERPENT Monte Carlo calculations. • Higher americium content in metallic fuel leads to a power penalty, preserving consistent safety margins. - Abstract: Transient analysis of a large sized sodium-cooled reactor loaded with metallic fuel modified by different fractions of americium have been performed. Unprotected loss-of-offsite power, unprotected loss-of-flow and unprotected transient-over-power accidents were simulated with the SAS4A/SASSYS code based on the geometrical model of an IFR with power rating of 2500 MW th , using safety parameters obtained with the SERPENT Monte Carlo code. The Ti-modified austenitic D9 steel, having higher creep rupture strength, was considered as the cladding and structural material apart from the ferritic/martensitic HT9 steel. For the reference case of U–12Pu–1Am–10Zr fuel at EOEC, the margin to fuel melt during a design basis condition UTOP is about 50 K for a maximum linear rating of 30 kW/m. In order to maintain a margin of 50 K to fuel failure, the linear power rating has to be reduced by ∼3% and 6% for 2 wt.% and 3 wt.% Am introduction into the fuel respectively. Hence, an Am concentration of 2–3 wt.% in the fuel would lead to a power penalty of 3–6%, permitting a consumption rate of 3.0–5.1 kg Am/TW h th . This consumption rate is significantly higher than the one previously obtained for oxide fuelled SFRs

  4. Uptake of americium-241 by plants from contaminated Chernobyl exclusive zone test site soils

    International Nuclear Information System (INIS)

    Rashydov, N.M.

    2002-01-01

    Americium-241 was found to accumulate in soils and biological objects of the environment. Its concentration has increased many times after the Chernobyl disaster and can be expected to increase about 40 times in the future. This research concentrated on the contaminated exclusive Chernobyl zone polluted by trace radionuclides, their behavior and accumulation by various plant species. Special attention is devoted to the bioavailability of 241 Am to the plants Galium rivale, G. tinctorium, G. aparine, G. intermedium, Berteroa incana, Artemisia absinthium, A. vulgaris, Centaurea borysthenica, C. arenaria, Cirsium arvense, Succissa pratensis, Solidago virgaurea, Linaria vulgaris, Lepidium ruderale, Stenactis annua, Veronica maxima, Verbascum lychnitis, Euphorbia cyparissias, Genista tinctoria, Erigeron canadensis, Oenothera biennis, Betula pendula and Quercus robur, which were collected from the Chernobyl, Kopachi, and Yanov districts. The plant samples of Oenothera biennis, Betula pendula and Quercus robur were collected from the Yanov district, where the soil contamination by 241 Am and 137 Cs was at the level of 660 and 27 MBq/m 2 , respectively. Gamma spectroscopy and radiochemical methods were used to estimate the activity concentration of 137 Cs, 90 Sr, 238 Pu, 239+240 Pu, 241 Am. The radionuclides were measured in the dry green mass of the plant samples and in the dry soils. The contamination of the Oenothera biennis, Betula pendula and Quercus robur samples by 137 Cs was (5.8±1,5)x10 6 , (7.4±1.1)x10 5 , and (2.6±0.2)x10 6 Bq/kg dry mass, respectively, and contamination by 241 Am was 47±5, 45±3 and 3.2±0.2 Bq/kg, respectively. The soil-to-plant transfer ratio for 137 Cs ranged lay within the interval of 0.2 to 0.03 Bq/kg : Bq/m 2 , the the transfer ratio for 241 Am did not exceed 7x10 -5 Bq/kg : Bq/m 2 . The coefficient of the relative contents of the 241 Am/ 239+240 Pu radionuclides in the various plant samples varied from 3.2 to 8.3, while for soil from

  5. Tellurides from Sunrise Dam gold deposit, Yilgarn Craton, Western Australia: a new occurrence of nagyágite

    Science.gov (United States)

    Sung, Y.-H.; Ciobanu, C. L.; Pring, A.; Brügger, J.; Skinner, W.; Cook, N. J.; Nugus, M.

    2007-11-01

    The complex Pb-Sb-Au tellurosulfide nagyágite is found together with eight tellurides (hessite, petzite, calaverite, altaite, tellurantimony (and Bi-bearing tellurantimony), melonite, tetradymite and an unnamed Au(Ag)-As-telluride) in sulfide-sulfosalt assemblages from late, high-grade veins (D4) and post-D4 veinlets in the world-class orogenic gold deposit at Sunrise Dam, Eastern Goldfields Province of the Archaean Yilgarn Craton, Western Australia. The composition of nagyágite at Sunrise Dam conforms to ideal stoichiometry, with negligible As content and Au/(Au+Te) ratio of 0.325 [i.e., (Pb4.84Sb1.10 As0.05)5.99S5.99(Au0.98 Te2.03)3.01]. The diverse mineralogy of the post-D4 veinlets, relative to the host veins, is attributed to small-scale reaction fronts established along zones of replacement at the polished section scale. The association of telluride assemblages and native gold is interpreted in terms of remobilization of ore components (including Ag, Sb, Te and Au) from the pre-existing assemblages, and their redeposition during subsequent tectonic events. The presence of nagyágite and Au-Ag tellurides in veins, in quantities that may be significant in economic terms, as well as the character of their breakdown products, have implications for ore processing and gold recovery, as well as for the genetic interpretation of the deposit. The strong structural control upon formation of the telluride-bearing assemblages at Sunrise Dam and the ability of these minerals to reflect changes in the local environment, contradicts the current view that these tellurides have a magmatic affiliation.

  6. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  7. Spatial mapping of cadmium zinc telluride materials properties and electrical response to improve device yield and performance

    CERN Document Server

    Van Scyoc, J M; Yoon, H; Gilbert, T S; Hilton, N R; Lund, J C; James, R B

    1999-01-01

    Cadmium zinc telluride has experienced tremendous growth in its application to various radiation sensing problems over the last five years. However, there are still issues with yield, particularly of the large volume devices needed for imaging and sensitivity-critical applications. Inhomogeneities of various types and on various length scales currently prevent the fabrication of large devices of high spectral performance. This paper discusses the development of a set of characterization tools for quantifying these inhomogeneities, in order to develop improvement strategies to achieve the desired cadmium zinc telluride crystals for detector fabrication.

  8. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  9. Portable cadmium telluride detectors and their applicability for external measurement of 51Cr-EDTA clearance

    International Nuclear Information System (INIS)

    Bojsen, J.; Groth, S.; Rossing, N.

    1981-01-01

    The combination of portable cadmium telluride detectors and a solid state memory have been examined with reference to point and volume source sensitivities and the equivalent, effective detector thickness. Based on the i.v. injection of 51 Cr-EDTA, the glomerular filtration rate in 23 patients has been measured by external detection of the disappearance rate of the tracer and only one blood sample. Correlation to conventional blood sampling technique is r = 0.992. The glomerular filtration rate determined from the externally measured disappearance rate constant only, is discussed. (author)

  10. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  11. Characterization of microstructural stability for nanotwinned mercury cadmium telluride under cyclic nanoindentations

    International Nuclear Information System (INIS)

    Zhang, Zhenyu; Zhang, Nianmin; Ma, Guojun; Kang, Renke

    2013-01-01

    Nanotwinned (nt) mercury cadmium telluride (HgCdTe or MCT) was prepared using nanoindentations. The hardness of nt-MCT is 100 times higher than that of monocrystalline counterparts. Transmission electron microscopy shows that the twin lamellae of nt-MCT prior to cyclic nanoindentations are distributed along two directions, intersecting at an angle of 76°. The nanotwinned microstructure of nt-MCT is stable after 100 cyclic nanoindentations. The loading–unloading curves of nt-MCT are basically invariable after 50 cycles, and have elastic characteristics

  12. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium telluride alloys

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1981-01-01

    Differential thermal analysis data were obtained on mercury cadmium telluride alloys in order to establish the liquidus temperatures for the various alloy compositions. Preliminary theoretical analyses was performed to establish the ternary phase equilibrium parameters for the metal rich region of the phase diagram. Liquid-solid equilibrium parameters were determined for the pseudobinary alloy system. Phase equilibrium was calculated and Hg(l-x) Cd(x) Te alloys were directionally solidified from pseudobinary melts. Electrical resistivity and Hall coefficient measurements were obtained.

  13. Tiny optical fiber temperature sensor based on temperature-dependent refractive index of zinc telluride film

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Song, Dongyu; Zhang, Xueliang; Li, Bingsheng; Yu, Yang; Chen, Yuzhong

    2018-03-01

    The temperature-dependent refractive index of zinc telluride film can be used to develop a tiny, low cost and film-coated optical fiber temperature sensor. Pulse reference-based compensation technique is used to largely reduce the background noise which makes it possible to detect the minor reflectivity change of the film in different temperatures. The temperature sensitivity is 0.0034dB/° and the background noise is measured to be 0.0005dB, so the resolution can achieve 0.2°.

  14. Contrasts between the marine and freshwater biological interactions of plutonium and americium

    International Nuclear Information System (INIS)

    Livingston, H.D.; Bowen, V.T.

    1975-01-01

    Whether in lakes or the oceans the transuranic elements plutonium and americium are taken up by marine organisms, with concentration factors that would class them as nice, typical heavy metals. There is no evidence for strong, widespread discrimination against the transuranics by either plant or animal absorptive surfaces. In both freshwater and marine situations the major reservoir of Pu and Am soon becomes the sediments, and organisms are more exposed to uptake of these nuclides the closer is their ecological involvement with the sediments. Although there is little evidence that this can be an ionic strength effect, it does appear that Pu may be somewhat more available, biologically, in marine environments, and Am, conversely, in fresh water. We incline to the belief that details of these behaviors are usually controlled by local availability of organic complexers. No compelling evidence exists of increase in Pu concentration at higher levels of food chains; in marine situations this appears true of Am as well, but a few data suggest that in fresh water fish there is a progressive increase, in higher trophic levels, in the ratio Am to Pu. Although marine and fresh water biogeochemistries of transuranics are much more similar than we had expected, it will generally be dangerous to extrapolate from one to the other. In both systems there appears to us no question that we are observing real element biogeochemistry, not the redistribution of inert, labelled, fallout fragments

  15. Multicompartment kinetic models for the metabolism of americium, plutonium and uranium in rats

    International Nuclear Information System (INIS)

    Sontag, W.

    1986-01-01

    To examine the kinetic behaviour of americium, plutonium and uranium in male and female rats, an extended mammillary model has been developed, composed of 10 compartments connected with 17 linear transfer coefficients. The 10 compartments describe the behaviour of the three nuclides in the blood, skeleton, liver and kidney; the remaining activity is assigned to one residual organ. Each organ is divided into two compartments, short- and long-term. In the skeleton the short-term compartment has been assumed to be the bone surface and marrow, and the long-term compartment the deep bone; in the liver, evidence suggests that the short-term compartment is physiologically associated with lysosomes and the long-term compartment identical with telolysosomes. Influence of age, sex and different nuclides on the transfer coefficients and the absorbed radiation dose are discussed. By using the transfer coefficients calculated for intravenous injection, the behaviour of the nuclides in skeleton and liver during continuous intake has been calculated. The behaviour of the three nuclides in skeleton and liver after intravenous injection has also been calculated with the additional assumption that from the fifth day the animals were treated continuously with a chelating agent. (UK)

  16. Development and Testing of an Americium/Lanthanide Separation Flowsheet Using Sodium Bismuthate

    Energy Technology Data Exchange (ETDEWEB)

    Jack Law; Bruce Mincher; Troy Garn; Mitchell Greenhalgh; Nicholas Schmitt; Veronica Rutledge

    2014-04-01

    The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term heat load of material interred in a future high-level waste repository. A separation process amenable to process scale-up remains elusive. Given only subtle chemistry differences within and between the ions of the trivalent actinide and lanthanide series this separation is challenging ; however, higher oxidation states of americium can be prepared using sodium bismuthate and separated via solvent extraction using diamylamylphosphonate (DAAP) extraction. Among the other trivalent metals only Ce is also oxidized and extracted. Due to the long-term instability of Am(VI) , the loaded organic phase is readily selectively stripped to partition the actinide to a new acidic aqueous phase. Batch extraction distribution ratio measurements were used to design a flowsheet to accomplish this separation. Additionally, crossflow filtration was investigated as a method to filter the bismuthate solids from the feed solution prior to extraction. Results of the filtration studies, flowsheet development work and flowsheet performance testing using a centrifugal contactor are detailed.

  17. Speciation and bioavailability of Americium-241 in the fresh water environment

    International Nuclear Information System (INIS)

    Bierkens, J.

    1986-01-01

    Due to its anthropogenic origin, the transuranic americium 241 confronts physiologists with the intriguing question, which mechanisms are involved in the incorporation or elimination of such artificial elements in biological cycles. The investigations on the speciation and bioavailability of 241 Am in the freshwater environment aim to establish a relation between the behavior of 241 Am in freshwater ecosystems and its availability for biota. In the limnic environment, most often characterized by a high organic load and a low conductivity, the effect of complexation of 241 Am with humic acids and competition with trivalent cations such as A1 and Fe, were proven to be significant on the speciation of 241 Am. Based on the registration of the 241 Am uptake by a large number of freshwater organisms, the crayfish Astacus leptodactylus Eschscholtz was chosen to study the whole-body uptake of 241 Am, its corresponding organ distribution and its retention in the animal. The share of external fixation and ingestion in the global uptake, and the effect of speciation on it, were studied more carefully. Other aspects in this physiological part were: the kinetics of 241 Am in the hemolymph and the hepatopancreas, and its subcellular distribution in the digestive gland. Finally, by comparing the physiology of 241 Am with some other metals ( 240 Pu, 64 Cu, 198 Au) with analogous or contradictional properties, we tried to find out whether the behavior of 241 Am in organisms can be explained from its chemical characteristics

  18. Americium and plutonium in water, biota, and sediment from the central Oregon coast

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Reinald Dreas [Oregon State Univ., Corvallis, OR (United States)

    1982-06-01

    Plutonium-239, 240 and americium-241 were measured in the mussel Mytilus californianus from the region of Coos Bay, OR. The flesh of this species has a plutonium concentration of about 90 fCi/kg, and an Am-241/Pu-239, 240 ratio that is high relative to mixed fallout, ranging between two and three. Transuranic concentrations in sediment, unfiltered water, and filterable particulates were also measured; none of these materials has an Am/Pu ratio as greatly elevated as the mussels, and there is no apparent difference in the Am/Pu ratio of terrestrial runoff and coastal water. Sediment core profiles do not allow accumulation rates or depositional histories to be identified, but it does not appear that material characterized by a high Am/Pu ratio has ever been introduced to this estuary. Other bivalves (Tresus capax and Macoma nasuta) and a polychaete (Abarenicola sp.) do not have an elevated Am/Pu ratio, although the absolute activity of plutonium in the infaunal bivalves is roughly four times that in the mussels.

  19. Americium and plutonium in water, biota, and sediment from the central Oregon coast

    International Nuclear Information System (INIS)

    Nielsen, R.D.

    1982-06-01

    Plutonium-239, 240 and americium-241 were measured in the mussel Mytilus californianus from the region of Coos Bay, OR. The flesh of this species has a plutonium concentration of about 90 fCi/kg, and an Am-241/Pu-239, 240 ratio that is high relative to mixed fallout, ranging between two and three. Transuranic concentrations in sediment, unfiltered water, and filterable particulates were also measured; none of these materials has an Am/Pu ratio as greatly elevated as the mussels, and there is no apparent difference in the Am/Pu ratio of terrestrial runoff and coastal water. Sediment core profiles do not allow accumulation rates or depositional histories to be identified, but it does not appear that material characterized by a high Am/Pu ratio has ever been introduced to this estuary. Other bivalves (Tresus capax and Macoma nasuta) and a polychaete (Abarenicola sp.) do not have an elevated Am/Pu ratio, although the absolute activity of plutonium in the infaunal bivalves is roughly four times that in the mussels

  20. In Vitro Dissolution Tests of Plutonium and Americium Containing Contamination Originating From ZPPR Fuel Plates

    Energy Technology Data Exchange (ETDEWEB)

    William F. Bauer; Brian K. Schuetz; Gary M. Huestis; Thomas B. Lints; Brian K. Harris; R. Duane Ball; Gracy Elias

    2012-09-01

    Assessing the extent of internal dose is of concern whenever workers are exposed to airborne radionuclides or other contaminants. Internal dose determinations depend upon a reasonable estimate of the expected biological half-life of the contaminants in the respiratory tract. One issue with refractory elements is determining the dissolution rate of the element. Actinides such as plutonium (Pu) and Americium (Am) tend to be very refractory and can have biological half-lives of tens of years. In the event of an exposure, the dissolution rates of the radionuclides of interest needs to be assessed in order to assign the proper internal dose estimates. During the November 2011 incident at the Idaho National Laboratory (INL) involving a ZPPR fuel plate, air filters in a constant air monitor (CAM) and a giraffe filter apparatus captured airborne particulate matter. These filters were used in dissolution rate experiments to determine the apparent dissolution half-life of Pu and Am in simulated biological fluids. This report describes these experiments and the results. The dissolution rates were found to follow a three term exponential decay equation. Differences were noted depending upon the nature of the biological fluid simulant. Overall, greater than 95% of the Pu and 93% of the Am were in a very slow dissolving component with dissolution half-lives of over 10 years.

  1. Removal of plutonium and Americium from hydrochloric acid waste streams using extraction chromatography

    International Nuclear Information System (INIS)

    Schulte, L.D.; FitzPatrick, J.R.; Salazar, R.R.; Schake, B.S.; Martinez, B.T.

    1995-01-01

    Extraction chromatography is under development as a method to lower actinide activity levels in hydrochloric acid (HCl) effluent streams. Successful application of this technique for radioactive liquid waste treatment would provide a low activity feedstream for HCl recycle, reduce the loss of radioactivity to the environment in aqueous effluents, and lower the quantity and improve the form of solid waste generated. The extraction of plutonium and americium from HCl solutions was examined for several commercial and laboratory-produced sorbed resin materials. Polymer beads were coated with n-octyl(phenyl)-N,N-diisobutylcarbamoyl- methylphosphine oxide (CMPO) and either tributyl phosphate (TBP), or diamyl amylphosphonate (DAAP). Distribution coefficients for Pu and Am were measured by contact studies in 1-10 M HCl, while varying REDOX conditions, actinide loading levels, and resin formulations. Flow experiments were run to evaluate actinide loading and elution under varied conditions. Significant differences in the actinide distribution coefficients in contact experiments, and in actinide retention in flow experiments were observed as a function of resin formulation

  2. Cleanex process: a versatile solvent extraction process for recovery and purification of lanthanides, americium, and curium

    International Nuclear Information System (INIS)

    Bigelow, J.E.; Collins, E.D.; King, L.J.

    1979-01-01

    At a concentration of 1 M in straight-chain hydrocarbon diluent, HDEHP will extract americium, curium, and other trivalent actinide and lanthanide elements from dilute acid or salt solutions. The solute is back-extracted with more concentrated acid, either nitric or hydrochloric. The process has been used in the continuous, countercurrent mode, but its greatest advantage arises in batch extractions where the excess acid can be titrated with NaOH to produce a final acidity of about 0.03 M. Under these conditions, 99% recovery can be achieved, usually in one stage. Cleanex was used on the 50-liter scale at the Transuranium Processing Plant at Oak Ridge for 12 years to provide a broad spectrum cleanup to transuranium elements before applying more sophisticated techniques for separating individual products. The process is also used routinely to recover excessive losses of curium and/or californium from plant waste streams. The solvent system is relatively resistant to radiation damage, being usable up to 200 W-h/liter

  3. Assessment of radiation doses from residential smoke detectors that contain americium-241

    International Nuclear Information System (INIS)

    O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.; Travis, C.C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 μCi) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 μrem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 μSv (0.0006 to 8 mrem) to total body and from 0.06 to 800 μSv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated

  4. Study of biosorbents application on the treatment of radioactive liquid wastes with americium-241

    International Nuclear Information System (INIS)

    Borba, Tania Regina de

    2010-01-01

    The use of nuclear energy for many different purposes has been intensified and highlighted by the benefits that it provides. Medical diagnosis and therapy, agriculture, industry and electricity generation are examples of its application. However, nuclear energy generates radioactive wastes that require suitable treatment ensuring life and environmental safety. Biosorption and bioaccumulation represent an emergent alternative for the treatment of radioactive liquid wastes, providing volume reduction and physical state change. This work aimed to study biosorbents for the treatment of radioactive liquid wastes contaminated with americium-241 in order to reduce the volume and change the physical state from liquid to solid. The biosorbents evaluated were Saccharomyces cerevisiae immobilized in calcium alginate beads, inactivated and free cells of Saccharomyces cerevisiae, calcium alginate beads, Bacillus subtilis, Cupriavidus metallidurans and Ochrobactrum anthropi. The results were quite satisfactory, achieving 100% in some cases. The technique presented in this work may be useful and viable for implementing at the Waste Management Laboratory of IPEN - CNEN/SP in short term, since it is an easy and low cost method. (author)

  5. Validation with the thallium 201 of a cadmium-zinc-telluride semiconductor camera (C.Z.T.); Validation avec le thallium 201 d'une camera a semi-conducteur cadmium-zinc-telluride (CZT)

    Energy Technology Data Exchange (ETDEWEB)

    Songy, B.; Guernou, M.; Geronazzo, R.; Lussato, D. [Centre cardiologique du Nord, 93 - Saint-Denis (France)

    2010-07-01

    With thallium-201 ({sup 201}Tl), the cadmium-zinc-telluride (C.Z.T.) NM530c discovery camera allows acquisition of 5 min with enhanced imaging quality and reliable diagnosis, in the prone or supine position. (N.C.)

  6. Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Christopher B. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herbrych, Jacek W. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreo, Adriana [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-15

    Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a TS higher than the temperature TN where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ12 between the monoclinic lattice strain and an orbital-nematic order parameter with B2g symmetry. Monte Carlo simulations show that with increasing ˜λ12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.

  7. Measurements of copper and cesium telluride cathodes in a radio-frequency photoinjector

    Directory of Open Access Journals (Sweden)

    Eduard Prat

    2015-04-01

    Full Text Available Radio-frequency (rf photoinjectors are commonly used to generate intense bright electron beams for a wide range of applications, most notably as drivers for X-ray Free-Electron Lasers. The photocathode, mounted inside an rf gun and illuminated by a suitable laser, thereby plays a crucial role as the source of the electrons. The intrinsic emittance and the quantum efficiency of the electron source are determined by the properties of the photocathode’s surface material. We present measurements of the intrinsic emittance and the quantum efficiency performed with copper and cesium telluride cathodes in the same rf photoinjector, thus comparing, for the first time, the performance of metal and semiconductor cathodes under the same conditions. Our results are consistent with theoretical expectations and show that the difference in intrinsic emittance for the two types of material is not significant in view of accelerator applications. We conclude that cesium telluride photocathodes provide a much higher quantum efficiency at essentially negligible degradation in beam emittance.

  8. Synthesis of ultra-long cadmium telluride nanotubes via combinational chemical transformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kee-Ryung; Cho, Hong-Baek; Choa, Yong-Ho, E-mail: choa15@hanyang.ac.kr

    2017-03-01

    Synthesis of high-throughput cadmium telluride (CdTe) nanotubes with an ultra-long aspect ratio is presented via a combination process concept combined with electrospinning, electrodeposition, and cationic exchange reaction. Ultra-long sacrificial silver (Ag) nanofibers were synthesized by electrospinning involving two-step calcination, and were then electrodeposited to create silver telluride nanotubes. These nanotubes underwent cationic exchange reaction in cadmium nitrate tetrahydrate solution with the aid of a ligand, tributylphosphine (TBP). Analysis showed that ultra-long pure zinc blende CdTe nanotubes were obtained with controlled dimension and uniform morphology. The thermodynamic driving force induced by the coordination of methanol solvent and TBP attributed to overcome the kinetic barrier between Ag{sub 2}Te and CdTe nanotubes, facilitating the synthesis of CdTe nanotubes. This synthetic process involving a topotactic reaction route paves a way for high-throughput extended synthesis of new chalcogenide hollow nanotubes for application in photodetectors and solar cells. - Highlights: • High throughput synthetic route of hollow CdTe nanotubes with ultra-long aspect ratio. • Chemical combination of electrospinning, electrodeposition & cation exchange reaction. • Pure zinc blende CdTe by controlled dimension & structural variation of Ag nanofibers. • Potential for the high throughput synthesis of new exotic chalcogenide nanotubes.

  9. Dual-functional aniline-assisted wet-chemical synthesis of bismuth telluride nanoplatelets and their thermoelectric performance

    Science.gov (United States)

    Li, Changcun; Kong, Fangfang; Liu, Congcong; Liu, Huixuan; Hu, Yongjing; Wang, Tongzhou; Xu, Jingkun; Jiang, Fengxing

    2017-06-01

    The wet-chemical approach is of great significance for the synthesis of two-dimensional (2D) bismuth telluride nanoplatelets as a potential thermoelectric (TE) material. Herein, we proposed a simple and effective solution method with the assistance of aniline for the fabrication of bismuth telluride nanoplatelets at a low temperature of 100 °C. The choice of aniline with its dual function avoided the simultaneous use of a capping regent and a toxic reductant. The as-synthesized nanoplatelets have a large size of more than 900 × 500 nm2 and a small thickness of 15.4 nm. The growth of bismuth telluride nanoplatelets are related to the Bi/Te ratio of precursors indicating that a larger content of the Bi precursor is more conducive to the formation of 2D nanoplatelets. The bismuth telluride nanoplatelets pressed into a pellet show a smaller electrical resistivity (˜6.5 × 10-3 Ω · m) and a larger Seebeck coefficient (-135 μV K-1), as well as a lower thermal conductivity (0.27 W m-1 K-1) than those of nanoparticles. The next goal is to further reduce the electrical resistivity and optimize the TE performance by disposing of the residual reactant of aniline adsorbed on the surface of the nanoplatelets.

  10. Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries

    Science.gov (United States)

    Yu, Hong; Yang, Jun; Geng, Hongbo; Chao Li, Cheng

    2017-04-01

    Uniform carbon wrapped copper telluride nanowires were successfully prepared by using an in situ conversion reaction. The length of these nanowires is up to several micrometers and the width is around 30-40 nm. The unique one dimensional structure and the presence of conformal carbon coating of copper telluride greatly accommodate the large volumetric changes during cycling, significantly increase the electrical conductivity and reduce charge transfer resistance. The copper telluride nanowires show promising performance in a lithium ion battery with a discharge capacity of 130.2 mA h g-1 at a high current density of 6.0 A g-1 (26.74 C) and a stable cycling performance of 673.3 mA h g-1 during the 60th cycle at 100 mA g-1. When evaluated as anode material for a sodium ion battery, the copper telluride nanowires deliver a reversible capacity of 68.1 mA h g-1 at 1.0 A g-1 (˜4.46 C) and have a high capacity retention of 177.5 mA h g-1 during the 500th cycle at 100 mA g-1.

  11. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  12. Separation of neptunium, plutonium, americium and curium from uranium with di-(2-ethylhexyl)-phosphoric acid (HDEHP) for radiometric and ICP-MS analysis

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Skaalberg, M.

    1998-01-01

    The possibility of using di-(2-ethylhexyl)-phosphoric acid (HDEHP) in solvent extraction for the separation of neptunium, plutonium, americium and curium from large amounts of uranium was studied. Neptunium, plutonium, americium and curium (as well as uranium) were extracted from HNO 3 , whereafter americium and curium were back-extracted with 5M HNO 3 . Thereafter was neptunium back-extracted in 1M HNO 3 containing hydroxylamine hydronitrate. Finally, plutonium was back-extracted in 3M HCl containing Ti(III). The method separates 238 Pu from 241 Am for α-spectroscopy. For ICP-MS analysis, the interferences from 238 U are eliminated: tailing from 238 U, for analysis of 237 Np, and the interference of 238 UH + for analysis of 239 Pu. The method has been used for the analysis of actinides in samples from a spent nuclear fuel leaching and radionuclide transport experiment. (author)

  13. Use of radioisotopes in the study of tetracycline analytical application. Extraction of compounds formed between tetracycline and neptunium and americium elements

    International Nuclear Information System (INIS)

    Saiki, M.; Lima, F.W. de

    1986-01-01

    The behavior of tetracycline as complexing agent, in solvent extraction studies of neptunium and americium, using benzyl alcohol as the organic phase, is presented. By using radioactive tracers of 239 Np and 2 4 1 Am the extraction percent of these elements were determined as a function of pH in the absence and in the presence of several masking agents. The influence of shaking time and the use of different types of supporting eletrolytes upon the extraction behavior was also studied. The extraction curves obtained using EDTA as masking agent show that tetracycline can be used for neptunium and americium separation. In this condition neptunium is extracted into the organic phase and americium remains in the aqueous phase. (Author) [pt

  14. Transport of plutonium, americium, and curium from soils into plants by roots

    International Nuclear Information System (INIS)

    Pimpl, M.; Schuettelkopf, H.

    1979-12-01

    For assessing the dose from radionuclides in agricultural products by ingestion it is necessary to know the soil to plant transfer factors. The literature was entirely investigated, in order to judge the size of the soil to plant transfer factors. In total, 92 publications - from 1948 to 1978 -have been evaluated. As result, transfer factors from 10 -9 to 10 -3 have been found for Plutonium, and from 10 -6 to 1 for Americium. For Curium only few data are available in literature. The considerable variation of the measured transfer factors is based on the dependence of these transfer factors from the ion exchange capacity of soils, from the amount of organic materials, from the pH-value, and from the mode of contamination. There are, in any case, contradictory data, although there has been detected a dependence of the transfer factors from these parameters. Chelating agenst increase the transfer factors to approximately 1300. As well, fertilizers have an influence on the size of the transfer factors - however, the relationships have been scarcely investigated. The distribution of actinides within the individual parts of plants has been investigated. The highest concentrations are in the roots; in the plant parts above ground the concentration of actinides decreases considerably. The most inferior transfer factors were measured for the respective seed or fruits. The soil to plant transfer factors of actinides are more dependend on the age of the plants within one growing period. At the beginning of the period, the transfer factor is considerably higher than at the end of this period. With respect to plants with a growing period of several years, correlations are unknown. (orig.) [de

  15. Experiments comparing the uptake of americium from chloride media using extraction chromatography

    International Nuclear Information System (INIS)

    FitzPatrick, J.R.; Schake, B.S.; Schulte, L.D.; Martinez, B.T.; Salazar, R.R.

    1995-01-01

    Clean-up of actinide effluent waste steams is of increasing importance at the Los Alamos Plutonium Facility, TA-55, and removing the actinide elements to very low levels allows less radioactivity to go the Los Alamos National Laboratory Water Treatment Facility, TA-50, thus reducing the number of drums of TRU waste. Americium (Am) is a difficult element to remove from chloride media because the +3 state is difficult to oxidize and chelating resins work better with elements such as plutonium which are more readily oxidized to the +4 and/or +6 state. Currently in hydrochloric acid (HC1) media, the acidic liquid waste is neutralized with potassium hydroxide to precipitate the metal hydroxides, before disposal to TA-50. This process is not very efficient. The removal of Am from chloride media was compared using a series of resins, some commercial and some made in our laboratory, using different percentages by weight of octyl(phenyl)-N,N-diiso- butylcarbamoyl-methylphosphine oxide (CMPO ) along with diamyl amylphosphonate (DAAP) or tributyl phosphate (TBP) as diluents. Resins were also made with no added diluent. Early comparisons using small-scale contact studies with 0.5 grams of resin in 0.1M-12M HC1, and subsequent small-scale flow experiments show a trend in which Am uptake is proportional to the amount of CMPO on the resins and the diluent plays a minor role in the uptake of Am from these solutions. Redox chemistry effects were also investigated. From these studies, it is possible to determine the best conditions for the removal of Am from HC1 media thus reducing the gross alpha content of the waste stream by a factor of 10-100 which reduces the number of barrels of waste produced at the Water Treatment Facility

  16. Concentration and vertical distribution of plutonium and americium in Italian mosses and lichens

    International Nuclear Information System (INIS)

    Jia, G.; Desideri, D.; Guerra, F.; Meli, M.A.; Testa, C.

    1997-01-01

    The plutonium and americium concentration and vertical distribution in some Italian mosses and lichens have been determined. The 239,240 Pu, 238 Pu and 241 Am concentration ranges in tree trunk lichens 0.83-1.87, 0.052-0.154 and 0.180-0.770 Bq/kg, respectively. The corresponding values in tree mosses are higher and more scattered ranging from 0.321 to 4.96, from 0.029 to 0.171 and from 0.200 to 1.93 Bq/kg. The mean 238 Pu/ 239,240 Pu and 241 Am/ 239,240 Pu ratios are 0.088±0.037 and 0.38 ± 0.13 in lichens and 0.091±0.072 and 0.54±0.16 in tree mosses. The Pu and Am concentrations are relatively low in terrestrial mosses. The 239,240 Pu, 238 Pu and 241 Am vertical distributions in a terrestrial moss core (Neckera Crispa) collected near Urbino (central Italy) show an exponential decrease with the height. On the contrary the 241 Am vertical distribution in another terrestrial moss core (Sphagnum Compactum) collected in the Alps (northern Italy) shows an interesting peak at 16 cm which corresponds to the deposition of fallout from the nuclear weapon tests in 1960's. The 241 Am movement upward and downward in the moss core is also studied. The results show once again that both mosses and lichens are very effective accumulators of Pu and Am and that they can be used as good biological indicators of the radionuclide airborne pollution from nuclear facilities and nuclear weapon tests. They can play a very important role in cycling naturally or artificially enhanced radionuclides in the atmosphere over long time scales. (author)

  17. Americium/Lanthanide Separations in Alkaline Solutions for Advanced Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Goff, George S. [Los Alamos National Laboratory; Long, Kristy Marie [Los Alamos National Laboratory; Reilly, Sean D. [Los Alamos National Laboratory; Jarvinen, Gordon D. [Los Alamos National Laboratory; Runde, Wolfgang H. [Los Alamos National Laboratory

    2012-06-11

    Project goals: Can used nuclear fuel be partitioned by dissolution in alkaline aqueous solution to give a solution of uranium, neptunium, plutonium, americium and curium and a filterable solid containing nearly all of the lanthanide fission products and certain other fission products? What is the chemistry of Am/Cm/Ln in oxidative carbonate solutions? Can higher oxidation states of Am be stabilized and exploited? Conclusions: Am(VI) is kinetically stable in 0.5-2.0 M carbonate solutions for hours. Aliquat 336 in toluene has been successfully shown to extract U(VI) and Pu(VI) from carbonate solutions. (Stepanov et al 2011). Higher carbonate concentration gives lower D, SF{sub U/Eu} for = 4 in 1 M K{sub 2}CO{sub 3}. Experiments with Am(VI) were unsuccessful due to reduction by the organics. Multiple sources of reducing organics...more optimization. Reduction experiments of Am(VI) in dodecane/octanol/Aliquat 336 show that after 5 minutes of contact, only 30-40% of the Am(VI) has been reduced. Long enough to perform an extraction. Shorter contact times, lower T, and lower Aliquat 336 concentration still did not result in any significant extraction of Am. Anion exchange experiments using a strong base anion exchanger show uptake of U(VI) with minimal uptake of Nd(III). Experiments with Am(VI) indicate Am sorption with a Kd of 9 (10 minute contact) but sorption mechanism is not yet understood. SF{sub U/Nd} for = 7 and SF{sub U/Eu} for = 19 after 24 hours in 1 M K{sub 2}CO{sub 3}.

  18. Determination of americium and curium using ion-exchange in the nitric-acid-methanol medium for environmental analysis

    International Nuclear Information System (INIS)

    Holm, E.; Fukai, R.

    1976-01-01

    While transplutonic elements are only slightly sorbed to anion exchangers from hydrochloric or nitric acid media, the presence of alcohol enhances the anionic exchange of these elements, especially in nitric and sulfuric solutions. In the present work a method has been developed for determining americium and curium in environmental samples, on the basis of the difference between the sorption characteristics to anion exchangers in the acid-methanol system of these transplutonic elements and those of plutonium, polonium and thorium. The method also permits us to perform sequential determination of plutonium, when necessary

  19. Temperature and concentration dependences of the electrical resistivity for alloys of plutonium with americium under normal conditions

    Science.gov (United States)

    Tsiovkin, Yu. Yu.; Povzner, A. A.; Tsiovkina, L. Yu.; Dremov, V. V.; Kabirova, L. R.; Dyachenko, A. A.; Bystrushkin, V. B.; Ryabukhina, M. V.; Lukoyanov, A. V.; Shorikov, A. O.

    2010-01-01

    The temperature and concentration dependences of the electrical resistivity for alloys of americium with plutonium are analyzed in terms of the multiband conductivity model for binary disordered substitution-type alloys. For the case of high temperatures ( T > ΘD, ΘD is the Debye temperature), a system of self-consistent equations of the coherent potential approximation has been derived for the scattering of conduction electrons by impurities and phonons without any constraints on the interaction intensity. The definitions of the shift and broadening operator for a single-electron level are used to show qualitatively and quantitatively that the pattern of the temperature dependence of the electrical resistivity for alloys is determined by the balance between the coherent and incoherent contributions to the electron-phonon scattering and that the interference conduction electron scattering mechanism can be the main cause of the negative temperature coefficient of resistivity observed in some alloys involving actinides. It is shown that the great values of the observed resistivity may be attributable to interband transitions of charge carriers and renormalization of their effective mass through strong s-d band hybridization. The concentration and temperature dependences of the resistivity for alloys of plutonium and americium calculated in terms of the derived conductivity model are compared with the available experimental data.

  20. Osteosarcoma induction by plutonium-239, americium-241 and neptunium-237 : the problem of deriving risk estimates for man

    International Nuclear Information System (INIS)

    Taylor, D.M.

    1988-01-01

    Spontaneous bone cancer (osteosarcoma) represents only about 0.3% of all human cancers, but is well known to be inducible in humans by internal contamination with radium-226 and radium-224. plutonium-239, americium-241 and neptunium-237 form, or will form, the principal long-lived alpha particle emitting components of high activity waste and burnt-up nuclear fuel elements. These three nuclides deposit extensively in human bone and although, fortunately, no case of a human osteosarcoma induced by any of these nuclides is known, evidence from animal studies suggests that all three are more effective than radium-226 in inducing osteosarcoma. The assumption that the ratio of the risk factors, the number of osteosarcoma expected per 10000 person/animal Gy, for radium-226 and any other bone-seeking alpha-emitter will be independent of animal species has formed the basis of all the important studies of the radiotoxicity of actinide nuclides in experimental animals. The aim of this communication is to review the risk factors which may be calculated from the various animal studies carried out over the last thirty years with plutonium-237, americium-241 and neptunium-237 and to consider the problems which may arise in extrapolating these risk factors to homo sapiens

  1. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yunqing; Ye Chao; Zhu Zhenghui [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Hu Yuzhu [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China) and Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China)], E-mail: njhuyuzu@126.com

    2008-03-03

    The pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as proton probes for tiopronin determination. Based on the fluorescence quenching of CdTe QDs caused by tiopronin, a simple, rapid and specific quantitative method was proposed. Under the optimal conditions, the calibration plot of ln(F{sub 0}/F) with concentration of tiopronin was linear in the range of 0.15-20 {mu}g mL{sup -1}(0.92-122.5 {mu}mol L{sup -1}) with correlation coefficient of 0.998. The limit of detection (LOD) (3{sigma}/k) was 0.15 {mu}g mL{sup -1}(0.92 {mu}mol mL{sup -1}). The content of tiopronin in pharmaceutical tablet was determined by the proposed method and the result agreed with that obtained from the oxidation-reduction titration method and the claimed value.

  2. A miniature cadmium telluride detector module for continuous monitoring of left-ventricular function.

    Science.gov (United States)

    Hoffer, P B; Berger, H J; Steidley, J; Brendel, A F; Gottschalk, A; Zaret, B L

    1981-02-01

    The authors describe a miniature cadmium telluride (CdTe) detector module for continuous monitoring of ventricular function using an equilibrium radionuclide blood-pool label. The detector and collimator are small, light, and suitable for direct attachment to the chest wall. Clinical studies in 18 patients using a prototype system demonstrated reasonably good correlation with left-ventricular ejection fractions (LVEF) determined by first-pass studies performed with a multicrystal scintillation camera (r = 0.74) and gated equilibrium studies performed with a computerized sodium iodide (Nal) probe (r = 0.76). The CdTe device may prove to be useful in patients in intensive and coronary care units as well as in ambulatory patients.

  3. Electronic properties of chlorine doped cadmium telluride used as high energy photoconductive detector

    International Nuclear Information System (INIS)

    Verger, L.; Cuzin, M.; Gaude, G.; Glasser, F.; Mathy, F.; Rustique, J.; Schaub, B.

    1991-01-01

    A new high energy X-ray chlorine doped Cadmium Telluride (CdTe:Cl) photoconductor is described. We discuss different deposition techniques (Sputtering, Evaporation, Electroless) to realize ohmic contacts which have low leakage current and which allow high applied electric field. The temperature dependence of the dark current give an activation energy of 0.6 eV for standard CdTe:Cl. The transient response of photoconductors under high X-ray energy beams has been characterized using three different pulse duration 150 ps, 30 ns and 4 μs. Sensitivity and speed of response are studied as a function of neutron pre-irradiated doses (0, 10 14 , 10 15 , 10 16 n/cm 2 ): neutron irradiations reduce the carrier lifetime at the expense of a lower sensitivity

  4. Atomic resolution on the (111 )B surface of mercury cadmium telluride by scanning tunneling microscopy

    Science.gov (United States)

    Zha, Fang-Xing; Hong, Feng; Pan, Bi-Cai; Wang, Yin; Shao, Jun; Shen, Xue-Chu

    2018-01-01

    The real-space atomic surface structure of mercury cadmium telluride was successfully achieved on the (111 )B surface of H g0.78C d0.22Te by ultrahigh-vacuum scanning tunneling microscopy (STM). The work casts light on the reconstructions of the (111 )B surface unraveling a (2 ×2 ) surface reconstruction induced by adatom adsorption of Cd. The other (2 ×2 ) surface reconstruction is clarified to be induced by the single Te vacancy, which is more stable than the reconstruction of multivacancies in contrast to the prevailing view. The simulated STM images are in good agreement with the experiments. We also observed an in situ morphology transition from the (1 ×1 ) structure to those (2 ×2 ) reconstructions, implying the stability of the reconstructions.

  5. Electron beam evaporation deposition of cadmium sulphide and cadmium telluride thin films: Solar cell applications

    International Nuclear Information System (INIS)

    Fang Li; Chen Jing; Xu Ling; Xu Jun; Ma Zhong-Yuan; Su Wei-Ning; Yu Yao

    2013-01-01

    Cadmium sulphide (CdS) and cadmium telluride (CdTe) thin films are deposited by electron beam evaporation. Atomic force microscopy (AFM) reveals that the root mean square (RMS) roughness values of the CdS films increase as substrate temperature increases. The optical band gap values of CdS films increase slightly with the increase in the substrate temperature, in a range of 2.42–2.48 eV. The result of Hall effect measurement suggests that the carrier concentration decreases as the substrate temperature increases, making the resistivity of the CdS films increase. CdTe films annealed at 300°C show that their lowest transmittances are due to their largest packing densities. The electrical characteristics of CdS/CdTe thin film solar cells are investigated in dark conditions and under illumination. Typical rectifying and photovoltaic properties are obtained. (interdisciplinary physics and related areas of science and technology)

  6. Chemical pressure and hidden one-dimensional behavior in rare earth tri-telluride

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Giamarchi, T.; /Geneva U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2009-12-14

    We report on the first optical measurements of the rare-earth tri-telluride charge-density-wave systems. Our data, collected over an extremely broad spectral range, allow us to observe both the Drude component and the single-particle peak, ascribed to the contributions due to the free charge carriers and to the charge-density-wave gap excitation, respectively. The data analysis displays a diminishing impact of the charge-density-wave condensate on the electronic properties with decreasing lattice constant across the rare-earth series. We propose a possible mechanism describing this behavior and we suggest the presence of a one-dimensional character in these two-dimensional compounds. We also envisage that interactions and umklapp processes might play a relevant role in the formation of the charge-density-wave state in these compounds.

  7. Role of Van der Waals interactions in determining the structure of liquid tellurides

    Science.gov (United States)

    Micoulaut, Matthieu; Flores-Ruiz, Hugo; Coulet, Vanessa; Piarristeguy, Andrea; Johnson, Mark; Cuello, Gabriel; Pradel, Annie

    The simulation of tellurides using standard density functional (DFT) theory based molecular dynamics usually leads to an overestimation of the bond distances and a noticeable mismatch between theory and experiments when e.g. structure functions are being directly compared. Here, the structural properties of several compositions of Ge-Te and Ge-Sb-Te liquids are studied from a combination of neutron diffraction and DFT-based molecular dynamics. Importantly, we find an excellent agreement in the reproduction of the structure in real and reciprocal spaces, resulting from the incorporation of dispersion forces in the simulation. We then investigate structural properties including structure factors, pair distribution functions, angular distributions, coordination numbers, neighbor distributions, and compare our results with experimental findings. References:Physical Review B 92, 134205 (2015)Physical Review B 89, 174205 (2014)Physical Review B 90, 094207 (2014) Support from Agence Nationale de la Recherche (ANR) (Grant No. ANR-11-BS08-0012) is gratefully acknowledged.

  8. Evaluation of DAST and zinc telluride nonlinear crystals for efficient terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, M.; Chaudhary, A. K., E-mail: akcsp@uohyd.ernet.in [Advanced Centre of Research in High Energy Materials, University of Hyderabad, Hyderabad, India-500046 (India); Rao, K. S.

    2015-07-31

    Terahertz (THz) signal is generated from 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate (i.e. DAST Crystal) and Zinc telluride (ZnTe) nonlinear crystals by employing 140 fs laser pulses at 800 nm with 80 MHz repetition rate. The semi insulating gallium arsenide photoconductive stripline antennas (gap =5 µm, length = 20 µm) is used as a Terahertz detector. The detected temporal profile of Terahertz radiation generated from DAST crystal is high as compared to ZnTe crystal in terms of amplitude. THz effective bandwidths of these crystals are extended up to 1.1 THz range. The potential of THz generation of DAST and ZnTe crystals are evaluated with respect to incident laser power.

  9. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Tanmoy, E-mail: pramanik.tanmoy@utexas.edu; Roy, Anupam, E-mail: anupam@austin.utexas.edu; Dey, Rik, E-mail: rikdey@utexas.edu; Rai, Amritesh; Guchhait, Samaresh; Movva, Hema C.P.; Hsieh, Cheng-Chih; Banerjee, Sanjay K.

    2017-09-01

    Highlights: • Perpendicular magnetic anisotropy in epitaxial Cr{sub 2}Te{sub 3} has been investigated. • Presence of a relatively strong second order anisotropy contribution is observed. • Magnetization reversal is explained quantitatively using a 1D defect model. • Relative roles of nucleation and pinning in magnetization reversal are discussed. • Domain structures and switching process are visualized by micromagnetic simulation. - Abstract: We investigate magnetic anisotropy and magnetization reversal mechanism in chromium telluride thin films grown by molecular beam epitaxy. We report existence of strong perpendicular magnetic anisotropy in these thin films, along with a relatively strong second order anisotropy contribution. The angular variation of the switching field observed from the magnetoresistance measurement is explained quantitatively using a one-dimensional defect model. The model reveals the relative roles of nucleation and pinning in the magnetization reversal, depending on the applied field orientation. Micromagnetic simulations are performed to visualize the domain structure and switching process.

  10. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  11. First operation of cesium telluride photocathodes in the TTF injector RF gun

    CERN Document Server

    Sertore, D; Flöttmann, K; Stephan, F; Zapfe, K; Michelato, P

    2000-01-01

    During the run 1998/1999 a new injector based on a laser-driven RF gun was brought in operation at the TESLA Test Facility (TTF) linac at DESY, in order to produce the beam structure and quality required either by TeV collider and SASE FEL experiments. High quantum efficiency cesium telluride photocathodes, prepared at Milano and transferred to DESY, have been successfully operated in the RF gun. A bunch charge of 50 nC, only limited by space charge effects, was achieved. The photocathodes have shown an operative lifetime of several months. A new cathode surface finishing has showed a promising decrease of the photocathode dark current. Measurements of dark current, quantum efficiency and lifetime are reported.

  12. Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology

    Science.gov (United States)

    Fazaeli, Yousef; Zare, Hakimeh; Karimi, Shokufeh; Rahighi, Reza; Feizi, Shahzad

    2017-08-01

    In the last two decades, quantum dots nanomaterials have garnered a great deal of scientific interest because of their unique properties. Quantum dots (QDs) are inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their structural properties, they possess distinctive properties and behave in different way from crystals in macro scale, in many branches of human life. Cadmium telluride quantum dots (CdTe QDs) were labeled with 68Ga radio nuclide for fast in vivo targeting and coincidence imaging of tumors. Using instant paper chromatography, the physicochemical properties of the Cadmium telluride quantum dots labeled with 68Ga NPs (68Ga@ CdTe QDs) were found high enough stable in organic phases, e.g., a human serum, to be reliably used in bioapplications. In vivo biodistribution of the 68Ga@ CdTe QDs nanoconposite was investigated in rats bearing fibro sarcoma tumor after various post-injection periods of time. The 68Ga NPs exhibited a rapid as well as high tumor uptake in a very short period of time (less than 10 min), resulting in an efficient tumor targeting/imaging agent. Meantime, the low lipophilicity of the 68Ga NPs caused to their fast excretion throughout the body by kidneys (as also confirmed by the urinary tract). Because of the short half-life of 68Ga radionuclide, the 68Ga@ CdTe QDs with an excellent tumor targeting/imaging and fast washing out from the body can be suggested as one of the most effective and promising nanomaterials in nanotechnology-based cancer diagnosis and therapy.

  13. Epithermal Gold-Silver Deposits in Western Java, Indonesia: Gold-Silver Selenide-Telluride Mineralization

    Directory of Open Access Journals (Sweden)

    Euis Tintin Yuningsih

    2014-09-01

    Full Text Available DOI: 10.17014/ijog.v1i2.180The gold-silver ores of western Java reflect a major metallogenic event during the Miocene-Pliocene and Pliocene ages. Mineralogically, the deposits can be divided into two types i.e. Se- and Te-type deposits with some different characteristic features. The objective of the present research is to summarize the mineralogical and geochemical characteristics of Se- and Te-type epithermal mineralization in western Java. Ore and alteration mineral assemblage, fluid inclusions, and radiogenic isotope studies were undertaken in some deposits in western Java combined with literature studies from previous authors. Ore mineralogy of some deposits from western Java such as Pongkor, Cibaliung, Cikidang, Cisungsang, Cirotan, Arinem, and Cineam shows slightly different characteristics as those are divided into Se- and Te-types deposits. The ore mineralogy of the westernmost of west Java region such as Pongkor, Cibaliung, Cikidang, Cisungsang, and Cirotan is characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, while to the eastern part of West Java such as Arinem and Cineam deposits are dominated by silver-gold tellurides. The average formation temperatures measured from fluid inclusions of quartz associated with ore are in the range of 170 – 220°C with average salinity of less than 1 wt% NaClequiv for Se-type and 190 – 270°C with average salinity of ~2 wt% NaClequiv for Te-type.

  14. The determination of the free energy of formation of binary tellurides using lithium coulometric titration techniques

    International Nuclear Information System (INIS)

    Fleming, J.G.; Stevenson, D.A.

    1989-01-01

    The authors report low-temperature electrochemical coulometric titration technique using Li developed and used to determine the Gibbs free energies of formation of binary telluride compounds. The approach is based on the metal/lithium/tellurium phase diagram and relies upon the rapid diffusion of Li in these systems. The Gibbs free energy of formation of Li 2 Te was determined by electrochemically titrating Li into pure Te until a two-phase Li 2 Te/Te mixture was formed. A value of -82.1 plus or minus 0.3 kcal/mol was calculated. With this information, the Gibbs free energies of formation of HgTe, CdTe, and ZnTe were determined from the measured Li electrochemical potential found in appropriate metal/telluride/Li 2 Te Gibbs tie triangle regions. ZnTe and CdTe and were investigated by depositing a large amount of Li on the sample in question and observing a constant potential region after lon annealing times. HgTe and Hg 0.8 · 0.2 Te were investigated by depositing a small amount of Li on the sample and observing the short time transient, with no plateau observed, but a characteristic kink potential. Suitable analysis of the potential-time response characteristics for these cases lead to values for the free energies of formation of CdTe and ZnTe and HgTe of - 23.2 ± 0.6 and - 26.4 ± 0.9 kcal/mol and - 6.8 ± 111 kcal/mol, respectively, in good agreement with the information in the literature

  15. Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: a stable, biocompatible preparation for bio-imaging.

    Science.gov (United States)

    Ghormade, Vandana; Gholap, Haribhau; Kale, Sonia; Kulkarni, Vaishnavi; Bhat, Suresh; Paknikar, Kishore

    2015-01-01

    Fluorescent cadmium telluride quantum dots (CdTe QDs) are an optically attractive option for bioimaging, but are known to display high cytotoxicity. Nanoparticles synthesized from chitosan, a natural biopolymer of β 1-4 linked glucosamine, display good biocompatibility and cellular uptake. A facile, green synthetic strategy has been developed to embed green fluorescent cadmium telluride quantum dots (CdTe QDs) in biocompatible CNPs to obtain a safer preparation than 'as is' QDs. High-resolution transmission electron microscopy showed the crystal lattice corresponding to CdTe QDs embedded in CNPs while thermogravimetry confirmed their polymeric composition. Electrostatic interactions between thiol-capped QDs (4 nm, -57 mV) and CNPs (~300 nm, +38 mV) generated CdTe QDs-embedded CNPs that were stable up to three months. Further, viability of NIH3T3 mouse fibroblast cells in vitro increased in presence of QDs-embedded CNPs as compared to bare QDs. At the highest concentration (10 μg/ml), the former shows 34 and 39% increase in viability at 24 and 48 h, respectively, as compared to the latter. This shows that chitosan nanoparticles do not release the QDs up to 48 h and do not cause extended toxicity. Furthermore, hydrolytic enzymes such as lysozyme and chitinase did not degrade chitosan nanoparticles. Moreover, QDs-embedded CNPs show enhanced internalization in NIH3T3 cells as compared to bare QDs. This method offers ease of synthesis and handling of stable, luminescent, biocompatible CdTe QDs-embedded CNPs with a favorable toxicity profile and better cellular uptake with potential for bioimaging and targeted detection of cellular components.

  16. A COMPARATIVE ANALYSIS OF SILICON AND CADMIUM TELLURIDE BASED SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    Amjad Al QASSEM

    2016-12-01

    Full Text Available A compartive analzsis of silicon solar cells and of those containing a CdTe thin film which are widely used in solar energetics, particullarilly, in photovoltaic modules fabrication, is brought in this paper. The silicon is largely used in solar cells fabrication due to the low cost of solar cells production related to the low cost of the semiconductor fabrication and to the advanced material processing technology, when at the same time cadmium telluride has the wide use due to the fact that its fundamental parameters can provide theoretically a high value of efficiency of solar energy conversion into electrical one of 30%. The structure and photoelectrical parameters of silicon solar cells and of those cotaining a thin cadmium telluride layer are considered.ANALIZA COMPARATIVĂ A CELULELOR SOLARE DIN SILICIU ŞI TELURURA DE CADMIUÎn lucrarea de faţă este prezentată analiza comparativă a celulelor solare fabricate din siliciu şi a celor cu strat subţire de CdTe, care sunt pe larg utilizate în energetica solară, în particular la producerea modulelor fotovoltaice. Siliciul este intens folosit în fabricarea celulelor solare datorită costului redus al materialului semiconductor şi tehnologiei avansate de procesare, pe când telurura de cadmiu are o utilizare tot mai largă care, datorită parametrilor fundamentali, poate asigura teoretic o valoare înaltă a eficienţei conversiei energiei solare în cea electrică de (30%. Sunt considerate structura şi parametrii fotoelectrici ai celulelor solare din siliciu şi ai celor cu strat subţire de telurură de cadmiu.

  17. Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Fazaeli, Yousef; Feizi, Shahzad [Nuclear Science and Technology Research Institute (NSTRI), Radiation Application Research School, Karaj (Iran, Islamic Republic of); Zare, Hakimeh; Karimi, Shokufeh [Yazd University, Department of Physics, Yazd (Iran, Islamic Republic of); Rahighi, Reza [Sharif University of Technology, Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-08-15

    In the last two decades, quantum dots nanomaterials have garnered a great deal of scientific interest because of their unique properties. Quantum dots (QDs) are inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their structural properties, they possess distinctive properties and behave in different way from crystals in macro scale, in many branches of human life. Cadmium telluride quantum dots (CdTe QDs) were labeled with {sup 68}Ga radio nuclide for fast in vivo targeting and coincidence imaging of tumors. Using instant paper chromatography, the physicochemical properties of the Cadmium telluride quantum dots labeled with {sup 68}Ga NPs ({sup 68}Ga rate at CdTe QDs) were found high enough stable in organic phases, e.g., a human serum, to be reliably used in bioapplications. In vivo biodistribution of the {sup 68}Ga rate at CdTe QDs nanoconposite was investigated in rats bearing fibro sarcoma tumor after various post-injection periods of time. The {sup 68}Ga NPs exhibited a rapid as well as high tumor uptake in a very short period of time (less than 10 min), resulting in an efficient tumor targeting/imaging agent. Meantime, the low lipophilicity of the {sup 68}Ga NPs caused to their fast excretion throughout the body by kidneys (as also confirmed by the urinary tract). Because of the short half-life of {sup 68}Ga radionuclide, the {sup 68}Ga rate at CdTe QDs with an excellent tumor targeting/imaging and fast washing out from the body can be suggested as one of the most effective and promising nanomaterials in nanotechnology-based cancer diagnosis and therapy. (orig.)

  18. The photoluminescence of crystallophosphors on the base of NaBi(WO4)2 activated by americium, plutonium and neptunium

    International Nuclear Information System (INIS)

    Gliva, V.R.; Novikov, Yu.P.; Myasoedov, B.F.

    1989-01-01

    The luminescence properties of crystallophosphors based on NaBi(WO 4 ) 2 activated by americium, plutonium and neptunium were studied. The synthesis of crystallophosphors is described. Crystallophosphors luminesce in the near infrared region. The excitation and luminescence spectra of crystallophosphors are considered. The dependence of luminescence yield is linear in the wide interval of activator concentration. (author) 3 refs.; 4 figs

  19. Peculiar Behavior of (U,Am)O(2-δ) Compounds for High Americium Contents Evidenced by XRD, XAS, and Raman Spectroscopy.

    Science.gov (United States)

    Lebreton, Florent; Horlait, Denis; Caraballo, Richard; Martin, Philippe M; Scheinost, Andreas C; Rossberg, Andre; Jégou, Christophe; Delahaye, Thibaud

    2015-10-19

    In U(1-x)Am(x)O(2±δ) compounds with low americium content (x ≤ 20 atom %) and oxygen-to-metal (O/M) ratios close to 2.0, Am(III+) cations are charge-balanced by an equivalent amount of U(V+) cations while the fluorite structure of pure U(IV+)O2 is maintained. Up to now, it is unknown whether this observation also holds for higher americium contents. In this study, we combined X-ray diffraction with Raman and X-ray absorption spectroscopies to investigate a U(0.5)Am(0.5)O(2±δ) compound. Our results indicate that americium is again only present as Am(III+), while U(V+) remains below the amount required for charge balance. Unlike lower americium contents, this leads to an overall oxygen hypostoichiometry with an average O/M ratio of 1.92(2). The cationic sublattice is only slightly affected by the coexistence of large amounts of reduced (Am(III+)) and oxidized (U(V+)) cations, whereas significant deviations from the fluorite structure are evidenced by both extended X-ray absorption fine structure and Raman spectroscopies in the oxygen sublattice, with the observation of both vacancies and interstitials, the latter being apparently consistent with the insertion of U6O12 cuboctahedral-type clusters (as observed in the U4O9 or U3O7 phases). These results thus highlight the specificities of uranium-americium mixed oxides, which behave more like trivalent lanthanide-doped UO2 than U(1-x)Pu(x)O(2±δ) MOX fuels.

  20. Chemical behaviour of trivalent and pentavalent americium in saline NaCl-solutions. Studies of transferability of laboratory data to natural conditions. Interim report. Reported period: 1.2.1993-31.12.1993; Chemisches Verhalten von drei- und fuenfwertigem Americium in Salinen NaCl-Loesungen. Untersuchung der Uebertragbarkeit von Labordaten auf natuerliche Verhaeltnisse. Zwischenbericht. Berichtszeitraum 1.2.1993-31.12.1993

    Energy Technology Data Exchange (ETDEWEB)

    Runde, W.; Kim, J.I.

    1994-09-15

    In order to clarify the chemical behaviour of Americium in saline aqueous systems relevant for final storage this study deals with the chemical reactions of trivalent and pentavalent Americium in NaCl-solutions under the influence of radiolysis from its own alpha radiation. The focus of the study was on investigating the geologically relevant reactions, such as hydrolysis or carbonate- and chloride complexing in solid-liquid equilibriums. Comprehensive measurements on solubility and spectroscopic studies in NaCl-solutions were carried out in a CO{sub 2}-free atmosphere and 10{sup -2} atm CO{sub 2} partial pressure. Identification and characterisation of the AM (III) and AM(V) solid phases were supplemented by structural research with the chemically analogue EU (III) and Np(V) compounds. The alpha-radiation induced radiolysis in saline NaCl solutions and the redox behaviour of Americium which was influenced thereby were spectroscopically quantified. (orig.) [Deutsch] Zur Klaerung des chemischen Verhaltens von Americium in endlagerrelevanten salinen aquatischen Systemen befasst sich die vorliegende Arbeit mit den chemischen Reaktionen des drei- und fuenfwertigen Americiums in NaCl-Loesungen unter dem Einfluss der Radiolyse durch die eigene {alpha}-Strahlung. Der Schwerpunkt dieser Arbeit lag auf der Untersuchung der geologisch relevanten Reaktionen, wie Hydrolyse sowie Carbonat- und Chloridkomplexierung in fest-fluessig Gleichgewichtssystemen. Hierzu wurden umfassende Loeslichkeitsmessungen und spektroskopische Untersuchungen in NaCl-Loesungen, sowohl unter CO{sub 2}-freier Atmosphaere als auch unter 10{sup -2} atm CO{sub 2}-Partialdruck, durchgefuehrt. Die Identifizierung und Charakterisierung der Am(III)- und Am(V)-Festphasen wurde ergaenzt durch strukturelle Untersuchungen mit den chemisch analogen Eu(III)- und Np(V)-Verbindungen. Die von der {alpha}-Strahlung induzierte Radiolyse in salinen NaCl-Loesungen und das dadurch beeinflusste Redoxverhalten von Americium

  1. Diffusion of iron in β-iron telluride (Fe1.12Te) by Moessbauer spectroscopy and tracer method

    International Nuclear Information System (INIS)

    Magara, Masaaki; Tsuji, Toshihide; Naito, Keiji

    1993-01-01

    The diffusion coefficient of iron in a β-iron telluride (Fe 1.12 Te) polycrystalline sample was measured by Moessbauer diffusional line broadening method which relates to the collapse of coherence in gamma-ray photon by the atomic jump at local sites. The diffusion coefficient of iron along the c-axis in nearly single crystal of β-iron telluride was also measured by tracer technique which shows the results of an atom transport in long distance. The activation energies for the diffusion of iron in Fe 1.12 Te obtained by the Moessbauer spectroscopy and the tracer method were 91.5±5.4 and 106±23 kJ/mol, respectively. The diffusion coefficients of iron in β-iron telluride obtained by Moessbauer line broadening are in fair agreement with the values averaged from that along c-axis obtained by tracer method and that along a- and b-axes obtained from reaction rate constant between iron and tellurium by the previous study of the present authors. (orig.)

  2. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Yamaguchi, Masashi [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  3. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Kurita, Kensuke [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.

  4. Sequential separation method for the determination of Plutonium and Americium in fecal samples

    International Nuclear Information System (INIS)

    Raveendran, Nanda; Rao, D.D.; Yadav, J.R.; Baburajan, A.

    2014-01-01

    The estimation of internal contamination due to Plutonium and Americium of radiation workers of Advanced Fuel Fabrication Facility (AFFF) at Tarapur was carried out by the bioassay (Fecal sample) of the workers. Conventionally the separation of 'Pu' and 'Am' was carried out by alkali fusion followed by the anion exchange separation for Pu and cation exchange separation for Am. This paper deals with an alternative method in which initially the entire ash of the sample added with 236 Pu tracer (3-11 mBq) and 243 Am tracer (2.8-14.5 mBq) was acid leached and Pu was separated by anion exchange as per standard analytical procedure and Am by using TRU resin. In this work the extraction chromatography method using TRU resin procured from Eichrom,U.K. which contains N-N-di isobutyl carbanoyl methyl phosphine oxide (CMPO) as extractant, tri-n-butyl phosphate (TBP) as diluent absorbed on inert polymeric support has been used for the separation of Am from fecal sample. The 8N HNO 3 effluent from Pu separation step was dried and the residue was dissolved in 10 ml 1M Al(NO 3 ) 3 in 3M HNO 3 and pinch of Ascorbic acid was added and loaded on a TRU resin column (dia ∼ 4 mm and height 60 mm) preconditioned with 30 ml 1M Al(NO 3 ) 3 in 3 MHNO 3 . The column was washed with 5 ml 3M HNO 3 and 5 ml 2M HNO 3 . The nitrate concentration was lowered using addition of 10 ml 0.05 M HNO 3 . Am was eluted with 3 ml 9M HCl and 20 ml 2M HCl. The elute was dried and electrodeposited on a SS planchet in NH 4 (SO 4 ) 2 solution at pH 2.2 for two hours. Pu and Am activity estimated by counting in passivated ion implanted planner Silicon detector (PIPS) coupled to 8K channel alpha spectrometer. The sample was counted for duration of 3-4 lacs of seconds. In this study the numbers of samples analyzed are 25. The paper gives detail of analytical recoveries of Pu tracer varies from 55-90 % with a mean of 70% and std. deviation 9.9%. The Am tracer recovery was in the range of 20-89.3% with a mean of

  5. Crystallographic and Spectroscopic Characterization of Americium Complexes Containing the Bis[(phosphino)methyl]pyridine-1-oxide (NOPOPO) Ligand Platform

    Energy Technology Data Exchange (ETDEWEB)

    Corbey, Jordan F. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Rapko, Brian M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Wang, Zheming [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; McNamara, Bruce K. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Surbella, Robert G. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pellegrini, Kristi L. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Schwantes, Jon M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2018-02-06

    Abstract The crystal structures of americium species containing a common multi-functional phosphine oxide ligand, reported for its ability to extract f elements from acidic solutions, namely 2,6-[Ph2P(O)CH2]2C5H3-NO, L, have finally been determined after over three decades of separations studies involving these species and their surrogates. The molecular compounds Am(L)(NO3)3, Am 1:1, and [Am(L)2(NO3)][NO3]2, Am 2:1, along with their neodymium and europium analogs were synthesized and characterized using single-crystal X-ray crystallography, attenuated total reflectance Fourier transform infrared (ATR) spectroscopy and luminescence spectroscopy to provide a comprehensive comparison with new and known analogous complexes.

  6. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  7. Moessbauer spectroscopy of 237Np created by α-decay of 241Am in some compounds of americium

    International Nuclear Information System (INIS)

    Rebizant, Jean.

    1977-01-01

    The Moessbauer emission spectra of 237 Np impurities fed by α decay of 241 Am were measured in the following compounds: Am metal, AmPtsub(x) (x=1, 3, 5), AmAs, AmBi, Am 2 O 3 , AmO 2 , Lisub(x)AmOsub(x+1) (x=1, 2, 3, 4) and Li 6 AmO 6 . The studies concerned the consequences of the recoil and ionization effects, associated with the α-decay of 241 Am in the solid phase; these are analysed in situ and on a time scale of about 100 ns after the α emission; the dependence of these effects on the physico-chemical nature of the host and on the temperature; information about the electronic, magnetic and structural properties and, also, about the vibrational properties of the Np impurity in the investigated solid matrice as far as the previous effects do not hamper such conclusions. The existence itself of the Moessbauer effect shows that the Np ions are stabilized in well-defined lattice locations at the time of emission of the 59.5keV γ quanta (approximately 100ns), once this level is reached after the 241 Am decay. In Am metal and AmPtsub(x) alloys, the observation of a single charge state for neptunium indicates that the electronic effects associated with the α-decay are recovered in less than 100ns. In the americium oxide compounds and the monopnictides AmAs and AmBi, several charge states of neptunium recoil ions are observed; this shows unambiguously the importance of the ionization effects caused by the α-decay. Some informations about magnetic and electronic properties of the americium host matrices were obtained. The vibration modes of 237 Np impurities in the lattice of Am metal are described by means of the Debye model with a characteristic temperature thetasub(D)=115K [fr

  8. Separation of americium by liquid-liquid extraction using diglycol-amides water-soluble complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chapron, S.; Marie, C.; Pacary, V.; Duchesne, M.T.; Miguirditchian, M. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processses Departement, 30207 Bagnols-sur-Ceze (France); Arrachart, G.; Pellet-Rostaing, S. [Institut de Chimie Separative de Marcoule, LTSM, Bat 426, F-30207 Bagnols-sur- Ceze (France)

    2016-07-01

    Recycling americium (Am) alone from spent nuclear fuels is an important option studied for the future nuclear cycle (Generation IV systems) since Am belongs to the main contributors of the long-term radiotoxicity and heat power of final waste. Since 2008, a liquid-liquid extraction process called EXAm has been developed by the CEA to allow the recovery of Am alone from a PUREX raffinate (a dissolution solution already cleared from U, Np and Pu). A mixture of DMDOHEMA (N,N'-dimethyl-N,N'-dioctyl-2-(2-(hexyloxy)ethyl)-malonamide) and HDEHP (di-2-ethylhexylphosphoric acid) in TPH is used as the solvent and the Am/Cm selectivity is improved using TEDGA (N,N,N',N'-tetraethyl-diglycolamide) as a selective complexing agent to maintain Cm and heavier lanthanides in the acidic aqueous phase (5 M HNO{sub 3}). Americium is then stripped selectively from light lanthanides at low acidity (pH=3) with a poly-aminocarboxylic acid. The feasibility of sole Am recovery was already demonstrated during hot tests in ATALANTE facility and the EXAm process was adapted to a concentrated raffinate to optimize the process compactness. The speciation of TEDGA complexes formed in the aqueous phase with Am, Cm and lanthanides was studied to better understand and model the behavior of TEDGA in the process. Some Ln-TEDGA species are extracted into the organic phase and this specific chemistry might play a role in the Am/Cm selectivity improvement. Hence the hydrophilicity-lipophilicity balance of the complexing agent is an important parameter. In this comprehensive study, new analogues of TEDGA were synthesized and tested in the EXAm process conditions to understand the relationship between their structure and selectivity. New derivatives of TEDGA with different N-alkyl chain lengths and ramifications were synthesized. The impact of lipophilicity on ligand partitioning and Am/Cm selectivity was investigated. (authors)

  9. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Salleh, Muhamad Mat; Chen, Xiaomei; Oyama, Munetaka

    2016-01-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m -1 K -2 ) and 10 μV/K (and 19.5 μW m -1 K -2 ), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  10. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  11. Ground-based experiments and theory in preparation for floating zone melting and directional solidification of cadmium telluride in space

    Science.gov (United States)

    Wilcox, W. R.; Carlson, F. M.; Aidun, D. K.; White, V.; Rosch, W.; Chang, W. M.; Shetty, R.; Fritz, A.; Balasubramanian, R.; Rosen, G.; Kweeder, J.; Wen, C.

    The objective of this program is to apply theoretical and experimental methods to optimize the equipment and procedures for floating zone melting and Bridgman-Stockbarger growth of cadmium telluride crystals in space. Computer codes were developed for the computation of heat transfer in the furnace and thermal stress in the resulting crystal. The predictions for the temperature field are being compared with experimental measurements. It was found that if the crystal sticks to the ampoule wall, differential thermal expansion between crystal and ampoule contributes much more to the stress than does the temperature field in the crystal. Thus, one goal of solidification of cadmium telluride in space is to reduce or eliminate contact of the crystal with the ampoule wall. Another goal is to find coatings and linings which reduce sticking of the grown crystal onto the ampoule. We developed techniques for measuring the surface tension and contact angle of molten cadmium telluride vs temperature and stoichiometry. The surface tension decreased with increasing temperature and with decreasing cadmium concentration. Wetting increased in the following order: pyrolytic boron nitride, carbon-coated quartz, sandblasted quartz, HF-etched quartz, and plain quartz. Additional coatings and potential ampoule lining materials are being developed and will be tested both for wetting by the melt and for sticking by the solid. Techniques are being developed for measuring sticking. We are also developing techniques for measuring the mechanical properties of cadmium telluride and for the direct observation of defect formation and evolution vs temperature. X-ray topography will be done in real time using the National Synchrotron Light Source at Brookhaven National Laboratory, in collaboration with the National Institute of Standards and Technology. Techniques are being developed for floating zone melting of cadmium telluride in space. We have successfully float zoned 5 mm rods on Earth

  12. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    Science.gov (United States)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  13. Effect of the interface on the mechanical properties and thermal conductivity of bismuth telluride films

    Science.gov (United States)

    Lai, Tang-Yu; Wang, Kuan-Yu; Fang, Te-Hua; Huang, Chao-Chun

    2018-02-01

    Bismuth telluride (Bi2Te3) is a type of thermoelectric material used for energy generation that does not cause pollution. Increasing the thermoelectric conversion efficiency (ZT) is one of the most important steps in the development of thermoelectric components. In this study, we use molecular dynamics to investigate the mechanical properties and thermal conductivity of quintuple layers of Bi2Te3 nanofilms with different atomic arrangements at the interface and study the effects of varying layers, angles, and grain boundaries. The results indicate that the Bi2Te3 nanofilm perfect substrate has the ideal Young’s modulus and thermal conductivity, and the maximum yield stress is observed for a thickness of ∼90 Å. As the interface changed, the structural disorder of atomic arrangement affected the mechanical properties; moreover, the phonons encounter lattice disordered atomic region will produce scattering reduce heat conduction. The results of this investigation are helpful for the application of Bi2Te3 nanofilms as thermoelectric materials.

  14. N-hydroxysuccinimide-mediated photoelectrooxidation of aliphatic alcohols based on cadmium telluride nanoparticles decorated graphene nanosheets

    International Nuclear Information System (INIS)

    Navaee, Aso; Salimi, Abdollah

    2013-01-01

    A simple nonenzymatic electrochemical protocol is proposed for the oxidation of aliphatic alcohols using formed N-hydroxysuccinimide (NHS) radical cation on the graphene nanosheets/L-cysteine/cadmium telluride quantum dot (QD) nanocomposite (GNs/Cys/CdTe) modified glassy carbon (GC) electrode. At first, graphene oxide (GO) is chemically synthesized from graphite after which Cys is covalently functionalized to GO through formation of amide bonds between carboxylic acid groups of GO and amine groups of Cys. The resulting GNs/Cys is used as a capping agent to synthesize CdTe QD nanoparticles. After the characterization of the as-made nanocomposite which confirmed the successful attachment of CdTe nanoparticles to the GNs, the ability of the GNs/Cys/CdTe modified GC electrode toward the nonenzymatic ethanol electrooxidation is examined in the presence of NHS as an effective mediating system. Our results revealed that the proposed system possess a good activity to NHS electrooxidation and subsequently, ethanol oxidation. Moreover, the GNs/Cys/CdTe modified electrode displayed a significant photoelectrocatalytic activity toward the ethanol oxidation upon illumination by visible light. The photoactive GNs/Cys/CdTe nanohybrid presented here showing favorable photoelectrochemical features for nonenzymatic aliphatic alcohols oxidation may hold great promise to the development of electrochemical sensors and biofuel cells

  15. Investigations of Cadmium Manganese Telluride Crystals for Room-Temperature Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Hossain, A.; Kim, K.; Carcelen, V.; Gul, R.; James, R.

    2009-10-06

    Cadmium manganese telluride (CMT) has high potential as a material for room-temperature nuclear-radiation detectors. We investigated indium-doped CMT crystals taken from the stable growth region of the ingot, and compared its characteristics with that from the last-to-freeze region. We employed different techniques, including synchrotron white-beam X-ray topography (SWBXT), current-voltage (I-V) measurements, and low-temperature photoluminescence spectra, and we also assessed their responses as detectors to irradiation exposure. The crystal from the stable growth region proved superior to that from the last-to-freeze region; it is a single-grain crystal, free of twins, and displayed a resistivity higher by two orders-of-magnitude. The segregation of indium dopant in the ingot might be responsible for its better resistivity. Furthermore, we recorded a good response in the detector fabricated from the crystal taken from the stable growth region; its ({mu}{tau}){sub e} value was 2.6 x 10{sup -3} cm{sup 2}/V, which is acceptable for thin detectors, including for applications in medicine.

  16. Resonant Enhancement of Charge Density Wave Diffraction in the Rare-Earth Tri-Tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Sorini, A.P.; Yi, M.; Chuang, Y.D.; Moritz, B.; Yang, W.L.; Chu, J.-H.; Kuo, H.H.; Gonzalez, A.G.Cruz; Fisher, I.R.; Hussain, Z.; Devereau, T.P.; Shen, Z.X.

    2012-05-15

    We performed resonant soft X-ray diffraction on known charge density wave (CDW) compounds, rare earth tri-tellurides. Near the M{sub 5} (3d - 4f) absorption edge of rare earth ions, an intense diffraction peak is detected at a wavevector identical to that of CDW state hosted on Te{sub 2} planes, indicating a CDW-induced modulation on the rare earth ions. Surprisingly, the temperature dependence of the diffraction peak intensity demonstrates an exponential increase at low temperatures, vastly different than that of the CDW order parameter. Assuming 4f multiplet splitting due to the CDW states, we present a model to calculate X-ray absorption spectrum and resonant profile of the diffraction peak, agreeing well with experimental observations. Our results demonstrate a situation where the temperature dependence of resonant X-ray diffraction peak intensity is not directly related to the intrinsic behavior of the order parameter associated with the electronic order, but is dominated by the thermal occupancy of the valence states.

  17. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  18. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects.

    Science.gov (United States)

    Shao, Cheng; Bao, Hua

    2016-06-06

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring.

  19. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    International Nuclear Information System (INIS)

    Brunett, B.A.; Lund, J.C.; Van Scyoc, J.M.; Hilton, N.R.; Lee, E.Y.; James, R.B.

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors

  20. Topology of Electron Density of Cadmium Telluride Determined from Relief and Contour Plots

    International Nuclear Information System (INIS)

    Othman, A.P.; Gopir, G.A.

    2013-01-01

    The topology of the electron density yields a faithful and a reliable mapping of the concepts of atoms, molecular structure, bonds and structure, besides providing the basis for a theory of structural stability. In quantum mechanics, and in particular quantum chemistry, the electron density is a measure of the probability of an electron occupying an infinitesimal element of space surrounding any given point. Contour plots of electron density distribution of cadmium telluride (CdTe) were obtained using the density functional theory (DFT) method and were used as the basis to qualitatively study the bond, structure and stability of the molecule when it is in bulk. We looked at the way the electron density, ρ of CdTe defines the gradient field and hence the bonding type. We identified the bond paths that coincide with the contours of electron sharing. These bond paths indicated that the molecule was slightly covalent. Our topological analysis led us to conclude that CdTe was an n-type semiconductor with covalent bond and slight ionic character. (author)

  1. Phase diagram of germanium telluride encapsulated in carbon nanotubes from first-principles searches

    Science.gov (United States)

    Wynn, Jamie M.; Medeiros, Paulo V. C.; Vasylenko, Andrij; Sloan, Jeremy; Quigley, David; Morris, Andrew J.

    2017-12-01

    Germanium telluride has attracted great research interest, primarily because of its phase-change properties. We have developed a general scheme, based on the ab initio random structure searching (AIRSS) method, for predicting the structures of encapsulated nanowires, and using this we predict a number of thermodynamically stable structures of GeTe nanowires encapsulated inside carbon nanotubes of radii under 9 Å . We construct the phase diagram of encapsulated GeTe, which provides quantitative predictions about the energetic favorability of different filling structures as a function of the nanotube radius, such as the formation of a quasi-one-dimensional rock-salt-like phase inside nanotubes of radii between 5.4 and 7.9 Å . Simulated TEM images of our structures show excellent agreement between our results and experimental TEM imagery. We show that, for some nanotubes, the nanowires undergo temperature-induced phase transitions from one crystalline structure to another due to vibrational contributions to the free energy, which is a first step toward nano-phase-change memory devices.

  2. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  3. Investigation of the electrochemical deposition of thick layers of cadmium telluride

    International Nuclear Information System (INIS)

    Rousset, J.

    2007-04-01

    This research thesis deals with the problem of electrochemical deposition of thick layers of cadmium telluride (CdTe) meeting the requirements of high energy radiation detection. The author first recalls the physicochemical properties of CdTe and the basic principles of radiology. He details the different criteria which define a material for X ray detection. He describes the experimental conditions, the nature and preparation of substrates, and the different electrochemical systems used in this research. He studies the impact of the applied potential on the material properties, and compares previously obtained results available in the literature with those obtained in the chosen pool conditions. He discusses the synthesis of CdTe thick layers for which different methods are tested: static in potential, static in intensity, pulsed. The coatings obtained with a given potential and then with a given current are investigated. Finally, the influence of a thermal treatment in presence or absence of a sintering agent on the morphology, the chemical composition, and the crystalline and electric properties of the deposited material is discussed, and the results of the behaviour under X rays of a electrodeposited layer are presented

  4. Fluorescence Stability of Mercaptopropionic Acid Capped Cadmium Telluride Quantum Dots in Various Biochemical Buffers.

    Science.gov (United States)

    Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit

    2018-04-01

    Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.

  5. Variation of resistivity of copper doped cadmium telluride prepared by electrodeposition

    International Nuclear Information System (INIS)

    von Windheim, J.A.; Cocivera, M.

    1990-01-01

    Thin film cadmium telluride is an attractive material because its band gap makes it suitable for a number of applications. The authors have prepared this material by electrodeposition both in the dark and under illumination. The resultant films, which are p-type as deposited and after heat treatment, have been used with electrodeposited cadmium sulfide to form pn junction photovoltaic cells. Light-to-electric power conversion efficiencies for a number of samples average around 3.5%. To increase this efficiency, the authors have initiated a program to reduce film resistivity by the incorporation of dopants using electrochemical and vapour techniques. The electrical characterization of electrodeposited thin film materials by Hall effect or resistance measurements is difficult because the sample must be removed from the conducting substrate before studies can be done. In this paper, results are presented for copper incorporated by two methods, electrochemical codeposition and electromigration and the effect is discussed in terms of a model in which the conductivity is controlled by the relative magnitudes of the dopant density and the density of interface states at the grain boundary

  6. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium tellurides

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.; Martin, B. G.

    1980-01-01

    Mercury cadmium telluride crystals were prepared by the Bridgman method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of the crystal growth kinetics for the Hg(i-x)CdxTe alloys, and measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential thermal analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge carrier concentrations, charge carrier mobilities, Hall coefficient, optical absorptance, and Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  7. One-Dimensional Fast Transient Simulator for Modeling Cadmium Sulfide/Cadmium Telluride Solar Cells

    Science.gov (United States)

    Guo, Da

    Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary alternative energy sources to fossil fuel. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.

  8. Effect of reducing agent strength on the growth and thermoelectric performance of nanocrystalline bismuth telluride

    Science.gov (United States)

    Nour, Asmaa; Hassan, Nazly; Refaat, Heba M.; Soliman, Hesham M. A.; El-Dissouky, A.

    2018-03-01

    A novel combination of Trizma, as an environmentally friendly chelating agent, with either weak or strong reducing agent was used to produce n-type bismuth telluride (Bi2Te3) nanocrystals via water-based chemical route. The synthesized powders were consolidated into pellets utilizing spark plasma sintering (SPS). The sintered n-type pellets exhibited potentially high electrical conductivities (5.29 × 105 and 5.23 × 105 S.m‑1) and low lattice thermal conductivities (0.12 and 0.25 Wm‑1K‑1) respectively. These thermoelectric (TE) properties suggested that the partially coherent boundaries permitted significant phonons scattering and electrons transfer. These led to an enhanced figure-of-merit (ZT) values (0.52 and 0.97), which are considered to be significant among the reported ZT values at room-temperature for the undoped synthesized n-type Bi2Te3 nanoparticles. Therefore, the current investigation displayed an efficient method to improve ZT of TE materials via nanostructure orchestrating, resulting in a worthy candidate n-type nanostructured Bi2Te3 for room-temperature TE applications.

  9. Inspection report of unauthorized possession and use of unsealed americium-241 and subsequent confiscation, J.C. Haynes Company, Newark, Ohio

    International Nuclear Information System (INIS)

    1985-11-01

    This US Nuclear Regulatory Commission report documents the circumstances surrounding the March 26, 1985, confiscation and subsequent decontamination activities related to the use of unauthorized quantities of americium-241 at the John C. Haynes Company (licensee) of Newark, Ohio. It focuses on the period from early February to July 26, 1985. The incident started when NRC Region III recieved information that John C. Haynes possessed unauthorized quantities of americium-241 and was conducting unauthorized activities (diamond irradiation). By July 26, 1985, the decontamination activities at the licensee's laboratory were concluded. The licensee's actions with diamond irradiation resulted in contamination in restricted and unrestricted areas of the facility. The confiscation and decontamination activities required the combined efforts of NRC, Federal Bureau of Investigation, US Department of Energy, Oak Ridge Associated Universities, the State of Ohio, and the US Environmental Protection Agency. The report describes the factual information and significant findings associated with the confiscation and decontamination activities

  10. Experimental study of Americium-241 biokinetics in Homarus Gammarus lobster. Analysis of the accumulation and detoxication mechanisms at the sub-cellular level

    International Nuclear Information System (INIS)

    Paquet, F.

    1991-12-01

    The Americium 241 radioelement accumulation and elimination rate and mechanisms in the lobster organism have been experimentally studied; incorporation and detoxification capacities of each organ are evaluated. The existence of various biological compartments is shown; the major role of the digestive gland in accumulation of the radioelement, its distribution towards the various organs, and its resorption is comprehensively described, with an analysis at the subcellular and molecular levels. 401 p., 65 fig., 43 tab., 428 ref

  11. An experimental study of americium-241 biokinetics in the Lobster Homarus Gammarus. Analysis of the accumulation/storage and detoxification processes at the subcellular level

    International Nuclear Information System (INIS)

    Paquet, F.

    1993-01-01

    An experimental study of americium-241 kinetics has been conducted in the lobster Homarus gammmarus. The investigations were conducted at all the levels from the whole body to the subcellular and molecular levels. The animals were contaminated by a single or chronic ingestion of 241 Am labelled mussels. Assessments of accumulation, elimination and distribution of the radionuclide were established on organisms kept in the laboratory; they made it possible to demonstrate the importance of the digestive gland in the radionuclide transfer pathways. The preliminary results led to structural then ultrastructural investigations of the digestive gland in association with radioautographic studies and cellular extractions methods. Four cellular types were demonstrated, only two of them being implied in the radionuclide retention, the former being responsible for americium intake and the latter for its long-term retention. By means of biochemical techniques, subcellular accumulation was studied and the organelles implied in the nuclide retention were specified. Finally, a method of cellular nuclei dissociation was developed; it made it possible to analyse the molecular nature of americium ligands and to demonstrate the function of the protein nuclear matrix in the nuclide retention

  12. Processing and characterization of new oxy-sulfo-telluride glasses in the Ge-Sb-Te-S-O system

    International Nuclear Information System (INIS)

    Smith, C.; Jackson, J.; Petit, L.; Rivero-Baleine, C.; Richardson, K.

    2010-01-01

    New oxy-sulfo-telluride glasses have been prepared in the Ge-Sb-Te-S-O system employing a two-step melting process which involves the processing of a chalcogenide glass (ChG) and subsequent melting with TeO 2 or Sb 2 O 3 . The progressive incorporation of O at the expense of S was found to increase the density and the glass transition temperature and to decrease the molar volume of the investigated oxy-sulfo-telluride glasses. We also observed a shift of the vis-NIR cut-off wavelength to longer wavelength probably due to changes in Sb coordination within the glass matrix and overall matrix polarizability. Using Raman spectroscopy, correlations have been shown between the formation of Ge- and Sb-based oxysulfide structural units and the S/O ratio. Lastly, two glasses with similar composition (Ge 20 Sb 6 S 64 Te 3 O 7 ) processed by melting the Ge 23 Sb 7 S 70 glass with TeO 2 or the Ge 23 Sb 2 S 72 Te 4 glass with Sb 2 O 3 were found to have slightly different physical, thermal, optical and structural properties. These changes are thought to result mainly from the higher moisture content and sensitivity of the TeO 2 starting materials as compared to that of the Sb 2 O 3 . - Graphical abstract: In this paper, we discuss our most recent findings on the processing and characterization of new ChG glasses prepared with small levels of Te, melted either with TeO 2 or Sb 2 O 3 powders. We explain how these new oxy-sulfo-telluride glasses are prepared and we correlate the physical, thermal and optical properties of the investigated glasses to the structure changes induced by the addition of oxygen in the Ge-Sb-S-Te glass network.

  13. Preparation of bismuth telluride based thermoelectric nanomaterials via low-energy ball milling and their property characterizations

    Science.gov (United States)

    Robinson, Christopher A.

    Thermoelectric materials are able to convert energy between heat and electricity with no moving parts, making them very appealing for power generation purposes. This is particularly appealing since many forms of energy generation lose energy to waste heat. The Livermore National Laboratory estimates that up to 55% of the energy created in traditional power plants is lost through heat generation [1]. As greenhouse gas emissions become a more important issue, large sources of waste like this will need to be harnessed. Adoption of these materials has been limited due to the cost and efficiency of current technology. Bismuth telluride based alloys have a dimensionless figure of merit, a measure of efficiency, near one at room temperature, which makes it the best current material. In order to compete with other forms of energy generation, this needs to be increased to three or higher [2]. Recently, improvements in performance have come in the form of random nanostructured materials [3]. Bulk bismuth telluride is subjected to particle size reduction via high-energy ball milling in order to scatter phonons between grains. This reduces the lattice thermal conductivity which in turn increases the performance of the material. In this work, we investigate the use of low-energy ball milling as a method of creating nanoparticles of n-type and p-type Bi2Te3 alloys for thermoelectric applications. Optimization of parameters such as milling containers, milling media, contamination and milling time has resulted in creating 15nm particles of bismuth telluride alloys. After creating solid pellets of the resulting powders via hot pressing, the material's thermal and electrical conductivities as well as Seebeck coefficients were measured. The ZT of n-type Bi2Te2.7Se3 created using this method is 0.32, while the p-type Bi0.5Sb1.5Te3 exhibits a higher ZT of 1.24, both at room temperature.

  14. Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Matin, M.A. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Electrical and Electronics Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong (Bangladesh); Mannir Aliyu, M.; Quadery, Abrar H. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Amin, Nowshad [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia)

    2010-09-15

    Cadmium telluride (CdTe) thin film solar cell has long been recognized as a leading photovoltaic candidate for its high efficiency and low cost. A numerical simulation has been performed using AMPS-1D simulator to explore the possibility of higher efficiency and stable CdS/CdTe cell among several cell structures with indium tin oxide (ITO) and cadmium stannate (Cd{sub 2}SnO{sub 4}) as front contact material, tin oxide (SnO{sub 2}), zinc oxide (ZnO) and zinc stannate (Zn{sub 2}SnO{sub 4}) as buffer layer, and silver (Ag) or antimony telluride (Sb{sub 2}Te{sub 3}) with molybdenum (Mo) or zinc telluride (ZnTe) with aluminium (Al) as back contact material. The cell structure ITO/i-ZnO/CdS/CdS{sub x}Te{sub 1-x}/CdTe/Ag has shown the best conversion efficiency of 16.9% (Voc=0.9 V, Jsc=26.35 mA/cm{sup 2}, FF=0.783). This analysis has shown that ITO as front contact material, ZnO as buffer layer and ZnTe or Sb{sub 2}Te{sub 3} back surface reflector (BSR) are suitable material system for high efficiency (>15%) and stable CdS/CdTe cells. The cell normalized efficiency linearly decreased at a temperature gradient of -0.25%/ C for ZnTe based cells, and at -0.40%/ C for other cells. (author)

  15. Preliminary results from uranium/americium affinity studies under experimental conditions for cesium removal from NPP ''Kozloduy'' simulated wastes solutions

    International Nuclear Information System (INIS)

    Nikiforova, A.; Kinova, L.; Peneva, C.; Taskaeva, I.; Petrova, P.

    2005-01-01

    We use the approach described by Westinghouse Savannah River Company using ammonium molybdophosphate (AMP) to remove elevated concentrations of radioactive cesium to facilitate handling waste samples from NPP K ozloduy . Preliminary series of tests were carried out to determine the exact conditions for sufficient cesium removal from five simulated waste solutions with concentrations of compounds, whose complexing power complicates any subsequent processing. Simulated wastes solutions contain high concentrations of nitrates, borates, H 2 C 2 O 4 , ethylenediaminetetraacetate (EDTA) and Citric acid, according to the composition of the real waste from the NPP. On this basis a laboratory treatment protocol was created. This experiment is a preparation for the analysis of real waste samples. In this sense the results are preliminary. Unwanted removal of non-cesium radioactive species from simulated waste solutions was studied with gamma spectrometry with the aim to find a compromise between on the one hand the AMP effectiveness and on the other hand unwanted affinity to AMP of Uranium and Americium. Success for the treatment protocol is defined by proving minimal uptake of U and Am, while at the same time demonstrating good removal effectiveness through the use of AMP. Uptake of U and Am were determined as influenced by oxidizing agents at nitric acid concentrations, proposed by Savannah River National laboratory. It was found that AMP does not significantly remove U and Am when concentration of oxidizing agents is more than 0.1M for simulated waste solutions and for contact times inherent in laboratory treatment protocol. Uranium and Americium affinity under experimental conditions for cesium removal were evaluated from gamma spectrometric data. Results are given for the model experiment and an approach for the real waste analysis is chosen. Under our experimental conditions simulated wastes solutions showed minimal affinity to AMP when U and Am are most probably in

  16. TOPICAL REVIEW: Current status and issues in the surface passivation technology of mercury cadmium telluride infrared detectors

    Science.gov (United States)

    Agnihotri, O. P.; Musca, C. A.; Faraone, L.

    1998-08-01

    Surface passivation has been recognized as a crucial step in the fabrication of mercury cadmium telluride photoconductive as well as photovoltaic detectors. The subject has attracted considerable attention in the past and several reviews existed by 1991. The subject matter, however, received added impetus with the development of techniques like MOCVD and MBE and recently there has been considerable work on MCT passivation using in situ grown II-VI semiconductors. In this report, we have tried to give the present status and identify the issues particularly with reference to the recent work on the subject.

  17. Investigations of portable cadmium telluride (CdTe(Cl)) detectors for clinical studies with radioactive indicators

    International Nuclear Information System (INIS)

    Bojsen, J.

    1985-01-01

    The combination of small, portable γ-radiation-sensitive Cadmium Telluride (CdTE(Cl)) crystal detectors and portable solid state data storage memories makes it feasible to extend the measuring period in a number of clinical investigations based on the use of various radioisotopes and external detection. Blood sampling can be avoided in some cases. Continuous ambulatory monitoring of relevant physiological parameters is practicable, e.g. kidney function (GFR), left ventricular ejection fraction, subcutaneous blood flow, muscle blood flow and insulin absorption in diabetic patients. In the present methodological study the applicability of the 133-Xe washout technique to subcutaneous (s.c.) adipose tissue blood flow (SBF) has been investigated and adapted to the use of CdTe(Cl) detectors attached to the skin surface for the measurement of local 133-Xe-disappearance rate constants (k). Physical characterization of CdTe(Cl) detectors as γ-sensitive devices has been performed, and adequate counting sensitivities were found without detector energy-resolution properties. The CdTe(Cl) detectors are therefore suitable for single indicator studies. The measuring geometry of CdTe(Cl) detectors was studied and compared with that of stationary Sodium Iodide (NaI(Tl)) detectors in both phantom and in vivo investigations. The spatial properties of CdTe(Cl) detectors could to some extent be adjusted by pulse height discrimination and lead collimation. When long-term measurements were complicated by for instance physical activity of the patients, the small CdTe(Cl) detectors in general showed equal or better performance than the heavy and voluminous NaI(Tl) detectors. The free movement of the ambulatory patient and the avoidance of cable connections to stationary data-collecting systems gave improved possibilities for measurements of the relevant parameters. From this point of view, portable CdTe(Cl) detectors must be considered an important advance for radioactivity studies in

  18. A Fumonisins Immunosensor Based on Polyanilino-Carbon Nanotubes Doped with Palladium Telluride Quantum Dots

    Directory of Open Access Journals (Sweden)

    Milua Masikini

    2014-12-01

    Full Text Available An impedimetric immunosensor for fumonisins was developed based on poly(2,5-dimethoxyaniline-multi-wall carbon nanotubes doped with palladium telluride quantum dots onto a glassy carbon surface. The composite was assembled by a layer-by-layer method to form a multilayer film of quantum dots (QDs and poly(2,5-dimethoxyaniline-multi-wall carbon nanotubes (PDMA-MWCNT. Preparation of the electrochemical immunosensor for fumonisins involved drop-coating of fumonisins antibody onto the composite modified glassy carbon electrode. The electrochemical impedance spectroscopy response of the FB1 immunosensor (GCE/PT-PDMA-MWCNT/anti-Fms-BSA gave a linear range of 7 to 49 ng L−1 and the corresponding sensitivity and detection limits were 0.0162 kΩ L ng−1 and 0.46 pg L−1, respectively, hence the limit of detection of the GCE/PT-PDMA-MWCNT immunosensor for fumonisins in corn certified material was calculated to be 0.014 and 0.011 ppm for FB1, and FB2 and FB3, respectively. These results are lower than those obtained by ELISA, a provisional maximum tolerable daily intake (PMTDI for fumonisins (the sum of FB1, FB2, and FB3 established by the Joint FAO/WHO expert committee on food additives and contaminants of 2 μg kg−1 and the maximum level recommended by the U.S. Food and Drug Administration (FDA for protection of human consumption (2–4 mg L−1.

  19. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    International Nuclear Information System (INIS)

    Manciu, Felicia S.; Salazar, Jessica G.; Diaz, Aryzbe; Quinones, Stella A.

    2015-01-01

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  20. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  1. The crystal structures and powder diffraction patterns of the uranium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.L. (State Univ. of New York, Alfred, NY (USA). Inst. of Ceramic Superconductivity); Nichols, M.C.; Boehme, D.R. (Sandia National Labs., Livermore, CA (USA))

    1990-10-03

    A critical review of all of the reported structures and powder diffraction patterns in the uranium telluride system has been undertaken. Structures that are correct: Cubic -- UTe: no experimental pattern exists. Retain calculated 15--865. Cubic --U{sub 3}Te{sub 4}: retain the poor quality 12--610 but adopt the pattern calculated here. Cubic U{sub 2}Te{sub 3}: no experimental pattern exists. Adopt pattern calculated here. Orthorhombic UTe{sub 2}: Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Orthorhombic {beta}UTe{sub 3}: Adopt pattern calculated here. Orthorhombic UTe{sub 5}: Adopt the new pattern of Boehme et al. Structures in need of refinement: Orthorhombic U{sub 2}Te{sub 3}:Adopt pattern calculated here over 34--807. Hexagonal U{sub 7}Te{sub 12}: Adopt pattern calculated here but retain 24--1368. Orthorhombic UTe{sub 1.78}: Adopt pattern calculated here and retain our modified 21--1404 reported for U{sub 4}Te{sub 7}. Orthorhombic UTe{sub 2.5}: Adopt pattern calculated here. Orthorhombic UTe{sub 3.4}: Accept recent pattern of Boehme et al. Phases for which no structures or reliable patterns exist: Orthorhombic U{sub 3}Te{sub 4}: no published pattern. Tetragonal U{sub 3}Te{sub 5}: three patterns 21--1407, 34--766 and 34--896 exit but all are of very poor quality. Phases which probably do not exist: Tetragonal UTe{sub 1.78}, Tetragonal UTe{sub 2}, Cubic UTe{sub 2} U{sub 3}Te{sub 7}(21--1402), U{sub 3}Te{sub 8}(21--1406).

  2. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  3. Analytical utility of the M series x-ray emission lines applied to uranium, neptunium, plutonium, and americium

    International Nuclear Information System (INIS)

    Miller, A.G.

    1976-01-01

    Secondary emission x-ray analysis for actinide elements has usually meant utilizing the L series x-ray lines. The major disadvantage of these x-ray lines is that they fall in the region of high level Bremsstrahlung radiation, producing a high background and, subsequently, larger error and high detection limits. The utilization of the M series x-ray lines of actinide elements with wavelength dispersive x-ray spectrometers greatly minimizes these problems. Calibration curves for uranium, neptunium, plutonium, and americium were prepared by the ''coprex'' method, and the analytical characteristics of the L and M series compared. The Mα and β x-ray lines, under optimum conditions, are several times more sensitive than their L series counterparts. With the greater sensitivity in addition to the lower background, peak to background ratios for M lines up to 40 times greater than those for L lines were obtained. Detection limits can be lowered from about 0.7 μg using the Lα 1 line to 0.05 μg when M x-ray lines are used. The relative advantages and disadvantages of utilizing the L and M series x-ray lines for secondary emission x-ray analysis are discussed

  4. Use of radioanalytical methods for determination of uranium, neptunium, plutonium, americium and curium isotopes in radioactive wastes

    International Nuclear Information System (INIS)

    Geraldo, Bianca

    2012-01-01

    Activated charcoal is a common type of radioactive waste that contains high concentrations of fission and activation products. The management of this waste includes its characterization aiming the determination and quantification of the specific radionuclides including those known as Difficult-to-Measure Radionuclides (RDM). The analysis of the RDM's generally involves complex radiochemical analysis for purification and separation of the radionuclides, which are expensive and time-consuming. The objective of this work was to define a methodology for sequential analysis of the isotopes of uranium, neptunium, plutonium, americium and curium present in a type of radioactive waste, evaluating chemical yield, analysis of time spent, amount of secondary waste generated and cost. Three methodologies were compared and validated that employ ion exchange (TI + EC), extraction chromatography (EC) and extraction with polymers (ECP). The waste chosen was the activated charcoal from the purification system of primary circuit water cooling the reactor IEA-R1. The charcoal samples were dissolved by acid digestion followed by purification and separation of isotopes with ion exchange resins, extraction and chromatographic extraction polymers. Isotopes were analyzed on an alpha spectrometer, equipped with surface barrier detectors. The chemical yields were satisfactory for the methods TI + EC and EC. ECP method was comparable with those methods only for uranium. Statistical analysis as well the analysis of time spent, amount of secondary waste generated and cost revealed that EC method is the most effective for identifying and quantifying U, Np, Pu, Am and Cm present in charcoal. (author)

  5. Vertical transport of particulate-associated plutonium and americium in the upper water column of the Northeast Pacific

    International Nuclear Information System (INIS)

    Fowler, S.W.; Ballestra, S.; La Rosa, J.; Fukai, R.

    1983-01-01

    Concentrations of plutonium (Pu) and americium (Am) were determined in seawater, suspended particulate matter, sediment trap samples, and biogenic material collected at the VERTEX I site in the North Pacific off central California. From a vertical profile taken over the upper 1500 m, the presence of sub-surface maxima of sup(239+240)Pu and 241 Am were identified between 100 to 750 m and 250 to 750 m, respectively. A large fraction (32%) of the filterable sup(239+240)Pu in surface waters was associated with cells during a phytoplankton bloom; Pu:Am activity ratios in surface water and the suspended particles indicated that Pu was concentrated by the cells to a greater degree than Am. However, similar measurements beneath the surface layer showed an overall enrichment of Am over Pu on fine suspended particles with depth. Freshly produced zooplankton fecal pellets and large, fast sinking particles collected in PITS contained relatively high concentrations of Pu and Am. Both transuranic concentrations in trapped particles and transuranic flux tended to increase with depth down to 750 m, suggesting that their scavenging is in the upper water column. Am appeared to be scavenged by sinking biogenic particles to a greater extent than Pu. The results are discussed. (author)

  6. Computational analysis of interfacial attachment kinetics and transport phenomena during liquid phase epitaxy of mercury cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, Igal; Brandon, Simon [Dept. of Chemical Engineering, Technion, Haifa 32000 (Israel); Ben Dov, Anne; Grimberg, Ilana; Klin, Olga; Weiss, Eliezer [SCD-Semi-Conductor Devices, P.O. Box 2250/99, Haifa 31021 (Israel)

    2010-07-01

    Deposition of mercury cadmium telluride (MCT) thin films, on lattice matched cadmium zinc telluride substrates, is often achieved via Liquid Phase Epitaxy (LPE). The yield and quality of these films, required for the production of infrared detector devices, is to a large extent limited by lack of knowledge regarding details of physical phenomena underlying the deposition process. Improving the understanding of these phenomena and their impact on the quality of the resultant films is therefore an important goal which can be achieved through relevant computational and/or experimental studies. We present a combined computational and experimental effort aimed at elucidating physical phenomena underlying the LPE of MCT via a slider growth process. The focus of the presentation will be results generated by a time-dependent three-dimensional model of mass transport, fluid flow, and interfacial attachment kinetics, which we have developed and applied in the analysis of this LPE process. These results, combined with experimental analyses, lead to an improved understanding of the role of different transport and kinetic phenomena underlying this growth process.

  7. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro, E-mail: goto.masahiro@nims.go.jp [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sasaki, Michiko [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Yibin [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Materials Database Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhan, Tianzhuo [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Isoda, Yukihiro [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shinohara, Yoshikazu [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-06-15

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  8. Bandgap-Engineered Mercury Cadmium Telluride Infrared Detector Structures for Reduced Cooling Requirements

    Science.gov (United States)

    Itsuno, Anne M.

    State-of-the-art mercury cadmium telluride (HgCdTe) high performance infrared (IR) p-n heterojunction technology remains limited by intrinsic, thermal Auger generation-recombination (C-11.) mechanisms which necessitate strict cooling requirements, and challenges related to processing technology, particularly those associated with achieving stable, controllable in situ p-type doping in molecular beam epitaxy (MBE) grown HgCdTe. These limitations motivate the need to firstly, increase device operating temperatures, and secondly, address material processing issues. This work investigates three alternative HgCdTe IR device architectures as proposed solutions 1) the high operating temperature (HOT) detector, 2) the nBn detector, and 3) the NBnuN detector. The HOT detector is designed to suppress Auger processes, in turn, reducing the detector noise and cryogenic cooling requirements. A simulation study comparing the device behavior and performance metrics of the Auger-suppressed HOT structure to those obtained for the conventional double layer planar heterostructure (DLPH) device predicts the HOT detector can provide a significant advantage over conventional detectors with an increased operating temperature of ˜40-50 K for devices with cutoff wavelengths in the range of 5-12 mum. In a related study, a series of experiments is conducted to examine arsenic (As) deep diffusion in HgCdTe with the goal of achieving controllable low p-type doping in the HOT absorber layer to reduce Auger G-R processes by increasing minority carrier lifetimes. Furthermore, a unipolar, barrier-integrated nBn detector structure is proposed to address the challenges associated with p-type doping in MBE grown HgCdTe. Numerically simulated performance characteristics of the HgCdTe nBn device predict values similar to comparable DLPH structures for a range of temperatures, motivating the experimental demonstration of mid- and long-wave IR HgCdTe nBn detectors. Fabricated nBn detectors successfully

  9. Scientific/Technical Report: Improvement in compensation and crystal growth of cadmium zinc telluride radiation detectors

    International Nuclear Information System (INIS)

    Kelvin G. Lynn; Kelly A. Jones

    2007-01-01

    Comparison of actual accomplishments with goals and objectives: (1) Growth of 12 ingots--Washington State University (WSU) more than met this goal for the project by growing 12 final ingots for the year. Nine of the twelve crystal growth ingots resolved gamma radiation at room temperature. The other three ingots where resistivity of ∼ 3 x 10 8 Ohm*cm for CG32a, CG36, and CG42 lower than expected, however none of these were tried with blocking contacts. All ingots were evaluated from tip to heel. In these three cases, the group III, dopant Aluminum (Al) was not detected to a level to compensate the Cd vacancies in the cadmium zinc telluride (CZT) thus the ingots were lower resistivity. The nine ingots that were successful radiation detectors averaged a bulk resistivity of 1.25 x 10 10 Ohm*cm and with a average μτ product for electrons of ∼ 2 x 10 -4 cm 2 /V with a 1/4 microsecond shaping time with samples ∼2 mm in thickness. (2) Attempt new compensations techniques--WSU also met this goal. Several doping schemes were attempted and investigated with various amounts of excess Tellurium added to the growth. The combination of Al and Erbium (Er) were first attempted for these ingots and subsequently CG34 was grown with Al, Er and Holmium. These compensation techniques produced radiation detectors and are currently under investigation. These growths were made with significant different doping levels to determine the affect of the dopants. CG43 was doped with Indium and Er. Indium was introduced instead of Al to determine if Indium is more soluble than Al for CZT and was less oxidized. This may decrease the amount of low resistivity ingots grown by doping with Indium instead of Al. (3) Grow large single crystals--Several changes in approach occurred in the crystal growth furnace. Steps were taken to maximize the crystal growth interface during growth by modifying liners, quartz, heat sinks, crucibles and various growth steps and temperature profiles. CG39 ingot

  10. Enhanced thermoelectric properties of metal film on bismuth telluride-based materials

    International Nuclear Information System (INIS)

    Chao, Wen Hsuan; Chen, Yi Ray; Tseng, Shih Chun; Yang, Ping Hsing; Wu, Ren Jye; Hwang, Jenn Yeu

    2014-01-01

    Diffusion barriers have a significant influence on the reliability and life time of thermoelectric modules. Although nickel is commonly used as a diffusion barrier in commercial thermoelectric modules, several studies have verified that Ni migrates to bismuth telluride-based material during high temperature cycles and causes a loss in efficacy. In this paper, the influence of metal layers coated to p-type and n-type Bi 2 Te 3 on the interface characterization and thermoelectric property is studied using a RF magnetron sputtering. The findings from this study demonstrate the structural and thermoelectric properties of p-type and n-type Bi 2 Te 3 coated with different metal layers. The crystalline phase and compositional change of the interface between the Bi 2 Te 3 materials and the metal layers were determined using an X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. Formation of NiTe was observed in the sample of Ni/p-type Bi 2 Te 3 based films post-annealed in an N 2 atmosphere at 200 °C. In contrast, no Co x Te y was formed in the sample of Co/p-type Bi 2 Te 3 based films post-annealed at 200 °C. For as-deposited Ni/p-type and n-type Bi 2 Te 3 based legs, the Ni slightly diffused into the Bi 2 Te 3 based legs. A similar phenomenon also occurred in the as-deposited Co/p-type and n-type Bi 2 Te 3 based legs. The Seebeck coefficients of the Co contacts on the Bi 2 Te 3 based material displayed better behavior than those of the Ni contacts on the Bi 2 Te 3 based legs. Thus Co could be a suitable diffusion barrier for bulk Bi 2 Te 3 based material. The observed effects on the thermoelectric and structural properties of metal/Bi 2 Te 3 based material are crucial for understanding the interface between the diffusion barrier and thermoelectric materials. - Highlights: • Interface characterization of metal coated to p-type and n-type Bi 2 Te 3 is studied. • We examined the phase transformation of metal/Bi 2 Te 3 based films

  11. Molten salt extraction (MSE) of americium from plutonium metal in CaCl2-KCl-PuCl3 and CaCl2-PuCl3 salt systems

    International Nuclear Information System (INIS)

    Dodson, K.E.

    1992-01-01

    Molten salt extraction (MSE) of americium-241 from reactor-grade plutonium has been developed using plutonium trichloride salt in stationary furnaces. Batch runs with oxidized and oxide-free metal have been conducted at temperature ranges between 750 and 945C, and plutonium trichloride concentrations from one to one hundred mole percent. Salt-to-metal ratios of 0.10, 0.15, and 0 30 were examined. The solvent salt was either eutectic 74 mole percent CaCl 2 endash 26 mole percent KCl or pure CaCl 2 . Evidence of trivalent product americium, and effects of temperature, salt-to-metal ratio, and oxide contamination on the americium extraction efficiency are given. 24 refs, 20 figs, 13 tabs

  12. Observations on the redistribution of plutonium and americium in the Irish Sea sediments, 1978 to 1996: concentrations and inventories

    International Nuclear Information System (INIS)

    Kershaw, P.J.; Denoon, D.C.; Woodhead, D.S.

    1999-01-01

    The distribution of plutonium and americium in the sub-tidal sediments of the Irish Sea is described following major surveys in 1978, 1983, 1988 and 1995. Concentrations in surface sediments have declined near the source at Sellafield since 1988. Time-series of inter-tidal surface sediment concentrations are presented from 1977 onwards, revealing the importance of sediment reworking and transport in controlling the evolution of the environmental signal. The surface and near-surface sediments, in the eastern Irish Sea 'mud-patch', are generally well mixed with respect to Pu (α) and 241 Am distributions but show increasing variability with depth - up to 4 orders of magnitude in concentration. The inventories of 239,240 Pu and 241 Am in the sub-tidal sediments have been estimated and compared with the reported decay-corrected discharges. These amounted to 360 and 545 TBq respectively, in 1995, about 60% of the total decay-corrected discharge. Part of the unaccounted fraction may be due to unrepresentative sampling of the seabed. It is speculated that some tens of TBq of plutonium and 241 Am reside undetected in the large volumes of coarse-grained, sub-tidal and inter-tidal sediment which characterise much of the Irish Sea. This has been due to the inability of the available corers to penetrate to the base of contamination in these mobile sediments. Further observations are needed to verify and quantify the missing amount. A budget of plutonium-α and 241 Am has been estimated based on published observations in the three main compartments: water column, sub-tidal and inter-tidal sediments. This amounts to 460-540 TBq and 575-586 TBq respectively, or 64-75% and 60-61%, of the decay-corrected reported discharge. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Picomolar traces of americium(III) introduce drastic changes in the structural chemistry of terbium(III). A break in the ''gadolinium break''

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Jan M. [TU Wien, Atominstitut, Vienna (Austria); Mueller, Danny; Knoll, Christian; Wilkovitsch, Martin; Weinberger, Peter [TU Wien, Institute of Applied Synthetic Chemistry, Vienna (Austria); Giester, Gerald [University of Vienna, Institute of Mineralogy and Crystallography, Vienna (Austria); Ofner, Johannes; Lendl, Bernhard [TU Wien, Institute of Chemical Technologies and Analytics, Vienna (Austria); Steinhauser, Georg [Leibniz Universitaet Hannover, Institute of Radioecology and Radiation Protection (Germany)

    2017-10-16

    The crystallization of terbium 5,5{sup '}-azobis[1H-tetrazol-1-ide] (ZT) in the presence of trace amounts (ca. 50 Bq, ca. 1.6 pmol) of americium results in 1) the accumulation of the americium tracer in the crystalline solid and 2) a material that adopts a different crystal structure to that formed in the absence of americium. Americium-doped [Tb(Am)(H{sub 2}O){sub 7}ZT]{sub 2} ZT.10 H{sub 2}O is isostructural to light lanthanide (Ce-Gd) 5,5{sup '}-azobis[1H-tetrazol-1-ide] compounds, rather than to the heavy lanthanide (Tb-Lu) 5,5{sup '}-azobis[1H-tetrazol-1-ide] (e.g., [Tb(H{sub 2}O){sub 8}]{sub 2}ZT{sub 3}.6 H{sub 2}O) derivatives. Traces of Am seem to force the Tb compound into a structure normally preferred by the lighter lanthanides, despite a 10{sup 8}-fold Tb excess. The americium-doped material was studied by single-crystal X-ray diffraction, vibrational spectroscopy, radiochemical neutron activation analysis, and scanning electron microscopy. In addition, the inclusion properties of terbium 5,5{sup '}-azobis[1H-tetrazol-1-ide] towards americium were quantified, and a model for the crystallization process is proposed. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Measurement of total alpha activity of neptunium, plutonium, and americium in highly radioactive Hanford waste by iron hydroxide precipitation and 2-heptanone solvent extraction

    International Nuclear Information System (INIS)

    Maiti, T.C.; Kaye, J.H.

    1992-06-01

    An improved method has been developed to concentrate the major alpha-emitting actinide elements neptunium, plutonium, and americium from samples with high salt content such as those resulting from efforts to characterize Hanford storage tank waste. Actinide elements are concentrated by coprecipitation of their hydroxides using iron carrier. The iron is removed by extraction from 8M HCI with 2-heptanone. The actinide elements remain in the aqueous phase free from salts, iron, and long-lived fission products. Recoveries averaged 98 percent

  15. Discovery and Structure Determination of an Unusual Sulfide Telluride through an Effective Combination of TEM and Synchrotron Microdiffraction.

    Science.gov (United States)

    Fahrnbauer, Felix; Rosenthal, Tobias; Schmutzler, Tilo; Wagner, Gerald; Vaughan, Gavin B M; Wright, Jonathan P; Oeckler, Oliver

    2015-08-17

    The structure elucidation of the novel sulfide telluride Pb8Sb8S15Te5 demonstrates a new versatile procedure that exploits the synergism of electron microscopy and synchrotron diffraction methods for accurate structure analyses of side-phases in heterogeneous microcrystalline samples. Suitable crystallites of unknown compounds can be identified by transmission electron microscopy and relocated and centered in a microfocused synchrotron beam by means of X-ray fluorescence scans. The refined structure model is then confirmed by simulating HRTEM images of the same crystallite. Pb8Sb8S15Te5 consists of chains of heterocubane-like units. Cation coordination polyhedra form unusually entwined chains of edge- and face-sharing bicapped trigonal prisms. The structure data are precise enough for bond-valence calculations, which confirm the disordered atom distribution. On this basis, optimization of physical properties becomes feasible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Observation of two-photon photoemission from cesium telluride photocathodes excited by a near-infrared laser

    Science.gov (United States)

    Panuganti, H.; Piot, P.

    2017-02-01

    We explore the nonlinear photoemission in cesium telluride (Cs2Te) photocathodes where an ultrashort (˜100 fs full width at half max) 800-nm infrared laser is used as the drive-laser in lieu of the typical ˜266-nm ultraviolet laser. An important figure of merit for photocathodes, the quantum efficiency, we define here for nonlinear photoemission processes in order to compare with linear photoemission. The charge against drive-laser (infrared) energy is studied for different laser energy and intensity values and cross-compared with previously performed similar studies on copper [P. Musumeci et al., Phys. Rev. Lett. 104, 084801 (2010)], a metallic photocathode. We particularly observe two-photon photoemission in Cs2Te using the infrared laser in contrast to the anticipated three-photon process as observed for metallic photocathodes.

  17. Monte Carlo and least-squares methods applied in unfolding of X-ray spectra measured with cadmium telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moralles, M. [Centro do Reator de Pesquisas, Instituto de Pesquisas Energeticas e Nucleares, Caixa Postal 11049, CEP 05422-970, Sao Paulo SP (Brazil)], E-mail: moralles@ipen.br; Bonifacio, D.A.B. [Centro do Reator de Pesquisas, Instituto de Pesquisas Energeticas e Nucleares, Caixa Postal 11049, CEP 05422-970, Sao Paulo SP (Brazil); Bottaro, M.; Pereira, M.A.G. [Instituto de Eletrotecnica e Energia, Universidade de Sao Paulo, Av. Prof. Luciano Gualberto, 1289, CEP 05508-010, Sao Paulo SP (Brazil)

    2007-09-21

    Spectra of calibration sources and X-ray beams were measured with a cadmium telluride (CdTe) detector. The response function of the detector was simulated using the GEANT4 Monte Carlo toolkit. Trapping of charge carriers were taken into account using the Hecht equation in the active zone of the CdTe crystal associated with a continuous function to produce drop of charge collection efficiency near the metallic contacts and borders. The rise time discrimination is approximated by a cut in the depth of the interaction relative to cathode and corrections that depend on the pulse amplitude. The least-squares method with truncation was employed to unfold X-ray spectra typically used in medical diagnostics and the results were compared with reference data.

  18. Monte Carlo and least-squares methods applied in unfolding of X-ray spectra measured with cadmium telluride detectors

    Science.gov (United States)

    Moralles, M.; Bonifácio, D. A. B.; Bottaro, M.; Pereira, M. A. G.

    2007-09-01

    Spectra of calibration sources and X-ray beams were measured with a cadmium telluride (CdTe) detector. The response function of the detector was simulated using the GEANT4 Monte Carlo toolkit. Trapping of charge carriers were taken into account using the Hecht equation in the active zone of the CdTe crystal associated with a continuous function to produce drop of charge collection efficiency near the metallic contacts and borders. The rise time discrimination is approximated by a cut in the depth of the interaction relative to cathode and corrections that depend on the pulse amplitude. The least-squares method with truncation was employed to unfold X-ray spectra typically used in medical diagnostics and the results were compared with reference data.

  19. Analysis of the accelerated crucible rotation technique applied to the gradient freeze growth of cadmium zinc telluride

    Science.gov (United States)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-06-01

    We employ finite-element modeling to assess the effects of the accelerated crucible rotation technique (ACRT) on cadmium zinc telluride (CZT) crystals grown from a gradient freeze system. Via consideration of tellurium segregation and transport, we show, for the first time, that steady growth from a tellurium-rich melt produces persistent undercooling in front of the growth interface, likely leading to morphological instability. The application of ACRT rearranges melt flows and tellurium transport but, in contrast to conventional wisdom, does not altogether eliminate undercooling of the melt. Rather, a much more complicated picture arises, where spatio-temporal realignment of undercooled melt may act to locally suppress instability. A better understanding of these mechanisms and quantification of their overall effects will allow for future growth optimization.

  20. Geology and geochemistry of telluride-bearing Au deposits in the Pingyi area, Western Shandong, China

    Science.gov (United States)

    Hu, H.-B.; Mao, J.-W.; Niu, S.-Y.; Li, Y.-F.; Li, M.-W.

    2006-07-01

    Telluride-bearing gold deposits of the Pingyi area, western Shandong, China, are located on the southeastern margin of the North China Craton. There are two main types of deposits: (i) mineralized cryptoexplosive breccia, e.g., Guilaizhuang; and (ii) stratified, finely-disseminated mineralization hosted in carbonate rocks, e.g., Lifanggou and Mofanggou deposits. In Guilaizhuang, the cryptoexplosive breccia is formed within rocks of the Tongshi complex and Ordovician dolomite. The mineralization is controlled by an E-W-trending listric fault. Stratified orebodies of the Lifanggou and Mofanggou deposits are placed along a NE-trending, secondary detachment zone. They are hosted within dolomitic limestone, micrite and dolomite of the Early-Middle Cambrian Changqing Group. The mineralization in the ore districts is considered to be related to the Early Jurassic Tongshi magmatic complex that formed in a continental arc setting on the margin of the North China Craton. The host rocks are porphyritic and consist predominantly of medium- to fine-grained diorite and pyroxene (hornblende)-bearing monzonite. SHRIMP U-Pb zircon dating of diorites give a 206Pb/238U weighted mean age of 175.7 ± 3.8 Ma. This is interpreted as representing the crystallization age of the Tongshi magmatic complex. Considering the contact relationships between the magmatic and host sedimentary rocks, as well as the genetic link with the deposits, we conclude that this age is relevant also for the formation of mineralization in the Pingyi area. We hence consider that the deposits formed in the Jurassic. The principal gold minerals are native gold, electrum and calaverite. Wall-rock alteration comprises pyritization, fluoritization, silicification, carbonatization and chloritization. Fluid inclusion studies indicate that all the analyzed inclusions are of two-phase vapor-liquid NaCl-H2O type. Homogenization temperatures of the fluid inclusions vary from 103 °C to 250 °C, and the ice melting

  1. Irradiation-induced doping of Bismuth Telluride Bi2Te3

    International Nuclear Information System (INIS)

    Rischau, Carl Willem

    2014-01-01

    Bismuth Telluride Bi 2 Te 3 has attracted enormous attention because of its thermoelectric and topological insulator properties. Regarding its bulk band structure Bi 2 Te 3 is a band insulator with an energy gap of around 150-170 meV. However, the native anti-site defects that are present in real samples always dope this band insulator and shift the chemical potential into the valence or conduction band. In this PhD, the Fermi surface of as-grown and electron irradiated p-type Bi 2 Te 3 single crystals has been investigated extensively using electrical transport experiments. For moderate hole concentrations (p ∼< 5 x 10 18 cm -3 ), it is confirmed that electrical transport can be explained by a six-valley model and the presence of strong Zeeman-splitting. At high doping levels (p≅5 x 10 18 cm -3 ), the hole concentrations determined from Hall and Shubnikov-de Haas (SdH) effect differ significantly which is attributed to an impurity/defect band introduced by the anti-site defects. In this work, we show that it is possible to dope p-type Bi 2 Te 3 in a very controlled manner using electron-irradiation by performing detailed in- and ex-situ electrical transport studies on samples irradiated at room and at low temperatures with 2.5 MeV electrons. These studies show that the defects induced at both irradiation temperatures act as electron donors and can thus be used to convert the conduction from p- to n-type. The point of optimal compensation is accompanied by an increase of the low-temperature resistivity by several orders of magnitude. Irradiation at room temperature showed that both the p-type samples obtained after irradiation to intermediate doses as well as the samples in which the conduction has been converted to n-type by irradiation, still have a well defined Fermi surface as evidenced by SdH oscillations. By studying the Hall coefficient in-situ during low temperature electron irradiation, the coexistence of electron- and hole-type carriers was evidenced

  2. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and 125Te NMR measurements in complex tellurides

    Science.gov (United States)

    Levin, E. M.

    2016-06-01

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S , depends on the free (mobile) carrier concentration, n , and effective mass, m*, as S ˜m*/n2 /3 . The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1 /T1 , depends on both n and m* as 1 /T1˜(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1 /T1˜(m*)2n2 /3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study A gxS bxG e50-2xT e50 , well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.

  3. Synthesis of zirconia sol stabilized by trivalent cations (yttrium and neodymium or americium): a precursor for Am-bearing cubic stabilized zirconia.

    Science.gov (United States)

    Lemonnier, Stephane; Grandjean, Stephane; Robisson, Anne-Charlotte; Jolivet, Jean-Pierre

    2010-03-07

    Recent concepts for nuclear fuel and targets for transmuting long-lived radionuclides (minor actinides) and for the development of innovative Gen-IV nuclear fuel cycles imply fabricating host phases for actinide or mixed actinide compounds. Cubic stabilized zirconia (Zr, Y, Am)O(2-x) is one of the mixed phases tested in transmutation experiments. Wet chemical routes as an alternative to the powder metallurgy are being investigated to obtain the required phases while minimizing the handling of contaminating radioactive powder. Hydrolysis of zirconium, neodymium (a typical surrogate for americium) and yttrium in aqueous media in the presence of acetylacetone was firstly investigated. Progressive hydrolysis of zirconium acetylacetonate and sorption of trivalent cations and acacH on the zirconia particles led to a stable dispersion of nanoparticles (5-7 nm) in the 6-7 pH range. This sol gels with time or with temperature. The application to americium-containing solutions was then successfully tested: a stable sol was synthesized, characterized and used to prepare cubic stabilized zirconia (Zr, Y, Am)O(2-x).

  4. Determining the americium transmutation rate and fission rate by post-irradiation examination within the scope of the ECRIX-H experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lamontagne, J., E-mail: jerome.lamontagne@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA), DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [Commissariat à l’énergie atomique et aux énergies alternatives (CEA), DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Esbelin, E. [CEA, DEN, DRCP, Marcoule, F-30207 Bagnols-sur-Cèze (France); Béjaoui, S.; Pasquet, B. [Commissariat à l’énergie atomique et aux énergies alternatives (CEA), DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Bourdot, P. [CEA, DEN, DER, Cadarache, F-13108 St. Paul Lez Durance (France); Bonnerot, J.M. [Commissariat à l’énergie atomique et aux énergies alternatives (CEA), DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France)

    2013-09-15

    The ECRIX-H experiment aims to assess the feasibility of transmuting americium micro-dispersed in an inert magnesia matrix under a locally moderated neutron flux in the Phénix reactor. A first set of examinations demonstrated that pellet behaviour was satisfactory with moderate swelling at the end of the irradiation. Additional post-irradiation examinations needed to be conducted to confirm the high transmutation rate so as to definitively conclude on the success of the ECRIX-H experiment. This article presents and discusses the results of these new examinations. They confirm the satisfactory behaviour of the MgO matrix not only during the basic irradiation but also during post-irradiation thermal transients. These examinations also provide additional information on the behaviour of fission products both in the americium-based particles and in the MgO matrix. These results particularly validate the transmutation rate predicted by the calculation codes using several different analytical techniques. The fission rate is also determined.

  5. Analytical performance of radiochemical method for americium determination in urine; Desempenho analitico do metodo radioquimico para determinacao de americio em urina

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Juliana Ferreira; Carneiro, Janete C.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: ju_barreto@terra.com.br

    2005-07-01

    This paper presents an analytical method developed and adapted for separation and analysis of Plutonium (Pu) isotopes and Americium (Am) in urine samples. The proposed method will attend the demand of internal exposure monitoring program for workers involved mainly with dismantling rods and radioactive smoke detectors. In this experimental procedure four steps are involved as preparation of samples, sequential radiochemical separation, preparation of the source for electroplating and quantification by alpha spectrometry. In the first stage of radiochemical separation, plutonium is conventionally isolated employing the anion exchange technique. Americium isolation is achieved sequentially by chromatographic extraction (Tru.spec column) from the load and rinse solutions coming from the anion exchange column. The {sup 243}Am tracer is added into the sample as chemical yield monitors and to correct the results improving the precision and accuracy. The mean recovery obtained is 60%, and the detection limit for 24h urine sample is 1.0 mBq L{sup -1} in accordance with the literature. Based in the preliminary results, the method is appropriate to be used in monitoring programme of workers with a potential risk of internal contamination. (author)

  6. Validation of a low dose {sup 201}thallium protocol with a cadmium-zinc-telluride (C.Z.T.) semiconductor camera;Validation d'un protocole thallium 201 faible dose avec une camera a semi-conducteur cadmium-zinc-telluride (CZT)

    Energy Technology Data Exchange (ETDEWEB)

    Songy, B.; Geronazzo, R.; Guernou, M.; Queneau, M.; Lussato, D. [Centre cardiologique du Nord, 93 - Saint-Denis (France)

    2010-05-15

    The objective of the study was to reduce the dosimetry with thallium 201 in myocardium scintigraphy with the new cadmium-zinc-telluride (C.Z.T.) semi-conductors cameras. As results it appears with a low dose of thallium 201 ( less 30%) and then a reduced dosimetry, the C.Z.T. camera provides reliable and high quality images. (N.C.)

  7. Inhaled americium dioxide

    International Nuclear Information System (INIS)

    Park, J.F.

    1982-01-01

    This project includes experiments to determine the effects of Zn-DTPA therapy on the retention, translocation and biological effects of inhaled 241 AmO 2 . Beagle dogs that received inhalation exposure to 241 AmO 2 developed leukopenia, clincial chemistry changes associated with hepatocellular damage, and were euthanized due to respiratory insufficiency caused by radiation pneumonitis 120 to 131 days after pulmonary deposition of 22 to 65 μCi 241 Am. Another group of dogs that received inhalation exposure to 241 AmO 2 and were treated daily with Zn-DTPA had initial pulmonary deposition of 19 to 26 μCi 241 Am. These dogs did not develop respiratory insufficiency, and hematologic and clinical chemistry changes were less severe than in the non-DTPA-treated dogs

  8. Artificial radionuclides in the Northern European Marine Environment. Distribution of radiocaesium, plutonium and americium in sea water and sediments in 1995

    International Nuclear Information System (INIS)

    Groettheim, Siri

    2000-01-01

    This study considers the distribution of radiocaesium, plutonium and americium in the northern marine environment. The highest radiocaesium activity in sea water was observed in Skagerrak, 26 Bq/m 3 , and in surface sediments in the Norwegian Sea, 60 Bq/kg. These enhanced levels were related to Chernobyl. The highest 239,240Pu activity in surface water was measured in the western North Sea, 66 mBq/m 3 . In sea water, sub-surface maxima were observed at several locations with an 239,240Pu activity up to 160 mBq/m 3 , and were related to Sellafield. With the exception to the North Sea, surface sediments reflected Pu from global fallout from weapons tests only. (author)

  9. Recovery of Americium-241 from lightning rod by the method of chemical treatment; Recuperacion del Americio-241 provenientes de los pararrayos por el metodo de tratamiento quimico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, W.H., E-mail: wcruz@ipen.gob.pe [Instituto Peruano de Energia Nuclear (GRRA/IPEN), Lima (Peru). Division de Gestion de Residuos Radiactivos

    2013-07-01

    About 95% of the lightning rods installed in the Peruvian territory have set in their structures, pose small amounts of radioactive sources such as Americium-241 ({sup 241}Am), fewer and Radium 226 ({sup 226}Ra) these are alpha emitters and have a half life of 432 years and 1600 years respectively. In this paper describes the recovery of radioactive sources of {sup 241}Am radioactive lightning rods using the conventional chemical treatment method using agents and acids to break down the slides. The {sup 241}Am recovered was as excitation source and alpha particle generator for analysing samples by X Ray Fluorescence, for fixing the stainless steel {sup 241}Am technique was used electrodeposition. (author)

  10. Artificial radionuclides in the Northern European Marine Environment. Distribution of radiocaesium, plutonium and americium in sea water and sediments in 1995

    Energy Technology Data Exchange (ETDEWEB)

    Groettheim, Siri

    2000-07-01

    This study considers the distribution of radiocaesium, plutonium and americium in the northern marine environment. The highest radiocaesium activity in sea water was observed in Skagerrak, 26 Bq/m{sub 3}, and in surface sediments in the Norwegian Sea, 60 Bq/kg. These enhanced levels were related to Chernobyl. The highest 239,240Pu activity in surface water was measured in the western North Sea, 66 mBq/m{sub 3}. In sea water, sub-surface maxima were observed at several locations with an 239,240Pu activity up to 160 mBq/m{sub 3}, and were related to Sellafield. With the exception to the North Sea, surface sediments reflected Pu from global fallout from weapons tests only. (author)

  11. Safe handling of kilogram amounts of fuel-grade plutonium and of gram amounts of plutonium-238, americium-241 and curium-244

    International Nuclear Information System (INIS)

    Louwrier, K.P.; Richter, K.

    1976-01-01

    During the past 10 years about 600 glove-boxes have been installed at the Institute for Transuranium Elements at Karlsruhe. About 80% of these glove-boxes have been designed and equipped for handling 100-g to 1-kg amounts of 239 Pu containing 8-12% 240 Pu (low-exposure plutonium). A small proportion of the glove-boxes is equipped with additional shielding in the form of lead sheet or lead glass for work with recycled plutonium. In these glove-boxes gram-amounts of 241 Am have also been handled for preparation of Al-Am targets using tongs and additional shielding inside the glove-boxes themselves. Water- and lead-shielded glove-boxes equipped with telemanipulators have been installed for routine work with gram-amounts of 241 Am, 243 Am and 244 Cm. A prediction of the expected radiation dose for the personnel is difficult and only valid for a preparation procedure with well-defined preparation steps, owing to the fact that gamma dose-rates depend strongly upon proximity and source seize. Gamma radiation dose measurements during non-routine work for 241 Am target preparation showed that handling of gram amounts leads to a rather high irradiation dose for the personnel, despite lead or steel glove-box shielding and shielding within the glove-boxes. A direct glove-hand to americium contact must be avoided. For all glove-handling of materials with gamma radiation an irradiation control of the forearms of the personnel by, for example, thermoluminescence dosimeters is necessary. Routine handling of americium and curium should be executed with master-slave equipment behind neutron and gamma shielding. (author)

  12. Preliminary application of 241-Americium calcaneus bone mineral density measurement in osteoporosis. Comparison with double X-ray densitometry of the lumber spine

    International Nuclear Information System (INIS)

    Guan Liang; Zhu Chengmo; Li Peiyong; Wang Hui; Pu Mingfang; Qiu Jigao

    2001-01-01

    Bone mineral density (BMD) of calcaneus in 54 normals, 45 Osteoporosis, 25 suspected osteoporosis and 16 other non-osteoporosis patients, a total of 140 cases were measured by HUAKE (HK-1) 241-Americium BMD absorpmetry, among them 43 were compared with that of lumber spine (L2 - L4) measured by Lunar Corporation's Expert-XL absorpmeter. BMD of normal group of calcaneus was (409.8 +- 79.4) mg/cm 2 . The BMD were decreased slowly with the increasing age. The BMD of osteoporosis, suspected osteoporosis and non-osteoporosis group were 230.3 +- 62.3, 395.7 +- 57.4 and 363.3 +- 51.9 mg/cm 2 respectively. The BMD of osteoporosis group was much lower than that of normal group, and also lower than that of the other two groups, among 26 patients (57.78%) had bone fracture, all was in accordance with the clinical diagnosis of osteoporosis. The BMD of suspected osteoporosis and non-osteoporosis had no significant difference with normal group. The coefficient variation (CV) of BMD in repeated measurement in calcaneus of 4 participants was less than 1.2%. The correlative coefficient (r) between BMD of calcaneus and lumber spine (L2 - L4) group was 0.6824. The correlative coefficient of normal young adult-matched percentage and T value in 2 groups were 0.6863 and 0.6755 respectively, whereas aged-matched percentage, Z value were 0.4614 and 0.5009 respectively. In conclusion 241-Americium calcaneus BMD absorpmetry has the advantage of low price, easy to operate, reliable and valuable in diagnosis osteoporosis. The correlations of calcaneus and lumber spine BMD, normal young adult-matched percentage and T value were rather good

  13. Correction factor K calculation for Americium-Beryllium neutron sources measured in a manganese sulfate bath; Calculo do fator de correcao K para fontes de neutrons de Americio-Berilio medida no banho de sulfato de manganes do LNMRI/IRD

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Sandro P.; Fonseca, Evaldo S. da; Patrao, Karla C.S.; Goncalves, Marcello G. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Neutrons; Pereira, Walsan W. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI)

    2005-03-15

    This paper simulates a manganese sulfate bath at the Ionizing Radiation Metrology National Laboratory for the calculation of K correction factor for the neutro emission ratio in some Americium-Beryllium sources.

  14. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    International Nuclear Information System (INIS)

    Sinha, Parikhit; Kriegner, Christopher J.; Schew, William A.; Kaczmar, Swiatoslav W.; Traister, Matthew; Wilson, David J.

    2008-01-01

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted

  15. A simple fast microwave-assisted synthesis of thermoelectric bismuth telluride nanoparticles from homogeneous reaction-mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Susmita [Jadavpur University, Department of Instrumentation Science (India); Das, Rashmita [Jadavpur University, Department of Instrumentation and Electronics Engineering (India); Bhar, Radhaballabh [Jadavpur University, Department of Instrumentation Science (India); Bandyopadhyay, Rajib [Jadavpur University, Department of Instrumentation and Electronics Engineering (India); Pramanik, Panchanan, E-mail: pramanik1946@gmail.com [GLA University, Department of Chemistry and Nanoscience (India)

    2017-02-15

    A new simple chemical method for synthesis of nanocrystalline bismuth telluride (Bi{sub 2}Te{sub 3}) has been developed by microwave assisted reduction of homogeneous tartrate complexes of bismuth and tellurium metal ions with hydrazine. The reaction is performed at pH 10. The nano-crystallites have rhombohedral phase identified by XRD. The size distribution of nanoparticle is narrow and it ranges between 50 to 70 nm. FESEM shows that the fine powders are composed of small crystallites. The TEM micrographs show mostly deformed spherical particles and the lattice fringes are found to be 0.137 nm. Energy dispersive X-ray spectroscopy (EDX) analysis shows the atomic composition ratio between bismuth and tellurium is 2:3. Thermoelectric properties of the materials are studied after sintering by spark plasma sintering method (SPS). The grain size of the material after sintering is in the nanometer range. The material shows enhanced Seebeck coefficient and electrical conductivity value at 300 K. The figure of merit is found to be 1.18 at 300 K.

  16. Thermoelectrically-cooled Cadmium Zinc Telluride detectors (CZT) for X-ray and gamma-ray detection

    International Nuclear Information System (INIS)

    Jordanov, V.T.; Pantazis, J.A.; Huber, A.C.

    1996-01-01

    Recently, Cadmium Zinc Telluride (CZT) became one of the most promising room temperature semiconductor detectors. Although significant progress has been made in the growth and characterization of CZT crystals, the energy resolution of CZT detectors at room temperature is still limited by leakage current and the charge transport effects. To optimize the performance of the room temperature CZT detectors a compromise should be made when selecting the shaping time constant of the spectroscopy amplifier. A short shaping time constant reduces leakage current fluctuations. However, the short pulse shapes are more sensitive to ballistic deficit and charge collection fluctuations. In addition, when short shaping time constants are used, the charge sensitive preamplifier noise limits the energy resolution, especially when low energy X-rays are detected. It is therefore important to reduce the leakage current of the detector and to keep the preamplifier noise as low as possible. One way to do this is to cool the detector, the front stage, and the feedback components of the preamplifier. This paper describes a compact, thermoelectrically-cooled radiation detector using a CZT crystal, designated the XR-100T-CZT. (J.P.N.)

  17. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Parikhit; Kriegner, Christopher J.; Schew, William A.; Kaczmar, Swiatoslav W.; Traister, Matthew; Wilson, David J. [O' Brien and Gere, Ecological Sciences, E. 512 Township Line Road, Two Valley Square, Suite 120, Blue Bell, PA 19422 (United States)

    2008-01-15

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted. (author)

  18. Diagnostic performance of a novel cadmium-zinc-telluride gamma camera system assessed using fractional flow reserve.

    Science.gov (United States)

    Tanaka, Hirokazu; Chikamori, Taishiro; Tanaka, Nobuhiro; Hida, Satoshi; Igarashi, Yuko; Yamashita, Jun; Ogawa, Masashi; Shiba, Chie; Usui, Yasuhiro; Yamashina, Akira

    2014-01-01

    Although the novel cadmium-zinc-telluride (CZT) camera system provides excellent image quality, its diagnostic value using thallium-201 as assessed on coronary angiography (CAG) and fractional flow reserve (FFR) has not been validated. METHODS AND RESULTS: To evaluate the diagnostic accuracy of the CZT ultrafast camera system (Discovery NM 530c), 95 patients underwent stress thallium-201 single-photon emission computed tomography (SPECT) and then CAG within 3 months. Image acquisition was performed in the supine and prone positions after stress for 5 and 3 min, respectively, and in the supine position at rest for 10 min. Significant stenosis was defined as ≥90% diameter narrowing on visual estimation, or a lesion with <90% and ≥50% stenosis and FFR ≤0.75. To detect individual coronary stenosis, the respective sensitivity, specificity, and accuracy were 90%, 64%, and 78% for left anterior descending coronary artery stenosis, 78%, 84%, and 81% for left circumflex stenosis, and 83%, 47%, and 60% for right coronary artery (RCA) stenosis. The combination of prone and supine imaging had a higher specificity for RCA disease than supine imaging alone (65% vs. 47%), with an improvement in accuracy from 60% to 72%. Using thallium-201 with short acquisition time, combined with prone imaging, CZT SPECT had a high diagnostic yield in detecting significant coronary stenosis as assessed using FFR.

  19. Conventional X-ray fluorescence camera with a cadmium-telluride detector and its application to cancer diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Toshiyuki [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Eiichi, E-mail: dresato@iwate-med.ac.j [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Abderyim, Purkhet [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Abudurexiti, Abulajiang [Faculty of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa 020-0193 (Japan); Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Watanabe, Manabu; Nagao, Jiro [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-0023 (Japan); Ogawa, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-0023 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537 (Japan)

    2011-04-11

    X-ray fluorescence (XRF) analysis is useful for mapping various molecules in objects. Bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter, and these rays are absorbed by iodine, cerium, and gadolinium molecules in objects. Next, XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The K{alpha} photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by molecular mapping are shown on a personal computer monitor. The scan steps of x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out molecular mapping using the X-ray camera, and K{alpha} photons from cerium and gadolinium molecules were produced from cancerous regions in nude mice.

  20. Mechanistic study of the accelerated crucible rotation technique applied to vertical Bridgman growth of cadmium zinc telluride

    Science.gov (United States)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-08-01

    With cadmium zinc telluride's (CZT) success as a gamma and x-ray detector material, there is need for high-quality, monocrystalline CZT in large volumes. Bridgman and gradient freeze growth methods have consistently produced material containing significant amounts of micron-sized, tellurium-rich inclusions, which are detrimental to device performance. These inclusions are believed to arise from a morphological instability of the growth interface driven by constitutional undercooling. Repeatedly rotating the crucible back and forth via the accelerated crucible rotation technique (ACRT) has been shown to reduce the size and number of inclusions. Via numerical techniques, we analyze the impact of two different applied temperature gradients, 10 K/cm and 30 K/cm, on the flow, temperature, tellurium distribution, and undercooling during growth with and without applied ACRT. Under growth without rotation, a higher axial thermal gradient results in stronger thermal-buoyancy driven flows, faster interface growth velocity, greater tellurium segregation, and stronger undercooling. ACRT improves the stability of the growth interfaces for both systems; however, contrary to conventional wisdom, the case of the shallow thermal gradient is predicted to exhibit a more stable growth interface, which may result in fewer inclusions and higher quality material.

  1. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  2. Acetic acid-confined synthesis of uniform three-dimensional (3D) bismuth telluride nanocrystals consisting of few-quintuple-layer nanoplatelets

    KAUST Repository

    Yuan, Qiang

    2011-01-01

    High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi2Te3) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi2Te3 nanocrystals as building blocks. © The Royal Society of Chemistry 2011.

  3. Tip-force induced surface deformation in the layered commensurate tellurides NbA xTe 2 (A = Si, Ge) during atomic force microscopy measurements

    Science.gov (United States)

    Bengel, H.; Cantow, H.-J.; Magonov, S. N.; Monconduit, L.; Evain, M.; Whangbo, M.-H.

    1994-12-01

    The Te-atom surfaces of commensurate layered tellurides NbA xTe 2 ( A = Si, x = {1}/{2}; A = Ge, x = {1}/{3}, {2}/{5}, {3}/{7}) were examined by atomic force microscopy (AFM) at different applied forces. Although the bulk crystal structures show a negligible height corrugation in the surface Te-atom sheets, the AFM images exhibit dark linear patterns that become strongly pronounced at high applied forces (several hundreds nN). This feature comes about because the tip-sample force interactions induce a surface corrugation according to the local hardness variation of the surface.

  4. Influence of a front buffer layer on the performance of flexible Cadmium sulfide/Cadmium telluride solar cells

    Science.gov (United States)

    Mahabaduge, Hasitha Padmika

    Cadmium telluride (CdTe) solar cells have been developing as a promising candidate for large-scale application of photovoltaic energy conversion and have become the most commercially successful polycrystalline thin-film solar module material. In scaling up from small cells to large-area modules, inevitably non-uniformities across the large area will limit the performance of the large cell or module. The effects of these non-uniformities can be reduced by introducing a thin, high-resistivity transparent buffer layer between the conductive electrodes and the semiconductor diode. ZnO is explored in this dissertation as a high-resistivity transparent buffer layer for sputtered CdTe solar cells and efficiencies over 15% have been achieved on commercially available Pilkington TEC15M glass substrates. The highest open-circuit voltage of 0.858V achieved using the optimized ZnO buffer layer is among the best reported in the literature. The properties of ZnO:Al as a buffer are also investigated. We have shown that ZnO:Al can serve both as a transparent conducting oxide layer as well as a high-resistivity transparent layer for CdTe solar cells. ZnO:Al reactively sputtered with oxygen can give the necessary resistivities that allow it to be used as a high-resistivity transparent layer. Glass is the most common choice as the substrate for solar cells fabricated in the superstrate configuration due to its transparency and mechanical rigidity. However flexible substrates offer the advantages of light weight, high flexibility, ease of integrability and higher throughput through roll-to-roll processing over glass. This dissertation presents significant improvements made to flexible CdTe solar cells reporting an efficiency of 14% on clear KaptonRTM flexible polyimide substrates. Our efficiency of 14% is, to our knowledge, the best for any flexible CdTe cell reported in literature.

  5. Nuclear myocardial perfusion imaging with a cadmium-telluride semiconductor detector gamma camera in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Fukushima, Yoshimitsu; Kumita, Shin-ichiro; Kawaguchi, Tsuneaki; Maruyama, Takatoshi; Kawasaki, Yoshiyuki; Shinkai, Yasuhiro

    2014-01-01

    Since myocardial perfusion imaging (MPI) with conventional sodium iodine (NaI) device has low spatial resolution, there have been some cases in which small structures such as non-transmural myocardial infarction could not be properly detected. The purpose of this study was to evaluate potential usefulness of cadmium-telluride (CdTe) semiconductor detector-based high spatial resolution gamma cameras in detecting myocardial infarction sites, especially non-transmural infarction. A total of 38 patients (mean age ± SD: 64 ± 21 year) who were clinically diagnosed with acute myocardial infarction were included. Twenty-eight cases of them were with ST segment elevation myocardial infarction (STEMI) and 10 cases with non-ST segment elevation myocardial infarction (NSTEMI). In all patients, myocardial perfusion single photon emission computed tomography images were acquired with Infinia (NaI device) and R1-M (CdTe device), and the images were compared concerning the detectability of acute myocardial infarction sites. The detection rates of the myocardial infarction site in cases with STEMI were 100% both by NaI and CdTe images. In cases with NSTEMI, detection rate by NaI images was 50%, while that of CdTe images was 100% (p=0.033). The summed rest score (SRS) value derived from CdTe images was significantly higher than that from NaI images in cases with STEMI [NaI images: 12 (7-18) versus CdTe images: 14 (9-20)] (p < 0.001). SRS derived from CdTe images was significantly higher than that derived from NaI images in cases with NSTEMI [NaI images: 2 (0-5) versus CdTe images: 6 (6-8)] (p=0.006). These results indicate that MPI using CdTe-semiconductor device will provide a much more accurate assessment of acute myocardial infarction in comparison to current methods. (author)

  6. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    Energy Technology Data Exchange (ETDEWEB)

    Verger, Antoine; Karcher, Gilles [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Djaballah, Wassila [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Fourquet, Nicolas [Clinique Pasteur, Toulouse (France); Rouzet, Francois; Le Guludec, Dominique [AP-HP, Hopital Bichat, Department of Nuclear Medicine, Paris (France); INSERM U 773 Inserm and Denis Diderot University, Paris (France); Koehl, Gregoire; Roch, Veronique [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Imbert, Laetitia [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Centre Alexis Vautrin, Department of Radiotherapy, Vandoeuvre (France); Poussier, Sylvain [INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Fay, Renaud [INSERM, Centre d' Investigation Clinique CIC-P 9501, Nancy (France); Marie, Pierre-Yves [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); INSERM U961, Nancy (France); Hopital de Brabois, CHU-Nancy, Medecine Nucleaire, Vandoeuvre-les-Nancy (France)

    2013-03-15

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving {sup 201}Tl (n = 120) or {sup 99m}Tc-sestamibi injected at low dose at stress ({sup 99m}Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ({sup 99m}Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, {sup 201}Tl 92 %, {sup 99m}Tc-Low 86 %, {sup 99m}Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the {sup 201}Tl or {sup 99m}Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 {+-} 101 kcounts) and dramatically enhanced with CZT SPECT (+279 {+-} 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  7. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  8. Americium, plutonium and uranium contamination and speciation in well waters, streams and atomic lakes in the Sarzhal region of the Semipalatinsk Nuclear Test Site, Kazakhstan.

    Science.gov (United States)

    León Vintró, L; Mitchell, P I; Omarova, A; Burkitbayev, M; Jiménez Nápoles, H; Priest, N D

    2009-04-01

    New data are reported on the concentrations, isotopic composition and speciation of americium, plutonium and uranium in surface and ground waters in the Sarzhal region of the Semipalatinsk Test Site, and an adjacent area including the settlement of Sarzhal. The data relate to filtered water and suspended particulate from (a) streams originating in the Degelen Mountains, (b) the Tel'kem 1 and Tel'kem 2 atomic craters, and (c) wells on farms located within the study area and at Sarzhal. The measurements show that (241)Am, (239,240)Pu and (238)U concentrations in well waters within the study area are in the range 0.04-87mBq dm(-3), 0.7-99mBq dm(-3), and 74-213mBq dm(-3), respectively, and for (241)Am and (239,240)Pu are elevated above the levels expected solely on the basis of global fallout. Concentrations in streams sourced in the Degelen Mountains are similar, while concentrations in the two water-filled atomic craters are somewhat higher. Suspended particulate concentrations in well waters vary considerably, though median values are very low, at 0.01mBq dm(-3), 0.08mBq dm(-3) and 0.32mBq dm(-3) for (241)Am, (239,240)Pu and (238)U, respectively. The (235)U/(238)U isotopic ratio in almost all well and stream waters is slightly elevated above the 'best estimate' value for natural uranium worldwide, suggesting that some of the uranium in these waters is of test-site provenance. Redox analysis shows that on average most of the plutonium present in the microfiltered fraction of these waters is in a chemically reduced form (mean 69%; 95% confidence interval 53-85%). In the case of the atomic craters, the proportion is even higher. As expected, all of the americium present appears to be in a reduced form. Calculations suggest that annual committed effective doses to individual adults arising from the daily ingestion of these well waters are in the range 11-42microSv (mean 21microSv). Presently, the ground water feeding these wells would not appear to be contaminated with

  9. Americium, plutonium and uranium contamination and speciation in well waters, streams and atomic lakes in the Sarzhal region of the Semipalatinsk Nuclear Test Site, Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Leon Vintro, L. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland)], E-mail: luis.leon@ucd.ie; Mitchell, P.I.; Omarova, A. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Burkitbayev, M. [Department of Inorganic Chemistry, Al-Faraby Kazakh National University, Almaty (Kazakhstan); Jimenez Napoles, H. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Priest, N.D. [School of Health and Social Sciences, Middlesex University, Enfield, EN3 4SA (United Kingdom)

    2009-04-15

    New data are reported on the concentrations, isotopic composition and speciation of americium, plutonium and uranium in surface and ground waters in the Sarzhal region of the Semipalatinsk Test Site, and an adjacent area including the settlement of Sarzhal. The data relate to filtered water and suspended particulate from (a) streams originating in the Degelen Mountains, (b) the Tel'kem 1 and Tel'kem 2 atomic craters, and (c) wells on farms located within the study area and at Sarzhal. The measurements show that {sup 241}Am, {sup 239,240}Pu and {sup 238}U concentrations in well waters within the study area are in the range 0.04-87 mBq dm{sup -3}, 0.7-99 mBq dm{sup -3}, and 74-213 mBq dm{sup -3}, respectively, and for {sup 241}Am and {sup 239,240}Pu are elevated above the levels expected solely on the basis of global fallout. Concentrations in streams sourced in the Degelen Mountains are similar, while concentrations in the two water-filled atomic craters are somewhat higher. Suspended particulate concentrations in well waters vary considerably, though median values are very low, at 0.01 mBq dm{sup -3}, 0.08 mBq dm{sup -3} and 0.32 mBq dm{sup -3} for {sup 241}Am, {sup 239,240}Pu and {sup 238}U, respectively. The {sup 235}U/{sup 238}U isotopic ratio in almost all well and stream waters is slightly elevated above the 'best estimate' value for natural uranium worldwide, suggesting that some of the uranium in these waters is of test-site provenance. Redox analysis shows that on average most of the plutonium present in the microfiltered fraction of these waters is in a chemically reduced form (mean 69%; 95% confidence interval 53-85%). In the case of the atomic craters, the proportion is even higher. As expected, all of the americium present appears to be in a reduced form. Calculations suggest that annual committed effective doses to individual adults arising from the daily ingestion of these well waters are in the range 11-42 {mu}Sv (mean 21 {mu

  10. Theoretical and experimental study of the bio-geochemical behaviour of americium 241 in simplified rhizosphere conditions. Application to a calcareous agricultural soil; Etude theorique et experimentale du comportement biogeochimique de l'americium-241 en conditions rhizospheriques simplifiees. Application dans un sol agricole calcaire

    Energy Technology Data Exchange (ETDEWEB)

    Perrier, T

    2004-06-01

    Americium 241, is one of the most radio-toxic contaminant produced during the nuclear fuel cycle. It can be found in all environmental compartments, in particular the soils. The main goals of this study are to identify, quantify and model the effect of the main factors controlling the mobility of {sup 241}Am in the rhizosphere and the agricultural soils. The physico-chemical parameters of the soil and of the soil solution, the potential role of microorganisms on the sorption-desorption processes, and the speciation of americium in solution have been more particularly studied. {sup 241}Am remobilization has been studied at the laboratory using leaching experiments performed in controlled conditions on reworked calcareous soils artificially contaminated with {sup 241}Am. The soil samples have been washed out in different hydrodynamic conditions by solutions with various compositions. The eluted solution has been analyzed (pH, conductivity, ionic composition, Fe{sub tot}, organic acids, {sup 241}Am) and its bacterial biomass content too. The overall results indicate that {sup 241}Am remobilization is contrasted and strongly linked with the condition under study (pH, ionic strength, glucose and/or citrate concentration). Therefore, a solution in equilibrium with the soil or containing small exudate concentrations (10{sup -4} M) re-mobilizes only a very small part of the americium fixed on the solid phase. The desorption of {sup 241}Am corresponds to a solid/liquid coefficient of partition (K{sub d}) of about 10{sup 5} L.kg{sup -1}. A significant addition of glucose induces an important dissolution of soil carbonates by the indirect action of microorganisms, but does not significantly favor the {sup 241}Am remobilization. On the other hand, the presence of strong citrate concentrations ({>=} 10{sup -2} M) allows 300 to 10000 time greater re-mobilizations by the complexing of {sup 241}Am released after the dissolution of the carrying phases. Finally, the colloidal

  11. Influence of proton-pump inhibitors on stomach wall uptake of 99mTc-tetrofosmin in cadmium-zinc-telluride SPECT myocardial perfusion imaging.

    Science.gov (United States)

    Mouden, Mohamed; Rijkee, Karlijn S; Schreuder, Nanno; Timmer, Jorik R; Jager, Pieter L

    2015-02-01

    Proton-pump inhibitors (PPIs) induce potentially interfering stomach wall activity in single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) with technetium-99m ((99m)Tc)-sestamibi. However, no data are available for (99m)Tc-tetrofosmin. We assessed the influence of prolonged (>2 weeks) PPI use on the stomach wall uptake of (99m)Tc-tetrofosmin in patients referred for stress MPI with a cadmium-zinc-telluride-based SPECT camera and its relation with dyspepsia symptoms. Consecutive patients (n=127) underwent a 1-day adenosine stress-first SPECT-MPI with (99m)Tc-tetrofosmin, of whom 54 (43%) patients had been on PPIs for more than 2 weeks. Stomach wall activity was identified on stress SPECT using computed tomographic attenuation maps and was scored using a four-point grading scale into clinically relevant (scores 2 or 3) or nonrelevant (scores 0 or 1).Patients on PPIs had stomach wall uptake more frequently as compared with patients not using PPIs (22 vs. 7%, P=0.017). Dyspepsia was similar in both groups. Prolonged use of PPIs is associated with stomach wall uptake of (99m)Tc-tetrofosmin in stress cadmium-zinc-telluride-SPECT images. Gastric symptoms were not associated with stomach wall uptake.

  12. Large-scale synthesis of lead telluride (PbTe) nanotube-based nanocomposites with tunable morphology, crystallinity and thermoelectric properties

    Science.gov (United States)

    Park, Kee-Ryung; Cho, Hong-Baek; Song, Yoseb; Kim, Seil; Kwon, Young-Tae; Ryu, Seung Han; Lim, Jae-Hong; Lee, Woo-Jin; Choa, Yong-Ho

    2018-04-01

    A few millimeter-long lead telluride (PbTe) hollow nanofibers with thermoelectric properties was synthesized for the first time with high through manner via three-step sequential process of electrospinning, electrodeposition and cationic exchange reaction. As-synthesized electrospun Ag nanofibers with ultra-long aspect ratio of 10,000 were Te electrodeposited to obtain silver telluride nanotubes and underwent cationic exchange reaction in Pb(NO3)2 solution to obtain polycrystalline PbTe nanotubes with average diameter of 100 nm with 20 nm of wall thickness. Variation of the Ag-to-Pb ratio in the AgxTey-PbTe nanocomposites during the cationic exchange reaction enabled to control the thermoelectric properties of resulting 1D hollow nanofibers. The diameter of Ag nanofiber is the key factor to determine the final dimension of the PbTe nanotubes in the topotactic transformation and the content of Ag ion leads to the enhancement of thermoelectric properties in the AgxTey-PbTe nanocomposites. The synthesized 1D nanocomposite mats showed the highest value of Seebeck coefficient of 433 μV/K (at 300 K) when the remained Ag content was 30%, while the power factor reached highest to 0.567 μW/mK2 for the pure PbTe nanotubes. The enhancement of thermoelectric properties and the composite crystallinity are elucidated with relation to Ag contents in the resulting 1D nanocomposites.

  13. Study of biosorbents application on the treatment of radioactive liquid wastes with americium-241; Estudo da aplicacao de biossorventes no tratamento de rejeitos radioativos liquidos contendo americio-241

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Tania Regina de

    2010-07-01

    The use of nuclear energy for many different purposes has been intensified and highlighted by the benefits that it provides. Medical diagnosis and therapy, agriculture, industry and electricity generation are examples of its application. However, nuclear energy generates radioactive wastes that require suitable treatment ensuring life and environmental safety. Biosorption and bioaccumulation represent an emergent alternative for the treatment of radioactive liquid wastes, providing volume reduction and physical state change. This work aimed to study biosorbents for the treatment of radioactive liquid wastes contaminated with americium-241 in order to reduce the volume and change the physical state from liquid to solid. The biosorbents evaluated were Saccharomyces cerevisiae immobilized in calcium alginate beads, inactivated and free cells of Saccharomyces cerevisiae, calcium alginate beads, Bacillus subtilis, Cupriavidus metallidurans and Ochrobactrum anthropi. The results were quite satisfactory, achieving 100% in some cases. The technique presented in this work may be useful and viable for implementing at the Waste Management Laboratory of IPEN - CNEN/SP in short term, since it is an easy and low cost method. (author)

  14. Diluent and extractant effects on the enthalpy of extraction of uranium(VI) and americium(III) nitrates by trialkyl phosphates

    International Nuclear Information System (INIS)

    Srinivasan, T.G.; Vasudeva Rao, P.R.; Sood, D.D.

    1998-01-01

    The effect of various diluents such as n-hexane, n-heptane n-octane, isooctane, n-decane, n-undecane, n-dodecane, n-tetradecane, n-hexadecane, cyclohexane, benzene, toluene, p-xylene, mesitylene and o-dichlorobenzene on the enthalpy of extraction of uranyl nitrate by tri-n-amyl phosphate (TAP) over the temperature range 283 K--333 K has been studied. The results indicate that the enthalpy of extraction does not vary significantly with the diluents studied. Also enthalpies of extraction of uranyl nitrate and americium(III) nitrate by neutral organo phosphorous extractants such as tri-n-butyl phosphate (TBP), tri-n-amyl phosphate (TAP), tri-sec-butyl phosphate (TsBP), tri-isoamyl phosphate (TiAP) and tri-n-hexyl phosphate (THP) have been studied. An attempt has been made to explain the trends, on the basis of the nature of the solvate formed and the different terms which contribute to the overall enthalpy change

  15. Human bones obtained from routine joint replacement surgery as a tool for studies of plutonium, americium and {sup 90}Sr body-burden in general public

    Energy Technology Data Exchange (ETDEWEB)

    Mietelski, Jerzy W., E-mail: jerzy.mietelski@ifj.edu.pl [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); Golec, Edward B. [Traumatology and Orthopaedic Clinic, 5th Military Clinical Hospital and Polyclinic, Independent Public Healthcare Facility, Wroclawska 1-3, 30-901 Cracow (Poland); Orthopaedic Rehabilitation Department, Chair of Clinical Rehabilitation, Faculty of Motor of the Bronislaw Czech' s Academy of Physical Education, Cracow (Poland); Department of Physical Therapy Basics, Faculty of Physical Therapy, Administration College, Bielsko-Biala (Poland); Tomankiewicz, Ewa [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); Golec, Joanna [Orthopaedic Rehabilitation Department, Chair of Clinical Rehabilitation, Faculty of Motor of the Bronislaw Czech' s Academy of Physical Education, Cracow (Poland); Physical Therapy Department, Institute of Physical Therapy, Faculty of Heath Science, Jagiellonian University, Medical College, Cracow (Poland); Nowak, Sebastian [Traumatology and Orthopaedic Clinic, 5th Military Clinical Hospital and Polyclinic, Independent Public Healthcare Facility, Wroclawska 1-3, 30-901 Cracow (Poland); Orthopaedic Rehabilitation Department, Chair of Clinical Rehabilitation, Faculty of Motor of the Bronislaw Czech' s Academy of Physical Education, Cracow (Poland); Szczygiel, Elzbieta [Physical Therapy Department, Institute of Physical Therapy, Faculty of Heath Science, Jagiellonian University, Medical College, Cracow (Poland); Brudecki, Kamil [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland)

    2011-06-15

    The paper presents a new sampling method for studying in-body radioactive contamination by bone-seeking radionuclides such as {sup 90}Sr, {sup 239+240}Pu, {sup 238}Pu, {sup 241}Am and selected gamma-emitters, in human bones. The presented results were obtained for samples retrieved from routine surgeries, namely knee or hip joints replacements with implants, performed on individuals from Southern Poland. This allowed to collect representative sets of general public samples. The applied analytical radiochemical procedure for bone matrix is described in details. Due to low concentrations of {sup 238}Pu the ratio of Pu isotopes which might be used for Pu source identification is obtained only as upper limits other then global fallout (for example Chernobyl) origin of Pu. Calculated concentrations of radioisotopes are comparable to the existing data from post-mortem studies on human bones retrieved from autopsy or exhumations. Human bones removed during knee or hip joint surgery provide a simple and ethical way for obtaining samples for plutonium, americium and {sup 90}Sr in-body contamination studies in general public. - Highlights: > Surgery for joint replacement as novel sampling method for studying in-body radioactive contamination. > Proposed way of sampling is not causing ethic doubts. > It is a convenient way of collecting human bone samples from global population. > The applied analytical radiochemical procedure for bone matrix is described in details. > The opposite patient age correlations trends were found for 90Sr (negative) and Pu, Am (positive).

  16. Americium-241 integral radiative capture cross section in over-moderated neutron spectrum from pile oscillator measurements in the Minerve reactor

    Directory of Open Access Journals (Sweden)

    Geslot Benoit

    2017-01-01

    Full Text Available An experimental program, called AMSTRAMGRAM, was recently conducted in the Minerve low power reactor operated by CEA Cadarache within the frame of the CHANDA initiative (Solving CHAllenges in Nuclear Data. Its aim was to measure the integral capture cross section of 241Am in the thermal domain. Motivation of this work is driven by large differences in this actinide thermal point reported by major nuclear data libraries. The AMSTRAMGRAM experiment, that made use of well characterized EC-JRC americium samples, was based on the oscillation technique commonly implemented in the Minerve reactor. First results are presented and discussed in this article. A preliminary calculation scheme was used to compare measured and calculated results. It is shown that this work confirms a bias previously observed with JEFF-3.1.1 (C/E-1 = −10.5 ± 2%. On the opposite, the experiment is in close agreement with 241Am thermal point reported in JEFF-3.2 (C/E-1 = 0.5 ± 2%.

  17. Diaroyl Tellurides: Synthesis, Structure and NBO Analysis of (2-MeOC6H4CO2Te – Comparison with Its Sulfur and Selenium Isologues. The First Observation of [MgBr][R(C=TeO] Salts

    Directory of Open Access Journals (Sweden)

    Fumio Ando

    2009-07-01

    Full Text Available A series of aromatic diacyl tellurides were prepared in moderate to good yields by the reactions of sodium orpotassium arenecarbotelluroates with acyl chlorides in acetonitrile. X-ray structure analyses and theoretical calculations of 2-methoxybenzoic anhydride and bis(2-methoxybenzoyl sulfide, selenide and telluride were carried out. The two 2-MeOC6H4CO moieties of bis(2-methoxybenzoyl telluride are nearly planar and the two methoxy oxygen atoms intramolecularly coordinate to the central tellurium atom from both side of C(11-Te(11-C(22 plane. In contrast, the oxygen and sulfur isologues (2-MeOC6H4CO2E (E = O, S, show that one of the two methoxy oxygen atoms contacts with the oxygen atom of the carbonyl group connected to the same benzene ring. The structure of di(2-methoxybenzoyl selenide which was obtained by MO calculation resembles that of tellurium isologues rather than the corresponding oxygen and sulfur isologues. The reactions of di(aroyl tellurides with Grignard reagents lead to the formation of tellurocarboxylato magnesium complexes [MgBr][R(C=TeO].

  18. Carrier Transport, Recombination, and the Effects of Grain Boundaries in Polycrystalline Cadmium Telluride Thin Films for Photovoltaics

    Science.gov (United States)

    Tuteja, Mohit

    Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does

  19. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  20. Solubility of plutonium and americium-241 from rumen contents of cattle grazing on plutonium-contaminated desert vegetation in in vitro bovine gastrointestinal fluids - August 1975 to January 1977

    International Nuclear Information System (INIS)

    Barth, J.; Giles, K.R.; Brown, K.W.

    1985-01-01

    The alimentary solubility of plutonium and americium-241 ingested by cattle grazing at Area 13 of the Nevada Test Site and the Clean Slate II site on the Tonopah Test Range in Nevada was studied in a series of experiments. For each experiment, or trial, rumen contents collected from a fistulated steer or a normal animals at the time of sacrifice were incubated in simulated bovine gastrointestinal fluids, and the solubility of plutonium and americium was analyzed following the abomasal, duodenal, jejunal, and lower intestinal digestive states. For Area 13, the peak plutonium-238 solubilities ranged from 1.09 to 9.60 percent for animals grazing in the inner enclosure that surrounds ground zero (GZ); for animals grazing in the outer enclosure, the peaks ranged from 1.86 to 18.46%. The peak plutonium-239 solubilities ranged from 0.71 to 4.81% for animals from the inner enclosure and from 0.71 to 3.61% for animals from the outer enclosure. Plutonium-238 was generally more soluble than plutonium-239. Plutonium ingested by cattle grazing in the outer enclosure was usually more soluble than plutonium ingested by cattle grazing in the inner enclosure. The highest concentrations of plutonium in the rumen contents of cattle grazing in the inner enclosure were found in trials conducted during August and November 1975 and January 1976. These concentrations decreased during the February, May, and July 1976 trials. The decrease was followed by an increase in plutonium concentration during the November 1976 trial. The concentration of americium-241 followed the same trend. 13 references, 13 tables

  1. The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium

    International Nuclear Information System (INIS)

    Ketelaer, Jens

    2010-01-01

    The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium: Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N ∝ 90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of 241 Am could be measured directly for the first time. (orig.)

  2. The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium

    Energy Technology Data Exchange (ETDEWEB)

    Ketelaer, Jens

    2010-06-14

    The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium: Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N {proportional_to} 90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of {sup 241}Am could be measured directly for the first time. (orig.)

  3. Investigation of the Internal Electric Field in Cadmium Zinc Telluride Detectors Using the Pockels Effect and the Analysis of Charge Transients

    Science.gov (United States)

    Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng; hide

    2010-01-01

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.

  4. Molecular precursors for the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST)

    Energy Technology Data Exchange (ETDEWEB)

    Harmgarth, Nicole; Zoerner, Florian; Engelhardt, Felix; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Liebing, Phil [Laboratorium fuer Anorganische Chemie, ETH Zuerich (Switzerland); Burte, Edmund P.; Silinskas, Mindaugas [Institut fuer Mikro- und Sensorsysteme, Otto-von-Guericke-Universitaet Magdeburg (Germany)

    2017-10-04

    This review provides an overview of the precursor chemistry that has been developed around the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Thin films of GST can be deposited by employing either chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques. In both cases, the success of the layer deposition crucially depends on the proper choice of suitable molecular precursors. Previously reported processes mainly relied on simple alkoxides, alkyls, amides and halides of germanium, antimony, and tellurium. More sophisticated precursor design provided a number of promising new aziridinides and guanidinates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Nanolithography on mercury telluride

    International Nuclear Information System (INIS)

    Muehlbauer, Mathias Josef

    2015-01-01

    Topological insulators belong to a new quantum state of matter that is currently one of the most recognized research fields in condensed matter physics. Strained bulk HgTe and HgTe/HgCdTe quantum well structures are currently one of few topological insulator material systems suitable to be studied in transport experiments. In addition HgTe quantum wells provide excellent requirements for the conduction of spintronic experiments. A fundamental requirement for most experiments, however, is to reliably pattern these heterostructures into advanced nano-devices. Nano-lithography on this material system proves to be challenging because of inherent temperature limitations, its high reactivity with various metals and due to its properties as a topological insulator. The current work gives an insight into why many established semiconductor lithography processes cannot be easily transferred to HgTe while providing alternative solutions. The presented developments include novel ohmic contacts, the prevention of metal sidewalls and redeposition fences in combination with low temperature (80 C) lithography and an adapted hardmask lithography process utilizing a sacrificial layer. In addition we demonstrate high resolution low energy (2.5 kV) electron beam lithography and present an alternative airbridge gating technique. The feasibility of nano-structures on HgTe quantum wells is exemplarily verified in two separate transport experiments. We are first to realize physically etched quantum point contacts in HgTe/HgCdTe high mobility 2DEGs and to prove their controllability via external top-gate electrodes. So far quantum point contacts have not been reported in TI materials. However, these constrictions are part of many proposals to probe the nature of the helical quantum spin Hall edge channels and are suggested as injector and detector devices for spin polarized currents. To confirm their functionality we performed four-terminal measurements of the point contact conductance as a function of external gate voltage. Our measurements clearly exhibit quantized conductance steps in 2e 2 /h, which is a fundamental characteristic of quantum point contacts. Furthermore we conducted measurements on the formation and control of collimated electron beams, a key feature to realize an all electrical spin-optic device. In a second study several of the newly developed lithography techniques were implemented to produce arrays of nano-wires on inverted and non-inverted HgTe quantum well samples. These devices were used in order to probe and compare the weak antilocalization (WAL) in these structures as a function of magnetic field and temperature. Our measurements reveal that the WAL is almost an order of magnitude larger in inverted samples. This observation is attributed to the Dirac-like dispersion of the energy bands in HgTe quantum wells. The described lithography has already been successfully implemented and adapted in several published studies. All processes have been optimized to guarantee a minimum effect on the heterostructure's properties and the sample surface, which is especially important for probing the topological surface states of strained HgTe bulk layers. Our developments therefore serve as a base for continuous progress to further establish HgTe as a topological insulator and give access to new experiments.

  6. and Cadmium Zinc Telluride

    African Journals Online (AJOL)

    Bheema

    ABSTRACT. In this study, the structural and electronic properties of CdnTen and Cd(n−m)ZnmTen clusters have been studied using the plane wave based density functional theory (DFT). The QUANTUM. ESPRESSO/PWSCF package employing the local density approximation (LDA) for the exchange correlation potential is ...

  7. Update of JAEA-TDB. Additional selection of thermodynamic data for solid and gaseous phases on nickel, selenium, zirconium, technetium, thorium, uranium, neptunium plutonium and americium, update of thermodynamic data on iodine, and some modifications

    International Nuclear Information System (INIS)

    Kitamura, Akira; Fujiwara, Kenso; Doi, Reisuke; Yoshida, Yasushi

    2012-07-01

    We additionally selected thermodynamic data for solid and gaseous phases of nickel, selenium, zirconium, technetium, thorium, uranium, neptunium, plutonium and americium to our thermodynamic database JAEA-TDB for geological disposal of radioactive waste of high-level and TRU wastes. We thermodynamically obtained equilibrium constant from addition and subtraction of Gibbs free energy of formation on nickel, selenium, zirconium, technetium, thorium, uranium, neptunium plutonium and americium, which were selected in the Thermochemical Database Project by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development. Furthermore, we collected and updated thermodynamic data on iodine, changed master species of technetium(IV), and added thermodynamic data on selenium due to improving reliability of the thermodynamic database. We prepared text files of the updated thermodynamic database (JAEA-TDB) for geochemical calculation programs of PHREEQC, EQ3/6 and Geochemist's Workbench. These text files are contained in the attached CD-ROM and will be available on our Website (http://migrationdb.jaea.go.jp/). (author)

  8. Synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes; Synthese und Charakterisierung niedervalenter Actinoidphosphidtelluride und ternaerer Selen-Halogenid-Komplexe des Iridiums

    Energy Technology Data Exchange (ETDEWEB)

    Stolze, Karoline

    2016-04-07

    The thesis on the synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes includes two parts: a description of the experimental synthesis of UPTe and U2PTe2O and ThPTe and the synthesis of selenium-chloride iridium complexes and selenium-bromide iridium complexes. The characterization included X-ray diffraction and phase studies.

  9. High conductivity composite flip-chip joints and silver-indium bonding to bismuth telluride for high temperature applications

    Science.gov (United States)

    Lin, Wen P.

    Two projects are reported. First, the barrier layer and silver (Ag)-indium (In) transient liquid phase (TLP) bonding for thermoelectric (TE) modules at high temperature were studied, and followed with a survey of Ag microstructure and grain growth kinetics. Second, the high electrical conductivity joint materials bonded by both Ag-AgIn TLP and solid-state bonding processes for small size flip-chip applications were designed. In the first project, barrier and Ag-In TLP bonding layer for TE module at high temperature application were studied. Bismuth telluride (Bi2 Te3) and its alloys are used as materials for a TE module. A barrier/bonding composite was developed to satisfy the TE module for high temperature operation. Titanium (Ti)/ gold (Au) was chosen as the barrier layers and an Ag-rich Ag-In joint was chosen as the bonding layer. An electron-beam evaporated Ti layer was selected as the barrier layer. An Ag-In fluxless TLP bonding process was developed to bond the Bi 2Te3 chips to the alumina substrates for high temperature applications. To prepare for bonding, the Bi2Te3 chips were coated with a Ti/Au barrier layer followed by a Ag layer. The alumina substrates with titanium-tungsten (TiW)/Au were then electroplated with the Ag/In/Ag structure. These Bi2Te3 chips were bonded to alumina substrates at a bonding temperature of 180ºC with a static pressure as low as 100psi. The resulting void-free joint consists of five regions: Ag, (Ag), Ag2In, (Ag), and Ag, where (Ag) is Ag-rich solid solution with In atoms in it and Ag is pure Ag. This joint has a melting temperature higher than 660ºC, and it manages the coefficient of thermal expansion (CTE) mismatch between the Bi2Te3 and alumina substrate. The whole Ti/Au barrier layer and Ag-In bonding composite between Bi 2Te3 and alumina survived after an aging test at 250°C for 200 hours. The Ag-In joint transformed from Ag/(Ag)/Ag2In/(Ag)/Ag to a more reliable (Ag) rich layer after the aging test. Ag thin films were

  10. Determining the americium transmutation rate and fission rate by post-irradiation examination within the scope of the ECRIX-H experiment

    Science.gov (United States)

    Lamontagne, J.; Pontillon, Y.; Esbelin, E.; Béjaoui, S.; Pasquet, B.; Bourdot, P.; Bonnerot, J. M.

    2013-09-01

    The ECRIX-H experiment aims to assess the feasibility of transmuting americium micro-dispersed in an inert magnesia matrix under a locally moderated neutron flux in the Phénix reactor. A first set of examinations demonstrated that pellet behaviour was satisfactory with moderate swelling at the end of the irradiation. Additional post-irradiation examinations needed to be conducted to confirm the high transmutation rate so as to definitively conclude on the success of the ECRIX-H experiment. This article presents and discusses the results of these new examinations. They confirm the satisfactory behaviour of the MgO matrix not only during the basic irradiation but also during post-irradiation thermal transients. These examinations also provide additional information on the behaviour of fission products both in the americium-based particles and in the MgO matrix. These results particularly validate the transmutation rate predicted by the calculation codes using several different analytical techniques. The fission rate is also determined. Moderate pellet swelling under irradiation (6.7 vol.%), while only 23% of the produced He and 4% of the fission gases were released from the fuel. No interaction between the pellets and the cladding. Formation of bubbles due to the precipitation of fission gases and He mainly in bubbles located inside the americium-based particles. These bubbles are the main cause of macroscopic swelling in the pellets. Well-crystallised structure of the MgO matrix which shows no amorphisation after irradiation despite the presence of fission products. The absence of any reaction of MgO with the americium-based phase, Formation of a PuO2-type crystalline phase from AmO1.62 particles following the Am transmutation process. A shielded electron probe micro-analyser (EPMA) 'CAMECA' Camebax equipped to collect and exploit the measurements using the 'SAMx' system. A Philips XL30 scanning electron microscope (SEM). Field acquisitions were performed thanks to

  11. Fabrication of targets for transmutation of americium : synthesis of inertial matrix by sol-gel method. Procedure study on the infiltration of a radioactive solutions

    International Nuclear Information System (INIS)

    Fernandez Carretero, A.

    2002-01-01

    addition a new and unexpected phase formed by the reaction of americium with spinel during the high temperature synthesis process has been identified. This new phase could provide a unique menas to stabilise Am in one particular oxidation state. (Author)

  12. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  13. Americium behaviour in plastic vessels

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Idoeta, R.; Abelairas, A.

    2010-01-01

    The adsorption of 241 Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of 241 Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of 241 Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  14. Analysis on the structural, vibrational and defect states of chlorine treated polycrystalline cadmium telluride structures grown by e-beam evaporation

    International Nuclear Information System (INIS)

    Farid, Sidra; Mukherjee, Souvik; Jung, Hyeson; Stroscio, Michael A; Dutta, Mitra

    2015-01-01

    Temperature dependent photoluminescence (PL) measurements are performed in order to study the defect states in cadmium chloride treated polycrystalline cadmium telluride (CdTe) thin films grown by e-beam evaporation technique. Three luminescence bands are observed including a double peak emission at 1.577 eV and 1.573 eV corresponding to free electron-to- acceptor transition and a donor–acceptor pair (DAP) transition, respectively, along with a broad peak at 1.45 eV. This broad band emission is related to A-center chlorine based complex and also includes longitudinal (LO) phonon emission lines for CdTe spaced by ∼21 meV. Investigation into grain sizes revealed grains of 0.2 μm for as-grown films and ∼2–3 μm for chlorine activated films shown by atomic force microscopy (AFM). Raman analysis indicates that the films have been grown with excess of Te leading to p-type conductivity in the structure, whereas LO phonon mode of polycrystalline CdTe reveals quasi phonon modes nature. (paper)

  15. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  16. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Denis [CHU Caen and Normandy University, Department of Nuclear Medicine, Caen (France); Normandy University, Caen (France); Marie, Pierre-Yves [University of Lorraine, Faculty of Medicine, Nancyclotep Experimental Imaging Platform, Nancy (France); University of Lorraine, Faculty of Medicine, CHU Nancy, Department of Nuclear Medicine, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Ben-Haim, Simona [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Ramat Gan (Israel); Rouzet, Francois [University Hospital of Paris-Bichat, UMR 1148, Inserm et Paris Diderot-Paris 7 University Paris, Department of Nuclear Medicine, Paris (France); UMR 1148, Inserm and Paris Diderot-Paris 7 University Paris, Paris (France); Songy, Bernard [Centre Cardiologique du Nord, Saint-Denis (France); Giordano, Alessandro [Institute of Nuclear Medicine, Catholic University of Sacred Heart, Largo A. Gemelli, Department of Bioimages and Radiological Sciences, Rome (Italy); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hyafil, Fabien [Bichat University Hospital, Assistance Publique - Hopitaux de Paris, UMR 1148, Inserm and Paris Diderot-Paris 7 University, Department of Nuclear Medicine, Paris (France); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Bucerius, Jan [Maastricht University Medical Center, Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Verberne, Hein J. [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Faculty of Science and Technology, Department of Biomedical Photonic Imaging, Enschede (Netherlands); Lindner, Oliver [Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center NRW, Bad Oeynhausen (Germany); Collaboration: Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-12-15

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  17. Investigation of quad-energy high-rate photon counting for X-ray computed tomography using a cadmium telluride detector.

    Science.gov (United States)

    Matsukiyo, Hiroshi; Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Sato, Yuichi; Hagiwara, Osahiko; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2017-12-01

    To obtain four kinds of tomograms at four different X-ray energy ranges simultaneously, we have constructed a quad-energy (QE) X-ray photon counter with a cadmium telluride (CdTe) detector and four sets of comparators and microcomputers (MCs). X-ray photons are detected using the CdTe detector, and the event pulses produced using amplifiers are sent to four comparators simultaneously to regulate four threshold energies of 20, 33, 50 and 65keV. Using this counter, the energy ranges are 20-33, 33-50, 50-65 and 65-100keV; the maximum energy corresponds to the tube voltage. We performed QE computed tomography (QE-CT) at a tube voltage of 100kV. Using a 0.5-mm-diam lead pinhole, four tomograms were obtained simultaneously at four energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-50 and 50-65keV, respectively. At a tube voltage of 100kV and a current of 60 μA, the count rate was 15.2 kilocounts per second (kcps), and the minimum count rates after penetrating objects in QE-CT were regulated to approximately 2 kcps by the tube current. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microstructure and Electrical Properties of Antimony Telluride Thin Films Deposited by RF Magnetron Sputtering on Flexible Substrate Using Different Sputtering Pressures

    Science.gov (United States)

    Khumtong, T.; Sukwisute, P.; Sakulkalavek, A.; Sakdanuphab, R.

    2017-05-01

    The microstructural, electrical, and thermoelectric properties of antimony telluride (Sb2Te3) thin films have been investigated for thermoelectric applications. Sb2Te3 thin films were deposited on flexible substrate (polyimide) by radiofrequency (RF) magnetron sputtering from a Sb2Te3 target using different sputtering pressures in the range from 4 × 10-3 mbar to 1.2 × 10-2 mbar. The crystal structure, [Sb]:[Te] ratio, and electrical and thermoelectric properties of the films were analyzed by grazing-incidence x-ray diffraction (XRD) analysis, energy-dispersive x-ray spectroscopy (EDS), and Hall effect and Seebeck measurements, respectively. The XRD spectra of the films demonstrated polycrystalline structure with preferred orientation of (015), (110), and (1010). A high-intensity spectrum was found for the film deposited at lower sputtering pressure. EDS analysis of the films revealed the effects of the sputtering pressure on the [Sb]:[Te] atomic ratio, with nearly stoichiometric films being obtained at higher sputtering pressure. The stoichiometric Sb2Te3 films showed p-type characteristics with electrical conductivity, carrier concentration, and mobility of 35.7 S cm-1, 6.38 × 1019 cm-3, and 3.67 cm2 V-1 s-1, respectively. The maximum power factor of 1.07 × 10-4 W m-1 K-2 was achieved for the film deposited at sputtering pressure of 1.0 × 10-2 mbar.

  19. Q-switched erbium doped fiber laser using antimony telluride-polyvinyl alcohol (Sb2Te3-PVA) as saturable absorber

    Science.gov (United States)

    Quisar Lokman, Muhammad; Ahmad, Fauzan; Wadi Harun, Sulaiman

    2017-11-01

    Q-switched erbium doped fiber laser was demonstrated using antimony telluride (Sb2Te3) as saturable absorber (SA). The SA was fabricated by adding Sb3Te2 powder into PVA suspension and left dry in room temperature for two days. Then, the SA was sandwiched in between two FC/PC fiber ferrules, which can provide easy integration and flexibility into the laser cavity. Stable and self-started Q-switched laser operates at 1531 nm center wavelength. The laser repetition rate increased from 54.5 kHz to 88.4 kHz and pulse duration decreased from 6.84 μs to 4.58 μs as the pump power increased. A signal to noise ratio value of 55 dB was achieved at pump power 130 mW. At the maximum pump power, the average output power and pulse energy are 0.26 mW and 2.78 nJ.

  20. Diagnostic Performance of a Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography System With Low-Dose Technetium-99m as Assessed by Fractional Flow Reserve.

    Science.gov (United States)

    Chikamori, Taishiro; Hida, Satoshi; Tanaka, Nobuhiro; Igarashi, Yuko; Yamashita, Jun; Shiba, Chie; Murata, Naotaka; Hoshino, Kou; Hokama, Yohei; Yamashina, Akira

    2016-04-25

    Although stress single-photon emission computed tomography (SPECT) using a cadmium-zinc-telluride (CZT) camera facilitates radiation dose reduction, only a few studies have evaluated its diagnostic accuracy in Japanese patients by applying fractional flow reserve (FFR) measurements. We prospectively evaluated 102 consecutive patients with suspected or known coronary artery disease with a low-dose stress/rest protocol ((99m)Tc radiotracer 185/370 MBq) using CZT SPECT. Within 3 months, coronary angiography was performed and a significant stenosis was defined as ≥90% diameter narrowing on visual estimation, or as a lesion of <90% and ≥ 50% stenosis with FFR ≤0.80. To detect individual coronary stenosis, the respective sensitivity, specificity, and accuracy were 86%, 75%, and 82% for left anterior descending artery stenosis, 76%, 81%, and 79% for left circumflex artery stenosis, and 87%, 92%, and 90% for right coronary artery stenosis. When limited to 92 intermediate stenotic lesions in which FFR was measured, stress SPECT showed 77% sensitivity, 91% specificity, and 84% accuracy, whereas the diagnostic value decreased to 52% sensitivity, 68% specificity, and 58% accuracy based only on visual estimation of ≥75% diameter narrowing. CZT SPECT demonstrated a good diagnostic yield in detecting hemodynamically significant coronary stenoses as assessed by FFR, even when using a low-dose (99m)Tc protocol with an effective dose ≤5 mSv. (Circ J 2016; 80: 1217-1224).

  1. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    International Nuclear Information System (INIS)

    Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, Francois; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagra, Roberto; Bucerius, Jan; Verberne, Hein J.; Slart, Riemer H.J.A.; Lindner, Oliver

    2016-01-01

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  2. Iodine X-ray fluorescence computed tomography system utilizing a cadmium telluride detector in conjunction with a cerium-target tube

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Osahiko, E-mail: osahiko.hagiwara@gmail.co [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Watanabe, Manabu [The 3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Eiichi [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro [The 3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Ogawa, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537 (Japan)

    2011-06-01

    An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine K{alpha} fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 {mu}Gy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  3. EURADOS action for determination of americium in skull measures in vivo and Monte Carlo simulation; Accion EURADOS para la determinacion de americio en craneo mediante medidas in-vivo y simulacion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Ponte, M. A.; Navarro Amaro, J. F.; Perez Lopez, B.; Navarro Bravo, T.; Nogueira, P.; Vrba, T.

    2013-07-01

    From the Group of WG7 internal dosimetry of the EURADOS Organization (European Radiation Dosimetry group, e.V.) which It coordinates CIEMAT, international action for the vivo measurement of americium has been conducted in three mannequins type skull with detectors of Germanium by gamma spectrometry and simulation by Monte Carlo methods. Such action has been raised as two separate exercises, with the participation of institutions in Europe, America and Asia. Other actions similar precede this vivo intercomparison of measurement and modeling Monte Carlo1. The preliminary results and associated findings are presented in this work. The laboratory of the body radioactivity (CRC) of service counter of dosimetry staff internal (DPI) of the CIEMAT, it has been one of the participants in vivo measures exercise. On the other hand part, the Group of numerical dosimetry of CIEMAT is participant of the Monte Carlo2 simulation exercise. (Author)

  4. Critical and shielding parametric studies with the Monte Carlo code TRIPOLI to identify the key points to take into account during the transportation of blanket assemblies with high ratio of americium

    International Nuclear Information System (INIS)

    Gosmain, Cecile-Aline

    2011-01-01

    In the framework of French research program on Generation IV sodium cooled fast reactor, one possible option consists in burning minor actinides in this kind of Advanced Sodium Technological Reactor. Two types of transmutation mode are studied in the world : the homogeneous mode of transmutation where actinides are scattered with very low enrichment ratio in fissile assemblies and the heterogeneous mode where fissile core is surrounded by blanket assemblies filled with minor actinides with ratio of incorporated actinides up to 20%. Depending on which element is considered to be burnt and on its content, these minor actinides contents imply constraints on assemblies' transportation between Nuclear Power Plants and fuel cycle facilities. In this study, we present some academic studies in order to identify some key constraints linked to the residual power and neutron/gamma load of such kind of blanket assemblies. To simplify the approach, we considered a modeling of a 'model cask' dedicated to the transportation of a unique irradiated blanket assembly loaded with 20% of Americium and basically inspired from an existent cask designed initially for the damaged fissile Superphenix assembly transport. Thermal calculations performed with EDF-SYRTHES code have shown that due to thermal limitations on cladding temperature, the decay time to be considered before transportation is 20 years. This study is based on explicit 3D representations of the cask and the contained blanket assembly with the Monte Carlo code TRIPOLI/JEFF3.1.1 library and concludes that after such a decay time, the transportation of a unique Americium radial blanket is feasible only if the design of our model cask is modified in order to comply with the dose limitation criterion. (author)

  5. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators

    Science.gov (United States)

    Bae, Eun Jin; Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-05-01

    Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and the power factor of those materials can be effectively tuned over a wide range depending on the acid concentration of the treatment. The power factors of the synthesized Te-Bi2Te3/PEDOT:PSS hybrids were optimized to 60.05 μW m-1 K-2 with a Seebeck coefficient of 93.63 μV K-1 and an electrical conductivity of 69.99 S cm-1. The flexible thermoelectric generator fabricated by spray-printing Te-Bi2Te3/PEDOT:PSS hybrid solutions showed an open-circuit voltage of 1.54 mV with six legs at ΔT = 10 °C. This approach presents the potential for realizing printing-processable hybrid thermoelectric materials for application in flexible thermoelectric generators.Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and

  6. Studies on focal alveolar bone healing with technetium (Tc)-99m labeled methylene diphosphonate and gold-collimated cadmium telluride probe

    International Nuclear Information System (INIS)

    Tsuchimochi, M.; Hosain, F.; Engelke, W.; Zeichner, S.J.; Ruttimann, U.E.; Webber, R.L.

    1991-01-01

    The benefit of using a collimator for a miniaturized cadmium telluride probe was evaluated by monitoring the bone-healing processes for 13 weeks after the induction of small iatrogenic alveolar bone lesions in one side of the mandible in beagles. Technetium (Tc)-99m labeled methylene diphosphonate (200 to 300 MBq, 5.1 to 8.1 mCi, in a solution of 0.5 to 1 ml, intravenously) was used as a bone-seeking radiopharmaceutical. The radioactivity over the bone lesion (L) and the contralateral normal site (C) in the mandible were measured between 1.5 and 2 hours after injection of the tracer, and the activity ratio L/C served as an index of relative bone uptake. A study of six dogs revealed that the healing response to a hemispheric bone defect of 2 mm diameter in the cortical bone could not be detected by an uncollimated probe, and in a repeated study in two dogs the use of a gold collimator (5 mm in diameter, 5 mm in length) did not increase the L/C ratio significantly. A second study in six dogs with 5 mm lesions showed that although systematic trends in the time courses of the L/C ratio obtained both with and without the collimator could be demonstrated, the L/C ratio of collimated versus uncollimated measurements was significantly (p less than 0.005) increased. In three of the latter six dogs, abscesses developed after 9 weeks, leading to a second increase (p less than 0.05) of the L/C ratio with collimation compared with the noninflammation group; without collimation no significant (p greater than 0.15) difference between the two groups could be demonstrated

  7. Validation of early image acquisitions following Tc-99 m sestamibi injection using a semiconductors camera of cadmium-zinc-telluride.

    Science.gov (United States)

    Meyer, Celine; Weinmann, Pierre

    2017-08-01

    Cadmium-zinc-telluride (CZT) cameras allow to decrease significantly the acquisition time of myocardial perfusion imaging (MPI), but the duration of the examination is still long. Therefore, this study was performed to test the feasibility of early imaging following injection of Tc-99 m sestamibi using a CZT camera. Seventy patients underwent both an early and a delayed image acquisition after exercise stress test (n = 30), dipyridamole stress test (n = 20), and at rest (n = 20). After injection of Tc-99 m sestamibi, the early image acquisition started on average within 5 minutes for the exercise and rest groups, and 3 minutes 30 seconds for the dipyridamole group. Two independent observers evaluated image quality and extracardiac uptake on four-point scales. The difference between early and later images for each patient was scored on a five-point scale. The image quality and extracardiac uptake of early and delayed image acquisitions were not different for the three groups (P > .05). There was no significant difference between early and delayed image acquisitions in the exercise, dipyridamole, and rest groups, respectively, in 63%, 40%, and 80% of cases. In the exercise group and rest group, a defect was only present in early MPI, respectively, in 13% and 20% of cases. A defect was only present in delayed images in 10% of cases in the exercise group and in 45% of cases in the dipyridamole group. There was no difference between early and later image acquisitions in terms of quality. This protocol reduces the length of the procedure for the patient. Beginning with early image acquisitions may help to overcome the artifacts that are observed at the delayed time.

  8. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells

    International Nuclear Information System (INIS)

    Nguyen, Kathy C.; Willmore, William G.; Tayabali, Azam F.

    2013-01-01

    The mechanisms of toxicity related to human hepatocellular carcinoma HepG2 cell exposures to cadmium telluride quantum dots (CdTe-QDs) were investigated. CdTe-QDs caused cytotoxicity in HepG2 cells in a dose- and time-dependent manner. Treated cells showed an increase in reactive oxygen species (ROS). Altered antioxidant levels were demonstrated by depletion of reduced glutathione (GSH), a decreased ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) and an increased NF-E2-related Factor 2 (Nrf2) activation. Enzyme assays showed that superoxide dismutase (SOD) activity was elevated whereas catalase (CAT) and glutathione-S-transferase (GST) activities were depressed. Further analyses revealed that CdTe-QD exposure resulted in apoptosis, indicated by changes in levels of caspase-3 activity, poly ADP-ribose polymerase (PARP) cleavage and phosphatidylserine externalization. Extrinsic apoptotic pathway markers such as Fas levels and caspase-8 activity increased as a result of CdTe-QD exposure. Involvement of the intrinsic/mitochondrial apoptotic pathway was indicated by decreased levels of B-cell lymphoma 2 (Bcl2) protein and mitochondrial cytochrome c, and by increased levels of mitochondrial Bcl-2-associated X protein (Bax) and cytosolic cytochrome c. Further, mitogen-activated protein kinases (MAPKs) such as c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinases (Erk1/2), and p38 were all activated. Our findings reveal that CdTe-QDs cause oxidative stress, interfere with antioxidant defenses and activate protein kinases, leading to apoptosis via both extrinsic and intrinsic pathways. Since the effects of CdTe-QDs on selected biomarkers were similar or greater compared to those of CdCl 2 at equivalent concentrations of cadmium, the study suggests that the toxicity of CdTe-QDs arises from a combination of the effects of cadmium and ROS generated from the NPs

  9. Preparation and study of the properties of lead telluride and cadmium telluride diodes for use in nuclear spectrometry; Preparation et etude des proprietes de diodes au tellurure de plomb et au tellurure de cadmium en vue d'une utilisation en spectrometrie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lancon, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This work studies the possibility of using high atomic number compound semiconductors, like lead telluride and cadmium telluride as to realize nuclear radiation detectors, specially in gamma ray spectrometry because of their high absorption coefficient. The problems related to the preparation of binary compounds are exposed. Experiments on PbTe show the influence of the conditions of preparation on the electrical properties of the semiconductor which are greatly dependent on the stoichiometry of the compound. PbTe surface-barrier diodes were realized and have been used to study the surface properties of this semiconductor. These diodes cannot detect nuclear radiations because of the too weak resistivity of our material. Different types of devices made of Cd Te have been studied. One of these diodes has been used as an alpha particle detector. We explain the relative poor performances of that detector by the presence of lattice defects in Cd Te where charge carriers may recombine themselves. By analysing the properties of gold diffused Cd Te diodes we identified this defect, the cadmium vacancy, the presence of which is due to the deviation from stoichiometry during the preparation of the material. (author) [French] Ce travail etudie la possibilite d'utiliser des semiconducteurs composes d'elements a numero atomique eleve, tels que le tellurure de plomb et le tellurure de cadmium pour la realisation de detecteurs de rayonnements nucleaires, grace notamment a la section efficace de capture elevee qu'ils presentent vis-a-vis des rayons gamma. On souligne les problemes relatifs a la preparation des composes binaires. Les experiences realisees sur PbTe mettent en evidence l'influence des conditions de preparation sur les proprietes electriques du semiconducteur qui dependent fortement de la stoechiometrie du compose. Nous avons realise des diodes au PbTe a barriere de surface qui ont permis de preciser les proprietes de surface de ce semiconducteur

  10. A potential method using Ge{iPrNC[N(SiMe_3)_2]NiPr}{sub 2}, (Et{sub 3}Si){sub 2}Te and anhydrous hydrazine for germanium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Du, Liyong; Du, Shulei; Ding, Yuqiang [School of Chemical and Material Engineering, Jiangnan University, Wuxi (China)

    2017-12-29

    A germanium(II)-guanidine derivative of formula Ge{iPrNC[N(SiMe_3)_2]NiPr}{sub 2} (1) was synthesized and characterized by {sup 1}H NMR, {sup 13}C NMR, elemental analysis, and X-ray diffraction method. Thermal property was also studied to identify its thermal stability and volatility. More importantly, compound 1 was synthesized to develop a new method for germanium tellurides, where anhydrous hydrazine was introduced to prompt the activity of germanium(II) guanidines (or derivatives) towards (Et{sub 3}Si){sub 2}Te. Solution reaction of compound 1, (Et{sub 3}Si){sub 2}Te, and anhydrous hydrazine was investigated to pre-identify the feasibility of this combination for ALD process. The EDS data of the black precipitate from this reaction verified the potential of this method to manufacture germanium tellurides. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Effect of preparation procedure and nanostructuring on the thermoelectric properties of the lead telluride-based material system AgPb{sub m}BiTe{sub 2+m} (BLST-m)

    Energy Technology Data Exchange (ETDEWEB)

    Falkenbach, Oliver; Koch, Guenter; Schlecht, Sabine [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Schmitz, Andreas [Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany); Hartung, David; Klar, Peter J. [Institute of Experimental Physics I, Justus-Liebig-University, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Dankwort, Torben; Kienle, Lorenz [Institute for Material Science, Christian-Albrechts-University, Kaiserstrasse 2, D-24143 Kiel (Germany); Mueller, Eckhard, E-mail: Eckhard.Mueller@dlr.de [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany)

    2016-06-07

    We report on the preparation and thermoelectric properties of the quaternary system AgPb{sub m}BiTe{sub 2+m} (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Room temperature Hall measurements yielded carrier concentrations in the order of 10{sup 19 }cm{sup −3}, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.

  12. Selectivity of bis-triazinyl bipyridine ligands for americium(III) in Am/Eu separation by solvent extraction. Part 1. Quantum mechanical study on the structures of BTBP complexes and on the energy of the separation.

    Science.gov (United States)

    Narbutt, Jerzy; Oziminski, Wojciech P

    2012-12-21

    Theoretical studies were carried out on two pairs of americium and europium complexes formed by tetra-N-dentate lipophilic BTBP ligands, neutral [ML(NO(3))(3)] and cationic [ML(2)](3+) where M = Am(III) or Eu(III), and L = 6,6'-bis-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2'-bipyridine (C2-BTBP). Molecular structures of the complexes have been optimized at the B3LYP/6-31G(d) level and total energies of the complexes in various media were estimated using single point calculations performed at the B3LYP/6-311G(d,p) and MP2/6-311G(d,p) levels of theory. In the calculations americium and europium ions were treated using pseudo-relativistic Stuttgart-Dresden effective core potentials and the accompanying basis sets. Selectivity in solvent extraction separation of two metal ions is a co-operative function of contributions from all extractable metal complexes, which depend on physico-chemical properties of each individual complex and on its relative amount in the system. Semi-quantitative analysis of BTBP selectivity in the Am/Eu separation process, based on the contributions from the two pairs of Am(III) and Eu(III) complexes, has been carried out. To calculate the energy of Am/Eu separation, a model of the extraction process was used, consisting of complex formation in water and transfer of the formed complex to the organic phase. Under the assumptions discussed in the paper, this simple two-step model results in reliable values of the calculated differences in the energy changes for each pair of the Am/Eu complexes in both steps of the process. The greater thermodynamic stability (in water) of the Am-BTBP complexes, as compared with the analogous Eu species, caused by greater covalency of the Am-N than Eu-N bonds, is most likely the main reason for BTBP selectivity in the separation of the two metal ions. The other potential reason, i.e. differences in lipophilic properties of the analogous complexes of Am and Eu, is less important with regard to this selectivity.

  13. Impact of injection dose, post-reconstruction filtering, and collimator choice on image quality of myocardial perfusion SPECT using cadmium-zinc telluride detectors in the rat.

    Science.gov (United States)

    Mizutani, Asuka; Matsunari, Ichiro; Kobayashi, Masato; Nishi, Kodai; Fujita, Wataru; Miyazaki, Yoshiharu; Nekolla, Stephan G; Kawai, Keiichi

    2015-12-01

    The aims of this study were (1) to evaluate the impact of injection dose, post-reconstruction filtering, and collimator choice on image quality of myocardial perfusion single-photon emission computed tomography (SPECT) using cadmium-zinc telluride (CZT) detectors and (2) to determine how these factors affect measured infarct size in the in vivo rat. Twenty-four healthy and eight myocardial infarct (MI) rats underwent myocardial perfusion SPECT imaging after injection of various doses (25 to 200 MBq) of (99m)Tc-tetrofosmin using a standard (STD) five-pinhole collimator and high-sensitivity (HS) five-pinhole collimator. Image quality score, contrast-to-noise ratio, sharpness index, coefficient of variation (CV), and measured defect size were assessed as measures of image quality. The image quality score increased and CV decreased as a function of injection dose. The contrast-to-noise ratio increased and sharpness index decreased as a function of Gaussian kernel size. When STD and HS were compared, HS tended to show higher image quality score and lower CV than STD. The use of post-reconstruction filter significantly improved image quality score and lessened CV. The reproducibility of defect size measurements, as assessed by intraclass correlation coefficients (ICC), between the collimators was poor-to-moderate (ICC = -0.31~0.57) with low (25 MBq) injection dose and with no or light (1.5-mm kernel size) filtering, whereas it was good-to-excellent (ICC = 0.75~0.97) with high (200 MBq) dose or low dose with heavy (2.5-mm kernel size) filtering. The filtering-related reproducibility was poor (ICC = -0.18~0.17) for STD with low injection dose, whereas it was good-to-excellent (ICC = 0.79~0.89) for HS. Furthermore, there was a filtering-related underestimation of defect size particularly with the use of heavy smoothing. Appropriate imaging setting is important to obtain high quality images and thereby reliable measurements using a preclinical myocardial

  14. Transport phenomena in the close-spaced sublimation deposition process for manufacture of large-area cadmium telluride photovoltaic panels: Modeling and optimization

    Science.gov (United States)

    Malhotra, C. P.

    With increasing national and global demand for energy and concerns about the effect of fossil fuels on global climate change, there is an increasing emphasis on the development and use of renewable sources of energy. Solar cells or photovoltaics constitute an important renewable energy technology but the major impediment to their widespread adoption has been their high initial cost. Although thin-film photovoltaic semiconductors such as cadmium sulfide-cadmium telluride (CdS/CdTe) can potentially be inexpensively manufactured using large area deposition techniques such as close-spaced sublimation (CSS), their low stability has prevented them from becoming an alternative to traditional polycrystalline silicon solar cells. A key factor affecting the stability of CdS/CdTe cells is the uniformity of deposition of the thin films. Currently no models exist that can relate the processing parameters in a CSS setup with the film deposition uniformity. Central to the development of these models is a fundamental understanding of the complex transport phenomena which constitute the deposition process which include coupled conduction and radiation as well as transition regime rarefied gas flow. This thesis is aimed at filling these knowledge gaps and thereby leading to the development of the relevant models. The specific process under consideration is the CSS setup developed by the Materials Engineering Group at the Colorado State University (CSU). Initially, a 3-D radiation-conduction model of a single processing station was developed using the commercial finite-element software ABAQUS and validated against data from steady-state experiments carried out at CSU. A simplified model was then optimized for maximizing the steady-state thermal uniformity within the substrate. It was inferred that contrary to traditional top and bottom infrared lamp heating, a lamp configuration that directs heat from the periphery of the sources towards the center results in the minimum temperature

  15. Digital fast pulse shape and height analysis on cadmium-zinc-telluride arrays for high-flux energy-resolved X-ray imaging.

    Science.gov (United States)

    Abbene, Leonardo; Principato, Fabio; Gerardi, Gaetano; Bettelli, Manuele; Seller, Paul; Veale, Matthew C; Zambelli, Nicola; Benassi, Giacomo; Zappettini, Andrea

    2018-01-01

    Cadmium-zinc-telluride (CZT) arrays with photon-counting and energy-resolving capabilities are widely proposed for next-generation X-ray imaging systems. This work presents the performance of a 2 mm-thick CZT pixel detector, with pixel pitches of 500 and 250 µm, dc coupled to a fast and low-noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to digitize and process continuously the signals from each output ASIC channel. The digital system performs on-line fast pulse shape and height analysis, with a low dead-time and reasonable energy resolution at both low and high fluxes. The spectroscopic response of the system to photon energies below ( 109 Cd source) and above ( 241 Am source) the K-shell absorption energy of the CZT material was investigated, with particular attention to the mitigation of charge sharing and pile-up. The detector allows high bias voltage operation (>5000 V cm -1 ) and good energy resolution at moderate cooling (3.5% and 5% FWHM at 59.5 keV for the 500 and 250 µm arrays, respectively) by using fast pulse shaping with a low dead-time (300 ns). Charge-sharing investigations were performed using a fine time coincidence analysis (TCA), with very short coincidence time windows up to 10 ns. For the 500 µm pitch array (250 µm pitch array), sharing percentages of 36% (52%) and 60% (82%) at 22.1 and 59.5 keV, respectively, were measured. The potential of the pulse shape analysis technique for charge-sharing detection for corner/border pixels and at high rate conditions (250 kcps pixel -1 ), where the TCA fails, is also shown. Measurements demonstrated that significant amounts of charge are lost for interactions occurring in the volume of the inter-pixel gap. This charge loss must be accounted for in the correction of shared events. These activities are within the framework of an international collaboration on the development of energy

  16. Positioning true coincidences that undergo inter-and intra-crystal scatter for a sub-mm resolution cadmium zinc telluride-based PET system

    Science.gov (United States)

    Abbaszadeh, Shiva; Chinn, Garry; Levin, Craig S.

    2018-01-01

    The kinematics of Compton scatter can be used to estimate the interaction sequence of inter-crystal scatter interactions in 3D position-sensitive cadmium zinc telluride (CZT) detectors. However, in the case of intra-crystal scatter in a ‘cross-strip’ CZT detector slab, multiple anode and cathode strips may be triggered, creating position ambiguity due to uncertainty in possible combinations of anode–cathode pairings. As a consequence, methods such as energy-weighted centroid are not applicable to position the interactions. In practice, since the event position is uncertain, these intra-crystal scatters events are discarded. In this work, we studied using Compton kinematics and a ‘direction difference angle’ to provide a method to correctly identify the anode–cathode pair corresponding to the first interaction position in an intra-crystal scatter event. GATE simulation studies of a NEMA NU4 image quality phantom in a small animal positron emission tomography under development composed of 192, 40~mm×40~mm×5 mm CZT crystals shows that 47% of total numbers of multiple-interaction photon events (MIPEs) are intra-crystal scatter with a 100 keV lower energy threshold per interaction. The sensitivity of the system increases from 0.6 to 4.10 (using 10 keV as system lower energy threshold) by including rather than discarding inter- and intra-crystal scatter. The contrast-to-noise ratio (CNR) also increases from 5.81+/-0.3 to 12.53+/-0.37 . It was shown that a higher energy threshold limits the capability of the system to detect MIPEs and reduces CNR. Results indicate a sensitivity increase (4.1 to 5.88) when raising the lower energy threshold (10 keV to 100 keV) for the case of only two-interaction events. In order to detect MIPEs accurately, a low noise system capable of a low energy threshold (10 keV) per interaction is desired.

  17. Mechanical properties of bismuth telluride (Bi{sub 2}Te{sub 3}) processed by high pressure torsion (HPT); Propiedades mecanicas del telururo de bismuto (Bi{sub 2}Te{sub 3}) procesado mediante torsion bajo alta presion (HPT)

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, J. A.; Alkorta, J.; Gil Sevillano, J.

    2013-06-01

    Bismuth telluride, Bi{sub 2}Te{sub 3}, is the main thermoelectric material currently in use for commercial cooling devices or for energy harvesting near room temperature. Because of its highly anisotropic layered structure, Bi{sub 2}Te{sub 3} is very brittle, failing by cleavage along its basal plane. Refining its grain size is expected to increase its toughness with the advantage that, simultaneously, its thermoelectric figure of merit results increased. In this work, powders of the compound have been compacted by conventional methods as well as by severe plastic deformation under high pressure (3 GPa) using high pressure torsion (HPT, one turn at room temperature). Near-theoretical density has been achieved. The hardness and toughness of the compacts have been assessed by micro and nano-indentation. (Author) 11 refs.

  18. Photocurrent spectroscopy of cadmium sulfide/plastic, cadmium sulfide/glass, and zinc telluride/gallium arsenide hetero-pairs formed with pulsed-laser deposition

    Science.gov (United States)

    Acharya, Krishna Prasad

    This dissertation presents photocurrent (PC) spectroscopy of thin-film cadmium sulfide (CdS) on plastic, CdS on glass, and zinc telluride (ZnTe) on gallium arsenide (GaAs) hetero-pairs. All samples have been prepared with pulsed-laser deposition (PLD) and the thesis is organized into three principal sections. The first section presents the PLD essentials and characterization of CdS thin films on transparent plastic substrates. The second part focuses on the exploitation of CdS films on glass to quench or modulate alternating photocurrent (APC) by additional constant blue light illumination. Finally, PC spectra modification of n-GaAs due to ZnTe PLD will be investigated. First, the merger of a transparent plastic substrate with thin-film CdS for photonic application was realized using low-temperature PLD, where low-temperature PLD means the substrates were not externally heated. Although plastic is not considered to be a favored substrate material for semiconductor thin-film formation, the deposited CdS film possessed good adhesion to the plastic substrates and showed a blue-shifted photosensitivity with peak at 2.54 eV. The CdS deposition rate was monitored at different laser fluences and the maximum rate was found at 2.68 J/cm2. The visualization of the surface using an atomic force microscope (AFM) revealed its mosaic structure and electron probe microanalysis showed that target composition was maintained in the film. The study of thickness distribution revealed that the film deposition area is significantly increased with increase in laser fluence. The achieved results demonstrate the capability of PLD to form novel heterostructures with appealing and useful technological properties such as plasticity and low weight. In the second part, APC control via blue light illumination employing thin-film PLD CdS on a glass is introduced. In fact, the APC driven through the CdS film in conjunction with bias was quenched when the sample was additionally illuminated with a

  19. Polycrystalline Cadmium Telluride Photovoltaic Devices

    Science.gov (United States)

    Gessert, Timothy A.; Bonnet, Dieter

    2015-10-01

    The following sections are included: * Introduction * Brief history of CdTe PV devices * Initial attempts towards commercial modules * Review of present commercial industry/device designs * General CdTe material properties * Layer-specific process description for superstrate CdTe devices * Where is the junction? * Considerations for large-scale deployment * Conclusions * Acknowledgements * References

  20. Comparison of conventional and cadmium-zinc-telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities.

    Science.gov (United States)

    Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki

    2017-12-01

    The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

  1. Evaluation of neutron data for americium-241

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M.; Sukhovitskij, E.Sh.; Porodzinskij, Yu.V.; Klepatskij, A.B.; Morogovskij, G.B. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    The evaluation of neutron data for {sup 241}Am is made in the energy region from 10{sup -5} eV up to 20 MeV. The results of the evaluation are compiled in the ENDF/B-VI format. This work is performed under the Project Agreement CIS-03-95 with the International Science and Technology Center (Moscow). The Financing Party for the Project is Japan. The evaluation was requested by Y. Kikuchi (JAERI). (author). 60 refs.

  2. The proliferation potential of neptunium and americium

    International Nuclear Information System (INIS)

    An, J. S.; Shin, J. S.; Kim, J. S.; Kwack, E. H.; Kim, B. K.

    2000-05-01

    It is recognized that some trans-uranic elements other than plutonium, in particular Np and Am, if will be available in sufficient quantities, could be used for nuclear explosive devices. The spent fuel has been accumulating in number of nuclear power plant and operation of large scale commercial reprocessing plants. However, these materials are not covered by the definition of special fissionable material in the Agency Statute. At the time when the Statute was adopted, the availability of meaningful quantities of separated Np and Am was remote and they were not included in the definition of special fissionable material. Then, IAEA Board decided a measure for control of Np and Am on September 1999. This report contains the control method and the characteristic of Np and Am for using domestic nuclear industries, and it can be useful for understanding how to report and account of Np and Am. (author)

  3. Analysis procedure for americium in environmental samples

    International Nuclear Information System (INIS)

    Holloway, R.W.; Hayes, D.W.

    1982-01-01

    Several methods for the analysis of 241 Am in environmental samples were evaluated and a preferred method was selected. This method was modified and used to determine the 241 Am content in sediments, biota, and water. The advantages and limitations of the method are discussed. The method is also suitable for 244 Cm analysis

  4. Experiments of pyrochemical process with americium

    International Nuclear Information System (INIS)

    Hayashi, Hirokazu; Minato, Kazuo

    2004-01-01

    Experiments of pyrochemical process of minor actinide nitrides are scheduled. Experimental procedures of electrochemical study of the molten salts containing minor actinides (10-100mg) were established. Preliminary study with a rare earth element used as a surrogate was carried out in the hot cells using master-slave manipulators. (author)

  5. 1976 Hanford Americium exposure incident: hematologic effects

    International Nuclear Information System (INIS)

    Ragan, H.A.; Mahaffey, J.A.; Breitenstein, B.D.

    1982-05-01

    Hematologic evaluation of an individual with an initial systemic body burden of approx. 200 μCi 241 Am revealed a significant (P < 0.01) reduction of total leukocytes, neutrophils, and lymphocytes. This effect on total leukocytes and neutrophils was evident approx. 30 days after exposure, appeared to stabilize at about 3 months after exposure, and remained at this lower level thorugh a 52-months observation period. The effect on lymphocytes was apparent by 3 days after exposure, stabilizing at approx. 50% of pre-exposure values for about 7 months, with a return to pre-exposure levels in the following 4 y. There was a progressive and significant (P < 0.001) decline in platelet counts during the 52-months postexposure period. The pattern of response in erythrocyte parameters was complex. Immediately after the accident, these values were less than the pre-exposure mean level; they gradually increased (P < 0.001) for approx. 2 y and then began a progressive decline (P < 0.001)

  6. Mixed nickel-gallium tellurides Ni{sub 3−x}GaTe{sub 2} as a matrix for incorporating magnetic cations: A Ni{sub 3−x}Fe{sub x}GaTe{sub 2} series

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Alexey N., E-mail: alexei@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow (Russian Federation); Stroganova, Ekaterina A.; Zakharova, Elena Yu; Solopchenko, Alexander V.; Sobolev, Alexey V.; Presniakov, Igor A. [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); Kirdyankin, Denis I.; Novotortsev, Vladimir M. [N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow (Russian Federation)

    2017-06-15

    Using a high-temperature ampoule technique, a series of mixed nickel-iron-gallium metal-rich tellurides with layered structures, Ni{sub 3-x}Fe{sub x}GaTe{sub 2}, were prepared and characterized based on X-ray powder diffraction, energy-dispersive spectroscopy, and {sup 57}Fe Mössbauer spectroscopy data. These compounds may be regarded as a result of partial substitution of nickel by iron in the recently reported ternary Ni{sub 3-x}GaTe{sub 2} series, which are based on NiAs/Ni{sub 2}In type of structure. The compositional boundary for the substitution was found to be at x~1. According to the Mössbauer spectroscopy data, the substitution is not statistical, and iron atoms with the increase in x tend to preferentially occupy those nickel positions that are partially vacant in the initial ternary compound. Magnetic measurements data for the Ni{sub 3-x}Fe{sub x}GaTe{sub 2} series show dramatic change in behavior from temperature-independent paramagnetic properties of the initial matrix to a low-temperature (~75 K) ferromagnetic ordering in the Ni{sub 2}FeGaTe{sub 2}. - Graphical abstract: Ordered substitution of nickel by iron in the Ni{sub 3−x}GaTe{sub 2} series leading to ferromagnetic ordering. - Highlights: • A series of Ni{sub 3−x}Fe{sub x}GaTe{sub 2} compounds were synthesized. • They adopt the NiAs/Ni{sub 2}In type of structure with ordered iron distribution. • The distribution of iron was studied using {sup 57}Fe Mössbauer spectroscopy. • An increase in iron content leads to the strong ferromagnetic coupling.

  7. Mixed nickel-gallium tellurides Ni3−xGaTe2 as a matrix for incorporating magnetic cations: A Ni3−xFexGaTe2 series

    International Nuclear Information System (INIS)

    Kuznetsov, Alexey N.; Stroganova, Ekaterina A.; Zakharova, Elena Yu; Solopchenko, Alexander V.; Sobolev, Alexey V.; Presniakov, Igor A.; Kirdyankin, Denis I.; Novotortsev, Vladimir M.

    2017-01-01

    Using a high-temperature ampoule technique, a series of mixed nickel-iron-gallium metal-rich tellurides with layered structures, Ni 3-x Fe x GaTe 2 , were prepared and characterized based on X-ray powder diffraction, energy-dispersive spectroscopy, and 57 Fe Mössbauer spectroscopy data. These compounds may be regarded as a result of partial substitution of nickel by iron in the recently reported ternary Ni 3-x GaTe 2 series, which are based on NiAs/Ni 2 In type of structure. The compositional boundary for the substitution was found to be at x~1. According to the Mössbauer spectroscopy data, the substitution is not statistical, and iron atoms with the increase in x tend to preferentially occupy those nickel positions that are partially vacant in the initial ternary compound. Magnetic measurements data for the Ni 3-x Fe x GaTe 2 series show dramatic change in behavior from temperature-independent paramagnetic properties of the initial matrix to a low-temperature (~75 K) ferromagnetic ordering in the Ni 2 FeGaTe 2 . - Graphical abstract: Ordered substitution of nickel by iron in the Ni 3−x GaTe 2 series leading to ferromagnetic ordering. - Highlights: • A series of Ni 3−x Fe x GaTe 2 compounds were synthesized. • They adopt the NiAs/Ni 2 In type of structure with ordered iron distribution. • The distribution of iron was studied using 57 Fe Mössbauer spectroscopy. • An increase in iron content leads to the strong ferromagnetic coupling.

  8. Determination of the Heart-to-Mediastinum Ratio of123I-MIBG Uptake Using Dual-Isotope (123I-MIBG/99mTc-Tetrofosmin) Multipinhole Cadmium-Zinc-Telluride SPECT in Patients with Heart Failure.

    Science.gov (United States)

    Blaire, Tanguy; Bailliez, Alban; Ben Bouallegue, Fayçal; Bellevre, Dimitri; Agostini, Denis; Manrique, Alain

    2018-02-01

    The aim of this retrospective study was to compare the heart-to-mediastinum ratio (HMR) of 123 I-metaiodobenzylguanidine ( 123 I-MIBG) uptake obtained using a multipinhole cadmium-zinc-telluride (CZT) camera with that obtained using conventional planar imaging. Methods: Forty consecutive heart failure patients underwent planar acquisition 4 h after 123 I-MIBG injection (191 ± 41 [mean ± SD] MBq). To localize the heart using the CZT camera, 99m Tc-tetrofosmin (358 ± 177 MBq) was administered and dual-isotope acquisition was performed. The HMRs were calculated with conventional planar imaging (HMR planar ), with anterior reprojection images using the CZT camera (HMR reproj ), and with transaxial reconstructed images using the CZT camera (HMR transaxial ). In a phantom study, we estimated a linear model fitting the CZT camera data to the planar data, and we applied it to provide corrected CZT camera-determined HMRs in patients (cHMR reproj and cHMR transaxial ). Results: Thirty-four men and 6 women (71 ± 9 y old) with ischemic (22 patients) and nonischemic (18 patients) heart failure completed the study. For 22 of the 40 patients (55%), the New York Heart Association classification was class II and the ejection fraction was 35% ± 9%. HMR reproj (1.12 ± 0.19) and HMR transaxial (1.35 ± 0.34) were lower than HMR planar (1.44 ± 0.14) ( P isotope ( 123 I and 99m Tc) acquisition on a multipinhole CZT camera was feasible in patients with heart failure. However, this determination should be performed using transaxial reconstructed images and linear correction based on phantom data acquisitions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  9. Evaluation of Cadmium-Zinc-Telluride Detector-based Single-Photon Emission Computed Tomography for Nuclear Cardiology: a Comparison with Conventional Anger Single-Photon Emission Computed Tomography.

    Science.gov (United States)

    Niimi, Takanaga; Nanasato, Mamoru; Sugimoto, Mitsuo; Maeda, Hisatoshi

    2017-12-01

    The differences in performance between the cadmium-zinc-telluride (CZT) camera or collimation systems and conventional Anger single-photon emission computed tomography (A-SPECT) remain insufficient from the viewpoint of the user. We evaluated the performance of the D-SPECT (Spectrum Dynamics, Israel) system to provide more information to the cardiologist or radiological technologist about its use in the clinical field. This study evaluated the performance of the D-SPECT system in terms of energy resolution, detector sensitivity, spatial resolution, modulation transfer function (MTF), and collimator resolution in comparison with that of A-SPECT (Bright-View, Philips, Japan). Energy resolution and detector sensitivity were measured for Tc-99m, I-123, and Tl-201. The SPECT images produced by both systems were evaluated visually using the anthropomorphic torso phantom. The energy resolution of D-SPECT with Tc-99m and I-123 was approximately two times higher than that of A-SPECT. The detector sensitivity of D-SPECT was higher than that of A-SPECT (Tc-99m: 4.2 times, I-123: 2.2 times, and Tl-201: 5.9 times). The mean spatial resolution of D-SPECT was two times higher than that of A-SPECT. The MTF of D-SPECT was superior to that of the A-SPECT system for all frequencies. The collimator resolution of D-SPECT was lower than that of A-SPECT; however, the D-SPECT images clearly indicated better spatial resolution than the A-SPECT images. The energy resolution, detector sensitivity, spatial resolution, and MTF of D-SPECT were superior to those of A-SPECT. Although the collimator resolution was lower than that of A-SPECT, the D-SPECT images were clearly of better quality.

  10. Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels

    International Nuclear Information System (INIS)

    Cyrs, William D.; Avens, Heather J.; Capshaw, Zachary A.; Kingsbury, Robert A.; Sahmel, Jennifer; Tvermoes, Brooke E.

    2014-01-01

    Grid-connected solar photovoltaic (PV) power is currently one of the fastest growing power-generation technologies in the world. While PV technologies provide the environmental benefit of zero emissions during use, the use of heavy metals in thin-film PV cells raises important health and environmental concerns regarding the end-of-life disposal of PV panels. To date, there is no published quantitative assessment of the potential human health risk due to cadmium leaching from cadmium telluride (CdTe) PV panels disposed in a landfill. Thus, we used a screening-level risk assessment tool to estimate possible human health risk associated with disposal of CdTe panels into landfills. In addition, we conducted a literature review of potential cadmium release from the recycling process in order to contrast the potential health risks from PV panel disposal in landfills to those from PV panel recycling. Based on the results of our literature review, a meaningful risk comparison cannot be performed at this time. Based on the human health risk estimates generated for PV panel disposal, our assessment indicated that landfill disposal of CdTe panels does not pose a human health hazard at current production volumes, although our results pointed to the importance of CdTe PV panel end-of-life management. - Highlights: • Analysis of possible human health risk posed by disposal of CdTe panels into landfills. • Qualitative comparison of risks associated with landfill disposal and recycling of CdTe panels. • Landfill disposal of CdTe panels does not pose a human health hazard at current production volumes. • There could be potential risks associated with recycling if not properly managed. • Factors other than concerns over toxic substances will likely drive the decisions of how to manage end-of-life PV panels

  11. Americium-curium separation by means of selective extraction of hexavalent americium using a centrifugal contactor

    International Nuclear Information System (INIS)

    Musikas, C.; Germain, M.; Bathellier, A.

    1979-01-01

    This paper deals with Am (VI) - Cm (III) separation in nitrate media. The kinetics of oxidation of Am (III) by sodium persulfate in the presence of Ag + ions were reinvestigated by studying the effect of additions of small amounts of reagents which do not drastically change the distribution coefficients of Am (VI) or Cm (III) ions. Organo phosphorus solvents were selected because they are radiation resistant, possess weak reductant properties and that their affinity for hexavalent ion is high. The operating procedure was selected by consideration of the results of the two previous investigations. This can be done by using a centrifugal contactor enabling in to set organic-aqueous phase contact time in accordance with the kinetics of extraction of Am (VI), oxidation of Am (III) in aqueous phase, and reduction of Am (VI) in organic phase

  12. Left ventricular function assessment using 123I/99mTc dual-isotope acquisition with two semi-conductor cadmium–zinc–telluride (CZT cameras: a gated cardiac phantom study

    Directory of Open Access Journals (Sweden)

    Tanguy Blaire

    2016-11-01

    Full Text Available Abstract Background The impact of increased energy resolution of cadmium–zinc–telluride (CZT cameras on the assessment of left ventricular function under dual-isotope conditions (99mTc and 123I remains unknown. The Amsterdam-gated dynamic cardiac phantom (AGATE, Vanderwilt techniques, Boxtel, The Netherlands was successively filled with a solution of 123I alone, 99mTc alone, and a mixture of 123I and 99mTc. A total of 12 datasets was acquired with each commercially available CZT camera (DNM 530c, GE Healthcare and DSPECT, Biosensors International using both energy windows (99mTc or 123I with ejection fraction set to 33, 45, and 60 %. End-diastolic (EDV and end-systolic (ESV volumes, ejection fraction (LVEF, and regional wall motion and thickening (17-segment model were assessed using Cedars-Sinai QGS Software. Concordance between single- and dual-isotope acquisitions was tested using Lin’s concordance correlation coefficient (CCC and Bland–Altman plots. Results There was no significant difference between single- or simultaneous dual-isotope acquisition (123I and 99mTc for EDV, ESV, LVEF, or segmental wall motion and thickening. Myocardial volumes using single- (123I, 99mTc and dual-isotope (reconstructed using both 123I and 99mTc energy windows acquisitions were, respectively, the following: EDV (mL 88 ± 27 vs. 89 ± 27 vs. 92 ± 29 vs. 90 ± 26 for DNM 530c (p = NS and 82 ± 20 vs. 83 ± 22 vs. 79 ± 19 vs. 77 ± 20 for DSPECT (p = NS; ESV (mL 40 ± 1 vs. 41 ± 2 vs. 41 ± 2 vs. 42 ± 1 for DNM 530c (p = NS and 37 ± 5 vs. 37 ± 1 vs. 35 ± 3 vs. 34 ± 2 for DSPECT (p = NS; LVEF (% 52 ± 14 vs. 51 ± 13 vs. 53 ± 13 vs. 51 ± 13 for DNM 530c (p = NS and 52 ± 16 vs. 54 ± 13 vs. 54 ± 14 vs. 54 ± 13 for DSPECT (p = NS; regional motion (mm 6.72 ± 2.82 vs. 6.58 ± 2.52 vs. 6.86 ± 2.99 vs. 6.59 ± 2

  13. Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe{sub 1-x}Te{sub x}: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, Ali Hussain, E-mail: maalidph@yahoo.co.uk [Institute of Physical Biology-South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Kityk, I.V. [Electrical Engineering Department, Technical University of Czestochowa, Al. Armii Krajowej 17/19, Czestochowa (Poland); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique de la Matiere (LPQ3 M), universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Auluck, S. [National Physical Laboratory Dr. K S Krishnan Marg, New Delhi 110012 (India)

    2011-06-16

    Highlights: > Theoretical study of effect of vary Te content on band structure, density of states, linear and nonlinear optical susceptibilities of CdSe{sub 1-x}Te{sub x}. > Increasing Te content leads to a decrease in the energy band gap. > Significant enhancement of the electronic properties as a function of tellurium concentration - Abstract: An all electron full potential linearized augmented plane wave method, within a framework of GGA (EV-GGA) approach, has been used for an ab initio theoretical study of the effect of increasing tellurium content on the band structure, density of states, and the spectral features of the linear and nonlinear optical susceptibilities of the cadmium-selenide-telluride ternary alloys CdSe{sub 1-x}Te{sub x} (x = 0.0, 0.25, 0.5, 0.75 and 1.0). Our calculations show that increasing Te content leads to a decrease in the energy band gap. We find that the band gaps are 0.95 (1.76), 0.89 (1.65), 0.83 (1.56), 0.79 (1.44) and 0.76 (1.31) eV for x = 0.0, 0.25, 0.5, 0.75 and 1.0 in the cubic structure. As these alloys are known to have a wurtzite structure for x less than 0.25, the energy gaps are 0.8 (1.6) eV and 0.7 (1.55) eV for the wurtzite structure (x = 0.0, 0.25) for the GGA (EV-GGA) exchange correlation potentials. This reduction in the energy gaps enhances the functionality of the CdSe{sub 1-x}Te{sub x} alloys, at least for these concentrations, leading to an increase in the effective second-order susceptibility coefficients from 16.75 pm/V (CdSe) to 18.85 pm/V (CdSe{sub 0.75}Te{sub 0.25}), 27.23 pm/V (CdSe{sub 0.5}Te{sub 0.5}), 32.25 pm/V (CdSe{sub 0.25}Te{sub 0.75}), and 37.70 pm/V (CdTe) for the cubic structure and from 12.65 pm/V (CdSe) to 21.11 pm/V (CdSe{sub 0.75}Te{sub 0.25}) in the wurtzite structure. We find a nonlinear relationship between the absorption/emission energies and composition, and a significant enhancement of the electronic properties as a function of tellurium concentration. This variation will help in

  14. Growth and characterization of bismuth telluride nanowires

    International Nuclear Information System (INIS)

    Picht, Oliver

    2010-01-01

    Polycrystalline Bi 2 Te 3 nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 μm. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi 2 Te 3 and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 μm thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  15. Fabrication and characterization of cadmium telluride, lead telluride and cadmium telluride/lead telluride superlattice thin films on Indium Tin Oxide (ITO)/glass substrates

    Science.gov (United States)

    Qin, Fei

    The objective of this work was to fabricate nanolayer films CdTe, PbTe and CdTe/PbTe superlattice structures on Indium Tin Oxide (ITO)/glass substrates. The purpose of this work is aimed at improving the efficiency of solar cells by enhanced optical absorption of light. The optical bandgap properties of the CdTe/PbTe superlattice structures were engineered to be employed as an absorber layer of a solar cell in order to optimize the absorption of the solar spectrum. Electrochemical Atomic Layer Deposition (EC-ALD) has been used to fabricate CdTe, PbTe and three different superlattice structures of CdTe/PbTe thin films on ITO-coated glass: (CdTe20/PbTe20)3, (CdTe10/PbTe20)3 and (CdTe5/PbTe20)3. These are intended to serve as the absorber layer of a solar cell. In our experiments, Cyclic Voltammetry (CV) and current monitoring helped us obtain appropriate deposition potentials. The grain sizes of the superlattices were studied by using Scanning Electron Microscopy (SEM). The chemical composition of the films was determined by Energy-Dispersive X-ray Spectroscopy (EDS). Optical absorption measurements were made in order to determine the band gap energy of the deposited films. We successfully shifted the bandgaps of CdTe/PbTe superlattices on ITO from 1.9 eV to 3.2 eV by changing the proportion of CdTe in the CdTe/PbTe films.

  16. Growth and characterization of bismuth telluride nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Picht, Oliver

    2010-05-26

    Polycrystalline Bi{sub 2}Te{sub 3} nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 {mu}m. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi{sub 2}Te{sub 3} and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 {mu}m thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  17. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposi- tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium acetate was used as cationic and sodium tellurite as anionic precursor in aqueous me-.

  18. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Characterization of nanocrystalline ... Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposition method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, ...

  19. Zinc telluride-cadmium chalkogenides heterojunctions

    International Nuclear Information System (INIS)

    Fedotov, Ya.A.; Konnikov, S.G.; Supalov, V.A.; Kondaurov, N.M.; Kovalev, A.N.; Vanyukov, A.V.

    1975-01-01

    Heterojunctions ZnTe-CdSe, ZnTe-CdS, ZnTe-CdSsub(x)Sesub(1-x) have been prepared and studied by means of an electron sonde and electroluminescence. Epitaxial layers of CdSe on oriented plates of ZnTe are grown by the method of a chemical transport reaction in the open system where purified hydrogen is used as a carrier and reagent. The substance to be evaporated is CdSe. The study of cathodoluminescence of cleaved surfaces of heterojunctions ZnTe-CdSe and ZnTe-CdS by a thin electron sonde shows that there exists the region of solid solutions in heterojunctions of such a type. Epitaxial heterojunctions ZnTe-CdX are structures of the type p + -p-n-n + . The study of spectra of electroluminescence of heterojunctions which are characterized by the region of negative resistance in the volt-ampere curve and photoluminescence of epitaxial films at 77 deg K allows the presence of radiation maxima to be established both for ZnTe and CdX. Heterojunctions ZnTe-CdSe on the basis of non-alloyed materials change the colour of luminescence from green to red on switching. A possibility is shown of preparation of luminescent diodes with preferential injection into ZnTe (green sources) and into CdSe (red sources)

  20. Transport properties of silver telluride in the solid and liquid states; Etude des proprietes de transport dans le tellurure d'argent Ag{sub 2}Te aux hautes temperatures a l'etat solide et a l'etat liquide

    Energy Technology Data Exchange (ETDEWEB)

    Pham, N.T. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Measurements of the electrical resistivity, Hall coefficient and thermoelectric power have been carried out for silver telluride over a large temperature range including both solid and liquid states. The analysis of the experimental data shows that in the solid state the transport properties are governed by an ambipolar process with an electron mobility much higher than the hole mobility ({mu}{sub n} = 10*{mu}{sub p}). It is found that the temperature dependence of the electron mobility can be represented by a T{sup -3} law. Deviations from the stoichiometric composition Ag{sub 2}Te have been studied. For all specimens, melting is accompanied by discontinuous variations in the transport properties. Above the melting point, the magnitude of the measured parameters and their temperature dependence show that liquid silver telluride behaves as a semiconductor. The contribution of Ag{sup +} ions to transport phenomena is suggested to account for the behaviour of the electrical properties. Experimental data have been analysed in terms of conventional theories. (author) [French] Les mesures de la resistivite electrique, du coefficient de Hall et du pouvoir thermoelectrique ont ete effectuees sur le tellurure d'argent dans un large domaine de temperature couvrant l'etat solide et l'etat liquide. L'analyse des resultats experimentaux obtenus a l'etat solide montre que les proprietes de transport sont gouvernees par le processus ambipolaire avec une mobilite des electrons beaucoup plus grande que celle des trous ({mu}{sub n} 10*{mu}{sub p}). On trouve que la mobilite des electrons varie avec la temperature suivant la loi T{sup -3}. Les ecarts de la composition stoechiometrique Ag{sub 2}Te ont ete etudies. Pour tous les echantillons, la fusion est caracterisee par des variations discontinues des proprietes de transport. Au dessus du point de fusion, la grandeur des parametres mesures ainsi que leur variation avec la temperature montrent que le

  1. Telluride School, Telluride, Colorado solar-energy-system performance evaluation, February 1982 - April 1982

    Science.gov (United States)

    Welch, K. M.

    In Colorado with a passive/active hybrid solar energy system designed to supply 40% of the heating load is discussed. The school is equipped with a 1428 square foot, double glazed Trombe wall, a 1392 square foot greenhouse with collection tube, and an auxiliary oil fired boiler. Monthly performance data are tabulated for the overall system and for the Trombe wall, greenhouse, and greenhouse storage. System operation is illustrated by graphs of typical Trombe wall insolation and temperatures and typical greenhouse insolation and temperatures.

  2. High efficiency cadmium telluride and zinc telluride based thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Sudharsanan, R.; Ringel, S.A.; Chou, H.C. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1992-10-01

    This report describes work to improve the basic understanding of CdTe and ZnTe alloys by growing and characterizing these films along with cell fabrication. The major objective was to develop wide-band-gap (1.6--1.8 eV) material for the top cell, along with compatible window material and transparent ohmic contacts, so that a cascade cell design can be optimized. Front-wall solar cells were fabricated with a glass/SnO{sub 2}/CdS window, where the CdS film is thin to maximize transmission and current. Wide-band-gap absorber films (E{sub g} = 1.75 eV) were grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques, which provided excellent control for tailoring the film composition and properties. CdZnTe films were grown by both MBE and MOCVD. All the as-grown films were characterized by several techniques (surface photovoltage spectroscopy, Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy (XPS)) for composition, bulk uniformity, thickness, and film and interface quality. Front-wall-type solar cells were fabricated in collaboration with Ametek Materials Research Laboratory using CdTe and CdZnTe polycrystalline absorber films. The effects of processing on ternary film were studied by AES and XPS coupled with capacitance voltage and current voltage measurements as a function of temperature. Bias-dependent spectral response and electrical measurements were used to test some models in order to identify and quantify dominant loss mechanisms.

  3. Fabrication of targets for transmutation of americium : synthesis of inertial matrix by sol-gel method. Procedure study on the infiltration of a radioactive solutions; Fabricacion de blancos para la transmutacion de americio: sintesis de matrices inertes por el metodo sol-gel. Estudio del procedimiento de infiltracion de disoluciones radiactivas

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Carretero, A. [Universidad Complutense de Madrid (Spain)

    2002-07-01

    made. In addition a new and unexpected phase formed by the reaction of americium with spinel during the high temperature synthesis process has been identified. This new phase could provide a unique menas to stabilise Am in one particular oxidation state. (Author)

  4. Study of the electrochemical oxidation of Am with lacunary heteropolyanions and silver nitrate; Etude de l'oxydation electrochimique de l'americium en presence d'heteropolyanions lacunaires et de nitrate d'argent en milieu aqueux acide

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D

    1999-07-01

    Electrochemical oxidation of Am(III) with certain lacunary heteropolyanions (LHPA {alpha}{sub 2}-P{sub 2}W{sub 17}O{sub 61}{sup 10-} or {alpha}SiW{sub 11}O{sub 39}{sup 8-}) and silver nitrate is an efficient way to prepare Am(VI). This document presents bibliographic data and an experimental study of the process. Thus, it has been established that Am(IV) is an intermediate species in the reaction and occurs in 1:1 (Amt{sup IV}LHPA) or 1:2 (Am {sup IV}(LHAP){sub 2}) complexes with the relevant LHPA. These 1:1 complexes of Am(IV) have been identified and isolated in this work whereas 1:2 complexes were known from previous studies. The reactivity of these complexes in oxidation shows that 1:1 complexes of Am(IV) are oxidised much more quickly than 1:2 complexes. Apparent stability constants of Am(III) and Am(IV) complexes with the relevant LHPA have been measured for a 1 M nitric acid medium. Thermodynamic data of the reaction are then assessed: redox potentials of Am pairs are computed for a 1 M nitric acid medium containing various amount of LHPA ligands. Those results show that the role of LHPA is to stabilize the intermediate species Am(IV) by lowering the Am(IV)/Am(III) pair potential of about 1 Volt. Nevertheless, if this stabilisation is too strong (i.e. of tungsto-silicate), the oxidation of Am(IV) requires high anodic potential (more than 2 V/ENH). Then, the faradic yield of the oxidation of americium is poor because of water oxidation. This study has also shown that the main role of silver is to catalyze the electrochemical oxidation of Am{sup IV}(LHPA){sub X} complexes. Indeed, these oxidations without silver are extremely slow. An oxygen tracer experiment has been performed during the oxidation of Am(III) in Am(VI). It has been shown that the oxygen atoms of Am(VI) (AMO{sub 2}{sup 2+}) come from water molecules of the solvent and not from the complexing oxygen atoms of the ligands. (author)

  5. Plutonium and americium behavior in coral atoll environments

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Jokela, T.A.; Brunk, J.L.; Eagle, R.J.

    1984-01-01

    Inventories of 239+240 Pu and 241 Am greatly in excess of global fallout levels persist in the benthic environments of Bikini and Enewetak Atolls. Quantities of 239+240 Pu and lesser amounts of 241 Am are continuously mobilizing from these sedimentary reservoirs. The amount of 239+240 Pu mobilized to solution at any time represents 0.08 to 0.09% of the sediment inventories to a depth of 16 cm. The mobilized 239+240 Pu has solute-like characteristics and different valence states coexist in solution - the largest fraction of the soluble plutonium is in an oxidized form (+V,VI). The adsorption of plutonium to sediments is not completely reversible because of changes that occur in the relative amounts of the mixed oxidation states in solution with time. Further, any characteristics of 239+240 Pu described at one location may not necessarily be relevant in describing its behavior elsewhere following mobilization and migration. The relative amounts of 241 Am to 239+240 Pu in the sedimentary deposits at Enewetak and Bikini may be altered in future years because of mobilization and radiological decay. Mobilization of 239+240 Pu is not a process unique to these atolls, and quantities in solution derived from sedimentary deposits can be found at other global sites. These studies in the equatorial Pacific have significance in assessing the long-term behavior of the transuranics in any marine environment. 22 references, 1 figure, 13 tables

  6. Gastrointestinal absorption of americium in rats: effect of citrate concentration

    International Nuclear Information System (INIS)

    Inaba, J.; Ishigure, N.; Oghiso, Y.; Sato, H.

    1994-01-01

    The gastrointestinal absorption of 241 Am was studied in relation to the amount of sodium citrate administered with it. Fasted Wistar strain female rats received 241 Am orally in sodium citrate solution of various concentrations and 5 days after administration animals were sacrificed and the retention and distribution of 241 Am was studied. The results indicated that the f 1 value was very high at about 10% of administered activity when 241 Am was given to fasted rats with a large amount of sodium citrate. (author)

  7. Further Studies of Plutonium and Americium at Thule, Greenland

    DEFF Research Database (Denmark)

    Aarkrog, Asker; Dahlgaard, Henning; Nilsson, Karen Kristina

    1984-01-01

    further away from the impact point and at some locations the vertical distribution indicated a downward displacement of Pu in the sediment column since 1974. Seawater and seaplants showed no evidence of the presence of Pu from sources other than fallout; but Pu in benthos varied nearly proportionally...

  8. Uptake of plutonium and americium by plants from soils

    International Nuclear Information System (INIS)

    Schulz, R.K.; Tompkins, G.A.; Babcock, K.L.

    1975-01-01

    Plant uptake of 239 , 240 Pu and 241 Am was studied on two soil samples collected on the Nevada Test Site. These soils had each been previously contaminated with the radionuclides by high explosive detonation of devices containing plutonium. The 239 PuO 2 equivalent diameters of plutonium bearing particles present in the soil samples were determined and found to be log-normal in the range of 0.2 to 0.7 μm. Particles were examined by electronmicroscopy and found to be 2 to 3 times larger than the 239 PuO 2 equivalent diameter. Electron microprobe analysis showed that these particles consisted primarily of Pu, U, and O, with Al, Si, Fe and Mg present in much smaller amounts. The plutonium distribution ratio (D. R. = nuclide concentration in plant/nuclide concentration in soil) was in the order of 10 -5 for barley plant vegetation and was 20 to 100 times lower for barley grain. The D. R. for 241 Am was in the order of 10 -4 for vegetative growth and 25-75 times lower for the grain. In other uptake experiments three different soils were utilized: slightly acid forest soil, neutral valley soil, and calcareous alkaline soil. The 239 240 Pu and 241 Am were added to the soil as nitrate or chloride solution to facilitate the addition of Pu to soil in different oxidation states. Where Pu in the higher oxidation states (nitrate) was added to the alkaline calcareous soil, the highest plant uptake was observed. In uptake experiments with wheat the plutonium distribution ratio of the grain ranged from about 4 x 10 -8 to 4 x 10 -6 . The 241 Am D. R.'s ranged from 3 x 10 -7 to 3 x 10 -5 . (U.S.)

  9. Biosorption of americium-241 by immobilized Rhizopus arrihizus

    International Nuclear Information System (INIS)

    Liao Jiali; Yang Yuanyou; Luo Shunzhong; Liu Ning; Jin Jiannan; Zhang Taiming; Zhao Pengji

    2004-01-01

    Rhizopus arrihizus (R. arrihizus), a fungus, which in previous experiments had shown encouraging ability to remove 241 Am from solutions, was immobilized by calcium alginate and other reagents. The various factors affecting 241 Am biosorption by the immobilized R. arrihizus were investigated. The results showed that not only can immobilized R. arrihizus adsorb 241 Am as efficiently as free R. arrihizus, but that also can be used repeatedly or continuously. The biosorption equilibrium was achieved within 2 h, and more than 94% of 241 Am was removed from 241 Am solutions of 1.08 MBq/l by immobilized R. arrihizu in the pH range 1-7. Temperature did not affect the adsorption on immobilized R. arrihizus in the range 15-45 deg. C. After repeated adsorption for 8 times, the immobilized R. arrihizus still adsorbed more than 97% of 241 Am. At this time, the total adsorption of 241 Am was more than 88.6 KBq/g, and had not yet reached saturation. Ninety-five percent of the adsorbed 241 Am was desorbed by saturated EDTA solution and 98% by 2 mol/l HNO 3

  10. Further Studies of Plutonium and Americium at Thule, Greenland

    DEFF Research Database (Denmark)

    Aarkrog, Asker; Dahlgaard, Henning; Nilsson, Karen Kristina

    1984-01-01

    Eleven years after the accidental loss of nuclear weapons in 1968, the fourth scientific expedition to Thule occurred. The estimated inventory of 1 TBq 239,240Pu in the marine sediments was unchanged when compared with the estimate based on the 1974 data. Plutonium from the accident had moved...

  11. Europium (III) and americium (III) stability constants with humic acid

    International Nuclear Information System (INIS)

    Torres, R.A.; Choppin, G.R.

    1984-01-01

    The stability constants for tracer concentrations of Eu(III) and Am(III) complexes with a humic acid extracted from a lake-bottom sediment were measured using a solvent extraction system. The organic extractant was di(2-ethylhexyl)-phosphoric acid in toluene while the humate aqueous phase had a constant ionic strength of 0.1 M (NaClO 4 ). Aqueous humic acid concentrations were monitored by measuring uv-visible absorbances at approx.= 380 nm. The total carboxylate capacity of the humic acid was determined by direct potentiometric titration to be 3.86 +- 0.03 meq/g. The humic acid displayed typical characteristics of a polyelectrolyte - the apparent pKsub(a), as well as the calculated metal ion stability constants increased as the degree of ionization (α) increased. The binding data required a fit of two stability constants, β 1 and β 2 , such that for Eu, log β 1 = 8.86 α + 4.39, log β 2 = 3.55 α + 11.06 while for Am, log β 1 = 10.58 α + 3.84, log β 2 = 5.32 α + 10.42. With hydroxide, carbonate, and humate as competing ligands, the humate complex associated with the β 1 constant is calculated to be the dominant species for the trivalent actinides and lanthanides under conditions present in natural waters. (orig.)

  12. Ecological behavior of plutonium and americium in a freshwater pond

    International Nuclear Information System (INIS)

    Emery, R.M.; Klopfer, D.C.; Garland, T.R.; Weimer, W.C.

    1975-03-01

    A Pu processing waste pond on the Hanford Reservation has been studied since mid-1973 to characterize the pond's limnology and determine the ecological behavior in this ecosystem. About 8.1 kg of Pu was reported to have been discharged into waste trenches leading to the pond. Mean ratios of isotopes in the sediments are 0.85 for 238 Pu to 239 240 Pu, 0.61 for 241 Am to 238 Pu, and 0.49 for 241 Am to 239 240 Pu. Levels of Pu and Am in the interstitial water range from 0.5 to 13 pCi/g (dry wt. of sediment). For 238 Pu in pond water the mean concentration is 0.007 pCi/l, for 239 240 Pu it is 0.002 pCi/l, and for 241 Am it is 1.08 pCi/l. The remaining biota had Pu and Am levels which were generally well below those of the sediments. (U.S.)

  13. A bioassay method for americium and curium in feces

    International Nuclear Information System (INIS)

    Alexandre Gagne; Dominic Lariviere; Joel Surette; Sheila Kramer-Tremblay; Xiongxin Dai; Candice Didychuk

    2013-01-01

    Fecal radiobioassay is an essential and sensitive tool to estimate the internal intake of actinides after a radiological incident. A new fecal analysis method, based on lithium metaborate fusion of fecal ash for complete sample dissolution followed by sequential column chromatography separation of actinides, has been developed for the determination of low-level Am and Cm in a large size sample. Spiked synthetic fecal samples were analyzed to evaluate method performance against the acceptance criteria for radiobioassay as defined by ANSI N13.30; both satisfactory accuracy and repeatability were achieved. This method is a promising candidate for reliable dose assessment of low level actinide exposure to meet the regulatory requirements of routine radiobioassay for nuclear workers and the public. (author)

  14. Biosorption of americium-241 by immobilized Rhizopus arrihizus

    Energy Technology Data Exchange (ETDEWEB)

    Liao Jiali E-mail: liaojiali@163.com; Yang Yuanyou; Luo Shunzhong; Liu Ning; Jin Jiannan; Zhang Taiming; Zhao Pengji

    2004-01-01

    Rhizopus arrihizus (R. arrihizus), a fungus, which in previous experiments had shown encouraging ability to remove {sup 241}Am from solutions, was immobilized by calcium alginate and other reagents. The various factors affecting {sup 241}Am biosorption by the immobilized R. arrihizus were investigated. The results showed that not only can immobilized R. arrihizus adsorb {sup 241}Am as efficiently as free R. arrihizus, but that also can be used repeatedly or continuously. The biosorption equilibrium was achieved within 2 h, and more than 94% of {sup 241}Am was removed from {sup 241}Am solutions of 1.08 MBq/l by immobilized R. arrihizu in the pH range 1-7. Temperature did not affect the adsorption on immobilized R. arrihizus in the range 15-45 deg. C. After repeated adsorption for 8 times, the immobilized R. arrihizus still adsorbed more than 97% of {sup 241}Am. At this time, the total adsorption of {sup 241}Am was more than 88.6 KBq/g, and had not yet reached saturation. Ninety-five percent of the adsorbed {sup 241}Am was desorbed by saturated EDTA solution and 98% by 2 mol/l HNO{sub 3}.

  15. High-Resolution Measurements of Neutron Energy Spectra from Americium-Beryllium and Americium-Boron Neutron Sources

    Science.gov (United States)

    Marsh, James W.

    Available from UMI in association with The British Library. A Helium-3 sandwich spectrometer incorporating two semiconductor detectors was designed and constructed to enable the measurement of high resolution neutron energy spectra in the energy range from 100 keV to 15 MeV. The instrument is novel in respect of the inclusion of an anode wire which enables the gas chamber to function as a gas proportional counter. Few similar instruments have been constructed and no similar instrument is known to be currently (1990) in use in the UK. The efficiency of the spectrometer was determined experimentally, using a Californium-252 spontaneous fission source, in the low-scatter facility of the National physical Laboratory. A Monte Carlo code has been written to determine the absolute efficiency over an energy range from 81 keV to 20 MeV. The calculated values were used to extrapolate the measured efficiency to higher energies. Furthermore the Monte Carlo code was used to determine certain operating parameters to optimise the efficiency of the spectrometer. The neutron energy spectra from two different size standard Am-Be neutron sources and a standard Am-B neutron source available at NPL were measured. Although these types of neutron sources have been subject to energy spectra measurements elsewhere, the present work improves considerably on the previous poorer energy resolution and energy range. The new data indicates for the three neutron sources studied that the ambient dose equivalent, H*(10) per unit fluence, for each, were identical, being within 2% of 3.70 E-10 Sv cm^2.

  16. Cadmium Telluride, Cadmium Telluride/Cadmium Sulfide Core/Shell, and Cadmium Telluride/Cadmium Sulfide/Zinc Sulfide Core/Shell/Shell Quantum Dots Study

    Science.gov (United States)

    Yan, Yueran

    CdTe, CdTe/CdS core/shell, and CdTe/CdS/ZnS core/shell/shell quantum dots (QDs) are potential candidates for bio-imaging and solar cell applications because of some special physical properties in these nano materials. For example, the band gap energy of the bulk CdTe is about 1.5 eV, so that principally they can emit 790 nm light, which is in the near-infrared range (also called biological window). Moreover, theoretically hot exciton generated by QDs is possible to be caught since the exciton relaxation process in QDs is slower than in bulk materials due to the large intraband energy gap in QDs. In this dissertation, we have synthesized the CdTe and CdTe/CdS core/shell QDs, characterized their structure, and analyzed their photophysical properties. We used organometallic methods to synthesize the CdTe QDs in a noncoordinating solvent. To avoid being quenched by air, ligands, solvent, or other compounds, CdS shell was successfully deposited on the CdTe QDs by different methods, including the slow injection method, the successive ion layer adsorption and reaction (SILAR) method, and thermal-cycling coupled single precursor method (TC-SP). Our final product, quasi-type- II CdTe/CdS core/shell QDs were able to emit at 770 nm with a fluorescence quantum yield as high as 70%. We also tried to deposit a second shell ZnS on CdTe/CdS core/shell QDs since some compounds can quench CdTe/CdS core/shell QDs. Even though different methods were used to deposit ZnS shell on the CdTe/CdS core/shell QDs, CdTe/CdS/ZnS core/shell/shell QDs still can be quenched. Furthermore, the CdTe/CdS core/shell and CdTe/CdS/ZnS core/shell/shell QDs were transferred into aqueous phase, phosphate buffered saline or deionized water, by switching the hydrophilic ligands (thiol or PEG ligands). The thioglycolic acid (TGA)-capped CdTe/CdS core/shell QDs can be kept in aqueous phase with high fluorescence quantum yield (60%--70%) for more than two months. However, some other compounds in organic or aqueous phase can quench CdTe/CdS QDs. Additionally, the stability of the different ligands capped CdTe/CdS QDs was tested by dialysis measurement, the hydrodynamic diameters of CdTe and CdTe/CdS core/shell QDs were measured by dynamic light scattering, and dissolving issue was found when CdTe and CdTe/CdS core/shell QDs were diluted in CHCl3. We have characterized the CdTe core and the CdTe/CdS core/shell QDs by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and ICP-OES measurements. We have found that the CdTe core was of a zincblende structure, and the shell was a wurtzite structure. And the CdTe/CdS QDs were core/shell QDs instead of alloying QDs. We have also analyzed the photophysical properties of CdTe and CdTe/CdS core/shell QDs. Time-resolved photoluminescence (PL) measurements showed the emission decay lifetimes in the tens of nanoseconds. Additionally, ultrafast charge carrier relaxation dynamics of the CdTe core and CdTe/CdS core/shell QDs were studied by the femtosecond transient absorption (TA) spectroscopy. The transient absorption spectra of CdTe and CdTe/CdS core/shell QDs showed multiple bleaches, which have been assigned to the 1S3/2(h)-1S(e), 2S3/2(h)-1S(e), and 1P3/2(h)-1P(e) transitions. The spectral shifts of these bleaches after shell deposition have been analyzed in the context of a quasi-type-II carrier distribution in the core/shell samples, and interestingly the red shift was only contributed from the conduction band energy levels shifting to lower energy. In addition, the ultrafast evolution of these bleach features has been examined to extract electron cooling rates in these samples. A fast decay component in the 1S3/2(h)-1S(e) transition of the small CdTe QDs was discovered due to the hole being trapped by the defects on the surface of QD. Further, we have studied the PL quenching process of the air exposed CdTe QDs via the PL decay and transient absorption measurements. Oxygen was shown to cause strong PL quenching of the CdTe QDs. There was no significant difference of the

  17. Induced superconductivity in the topological insulator mercury telluride

    International Nuclear Information System (INIS)

    Maier, Luis

    2015-01-01

    The combination of a topological insulator (TI) and a superconductor (S), which together form a TI/S interface, is expected to influence the possible surface states in the TI. It is of special interest, if the theoretical prediction of zero energy Majorana states in this system is verifiable. This thesis presents the experimental realization of such an interface between the TI strained bulk HgTe and the S Nb and studies if the afore mentioned expectations are met. As these types of interfaces were produced for the first time the initial step was to develop a new lithographic process. Optimization of the S deposition technique as well as the application of cleaning processes allowed for reproducible fabrication of structures. In parallel the measurement setup was upgraded to be able to execute the sensitive measurements at low energy. Furthermore several filters have been implemented into the system to reduce high frequency noise and the magnetic field control unit was additionally replaced to achieve the needed resolution in the μT range. Two kinds of basic geometries have been studied: Josephson junctions (JJs) and superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts with a small separation on a HgTe layer. These S/TI/S junctions are one of the most basic structures possible and are studied via transport measurements. The transport through this geometry is strongly influenced by the behavior at the two S/TI interfaces. In voltage dependent differential resistance measurements it was possible to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are able to traverse the HgTe gap between both interfaces multiple times while keeping phase coherence. Additionally using BTK theory it was possible to extract the interface transparency of several junctions. This allowed iterative optimization for the highest transparency via lithographic improvements at these interfaces. The increased transparency and thus the increased coupling of the Nb's superconductivity to the HgTe results in a deeper penetration of the induced superconductivity into the HgTe. Due to this strong coupling it was possible to enter the regime, where a supercurrent is carried through the complete HgTe layer. For the first time the passing of an induced supercurrent through strained bulk HgTe was achieved and thus opened the area for detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded, which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic field compared to the JJ geometry allowed to conclude how the junction depends on the phase difference between both superconducting contacts. Theoretical calculations predicted a phase periodicity of 4π instead of 2π, if a TI is used as weak link material between the contacts, due to the presence of Majorana modes. It could clearly be shown that despite the usage of a TI the phase still was 2π periodic. By varying further influencing factors, like number of modes and phase coherence length in the junction, it might still be possible to reach the 4π regime with bound Majorana states in the future. A good candidate for further experiments was found in capped HgTe samples, but here the fabrication process still has to be developed to the same quality as for the uncapped HgTe samples. The second type of geometry studied in this thesis was a DC-SQUID, which consists of two parallel JJs and can also be described as an interference device between two JJs. The DC-SQUID devices were produced in two configurations: The symmetric SQUID, where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear, but instead has a 90 bent. These configurations allow to test, if the predicted uniformity of the superconducting band gap for induced superconductivity in a TI is valid. While the phase of the symmetric SQUID is not influenced by the shape of the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID in case of an uniform band gap and out of phase if p- or d-wave superconductivity is dominating the transport, due to the 90° junction. As both devices are measured one after another, the problem of drift in the coil used to create the magnetic field has to be overcome in order to decide if the oscillations of both types of SQUIDs are in phase. With an oscillation period of 0.5 mT and a drift rate in the range of 5.5 μT/h the measurements on both configurations have to be conducted in a few hours. Only then the total shift is small enough to compare them with each other. For this to be possible a novel measurement system based on a real time micro controller was programmed, which allows a much faster extraction of the critical current of a device. The measurement times were reduced from days to hours, circumventing the drift problems and enabling the wanted comparison. After the final system optimizations it has been shown that the comparison should now be possible. Initial measurements with the old system hinted that both types of SQUIDs are in phase and thus the expected uniform band gap is more likely. With all needed optimizations in place it is now up to the successors of this project to conclusively prove this last point. This thesis has proven that it is possible to induce superconductivity in strained bulk HgTe. It has thus realized the most basic sample geometry proposed by Fu and Kane in 2008 for the appearance of Majorana bound states. Based on this work it is now possible to further explore induced superconductivity in strained bulk HgTe to finally reach a regime, where the Majorana states are both stable and detectable.

  18. Synthesis of copper telluride nanowires using template-based ...

    Indian Academy of Sciences (India)

    Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4.81, 8.93, 21, ...

  19. Handbook of Phase Transition Sulfides, Selenides and Tellurides,

    Science.gov (United States)

    1984-07-01

    Cinnabar) ........ A-108 In2S3 (Indium Sulfide or 01-Indium Trisulfide) ...... A-113 MnS (Manganese Monosulfide) ... .... .. .......... A-116 - MnS2...1n2S 3 Indium Sulfide or Di-Indium Trisulflde In2S3 exists as cubic a-In 2S3 and tetragonal 0-In 2S3. Until recently, no detailed studies on the...structure and the vibrational properties of In2S3 have been reported. 0-In 2S3 is the stable room temperature phase. At 420°C there is a transition to c

  20. Combustion synthesis and characterization of uranium and thorium tellurides

    International Nuclear Information System (INIS)

    Czechowicz, D.G.

    1985-10-01

    This report describes an investigation of the chemical systems uranium-tellurium and thorium-tellurium. A novel synthesis technique, combustion synthesis, which uses the exothermic heat of reaction rather than externally supplied heat, was utilized to form the phases UTe, U 3 Te 4 , and UTe 2 in the U-Te system and the phases ThTe, Th 2 Te 3 , and ThTe 2 in the Th-Te system from reactions of the type U/sub x/ + Te/sub y/ = U/sub x/Te/sub y/. With this synthetic method, U-Te and Th-Te products could be formed in a matter of seconds, and the purity of the products was often greater than that of the starting materials used. Control over final product stoichiometry was found to be very difficult. The product phase distribution observed in combustion products, as determined by x-ray diffraction, electron microprobe, and optical metallographic methods, was found to be spatially complex. Lattice constants were calculated from x-ray diffraction patterns for the compounds UTe, U 3 Te 4 , and ThTe. SOLGASMIX thermodynamic equilibrium calculations were performed using available and estimated thermodynamic data on the system U-Te-O in an attempt to understand the products formed by combustion. Adiabatic combustion reaction temperatures for specific U-Te and Th-Te reactions were also calculated utilizing available and estimated thermodynamic data. 71 refs., 31 figs., 15 tabs

  1. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    The deposited film has been characterised by X-ray diffraction (XRD), atomic forcemicroscopy (AFM), and UV-VIS-NIR spectrophotometer. The polycrystalline and cubic structure of the sample has been confirmed by XRD. The order parameter(s), which determines the crystallinity and good environmental stability of the ...

  2. Study and microscopic characterization of the cadmium telluride deep levels

    International Nuclear Information System (INIS)

    Biglari, B.

    1989-05-01

    The spectroscopic methods PICTS, QTS and CTS were developed and perfected to investigate deep level analysis of high resistivity CdTe crystals which were either undoped, or doped with chlorine and copper. Crystals which were grown in space were also investigated. The main characterization of defect levels was determined and different correlations were established between the material's resistivity, chemical residues, dopant concentration and the nuclear radiation detector parameters. Using PICTS and CTS techniques, the generation of defects, under strong gamma-ray irradiation and particle bombardment was also studied. The influence of hydrogen on the main electrical characteristics of CdTe, in particular its ability to passivate the electrical activity of many deep defect and impurity states have been demonstrated. The compensation effects of Cl, Cu and H + are interpreted using the qualitative models based on different possibilities of pairing or triplet formation between the ions of these dopants and those of defects [fr

  3. Doping induced enhanced density of states in bismuth telluride

    Science.gov (United States)

    Narendra, Namita; Norouzzadeh, Payam; Vashaee, Daryoosh; Kim, Ki Wook

    2017-12-01

    Power factor enhancement through resonant doping is explored in Bi2Te3 based on a detailed first-principles study. Of the dopant atoms investigated, it is found that the formation of resonant states may be achieved with In, Po, and Na, leading potentially to a significant increase in the thermoelectric efficiency at room temperature. While doping with Po forms twin resonant state peaks in the valence and conduction bands, the incorporation of Na or In results in the resonant states close to the valence band edge. Further analysis reveals the origin of these resonant states. Transport calculations are also carried out to estimate the anticipated level of enhancement.

  4. Surface treatment and protection method for cadmium zinc telluride crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-01-01

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water.

  5. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  6. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    J U Ahamed

    2017-08-31

    ZnTe) thin film on glass substrate in order to investigate the ... photovoltaic solar cells, light-emitting diodes, laser diodes, microwave devices .... integrated intensity ratio of a super lattice peak to a fun- damental peak. Comparing ...

  7. Telluride glass step index fiber for the far infrared

    NARCIS (Netherlands)

    Maurugeon, S.; Boussard-Plédel, C.; Troles, J.; Faber, A.J.; Lucas, P.; Zhang, X.H.; Lucas, J.; Bureau, B.

    2010-01-01

    Nulling interferometry is an important technique under development for the DARWIN planet finding mission which enables the detection of the weak infrared emission lines of an orbiting planet. This technique requires the use of single mode optical fibers transmitting light as far as possible in the

  8. Acceptors in cadmium telluride. Identification and electronic structure

    International Nuclear Information System (INIS)

    Molva, E.

    1983-11-01

    It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined [fr

  9. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    J U Ahamed

    2017-08-31

    Aug 31, 2017 ... tricity) activity of ZnTe homojunction diodes showed open- circuit voltage of 0.9 V under one-sun intensity ... The boat was heated indirectly by passing current through the electrodes. The glass slide was ... scope (SEM), transmission electron microscope (TEM) and scanning electron microscope (STM) are ...

  10. Sulfide, selenide and telluride glassy systems for optoelectronic applications

    Czech Academy of Sciences Publication Activity Database

    Ležal, Dimitrij; Zavadil, Jiří; Procházka, M.

    2005-01-01

    Roč. 7, č. 5 (2005), 2281-2291 ISSN 1454-4164 R&D Projects: GA ČR(CZ) GA104/05/0878 Institutional research plan: CEZ:AV0Z20670512 Keywords : transmission * fluorescence spectroscopy * chalcogenide glass es * optical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 1.138, year: 2005

  11. A portable cadmium telluride multidetector probe for cardiac function monitoring

    CERN Document Server

    Arntz, Y; Dumitresco, B; Eclancher, B; Prat, V

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) wh...

  12. Carrier dynamics in femtosecond-laser-excited bismuth telluride

    Science.gov (United States)

    Wang, J. L.; Guo, L.; Ling, C.; Song, Y. M.; Xu, X. F.; Ni, Z. H.; Chen, Y. F.

    2016-04-01

    The carrier dynamics of B i2T e3 is studied using the femtosecond pump-probe technique. Three distinct processes, including free carrier absorption, band filling, and electron-hole recombination, are found to contribute to the reflectivity changes. The two-temperature model is used to describe the intraband energy relaxation process of carriers, and the Drude contribution well explains the intensity dependence of the peak values of the nonoscillatory component in the reflectivity signal. The combined effects of free carrier absorption and band filling result in a reflection minimum at about 2 ps after laser excitation. The nonzero background signal increases linearly with the pump fluence, which is attributed to the electron-hole recombination. Finally, our results provide an illustration of investigating the carrier dynamics in semiconductors from the ultrafast reflectivity spectra.

  13. Impurity states of vanadium in cadmium and zinc tellurides

    International Nuclear Information System (INIS)

    Gnatenko, Yu.P.; Farina, I.A.

    1996-01-01

    Low-temperature optical (4.5 K) and photoelectrical properties of CdTe and ZnTe crystals doped by vanadium are invetigated. The energies of carrier transition to valence and conduction bands, Mott-Habbard energy for 3d 3 -ion vanadium in both crystals are determined. The resonance of the excited 4 T l ( 4 P)-state of V 2+ -ion with the conduction band of CdTe crystal is found. 8 bibl.; 4 figs

  14. Theoretical Investigation of Point Defects of Mercury Cadmium Telluride.

    Science.gov (United States)

    1985-11-01

    STANDARDS M93 A bL )% SECURITY CLASSIFICATION Of T HIS PAGE (W~ henl Date Enteed) MSL OY -FRiE’UUiU ’zuL REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOT RE RT...TEMPERATURE, K ’t iIs Figure 15: Theoretical results of electron mobility asa function of temperature for three different Hg8 CdxTe samples in Fig. 14

  15. Synthesis of copper telluride nanowires using template-based ...

    Indian Academy of Sciences (India)

    2007; Pan et al 2008; Zhang and Johnson 2009). Several me- thods are reported to have been used for the fabrication of nanosensors (Suzuoki et al 1987; Caillaud et al 1993; Jin and Ying 1994; Inukai et al 1995; Mahmood et al 1995;. Peulon and Lincot 1996; Hussain et al 2010). However, capacitive (chemical) sensors ...

  16. Measurements of Thermal Emittance for Cesium Telluride Photocathodes at PITZ

    CERN Document Server

    Miltchev, V; Grabosch, H J; Han, J H; Krasilnikov, M; Oppelt, A; Petrosian, B; Staykov, L; Stephan, F

    2005-01-01

    The thermal emittance determines the lower emittance limit and its measurement is of high importance to understand the ultimate injector performance. In this contribution we present results of thermal emittance measurements under rf operation conditions for various Cs2Te cathodes and different accelerating gradients. Measurements of thermal emittance scaling with the cathode laser spot size are presented and analysed. The significance of the Schottky effect in the emittance formation process is discussed.

  17. Growth of cadmium zinc telluride by liquid phase electroepitaxy

    International Nuclear Information System (INIS)

    Armour, N.; Dost, S.; Sheibani, H.

    2006-01-01

    This study was undertaken to examine the feasibility of growing CdZnTe by liquid phase electroepitaxy. Based on our successful LPEE system of GaInAs, a new crucible to grow CdZnTe was developed. The development presented numerous difficulties. The physical properties of CdZnTe make this material very difficult to grow. All components of the system were investigated. Electromigration of the solute across the solution carries species towards the growth interface. In liquid Cd-Zn-Te, the CdTe and ZnTe species remain associated, contrary to the GaInAs system. Experiments showed that LPEE growth of CdZnTe is possible and the electromigration mechanism functions well in the CdZnTe solution. Despite this, other problems remained with the new LPEE system. The preparation of the solution proved difficult without pressurizing the LPEE crucible. Control of the reaction required the use of pre-compounded CdTe and ZnTe. Proper control of the solution saturation is imperative to ensure minimal dissolution of the seed prior to growth initiation and a reasonable growth rate during growth. The solution remained an issue during the duration of growth due to the high vapor pressures of the constituents. Tellurium evaporation during growth could lower solution volume until electrical contact across the solution is broken. Careful preparation of appropriate solution volume was imperative for successful growth. In LPEE, a uniform electric current passage across the growth interface is necessary for uniform and stable growth interface. This requires the design of a uniform contact zone between the bottom graphite electrode and the seed crystal. The contact zone issue was not adequately resolved in this study. However, a number of successful growth runs were achieved despite the electrical contact problems. Results show that the LPEE of growth CdZnTe is feasible. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. The Cadmium Zinc Telluride Imager on AstroSat

    Indian Academy of Sciences (India)

    V. Bhalerao

    2017-06-19

    Jun 19, 2017 ... In-First-Out (FIFO) data buffer, which are read out by the front-end electronics board (section 3.4). Based on expected count rates from bright sources, we fixed ... amplifiers. The post-amplifier signal is fed to an analog comparator along with lower-level discriminator level. Front-end electronics (section 3.4) ...

  19. Phosphorus-doped bismuth telluride films by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian, E-mail: jzhou@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen 361005 (China); Lin, Qinghan; Li, Hengyi [Department of Materials Science and Engineering, College of Materials, Xiamen 361005 (China); Cheng, Xuan [Department of Materials Science and Engineering, College of Materials, Xiamen 361005 (China); Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005 (China)

    2013-08-15

    Phosphorus-doped Bi{sub 2}Te{sub 3} films were synthesized on a stainless-steel electrode by electrochemical deposition. X-ray diffraction, scanning electron microscopy and transmission electron microscopy confirmed that the films are single-phased Bi{sub 2}Te{sub 3} solid solutions with a rhombohedral structure. The as-prepared films exhibit n-type characteristics with the Hall coefficient −1.76E−2 m{sup 3} C{sup −1} and the electrical conductivity 280 S cm{sup −1}. The thermal conductivity is 0.47 W m{sup −1} K{sup −1}, which is as low as one-third of the value observed in the bulk material. The doped P atoms occupy the interstitial positions between the two adjacent Te(1) layers connected by Van der Waals interaction in Bi{sub 2}Te{sub 3}. - Graphical abstract: Display Omitted - Highlights: • Phosphorus-doped Bi{sub 2}Te{sub 3} films were synthesized on a stainless-steel electrode by electrochemical deposition. • The thermal conductivity of the film is 0.47 W m{sup −1} K{sup −1}, which is one-third of the value observed in the bulk material. • The doped P atoms occupy the interstitial positions in Bi{sub 2}Te{sub 3}.

  20. Cadmium Telluride and Grain Boundaries: A Preliminary Study

    Science.gov (United States)

    Liao, Michael Evan

    The efficacy of the CdCl2 treatment on polycrystalline CdTe-based solar cells was discovered over a quarter of a century ago; and yet, the exact mechanism of this treatment is still not fully understood to this day. In fact, the lack of understanding stems from a debate on the exact role of grain boundaries in CdCl2-treated CdTe solar cells. Some hypothesize that the CdCl2-treatment causes grain boundaries to become beneficial to solar cell performance while others disagree and claim that the treatment simply mitigates the harmful effects of grain boundaries via passivation. A future goal of this project is to determine which, if either, hypothesis is correct by direct wafer bonding single crystalline CdTe. Direct wafer bonding of single crystalline materials would create only one grain boundary at the bonded interface. This approach allows the orientation and surface chemistry of interfaces to be controlled in order to study the chemistry of grain boundaries methodically. However, before any direct wafer bonding can be done, a preliminary study of single crystalline CdTe is necessary. High-quality direct wafer bonding can only be achieved if the surfaces of each wafer satisfy certain requirements. Additionally, analyzing single crystalline CdTe materials prior to bonding is crucial in order to make any insightful connections between results found from direct bonding of single crystalline CdTe and what is observed in polycrystalline CdTe. First, the surface of an (001) CdTe layer epitaxially grown on an (001) InSb substrate is studied using atomic force microscopy. Stacking faults on the CdTe surface are observed and the thickness of the grown CdTe epilayer is calculated by considering the interplanar angles between the (001) and (111) crystallographic planes as well as the dimensions of the stacking faults. While the stacking faults will inhibit successful wafer bonding, the roughness of the regions outside the stacking faults is 0.9 nm, which is an acceptable roughness for direct wafer bonding. High resolution x-ray diffraction is used to study the strain of the CdTe epilayer at the epilayer-substrate interface by generating reciprocal space maps of the (004), (115), and (335) crystallographic planes. It is found that CdTe grown on an (001) InSb substrate at a low growth temperature exhibits nearly 0% relaxation. As a result, the in-plane lattice parameter of the CdTe layer is maximally strained to match the smaller lattice parameter of the InSb substrate. Consequently, the CdTe lattice is tetragonally strained normal to the substrate surface, which causes the out-of-plane lattice parameter of CdTe to be larger than its intrinsic value. Lastly, a CdCl2-treated CdTe-CdS (p-type CdTe on n-type CdS) solar cell structure is simulated using a semiconductor-heterojunction simulation program. In literature, it has been reported that chlorine atoms from the treatment segregate along grain boundaries in polycrystalline CdTe and cause the formation of local p-n junctions by inverting the grain boundaries to n-type. The simulated structure includes one grain and 2 grain boundaries. The grain/bulk CdTe material is p-type while the grain boundaries are made to be n-type with varying doping concentrations. Both the conduction band and valence band energy exhibit downward sloping from the CdTe surface to the CdTe-CdS interface. This structure assumes that the grain boundaries are parallel to the CdTe-CdS interface. While these simulations do not prove the existence of the local type-inversion hypothesis, they do entertain a novel possibility for future devices fabrication methods.

  1. Chemical Short-Range Order in Selenide and Telluride Glasses.

    Science.gov (United States)

    Pethes, Ildikó; Chahal, Radwan; Nazabal, Virginie; Prestipino, Carmelo; Trapananti, Angela; Michalik, Stefan; Jóvári, Pál

    2016-09-01

    The structure of Ge20SbxSe80-x (x = 5, 15, 20) glasses was investigated by neutron diffraction, X-ray diffraction, and extended X-ray fine structure measurements at the Ge, Sb, and Se K-edges. For each composition, large-scale structural models were obtained by fitting simultaneously the experimental data sets in the framework of the reverse Monte Carlo simulation technique. It was found that the structures of these glasses can be described mostly by the chemically ordered network model. Ge-Se and Sb-Se bonds are preferred; Se-Se bonds in the Se-poor composition (x = 20) and M-M (M = Ge, Sb) bonds in strongly Se-rich glass (x = 5) are not needed. The quality of the fits was significantly improved by introducing Ge-Ge bonding in the nearly stoichiometric composition (x = 15), showing a violation of chemical ordering. The structure of Ge20SbxSe80-x was compared to that of several glasses from the three analogous systems (Ge-As-Se, Ge-As-Te, Ge-Sb-Te), and it was found that chemical short-range order becomes more pronounced upon substituting As with Sb and Se with Te. Ge-As-Se glasses behave as random covalent networks over a very broad composition range. Chemical short-range order and disorder coexist in both Te-rich and Te-poor Ge-As-Te glasses, whereas amorphous Ge14Sb29Te57 and Ge22Sb22Te56 are governed by strict chemical preferences.

  2. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the ...

  3. Mercury cadmium telluride implanted junction profile measurement and depth control

    Science.gov (United States)

    Zhou, Songmin; Lin, Chun; Li, Haibin; Wei, Yanfeng; Ye, Zhenhua; Ding, Ruijun; He, Li

    2014-06-01

    In this work, a novel junction profile measurement method is proposed. A serial of junctions were fabricated by B+ implantation. Then a beveled bar which was about 10mm long and several micrometers deep was formed by carefully controlled wet-etching. The remaining depth of n region changes from the full depth that is about 5.3mm after ion implantation to zero depending on its lateral position and the slope of the etching bar. Voltage-current and Laser Beam Induced Current (LBIC) measurements were applied to determine the HgCdTe junction edge. The LBIC signal orrectification characteristic indicates the existence of a PN junction. The junction depth is extracted from the position where the PN junction disappears and the slope of the etching bar. The junction depth of intrinsic doped HgCdTe was measured, which is about 2.4μm. A significant 0.4mm thick N-region was observed. Moreover, junction depths of samples annealed for different time were also investigated. By this method, it's possible to measure the three dimensional profile of a planar PN junction.

  4. Blocking contacts for N-type cadmium zinc telluride

    Science.gov (United States)

    Stahle, Carl M. (Inventor); Parker, Bradford H. (Inventor); Babu, Sachidananda R. (Inventor)

    2012-01-01

    A process for applying blocking contacts on an n-type CdZnTe specimen includes cleaning the CdZnTe specimen; etching the CdZnTe specimen; chemically surface treating the CdZnTe specimen; and depositing blocking metal on at least one of a cathode surface and an anode surface of the CdZnTe specimen.

  5. The Cadmium Zinc Telluride Imager on AstroSat

    Indian Academy of Sciences (India)

    V. Bhalerao

    2017-06-19

    Jun 19, 2017 ... to obtain good background measurements. The final design driven by these considerations ... on 255-element pseudo-noise Hadamard set uniformly redundant arrays. Of sixteen possible such patterns, ..... spacecraft on-board memory are transmitted to ground during the visibility of spacecraft to ground ...

  6. Channeling in diatomic crystals. Application to zinc telluride

    International Nuclear Information System (INIS)

    Bontemps, Andre.

    1977-01-01

    The effects of implantation in ZnTe were analysed by the α or proton channelling methods. A theoretical study showed that the particles interact preferentially with certain rows in diatomic crystals. The channelling was then applied to the study of crystalline disorder brought about by implantation in ZnTe. The change in irradiation damage with the dose, implantation temperature and annealing temperature for the incident ions Zn, Ar, B, + H was followed. It was found that there was saturation of the damage for a given dose (10 15 /cm 2 ) explained by a balance between production and the recombination of defects. This impossibility to destroy the crystalline order completely is no doubt one of the many properties linked to the partially ionic nature of the atomic links of ZnTe that helps the rearrangement of a damaged crystalline lattice. This difference between ZnTe and covalent semiconductors appears also in the location of impurities, as the parameters were sought enabling the position of an impurity in a lattice to be predicted, by taking as starting point the conventional diagram of covalent semiconductors. Extrapolation to the ZnTe case proved to be difficult, for even when placed in a position of substitution the impurity does not behave as anticipated. B, Tl, F, Pb and Bi ions were implanted in turn. Capacitance determinations showed that implantations create a very thick compensated area in front of the paths of implanted ions. Furthermore, implantation of 65 Zn showed that under the effect of irradiation zinc migrated very rapidly towards the inside of the crystal (a few microns) before being trapped by a lattice defect. Since the electric behaviour is governed by the impurity and the defect at the same time, there no longer exists by correspondence between the electric measurement and the channelling [fr

  7. Neutron activation analysis of manganese-mercury telluride

    International Nuclear Information System (INIS)

    Sadykov, I. I.

    2003-01-01

    The triple semiconductor compound Mn x Hg 1-x Te is a worthwhile material for the development of infra-red detectors. It's properties, as well as other semiconductors ones depend on impurity elements content. So, analytical Purity control of Mn x Hg 1-x Te is required. Some procedures of the neutron activation analysis of Te[1], Hg [2] and that of their compounds (Cd x Hg 1-x Te [3], for instance) have been developed recently. However, no papers on the NAA of Mn x Hg 1-x Te have been found. This paper describes the procedure of the NAA of Mn x Hg 1-x Te based on anion-exchange chromatographic separation of impurity and matrix elements. Experimental The following reagents were used: commerciality available strongly based anion-exchange resin AW-17 (50-100 meash), hydrochloride hydrasine of analytical grade, solutions of HCl and HNO 3 prepared from concentrated acids of reagent grade. Separation processes were studied by radioactive tracers. The gamma-activity was measured on a HPGe detector GC1518 (efficiency 15 %, resolution 1,7 keV at 1332,5 keV line of 6 0C o) using DSA-1000 digital multichannel analyzer (Canberra, USA). Radioactive tracers were produced by irradiation of metals, salts or oxides of corresponding elements in WWR-SM water-water nuclear reactor. Irradiation of Mn x Hg 1-x Te samples and standards was carried out in a channel of WWR-SM reactor with a neutron flux density of 1.10 14 cm 2 .s -1 for 10 h. Solutions of manganese and mercury were prepared by dissolving their oxides in concentric hydrochloric acid. Solutions of tellurium were prepared by dissolving metallic tellurium in HCl:HNO 3 (3:1) mixture. Solution obtained was evaporated to dryness, the reside was dissolved in conc. HCl. To reduce tellurium to Te(IV) 1-2 mg of hydrazine were dissolved in solution at slight heating. Then, distilled water was added in a required quantities to get a desired concentration of HCl. The chromatographic behaviour of matrix and impurity elements was studied using chromatographic columns, filled with AW-17 resin (columns' i. d. 1.2 cm , resin layer height 10 cm, mobil phase volume 5.5 cm 3 ), prepared according to recommendations of [4]. 10 ml of the solution containing 61 mg of Te, 86 mg of Hg and 2.6 mg of Mn (That corresponds to 150 mg of Mn x Hg 1-x Te) and radioactive tracers were placed into chromatographic column and then impurities were eluted with 4 M HCl. Eluation rate was about 0.5-0.6 ml/min. Eluated was collected in a portions of 1 ml, followed by measuring it's gamma-activity. To study the distribution of matrix radionuclides along the column their activity was measured using a lead collimator

  8. Cadmium-zinc telluride detector arrays for synchrotron radiation applications

    Science.gov (United States)

    Kakuno, Edson M.; Camarda, Giuseppe S.; Siddons, D. P.

    2004-01-01

    We have begun a program to develop CZT-based detectors optimized for Synchrotron Radiation (SR) applications. SR provides high brightness beams of hard x-rays, typically in the range 5-100keV. Below 10keV, Peltier-cooled silicon detector arrays can provide high throughput with good spectroscopic resolution. At higher energies, only cryo-cooled germanium detectors or scintillation counters are available. Neither are easily available in large arrays, and scintillation counters lack energy resolution. CZT offers a solution to both these problems. Our development has focused on surface preparation and contact definition technologies which minimize device leakage currents while allowing high-definition contact patterns suitable for SR applications. We have used SR also for diagnostic purposes in these developments, both for detector testing and material characterization. X-ray diffraction, Infrared microscopy and photoemission are all relevant SR-based tools which we are using in our work. As an example, we have observed that bromine remains attached to the CZT surface after chemical etching, and is remarkably persistent in the face of surface cleaning and argon ion sputtering, as revealed by photoemission spectroscopy and x-ray absorption spectroscopy.

  9. Growth of cadmium zinc telluride by liquid phase electroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, Faculty of Engineering, University of Victoria, Victoria BC, V8W 3P6 (Canada); Sheibani, H. [Department of Industrial Engineering, Alhosn University, Abu Dhabi (United Arab Emirates)

    2006-10-15

    This study was undertaken to examine the feasibility of growing CdZnTe by liquid phase electroepitaxy. Based on our successful LPEE system of GaInAs, a new crucible to grow CdZnTe was developed. The development presented numerous difficulties. The physical properties of CdZnTe make this material very difficult to grow. All components of the system were investigated. Electromigration of the solute across the solution carries species towards the growth interface. In liquid Cd-Zn-Te, the CdTe and ZnTe species remain associated, contrary to the GaInAs system. Experiments showed that LPEE growth of CdZnTe is possible and the electromigration mechanism functions well in the CdZnTe solution. Despite this, other problems remained with the new LPEE system. The preparation of the solution proved difficult without pressurizing the LPEE crucible. Control of the reaction required the use of pre-compounded CdTe and ZnTe. Proper control of the solution saturation is imperative to ensure minimal dissolution of the seed prior to growth initiation and a reasonable growth rate during growth. The solution remained an issue during the duration of growth due to the high vapor pressures of the constituents. Tellurium evaporation during growth could lower solution volume until electrical contact across the solution is broken. Careful preparation of appropriate solution volume was imperative for successful growth. In LPEE, a uniform electric current passage across the growth interface is necessary for uniform and stable growth interface. This requires the design of a uniform contact zone between the bottom graphite electrode and the seed crystal. The contact zone issue was not adequately resolved in this study. However, a number of successful growth runs were achieved despite the electrical contact problems. Results show that the LPEE of growth CdZnTe is feasible. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Abstract. Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by ...

  11. The Cadmium Zinc Telluride Imager on AstroSat

    Indian Academy of Sciences (India)

    Inter University Centre for Astronomy and Astrophysics, Pune 411 007, India. S. R. T. M. University, Nanded, 431 606, India. Tata Institute of Fundamental Research, Homi Babha Road, Mumbai 400 005, India. Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India. Physical Research Laboratory, Ahmedabad ...

  12. Influence of ampoule coatings on cadmium telluride solidification

    Science.gov (United States)

    Shetty, Rajaram; Wilcox, William R.; Regel, Liya L.

    1995-08-01

    CdTe was directionally solidified by the vertical Bridgman-Stockbarger technique. Quartz ampoules were used uncoated, coated with carbon, or with a transparent film of boron nitride. Wetting by molten CdTe on these surfaces was determined by contact angle measurements. Wetting increased in the following order: BN-coated quartz, carbon-coated quartz, uncoated quartz. Ingots solidified in uncoated ampoules adhered to the ampoule after growth. These ingots exhibited nucleation of new grains throughout the growth. Ingots solidified in carbon-coated or BN-coated ampoules did not adhere to the ampoules. Ingots solidified in BN-coated ampoules had many small elongated indentations along their surface, presumably due to bubbles on the ampoule surface during solidification. These indentations did not affect the grain structure. The dislocation densities measured on the (111)Cd surface using the Nakagawa etchant increased in the following order: BN-coated quartz, carbon-coated quartz, uncoated quartz. A cellular arrangement of dislocations was observed for both uncoated and carbon-coated quartz. No cellular structure was found with BN-coated quartz. A correspondence was seen between the mean etch pit density and the wetting property of the corresponding ampoule surface.

  13. Investigation of the retention and distribution of americium-241 in the baboon and the enhanced removal of americium-241 from the body by diethylenetriaminepentaacetic acid (DTPA)

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Cohen, N.; Wrenn, M.E.

    1975-01-01

    Experiments were performed to study the metabolism and distribution of intravenously administered 241 Am in the adult and juvenile baboon; in addition, decorporation therapy using Na 3 -CaDTPA was performed on selected baboons to assess the efficacy of this drug in removing systemic burdens of 241 Am from this primate species. Determination of the kinetics of 241 Am was accomplished principally by in vivo methodologies and by radiochemical analysis of 241 Am activity of biological material. The use of Na 3 -CaDTPA as a therapeutic agent for the removal of 241 Am from the body proved to be an effective form of treatment in the case of early administration. (U.S.)

  14. Rapid selective separation of americium/curium from simulated nuclear forensic matrices using triazine ligands

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Matthew A.; Livens, Francis R.; Heath, Sarah L. [Manchester Univ. (United Kingdom). Centre for Radiochemistry Research; Thompson, Paul; Marsden, Olivia J. [AWE, Aldermaston, Reading (United Kingdom); Harwood, Laurence M.; Hudson, Michael J. [Reading Univ. (United Kingdom). Dept. of Chemistry; Lewis, Frank W. [Reading Univ. (United Kingdom). Dept. of Chemistry; Northumbria Univ., Newcastle upon Tyne (United Kingdom). Dept. of Chemical and Forensic Sciences

    2015-07-01

    In analysis of complex nuclear forensic samples containing lanthanides, actinides and matrix elements, rapid selective extraction of Am/Cm for quantification is challenging, in particular due the difficult separation of Am/Cm from lanthanides. Here we present a separation process for Am/Cm(III) which is achieved using a combination of AG1-X8 chromatography followed by Am/Cm extraction with a triazine ligand. The ligands tested in our process were CyMe{sub 4}-BTPhen, CyMe{sub 4}-BTBP, CA-BTP and CA-BTPhen. Our process allows for purification and quantification of Am and Cm (recoveries 80% - 100%) and other major actinides in < 2 d without the use of multiple columns or thiocyanate. The process is unaffected by high level Ca(II)/Fe(III)/Al(III) (10 mg mL{sup -1}) and thus requires little pre-treatment of samples.

  15. Criteria Considered in Selecting Feed Items for Americium-241 Oxide Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-30

    The analysis in this document serves the purpose of defining a number of attributes in selection of feed items to be utilized in recovery/recycle of Pu and also production operations of 241AmO2 material intended to meet specification requirements. This document was written in response to a specific request on the part of the 2014 annual program review which took place over the dates of October 28-29, 2014. A number of feed attributes are noted including: (1) Non-interference with existing Pu recovery operations; (2) Content of sufficient 241Am to allow process efficiency in recovery operations; (3) Absence of indications that 243Am might be mixed in with the Pu/241Am material; (4) Absence of indications that Cm might be mixed in with the Pu/241Am material; (5) Absence of indications of other chemical elements that would present difficulty in chemical separation from 241Am; (6) Feed material not expected to present difficulty in dissolution; (7) Dose issues; (8) Process efficiency; (9) Size; (10) Hazard associated with items and package configuration in the vault; (11) Within existing NEPA documentation. The analysis in this document provides a baseline of attributes considered for feed materials, but does not presume to replace the need for technical expertise and judgment on the part of individuals responsible for selecting the material feed to be processed. This document is not comprehensive as regards all attributes that could prove to be important. The value of placing a formal QA hold point on accepting feed items versus more informal management of feed items is discussed in the summation of this analysis. The existing planned QA hold points on 241AmO2 products produced and packaged may be adequate as the entire project is based on QA of the product rather than QA of the process. The probability of introduction of items that would inherently cause the241AmO2 products produced to be outside of specification requirements appears to be rather small.

  16. Role of americium interference in analysis of samples containing rare earths

    International Nuclear Information System (INIS)

    Mohapatra, P.K.; Adya, V.C.; Thulasidas, S.K.; Bhattacharyya, A.; Kumar, Mithlesh; Godbole, S.V.; Manchanda, V.K.

    2007-01-01

    Quality control of nuclear fuel samples requires precise estimation of rare earths which have high neutron absorption cross sections and act as neutron poisons. Am is generated by nuclear decay where as lanthanides may be present as impurities picked up during reprocessing/fuel fabrication. Precise estimation of the rare earths by ICP-AES method in presence of 241 Am is a challenging task due to the likelihood of spectral interference of the latter. Rare earths impurities in the purified Am sample were estimated by ICP-AES method. Known amounts of the rare earths viz. Sm, Eu, Dy and Gd were used as synthetic sample and the interference due to Am was investigated. (author)

  17. Extraction of Americium and Europium by Diphosphine Dioxides and Their Mixtures with Chlorinated Cobalt Dicarbollide

    International Nuclear Information System (INIS)

    R. Scott Herbst; Dean R. Peterman; Terry A. Todd

    2005-01-01

    Extraction of Am and Eu using mixtures of diphosphine dioxides (DPDO, e.g., (R1)2P(O)(CH2)nP(O)(R2)2 where R1, R2 = Ph, Bu; n = 1,2), with and without chlorinated cobalt dicarbollide (CCD) in the polar diluents 1,2-dichloroethane (DCE), meta-nitrobenzotrifluoride (F-3), bis-tetrafluoropropyl ether of diethylene glycol (F-8) and phenyltrifluoromethyl sulfone (FS-13) from HNO3, HClO4, LiNO3 and LiClO4 solutions has been investigated. The anomalous aryl strengthening (AAS) effect, i.e. the anomalous increase of extraction ability of methylene bridged diphosphine dioxides due to substitution of aromatic (i.e., phenyl) for alkyl (e.g., butyl or octyl) moieties (DAm increases by three to four orders of magnitude), is only observed during the extraction of Am and Eu from acidic media. In salt media the AAS effect is weakly observed, and is practically absent in such diluents as F-3 and FS-13. The extraction isotherm in the case of DPDO with an observed AAS effect indicates the distribution coefficients of Eu decrease by a factor of two to three, even at the concentration ratio of DPDO:Eu = 50:1; however, these values decrease only by 10% for the DPDO that do not indicate an observed AAS effect. It is proposed that the presence of water in the diluent is necessary for manifestation of the AAS effect. The synergistic effects of adding chlorinated cobalt dicarbollide (CCD) with the DPDO that has been reported for other systems was also found to prevail in several of the systems investigated in this study. On addition of CCD with the DPDO, a considerable synergistic effect is observed (DAm increases by three to four orders of magnitude) during Am and Eu extraction from nitrate media. In perchlorate media the synergistic effect is absent. The most probable reason for synergism in the presence of CCD is the higher hydrophobicity of the CCD anion as compared to the nitrate anion. The results of this work will be of utility in understanding existing and developing new extraction systems designed for the simultaneous removal of multiple radionuclides from acidic streams

  18. Multi-recycling of plutonium and incineration of americium, curium, and technetium in PWRs

    International Nuclear Information System (INIS)

    Golfier, H.; Bergeron, J.; Puill, A.; Rohart, M.

    2000-01-01

    The future of nuclear power requires a clear strategy for radwaste and Plutonium management. Pressurized water reactors (PWR) and the associated fuel cycle installations represent the largest part of the French power plants (and are partly paid off). The reactors in service produce an annual 10 tons of Pu, 1.4 tons of minor actinides (MA), and 3.8 tons of long-lived fission products (LLFP). The spent fuel is reprocessed in La Hague plant to recover the energetic elements U and Pu. The latter was initially dedicated to power Fast Breeder Reactors that converted the depleted and reprocessed, thus ensuring a significant part of the French national energy resources. The shut-down of Super-Phenix, the postponement of building of Fast Breeder Reactors (FBR) and the relaxed need for stretching natural U resources raise the issue of Pu management. In fact, the Pu mono-recycling practiced in France since 1987 (St Laurent B1) only slows down the Pu accumulation in spent nuclear fuel, yet it is unable to stabilize the Pu inventory. Beyond the cooperation with its industrial partners, CEA investigates solutions for short and medium term Pu management thus contributing to research required for keeping nuclear power as an energy option. The range of these investigations shall cover both adaptations for light water reactors to facilitate Pu recycling and more innovative solutions concerning reactors, fuel and fuel cycle. The aim of using Pu more efficiently in PWR has led, not only for economic and non-proliferation reasons, but also for considerations related to the optimization of Pu and MA management. The mastery of Pu inventory is a requirement for all long-lived radwaste management methods. In this context, the potential of innovative PWRs has been investigated to control the Pu fluxes and to make them a milestone on the way to clean nuclear power. This paper presents the most recent results related to Pu utilization and MA and LLFP incineration like (Am+Cm) and Tc. To determine the influence of the Pu fluxes, a 1450 MWe PWR with one standard and one innovative concept (code named APA for Advanced Plutonium fuel Assembly) have been performed. A multi-recycling scenario is simulated with a 400 TWhe power plant park. (authors)

  19. Fundamental chemistry and materials science of americium in selected immobilization glasses

    Energy Technology Data Exchange (ETDEWEB)

    Haire, R.G. [Oak Ridge National Lab., TN (United States); Stump, N.A. [Winston-Salem State Univ., NC (United States). Dept. of Physical Sciences

    1996-12-01

    We have pursued some of the fundamental chemistry and materials science of Am in 3 glass matrices, two being high-temperature (850 and 1400 C mp) silicate-based glasses and the third a sol-gel glass. Optical spectroscopy was the principal tool. One aspect of this work was to determine the oxidation state exhibited by Am in these matrices, as well as factors that control or may alter this state. A correlation was noted between the oxidation state of the f-elements in the two high-temperature glasses with their high-temperature oxide chemistries. One exception was Am: although AmO{sub 2} is the stable oxide encountered in air, when this dioxide was incorporated into the high-temperature glasses, only trivalent Am was found in the products. When Am(III) was used to prepare the sol-gel glasses at ambient temperature, and after these products were heated in air to 800 C, only Am(III) was observed. Potential explanations for the unexpected Am behavior is offered in the context of its basic chemistry. Experimental spectra, spectroscopic assignments, etc. are discussed.

  20. Plutonium, americium and 90Sr in bones of the some wild animals living in Poland

    International Nuclear Information System (INIS)

    Mietelski, J.W.; Kitowski, I.; Tomankiewicz, E.; Gaca, P.; Blazej, S.

    2006-01-01

    Bones of the wild foxes (Vulpes vulpes), roe deer (Capreolus capreolus), deer (Cervus elaphus), wild boars (Sus scorf), mooses (Alces alces), as well as of certain kinds of rodents and insectivorous animals were ashed and milled prior to the radioactivity measurement in the γ-spectrometer. 238 Pu, 239,240 Pu, 241 Am and 90 Sr contents were determined. The results are presented in terms of the kind and origin of the animals. North-east, central-east and south-est parts of Poland were taken into an account

  1. Kinetics of the oxidation-reduction reactions of uranium, neptunium, plutonium, and americium in aqueous solutions

    International Nuclear Information System (INIS)

    Newton, T.W.

    1975-01-01

    This is a review with about 250 references. Data for 240 reactions are cataloged and quantitative activation parameters are tabulated for 79 of these. Some empirical correlations are given. Twelve typical reactions are discussed in detail, along with the effects of self-irradiation and ionic strength. (U.S.)

  2. Treatment of selected primary gynecologic and pelvic malignancies with 241Americium

    International Nuclear Information System (INIS)

    Chung, Joyce Y.; Peschel, Richard E.; Kacinski, Barry; Nath, Ravinder; Pourang, Rauman; Roberts, Kenneth; Fischer, Diana; Chambers, Joseph; Schwartz, Peter E.; Wilson, Lynn

    1995-01-01

    Purpose: To evaluate the efficacy of encapsulated 241 Am in the treatment of primary gynecological malignancies and in previously irradiated patients with recurrent disease in the pelvis. Materials and Methods: Encapsulated 241 Am primarily emits 60keV photons which are effectively shielded by thin layers of high atomic number materials. Dose distributions in water are similar to those produced by Cs-137 photons but with a half-value layer that is considerably less. Cases of 28 patients (12-primary, 16-recurrent) who have been treated with 241 Am at the Yale University School of Medicine since 1986 were retrospectively reviewed. Data concerning dosimetry, disease site, prior treatment, recurrence, disease-free survival, overall survival, and complications were evaluated. Results: Median follow up for the 12 patients with primary gynecological tumors was 19 months (7mo-51mo). There were 6 vulvar, 3 vaginal, 2 cervical and 1 endometrial carcinomas. Median surface dose of 241 Am was 42.2 Gy (23.3Gy-106.6Gy). As part of their initial therapy 11 received pelvic external beam radiation therapy, 6 underwent surgery and 2 received other forms of intracavitary brachytherapy. Of these 12 patients, 11 achieved a complete response (CR) with the duration of CR ranging from 7 to 51 months. Actuarial disease-free survival at 3 years was 66% (S.E.=.16) and actuarial overall survival at 3 years was 91% (S.E.=.08). Median follow up for the 16 patients with recurrent pelvic malignancies was 72 months (20mo-99mo). There were 9 cases of endometrial, 3 vulvar, 3 colorectal, and 1 cervical carinomas. Fifteen of 16 received some form of surgery and radiotherapy prior to their treatment with 241 Am. Median surface dose of 241 Am was 40.3 (17.6Gy-141.7Gy). Of these 16 patients, 10 achieved a CR with the duration of CR ranging from 3 to 88 months. Actuarial disease-free survival at 5 years was 51% (S.E.=.16) and actuarial overall survival at 5 years was 43% (S.E.=.14). Complications were observed in 1 primarily treated patient (soft tissue necrosis) and in 3 patients with recurrent disease (colonic obstruction, rectal fissure, and GI bleed, respectively). Conclusion: The unique dosimetric characteristics of 241 Am allow effective and safe treatment of selected primary gynecological malignancies and in previously irradiated patients with recurrent pelvic malignancies

  3. Fabrication of uranium-americium mixed oxide fuels: thermodynamical modeling and materials properties

    International Nuclear Information System (INIS)

    Prieur, D.

    2011-01-01

    Fuel irradiation in pressurized water reactors lead to the formation of fission products and minor actinides (Np, Am, Cm) which can be transmuted in fast neutrons reactors. In this context, the aim of this work was to study the fabrication conditions of the U 1-y Am y O 2+x fuels which exhibit particular thermodynamical properties requiring an accurate monitoring of the oxygen potential during the sintering step. For this reason, a thermodynamical model was developed to assess the optimum sintering conditions for these materials. From these calculations, U 1-y Am y O 2+x (y=0.10; 0.15; 0.20; 0.30) were sintered in two range of atmosphere. In hyper-stoichiometric conditions at low temperature, porous and multiphasic compounds are obtained whereas in reducing conditions at high temperature materials are dense and monophasic. XAFS analyses were performed in order to obtain additional experimental data for the thermodynamical modeling refinement. These characterizations also showed the reduction of Am(+IV) to Am(+III) and the partial oxidation of U(+IV) to U(+V) due to a charge compensation mechanism occurring during the sintering. Finally, taking into account the high - activity of Am, self-irradiation effects were studied for two types of microstructures and two Am contents (10 and 15%). For each composition, a lattice parameter increase was observed without structural change coupled with a macroscopic swelling of the pellet diameter up to 1.2% for the dense compounds and 0.6% for the tailored porosity materials. (author) [fr

  4. Thermochemistry of selected trivalent lanthanide and americium compounds: orthorhombic and hexagonal hydroxycarbonates

    International Nuclear Information System (INIS)

    Rorif, F.; Fuger, J.; Desreux, J.F.

    2005-01-01

    The molar enthalpies of dissolution of a number of well-characterized hexagonal hydroxycarbonates Ln(OH)CO 3 (hex) (Ln = La, Nd, Sm, Eu) in 6.00 mol dm -3 HCl were measured at 298.15K. A new sealed solution micro-calorimeter was developed for this purpose. It was made of an 18-carat gold alloy in order to improve the performances of a calorimeter previously built in our laboratory. The following standard molar enthalpies of formation, Δ f H m [Ln(OH)CO 3 , hex], in kJ mol -1 , were calculated: -(1627.8±1.6), -(1614.8±1.9), -(1613.4±1.6), and -(1523.0±3.0), for the La, Nd, Sm, and Eu compounds, respectively. These results allowed an extrapolation to Δ f H m [Eu(OH)CO 3 .0.5H 2 O, orth] = -(1653.4±3.6) kJ mol -1 and to Δ f H m [Am(OH)CO 3 , hex] = -(1552.5±3.3) kJ mol -1 . Using auxiliary data and estimated entropies, the solubility products of the hexagonal hydroxycarbonates were calculated. They are compared here with values deduced from solubility and calorimetric measurements for the corresponding orthorhombic hydroxycarbonates. Our approach generally leads to values similar to those deduced from solubility studies. The orthorhombic form is found to be metastable with respect to the hexagonal form. (orig.)

  5. Distribution of plutonium and americium in whole bodies donated to the United States Transuranium Registry

    International Nuclear Information System (INIS)

    McInroy, J.F.; Kathren, R.L.; Swint, M.J.

    1989-01-01

    Radiochemical analysis of whole body donations from six former nuclear industry workers 30 or more years post-exposure revealed about 45% of the total body deposition of 239 Pu and 35% of the 241 Am in the respiratory tract of the four cases with inhalation exposure. These proportions are greater than predicted by the current ICRP lung model. Exclusive of the respiratory tract, the mean fractional systemic deposition of 239 Pu in the tissues of five whole bodies was: liver 35.4% ± 12.5%; skeleton 53.7% ± 12.5%; striated muscle 6.5% ± 1.8% and all other organs and tissues 4.4% ± 1.7%. For 241 Am, the comparable values in four cases were liver 6.5% ± 4.8%; skeleton 73.5% ± 12.4%; muscle 14.3% ± 7.6%; and all other tissues and organs 6.65% ± 4.2%. The systemic distribution of 239 Pu was generally consistent with ICRP Publication 30. A significant fraction of both nuclides was retained in the muscle and other soft tissues which serve as long-term storage depots. Initial fractionation of 241 Am between skeleton and liver is consistent with the 50:30 ratio proposed in ICRP Publication 48 assuming an effective clearance half-time from the liver of about 2 y. Estimates of 239 Pu deposition made on the basis of urinalysis results in vivo were typically greater than the observed deposition measured in the tissues of the whole body after death. (author)

  6. Controlling Hexavalent Americium – A Centerpiece to a Compact Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shafer/Braley, Jenifer; Nash, Kenneth L; Lumetta, Gregg; McCann, Kevin; Sinkov, Sergey I

    2014-10-01

    Closing the nuclear fuel cycle could be simplified by recovering the actinides U through Am as a group. This could be achieved by converting U, Np, Pu and Am to the hexavalent state. Uranium, Np and Pu are readily oxidized to the hexavalent state. Generation of hexavalent Am in acidic solutions is more difficult, as the standard reduction potential of the Am(VI) /Am(III) couple (+1.68 V in 1 M HClO4) is well outside of the electrochemical stability window of water. While the oxidation and separation of Am has been demonstrated under laboratory conditions, several issues could plague scale up and implementation of this separation with used fuel. Two primary concerns are considered. The first issue concerns the stability of the oxidized Am. The second involves the undesirable co-extraction of tetravalent f-elements with the hexavalent actinides. To address the first concern regarding Am redox instability, Am reduction will be monitored under a variety of different conditions to establish the means of improving the stability of Am(VI) in the organic phase. Identifying the components contributing most significantly to its reduction will allow thoughtful modification of the process. To address the second concern, we propose to apply branched chain extractants to separate hexavalent actinides from tetravalent f-elements. Both branched monoamide and organophosphorus extractants have demonstrated significant selectivity for UO22+ versus Th4+, with separation factors generally on the order of 100. The efforts of this two-pronged research program should represent a significant step forward in the development of aqueous separations approaches designed to recover the U-Am actinides based on the availability of the hexavalent oxidation state. For the purposes of this proposal, separations based on this approach will be called SAn(VI) separations, indicating the Separation of An(VI).

  7. Separation of americium from lanthanides in nitric acid medium by DPTP in octanol-dodecane

    International Nuclear Information System (INIS)

    Tang Hongbin; Ye Guoan; Cheng Qifu; Ye Yuxing; Jiang Dexiang; Zhu Wenbin; Chen Hui; Zhang Hu; He Hui; Li Gaoliang

    2008-01-01

    Considering the good solubility of 2,6-bis(5,6-di-n-propyl-1,2,4-triazin-3-yl)- pyridine (DPTP) and avoiding the third phase formation, octanol-dodecane (ODOD) with a volume fraction of 30% was selected as the diluent. The distribution ratios of Am(III) and Eu(III) were studied as a function of a number of parameters such as con- tact time, nitrate ion and the nitric acid concentration in aqueous phase, the concentration of DPTP in the organic phase. A counter-current cascade (10 mL glass tube with plug) extraction experiment was carried out with 0.04 mol/L DPTP/ODOD. In the experiments, the flow rate ratios are as following: F:X:S=1:0.63:0.25, BF:BX=1:1; the feed solution, Eu(III) + Am(III) in 1.0 mol/L HNO 3 solution; scrubbing solution, 1.0 mol/L HNO 3 solution; stripping reagent, 0.01 mol/L HNO 3 . The results show that the recovery of Am is 98.42%, only containing Am/Eu is 45, SF Eu/Am is more than 10 3 . (authors)

  8. A consistent set of thermodynamic constants for americium (III) species with hydroxyl and carbonate

    International Nuclear Information System (INIS)

    Kerrisk, J.F.; Silva, R.J.

    1986-01-01

    A consistent set of thermodynamic constants for aqueous species, and compounds of Am(III) with hydroxyl and carbonate ligands has been developed. The procedure used to develop these constants involved establishing a value for one formation constant at a time in a sequential order, starting with the hydrolysis products and hydroxide solids, and then proceeding to carbonate species. The EQ3NR chemical-equilibrium model was used to test the constants developed. These constants are consistent with most of the experimental data that form their basis; however, considerable uncertainty still exists in some aspects of the Am(III) data

  9. Optimization of TRPO process parameters for americium extraction from high level waste

    International Nuclear Information System (INIS)

    Chen Jing; Wang Jianchen; Song Chongli

    2001-01-01

    The numerical calculations for Am multistage fractional extraction by trialkyl phosphine oxide (TRPO) were verified by a hot test. 1750L/t-U high level waste (HLW) was used as the feed to the TRPO process. The analysis used the simple objective function to minimize the total waste content in the TRPO process streams. Some process parameters were optimized after other parameters were selected. The optimal process parameters for Am extraction by TRPO are: 10 stages for extraction and 2 stages for scrubbing; a flow rate ratio of 0.931 for extraction and 4.42 for scrubbing; nitric acid concentration of 1.35 mol/L for the feed and 0.5 mol/L for the scrubbing solution. Finally, the nitric acid and Am concentration profiles in the optimal TRPO extraction process are given

  10. Separation of americium (III) and strontium (II) using TEHDGA and 18-crown-6

    Energy Technology Data Exchange (ETDEWEB)

    Sinharoy, Prithwish; Khan, Pasupati Nath; Nair, Deepika; Jagasia, Poonam; Dhami, P.S.; Kaushik, C.P.; Banerjee, Kalyan [Bhabha Atomic Research Centre, Mumbai (India). Nuclear Recycle Group; Anitha, M. [Bhabha Atomic Research Centre, Mumbai (India). Rare Earth Development Section; Sharma, J.N. [Bhabha Atomic Research Centre, Mumbai (India). Process Development Div.

    2017-06-01

    This work describes extraction of Am(III) and Sr(II) together with tetra(2-ethylhexyl) diglycolamide (TEHDGA) and selective back-extraction of strontium with a strontium complexant, 18-crown-6, leading to their separation from each other. 0.3 M TEHDGA+5% isodecyl alcohol/n-dodecane was used to extract Am(III) and Sr(II) from 4 M nitric acid into organic phase with very high D (D{sub Am}=1000, D{sub Sr}=22) and 0.1 M 18-crown-6 dissolved in 4 M nitric acid is used for selective stripping of Sr(II) from loaded extract phase. Am(III) left in the extract phase was then stripped with 0.01 M nitric acid. Stripping of Sr(II) was found to increase with increase in 18-crown-6 concentration, at 0.1 M 18-crown-6 dissolved in 4 M nitric acid, 83% of the loaded strontium (D{sub Sr}=0.20) was back-extracted in a single contact while loss of Am(III) was 0.8% (D{sub Am}=122.45). Stoichiometry limit of 1:1 was observed between strontium and 18-crown-6. Strontium was precipitated and separated from the complexant by Na{sub 2}SO{sub 4} or Na{sub 2}CO{sub 3}. This process was tested with simulated solution of high level waste and found suitable for quantitative recovery of strontium with high purity.

  11. Fundamental chemistry and materials science of americium in selected immobilization glasses

    International Nuclear Information System (INIS)

    Haire, R.G.; Stump, N.A.

    1996-01-01

    We have pursued some of the fundamental chemistry and materials science of Am in 3 glass matrices, two being high-temperature (850 and 1400 C mp) silicate-based glasses and the third a sol-gel glass. Optical spectroscopy was the principal tool. One aspect of this work was to determine the oxidation state exhibited by Am in these matrices, as well as factors that control or may alter this state. A correlation was noted between the oxidation state of the f-elements in the two high-temperature glasses with their high-temperature oxide chemistries. One exception was Am: although AmO 2 is the stable oxide encountered in air, when this dioxide was incorporated into the high-temperature glasses, only trivalent Am was found in the products. When Am(III) was used to prepare the sol-gel glasses at ambient temperature, and after these products were heated in air to 800 C, only Am(III) was observed. Potential explanations for the unexpected Am behavior is offered in the context of its basic chemistry. Experimental spectra, spectroscopic assignments, etc. are discussed

  12. Standard test method for the radiochemical determination of americium-241 in soil by alpha spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This method covers the determination of americium–241 in soil by means of chemical separations and alpha spectrometry. It is designed to analyze up to ten grams of soil or other sample matrices that contain up to 30 mg of combined rare earths. This method allows the determination of americium–241 concentrations from ambient levels to applicable standards. The values stated in SI units are to be regarded as standard. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precaution statements, see Section 10.

  13. Photochemical oxidation of americium(3) in bicarbonate-carbonate solutions saturated with N2O

    International Nuclear Information System (INIS)

    Shilov, V.P.; Yusov, A.B.

    1993-01-01

    The influence of UV radiation on 1.1x10 -4 mol/l Am(3) in bicarbonate-carbonate solutions of sodium and potassium saturated with N 2 O was studied by spectrographic method. In all the cases Am(4) was formed as a primary product. Initial rate of Am(4) accumulation remains stable in solutions up to HCO 3 - or HCO 3 - +CO 3 2- concentration of approximately 1.5 mol/l, but it decreases in case of their higher concentration. In solutions with pH 8.4-10 Am(4) disproportionates at a slow rate and the method suggested permits attaining practically 100% yield of it

  14. Sorption of carbon, cobalt, nickel, strontium, iodine, cesium, americium and neptumium in rocks and minerals

    International Nuclear Information System (INIS)

    Pinnoja, S.; Jaakkola, T.; Kaemaeraeinen, E.L.; Koskinen, A.; Lindberg, A.

    1984-09-01

    Sorption of the radionuclides C-14, Co-58, Ni-63, I-125, Sr-85, Cs-134, Am-241 and Np-237, which are important in nuclear waste, were studied in rock by autoradiographic method. Samples were selected to represent common rocks and minerals in Finnish bedrock: rapakivi granite, tonalite, mica gneiss, granodiorite, biotite, quartz, plagioclase, K feldspar and hornblende. Polished thin sections were used to determine the contributions of different minerals to the sorption of the radionuclides. Sawn rock pieces (1.2 x 1.2 x 1.6 cm) were used to determine the Ksub(a)-values for rough rock surfaces where penetration into the rock matrix was found. The sorption order of the elements determined with the rock pieces was Ksub(a)sup(Cs)>Ksub(a)sup(Ni)>Ksub(a)sup(Co)>Ksub(a)sup(Sr)>Ksub(a)sup(C)>Ksub(a)sup(I). The same order of sorption was determined with thin sections for all nuclides except carbon, which was not sorbed on thin sections. Wide differences in the Ksub(a)-values for different minerals were found for Cs and Sr. The sorption mechanism for these elements is presumed to be ion exchange. The Ksub(a)-values of Cs varied between 0.1 x 10 -4 and 600 x 10 -4 m 3 /m 2 and those for Sr between 0.01 x 10 -4 and 10 x 10 -4 m 3 /m 2 . The lowest values were determined for quartz and the highest for biotite. Radionuclides having a tendency to form pseudocolloids and hydroxide precipitates (Am, Np, Ni) were sorbed on thin sections with only small variation in Ksub(a)-values: all values were between 1 x 10 -4 and 10 x 10 -4 and 100 x 10 -4 m 3 /m 2 . A very good agreement was found between experimental and calculated Ksub(a)-values for rock thin sections. Ksub(a)-values were calculated by multiplying the percentages of individual minerals in the rock by the Ksub(a)-values of the corresponding pure minerals and summing the results. Calculated Ksub(a)-values were occasionally up to 50% smaller than the experimental ones, owing to the low contents of some high adsorbing minerals not included in the calculations

  15. New Synthetic Methods and Structure-Property Relationships in Neptunium, Plutonium, and Americium Borates. Final report

    International Nuclear Information System (INIS)

    Albrecht-Schmitt, Thomas Edward

    2013-01-01

    The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-doc at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry

  16. A Study of the Translocation of Plutonium and Americium from Wounds

    Energy Technology Data Exchange (ETDEWEB)

    Watters, R. L. [Colorado State Univ., Fort Collins, CO (United States); Lebel, Jacques L. [Colorado State Univ., Fort Collins, CO (United States); Johnson, LaMar J. [Colorado State Univ., Fort Collins, CO (United States); Bull, Emory H. [Colorado State Univ., Fort Collins, CO (United States)

    1968-12-15

    The technological feasibility and economic advantages of the use of plutonium in power reactors and in other plutoniumfueled systems have been widely explored and demonstrated (1). As the use of plutonium and other transuranic nuclides has increased, the chance of their deposition within the human body has increased. A relatively complete review of the literature regarding the modes of entry, distribution, excretion, and means of evaluating plutonium within living systems has been recently published (2, 3).

  17. New Synthetic Methods and Structure-Property Relationships in Neptunium, Plutonium, and Americium Borates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas Edward

    2013-09-14

    The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-doc at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry.

  18. Subsurface Behavior of Plutonium and Americium at Non-Hanford Sites and Relevance to Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Riley, Robert G.

    2008-02-01

    Seven sites where Pu release to the environment has raised significant environmental concerns have been reviewed. A summary of the most significant hydrologic and geochemical features, contaminant release events and transport processes relevant to Pu migration at the seven sites is presented.

  19. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium Beryllium source

    OpenAIRE

    Didi, Abdessamad; Dadouch, A.; Jaï, O.; Tajmouati, J.; El Bekkouri, H.

    2017-01-01

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: pr...

  20. Radioanalytical determination of plutonium and americium using ion exchange and extraction chromatography technique in urine

    International Nuclear Information System (INIS)

    Santhanakrishnan, V.; Sreedevi, K.R.; Rajaram, S.; Ravi, P.M.

    2011-01-01

    The use of anion exchange chromatography for the separation of Pu and extraction chromatography technique for the separation of Am from urine samples was studied. In the earlier method, Pu separation was carried out by anion exchange chromatography followed by Am separation by cation exchange chromatography. The chemical recovery of Am obtained by cation exchange separation method was inconsistent and low in the range 30-70%. In this study, the average Pu recovery obtained using anion exchange chromatography was 89.2 with standard deviation of 10.4 and the average Am recovery obtained using extraction chromatography with TRU resin was 77.4 with standard deviation of 14.8. Moreover, Am separation could be completed within three hours using the TRU column compared to two days that were required for the cation exchange chromatography. (author)