WorldWideScience

Sample records for american boreal forest

  1. Successional change in photosynthetic capacities after wildfires across the North American boreal forests

    Science.gov (United States)

    Tahara, N.; Ueyama, M.; Iwata, H.; Ichii, K.; Harazono, Y.; Nagano, H.

    2015-12-01

    Wildfire is a major disturbance across the North American boreal forests. Canopy ecophysiology is important to understand recovery of carbon dioxide and water vapor fluxes after wildfires. We developed a big-leaf model coupled photosynthesis (Farquhar et al., 1980) and stomatal conductance (Ball et al., 1987) models. We inputted eddy covariance data from fire chronosequence across the North American boreal forests into the big-leaf model for optimizing parameters: maximum carboxylation rate at 25℃ (Vcmax25) and stomatal conductance parameters. The model was optimized with a global optimization technique: SCE-UA method (Duan et al., 1994). The estimated canopy-scale parameters were then downscaled into a leaf scale (vcmax25; values per sun leaf area) using a two-leaf radiation transfer model (de Pury and Farquhar, 1997) and leaf area index. We used 6 sites from two fire chronosequence in Alaska (1~, 3~, 5~, 15~ and 80~ years after fire; Liu et al., 2005; Iwata et al., 2011) and 6 sites from a Canadian chronosequence study (6~, 15~, 23~, 40~ and 74~ years after fire; Goulden et al., 2010). Preliminary results showed clear seasonal variations in canopy-scale Vcmax25 with the maximum during the summer. In Alaska, the downscaled vcmax25 for four years after fire exceeded those of mature forests, indicating that the photosynthetic capacity recovered quickly in the early successional stage. This quick recovery was not seen in gross primary productivity. We will show the variations of the ecophysiological parameters in terms of environment conditions and stand age. References Ball et al., 1987: In Progress in Photosynthesis Research, 221-224. de Pury and Farquhar, 1997: Plant, Cell and Environ., 20, 537-557. Duan et al., 1994: J. Hydrology, 158, 265-284. Farquhar et al., 1980: Planta, 149, 78-90. Goulden et al., 2010: Global Change Biol., 17, 855-871. Iwata et al., 2011: SOLA., 7, 105-108. Liu et al., 2005: J. Geophys. Res., 110, D13101.

  2. A review of the regeneration dynamics of North American boreal forest tree species

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.F.; Charron, I. [Concordia Univ., Montreal, PQ (Canada)] [and others

    1999-06-01

    A discussion is included of parameters that are important in an eventual model of recruitment. A framework is put in place for a general model that can be used anywhere in the North American boreal forest for the forecasting of regeneration density following both human and natural-induced disturbance. The forecasting must be of the density of the predisturbance dormant seed bank, asexual buds, and advanced regeneration, as well as the input of postdisturbance seeds and asexual stems. Five biotic parameters are discussed that are basic for the understanding of recruitment, as well as four disturbance related factors. The recruitment parameters are: basal area, seed mass, asexual reproduction capacity, dormant seed bank capacity, and shade tolerance. The four defining qualities of disturbance are: colonization distance, return time, severity, and specificity. The aim is to arrive at the functions and parameter initializations that would make up a recruitment subroutine within a landscape simulator. This was not carried out successfully. The gaps in knowledge that must be filled in before a realistic recruitment subroutine is attained are identified. 151 refs.

  3. High-latitude cooling associated with landscape changes from North American boreal forest fires

    Directory of Open Access Journals (Sweden)

    B. M. Rogers

    2013-02-01

    Full Text Available Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would cool the surface by 0.23 ± 0.09 °C across boreal North America during winter and spring months (December through May. This could provide a negative feedback to winter warming on the order of 3–5% for a doubling, and 14–23% for a quadrupling, of burn area. Maximum cooling occurs in the areas of greatest burning, and between February and April when albedo changes are largest and solar insolation is moderate. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.

  4. High latitude cooling associated with landscape changes from North American boreal forest fires

    Directory of Open Access Journals (Sweden)

    B. M. Rogers

    2012-09-01

    Full Text Available Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated the changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would result in surface cooling of 0.23 ± 0.09 °C and 0.43 ± 0.12 °C for winter–spring and February–April time periods, respectively. This could provide a negative feedback to high-latitude terrestrial warming during winter on the order of 4–6% for a doubling, and 14–23% for a quadrupling, of burn area. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.

  5. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    Science.gov (United States)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are

  6. Browning boreal forests of western North America

    Science.gov (United States)

    Verbyla, David

    2011-12-01

    The GIMMS NDVI dataset has been widely used to document a 'browning trend' in North American boreal forests (Goetz et al 2005, Bunn et al 2007, Beck and Goetz 2011). However, there has been speculation (Alcaraz-Segura et al 2010) that this trend may be an artifact due to processing algorithms rather than an actual decline in vegetation activity. This conclusion was based primarily on the fact that GIMMS NDVI did not capture NDVI recovery within most burned areas in boreal Canada, while another dataset consistently showed post-fire increasing NDVI. I believe that the results of Alcaraz-Segura et al (2010) were due simply to different pixel sizes of the two datasets (64 km2 versus 1 km2 pixels). Similar results have been obtained from tundra areas greening in Alaska, with the results simply due to these pixel size differences (Stow et al 2007). Furthermore, recent studies have documented boreal browning trends based on NDVI from other sensors. Beck and Goetz (2011) have shown the boreal browning trend derived from a different sensor (MODIS) to be very similar to the boreal browning trend derived from the GIMMS NDVI dataset for the circumpolar boreal region. Parent and Verbyla (2010) found similar declining NDVI patterns based on NDVI from Landsat sensors and GIMMS NDVI in boreal Alaska. Zhang et al (2008) found a similar 'browning trend' in boreal North America based on a production efficiency model using an integrated AVHRR and MODIS dataset. The declining NDVI trend in areas of boreal North America is consistent with tree-ring studies (D'Arrigo et al 2004, McGuire et al 2010, Beck et al 2011). The decline in tree growth may be due to temperature-induced drought stress (Barber et al 2000) caused by higher evaporative demands in a warming climate (Lloyd and Fastie 2002). In a circumpolar boreal study, Lloyd and Bunn (2007) found that a negative relationship between temperature and tree-ring growth occurred more frequently in warmer parts of species' ranges

  7. Ecological Sustainability of Birds in Boreal Forests

    Directory of Open Access Journals (Sweden)

    Gerald Niemi

    1998-12-01

    Full Text Available We review characteristics of birds in boreal forests in the context of their ecological sustainability under both natural and anthropogenic disturbances. We identify the underlying ecological factors associated with boreal bird populations and their variability, review the interactions between boreal bird populations and disturbance, and describe some tools on how boreal bird populations may be conserved in the future. The boreal system has historically been an area with extensive disturbance such as fire, insect outbreaks, and wind. In addition, the boreal system is vulnerable to global climate change as well as increasing pressure on forest and water resources. Current knowledge indicates that birds play an important role in boreal forests, and sustaining these populations affords many benefits to the health of boreal forests. Many issues must be approached with caution, including the lack of knowledge on our ability to mimic natural disturbance regimes with management, our lack of understanding on fragmentation due to logging activity, which is different from permanent conversion to other land uses such as agriculture or residential area, and our lack of knowledge on what controls variability in boreal bird populations or the linkage between bird population fluctuations and productivity. The essential role that birds can provide is to clarify important ecological concerns and variables that not only will help to sustain bird populations, but also will contribute to the long-term health of the boreal forest for all species, including humans.

  8. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone

    Science.gov (United States)

    Trugman, A. T.; Fenton, N. J.; Bergeron, Y.; Xu, X.; Welp, L. R.; Medvigy, D.

    2016-09-01

    Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 4°C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by ˜40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases.

  9. The boreal forest as a cultural landscape.

    Science.gov (United States)

    Johnson, Edward A; Miyanishi, Kiyoko

    2012-02-01

    Because of its generally low density of humans and few settlements, the circumpolar boreal forest is often viewed as an untouched wilderness. However, archeological evidence indicates that humans have inhabited the region since the continental glaciers disappeared 8,000-12,000 years ago. This paper discusses the ecological impacts that humans have had on the boreal forest ecosystem through their activities in prehistoric, historic, and recent times and argues that the boreal forest has always been a cultural landscape with a gradient of impacts both spatially and temporally. These activities include hunting, trapping, herding, agriculture, forestry, hydroelectric dam projects, oil and natural gas development, and mining. In prehistoric times, human impacts would generally have been more temporary and spatially localized. However, the megafaunal extinctions coincident with arrival of humans were very significant ecological impacts. In historic times, the spread of Europeans and their exploitation of the boreal's natural resources as well as agricultural expansion has altered the composition and continuity of the boreal forest ecosystem in North America, Fennoscandia, and Asia. Particularly over the last century, these impacts have increased significantly (e.g., some hydroelectric dams and tar sands developments that have altered and destroyed vast areas of the boreal forest). Although the atmospheric changes and resulting climatic changes due to human activities are causing the most significant changes to the high-latitude boreal forest ecosystem, any discussion of these impacts are beyond the limits of this paper and therefore are not included.

  10. The Elusive Boreal Forest Thaumarchaeota

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2016-06-01

    Full Text Available In recent years, Archaea have, with increasing frequency, been found to colonize both agricultural and forest soils in temperate and boreal regions. The as yet uncultured group I.1c of the Thaumarchaeota has been of special interest. These Archaea are widely distributed in mature vegetated acidic soils, but little has been revealed of their physiological and biological characteristics. The I.1c Thaumarchaeota have been recognized as a microbial group influenced by plant roots and mycorrhizal fungi, but appear to have distinct features from their more common soil dwelling counterparts, such as the Nitrosotalea or Nitrososphaera. They appear to be highly dependent on soil pH, thriving in undisturbed vegetated soils with a pH of 5 or below. Research indicate that these Archaea require organic carbon and nitrogen sources for growth and that they may live both aerobically and anaerobically. Nevertheless, pure cultures of these microorganisms have not yet been obtained. This review will focus on what is known to date about the uncultured group I.1c Thaumarchaeota formerly known as the “Finnish Forest Soil” (FFS Archaea.

  11. Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004

    Science.gov (United States)

    Stohl, A.; Andrews, E.; Burkhart, J. F.; Forster, C.; Herber, A.; Hoch, S. W.; Kowal, D.; Lunder, C.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stebel, K.; Stone, R.; StröM, J.; TøRseth, K.; Wehrli, C.; Yttri, K. E.

    2006-11-01

    During summer of 2004, about 2.7 million hectare of boreal forest burned in Alaska, the largest annual area burned on record, and another 3.1 million hectare burned in Canada. This study explores the impact of emissions from these fires on light absorbing aerosol concentration levels, aerosol optical depths (AOD), and albedo at the Arctic stations Barrow (Alaska), Alert (Canada), Summit (Greenland), and Zeppelin/Ny Ålesund on Spitsbergen (Norway). The Lagrangian particle dispersion model FLEXPART was run backward from these sites to identify periods that were influenced by forest fire pollution plumes. It is shown that the fires led to enhanced values of particle light absorption coefficients (σap) at all of these sites. Barrow, about 1000 km away from the fires, was affected by several fire pollution plumes, one leading to spectacularly high 3-hour mean σap values of up to 32 Mm-1, more than the highest values measured in Arctic Haze. AOD measurements for a wavelength of 500 nm saturated but were estimated at above 4-5 units, unprecedented in the station records. Fire plumes were transported through the atmospheric column over Summit continuously for 2 months, during which all measured AOD values were enhanced, with maxima up to 0.4-0.5 units. Equivalent black carbon concentrations at the surface at Summit were up to 600 ng m-3 during two major episodes, and Alert saw at least one event with enhanced σap values. FLEXPART results show that Zeppelin was located in a relatively unaffected part of the Arctic. Nevertheless, there was a 4-day period with daily mean σap > 0.3 Mm-1, the strongest episode of the summer half year, and enhanced AOD values. Elevated concentrations of the highly source-specific compound levoglucosan positively confirmed that biomass burning was the source of the aerosols at Zeppelin. In summary, this paper shows that boreal forest fires can lead to elevated concentrations of light absorbing aerosols throughout the entire Arctic. Enhanced

  12. Disturbance Regimes and Landscape Heterogeneity in the Boreal Forest

    OpenAIRE

    2015-01-01

    The boreal forest circles the high northern latitudes but it is far from a continuous carpet of evergreen trees. Rather, the boreal forest is a patchwork of land cover types in constant flux as they recover from wildfire and then are burned again. This fast turnover of land cover makes the boreal forest particularly susceptible to rapid change in response to climate. Furthermore, the boreal forest is an important component of the climate system that pumps heat into the atmosphere and signi...

  13. Boreal Forests of Kamchatka: Structure and Composition

    Directory of Open Access Journals (Sweden)

    Markus P. Eichhorn

    2010-09-01

    Full Text Available Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-dominant B. ermanii forests. Basal area ranged from 7.8–38.1 m2/ha and average tree height from 8.3–24.7 m, both being greater in lowland forests. Size distributions varied considerably among plots, though they were consistently more even for L. cajanderi than B. platyphylla. Upland sites also contained a dense subcanopy of Pinus pumila averaging 38% of ground area. Soil characteristics differed among plots, with upland soils being of lower pH and containing more carbon. Comparisons are drawn with boreal forests elsewhere and the main current threats assessed. These forests provide a potential baseline to contrast with more disturbed regions elsewhere in the world and therefore may be used as a target for restoration efforts or to assess the effects of climate change independent of human impacts.

  14. Fire and Climate Change in Boreal Forests

    Science.gov (United States)

    Flannigan, M. D.; Logan, K. A.; Stocks, S. J.; Wotton, B. M.; Amiro, B. D.

    2004-12-01

    Fire is the major stand-renewing agent for much of the circumboreal forest, and greatly influences the structure and function of boreal ecosystems from regeneration through mortality. Current estimates are that an average of 5-15 million hectares burn annually in boreal forests, almost exclusively in Siberia, Canada and Alaska. There is a growing global awareness of the importance and vulnerability of the boreal region to projected future climate change. Fire activity is strongly influenced by four factors - weather/climate, vegetation \\(fuels\\), natural ignition agents and humans. Climate and weather are strongly linked to fire activity which suggests that the fire regime will respond rapidly to changes in climate. Recent results suggest that area burned by fire is related to temperature and fuel moisture. The climate of the northern hemisphere has been warming due to an influx of radiatively active gases \\(carbon dioxide, methane etc.\\) as a result of human activities. This altered climate, modelled by General Circulation Models \\(GCMs\\), indicates a profound impact on fire activity in the circumboreal forest. Recent results using GCMs suggest that in many regions fire weather/fire danger conditions will be more severe, area burned will increase, people-caused and lightning-caused ignitions will increase, fire seasons will be longer and the intensity and severity of fires will increase. This increase in fire activity may lead to a positive feedback cycle with the increased release of greenhouse gases. Although a run away scenario is unlikely as changes in vegetation would limit the positive feedback cycle. Changes in fire activity as a result of climate change could have a greater and more immediate impact on vegetation distribution and abundance as compared to the direct impact of climate change.

  15. Antioxidant Potential of Bark Extracts from Boreal Forest Conifers

    Directory of Open Access Journals (Sweden)

    Jean Legault

    2013-07-01

    Full Text Available The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORACFL potency and cellular antioxidant activity (IC50, were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol, which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity.

  16. Antioxidant Potential of Bark Extracts from Boreal Forest Conifers.

    Science.gov (United States)

    Legault, Jean; Girard-Lalancette, Karl; Dufour, Dominic; Pichette, André

    2013-07-11

    The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS) that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures) on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORACFL potency and cellular antioxidant activity (IC50), were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol), which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity.

  17. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  18. Competitive interactions among raptors in boreal forests.

    Science.gov (United States)

    Hakkarainen, Harri; Mykrä, Sakari; Kurki, Sami; Tornberg, Risto; Jungell, Sven

    2004-11-01

    We examined inter-specific interactions among goshawks ( Accipiter gentilis), common buzzards (Buteo buteo) and honey buzzards (Pernis apivorus) in western Finland in 1983-1996. Because goshawks are among the largest birds of prey species in boreal forests they may take over the nest of smaller and less-competitive forest-dwelling raptors when searching for suitable places for breeding. Accordingly, more than half of newly established goshawk territories were found on the territories previously occupied by the common buzzard and the honey buzzard. Otherwise, territory sharing between these species was rare. Fledgling production of honey buzzards was not associated with the presence of goshawks, probably owing to the almost 2 months later onset of breeding. This probably decreases competitive interactions between these two species. An intensive interference competition, instead, seemed to be evident between common buzzards and goshawks, because the fledgling production of common buzzards was decreased by 20% as a result of failures during incubation and nestling period in the vicinity (raptors, imposing upon the original owners of the nest, because building a large stick nest is probably energetically costly. As a large raptor, the goshawk apparently has a competitive advantage over smaller ones, and may have an ever-increasing impact on smaller birds of prey, if there is a lack of sheltered forests inducing competition for the available nest sites.

  19. Global greenhouse to icehouse and back again: The origin and future of the Boreal Forest biome

    Science.gov (United States)

    Taggart, Ralph E.; Cross, Aureal T.

    2009-02-01

    The Boreal Forest biome (Taiga), dominated by evergreen and deciduous coniferous trees (Pinaceae), is circumpolar in its present distribution, covering a significant part of the total land area of the Northern Hemisphere and representing perhaps a third of the total forest area of the planet. Nothing comparable to this extant biome existed during the global "greenhouse" interval of the Late Mesozoic and Paleogene. Latitudinal temperature gradients should have confined boreal taxa to extremely high latitudes, but evergreen taxa do not appear to have been competitive in the lowlands of the high arctic, where the vegetation consisted of a unique circumpolar forest dominated by deciduous conifers and broad-leaved taxa. Probable sources for the pinaceous taxa that now characterize boreal latitudes were the Paleogene evergreen montane coniferous forests of the western North American Cordillera. Taphonomic factors limit the fossil record for such forests, but assemblages such as the Eocene Thunder Mountain (Idaho) and Bull Run (Nevada) floras were dominated by evergreen and deciduous Pinaceae that dominate extant montane, subalpine, and Boreal Forest associations. In response to post-Eocene global cooling, such forests presumably would have migrated to lower elevations, eventually spreading across high-latitude North America, subsequently reaching Eurasia via the Beringian corridor. This high-diversity coniferous forest was differentially winnowed and modified during subsequent migration southward in both the New and Old World. Despite its extensive geographic distribution, the Boreal Forest may be the youngest of the major forest biomes. If global warming ultimately results in a significant redistribution of terrestrial vegetation, the history of the Boreal Forest may well be reversed. Northward migration of the Boreal Forest may be characterized by loss of taxa and extensive community reorganization as individual taxa are pushed to their limits with respect to rates of

  20. Disturbance Regimes and Landscape Heterogeneity in the Boreal Forest

    Science.gov (United States)

    Lyons, E. A.; Sheng, Y.

    2014-12-01

    Circling the northern high latitudes, the boreal forest is the largest contiguous forest ecoregion in the world. Far from a homogeneous carpet of trees, the boreal forest is a patchwork of land cover types including evergreen and deciduous trees, meadows, lakes, and wetlands. Due to its size, location, and structure, the boreal forest is an important component of the regional and global climate system through storage of carbon in cold organic soils and direct influence on the solar energy budget. This study integrates remote sensing and GIS products from different sub-fields working in the pan-Arctic region to investigate fire and permafrost-degradation, the land cover shaping processes that help determine the fate of the boreal forest. These disturbance processes are subject to change with climate and hold the potential for rapid change to the structure of the boreal forest. We identify regions at risk for rapid change, quantify the contributions of different disturbance processes, and analyze patterns of post disturbance recovery.

  1. Investigations of boreal forest bidirectional reflectance factor

    Science.gov (United States)

    White, H. Peter

    To monitor the Earth's biosphere using satellites, remote sensing science must develop robust forest reflectance models with which to extract canopy properties such as leaf area index, biomass, and percentage canopy cover from observed canopy reflectance values. At present such algorithms are generally based on regression equations which have been derived and evaluated at localized areas of solar zenith and view angles, and incorporate a priori knowledge of the scene. Of particular interest here is the treatment of the understorey which has distinct spectral reflectance properties. Recent studies suggest this layer in the boreal ecosphere has a significant influence on the CO2 budget during the northern growing season. Previous treatments of this layer in canopy reflectance models have been limited, often treating the layer as either non-reflecting, or isotropic with the same average reflectance as the overstorey. In-field observations demonstrate that this isn't the case. The recently developed Four-Scale Model [Chen and Leblanc, 1997] provides a new description of canopy reflectance that considers four levels of canopy architecture, the distributions of tree crowns, branches, shoots, and leaves. In doing so, the four proportions of sunlit and shaded overstorey and understorey are determined and treated as relevant contributors to the overall canopy reflectance. One purpose of this study is to examine the potential of further developing this model into a linear kernel form suitable for inversion, providing both the ability to extrapolate from observed reflectance values at certain view/illumination geometries to canopy BRF at other geometries and to allow extraction of information about the canopy based on observed BRF values. The FLAIR model (F_our- Scale L_inear Kernel Model for A_ni_sotropic R_eflectance) is the result of this development, following the philosophy that the model must remain applicable to a wide range of canopy types, understorey conditions, and

  2. Main dynamics and drivers of boreal forests fire regimes during the Holocene

    Science.gov (United States)

    Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW

    2015-04-01

    Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two

  3. Forest harvest contribution to Boreal freshwater methyl mercury load

    Science.gov (United States)

    Kronberg, Rose-Marie; Drott, Andreas; Jiskra, Martin; Wiederhold, Jan G.; Björn, Erik; Skyllberg, Ulf

    2016-06-01

    Effects of Boreal forest harvest on mercury (Hg) and methyl mercury (MeHg) soil pools and export by stream runoff were quantified by comparing 10 reference watersheds (REFs) covered by >80 year old Norway spruce (Picea abies Karst.) forests with 10 similar watersheds subjected to clear-cutting (CCs). While total Hg soil storage did not change, MeHg pools increased seven times (p = 0.006) in the organic topsoil 2 years after clear-cutting. In undulating terrain, situated above the postglacial marine limit (ML) of the ancient Baltic Sea, the mass ratio between flux-weighted MeHg and dissolved organic carbon (MeHg/DOC) in stream runoff increased 1.8 times (p forest harvest. When recalculated to 100% clear-cutting of the watershed, the annual MeHg stream export increased 3.8 times (p = 0.047). Below the ML, where the terrain was flatter, neither the MeHg/DOC ratio nor the annual export of MeHg differed between REFs and CCs, likely because of the larger contribution of MeHg exported from peaty soils and small wetlands. The most robust measure, MeHg/DOC, was used to calculate MeHg loadings to Boreal headwaters. If the forest harvest effect lasts 10 years, clear-cutting increases MeHg runoff by 12-20% in Sweden and 2% in the Boreal zone as a whole. In Sweden, having intensely managed forests, 37% and 56% of MeHg are exported from peatlands and forest soils, respectively, and forest clear-cutting is adding another 6.6%. In the Boreal zone as a whole peatlands and forests soils contribute with 53% and 46%, respectively, and clear-cutting is estimated to add another 1.0%. An expected rapid increase in Boreal forest harvest and disturbance urge for inclusion of land use effects in mercury biogeochemical cycling models at different scales.

  4. Nitrogen balance along a boreal forest fire chronosequence

    Science.gov (United States)

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2016-04-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change in boreal regions. Because boreal forests comprise 30% of the global forest area, increases in the annual area burned may have significant implications for global carbon and nitrogen (N) cycles. The productivity of boreal forests is limited by low N availability. Fires cause N loss from ecosystems through oxidation and volatilization of N stored in biomass and soil. N balance may be poorly buffered against forest fires especially in sub-arctic ecosystems where atmospheric N deposition is low. Although forest fires alter N dynamics, there are little quantitative data available on N pools and fluxes through post-fire succession in sub-arctic boreal forests. We studied changes in N pools and fluxes, and the overall N balance across a 155-year forest fire chronosequence in sub-arctic Scots pine (Pinus sylvestris) forests in Värriö Strict Nature Reserve situated in Finnish Lapland (67°46' N, 29°35' E). Soil was the largest N pool in all forest age classes and comprised 69-82% of the total ecosystem N pool. The total ecosystem N pool varied from 622 kg ha-1 in the recently burned forest to 960 kg ha-1 in the 155-year-old forest. The forests were N sinks in all age classes the annual N accumulation rate being 2.28 kg ha-1 yr-1 which was distributed almost equally between soil and biomass. The observed changes in ecosystem N pools were consistent with the computed N balance 2.10 kg ha-1 yr-1 over the 155-year post-fire period (Balance= (atmospheric deposition + N fixation) - (leaching + N2O emissions)). The results indicated that N deposition is an important component of the N balance and the N outputs are small (13% of the inputs) in the studied ecosystems. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) compared to the other N fluxes. The biological N fixation increased with succession and constituted 9% of the total N

  5. Developing a Student-Scientist Partnership: Boreal Forest Watch

    Science.gov (United States)

    Spencer, Shannon; Huczek, George; Muir, Bradley

    1998-03-01

    A student-scientist partnership outreach program was funded by the U.S. National Aeronautics and Space Administration's Boreal Ecosystem-Atmosphere Study (BOREAS) to involve students and teachers in scientific investigations pertinent to global change research occurring within the boreal region of Canada. Boreal Forest Watch was planned, designed and piloted by an interdisciplinary group of education and science professionals from the University of New Hampshire, the Prince Albert National Park, and several schools in central Saskatchewan, Canada. A two goal approach was adopted to 1) ensure the educational significance of the program and 2) introduce scientifically valid methods for collection of research data pertinent to global change scientists. Professional educators and school administrators from Saskatchewan were recruited to assist in project planning to ensure that the proposed activities fit within the existing curriculum framework. This process was essential for successful adoption of the program by participating teachers. The process and approach of initiating Boreal Forest Watch are presented in this paper. This program became fully functional in September, 1996 with the training of several participating teachers. Perspectives of the program and its future are provided by members of the design team. Boreal Forest Watch is a unique opportunity for both Canadian students and their teachers to explore their natural environment, learn scientific methods and principles, and contribute data to the global change research community.

  6. Modeling Anthropogenic Fire Occurrence in the Boreal Forest of China Using Logistic Regression and Random Forests

    Directory of Open Access Journals (Sweden)

    Futao Guo

    2016-10-01

    Full Text Available Frequent and intense anthropogenic fires present meaningful challenges to forest management in the boreal forest of China. Understanding the underlying drivers of human-caused fire occurrence is crucial for making effective and scientifically-based forest fire management plans. In this study, we applied logistic regression (LR and Random Forests (RF to identify important biophysical and anthropogenic factors that help to explain the likelihood of anthropogenic fires in the Chinese boreal forest. Results showed that the anthropogenic fires were more likely to occur at areas close to railways and were significantly influenced by forest types. In addition, distance to settlement and distance to road were identified as important predictors for anthropogenic fire occurrence. The model comparison indicated that RF had greater ability than LR to predict forest fires caused by human activity in the Chinese boreal forest. High fire risk zones in the study area were identified based on RF, where we recommend increasing allocation of fire management resources.

  7. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey;

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  8. Resilience of Alaska's Boreal Forest to Climatic Change

    Science.gov (United States)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; Kielland, K.; Kofinas, G. P.; Turetsky, M. R.; Yarie, J.; Lloyd, A. H.; Taylor, D. L.

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  9. Moss-nitrogen input to boreal forest soils

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Jones, Davey; DeLuca, Thomas

    2014-01-01

    Cyanobacteria living epiphytically on mosses in pristine, unpolluted areas fix substantial amounts of atmospheric nitrogen (N) and therefore represent a primary source of N in N-limited boreal forests. However, the fate of this N is unclear, in particular, how the fixed N2 enters the soil...

  10. Ecosystem feedbacks and nitrogen fixation in boreal forests.

    Science.gov (United States)

    DeLuca, Thomas H; Zackrisson, Olle; Gundale, Michael J; Nilsson, Marie-Charlotte

    2008-05-30

    Biological feedback mechanisms regulate fundamental ecosystem processes and potentially regulate ecosystem productivity. To date, no studies have documented the down-regulation of terrestrial nitrogen (N) fixation via an ecosystem-level feedback mechanism. Herein, we demonstrate such a feedback in boreal forests. Rapid cycling of N in early secondary succession forests yielded greater throughfall N deposition, which in turn decreased N fixation by cyanobacterial associates in feather moss carpets that reside on the forest floor. The forest canopy exerts a tight control on biotic N input at a period of high productivity.

  11. Development of biogenic VOC emission inventories for the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, V.

    2008-07-01

    The volatile organic compounds (VOCs) emitted by vegetation, especially forests, can affect local and regional atmospheric photochemistry through their reactions with atmospheric oxidants. Their reaction products may also participate in the formation and growth of new particles which affect the radiation balance of the atmosphere, and thus climate, by scattering and absorbing shortwave and longwave radiation and by modifying the radiative properties, amount and lifetime of clouds. Globally, anthropogenic VOC emissions are far surpassed by the biogenic ones, making biogenic emission inventories an integral element in the development of efficient air quality and climate strategies. The inventories are typically constructed based on landcover information, measured emissions of different plants or vegetation types, and empirical dependencies of the emissions on environmental variables such as temperature and light. This thesis is focused on the VOC emissions from the boreal forest, the largest terrestrial biome with characteristic vegetation patterns and strong seasonality. The isoprene, monoterpene and sesquiterpene emissions of the most prevalent boreal tree species in Finland, Scots pine, have been measured and their seasonal variation and dependence on temperature and light have been studied. The measured emission data and other available observations of the emissions of the principal boreal trees have been used in a biogenic emission model developed for the boreal forests in Finland. The model utilizes satellite landcover information, Finnish forest classification and hourly meteorological data to calculate isoprene, monoterpene, sesquiterpene and other VOC emissions over the growing season. The principal compounds emitted by Scots pine are DELTA3-carene and alpha-pinene in the south boreal zone and alpha- and beta-pinene in the north boreal zone. The monoterpene emissions are dependent on temperature and have a clear seasonal cycle with high emissions in spring

  12. The impact of boreal forest fire on climate warming.

    Science.gov (United States)

    Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S

    2006-11-17

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  13. Global estimates of boreal forest carbon stocks and flux

    Science.gov (United States)

    Bradshaw, Corey J. A.; Warkentin, Ian G.

    2015-05-01

    The boreal ecosystem is an important global reservoir of stored carbon and a haven for diverse biological communities. The natural disturbance dynamics there have historically been driven by fire and insects, with human-mediated disturbances increasing faster than in other biomes globally. Previous research on the total boreal carbon stock and predictions of its future flux reveal high uncertainty in regional patterns. We reviewed and standardised this extensive body of quantitative literature to provide the most up-to-date and comprehensive estimates of the global carbon balance in the boreal forest. We also compiled century-scale predictions of the carbon budget flux. Our review and standardisation confirmed high uncertainty in the available data, but there is evidence that the region's total carbon stock has been underestimated. We found a total carbon store of 367.3 to 1715.8 Pg (1015 g), the mid-point of which (1095 Pg) is between 1.3 and 3.8 times larger than any previous mean estimates. Most boreal carbon resides in its soils and peatlands, although estimates are highly uncertain. We found evidence that the region might become a net carbon source following a reduction in carbon uptake rate from at least the 1980s. Given that the boreal potentially constitutes the largest terrestrial carbon source in the world, in one of the most rapidly warming parts of the globe (Walsh, 2014), how we manage these stocks will be influential on future climate dynamics.

  14. Using three decades of Landsat data to characterize changes and vulnerability of temperate and boreal forest phenology to climate change

    Science.gov (United States)

    Melaas, E. K.; Sulla-menashe, D. J.; Gray, J. M.; Friedl, M. A.

    2015-12-01

    Climate change is creating well-documented impacts on terrestrial ecosystems. Among the best known of these impacts are changes to the growing season of temperate and boreal forests. Changes in phenology provide useful diagnostics of climate change impacts in these biomes, influence coupled biosphere-atmosphere interactions, and also affect regional-to-global carbon budgets. Extreme events and climate variability complicate the response of ecosystems and increase vulnerability by inducing large phenological responses that affect ecosystem function at seasonal (and longer) time scales. Studies using in-situ measurements have suggested that the growing season of temperate and boreal ecosystems is changing, and remote sensing-based research using time series imagery from coarse resolution sensors appear to confirm this trend. Specifically, studies using AVHRR NDVI data have documented changes in growing season NDVI that indicate widespread perturbations to boreal and temperate forests in response to climate change. However, the coarse spatial resolution and other limitations of AVHRR data constrain the types of inferences that can be drawn from these data. We describe research to address these challenges using Landsat data. Specifically, we use a new methodology that exploits dense time series of Landsat images to quantify spatio-temporal patterns in North American temperate and boreal forest growing season dynamics. Our methodology uses a sampling strategy designed to capture geographic variation in temperate and boreal forest properties, and focuses on regions of overlap between adjacent Landsat scenes, thereby significantly increasing the temporal sampling of Landsat images. Results from this research provide retrospective characterization of changes to temperate and boreal forest growing seasons spanning 30+ years at 30 m spatial resolution. In doing so, this research is (1) dramatically improving information about how temperate and boreal forests have changed in

  15. Exchange of volatile organic compounds in the boreal forest floor

    Science.gov (United States)

    Aaltonen, Hermanni; Bäck, Jaana; Pumpanen, Jukka; Pihlatie, Mari; Hakola, Hannele; Hellén, Heidi; Aalto, Juho; Heinonsalo, Jussi; Kajos, Maija K.; Kolari, Pasi; Taipale, Risto; Vesala, Timo

    2013-04-01

    Terrestrial ecosystems, mainly plants, emit large amounts of volatile organic compounds (VOCs) into the atmosphere. In addition to plants, VOCs also have less-known sources, such as soil. VOCs are a very diverse group of reactive compounds, including terpenoids, alcohols, aldehydes and ketones. Due to their high reactivity, VOCs take part in formation and growth of secondary organic aerosols in the atmosphere and thus affect also Earth's radiation balance (Kulmala et al. 2004). We have studied boreal soil and forest floor VOC fluxes with chamber and snow gradient techniques we were developed. Spatial and temporal variability in VOC fluxes was studied with year-round measurements in the field and the sources of boreal soil VOCs in the laboratory with fungal isolates. Determination of the compounds was performed mass spectrometrically. Our results reveal that VOCs from soil are mainly emitted by living roots, above- and belowground litter and microbes. The strongest source appears to be litter, in which both plant residuals and decomposers play a role in the emissions. Soil fungi showed high emissions of lighter VOCs, like acetone, acetaldehyde and methanol, from isolates. Temperature and moisture are the most critical physical factors driving VOC fluxes. Since the environment in boreal forests undergoes strong seasonal changes, the VOC flux strength of the forest floor varies markedly during the year, being highest in spring and autumn. The high spatial heterogeneity of the forest floor was also clearly visible in VOC fluxes. The fluxes of other trace gases (CO2, CH4 and N2O) from soil, which are also related to the soil biological activity and physical conditions, did not show correlations with the VOC fluxes. These results indicate that emissions of VOCs from the boreal forest floor account for as much as several tens of percent, depending on the season, of the total forest ecosystem VOC emissions. This emphasises that forest floor compartment should be taken into

  16. A new model for estimating boreal forest fPAR

    Science.gov (United States)

    Majasalmi, Titta; Rautiainen, Miina; Stenberg, Pauline

    2014-05-01

    Life on Earth is continuously sustained by the extraterrestrial flux of photosynthetically active radiation (PAR, 400-700 nm) from the sun. This flux is converted to biomass by chloroplasts in green vegetation. Thus, the fraction of absorbed PAR (fPAR) is a key parameter used in carbon balance studies, and is listed as one of the Essential Climate Variables (ECV). Temporal courses of fPAR for boreal forests are difficult to measure, because of the complex 3D structures. Thus, they are most often estimated based on models which quantify the dependency of absorbed radiation on canopy structure. In this study, we adapted a physically-based canopy radiation model into a fPAR model, and compared modeled and measured fPAR in structurally different boreal forest stands. The model is based on the spectral invariants theory, and uses leaf area index (LAI), canopy gap fractions and spectra of foliage and understory as input data. The model differs from previously developed more detailed fPAR models in that the complex 3D structure of coniferous forests is described using an aggregated canopy parameter - photon recollision probability p. The strength of the model is that all model inputs are measurable or available through other simple models. First, the model was validated with measurements of instantaneous fPAR obtained with the TRAC instrument in nine Scots pine, Norway spruce and Silver birch stands in a boreal forest in southern Finland. Good agreement was found between modeled and measured fPAR. Next, we applied the model to predict temporal courses of fPAR using data on incoming radiation from a nearby flux tower and sky irradiance models. Application of the model to simulate diurnal and seasonal values of fPAR indicated that the ratio of direct-to-total incident radiation and leaf area index are the key factors behind the magnitude and variation of stand-level fPAR values.

  17. Forest productivity decline caused by successional paludification of boreal soils.

    Science.gov (United States)

    Simard, Martin; Lecomte, Nicolas; Bergeron, Yves; Bernier, Pierre Y; Paré, David

    2007-09-01

    Long-term forest productivity decline in boreal forests has been extensively studied in the last decades, yet its causes are still unclear. Soil conditions associated with soil organic matter accumulation are thought to be responsible for site productivity decline. The objectives of this study were to determine if paludification of boreal soils resulted in reduced forest productivity, and to identify changes in the physical and chemical properties of soils associated with reduction in productivity. We used a chronosequence of 23 black spruce stands ranging in postfire age from 50 to 2350 years and calculated three different stand productivity indices, including site index. We assessed changes in forest productivity with time using two complementary approaches: (1) by comparing productivity among the chronosequence stands and (2) by comparing the productivity of successive cohorts of trees within the same stands to determine the influence of time independently of other site factors. Charcoal stratigraphy indicates that the forest stands differ in their fire history and originated either from high- or low-severity soil burns. Both chronosequence and cohort approaches demonstrate declines in black spruce productivity of 50-80% with increased paludification, particularly during the first centuries after fire. Paludification alters bryophyte abundance and succession, increases soil moisture, reduces soil temperature and nutrient availability, and alters the vertical distribution of roots. Low-severity soil burns significantly accelerate rates of paludification and productivity decline compared with high-severity fires and ultimately reduce nutrient content in black spruce needles. The two combined approaches indicate that paludification can be driven by forest succession only, independently of site factors such as position on slope. This successional paludification contrasts with edaphic paludification, where topography and drainage primarily control the extent and rate

  18. Climate-induced boreal forest change: Predictions versus current observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart; Stackhouse, Paul W.

    2007-04-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, 7 of the last 9 yr have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  19. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  20. Mirror image hydrocarbons from Tropical and Boreal forests

    Directory of Open Access Journals (Sweden)

    J. Williams

    2007-01-01

    Full Text Available Monoterpenes, emitted in large quantities by trees to attract pollinators and repel herbivores, can exist in mirror image forms called enantiomers. In this study such enantiomeric pairs have been measured in ambient air over extensive forest ecosystems in South America and northern Europe. For the dominant monoterpene, α-pinene, the (−-form was measured in large excess over the (+-form over the Tropical rainforest, whereas the reverse was observed over the Boreal forest. Interestingly, over the Tropical forest (−-α-pinene did not correlate with its own enantiomer, but correlated well with isoprene. The results indicate a remarkable ecosystem scale enantiomeric fingerprint and a nexus between the biosphere and atmosphere.

  1. The influence of storm-induced microsites to tree regeneration patterns in boreal and hemiboreal forest

    NARCIS (Netherlands)

    Vodde, F.; Jogiste, K.; Kubota, Y.; Kuuluvainen, T.; Koster, K.; Lukjanova, A.; Metslaid, M.; Yoshida, T.

    2011-01-01

    We reviewed studies dealing with regeneration under variable conditions in boreal and hemiboreal forests as affected by different microsite types by tree species functional groups. Generally, the importance of storm-induced microsites for regeneration dynamics in boreal forests depends on several fa

  2. Sorption of niobium on boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Mervi; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-07-01

    The sorption of niobium (Nb) was investigated on humus and mineral soil samples taken from various depths of a four-metre deep forest soil pit on Olkiluoto Island, southwestern Finland. Mass distribution coefficients, K{sub d}, were determined in batch sorption tests. The steady state of Nb sorption was observed in the mineral soil samples already after one week of equilibration, and sorption decreased with depth from a very high value of 185000 mL/g at 0.7 m to 54000 mL/g at 3.4 m. The reason behind this decrease is probably the tenfold reduction in the specific surface area of the soil at the same depth range. Distribution coefficients were clearly lower in the humus layer (1000 mL/g). The K{sub d} values determined in pure water at a pH range of 4.7-6.5 were at a high level (above 55000 mL/g), but decreased dramatically above pH 6.5, corresponding to the change in the major Nb species from the neutral Nb(OH){sub 5} to the low-sorbing anionic Nb(OH){sub 6}{sup -} and Nb(OH){sub 7}{sup 2-}. However, the K{sub d} values in the model soil solution were in the slightly alkaline range an order of magnitude higher than in pure water, which is probably caused by the formation of calcium niobate surface precipitate or electrostatic interaction between surface-sorbed calcium and solute Nb. Among nine soil constituent minerals kaolinite performed best in retaining Nb in both pure water and model soil solution at pH 8, whereas potassium feldspar showed the poorest sorption. The K{sub d} value for kaolinite was above 500000 mL/g in both solutions, while the respective potassium feldspar values were in the range of 120-220 mL/g.

  3. Fire Regime along Latitudinal Gradients of Continuous to Discontinuous Coniferous Boreal Forests in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Jeanne Portier

    2016-09-01

    Full Text Available Fire is the main disturbance in North American coniferous boreal forests. In Northern Quebec, Canada, where forest management is not allowed, the landscape is gradually constituted of more opened lichen woodlands. Those forests are discontinuous and show a low regeneration potential resulting from the cumulative effects of harsh climatic conditions and very short fire intervals. In a climate change context, and because the forest industry is interested in opening new territories to forest management in the north, it is crucial to better understand how and why fire risk varies from the north to the south at the transition between the discontinuous and continuous boreal forest. We used time-since-fire (TSF data from fire archives as well as a broad field campaign in Quebec’s coniferous boreal forests along four north-south transects in order to reconstruct the fire history of the past 150 to 300 years. We performed survival analyses in each transect in order to (1 determine if climate influences the fire risk along the latitudinal gradient; (2 fractionate the transects into different fire risk zones; and (3 quantify the fire cycle—defined as the time required to burn an area equivalent to the size of the study area—of each zone and compare its estimated value with current fire activity. Results suggest that drought conditions are moderately to highly responsible for the increasing fire risk from south to north in the three westernmost transects. No climate influence was observed in the last one, possibly because of its complex physical environment. Fire cycles are shortening from south to north, and from east to west. Limits between high and low fire risk zones are consistent with the limit between discontinuous and continuous forests, established based on recent fire activity. Compared to the last 40 years, fire cycles of the last 150–300 years are shorter. Our results suggest that as drought episodes are expected to become more frequent

  4. Nitrogen Additions Affect Root Dynamics in a Boreal Forest Ecosystem

    Science.gov (United States)

    Turner, K. M.; Treseder, K. K.

    2004-12-01

    As with many ecosystems, North American boreal forests are increasingly subjected to anthropogenic nitrogen deposition. To examine potential effects on plant growth, we created nitrogen fertilization plots in three sites along an Alaskan fire chronosequence composed of forests aged 5, 17, and 80 years. Each site had been exposed to two years of nitrogen fertilization, with four control plots and four nitrogen plots per site. General observations indicate that aboveground net primary productivity appears to be nitrogen limited in each site. We hypothesized that nitrogen fertilization would positively influence root dynamics as well, with nitrogen additions resulting in an increase in standing root biomass and length. To test our hypothesis, we used a minirhizotron camera to collect sequential images of roots in the top 10 cm of soil in both nitrogen fertilized and control plots in each site. Images were collected monthly during the growing season, with a total of five sampling times between May 2003 and May 2004. We then analyzed the images with WinRhizotron root measurement software. Nitrogen fertilization had varying effects on root biomass among the three sites, with a significant site by N interaction (P = 0.039). A decrease in root biomass was observed in the 5 and 80 year old sites, dropping from 207 g/m2 to 79 g/m2 and from 230 g/m2 to 129 g/m2 for the youngest and oldest sites, respectively. In contrast, root biomass increased from 52 g/m2 to 107 g/m2 in the 17 year old site. (Values are for the top 10 cm of soil only, and likely underestimate total root stocks.) Patterns in standing root lengths diverged from those of root biomass, with a 2.5-fold overall increase under nitrogen fertilization across all sites (P = 0.004). There were no significant differences among sites in nitrogen response. Standing root biomass and length differed from one another in their responses to nitrogen fertilization because nitrogen additions decreased specific root weight (as g

  5. Quantifying nitrogen-fixation in feather moss carpets of boreal forests.

    Science.gov (United States)

    DeLuca, Thomas H; Zackrisson, Olle; Nilsson, Marie-Charlotte; Sellstedt, Anita

    2002-10-31

    Biological nitrogen (N) fixation is the primary source of N within natural ecosystems, yet the origin of boreal forest N has remained elusive. The boreal forests of Eurasia and North America lack any significant, widespread symbiotic N-fixing plants. With the exception of scattered stands of alder in early primary successional forests, N-fixation in boreal forests is considered to be extremely limited. Nitrogen-fixation in northern European boreal forests has been estimated at only 0.5 kg N ha(-1) yr(-1); however, organic N is accumulated in these ecosystems at a rate of 3 kg N ha(-1) yr(-1) (ref. 8). Our limited understanding of the origin of boreal N is unacceptable given the extent of the boreal forest region, but predictable given our imperfect knowledge of N-fixation. Herein we report on a N-fixing symbiosis between a cyanobacterium (Nostoc sp.) and the ubiquitous feather moss, Pleurozium schreberi (Bird) Mitt. that alone fixes between 1.5 and 2.0 kg N ha(-1) yr(-1) in mid- to late-successional forests of northern Scandinavia and Finland. Previous efforts have probably underestimated N-fixation potential in boreal forests.

  6. Thermokarst Rates Intensify Due to Climate Change and Forest Fragmentation in an Alaskan Boreal Forest Lowland

    Science.gov (United States)

    Lara, M. J.; Genet, H.; McGuire, A. D.; Euskirchen, E. S.; Zhang, Y.; Brown, D. N.; Jorgenson, T.; Romanovsky, V. E.; Breen, A. L.; Bolton, W. R.

    2015-12-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse scar-bogs, low shrub/scrub, and forests growing on elevated ice rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5o C of thawing. Increases in the collapse of lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998 and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30x30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, respectively. Gradient boosting and regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950-2009 landscape-level analysis estimates a transition of ~15 km² of birch forest area to wetlands on the Tanana Flats, where the greatest change followed warm periods. This work highlights the vulnerability of lowland

  7. Responses of aboveground and belowground forest carbon stocks to disturbances in boreal forests of Northeastern China

    Science.gov (United States)

    Huang, Chao; He, Hong S.; Hawbaker, Todd J.; Liang, Yu; Gong, Peng; Wu, Wuzhiwei; Zhu, Zhiliang

    2016-04-01

    Boreal forests represents about 1/3 of forest area and 1/3 of forest carbon on earth. Carbon dynamics of boreal forests are sensitive to climate change, natural (e.g., fire) and anthropogenic (e.g., harvest) disturbances. Field-based studies suggest that disturbances alter species composition, stand structure, and litter decomposition, and have significant effects on boreal forest carbon dynamics. Most of these studies, however, covered a relatively short period of time (e.g., few decades), which is limited in revealing such long-term effects of disturbances. Models are therefore developed as important tools in exploring the long-term (e.g., hundreds of years) effects of disturbances on forest carbon dynamics. In this study, we applied a framework of coupling forest ecosystem and landscape model to evaluating the effect of fire, harvest and their interactions on carbon stocks in a boreal forest landscape of Northeastern China. We compared the simulation results under fire, harvest and fire-harvest interaction scenarios with the simulated value of succession scenario at 26 landtypes over 150 years at a 10-year time step. Our results suggest that aboveground and belowground carbon are significantly reduced by fire and harvest over 150years. Fire reduced aboveground carbon by 2.3±0.6 ton/ha, harvest by 6.0±1.4 ton/ha, and fire and harvest interaction by 8.0±1.9 tons/ha. Fire reduced belowground carbon by 4.6±3.4 ton/ha, harvest by 5.0±3.5 ton/ha, and fire-harvest interaction by 5.7±3.7 tons/ha. The divergent response of carbon stocks among landtypes and between disturbance scenarios was due to the spatial interactions between fire, harvest, and species composition. Our results indicated that boreal forests carbon stocks prediction needs to consider the effects of fire and harvest for improving the estimation accuracy.

  8. A MESO-β SCALE SIMULATION OF THE EFFECTS OF BOREAL FOREST ECOSYSTEM ON THE LOWER ATMOSPHERE

    Institute of Scientific and Technical Information of China (English)

    王汉杰; Yi-Fan LI; Aloysius K.LO

    2001-01-01

    Based on the Intensive Field Campaign (IFC-I) data of Boreal Ecosystem-Atmosphere Study(BOREAS), a three-dimensional meso-β scale model is used to simulate the effect of boreal forests on the lower atmosphere. A fine horizontal resolution of 2 km × 2 km is used in order to distinguish the vegetative heterogeneity in the boreal region. A total of 20 × 25 grid points cover the entire sub modeling area in BOREAS' South Study Area (SSA). The ecosystem types and their coverage in each grid square are extracted from the North American Land Cover Characteristics Data Base(NALCCD) generated by the U.S. Geographical Survey (USGS) and the University of Nebraska Lincoln (UNL). The topography of the study area is taken from the Digital Elevation Map (DEM)of USGS. The model outputs include the components of the energy balance budget within the canopy and at the ground, the turbulence parameters in the atmospheric boundary layer and the wind,temperature and humidity profiles extending up to a height of 1500 m. In addition to the fine time nd spatial step, the unique feature of the present model is the incorporation of both dynamic and biological effects of the Boreal forest into the model parameterization scheme. The model results compare favorably with BOREAS' IFC-1 data in 1994 when the forest was in the luxuriant growing period.

  9. Fire dynamics and implications for nitrogen cycling in boreal forests

    Science.gov (United States)

    Harden, Jennifer W.; Mack, Michelle; Veldhuis, Hugo; Gower, S. T.

    2003-02-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  10. Nitrogen balance of a boreal Scots pine forest

    Directory of Open Access Journals (Sweden)

    J. F. J. Korhonen

    2012-08-01

    Full Text Available The productivity of boreal forests is considered to be limited by low nitrogen (N availability. Increased atmospheric N deposition has altered the functioning and N cycling of these N-sensitive ecosystems. The most important components of N pools and fluxes were measured in a boreal Scots pine stand in Hyytiälä, Southern Finland. The measurement at the site allowed direct estimations of nutrient pools in the soil and biomass, inputs from the atmosphere and outputs as drainage flow and gaseous losses from two micro-catchments. N was accumulating to the system with a rate of 7 kg N ha−1 yr−1. Nitrogen input as atmospheric deposition was 7.4 kg N ha−1 yr−1. Dry deposition and organic N in wet deposition contributed over half of the input in deposition. Total outputs were 0.4 kg N ha−1 yr−1, the most important outputs being N2O emission to the atmosphere and organic N flux in drainage flow. Nitrogen uptake and retranslocation were as important sources of N for plant growth. Most of the uptaken N originated from decomposition of organic matter, and the fraction of N that could originate directly from deposition was about 30%. In conclusion, atmospheric N deposition fertilizes the site considerably.

  11. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey;

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...... as well as the vertical OH-reactivity profile. We have used SOSA; a one dimensional vertical chemistry-transport model (Boy et al., 2011a) together with measurements from Hyytiala, SMEAR II station, Southern Finland, conducted in August 2008. Model simulations only account for similar to 30......-50% of the total measured OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic...

  12. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    2015-08-01

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.

  13. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest.

    Science.gov (United States)

    Bond-Lamberty, Ben; Rocha, Adrian V; Calvin, Katherine; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L

    2014-01-01

    Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4 ± 0.6% yr-(1), with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of

  14. boreal forest when timber prices and tree growth are stochastic

    Institute of Scientific and Technical Information of China (English)

    Timo Pukkala

    2015-01-01

    Background:Decisions on forest management are made under risk and uncertainty because the stand development cannot be predicted exactly and future timber prices are unknown. Deterministic calculations may lead to biased advice on optimal forest management. The study optimized continuous cover management of boreal forest in a situation where tree growth, regeneration, and timber prices include uncertainty. Methods:Both anticipatory and adaptive optimization approaches were used. The adaptive approach optimized the reservation price function instead of fixed cutting years. The future prices of different timber assortments were described by cross-correlated auto-regressive models. The high variation around ingrowth model was simulated using a model that describes the cross-and autocorrelations of the regeneration results of different species and years. Tree growth was predicted with individual tree models, the predictions of which were adjusted on the basis of a climate-induced growth trend, which was stochastic. Residuals of the deterministic diameter growth model were also simulated. They consisted of random tree factors and cross-and autocorrelated temporal terms. Results:Of the analyzed factors, timber price caused most uncertainty in the calculation of the net present value of a certain management schedule. Ingrowth and climate trend were less significant sources of risk and uncertainty than tree growth. Stochastic anticipatory optimization led to more diverse post-cutting stand structures than obtained in deterministic optimization. Cutting interval was shorter when risk and uncertainty were included in the analyses. Conclusions:Adaptive optimization and management led to 6%–14%higher net present values than obtained in management that was based on anticipatory optimization. Increasing risk aversion of the forest landowner led to earlier cuttings in a mature stand. The effect of risk attitude on optimization results was small.

  15. Logging and Fire Effects in Siberian Boreal Forests

    Science.gov (United States)

    Kukavskaya, E.; Buryak, L.; Ivanova, G.; Kalenskaya, O.; Bogorodskaya, A.; Zhila, S.; McRae, D.; Conard, S. G.

    2013-12-01

    The Russian boreal zone supports a huge terrestrial carbon pool. Moreover, it is a tremendous reservoir of wood products concentrated mainly in Siberia. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and has potentially important climate feedbacks. In addition, both legal and illegal logging increase landscape complexity and fire hazard. We investigated a number of sites in different regions of Siberia to evaluate the impacts of fire and logging on fuel loads, carbon emissions, tree regeneration, soil respiration, and microbocenosis. We found large variations of fire and logging effects among regions depending on growing conditions and type of logging activity. Partial logging had no negative impact on forest conditions and carbon cycle. Illegal logging resulted in increase of fire hazard, and higher carbon emissions than legal logging. The highest fuel loads and carbon emissions were found on repeatedly burned unlogged sites where first fire resulted in total tree mortality. Repeated fires together with logging activities in drier conditions and on large burned sites resulted in insufficient regeneration, or even total lack of tree seedlings. Soil respiration was less on both burned and logged areas than in undisturbed forest. The highest structural and functional disturbances of the soil microbocenosis were observed on logged burned sites. Understanding current interactions between fire and logging is important for modeling ecosystem processes and for managers to develop strategies of sustainable forest management. Changing patterns in the harvest of wood products increase landscape complexity and can be expected to increase emissions and ecosystem damage from wildfires, inhibit recovery of natural ecosystems, and exacerbate impacts of wildland fire on changing climate and air quality. The research was supported by NASA LCLUC Program, RFBR grant # 12-04-31258, and Russian Academy of Sciences.

  16. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.

  17. Annual variations of atmospheric VOC concentrations in a boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Hakola, H.; Hellen, H.; Tarvainen, V. (Finnish Meteorological Institute Air Quality Research, Helsinki (Finland)); Baeck, J. (Dept. of Forest Ecology, Univ. of Helsinki (Finland)); Patokoski, J.; Rinne, J. (Dept. of Physics, Univ. of Helsinki (Finland))

    2009-07-01

    Ambient atmospheric concentrations of monoterpene compounds were measured above a boreal forest in Hyytiaelae, Finland during 2000-2007. For most of the time, two samples per week were collected, although there are some gaps in the data due to analytical or other issues. The monoterpene concentrations reached their maximum in summer, although they were found to be quite high also during winter. The main compounds found during winter were alpha-pinene, DELTA3-carene, beta-pinene and camphene. In summer 1,8-cineol and sabinene were also present in the samples. The concentrations of alpha-pinene, beta-pinene/myrcene, camphene, DELTA3-carene increased during the measurement period both in winter and in summer. This increase cannot be explained by meteorological conditions. The possible explanations could be human activities in the vicinity of the sampling site in addition to forest growth. The seasonal cycles of daytime concentrations were found to follow emission fluxes modeled using a simple temperature dependent parameterisation. The measured monoterpene concentrations were used, together with emission rate measurements, for estimating ambient atmospheric beta-caryophyllene concentration which cannot be directly measured due to its high reactivity against ozone. (orig.)

  18. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Rocha, Adrian; Calvin, Katherine V.; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L.

    2014-01-01

    How will regional growth and mortality change with even relatively small climate shifts, even independent of catastrophic disturbances? This question is particularly acute for the North American boreal forest, which is carbon-dense and subject The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean DBH increased even as stand density and basal area declined significantly from 41.3 to 37.5 m2 ha-1. Tree mortality averaged 1.4±0.6% yr-1, with most mortality occurring in medium-sized trees. A combined tree ring chronology constructed from 2001, 2004, and 2012 sampling showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. There have been at least one, and probably two, significant recruitment episodes since stand initiation, and we infer that past climate extremes led to significant NOBS mortality still visible in the current forest structure. These results imply that a combination of successional and demographic processes, along with mortality driven by abiotic factors, continue to affect the stand, with significant implications for our understanding of previous work at NOBS and the sustainable management of regional forests.

  19. Nitrogen balance of a boreal Scots pine forest

    Directory of Open Access Journals (Sweden)

    J. F. J. Korhonen

    2013-02-01

    Full Text Available The productivity of boreal forests is considered to be limited by low nitrogen (N availability. Increased atmospheric N deposition has altered the functioning and N cycling of these N-sensitive ecosystems by increasing the availability of reactive nitrogen. The most important components of N pools and fluxes were measured in a boreal Scots pine stand in Hyytiälä, Southern Finland. The measurements at the site allowed direct estimations of nutrient pools in the soil and biomass, inputs from the atmosphere and outputs as drainage flow and gaseous losses from two micro-catchments. N was accumulating in the system, mainly in woody biomass, at a rate of 7 kg N ha−1 yr−1. Nitrogen input as atmospheric deposition was 7.4 kg N ha−1 yr−1. Dry deposition and organic N in wet deposition contributed over half of the inputs in deposition. Total outputs were 0.4 kg N ha−1 yr−1, the most important outputs being N2O emission to the atmosphere and organic N flux in drainage flow. Nitrogen uptake and retranslocation were equally important sources of N for plant growth. Most of the assimilated N originated from decomposition of organic matter, and the fraction of N that could originate directly from deposition was about 30%. In conclusion, atmospheric N deposition fertilizes the site considerably, but there are no signs of N saturation. Further research is needed to estimate soil N2 fluxes (emission and fixation, which may amount up to several kg N ha−1 yr−1.

  20. Who is the new sheriff in town regulating boreal forest growth?

    Science.gov (United States)

    Park Williams, A.; Xu, Chonggang; McDowell, Nate G.

    2011-12-01

    G P, Alix C, Barber V A, Winslow S E, Sousa E E, Heiser P, Herriges J D and Goetz S J 2011 Changes in forest productivity across Alaska consistent with biome shift Ecol. Lett. 14 373-9 Berner L T, Beck P S A, Bunn A G, Lloyd A H and Goetz S J 2011 High-latitude tree growth and satellite vegetation indices: correlations and trends in Russia and Canada (1982-2008) J. Geophys. Res. 116 G01015 Bunn A G and Goetz S J 2006 Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density Earth Interact. 10 1-19 D'Arrigo R, Jacoby G, Buckley B, Sakulich J, Frank D, Wilson R, Curtis A and Anchukaitis K 2009 Tree growth and inferred temperature variability at the North American Arctic treeline Glob. Planet. Change 65 71-82 D'Arrigo R, Wilson R, Liepert B, Cherubini P 2008 On the 'divergence problem' in northern forests: a review of the tree-ring evidence and possible causes Glob. Planet. Change 60 289-305 Davi N K, Jacoby G C and Wiles G C 2003 Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska Quatern. Res. 60 252-62 Flexas J, Bota J, Loreto F, Cornic G and Sharkey T 2004 Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants Plant Biol. 6 269-79 Goetz S J, Bunn A G, Fiske G J and Houghton R 2005 Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance Proc. Natl Acad. Sci. USA 102 13521-5 Goetz S J, Kimball J S, Mack M C and Kasischke E S 2011 Scoping completed for an experiment to assess vulnerability of Arctic and boreal ecosystems EOS Trans. Am. Geophys. Union 92 150-1 McDowell N G 2011 Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality Plant Physiol. 155 1051-9 McGuire A D, Ruess R W, Lloyd A, Yarie J, Clein J S and Juday G P 2010 Vulnerability of white spruce tree growth in interior

  1. Simulating Changes in Fires and Ecology of the 21st Century Eurasian Boreal Forests of Siberia

    Directory of Open Access Journals (Sweden)

    Ksenia Brazhnik

    2017-02-01

    Full Text Available Wildfires release the greatest amount of carbon into the atmosphere compared to other forest disturbances. To understand how current and potential future fire regimes may affect the role of the Eurasian boreal forest in the global carbon cycle, we employed a new, spatially-explicit fire module DISTURB-F (DISTURBance-Fire in tandem with a spatially-explicit, individually-based gap dynamics model SIBBORK (SIBerian BOReal forest simulator calibrated to Krasnoyarsk Region. DISTURB-F simulates the effect of forest fire on the boreal ecosystem, namely the mortality of all or only the susceptible trees (loss of biomass, i.e., carbon within the forested landscape. The fire module captures some important feedbacks between climate, fire and vegetation structure. We investigated the potential climate-driven changes in the fire regime and vegetation in middle and south taiga in central Siberia, a region with extensive boreal forest and rapidly changing climate. The output from this coupled simulation can be used to estimate carbon losses from the ecosystem as a result of fires of different sizes and intensities over the course of secondary succession (decades to centuries. Furthermore, it may be used to assess the post-fire carbon storage capacity of potential future forests, the structure and composition of which may differ significantly from current Eurasian boreal forests due to regeneration under a different climate.

  2. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, Anthony; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  3. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  4. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Directory of Open Access Journals (Sweden)

    C. Yue

    2013-04-01

    Full Text Available Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange, leaf area index (LAI, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height. The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2. We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results

  5. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-12-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results

  6. Community structure of ectomycorrhizal fungi in Swedish boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Lena [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1998-12-31

    The main aim of this work has been to elucidate the species composition and community structure of ectomycorrhizal fungi associated with mature trees and naturally regenerated seedlings in natural boreal forests in Sweden. Further, the effects of disturbances, such as wildfire and nitrogen inputs, were studied. Sporocarp surveys, morphological stratification and DNA-based analyses of mycorrhizas were used to describe the mycorrhizal fungal communities. In addition, a reference database useful for identifying individual mycorrhizas was developed based on analyses of sporocarp tissue. Overall, the species richness of ectomycorrhizal fungi was at least 30 to 40 times higher than that of their host trees. Naturally regenerated seedlings were colonized by the ectomycorrhizal fungal species present in the mycelial network of the old trees, indicating that the species composition will remain about the same provided that the host does not disappear. Wildfire, disturbing the fungal continuum, caused a shift in the frequencies of ectomycorrhizal fungi rather than a change in species composition. Nitrogen addition did not have any detectable effect on the abundance or species richness of mycorrhizas, but led to a decrease in sporocarp production. In all the studies, there was little resemblance between the species composition of sporocarps and that of mycorrhizas. The ITS-RFLP reference database was very useful in identifying single mycorrhizas, and proved to be a powerful tool for species identification of unknown mycorrhizas 76 refs, 2 figs, 2 tabs

  7. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  8. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project).

    NARCIS (Netherlands)

    Breemen, van N.; Jenkins, A.; Wright, R.F.; Beerling, D.J.; Arp, W.J.; Berendse, F.; Beier, C.; Collins, R.; Dam, van D.; Rasmussen, L.; Verburg, P.S.J.; Wills, M.A.

    1998-01-01

    To evaluate the effects of climate change on boreal forest ecosystems, both atmospheric CO2 (to 560 ppmv) and air temperature (by 3°–5°C above ambient) were increased at a forested headwater catchment in southern Norway. The entire catchment (860 m2) is enclosed within a transparent greenhouse, and

  9. Transpiration response of boreal forest plants to permafrost thaw

    Science.gov (United States)

    Cable, J.; Ogle, K.; Welker, J. M.

    2011-12-01

    than the site with stable permafrost. In terms of the "base" gs rate, current soil temperature positively affects gs in the deciduous functional types. The prior year's soil temperature positively affected the black spruce base rate at the end of the season, but negatively affected the evergreen sub-shrubs at the beginning of the season. Soil temperature the prior year's May was most important at the site with thawing permafrost, but May and June were important for the site with stable permafrost. These preliminary results suggest that (1) we must account for within-season and the prior year's antecedent conditions when quantifying the effects of permafrost thaw on plant function, and (2) permafrost thaw changes how boreal forest plant species respond to climate and soil conditions. Next, we must quantify the mechanisms of the antecedent response to determine thresholds in thaw that could result in shifts in species composition.

  10. Atmospheric ions, boreal forests and impacts on climate

    Science.gov (United States)

    Manninen, H. E.; Nieminen, T.; Franchin, A.; Järvinen, E.; Kontkanen, J.; Hirsikko, A.; Hõrrak, U.; Mirme, A.; Tammet, H.; Kerminen, V.-M.; Petäjä, T.; Kulmala, M.

    2012-04-01

    than 2 nm in diameter by charging the aerosol sample with unipolar corona chargers (Manninen et al., 2009). According to earlier studies, the atmospheric nucleation and cluster activation take place at the mobility diameter range of 1.5-2 nm. Therefore, the ion spectrometers allow direct measurements at exactly the size where atmospheric nucleation takes place. The results indicate that the ion-induced nucleation contributes ~1-30% to the NPF events in most atmospheric conditions (Manninen et al., 2010). In other words, neutral particle formation seems to dominate over ion-mediated mechanisms, at least in the boreal forest conditions. Acknowledgements. This research was supported by the Academy of Finland Center of Excellence program (project number 1118615). Hirsikko, A. et al.: Atmospheric ions and nucleation: a review of observations, Atmos. Chem. Phys., 11, 767-798, 2011. IPCC, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp, 2007. Kulmala, M., and Kerminen, V.-M.: On the growth of atmospheric nanoparticles, Atmos. Res., 90, 132-150, 2008. Manninen, H.E. et al.: Long-term field measurements of charged and neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS). Boreal Env. Res. 14, 591-605, 2009. Manninen, H.E. et al., EUCAARI ion spectrometer measurements at 12 European sites - analysis of new particle formation events, Atmos. Chem. Phys., 10, 7907-7927, 2010. Mirme, A. et al.: A Wide-range multi-channel Air Ion Spectrometer, Boreal Environ. Res., 12, 247-264, 2007. Tammet, H.: Symmetric inclined grid mobility analyzer for the measurement of charged clusters and fine nanoparticles in atmospheric air. Aerosol Science and Technology, 45, 468 - 479, 2011.

  11. Management effects on carbon fluxes in boreal forests (Invited)

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.; Vestin, P.; Hellström, M.; Sundqvist, E.; Norunda Bgs Team

    2010-12-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Northern Europe a large fraction of the forest area is managed with clear cutting and thinning as the main silvicultural methods. The effect of clear-cutting on carbon dioxide exchanges were studied in different chrono-sequences located in Sweden, Finland, UK and France, respectively. The combined results from these studies showed that a simple model could be developed describing relative net ecosystem exchange as a function of relative rotation length (age). A stand with a rotation length of 100 years, typical for Swedish conditions, looses substantial amounts of carbon during the first 12-15 years and the time it takes to reach cumulative balance after clear-cut, is 25-30 years. The mean net ecosystem exchange over the whole rotation length equals 50% of the maximum uptake. An interesting question is if it is possible to harvest without the substantial carbon losses that take place after clear-cutting. Selective harvest by thinning could potentially be such a method. We therefore studied the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The

  12. Effect of Forest Fire on Regional Carbon Dioxide Exchange Over Boreal Forest in Interior Alaska

    Science.gov (United States)

    Iwata, H.; Otsuki, M.; Harazono, Y.; Ueyama, M.; Iwata, T.

    2010-12-01

    Forest fire is a major disturbance in boreal forest ecosystems and significantly influences carbon exchange processes by combustion of vegetation and surface organic soils. In Interior Alaska, area of 7.6x106 ha was burned during 2000-2009 by forest fires. Fire occurrence frequency in the next decade may increase with current warming trend. Hence, it is important to include carbon dioxide (CO2) exchange at fire scars to accurately estimate regional CO2 exchange. To quantify CO2 exchange, CO2 flux and meteorological data were obtained at an undisturbed black spruce forest and a fire scar (five years after fire) in Interior Alaska, and responses of photosynthesis and respiration to meteorological variables were examined in each site. Photosynthesis at the fire scar was reduced to approximately 50 % of photosynthesis at the undisturbed black spruce forest due to loss of vegetation. Respiration at the fire scar was also reduced to 50 % of the undisturbed black spruce forest. This is attributable to decrease of biomass and surface organic matter. Annual net exchanges of CO2 at both sites were uptake of 519 and 256 gCO2/m2/year for the undisturbed black spruce forest and the fire scar, respectively. We used light-use efficiency model to estimate spatial distributions of photosynthesis and respiration using remote sensing imagery, NCEP/NCAR reanalysis meteorology and NASA solar radiation. The model was parameterized using observations at the undisturbed black spruce forest and the fire scar. Estimated regional average of CO2 uptake was reduced by 10 % compared to an estimated value with which fire scars were not included. Further improvement is expected by incorporating severity of forest fires that determine reduction of photosynthesis and respiration after fires.

  13. Quantifying the missing link between forest albedo and productivity in the boreal zone

    Science.gov (United States)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest

  14. Observation and modelling of HOx radicals in a boreal forest

    Directory of Open Access Journals (Sweden)

    K. Hens

    2014-08-01

    Full Text Available Measurements of OH and HO2 radicals were conducted in a pine-dominated forest in southern Finland during the HUMPPA-COPEC-2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study field campaign in summer 2010. Simultaneous side-by-side measurements of hydroxyl radicals were conducted with two instruments using chemical ionization mass spectrometry (CIMS and laser-induced fluorescence (LIF, indicating small systematic disagreement, OHLIF / OHCIMS = (1.31 ± 0.14. Subsequently, the LIF instrument was moved to the top of a 20 m tower, just above the canopy, to investigate the radical chemistry at the ecosystem–atmosphere interface. Comprehensive measurements including observations of many volatile organic compounds (VOCs and the total OH reactivity were conducted and analysed using steady-state calculations as well as an observationally constrained box model. Production rates of OH calculated from measured OH precursors are consistent with those derived from the steady-state assumption and measured total OH loss under conditions of moderate OH reactivity. The primary photolytic sources of OH contribute up to one-third to the total OH production. OH recycling, which occurs mainly by HO2 reacting with NO and O3, dominates the total hydroxyl radical production in this boreal forest. Box model simulations agree with measurements for hydroxyl radicals (OHmod. / OHobs. = 1.00 ± 0.16, while HO2 mixing ratios are significantly under-predicted (HO2mod. / HO2obs. = 0.3 ± 0.2, and simulated OH reactivity does not match the observed OH reactivity. The simultaneous under-prediction of HO2 and OH reactivity in periods in which OH concentrations were simulated realistically suggests that the missing OH reactivity is an unaccounted-for source of HO2. Detailed analysis of the HOx production, loss, and recycling pathways suggests that in periods of high total OH reactivity

  15. Northeastern North America as a potential refugium for boreal forests in a warming climate.

    Science.gov (United States)

    D'Orangeville, L; Duchesne, L; Houle, D; Kneeshaw, D; Côté, B; Pederson, N

    2016-06-17

    High precipitation in boreal northeastern North America could help forests withstand the expected temperature-driven increase in evaporative demand, but definitive evidence is lacking. Using a network of tree-ring collections from 16,450 stands across 583,000 km(2) of boreal forests in Québec, Canada, we observe a latitudinal shift in the correlation of black spruce growth with temperature and reduced precipitation, from negative south of 49°N to largely positive to the north of that latitude. Our results suggest that the positive effect of a warmer climate on growth rates and growing season length north of 49°N outweighs the potential negative effect of lower water availability. Unlike the central and western portions of the continent's boreal forest, northeastern North America may act as a climatic refugium in a warmer climate.

  16. The impact of climate change on forest fire danger rating in China's boreal forest

    Institute of Scientific and Technical Information of China (English)

    YANG Guang; DI Xue-ying; GUO Qing-xi; SHU Zhan; ZENG Tao; YU Hong-zhou; WANG Chao

    2011-01-01

    The Great Xing'an Mountains boreal forests were focused on in the northeastern China.The simulated future climate scenarios of IPCC SRES A2a and B2a for both the baseline period of 1961-1990 and the future scenario periods were downscaled by the Delta Method and the Weather Generator to produce daily weather data.After the verification with local weather and fire data, the Canadian Forest Fire Weather Index System was used to assess the forest fire weather situation under climate change in the study region.An increasing trend of fire weather severity was found over the 21st century in the study region under the both future climate change scenarios, compared to the 1961-1990 baseline period.The annual mean/maximum fire weather index was predicted to rise continuously during 2010-2099, and by the end of the 21st century it is predicted to rise by 22%-52% across much of China's boreal forest.The significant increases were predicted in the spring from of April to June and in the summer from July to August.In the summer, the fire weather index was predicted to be higher than the current index by as much as 148% by the end of the 21st century.Under the scenarios of SRES A2a and B2a, both the chance of extremely high fire danger occurrence and the number of days of extremely high fire danger occurrence was predieted to increase in the study region.It is anticipated that the number of extremely high fire danger days would increase from 44 days in 1980s to 53-75 days by the end of the 21st century.

  17. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.

    Science.gov (United States)

    Helbig, Manuel; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura E; Quinton, William L; Detto, Matteo; Sonnentag, Oliver

    2016-12-01

    In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol(-1) . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends.

  18. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems

    DEFF Research Database (Denmark)

    Clarke, Nicholas; Gundersen, Per; Jönsson-Belyazid, Ulrika;

    2015-01-01

    Effective forest governance measures are crucial to ensure sustainable management of forests, but so far there has been little specific focus in boreal and northern temperate forests on governance measures in relation to management effects, including harvesting effects, on soil organic carbon (SOC......) stocks. This paper reviews the findings in the scientific literature concerning the effects of harvesting of different intensities on SOC stocks and fluxes in boreal and northern temperate forest ecosystems to evaluate the evidence for significant SOC losses following biomass removal. An overview...... of existing governance measures related to SOC is given, followed by a discussion on how scientific findings could be incorporated in guidelines and other governance measures. The currently available information does not support firm conclusions about the long-term impact of intensified forest harvesting...

  19. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    Science.gov (United States)

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  20. The role of forest floor and trees to the ecosystem scale methane budget of boreal forests

    Science.gov (United States)

    Pihlatie, Mari; Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Urban, Otmar; Machacova, Katerina

    2016-04-01

    Boreal forests are considered as a sink of atmospheric methane (CH4) due to the activity of CH4 oxidizing bacteria (methanotrophs) in the soil. This soil CH4 sink is especially strong for upland forest soils, whereas forests growing on organic soils may act as small sources due to the domination of CH4 production by methanogens in the anaerobic parts of the soil. The role of trees to the ecosystem-scale CH4 fluxes has until recently been neglected due to the perception that trees do not contribute to the CH4 exchange, and also due to difficulties in measuring the CH4 exchange from trees. Findings of aerobic CH4 formation in plants and emissions from tree-stems in temperate and tropical forests during the past decade demonstrate that our understanding of CH4 cycling in forest ecosystems is not complete. Especially the role of forest canopies still remain unresolved, and very little is known of CH4 fluxes from trees in boreal region. We measured the CH4 exchange of tree-stems and tree-canopies from pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens, Betula pendula) trees growing in Southern Finland (SMEAR II station) on varying soil conditions, from upland mineral soils to paludified soil. We compared the CH4 fluxes from trees to forest-floor CH4 exchange, both measured by static chambers, and to CH4 fluxes measured above the forest canopy by a flux gradient technique. We link the CH4 fluxes from trees and forest floor to physiological activity of the trees, such as transpiration, sap-flow, CO2 net ecosystem exchange (NEE), soil properties such as temperature and moisture, and to the presence of CH4 producing methanogens and CH4 oxidizing methanotrophs in trees or soil. The above canopy CH4 flux measurements show that the whole forest ecosystem was a small source of CH4 over extended periods in the spring and summer 2012, 2014 and 2015. Throughout the 2013-2014 measurements, the forest floor was in total a net sink of CH4, with variation

  1. Chemical characteristics of Siberian boreal forest fire emissions

    Science.gov (United States)

    Engling, G.; Popovicheva, O.; Fan, T. S.; Eleftheriadis, K.; Diapouli, E.; Kozlov, V.

    2014-12-01

    Smoke emissions from Siberian boreal forest fires exert critical impacts on the aerosol/climate system of subarctic regions and the Arctic. It is, therefore, crucial to assess the ability of such particles to absorb/scatter incoming solar radiation as well as act as cloud condensation nuclei, which is closely linked to the physical and chemical aerosol properties. However, observations of Siberian wildfire emissions are limited, and no systematic database of smoke particle properties is available for this region to date. As part of this study, ambient aerosol samples were collected during two smoke episodes in Tomsk, Siberia, in the summers of 2012 and 2013. In addition, the chemical composition and optical properties of smoke particles derived from the combustion of typical Siberian fuels, including pine wood and debris, were determined during chamber burn experiments in a large aerosol/combustion chamber under controlled combustion conditions representative of wildfires and prescribed burns. Detailed multi-component characterization of individual particles and bulk properties was accomplished with a suite of techniques, including various types of chromatography, microscopy, spectroscopy, and thermo-optical analysis. Individual particle analysis by SEM-EDX combined with cluster analysis revealed characteristic smoke structural components and major types of particles, which allowed to discriminate between flaming and smoldering regimes, reflected in specific morphological and chemical microstructure. The physicochemical properties representing the combustion phase (smoldering versus flaming) and the degree of processing (fresh versus aged) were assessed in the ambient aerosol based on the chamber burn results. For instance, some chemical transformation (aging of smoke particles) was noticed over a period of two days in the absence of sun light in the combustion chamber for certain chemical species, while the molecular tracer levoglucosan appeared to be rather

  2. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest.

    Science.gov (United States)

    Machacova, Katerina; Bäck, Jaana; Vanhatalo, Anni; Halmeenmäki, Elisa; Kolari, Pasi; Mammarella, Ivan; Pumpanen, Jukka; Acosta, Manuel; Urban, Otmar; Pihlatie, Mari

    2016-01-01

    Boreal forests comprise 73% of the world's coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories.

  3. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar.

    Science.gov (United States)

    Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A

    2013-08-01

    The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in Canada and how these forests are changing in

  4. Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska

    Science.gov (United States)

    Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.

    2015-01-01

    Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.

  5. Balancing the Relationship Between Protection and Sustainable Management in Canada′s Boreal Forest

    Directory of Open Access Journals (Sweden)

    Matthew Carlson

    2015-01-01

    Full Text Available Protection and sustainable forest management are related but unique, with protection focusing on minimising risk to ecosystems and sustainable management emphasising economic development. Given these distinct roles, a defining characteristic of the relationship between the two approaches is their relative abundance and distribution. The relationship is currently imbalanced, with only 12% of Canada allocated to protection, indicating that ecological values have historically been traded off in favour of resource production. The intactness of Canada′s boreal forest provides an opportunity for a more holistic approach that conserves its globally significant environmental attributes while also supporting resource production. The Boreal Forest Conservation Framework proposes a balanced relationship that allocates land approximately equally between protection and sustainable management. It is a framework that has been endorsed by industry, Aboriginal, and conservation organisations, and is supported by conservation science. Recent commitments to comprehensive land-use planning at regional scales are consistent with the collaborative approach promoted by the Boreal Forest Conservation Framework, and suggest that conservation objectives are likely to receive increased attention in Canada′s boreal region relative to recent history. Ensuring that land-use planning is proactive and balanced will be essential to forging a cooperative relationship between sustainable management and protection in the region.

  6. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Montesino Pouzols, Federico; Mönkkönen, Mikko

    2016-01-01

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: curre...

  7. Carbon isotope ratios in logged and unlogged boreal forests: Examination of the potential for determining wildlife habitat use

    Science.gov (United States)

    France, Robert

    1996-03-01

    Due to assimilation of recycled CO2 from litter decomposition and photosynthetic changes in carbon fractionation at low light levels, the foliage at the base of a forest is often more depleted in13C compared to that exposed to the atmosphere in either the canopy or in open clearings. This is referred to as the canopy effect. African research has indicated that these habitat differences in foliar δ13C can be substantial enough to affect the carbon isotope ratios of resident fauna. Previous work documenting a 30-year chronology on moose teeth from Isle Royale National Park indicated a progressive depletion in13C and suggested that this could be due to forest regrowth following extensive burning. The present study examined the assumption implicit in this hypothesis that foliar δ13C varies between open and closed boreal forest sites. I found a marginal canopy effect of 2‰ δ13C difference between upper canopy and ground flora for a forest in northwestern Ontario and an average difference of 1.2‰ in under- and mid-story vegetation between closed forests and open clear-cuts. Because of these small differences, the utility of carbon isotope analysis in quantifying temporally integrated exploitation of deforested habitats will be low for northern boreal locations. In denser forests, such as those in the tropics or western North American where the canopy effect can be expected to be much greater, δ13C analysis may still offer some promise for determining selection by wildlife of disturbed habitats.

  8. Danger in the nursery : impact on birds of tar sands oil development in Canada's boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Wells, J. [Boreal Songbird Initiative, Seattle, WA (United States); Casey-Lefkowitz, S.; Chavarria, G. [Natural Resources Defense Council, New York, NY (United States); Dyer, S. [Pembina Institute, Drayton Valley, AB (Canada)

    2008-07-01

    This report discussed the impacts of tar sands oil development in Canada's boreal forest. The Canadian boreal forest is one of the world's most important breeding areas for migratory birds, with 1 billion to 3 billion individual birds from at least 300 species known to regularly breed there. Approximately 30 per cent of all shorebirds and 30 per cent of all landbirds that breed in the United States and Canada do so within the boreal. The section of the boreal forest that sits over the tar sands region of Alberta is rapidly being fragmented by oil development. As much as 34 to 66 per cent of the Canadian boreal forest, up to 438 million acres, may no longer be intact. In Alberta, 86 per cent of the boreal forest is no longer considered intact, thus putting valuable bird habitat at risk. This report first provided background information on Canada's boreal forest as North America's nesting bird destination. It then reviewed the dangers created by tar sands operations for boreal birds. It noted that tar sands mining destroys boreal bird habitat; tailings ponds trap birds in oil waste; tar sands drilling fragments bird habitat; tar sands water withdrawals harm wetlands and water habitats; and tar sands toxins weaken and kill boreal birds. The impacts of tar sands pipelines and refineries were also discussed along with global warming impacts on boreal birds and the path forward for habitat protection. It was recommended that Alberta should implement a moratorium on new tar sands lease sales, and that Alberta and Canada should halt project approvals until long-term mitigation strategies and conservation measures are in place. refs., tabs., figs.

  9. Does Drought Influence the Relationship between Species diversity and Ecosystem Functioning in Boreal Forests?

    OpenAIRE

    2014-01-01

    Dans le programme la présentation annoncée est "How do Environmental Conditions Influence the Biodiversity-Ecosystem Functioning Relationship in Boreal Forests?"; Ecosystem functioning is influenced by species composition and environmental conditions. Positive biodiversity effects on forest stand-level water use efficiency (WUES) have been observed under limiting soil water conditions, but whether such a relationship would explain WUEs patterns under non-limiting conditions remains to be addr...

  10. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests.

    Science.gov (United States)

    Gundale, Michael J; Nilsson, Madeleine; Bansal, Sheel; Jäderlund, Anders

    2012-04-01

    Plant productivity is predicted to increase in northern latitudes as a result of climate warming; however, this may depend on whether biological nitrogen (N)-fixation also increases. We evaluated how the variation in temperature and light affects N-fixation by two boreal feather mosses, Pleurozium schreberi and Hylocomium splendens, which are the primary source of N-fixation in most boreal environments. We measured N-fixation rates 2 and 4 wk after exposure to a factorial combination of environments of normal, intermediate and high temperature (16.3, 22.0 and 30.3°C) and light (148.0, 295.7 and 517.3 μmol m(-2) s(-1)). Our results showed that P. schreberi achieved higher N-fixation rates relative to H. splendens in response to warming treatments, but that the highest warming treatment eventually caused N-fixation to decline for both species. Light strongly interacted with warming treatments, having positive effects at low or intermediate temperatures and damaging effects at high temperatures. These results suggest that climate warming may increase N-fixation in boreal forests, but that increased shading by the forest canopy or the occurrence of extreme temperature events could limit increases. They also suggest that P. schreberi may become a larger source of N in boreal forests relative to H. splendens as climate warming progresses.

  11. Changes in fungal communities along a boreal forest soil fertility gradient.

    Science.gov (United States)

    Sterkenburg, Erica; Bahr, Adam; Brandström Durling, Mikael; Clemmensen, Karina E; Lindahl, Björn D

    2015-09-01

    Boreal forests harbour diverse fungal communities with decisive roles in decomposition and plant nutrition. Although changes in boreal plant communities along gradients in soil acidity and nitrogen (N) availability are well described, less is known about how fungal taxonomic and functional groups respond to soil fertility factors. We analysed fungal communities in humus and litter from 25 Swedish old-growth forests, ranging from N-rich Picea abies stands to acidic and N-poor Pinus sylvestris stands. 454-pyrosequencing of ITS2 amplicons was used to analyse community composition, and biomass was estimated by ergosterol analysis. Fungal community composition was significantly related to soil fertility at the levels of species, genera/orders and functional groups. Ascomycetes dominated in less fertile forests, whereas basidiomycetes increased in abundance in more fertile forests, both in litter and humus. The relative abundance of mycorrhizal fungi in the humus layer remained high even in the most fertile soils. Tolerance to acidity and nitrogen deficiency seems to be of greater importance than plant carbon (C) allocation patterns in determining responses of fungal communities to soil fertility, in old-growth boreal forests.

  12. The impact of bryophytes on the carbon stocks of northern boreal forest soils

    Science.gov (United States)

    Hagemann, U.; Moroni, M. T.; Shaw, C. H.; Kurz, W. A.

    2012-04-01

    Dead organic matter (DOM), organic layer, and mineral soil carbon (C) dynamics in cool and humid northern boreal forests are expected to differ from those of drier or warmer boreal forests, because processes such as paludification and woody debris (WD) burial within the organic layer by overgrowing moss are more pronounced in regions with low average temperatures, vigorous moss layers, and long fire-return intervals. However, very few studies have provided field-measured data for these mostly remote regions. Hence, C cycling models such as the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) have rarely been validated with field data from northern boreal forest soils, resulting in large uncertainties for estimated C stocks in a large proportion of the boreal forest ecozone. We present (i) measured data on organic layer and mineral soil (0-45 cm) C stocks in 18 old-growth and disturbed high-boreal black spruce stands in Labrador, Canada; (ii) a comparison of field-measured soil C stocks with those predicted using the CBM-CFS3; and (iii) special characteristics of the DOM and soil C dynamics of northern boreal forest soils that require modifications of model parameters and structure. Measured organic layer C stocks (30.4-47.4 Mg C ha-1) were within the range reported for other boreal forests. However, mineral soil C stocks (121.5-208.1 Mg C ha-1) contributed 58-76% to total ecosystem C stocks. Mineral soil C stocks were thus considerably higher than observed in other upland boreal forests in drier or warmer regions, but similar to values reported for black spruce on poorly drained sites and peat soils. In addition, large amounts of deadwood C (4.7-18.2 Mg C ha-1) were found to be buried within the organic layer, contributing up to 31% to total organic layer C stocks. The comparison of field-measured and CBM-CFS3 modeled C stocks showed that organic layer and mineral soil DOM in Labrador black spruce stands likely decays at lower rates than assumed by CBM

  13. Contribution to climate stability via expansion of azonal boreal forests in the Ukrainian Carpathians

    Energy Technology Data Exchange (ETDEWEB)

    Nijnik, M. [Wageningen Univ. (Netherlands). Agricultural Economics and Rural Policy Group

    2002-10-01

    Since World War II, the forests in Ukraine's Carpathian region have suffered over exploitation. The upper border of the Carpathian forests crept to a lower elevation with the contraction of the azonal boreal forests of the Ukraine and the ability of the forests to perform their shelter functions and climate stabilization has decreased. For that reason, Ukraine has initiated a program for afforestation and reforestation which is aimed at planting trees in about 2 million hectares of low-productivity and waste lands and creating forest stands along rivers, canals and water bodies. It is expected that this program will increase the forest area by nearly 20 per cent, considerably improving the environmental situation in the country. Afforestation will lessen the threat of further degradation of the upper layer of fertile soil, and stabilize micro climate conditions as well as the water balance of the rivers. The forest resource base of the country will also increase. This study assessed the potential effects of the expansion of azonal boreal forests in the Carpathians on the carbon cycle and climate stability. It also addressed policy implementation costs. Initially, the study will consider a storage option, where trees are planted for a period of 50 years. Results show that afforestation and reforestation in the Carpathian mountains for the sole purpose of carbon uptake would not be very beneficial. However, the benefit would lie in soil and water protection. Future studies will focus on developing a dynamic optimization model to indicate optimal expansion of azonal boreal forests in the Carpathians. 15 refs., 2 tabs., 4 figs.

  14. The human footprint in the carbon cycle of temperate and boreal forests

    Science.gov (United States)

    Magnani, Federico; Mencuccini, Maurizio; Borghetti, Marco; Berbigier, Paul; Berninger, Frank; Delzon, Sylvain; Grelle, Achim; Hari, Pertti; Jarvis, Paul G.; Kolari, Pasi; Kowalski, Andrew S.; Lankreijer, Harry; Law, Beverly E.; Lindroth, Anders; Loustau, Denis; Manca, Giovanni; Moncrieff, John B.; Rayment, Mark; Tedeschi, Vanessa; Valentini, Riccardo; Grace, John

    2007-06-01

    Temperate and boreal forests in the Northern Hemisphere cover an area of about 2×107square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).

  15. Vapor pressure deficit controls on fire ignition and fire spread in boreal forest ecosystems

    Directory of Open Access Journals (Sweden)

    F. Sedano

    2014-01-01

    Full Text Available Climate-driven changes in the fire regime within boreal forest ecosystems are likely to have important effects on carbon cycling and species composition. In the context of improving fire management options and developing more realistic scenarios of future change, it is important to understand how meteorology regulates different fire processes, including ignition, daily fire spread rates, and cumulative annual burned area. Here we combined MODIS active fires (MCD14ML, MODIS imagery (MOD13A1 and ancillary historic fire perimeter information to produce a dataset of daily fire spread maps of Alaska for the period 2002–2011. This approach provided a spatial and temporally continuous representation of fire progression and a precise identification of ignition and extinction locations and dates for each wildfire. The fire-spread maps were analyzed together with daily vapor pressure deficit (VPD observations from the North American Regional Reanalysis (NARR and lightning strikes from the Alaska Lightning Detection Network (ALDN. We found a significant relationship between daily VPD and probability that a lightning strike would develop into a fire ignition. In the first 5 days after ignition, above average VPD increased the probability that fires would grow to large or very large sizes. Strong relationships also were identified between VPD and burned area at several levels of temporal and spatial aggregation. As a consequence of regional coherence in meteorology, ignition, daily fire spread rates, and fire extinction events were often synchronized across different fires in interior Alaska. At a regional scale, the sum of positive VPD anomalies during the fire season was positively correlated with annual burned area during the NARR era (1979–2011; R2 = 0.45. Some of the largest fires we mapped had slow initial growth, indicating opportunities may exist for suppression efforts to adaptively manage these forests for climate change. The results of our

  16. Multidecadal analysis of forest growth and albedo in boreal Finland

    Science.gov (United States)

    Lukeš, Petr; Stenberg, Pauline; Mõttus, Matti; Manninen, Terhikki; Rautiainen, Miina

    2016-10-01

    It is well known that forests serve as carbon sinks. However, the balancing effect of afforestation and increased forest density on global warming due to carbon storage may be lost by low albedo (thus high absorption) of the forests. In the last 30 years, there has been a steady increase in the growing stock of Finnish forests by nearly a quarter while the area of the forests has remained virtually unchanged. Such increase in forest density together with the availability of detailed forest inventories provided by the Multi-Source National Forest Inventory (MS-NFI) in high spatial resolution makes Finland an ideal candidate for exploring the effects of increased forest density on satellite derived estimates of bio-geochemical products e.g. albedo (directional-hemispherical reflectance, DHR), fraction of photosynthetically active radiation absorbed by canopies (fAPAR), leaf area index (LAI) and normalized difference vegetation index (NDVI) in both current and long-term perspective. In this study, we first used MODIS-based vegetation satellite products for Finnish forests to study their seasonal patterns and interrelations. Next, the peak growing season observations are linked to the MS-NFI database to yield the generic relationships between forest density and the satellite-derived vegetation indicators. Finally, long-term GIMMS3g datasets between 1982 and 2011 (2008 for DHR) are analyzed and interpreted using forest inventory data. The vegetation peak growing season NIR DHR and VIS DHR showed weak to moderate negative correlation with fAPAR, whereas there was no correlation between NIR DHR and fAPAR. Next, we show that the spectral albedos in the near-infrared region (NIR DHR) showed weak negative correlation with forest biomass, basal area or canopy cover whereas, as expected, the spectral albedo in the visible region (VIS DHR) correlated negatively with these measures of forest density. Interestingly, the increase in forest density (biomass per ha) of Finnish

  17. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    Science.gov (United States)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  18. Monitoring Current Status of and Trends in Boreal Forest Land Use in Russian Karelia

    Directory of Open Access Journals (Sweden)

    Erkki Tomppo

    2003-12-01

    Full Text Available Some of the last remaining near-natural boreal forest landscapes in northern Europe can be found in the Russian Karelia near its border with Finland. Currently, these forests are facing strong exploitation pressure in the form of extensive clearcuts. Demand for conservation is also high. We characterize the boreal forest landscape in the region and assess the impacts of past and potential management actions through a mapping and modeling study that synthesizes methods from landscape ecology, remote sensing, and simulation modeling. The forests of the study area were mapped using techniques for interpreting multitemporal satellite images and detecting changes. The species composition and structure of the forests were estimated using the multisource k-nearest neighbors (k-nn method. Forest harvesting rates and current landscape patterns were used to parameterize models built with a cell-based Spatially Explicit Landscape Event Simulator (SELES modeling tool, and alternative land-use policy strategies were simulated with and without natural fire. Based on 10 Monte Carlo runs for each scenario, we can predict dramatic changes in the forest landscape structure after 30–70 yr. The current, complexly structured, near-natural forest assemblage will rapidly be converted into its transpose: an expanse of young regeneration stands, with blocks of near-natural forest extant only as islands within mires and in the reserve areas. The prompt establishment of the proposed Kalevala National Park is regionally important for these reasons: (1 to increase the types of near-natural forest conserved, (2 to provide a second large biodiversity source adjacent to the heavily fragmented Finnish forests, and (3 to reduce the currently inflated rate of harvesting.

  19. Regional-scale surface flux observations across the boreal forest during BOREAS

    DEFF Research Database (Denmark)

    Oncley, S.P.; Lenschow, D.H.; Campos, T.L.;

    1997-01-01

    study area to the subarctic tundra. Typical midsummer, midday, large-scale net ecosystem exchanges of carbon dioxide were about -10 mu mol m(-2) s(-1) for primarily deciduous forests, about -6 mu mol m(-2) s(-1) for the primarily coniferous regions between and including the two BOREAS study areas......A major role of the National Center for Atmospheric Research (NCAR) Electra aircraft during the Boreal Ecosystem-Atmosphere Study (BOREAS) was to measure fluxes of momentum, sensible and latent heat, carbon dioxide, and ozone on a transect that crossed the entire boreal forest biome....... The observations spanned the growing season (late May to mid-September 1994) and extended the fluxes obtained in two intensive study areas to larger spatial scales to help provide a data set that is useful for comparison with and validation of large-scale models and satellite retrievals. We found the deciduous...

  20. Nitrogen cycling in the upland boreal shield forest : response to an experimental addition of nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Lamontagne, S.

    1998-12-31

    The industrial and agricultural releases of nitrogen gases into the atmosphere has significantly increased the load of nitrogen in many forested ecosystems. This study examined the threat of nitrogen saturation which can cause freshwater acidification and forest decline. The nitrogen cycle in small upland boreal shield catchments at the Experimental Lake Area in northwestern Ontario was described and the process involved in nitrogen retention in this system using an experimental addition of NO{sub 3} was studied. It was determined that in the short-term, the upland boreal shield is limited in preventing nitrogen-based acidification of downstream ecosystems because of a weak potential for nitrogen retention during part of the year and because of the intrinsic nitrogen saturation of part of the landscape.

  1. Boreal ditched forest and peatland are more vulnerable to forest fire than unditched areas

    Science.gov (United States)

    Köhler, Stephan J.; Granath, Gustav; Landahl, Anna; Fölster, Jens

    2016-04-01

    forested peatlands might be counterproductive as it promotes fire vulnerability even in cold boreal regions.

  2. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    Science.gov (United States)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-11-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold, resulting in 200-1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10 % of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  3. What makes segmentation good? A case study in boreal forest habitat mapping

    OpenAIRE

    Räsänen, Aleksi; Rusanen, Antti; Kuitunen, Markku; Lensu, Anssi

    2013-01-01

    Segmentation goodness evaluation is a set of approaches meant for deciding which segmentation is good. In this study, we tested different supervised segmentation evaluation measures and visual interpretation in the case of boreal forest habitat mapping in Southern Finland. The data used were WorldView-2 satellite imagery, a lidar digital elevation model (DEM), and a canopy height model (CHM) in 2 m resolution. The segmentation methods tested were the fractal net evolution approach (FNEA) and ...

  4. Are Boreal Ovenbirds, Seiurus aurocapilla, More Prone to Move across Inhospitable Landscapes in Alberta's Boreal Mixedwood Forest than in Southern Québec's Temperate Deciduous Forest?

    Directory of Open Access Journals (Sweden)

    Marc Bélisle

    2007-12-01

    Full Text Available Population life-history traits such as the propensity to move across inhospitable landscapes should be shaped by exposure to landscape structure over evolutionary time. Thus, birds that recently evolved in landscapes fragmented by natural disturbances such as fire would be expected to show greater behavioral and morphological vagility relative to conspecifics that evolved under less patchy landscapes shaped by fewer and finer-scaled disturbances, i.e., the resilience hypothesis. These predictions are not new, but they remain largely untested, even for well-studied taxa such as neotropical migrant birds. We combined two experimental translocation, i.e., homing, studies to test whether Ovenbird, Seiurus aurocapilla, from the historically dynamic boreal mixedwood forest of north-central Alberta (n = 55 is more vagile than Ovenbird from historically less dynamic deciduous forest of southern Québec (n = 89. We found no regional difference in either wing loading or the response of homing Ovenbird to landscape structure. Nevertheless, this study presents a heuristic framework that can advance the understanding of boreal landscape dynamics as an evolutionary force.

  5. Waterfowl populations are resilient to immediate and lagged impacts of wildfires in the boreal forest

    Science.gov (United States)

    Lewis, Tyler; Schmutz, Joel A.; Amundson, Courtney L.; Lindberg, Mark S.

    2016-01-01

    Summary 1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge gap creates significant barriers to the integrative management of fires and waterfowl, leading to fire policies that largely disregard waterfowl. 2. Waterfowl populations across the western boreal forest of North America have been monitored annually since 1955 by the Waterfowl Breeding Population and Habitat Survey (BPOP), widely considered the most extensive wildlife survey in the world. Using these data, we examined impacts of forest fires on abundance of two waterfowl guilds – dabblers and divers. We modelled waterfowl abundance in relation to fire extent (i.e. amount of survey transect burned) and time since fire, examining both immediate and lagged fire impacts. 3. From 1955 to 2014, >1100 fires in the western boreal forest intersected BPOP survey transects, and many transects burned multiple times. Nonetheless, fires had no detectable impact on waterfowl abundance; annual transect counts of dabbler and diver pairs remained stable from the pre- to post-fire period. 4. The absence of fire impacts on waterfowl abundance extended from the years immediately following the fire to those more than a decade afterwards. Likewise, the amount of transect burned did not influence waterfowl abundance, with similar pair counts from the pre- to post-fire period for small (1–20% burned), medium (21–60%) and large (>60%) burns. 5. Policy implications. Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression

  6. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    Science.gov (United States)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of

  7. Timing of plant phenophases since 1752 in the boreal forest environment

    Science.gov (United States)

    Kubin, Eero; Tolvanen, Anne; Karhu, Jouni; Valkama, Jari

    2016-04-01

    Global warming and climate change will significantly affect on forest environment in northern latitudes. There is the strong evidence that increase of early spring and late autumn temperatures will have impacts on growth and growth cycles. In Finland the Finnish Forest Research Institute (Luke since 2015) established in 1996 National Phenological Network to study changes of phenophases all over the country representing southern, middle and northern boreal forest zones. Continuous detailed scientific monitoring includes eleven forest plant species and it forms an excellent basis to evaluate responses of forest vegetation in respect to climate change. Monitoring is done together with Universities and other Institutes. Prior to the establishment of the Finnish National Phenological Network observations has been made solely based on volunteers since 1752. This citizen-science data is very important to analyze phenophases together with the results of the National Network. The long-term data since 1752 shows e.g. an advancement in the onset of Prunus padus flowering by five days per 100 years and correspondingly three days in the rowan (Sorbus aucuparia). The latest results of the Finnish National Network (1996 - 2014) fits well to this long term trend. In the Finnish National Phenological Network we have monitored phenophases of forest spieces throughout the growth period, focusing on nine forest tree species and two dwarf shrubs. The results can be followed in real time at: http://www.metla.fi/metinfo/fenologia/index-en.htm. We have observed big differences in phenophases between southern and northern boreal zone. Onset of downy birch leafing happens one month later in the north compared with southern boreal zone. Coming into leaf has clearly occurred earlier during the research period since 1996 in the northern boreal zone compared with southern boreal zone. This indicates the response of climate change. The timing of leaf colouring and leaf fall was observed remained

  8. Light-induced diurnal pattern of methane exchange in a boreal forest

    Science.gov (United States)

    Sundqvist, Elin; Crill, Patrick; Mölder, Meelis; Vestin, Patrik; Lindroth, Anders

    2013-04-01

    Boreal forests represents one third of the Earth's forested land surface area and is a net sink of methane and an important component of the atmospheric methane budget. Methane is oxidized in well-aerated forest soils whereas ponds and bog soils are sources of methane. Besides the microbial processes in the soil also forest vegetation might contribute to methane exchange. Due to a recent finding of methane consumption by boreal plants that correlated with photosynthetic active radiation (PAR), we investigate the impact of PAR on soil methane exchange at vegetated plots on the forest floor. The study site, Norunda in central Sweden, is a 120 years old boreal forest stand, dominated by Scots pine and Norway spruce. We used continuous chamber measurements in combination with a high precision laser gas analyzer (Los Gatos Research), to measure the methane exchange at four different plots in July-November 2009, and April-June 2010. The ground vegetation consisted almost entirely of mosses and blueberry-shrubs. Two of the plots acted as stable sinks of methane whereas the other two plots shifted from sinks to sources during very wet periods. The preliminary results show a clear diurnal pattern of the methane exchange during the growing season, which cannot be explained by temperature. The highest consumption occurs at high PAR levels. The amplitude of the diurnal methane exchange during the growing season is in the order of 10 μmol m-2 h-1. This indicates that besides methane oxidation by methanotrophs in the soil there is an additional removal of methane at soil level by a process related to ground vegetation.

  9. Major losses of nutrients following a severe drought in a boreal forest.

    Science.gov (United States)

    Houle, Daniel; Lajoie, Geneviève; Duchesne, Louis

    2016-11-28

    Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide(1). Although the impact of drought on tree growth and mortality is being increasingly documented(2-4), very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks(5-7) (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.

  10. The accuracy of large-area forest canopy cover estimation using Landsat in boreal region

    Science.gov (United States)

    Hadi; Korhonen, Lauri; Hovi, Aarne; Rönnholm, Petri; Rautiainen, Miina

    2016-12-01

    Large area prediction of continuous field of tree cover i.e., canopy cover (CC) using Earth observation data is of high interest in practical forestry, ecology, and climate change mitigation activities. We report the accuracy of using Landsat images for CC prediction in boreal forests validated with field reference plots (N = 250) covering large variation in latitude, forest structure, species composition, and site type. We tested two statistical models suitable for estimating CC: the beta regression (BetaReg) and random forest (RanFor). Landsat-based predictors utilized include individual bands, spectral vegetation indices (SVI), and Tasseled cap (Tass) features. Additionally, we tested an alternative model based on spectral mixture analysis (SMA). Finally, we carried out a first validation in boreal forests of the recently published Landsat Tree Cover Continuous (TCC) global product. Results showed simple BetaReg with red band reflectance provided the highest prediction accuracy (leave-site-out RMSECV 13.7%; R2CV 0.59; biasCV 0.5%). Spectral transformations into SVI and Tass did not improve accuracy. Including additional predictors did not significantly improve accuracy either. Nonlinear model RanFor did not outperform BetaReg. The alternative SMA model did not outperform the empirical models. However, empirical models cannot resolve the underestimation of high cover and overestimation of low cover. SMA prediction errors appeared less dependent on forest structure, while there seemed to be a potential for improvement by accounting for endmember variability of different tree species. Finally, using temporally concurrent observations, we showed the reasonably good accuracy of Landsat TCC product in boreal forests (RMSE 13.0%; R2 0.53; bias -2.1%), however with a tendency to underestimate high cover.

  11. Retrieval of seasonal dynamics of forest understory reflectance from semi-arid to boreal forests using MODIS BRDF data

    Science.gov (United States)

    Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-04-01

    Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated

  12. Rating a Wildfire Mitigation Strategy with an Insurance Premium: A Boreal Forest Case Study

    Directory of Open Access Journals (Sweden)

    Georgina Rodriguez-Baca

    2016-05-01

    Full Text Available Risk analysis entails the systematic use of historical information to determine the frequency, magnitude and effects of unexpected events. Wildfire in boreal North America is a key driver of forest dynamics and may cause very significant economic losses. An actuarial approach to risk analysis based on cumulative probability distributions was developed to reduce the adverse effects of wildfire. To this effect, we developed spatially explicit landscape models to simulate the interactions between harvest, fire and forest succession over time in a boreal forest of eastern Canada. We estimated the amount of reduction of timber harvest necessary to build a buffer stock of sufficient size to cover fire losses and compared it to an insurance premium estimated in units of timber volume from the probability of occurrence and the amount of damage. Overall, the timber harvest reduction we applied was much more costly than the insurance premium even with a zero interest rate. This is due to the fact that the insurance premium is directly related to risk while the timber harvest reduction is not and, as a consequence, is much less efficient. These results, especially the comparison with a standard indicator such as an insurance premium, have useful implications at the time of choosing a mitigation strategy to protect timber supplies against risk without overly diminishing the provision of services from the forest. They are also promoting the use of insurance against disastrous events in forest management planning.

  13. First Polarimetric GNSS-R Measurements from a Stratospheric Flight over Boreal Forests

    Directory of Open Access Journals (Sweden)

    Hugo Carreno-Luengo

    2015-10-01

    Full Text Available The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space Agency (ESA sponsored Balloon Experiments for University Students (BEXUS 19 stratospheric balloon experiment using the P(Y and C/A Reflect Ometer (PYCARO instrument operated in closed-loop mode. Maps of the polarimetric ratio for L1 and L2 Global Positioning System (GPS and GLObal Navigation Satellite System (GLONASS, and for E1 Galileo signals are derived from the float phase at 27,000 m height, and the specular points are geolocalized on the Earth’s surface. Polarimetric ratio ( maps over boreal forests are shown to be in the range 2–16 dB for the different GNSS codes. This result suggests that the scattering is taking place not only over the soil, but over the different forests elements as well. Additionally to the interpretation of the experimental results a theoretical investigation of the different contributions to the total reflectivity over boreal forests is performed using a bistatic scattering model. The simulated cross- (reflected Left Hand Circular Polarization LHCP and co-polar (reflected Right Hand Circular Polarization RHCP reflectivities are evaluated for the soil, the canopy, and the canopy–soil interactions for three different biomass densities: 725 trees/ha, 150 trees/ha and 72 trees/ha. For elevation angles larger than the Brewster angle, it is found that the cross-polar signal is dominant when just single reflections over the forests are evaluated, while in the case of multiple reflections the co-polar signal becomes the largest one. The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space

  14. Maintaining animal assemblages through single-species management: the case of threatened caribou in boreal forest.

    Science.gov (United States)

    Bichet, Orphé; Dupuch, Angélique; Hébert, Christian; Le Borgne, Hélène Le; Fortin, Daniel

    2016-03-01

    With the intensification of human activities, preserving animal populations is a contemporary challenge of critical importance. In this context, the umbrella species concept is appealing because preserving a single species should result in the protection of multiple co-occurring species. Practitioners, though, face the task of having to find suitable umbrellas to develop single-species management guidelines. In North America, boreal forests must be managed to facilitate the recovery of the threatened boreal caribou (Rangifer tarandus). Yet, the effect of caribou conservation on co-occurring animal species remains poorly documented. We tested if boreal caribou can constitute an effective umbrella for boreal fauna. Birds, small mammals, and insects were sampled along gradients of post-harvest and post-fire forest succession. Predictive models of occupancy were developed from the responses of 95 species to characteristics of forest stands and their surroundings. We then assessed the similarity of species occupancy expected between simulated harvested landscapes and a 90 000-km2 uncut landscape. Managed landscapes were simulated based on three levels of disturbance, two timber-harvest rotation cycles, and dispersed or aggregated cut-blocks. We found that management guidelines that were more likely to maintain caribou populations should also better preserve animal assemblages. Relative to fragmentation or harvest cycle, we detected a stronger effect of habitat loss on species assemblages. Disturbing 22%, 35%, and 45% of the landscape should result, respectively, in 80%, 60%, and 40% probability for caribou populations to be sustainable; in turn, this should result in regional species assemblages with Jaccard similarity indices of 0.86, 0.79, and 0.74, respectively, relative to the uncut landscape. Our study thus demonstrates the value of single-species management for animal conservation. Our quantitative approach allows for the evaluation of management guidelines prior

  15. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.

    Science.gov (United States)

    Kelly, Ryan; Chipman, Melissa L; Higuera, Philip E; Stefanova, Ivanka; Brubaker, Linda B; Hu, Feng Sheng

    2013-08-06

    Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.

  16. CO2 balance of boreal, temperate, and tropical forests

    NARCIS (Netherlands)

    Luyssaert, S.; Inglima, I.; Jungs, M.; Richardson, A.; Reichsteins, M.; Papale, D.; Piao, S.L.; Schulzes, E.D.; Wingate, L.; Matteucci, G.; Aragaoss, L.; Aubinet, M.; Beers, van C.; Bernhofer, C.; Black, K.G.; Bonal, D.; Bonnefonds, J.M.; Chambers, J.; Ciais, P.; Cook, B.; Davis, K.J.; Dolman, A.J.; Gielen, B.; Goulden, M.; Grace, J.; Granier, A.; Grelle, A.; Griffis, T.; Grunwald, T.; Guidolotti, G.; Hanson, P.J.; Harding, R.; Hollinger, D.Y.; Hutyra, L.R.; Kolari, P.; Kruijt, B.; Kutsch, W.; Lagergren, F.; Laurila, T.; Law, B.E.; Maire, Le G.; Lindroth, A.; Loustau, D.; Malhi, Y.; Mateus, J.; Migliavacca, M.; Misson, L.; Montagnani, L.; Moncrief, J.; Moors, E.J.; Munger, J.W.; Nikinmaa, E.; Ollinger, S.V.; Pita, G.; Rebmann, C.; Roupsard, O.; Saigusa, N.; Sanz, M.J.; Seufert, G.; Sierra, C.; Smith, M.; Tang, J.; Valentini, R.; Vesala, T.; Janssens, I.A.

    2007-01-01

    Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are be

  17. Regulation of Boreal soil respiration: evidence from a Swedish forest fire chronosequence.

    Science.gov (United States)

    Mason, Kelly; Oakley, Simon; Ostle, Nicholas; DeLuca, Thomas; Arróniz-Crespo, María; Jones, Davey

    2014-05-01

    Globally, boreal forests occupy 14% of total land surface and are important regions for biogeochemical cycling of carbon (C) and nitrogen (N)1. They are recognised as stores of terrestrial C and reservoirs of uniquely adapted biodiversity. Like many forest biomes, boreal forests are under pressure from climate change and growing populations. C and N cycling in the boreal region is strongly influenced by the occurrence of forest fires, which return large amounts of stored N back into an otherwise N limited system2. The frequency and intensity of boreal forest fires is expected to increase in the next century as the global atmosphere warms and N deposition continues to increase due to human activities3,4. Despite the importance of these ecosystems, there is limited knowledge of the effects of interactions between climate and N limitation on soil respiration and feedbacks of carbon dioxide (CO2) and other greenhouse gases (GHGs) to the atmosphere. In this research we aimed to improve understanding of how changes in the frequency and intensity of fires might alter N and C dynamics in the boreal region. Specifically, we examined the degree of N limitation and the temperature sensitivity of GHG (CO2, N2O and CH4) fluxes from soils underlying carpets of Pleurozium schreberi, a feather moss known to form important symbiotic relationships with N-fixing cyanobacteria1, from a fire chronosequence of Swedish boreal forest stands. We hypothesised that: (1) soil respiration in late succession ecosystems is most N limited due to high soil C:N ratios and high microbial biomass; and (2) early succession forest soil respiration is most temperature sensitive due to higher N availability and higher bacterial biomass. To test these hypotheses, we took soil cores from a chronosequence of six sites in the northern boreal region of Sweden, including two early, two mid, and two late succession stands. These sites are dominated by mixed Pinus sylvestris and Picea abies, with an understory

  18. Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest

    OpenAIRE

    Ahmed El-Guellab; Hugo Asselin; Sylvie Gauthier; Yves Bergeron; Ali, Adam A.

    2015-01-01

    Background Cumulative impacts of wildfires and forest harvesting can cause shifts from closed-crown forest to open woodland in boreal ecosystems. To lower the probability of occurrence of such catastrophic regime shifts, forest logging must decrease when fire frequency increases, so that the combined disturbance rate does not exceed the Holocene maximum. Knowing how climate warming will affect fire regimes is thus crucial to sustainably manage the forest. This study aimed to provide a guid...

  19. Variation in moss-associated nitrogen fixation in boreal forest stands.

    Science.gov (United States)

    Markham, John H

    2009-08-01

    Traditionally it has been thought that most boreal forest communities lack a significant input of biologically fixed nitrogen. Recent discoveries of nitrogen fixation by cyanobacteria associated with mosses have resulted in a re-evaluation of this view. While it is recognized that rates of nitrogen fixation in mosses can be highly variable, there is little understanding as to why this occurs. I monitored nitrogen fixation, using acetylene reduction, in wet lowland and dry upland boreal forest communities, in central Canada, over a growing season. At the peak of nitrogen fixation in mid summer, Sphagnum capillifolium had an 11 times higher rate of fixation than Pleurozium schreberi. Variation in canopy openness and precipitation had no effect on rates of fixation over the growing season. In P. schreberi fixation rates did not vary between sites. Temperature had a positive effect on fixation rates in both S. capillifolium and P. schreberi, but the effect was 4 times more pronounced in S. capillifolium. Seasonal rates of nitrogen fixation were estimated at 193 mg N m(-2) for S. capillifolium and 23 mg N m(-2) for P. schreberi. With moderate increases in climate warming, predicted increases in nitrogen fixation in S. capillifolium are sufficient to raise its decomposition rate. Increased temperatures may therefore act synergistically to change boreal systems from a sink to a source of carbon.

  20. Changes in very fine root respiration and morphology with time since last fire in a boreal forest

    Science.gov (United States)

    Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank

    2016-04-01

    We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.

  1. Nitrogen Additions Increase the Diversity of Carbon Compounds Degraded by Fungi in Boreal Forests

    Science.gov (United States)

    Gartner, T. B.; Turner, K. M.; Treseder, K. K.

    2004-12-01

    Boreal forest soils in North America harbor a large reservoir of organic C, and this region is increasingly exposed to long-range atmospheric N transport from Eurasia. By examining the responses of decomposers to N deposition in these forests, we hope to improve predictions of the fate of boreal carbon pools under global change. We tested the hypothesis that the functional diversity of decomposer fungi would increase under N fertilization in boreal forests where fungal growth was otherwise N-limited, owing to a reduction in competitive exclusion of fungal groups. We collected soil and leaf litter from three Alaskan sites that represent different successional stages at 5, 17, or 80 years following severe forest fire. Each site had been exposed for two years to nitrogen and phosphorus fertilization in a factorial design, with four plots per treatment. Nutrient limitation of fungal growth varied depending on successional stage. The standing hyphal length of decomposer fungi in soil (i.e. Ascomycota and Basidiomycota) responded to neither N nor P in the 5-year old site, increased under N fertilization in the 17-year old site, and increased where N and P was added simultaneously in the 80-year old site (site x N x P interaction: P = 0.001). We used BIOLOG microplates for filamentous fungi to obtain an index of the diversity of carbon use by decomposer fungi; each of 95 wells of these plates contains a different carbon-based compound, as well as a dye that changes color upon metabolism of the compound. Saline leaf litter extracts were mixed with fungal growth medium and then added to the microplates. The number of wells displaying metabolic activity was counted following incubation for five days. We found that N fertilization raised the average number of positive wells per plate from 14 to 27 (P = 0.012), with no significant differences in responses among sites. Phosphorus additions did not alter functional diversity of fungi in any site. Since increases in functional

  2. Vegetation Mortality within Natural Wildfire Events in the Western Canadian Boreal Forest: What Burns and Why?

    Directory of Open Access Journals (Sweden)

    Colin J. Ferster

    2016-08-01

    Full Text Available Wildfires are a common disturbance event in the Canadian boreal forest. Within event boundaries, the level of vegetation mortality varies greatly. Understanding where surviving vegetation occurs within fire events and how this relates to pre-fire vegetation, topography, and fire weather can inform forest management decisions. We used pre-fire forest inventory data, digital elevation maps, and records of fire weather for 37 naturally-occurring wildfires (1961 to 1982; 30 to 5500 ha covering a wide range of conditions in the western Canadian boreal forest to investigate these relationships using multinomial logistic models. Overall, vegetation mortality related to a combination of factors representing different spatial scales. Lower vegetation mortality occurred where there was lower fuel continuity and when fires occurred under non-drought conditions. Higher classification accuracy occurred for class extremes of no mortality (i.e., unburned areas within the burn event and high mortality; partial vegetation mortality classes were harder to distinguish. This research contributes to the knowledge required for natural pattern emulation strategies, and developing responses to climate change.

  3. Large-scale variation in boreal and temperate forest carbon turnover rate related to climate

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-05-01

    Vegetation carbon turnover processes in forest ecosystems and their dominant drivers are far from being understood at a broader scale. Many of these turnover processes act on long timescales and include a lateral dimension and thus can hardly be investigated by plot-level studies alone. Making use of remote sensing-based products of net primary production (NPP) and biomass, here we show that spatial gradients of carbon turnover rate (k) in Northern Hemisphere boreal and temperate forests are explained by different climate-related processes depending on the ecosystem. k is related to frost damage effects and the trade-off between growth and frost adaptation in boreal forests, while drought stress and climate effects on insects and pathogens can explain an elevated k in temperate forests. By identifying relevant processes underlying broadscale patterns in k, we provide the basis for a detailed exploration of these mechanisms in field studies, and ultimately the improvement of their representations in global vegetation models (GVMs).

  4. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-01-01

    Full Text Available Soil forms an important source for volatile organic compounds (VOCs, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail, especially wintertime fluxes, which are almost completely unstudied. In this study, we measured the VOC concentrations inside a snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from the soil surface towards the snow surface, suggesting soil as being the source for terpenoids. Forest damages resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are also active and efficient VOC sources during winter and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, basically plants, have lower activity.

  5. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-06-01

    Full Text Available Soil provides an important source of volatile organic compounds (VOCs to atmosphere, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail. Especially wintertime fluxes are almost completely unstudied. In this study, we measured the VOC concentrations inside the snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from soil surface towards the surface of the snow, suggesting soil as the source for terpenoids. Forest damages (i.e. broken treetops and branches, fallen trees resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are active and efficient VOC sources also during winter, and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, such as plants, have lower activity.

  6. Habitat associations drive species vulnerability to climate change in boreal forests

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Triviño, María; Tikkanen, Olli-Pekka

    2016-01-01

    scenarios. However, climate change will potentially reduce habitat suitability for ~9–43 % of the threatened deadwood-associated species. This loss is likely caused by future increase in timber extraction and decomposition rates causing higher deadwood turnover, which have a strong negative effect on boreal...... if species sensitivity, the species ability to tolerate climatic variations determined by traits, plays a key role in determining vulnerability. We analyse the role of species’ habitat associations, a proxy for sensitivity, in explaining vulnerability for two poorly-known but species-rich taxa in boreal...... forest, saproxylic beetles and fungi, using three IPCC emissions scenarios. Towards the end of the 21st century we projected an improvement in habitat quality associated with an increase of deadwood, an important resource for species, as a consequence of increased tree growth under high emissions...

  7. Multi-trophic resilience of boreal lake ecosystems to forest fires.

    Science.gov (United States)

    Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R

    2014-05-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  8. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    Science.gov (United States)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  9. Diverse growth trends and climate responses across Eurasia’s boreal forest

    Science.gov (United States)

    Hellmann, Lena; Agafonov, Leonid; Charpentier Ljungqvist, Fredrik; Churakova (Sidorova, Olga; Düthorn, Elisabeth; Esper, Jan; Hülsmann, Lisa; Kirdyanov, Alexander V.; Moiseev, Pavel; Myglan, Vladimir S.; Nikolaev, Anatoly N.; Reinig, Frederick; Schweingruber, Fritz H.; Solomina, Olga; Tegel, Willy; Büntgen, Ulf

    2016-07-01

    The area covered by boreal forests accounts for ˜16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not only have strong effects on species composition and diversity at regional to larger scales, but also on the Earth’s carbon cycle. Although temporal inconsistency in the response of tree growth to temperature has been reported from some locations at the higher northern latitudes, a systematic dendroecological network assessment is still missing for most of the boreal zone. Here, we analyze the geographical patterns of changes in summer temperature and precipitation across northern Eurasia >60 °N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus, Larix and Picea ring width chronologies in the same area and period. In contrast to widespread summer warming, fluctuations in precipitation and tree growth are spatially more diverse and overall less distinct. Although the influence of summer temperature on ring formation is increasing with latitude and distinct moisture effects are restricted to a few southern locations, growth sensitivity to June-July temperature variability is only significant at 16.6% of all sites (p ≤ 0.01). By revealing complex climate constraints on the productivity of Eurasia’s northern forests, our results question the a priori suitability of boreal tree-ring width chronologies for reconstructing summer temperatures. This study further emphasizes regional climate differences and their role on the dynamics of boreal ecosystems, and also underlines the importance of free data access to facilitate the compilation and evaluation of massively replicated and updated dendroecological networks.

  10. Quantifying the missing link between albedo and productivity of boreal forests

    Science.gov (United States)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-04-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Several studies have examined the relation between forest structure and albedo in the boreal zone. Studies regarding FAPAR are fewer and the relations between albedo and FAPAR are still poorly understood. To study these relations we simulated shortwave black sky albedo and canopy FAPAR, using the FRT forest reflectance model. We used two sets of field plots as input data. The plots were located in Alaska, USA (N = 584) and in Finland (N = 506) between Northern latitudes of 60° and 68° , and they represent naturally grown and more intensively managed (regularly thinned) forests, respectively. The simulations were carried out with sun zenith angles (SZA) typical to the biome, ranging from 40° to 80° . The simulated albedos in coniferous plots decreased with increasing tree height, whereas canopy FAPAR showed an opposite trend. The albedo of broadleaved plots was notably higher than that of coniferous plots. No species differences in canopy FAPAR were seen, except for pine forests in Finland that showed lowest FAPAR among species. Albedo and canopy FAPAR were negatively correlated (r ranged from -0.93 to -0.69) in coniferous plots. The correlations were notably weaker (r ranged from -0.64 to 0.05) if plots with broadleaved trees were included. To show the influence of forest management, we further examined the response of albedo and FAPAR to forest density (basal area) and fraction of broadleaved trees. Plots with low basal area showed high albedos but also low canopy FAPAR. When comparing the sparse plots to dense ones, the relative decrease in canopy FAPAR was larger than the relative increase in albedo. However, at large SZAs the basal area could be lowered to approx. 20 m2 ha-1 before FAPAR was notably reduced. Increasing the proportion of broadleaved trees from 0% to 100% increased the albedos to approximately

  11. Does the amount of trees retained at clearfelling of temperate and boreal forests influence biodiversity response?

    Directory of Open Access Journals (Sweden)

    Fedrowitz Katja

    2012-05-01

    Full Text Available Abstract Clear-felling is one of the main methods used in many parts of the world for the production of pulp, timber and bioenergy, leading to a simplified forest structure and species composition. One of the measures to mitigate the impact of logging on biodiversity is the retention of trees at final harvest. Tree retention approaches in forestry are still rather new, although widely distributed across different continents. Several studies have been performed on the effects of retention trees on biodiversity but to date there is no evidence on the relation between the amounts of trees, i.e. the number, volume or area per ha retained, and the response of biodiversity. The overall aim of our review will be to provide forest practitioners and conservationists in temperate and boreal forests with more detailed recommendations regarding the amount of trees that should be retained in order to achieve positive effects for biodiversity compared to traditional clear-cutting.

  12. Black (pyrogenic carbon in boreal forests: a synthesis of current knowledge and uncertainties

    Directory of Open Access Journals (Sweden)

    C. M. Preston

    2006-02-01

    Full Text Available The carbon (C cycle in boreal regions is strongly influenced by fire, which converts biomass and detrital C mainly to gaseous forms (CO2 and smaller proportions of CO and CH4, and some 1–7% of mass to pyrogenic C (PyC. PyC is mainly produced as solid charred residues, including visually-defined charcoal, and a black carbon (BC fraction chemically defined by its resistance to laboratory oxidation, plus much lower proportions of volatile soot and polycyclic aromatic hydrocarbons (PAHs. All PyC is characterized by fused aromatic rings, but varying in cluster sizes, and presence of other elements (N, O and functional groups. There are several reasons for current interest in defining more precisely the role of PyC in the C cycle of boreal regions. First, PyC is resistant to decomposition, and therefore contributes to very stable C pools in soils and sediments. Second, it influences soil processes, mainly through its sorption properties and cation exchange capacity, and third, soot aerosols absorb solar radiation and may contribute to global warming. However, there are large gaps in the basic information needed to address these topics. While charcoal is commonly defined by visual criteria, analytical methods for BC are mainly based on various measures of oxidation resistance, or on yield of benzenepolycarboxylic acids. These methods are still being developed, and capture different fractions of the PyC "continuum". There are few quantitative reports of PyC production and stocks in boreal forests (essentially none for boreal peatlands, and results are difficult to compare due to varying experimental goals and methods, as well as inconsistent terminology. There are almost no direct field measurements of BC aerosol production from boreal wildfires, and little direct information on rates and mechanisms for PyC loss. Structural characterization of charred biomass and forest floor from wildfires generally indicates a low level of

  13. Comprehensive radiative forcing assesment highlights trade-offs in climate mitigation potential of managed boreal forests

    Science.gov (United States)

    Kalliokoski, Tuomo; Berninger, Frank; Bäck, Jaana; Boy, Michael; Kuusinen, Nea; Mäkelä, Annikki; Matthies, Brent; Minkkinen, Kari; Mogensen, Ditte; Peltoniemi, Mikko; Sievänen, Risto; Zhou, Luxi; Vanhatalo, Anni; Valsta, Lauri; Nikinmaa, Eero

    2016-04-01

    Boreal forests have an important role in the mitigation of climate change. In this study we evaluated four key climate impacts of forest management: (1) carbon sequestration (in forest ecosystems and wood products), (2) surface albedo of forest area, (3) forest originating Secondary Organic Aerosols (SOA) and (4) avoided CO2-emissions from wood energy and product substitution. We calculated their net effect at both a single stand and regional level using Finland as a case study. We made analyses both in current climate up to a year 2050 and in the projected climate of year 2050. At the stand level, the carbon sequestration effect and avoided CO2 emissions due to substituted materials dominated in net RF in current climate. The warming effect of surface albedo of forest cover was lower or of same magnitude than cooling effect of SOAs. Together, the rarely considered SOAs and product substitution corresponded over 70% of the total cooling effect of forest cover. The cooling effect of net radiative forcing increased along the increasing site fertility. Although the carbon stocks of broadleaved trees were smaller than that of conifers their total radiative cooling effect was larger due to the integrated albedo and aerosol effects. In the projected climate of 2050, the radiative cooling of aerosols approached the level of forest carbon fixation. These results emphasize the need for holistic evaluation of climate impacts over simple carbon sequestration analysis to understand the role of forest management in climate change mitigation. Landscape level analyses emphasized the broad range of options to reach the cooling effect. The lowest harvest regime, 50% of current annual increment (CAI), yielded the largest cooling effect. Yet, harvests up to CAI produced only slightly less cooling RF if avoided emissions were considered. This result was highly sensitive to used substitution factors. Our result highlights that the combination of intensive harvests and the use of wood

  14. Postfire Succession of Ants (Hymenoptera: Formicidae) Nesting in Dead Wood of Northern Boreal Forest.

    Science.gov (United States)

    Boucher, Philippe; Hébert, Christian; Francoeur, André; Sirois, Luc

    2015-10-01

    Dead wood decomposition begins immediately after tree death and involves a large array of invertebrates. Ecological successions are still poorly known for saproxylic organisms, particularly in boreal forests. We investigated the use of dead wood as nesting sites for ants along a 60-yr postfire chronosequence in northeastern coniferous forests. We sampled a total of 1,625 pieces of dead wood, in which 263 ant nests were found. Overall, ant abundance increased during the first 30 yr after wildfire, and then declined. Leptothorax cf. canadensis Provancher, the most abundant species in our study, was absent during the first 2 yr postfire, but increased steadily until 30 yr after fire, whereas Myrmica alaskensis Wheeler, second in abundance, was found at all stages of succession in the chronosequence. Six other species were less frequently found, among which Camponotus herculeanus (Linné), Formica neorufibarbis Emery, and Formica aserva Forel were locally abundant, but more scarcely distributed. Dead wood lying on the ground and showing numerous woodborer holes had a higher probability of being colonized by ants. The C:N ratio was lower for dead wood colonized by ants than for noncolonized dead wood, showing that the continuous occupation of dead wood by ants influences the carbon and nitrogen dynamics of dead wood after wildfire in northern boreal forests.

  15. Response of female beetles to LIDAR derived topographic variables in Eastern boreal mixedwood forests (Coleoptera, Carabidae).

    Science.gov (United States)

    Work, Timothy T; Onge, Benoit St; Jacobs, J M

    2011-01-01

    Biodiversity monitoring is increasingly being bolstered with high resolution data derived from remote sensing such as LIDAR (Light Detection and Ranging). We derived a series of topographical variables, including slope, azimuth, ground curvature and flow accumulation from LIDAR images and compared these to captures of female carabids in pitfall traps in Eastern boreal mixedwood forests. We developed a series of species-specific logistic models predicting the proportion of females for eight dominant species, including Agonum retractum, Calathus ingratus, Platynus decentis, Pterostichus adstrictus, Pterostichus coracinus, Pterostichus pensylvanicus, Sphaeroderus nitidicollis and Synuchus impunctatus. We used these models to test three hypotheses related to how the modest topography in boreal forests could influence the availability of microhabitats and possibly potential sites for oviposition and larval development. In general, topographic features such as north facing slopes and high flow accumulation were important predictors of the proportion of females. Models derived from larger scale topography, such as hillsides or small watersheds on the order of ¼-1 ha were better predictors of the proportion of females than were models derived from finer scale topography such as hummocks and small depressions. We conclude that topography likely influences the distribution of carabids based on hydrological mechanisms rather than factors related to temperature. We further suggest based on the scale of responses that these hydrological mechanisms may be linked to the attenuation of past disturbances by wildfire and the propensity of unburned forest patches and fire skips.

  16. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Directory of Open Access Journals (Sweden)

    Johanna B Boberg

    Full Text Available Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration, presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  17. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems

    OpenAIRE

    Kathrin eRousk; Jones, Davey L; Thomas H Deluca

    2013-01-01

    The biological fixation of atmospheric nitrogen (N) is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50% to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associ...

  18. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.

    2015-01-01

    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... abovecanopy and within-canopy humidity, and despite large gradients in CO2 concentration during early morning hours after nights with stable conditions, neither humidity nor CO2 played an important role for vertical heterogeneity of photosynthesis and transpiration....

  19. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

    Science.gov (United States)

    Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O

    2016-05-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (Pstructure (Psoil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands.

  20. Effects of warming on the structure and function of a boreal black spruce forest

    Energy Technology Data Exchange (ETDEWEB)

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground

  1. Deciduous Tree Species Alter Nitrogen and Phosphorus Availability in Mid-successional Alaskan Boreal Forest

    Science.gov (United States)

    Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A.

    2013-12-01

    In Alaskan boreal forest, increased fire severity associated with climate change is altering successional processes and ecosystem nutrient dynamics. Fire is a common disturbance in Interior Alaska and typically burns forests dominated by black spruce (Picea mariana), a tree species associated with slow nutrient turnover and high soil organic matter accumulation rates. Historically, low severity fires have driven black spruce regeneration post-fire, thereby maintaining slow nutrient cycling rates and large soil organic matter stocks. In contrast, high severity fires consume the organic layer and can lead to the establishment of deciduous tree species on exposed mineral soil, which produce less recalcitrant leaf litter and exhibit faster nutrient cycling rates. To improve our understanding of the long-term impacts of tree species composition on nutrient cycling in boreal forest, we quantified nitrogen (N) cycling rates and estimated soil N, phosphorus (P), and base cation pools in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1960 fire near Fairbanks, Alaska. Results indicate significantly higher net N mineralization in paper birch soils relative to black spruce for both the fibric organic layer and top 10 cm of mineral soil during 30-day and 90-day lab incubation studies. Net nitrification was significantly higher in the paper birch fibric layer after 90 days. Total soil N concentrations did not differ between paper birch and black spruce stands, however the black spruce organic layer was significantly larger than that of birch, resulting in larger organic layer N stocks (130 vs. 87 g N m2). In contrast, total P concentrations were significantly higher in the organic layer in birch forest, but the total P stocks did not differ significantly between species because of the larger mass of soil organic matter in the black spruce. These findings suggest that a shift towards greater deciduous

  2. Belowground Competition Directs Spatial Patterns of Seedling Growth in Boreal Pine Forests in Fennoscandia

    Directory of Open Access Journals (Sweden)

    E. Petter Axelsson

    2014-09-01

    Full Text Available Aboveground competition is often argued to be the main process determining patterns of natural forest regeneration. However, the theory of multiple resource limitation suggests that seedling performance also depends on belowground competition and, thus, that their relative influence is of fundamental importance. Two approaches were used to address the relative importance of above- and below-ground competition on regeneration in a nutrient-poor pine (Pinus sylvestris boreal forest. Firstly, seedling establishment beneath trees stem-girdled 12 years ago show that a substantial proportion of the seedlings were established within two years after girdling, which corresponds to a time when nutrient uptake by tree roots was severely reduced without disrupting water transport to the tree canopy, which consequently was maintained. The establishment during these two years also corresponds to abundances high enough for normal stand replacement. Secondly, surveys of regeneration within forest gaps showed that surrounding forests depressed seedlings, so that satisfactory growth occurred only more than 5 m from forest edges and that higher solar radiation in south facing edges was not enough to mediate these effects. We conclude that disruption of belowground competitive interactions mediates regeneration and, thus, that belowground competition has a strong limiting influence on seedling establishment in these forests.

  3. APPLICATION OF REMOTE SENSING DATA FOR THE ASSESSMENT OF THE UJUK MOUNTAIN BOREAL FORESTS (THE TYVA REPUBLIC, RUSSIA

    Directory of Open Access Journals (Sweden)

    Khulermaa B. Kuular

    2016-01-01

    Full Text Available This paper discusses some issues related to assessment and monitoring of forests insouthern Siberia. This study aims to evaluate the response of southern boreal forests to climate warming at local scale. Estimating the impacts of climate change on mountain boreal forests requires a more complete accounting of tree growth/climate interaction. We used both remote sensing and field data. Field measurements were made from the upper to lower timberline of dark deciduous forest in 2005 and 2012. The remote sensing datasets were generated from LANDSAT scenes of different dates (19.08.1988, 25.06.1992 and 18.08.2011. For estimation of forests changes, we used values of NDVI (Normalized Difference Vegetation Index and NBR (Normalized Burn Ratio.

  4. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-10-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium (Ca) and potassium (K) to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes; solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 references.

  5. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-11-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium and potassium to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes: solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 refs.

  6. Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010

    Directory of Open Access Journals (Sweden)

    A. C. Nölscher

    2012-03-01

    Full Text Available Ambient total OH reactivity was measured at the Finnish boreal forest station SMEAR II in Hyytiälä (Latitude 61°51' N; Longitude 24°17' E in July and August 2010 using the Comparative Reactivity Method (CRM. The CRM – total OH reactivity method – is a direct, in-situ determination of the total loss rate of hydroxyl radicals (OH caused by all reactive species in air. During the intensive field campaign HUMPPA-COPEC 2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study the total OH reactivity was monitored both inside (18 m and directly above the forest canopy (24 m for the first time. The comparison between these two total OH reactivity measurements, absolute values and the temporal variation have been analyzed here. Stable boundary layer conditions during night and turbulent mixing in the daytime induced low and high short-term variability, respectively. The impact on total OH reactivity from biogenic emissions and associated photochemical products was measured under "normal" and "stressed" (i.e. prolonged high temperature conditions. The advection of biomass burning emissions to the site caused a marked change in the total OH reactivity vertical profile. By comparing the OH reactivity contribution from individually measured compounds and the directly measured total OH reactivity, the size of any unaccounted for or "missing" sink can be deduced for various atmospheric influences. For "normal" boreal conditions a missing OH reactivity of 58%, whereas for "stressed" boreal conditions a missing OH reactivity of 89% was determined. Various sources of not quantified OH reactive species are proposed as possible explanation for the high missing OH reactivity.

  7. Patterns of NPP, GPP, Respiration and NEP During Boreal Forest Succession

    Energy Technology Data Exchange (ETDEWEB)

    Goulden, Michael L.; McMillan, Andrew; Winston, Greg; Rocha, Adrian; Manies, Kristen; Harden, Jennifer W.; Bond-Lamberty, Benjamin

    2010-12-15

    We deployed a mesonet of year-round eddy covariance towers in boreal forest stands that last burned in ~1850, ~1930, 1964, 1981, 1989, 1998, and 2003 to understand how CO2 exchange changes during secondary succession.The strategy of using multiple methods, including biometry and micrometeorology, worked well. In particular, the three independent measures of NEP during succession gave similar results. A stratified and tiered approach to deploying eddy covariance systems that combines many lightweight and portable towers with a few permanent ones is likely to maximize the science return for a fixed investment. The existing conceptual models did a good job of capturing the dominant patterns of NPP, GPP, Respiration and NEP during succession. The initial loss of carbon following disturbance was neither as protracted nor large as predicted. This muted response reflects both the rapid regrowth of vegetation following fire and the prevalence of standing coarse woody debris following the fire, which is thought to decay slowly. In general, the patterns of forest recovery from disturbance should be expected to vary as a function of climate, ecosystem type and disturbance type. The NPP decline at the older stands appears related to increased Rauto rather than decreased GPP. The increase in Rauto in the older stands does not appear to be caused by accelerated maintenance respiration with increased biomass, and more likely involves increased allocation to fine root turnover, root metabolism, alternative forms of respiration, mycorrhizal relationships, or root exudates, possibly associated with progressive nutrient limitation. Several studies have now described a similar pattern of NEP following boreal fire, with 10-to-15 years of modest carbon loss followed by 50-to-100 years of modest carbon gain. This trend has been sufficiently replicated and evaluated using independent techniques that it can be used to quantify the likely effects of changes in boreal fire frequency and

  8. Habitat associations drive species vulnerability to climate change in boreal forests

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli Pekka;

    2016-01-01

    Species climate change vulnerability, their predisposition to be adversely affected, has been assessed for a limited portion of biodiversity. Our knowledge of climate change impacts is often based only on exposure, the magnitude of climatic variation in the area occupied by the species, even...... scenarios. However, climate change will potentially reduce habitat suitability for ~9–43 % of the threatened deadwood-associated species. This loss is likely caused by future increase in timber extraction and decomposition rates causing higher deadwood turnover, which have a strong negative effect on boreal...... forest biodiversity. Our results are species- and scenario-specific. Diversified forest management and restoration ensuring deadwood resources in the landscape would allow the persistence of species whose capacity of delivering important supporting ecosystem services can be undermined by climate change....

  9. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project)

    DEFF Research Database (Denmark)

    Breemen, N. van; Jenkins, A.; Wright, R.F.

    1998-01-01

    a transparent greenhouse, and the upper 20% of the catchment area is partitioned such that it receives no climate treatment and serves as an untreated control. Both the control and treatment areas inside the greenhouse receive deacidified rain. Within 3 years, soil nitrogen (N) mineralization has increased......To evaluate the effects of climate change on boreal forest ecosystems, both atmospheric CO2 (to 560 ppmv) and air temperature (by 3 degrees-5 degrees C above ambient) were increased at a forested headwater catchment in southern Norway. The entire catchment (860 m(2)) is enclosed within...... and the growing season has been prolonged relative to the control area. This has helped to sustain an increase in plant growth relative to the control and has also promoted increased N export in stream water. Photosynthetic capacity and carbon-nitrogen ratio of new leaves of most plant species did not change...

  10. Depression of belowground respiration rates at simulated high moose population densities in boreal forests.

    Science.gov (United States)

    Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell

    2009-10-01

    Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.

  11. Tree species richness decreases while species evenness increases with disturbance frequency in a natural boreal forest landscape.

    Science.gov (United States)

    Yeboah, Daniel; Chen, Han Y H; Kingston, Steve

    2016-02-01

    Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance-driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon's index, evenness, and time since last stand-replacing fire (TSF) in a large landscape of disturbance-driven boreal forest. TSF has negative effect on species richness and Shannon's index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon's index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon's index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest.

  12. Assessing various drought indicators in representing summer drought in boreal forests in Finland

    Science.gov (United States)

    Gao, Y.; Markkanen, T.; Thum, T.; Aurela, M.; Lohila, A.; Mammarella, I.; Kämäräinen, M.; Hagemann, S.; Aalto, T.

    2016-01-01

    Droughts can have an impact on forest functioning and production, and even lead to tree mortality. However, drought is an elusive phenomenon that is difficult to quantify and define universally. In this study, we assessed the performance of a set of indicators that have been used to describe drought conditions in the summer months (June, July, August) over a 30-year period (1981-2010) in Finland. Those indicators include the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), the Soil Moisture Index (SMI), and the Soil Moisture Anomaly (SMA). Herein, regional soil moisture was produced by the land surface model JSBACH of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM). Results show that the buffering effect of soil moisture and the associated soil moisture memory can impact on the onset and duration of drought as indicated by the SMI and SMA, while the SPI and SPEI are directly controlled by meteorological conditions. In particular, we investigated whether the SMI, SMA and SPEI are able to indicate the Extreme Drought affecting Forest health (EDF), which we defined according to the extreme drought that caused severe forest damages in Finland in 2006. The EDF thresholds for the aforementioned indicators are suggested, based on the reported statistics of forest damages in Finland in 2006. SMI was found to be the best indicator in capturing the spatial extent of forest damage induced by the extreme drought in 2006. In addition, through the application of the EDF thresholds over the summer months of the 30-year study period, the SPEI and SMA tended to show more frequent EDF events and a higher fraction of influenced area than SMI. This is because the SPEI and SMA are standardized indicators that show the degree of anomalies from statistical means over the aggregation period of climate conditions and soil moisture, respectively. However, in boreal forests in Finland, the high initial soil moisture

  13. Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange

    Science.gov (United States)

    Mäki, Mari; Heinonsalo, Jussi; Hellén, Heidi; Bäck, Jaana

    2017-03-01

    Boreal forest floor emits biogenic volatile organic compounds (BVOCs) from the understorey vegetation and the heterogeneous soil matrix, where the interactions of soil organisms and soil chemistry are complex. Earlier studies have focused on determining the net exchange of VOCs from the forest floor. This study goes one step further, with the aim of separately determining whether the photosynthesized carbon allocation to soil affects the isoprenoid production by different soil organisms, i.e., decomposers, mycorrhizal fungi, and roots. In each treatment, photosynthesized carbon allocation through roots for decomposers and mycorrhizal fungi was controlled by either preventing root ingrowth (50 µm mesh size) or the ingrowth of roots and fungi (1 µm mesh) into the soil volume, which is called the trenching approach. Isoprenoid fluxes were measured using dynamic (steady-state flow-through) chambers from the different treatments. This study aimed to analyze how important the understorey vegetation is as a VOC sink. Finally, a statistical model was constructed based on prevailing temperature, seasonality, trenching treatments, understory vegetation cover, above canopy photosynthetically active radiation (PAR), soil water content, and soil temperature to estimate isoprenoid fluxes. The final model included parameters with a statistically significant effect on the isoprenoid fluxes. The results show that the boreal forest floor emits monoterpenes, sesquiterpenes, and isoprene. Monoterpenes were the most common group of emitted isoprenoids, and the average flux from the non-trenched forest floor was 23 µg m-2 h-1. The results also show that different biological factors, including litterfall, carbon availability, biological activity in the soil, and physico-chemical processes, such as volatilization and absorption to the surfaces, are important at various times of the year. This study also discovered that understorey vegetation is a strong sink of monoterpenes. The

  14. Bryophyte-cyanobacteria associations contribute to ecosystem-N-budget of boreal forest

    Science.gov (United States)

    Salemaa, Maija; Lindroos, Antti-Jussi; Merilä, Päivi; Mäkipää, Raisa; Smolander, Aino

    2014-05-01

    Bryophytes frequently dominate the ground vegetation on the forest floor in boreal region. Northern ecosystems are often nitrogen limited, and therefore biological nitrogen (N2) fixation of bryophyte-associated microbes is an important source of new N. In this study we estimated the N stock of bryophyte layer and the N input rate by N2 fixation of bryophyte-cyanobacteria associations at the ecosystem level. We studied 12 intensively monitored forest ecosystem plots (ICP Forests Level II) along a latitudinal gradient in Finland during 2009-2013. The total biomass and N stock of the bryophytes varied 700-2000 kg ha-1 and 9-23 kg ha-1, respectively. N2 fixation rate associated to bryophytes increased towards the north and was at highest 1-2 kg N ha-1 year-1 (based on the bryophyte biomass in the monitoring plots). This N input was at the same level as the N deposition in the northern Finland (1.5 kg N ha-1 year-1). In comparison, via needle litterfall and other tree litter c.a. 5 kg N ha-1 is annually returned to the nutrient cycle. In southern Finland, very low rates of N2 fixation were found probably because of inhibition by the anthropogenic N deposition. The upper parts of the bryophyte shoots showed 2-3 times higher N2-fixing rate than the lower parts, but differences between Hylocomium splendens and Pleurozium schreberi were minor. However, Dicranum species showed much lower N2 fixation rates compared to these two species. The moisture level of bryophytes and light/temperature conditions regulated strongly the rate of N2-fixing activity. The results showed that the bryophyte layer significantly contributes to the N input and plays an important role in controlling the N and C balances of boreal forests.

  15. Issues and potential in creating carbon sinks in the boreal forest; Potentiel et enjeux a propos de la creation de puits de carbone en foret boreale

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, J.F.; Gagnon, R.; Villeneuve, C. [Quebec Univ., Chicoutimi, PQ (Canada); Gaboury, S. [Rio Tinto Alcan, Montreal, PQ (Canada); Lord, D. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Fondamentales

    2008-09-15

    Although greenhouse gas (GHG) emissions are primarily associated with the combustion of fossil fuels, they are also linked to deforestation. This article discussed the contribution of the forestry sector in mitigating climate change in the province of Quebec, which has vast areas of barren deforested land. Recent studies have shown that boreal forests have significant potential for carbon sequestration, although much uncertainty remains regarding the ability to store carbon for the long-term due to the potential for fires. Concerns regarding climate change may provide opportunities to develop important synergies between the wood products industry and bioenergy developers. This article presented a typical case of afforestation of barren boreal lands and noted the benefits of reforestation in terms of creating new habitats for species. This article also included a chart indicating the carbon sequestration potential for different types of biomass, notably tree canopies, roots, forest litter, deadwood and soil. A map showing the spatial distribution of bare boreal regions in Quebec was also included along with the total cost per hectare of carbon sequestration per tonne of carbon dioxide. It was concluded that important reforestation projects can be undertaken in the context of mitigating climate change to restore the role of carbon sinks which were lost in the unproductive barren regions. 45 refs., 2 tabs., 3 figs.

  16. Environmental Studies in the Boreal Forest Zone: Summer IPY Institute at Central Boreal Forest Reserve, Fedorovskoe, Tver area, Russia (14-28 August, 2007)

    Science.gov (United States)

    Sparrow, E. B.; Kurbatova, Y.; Groisman, P.; Alexeev, V.

    2007-12-01

    The Summer Institute was organized by the International Arctic Research Center (IARC) at the University of Alaska Fairbanks, in collaboration with the A.N. Severtsov Institute for Ecology and Evolution of the Russian Academy of Sciences in Moscow, Russia, and the Central Forest State Nature Biosphere Reserve in Fedorovskoe, Russia. The Institute was arranged as a part of the education/outreach activities of the International Polar Year (IPY) at the University of Alaska and the Northern Eurasia Earth Science Partnership Initiative (NEESPI) and was held in Russia. The Institute provided a unique opportunity for participants to learn about the climate and environment of Northern Eurasia from leading scientists and educators, in a wide spectrum of polar and Earth system science disciplines from meteorology, biology, chemistry, and earth system modeling. Additionally, the Institute attendees observed and participated in the biospheric research activities under the guidance of experienced scientists. During a two-week-interval, the School attendees heard 40 lectures, attended several field trips and participated in three brainstorming Round Table Workshop Sessions devoted to perspectives of the boreal forest zone research and major unresolved problems that it faces. Thirty professors and experts in different areas of climate and biosphere research from Russia, the United States, Germany, Finland, and Japan, shared their expertise in lectures and in round table discussions with the Institute participants. Among the Institute participants there were 31 graduate students/early career scientists from six countries (China, Russia, Estonia, Finland, UK, and the United States) and eight K-12 teachers from Russia. The two groups joined together for several workshop sessions and for the field work components of the Institute. The field work was focused on land-atmosphere interactions and wetland studies in the boreal forest zone. Several field trips in and outside the Forest

  17. Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms

    Science.gov (United States)

    Schelker, J.; Sponseller, R.; Ring, E.; Högbom, L.; Löfgren, S.; Laudon, H.

    2016-01-01

    Clear-cutting is today the primary driver of large-scale forest disturbance in boreal regions of Fennoscandia. Among the major environmental concerns of this practice for surface waters is the increased mobilization of nutrients, such as dissolved inorganic nitrogen (DIN) into streams. But while DIN loading to first-order streams following forest harvest has been previously described, the downstream fate and impact of these inputs is not well understood. We evaluated the downstream fate of DIN and dissolved organic nitrogen (DON) inputs in a boreal landscape that has been altered by forest harvests over a 10-year period. The small first-order streams indicated substantial leaching of DIN, primarily as nitrate (NO3-) in response to harvests with NO3- concentrations increasing by ˜ 15-fold. NO3- concentrations at two sampling stations further downstream in the network were strongly seasonal and increased significantly in response to harvesting at the mid-sized stream, but not at the larger stream. DIN removal efficiency, Er, calculated as the percentage of "forestry derived" DIN that was retained within the stream network based on a mass-balance model was highest during the snowmelt season followed by the growing season, but declined continuously throughout the dormant season. In contrast, export of DON from the landscape indicated little removal and was essentially conservative. Overall, net removal of DIN between 2008 and 2011 accounted for ˜ 65 % of the total DIN mass exported from harvested patches distributed across the landscape. These results highlight the capacity of nitrogen-limited boreal stream networks to buffer DIN mobilization that arises from multiple clear-cuts within this landscape. Further, these findings shed light on the potential impact of anticipated measures to increase forest yields of boreal forests, such as increased fertilization and shorter forest rotations, which may increase the pressure on boreal surface waters in the future.

  18. On Clear-Cut Mapping with Time-Series of Sentinel-1 Data in Boreal Forest

    Science.gov (United States)

    Rauste, Yrjo; Antropov, Oleg; Mutanen, Teemu; Hame, Tuomas

    2016-08-01

    Clear-cutting is the most drastic and wide-spread change that affects the hydrological and carbon-balance proper- ties of forested land in the Boreal forest zone1.A time-series of 36 Sentinel-1 images was used to study the potential for mapping clear-cut areas. The time series covered one and half year (2014-10-09 ... 2016-03-20) in a 200-km-by-200-km study site in Finland. The Sentinel- 1 images were acquired in Interferometric Wide-swath (IW), dual-polarized mode (VV+VH). All scenes were acquired in the same orbit configuration. Amplitude im- ages (GRDH product) were used. The Sentinel-1 scenes were ortho-rectified with in-house software using a digi- tal elevation model (DEM) produced by the Land Survey of Finland. The Sentinel-1 amplitude data were radio- metrically corrected for topographic effects.The temporal behaviour of C-band backscatter was stud- ied for areas representing 1) areas clear-cut during the ac- quisition of the Sentinel-1 time-series, 2) areas remaining forest during the acquisition of the Sentinel-1 time-series, and 3) areas that had been clear-cut before the acquisition of the Sentinel-1 time-series.The following observations were made:1. The separation between clear-cut areas and forest was generally low;2. Under certain acquisition conditions, clear-cut areas were well separable from forest;3. The good scenes were acquired: 1) in winter during thick snow cover, and 2) in late summer towards the end of a warm and dry period;4. The separation between clear-cut and forest was higher in VH polarized data than in VV-polarized data.5. The separation between clear-cut and forest was higher in the winter/snow scenes than in the dry summer scenes.

  19. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    Science.gov (United States)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  20. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P. [Brookhaven National Lab., Upton, NY (United States); Cofer, W.R. III; Levine, J.S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Winstead, E.L. [Science Applications International Corporation, Hampton, VA (United States)

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  1. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    NARCIS (Netherlands)

    Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Lelieveld, J.

    2011-01-01

    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPACOPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyyti¨al¨a, Finland from 12 July–12 Augu

  2. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S.; Haenninen, H.; Karjalainen, T. [Joensuu Univ. (Finland). Faculty of Forestry] [and others

    1996-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  3. Using InSAR Coherence to Map Stand Age in a Boreal Forest

    Directory of Open Access Journals (Sweden)

    Naiara Pinto

    2012-12-01

    Full Text Available The interferometric coherence parameter γ estimates the degree of correlation between two Synthetic Aperture Radar (SAR images and can be influenced by vegetation structure. Here, we investigate the use of repeat-pass interferometric coherence γ to map stand age, an important parameter for the study of carbon stocks and forest regeneration. In August 2009 NASA’s L-band airborne sensor UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar acquired zero-baseline data over Quebec with temporal separation ranging between 45 min and 9 days. Our analysis focuses on a 66 km2 managed boreal forest and addresses three questions: (i Can coherence from L-band systems be used to model forest age? (ii Are models sensitive to weather events and temporal baseline? and (iii How is model accuracy impacted by the spatial scale of analysis? Linear regression models with 2-day baseline showed the best results and indicated an inverse relationship between γ and stand age. Model accuracy improved at 5 ha scale (R2 = 0.75, RMSE = 5.3 as compared to 1 ha (R2 = 0.67, RMSE = 5.8. Our results indicate that coherence measurements from L-band repeat-pass systems can estimate forest age accurately and with no saturation. However, empirical model relationships and their accuracy are sensitive to weather events, temporal baseline, and spatial scale of analysis.

  4. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests.

    Science.gov (United States)

    Kreyling, Juergen; Haei, Mahsa; Laudon, Hjalmar

    2012-02-01

    Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature -5.5 vs. -2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (-82%) and the most abundant mosses Pleurozium schreberi (-74%) and Dicranum scoparium (-60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (-50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.

  5. Estimating aboveground biomass in the boreal forests of the Yukon River Basin, Alaska

    Science.gov (United States)

    Ji, L.; Wylie, B. K.; Nossov, D.; Peterson, B.; Waldrop, M. P.; McFarland, J.; Alexander, H. D.; Mack, M. C.; Rover, J. A.; Chen, X.

    2011-12-01

    Quantification of aboveground biomass (AGB) in Alaska's boreal forests is essential to accurately evaluate terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. However, regional AGB datasets with spatially detailed information (1 m tall), which were converted to plot-level AGB using allometric equations. We acquired Landsat Enhanced Thematic Mapper Plus (ETM+) images from the Web Enabled Landsat Data (WELD) that provides multi-date composites of top-of-atmosphere reflectance and brightness temperature for Alaska. From the WELD images, we generated a three-year (2008 - 2010) image composite for the Yukon River Basin using a series of compositing criteria including non-saturation, non-cloudiness, maximal normalize difference vegetation index (NDVI), and maximal brightness temperature. Airborne lidar datasets were acquired for two sub-regions in the central basin in 2009, which were converted to vegetation height datasets using the bare-earth digital surface model (DSM) and the first-return DSM. We created a multiple regression model in which the response variable was the field-observed AGB and the predictor variables were Landsat-derived reflectance, brightness temperature, and spectral vegetation indices including NDVI, soil adjusted vegetation index (SAVI), enhanced vegetation index (EVI), normalized difference infrared index (NDII), and normalized difference water index (NDWI). Principal component analysis was incorporated in the regression model to remedy the multicollinearity problems caused by high correlations between predictor variables. The model fitted the observed data well with an R-square of 0.62, mean absolute error of 29.1 Mg/ha, and mean bias error of 3.9 Mg/ha. By applying this model to the Landsat mosaic, we generated a 30-m AGB map for the boreal forests in the Yukon River Basin. Validation of the Landsat-derived AGB using the lidar dataset indicated a significant correlation between the AGB estimates and the lidar

  6. Effects of Nitrogen Fertilization of Boreal Forest Land on Greenhouse Gas Flows

    Science.gov (United States)

    Gustavsson, L.; Sathre, R. C.

    2011-12-01

    Forest growth on mineral soils in boreal regions is often limited by a low availability of nitrogen (N), and fertilization has shown particular promise in increasing yields in productive boreal forests. In this study we analyze the greenhouse gas (GHG) implications of increasing forest biomass production through N fertilization and using the increased production for bioenergy and biomaterials in place of non-renewable fuels and materials. We begin with a stand-level analysis of the radiative forcing implications of forest fertilization and biomass substitution, with explicit consideration of the temporal patterns of GHG emissions to and removals from the atmosphere. We model and compare the production and use of biomass from a hectare of fertilized and non-fertilized forest land in northern Sweden. We calculate the annual net emissions of CO2, N2O and CH4 for each system, over a 225-year period with 1-year time steps. We calculate the annual atmospheric concentration decay of each of these emissions, and calculate the resulting annual changes in instantaneous and cumulative radiative forcing. We find that forest fertilization can significantly increase biomass production, which increases the potential for material and energy substitution. The average carbon stock in tree biomass, forest soils and wood products all increase when fertilization is used. The additional GHG emissions due to fertilizer production and application are small compared to increases in carbon stock and substitution benefits. By the end of the 225-year simulation period, the cumulative radiative forcing reduction of the fertilized stand is over twice that of the non-fertilized stand. We then consider a steady-state landscape-level scenario where 10% of Swedish forest land is fertilized. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net GHG benefits

  7. Detecting Local Drivers of Fire Cycle Heterogeneity in Boreal Forests: A Scale Issue

    Directory of Open Access Journals (Sweden)

    Annie Claude Bélisle

    2016-07-01

    Full Text Available Severe crown fires are determining disturbances for the composition and structure of boreal forests in North America. Fire cycle (FC associations with continental climate gradients are well known, but smaller scale controls remain poorly documented. Using a time since fire map (time scale of 300 years, the study aims to assess the relative contributions of local and regional controls on FC and to describe the relationship between FC heterogeneity and vegetation patterns. The study area, located in boreal eastern North America, was partitioned into watersheds according to five scales going from local (3 km2 to landscape (2800 km2 scales. Using survival analysis, we observed that dry surficial deposits and hydrography density better predict FC when measured at the local scale, while terrain complexity and slope position perform better when measured at the middle and landscape scales. The most parsimonious model was selected according to the Akaike information criterion to predict FC throughout the study area. We detected two FC zones, one short (159 years and one long (303 years, with specific age structures and tree compositions. We argue that the local heterogeneity of the fire regime contributes to ecosystem diversity and must be considered in ecosystem management.

  8. Boreal forest prospects and politics: Paradoxes of first nations participation in multi-sector conservation

    Directory of Open Access Journals (Sweden)

    Anna J Willow

    2016-01-01

    Full Text Available This article explores the prospects and politics of indigenous participation in multi-sector conservation—an integrative and proactive new approach to sustaining the integrity of vast natural ecosystems—by presenting the case of the Boreal Leadership Council (BLC, an initiative comprised of Environmental Non-Governmental Organisations (ENGOs, First Nations groups, resource-extractive corporations, and financial institutions committed to collectively addressing issues impacting Canada's boreal forest. Drawing on multi-sited participant-observation and interviews with BLC members and affiliates, I show how the BLC challenges wilderness-oriented definitions of conservation by undertaking projects that intertwine resource use, land rights, cultural preservation, and political authority, but concurrently perpetuates dominant perspectives by adhering to discursive practices that limit how environmental information can be persuasively presented. Ultimately, I argue that multi-sector conservation creates both new possibilities for indigenous empowerment and new forms of marginalisation through the reproduction of a (postcolonial geography of exclusion in which indigenous participants knowingly and strategically travel from the centre of their own worlds to peripheral positions within a larger—and inherently inequitable—sociopolitical structure.

  9. The role of entrainment in surface-atmosphere interactions over the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.J. [Minnesota Univ., St. Paul, MN (United States). Dept. of Soil Science; Lenschow, D.H.; Oncley, S.P. [National Center for Atmospheric Research, Boulder, Colorado (United States); Kiemle, C.; Ehret, G.; Giez, A. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Mann, J. [Risoe National Lab., Roskilde (Denmark)

    1997-07-01

    We present a description of the evolution of the convective boundary layer (CBL) over the boreal forests of Saskatchewan and Manitoba, as observed by the national center for atmospheric research (NCAR) Electra research aircraft during the 1994 boreal ecosystem-atmosphere study (BOREAS). All observations were made between 1530 and 2230 UT (0930-1630 local solar time, LST). We show that the CBL flux divergence often led to drying of the CBL over the course of the day, with the greatest drying (approaching 0.5 gkg{sup -1}hr{sup -1}) observed in the morning, 1000-1200 LST, and decreasing over time to nearly no drying (0 to 0.1 gkg{sup -1}hr{sup -1}) by midafternoon (1500-1600 LST). The maximum warming (0.45 Khr{sup -1}) also occurred in the morning and decreased slightly to about 0.4 Khr{sup -1} by midafternoon. The CBL vapor pressure deficit (VPD) increases over the course of the day. A significant portion of this increase can be explained by the vertical flux divergence, though horizontal advection also appears to be important. We suggest a linkage between boundary layer growth, the vertical flux divergences, and boundary layer cloud formation, with cloud activity peaking at midday in response to rapid CBL growth, then decreasing somewhat later in the day in response to CBL warming and decreased growth. We also see evidence of feedback between increasing VPD and stomatal control. (orig.) 39 refs.

  10. Aerosol microphysical processes and properties in Canadian boreal forest fire plumes measured during BORTAS

    Science.gov (United States)

    Sakamoto, Kimiko; Allen, James; Coe, Hugh; Taylor, Jonathan; Duck, Thomas; Pierce, Jeffrey

    2013-04-01

    Biomass burning emissions contribute significantly to aerosol concentrations and clound condensation nuclei in many regions of the atmosphere. Plume-aerosol characteristics vary according to age, fuel type, and region. These differences are poorly represented in regional and global aerosol models, and they contribute to large uncertainties in predicted size distributions in biomass-burning-dominated regions. The Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) measurement campaign was designed to invesigate boreal biomass burning emissions over Atlantic Canada during July-August of 2011. Aged (2-3 days) biomass burning aerosols originating from western Ontario were measured by an SMPS and AMS on board the British Atmospheric Research Aircraft. We identify the presence of plumes using CO concentrations and acetonitrile enhancement ratios. In-plume aerosol size distributions were collected for six aged plume profiles. The size distributions show an accumulation-mode median diameter of ~240 nm. However, there are persistant nucleation and Aitken modes present in the profiles, even 2-3 days from the source. Without continuous nucleation and condensation (likely SOA production), these small modes would be lost by coagulation in less than 1 day. We use an aerosol microphysics plume model to estimate the mean nucleation and condensation rates necessary to maintain the small aerosols, and calculate how these processes enhance the total number of particles and cloud condensation nuclei in the aged plume.

  11. The Effect of Pollution on Newly-Formed Particle Composition in Boreal Forest

    Science.gov (United States)

    Vaattovaara, Petri

    2010-05-01

    Petri Vaattovaara (1), Tuukka Petäjä (2), Jorma Joutsensaari (1), Pasi Miettinen (1), Boris Zaprudin (1,6), Aki Kortelainen (1), Juha Heijari (3,7), Pasi Yli-Pirilä (3), Pasi Aalto (2), Doug R. Worsnop (4), and Ari Laaksonen(1,5) (1) University of Eastern Finland, Finland (2) University of Helsinki, Finland (3) University of Eastern Finland, Finland (4) Aerodyne Research Inc., USA (5) Finnish Meteorological Institute, Finland (6) Currently at University of Turku, Finland (7) Currently at Maritime Research Centre, Finland Email address of the Corresponding author: Petri.Vaattovaara@uef.fi The geographical extent of the tropical, temperate and boreal forests is about 30% of the Earth's land surface. Those forests are located around the world in different climate zones effecting widely on atmospheric composition via new particle formation. The Boreal forests solely cover one third of the forests extent and are one of the largest vegetation environments, forming a circumpolar band throughout the northern hemisphere continents, with a high potential to affect climate processes [1]. In order to more fully understand the possible climatic effects of the forests, the properties of secondary organic aerosols (SOA) in varying conditions (e.g. a change in meteorological parameters or in the concentrations of biogenic and antropogenic trace gases) need to be better known. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer [2]) and the UFH-TDMA (ultrafine hygroscopicity tandem differential mobility analyzer [3]) methods parallel to shed light on the evolution of the nucleation and Aitken mode particle compositions (via physic-chemical properties) at a virgin boreal forest site in varying conditions. The measurements were carried out at Hyytiälä forest station in Northern Europe (Finland) during 15 spring nucleation events. We also carried out a statistical analysis using linear correlations in order to explain the variability in

  12. Spatially explicit fire-climate history of the boreal forest-tundra (Eastern Canada) over the last 2000 years.

    Science.gov (United States)

    Payette, Serge; Filion, Louise; Delwaide, Ann

    2008-07-12

    Across the boreal forest, fire is the main disturbance factor and driver of ecosystem changes. In this study, we reconstructed a long-term, spatially explicit fire history of a forest-tundra region in northeastern Canada. We hypothesized that current occupation of similar topographic and edaphic sites by tundra and forest was the consequence of cumulative regression with time of forest cover due to compounding fire and climate disturbances. All fires were mapped and dated per 100 year intervals over the last 2,000 years using several fire dating techniques. Past fire occurrences and post-fire regeneration at the northern forest limit indicate 70% reduction of forest cover since 1800 yr BP and nearly complete cessation of forest regeneration since 900 yr BP. Regression of forest cover was particularly important between 1500s-1700s and possibly since 900 yr BP. Although fire frequency was very low over the last 100 years, each fire event was followed by drastic removal of spruce cover. Contrary to widespread belief of northward boreal forest expansion due to recent warming, lack of post-fire recovery during the last centuries, in comparison with active tree regeneration more than 1,000 years ago, indicates that the current climate does not favour such expansion.

  13. Effect of ditching operations on stream-water chemistry in a boreal forested catchment.

    Science.gov (United States)

    Aström, M; Aaltonen, E K; Koivusaari, J

    2001-11-12

    The effects of ditching of boreal forest land on stream-water quality and quantity was assessed by comparing, over a 4-year-period, the physicochemical properties of the water in two small streams (western Finland), one whose catchment was ditched for forestry halfway through the sampling period and another nearby (control) stream whose catchment was not ditched ('paired catchment method'). While the artificial drainage did not have any significant effect on the hydrograph, it resulted in an increase in the aquatic concentrations of Mn, Ca, Mg, suspended material and alkalinity, a decrease in the concentrations of TOC and H3O+, while for Al and Fe there was a change in control mechanisms. The concentration and control changes after ditching are related to changes in hydrological pathways and to the exposure of both organic (peat) and inorganic (mineral soil) layers on the ditch slopes.

  14. Proton affinities of candidates for positively charged ambient ions in boreal forests

    Science.gov (United States)

    Ruusuvuori, K.; Kurtén, T.; Ortega, I. K.; Faust, J.; Vehkamäki, H.

    2013-10-01

    The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST) Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in a boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  15. Proton affinities of candidates for positively charged ambient ions in the boreal forest

    Directory of Open Access Journals (Sweden)

    K. Ruusuvuori

    2013-04-01

    Full Text Available The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in the boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  16. Proton affinities of candidates for positively charged ambient ions in the boreal forest

    Science.gov (United States)

    Ruusuvuori, K.; Kurtén, T.; Ortega, I. K.; Faust, J.; Vehkamäki, H.

    2013-04-01

    The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST) Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in the boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  17. Proton affinities of candidates for positively charged ambient ions in boreal forests

    Directory of Open Access Journals (Sweden)

    K. Ruusuvuori

    2013-10-01

    Full Text Available The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in a boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  18. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  19. Quantifying habitat requirements of tree-living species in fragmented boreal forests with Bayesian methods.

    Science.gov (United States)

    Berglund, Håkan; O'Hara, Robert B; Jonsson, Bengt Gunnar

    2009-10-01

    Quantitative conservation objectives require detailed consideration of the habitat requirements of target species. Tree-living bryophytes, lichens, and fungi are a critical and declining biodiversity component of boreal forests. To understand their requirements, Bayesian methods were used to analyze the relationships between the occurrence of individual species and habitat factors at the tree and the stand scale in a naturally fragmented boreal forest landscape. The importance of unexplained between-stand variation in occurrence of species was estimated, and the ability of derived models to predict species' occurrence was tested. The occurrence of species was affected by quality of individual trees. Furthermore, the relationships between occurrence of species at the tree level and size and shape of stands indicated edge effects, implying that some species were restricted to interior habitats of large, regular stands. Yet for the habitat factors studied, requirements of many species appeared similar. Species occurrence also varied between stands; most of the seemingly suitable trees in some stands were unoccupied. The models captured most variation in species occurrence at tree level. They also successfully accounted for between-stand variation in species occurrence, thus providing realistic simulations of stand-level occupancy of species. Important unexplained between-stand variation in species occurrence warns against a simplified view that only local habitat factors influence species' occurrence. Apparently, similar stands will host populations of different sizes due to historical, spatial, and stochastic factors. Thus, habitat suitability cannot be assessed simply by population sizes, and stands lacking a species may still provide suitable habitat and merit protection.

  20. Mammalian Herbivores in the Boreal Forests: Their Numerical Fluctuations and Use by Man

    Directory of Open Access Journals (Sweden)

    Kjell Danell

    1998-12-01

    Full Text Available Within the boreal zone, there are about 50 native mammalian herbivore species that belong to the orders Artiodactyla, Rodentia, and Lagomorpha. Of these species, 31 occur in the Nearctic and 24 in the Palaearctic. Only six species occur in both regions. Species of the family Cervidae have probably been, and still are, the most important group for man, as they provide both meat and hides. Pelts from squirrels, muskrats, and hares were commercially harvested at the beginning of the century, but have less value today. The semi-domestic reindeer in the Palaearctic produces meat and hides on a commercial basis. It is also used for milking, to a limited extent, as is the semi-domestic moose in Russia. The Siberian musk deer is used for its musk and is raised in captivity in China. All species heavier than 1 kg are utilized by man, those with a body mass in the range 1 kg - 1 hg are sometimes used, and species lighter than 1 hg are rarely used. Here, we review the numerical fluctuations in terms of periodicity and amplitude, based on an extensive data set found in the literature, especially from the former Soviet Union. Current understanding of the underlying factors behind the population fluctuations is briefly reviewed. Management and conservation aspects of the mammalian herbivores in the boreal zone are also discussed. We conclude that there is a challenge to manage the forests for the mammalian herbivores, but there is also a challenge to manage the populations of mammalian herbivores for the forests.

  1. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Directory of Open Access Journals (Sweden)

    Tess Nahanni Grainger

    Full Text Available Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest

  2. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Science.gov (United States)

    Grainger, Tess Nahanni; Turkington, Roy

    2013-01-01

    Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually) on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest understory.

  3. Effects of an Experimental Drought on Balsam Fir Xylogenesis in the Eastern Canada Boreal Forest.

    Science.gov (United States)

    D'Orangeville, L.; Côté, B.; Houle, D.; Morin, H.

    2014-12-01

    A 20-40% reduction in soil moisture is projected for the boreal forest of Eastern Canada for the period 2070-99 relative to 1971-2000. In order to better predict the effects of a reduced water supply on the growth of balsam fir (Abies balsamea (L.) Mill.), a dominant tree species of the boreal forest, we simulated 2 consecutive years of summer droughts (starting in July) by means of throughfall exclusion. Four 100-m2 plots were established in 2010 with polyethylene sheets maintained 1.3-2 m aboveground and redirecting the water outside the plots. Wood microcores were extracted weekly from mature trees from April to October 2011 to analyse the time dynamics of wood formation in that year. The number of tracheids formed during and before treatment and their anatomical characteristics were determined through microscopic analyses. The growth of lateral and terminal branches and the water potential of balsam fir seedlings were also monitored. Throughfall exclusion significantly reduced soil water content by 5.8% in 2010 and 10.5% in 2011. Xylogenesis was affected significantly by the treatment. Tracheids were 16.1% smaller in diameter and their cell wall was 14.1% thicker during both years. The treatment delayed by more than a week the start of the tracheid differentiation process in the second year with a concomitant decrease (26%) in the number of tracheids produced. The seedlings displayed a 32% reduction in growth and a 40% reduction in leaf water potential. Our results suggest that a future regime of increased frequency and intensity of droughts could have nega­tive effects on the duration of xylogenesis and the amount of carbon sequestrated in balsam fir.

  4. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    Directory of Open Access Journals (Sweden)

    Zhaosheng Fan

    Full Text Available Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC into soil-water systems can stimulate the decomposition of soil OC (SOC via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude in boreal ecosystems. In this study, a coupled dissolved OC (DOC transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration, highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  5. Habitat Requirements of Breeding Black-Backed Woodpeckers (Picoides arcticus in Managed, Unburned Boreal Forest

    Directory of Open Access Journals (Sweden)

    Junior A. Tremblay

    2009-06-01

    Full Text Available We investigated home-range characteristics and habitat selection by Black-backed Woodpeckers (Picoides arcticus in an unburned, boreal forest landscape managed by mosaic harvesting in Quebec, Canada. Habitat selection by this species was specifically examined to determine home-range establishment and foraging activities. We hypothesized that Black-backed Woodpeckers would respond to harvesting by adjusting their home-range size as a function of the amount of dead wood available. Twenty-two birds were tracked using radiotelemetry, and reliable estimates of home-range size were obtained for seven breeding individuals (six males and one female. The average home-range size was 151.5 ± 18.8 ha (range: 100.4-256.4 ha. Our results indicate that this species establishes home ranges in areas where both open and forested habitats are available. However, during foraging activities, individuals preferentially selected areas dominated by old coniferous stands. The study also showed that the spatial distribution of preferred foraging habitat patches influenced space use, with home-range area increasing with the median distance between old coniferous habitat patches available within the landscape. Finally, these data show that Black-backed Woodpeckers may successfully breed in an unburned forest with at least 35 m3 • ha-1 of dead wood, of which 42% (15 m3 • ha-1 is represented by dead wood at the early decay stage.

  6. Effects of Lakes on Wildfire Activity in the Boreal Forests of Saskatchewan, Canada

    Directory of Open Access Journals (Sweden)

    Scott E. Nielsen

    2016-11-01

    Full Text Available Large lakes can act as firebreaks resulting in distinct patterns in the forest mosaic. Although this is well acknowledged, much less is known about how wildfire is affected by different landscape measures of water and their interactions. Here we examine how these factors relate to historic patterns of wildfire over a 35-year period (1980–2014 for the boreal forest of Saskatchewan, Canada. This includes the amount of water in different-sized neighborhoods, the presence of islands, and the direction, distance, and shape of nearest lake of different sizes. All individual factors affected wildfire presence, with lake sizes ≥5000 ha and amount of water within a 1000-ha surrounding area the most supported spatial scales. Overall, wildfires were two-times less likely on islands, more likely further from lakes that were circular in shape, and in areas with less surrounding water. Interactive effects were common, including the effect of direction to lake as a function of distance from lakeshore and amount of surrounding water. Our results point to a strong, but complex, bottom-up control of local wildfire activity based on the configuration of natural firebreaks. In fact, fire rotation periods predicted for one area varied more than 15-fold (<47 to >700 years depending on local patterns in lakes. Old-growth forests within this fire-prone ecosystem are therefore likely to depend on the surrounding configuration of larger lakes.

  7. The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns Across a Boreal Forest Gradient

    Science.gov (United States)

    Montesano, P. M.; Rosette, J.; Sun, G.; North, P.; Nelson, R. F.; Dubayah, R. O.; Ranson, K. J.; Kharuk, V.

    2014-01-01

    The Forest Light (FLIGHT) radiative transfer model was used to examine the uncertainty of vegetation structure measurements from NASA's planned ICESat-2 photon counting light detection and ranging (LiDAR) instrument across a synthetic Larix forest gradient in the taiga-tundra ecotone. The simulations demonstrate how measurements from the planned spaceborne mission, which differ from those of previous LiDAR systems, may perform across a boreal forest to non-forest structure gradient in globally important ecological region of northern Siberia. We used a modified version of FLIGHT to simulate the acquisition parameters of ICESat-2. Modeled returns were analyzed from collections of sequential footprints along LiDAR tracks (link-scales) of lengths ranging from 20 m-90 m. These link-scales traversed synthetic forest stands that were initialized with parameters drawn from field surveys in Siberian Larix forests. LiDAR returns from vegetation were compiled for 100 simulated LiDAR collections for each 10 Mg · ha(exp -1) interval in the 0-100 Mg · ha(exp -1) above-ground biomass density (AGB) forest gradient. Canopy height metrics were computed and AGB was inferred from empirical models. The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred AGB within each AGB interval across the gradient was examined. Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting photon counting LiDAR with no topographic relief show that 1-2 photons are returned for 79%-88% of LiDAR shots. Signal photons account for approximately 67% of all LiDAR returns, while approximately 50% of shots result in 1 signal photon returned. The proportion of these signal photon returns do not differ significantly (p greater than 0.05) for AGB intervals greater than 20 Mg · ha(exp -1). The 50m link-scale approximates the finest horizontal resolution (length) at which photon counting LiDAR collection provides strong model

  8. Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia

    Science.gov (United States)

    Olchev, A.; Novenko, E.; Desherevskaya, O.; Krasnorutskaya, K.; Kurbatova, J.

    2009-10-01

    Effects of possible climatic and vegetation changes on H2O and CO2 fluxes in boreal forest ecosystems of the central part of European Russia were quantified using modeling and experimental data. The future pattern of climatic conditions for the period up to 2100 was derived using the global climatic model ECHAM5 (Roeckner et al 2003 The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description, Report 349 (Hamburg: Max-Planck Institute for Meteorology) p 127) with the A1B emission scenario. The possible trends of future vegetation changes were obtained by reconstructions of vegetation cover and paleoclimatic conditions in the Late Pleistocene and Holocene, as provided from pollen and plant macrofossil analysis of profiles in the Central Forest State Natural Biosphere Reserve (CFSNBR). Applying the method of paleoanalogues demonstrates that increasing the mean annual temperature, even by 1-2 °C, could result in reducing the proportion of spruce in boreal forest stands by up to 40%. Modeling experiments, carried out using a process-based Mixfor-SVAT model, show that the expected future climatic and vegetation changes lead to a significant increase of net ecosystem exchange (NEE) and gross primary productivity (GPP) of the boreal forests. Despite the expected warming and moistening of the climate, the modeling experiments indicate a relatively weak increase of annual evapotranspiration (ET) and even a reduction of transpiration (TR) rates of forest ecosystems compared to present conditions.

  9. Spider assemblages in the overstory, understory, and ground layers of managed stands in the western boreal mixedwood forest of Canada.

    Science.gov (United States)

    Pinzon, Jaime; Spence, John R; Langor, David W

    2011-08-01

    Logging is the main human disturbance in the boreal forest; thus, understanding the effects of harvesting practices on biodiversity is essential for a more sustainable forestry. To assess changes in spider composition because of harvesting, samples were collected from three forest layers (overstory, understory, and ground) of deciduous and conifer dominated stands in the northwestern Canadian boreal mixedwood forest. Spider assemblages and feeding guild composition were compared between uncut controls and stands harvested to 20% retention. In total, 143 spider species were collected, 74 from the ground, 60 from the understory, and 71 from the overstory, and species composition of these three pools differed considerably among layers. Distinctive spider assemblages were collected from the canopy of each forest cover type but these were only slightly affected by harvesting. However, logging had a greater impact on the species composition in the understory and ground layers when compared with unharvested controls. Guild structure differed among layers, with wandering and sheet-weaving spiders dominant on the ground while orb-weaving and ambush spiders were better represented in the understory and overstory, respectively. Given the ecological importance of spiders and the expectation of faunal changes with increased harvesting, further efforts toward the understanding of species composition in higher strata of the boreal forest are needed.

  10. Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Gower, Stith T.; Amiro, Brian; Ewers, Brent

    2011-01-19

    The effects of changing climate and disturbance on forest water cycling are not well understood. In particular bryophytes contribute significantly to forest evapotranspiration (ET) in poorly-drained boreal forests, but few studies have directly measured this flux and how it changes with stand age and soil drainage. We used large chambers to measure bryophyte evaporation (E) in Canadian Picea mariana forests of varying ages and soil drainages, as well under controlled laboratory conditions, and modeled daily E using site-specific meteorological data to drive a Penman-Monteith-based model. Field measurements of E averaged 0.37 mm day-1, and ranged from 0.03 (Pleurozium schreberii in a 77-year-old dry stand) to 1.43 mm day-1 (Sphagnum riparium in a 43-year-old bog). canopy resistance ranged from ~0 (at 25 °C, some values were <0) to ~1500 s m-1 for dry, cold (5 °C) mosses. In the laboratory, moss canopy resistance was constant until a moss water content of ~6 g g-1 and then climbed sharply with further drying; no difference was observed between the three moss groups (feather mosses, hollow mosses, and hummock mosses) tested. Modeled annual E fluxes from bryophytes ranged from 0.4 mm day-1, in the well-drained stands, to ~1 mm day-1 in the 43-year-old bog, during the growing season. Eddy covariance data imply that bryophytes contributed 18-31% and 49-69% to the total ET flux, at the well- and poorly-drained stands respectively. Bryophyte E was greater in bogs than in upland stands, was driven by low-lying mosses, and did not vary with stand age; this suggests that shifts in forest age due to increasing fire will have little effect on the bryophyte contribution to ET.

  11. The selection of small forest hollows for pollen analysis in boreal and temperate forest regions

    DEFF Research Database (Denmark)

    Overballe-Petersen, Mette V; Bradshaw, Richard H.W.

    2011-01-01

    Small forest hollows represent a specialised site type for pollen analysis, since they mainly record the vegetation within an approximate radius of 20-100 m from the hollow. We discuss how to choose the most appropriate small forest hollow for pollen analysis. Hollow size, site topography, location...

  12. Recent variations in NDVI-based plant growth and their relationship with climate in boreal intact forest landscapes

    Science.gov (United States)

    Jin, J.; Jiang, H.; Lu, X.; Zhang, X.

    2015-12-01

    Intact Forest Landscapes (IFLs), defined as large unbroken expanses of forest landscape without signs of significant human activity, have significant ecological values. Previous studies suggest a reversal in the greening of boreal plants was exhibited in the late 1990s. In this study, we focus on variations in plant growth of boreal IFLs from 2000 to 2014 and their correlation with local climatic factors between 45°N and 70°N. The average Normalized Difference Vegetation Index (NDVI) during the growing season (GS, which is from April to October) derived from MOD13C2, is used as a proxy of plant growth. Compared to a significant increase in GS NDVI of boreal plants during the 1980s and early 1990s, GS NDVI of ca. 85.7% of total IFLs in the study area exhibited insignificant change after 2000. About 10.2% of total boreal IFLs exhibited significant greening (an increase in GS NDVI), and only 4.1% of the total showed significant browning (a decrease in GS NDVI) during the study period. For greening boreal IFLs, ca. 46.0% of these showed a significant correlation between GS temperature and NDVI. For browning IFLs, an increase in precipitation during the non-growing season (NGS, which is from previous November to current March) and cooling in GS and NGS were the main climatic causes for decreases of GS NDVI. However, over 65% of browning boreal IFLs did not correlate with any climatic factor, and the browning may be associated with artificial activities. About 49.4% of no-change boreal IFLs showed significant correlation between GS NDVI and climatic factors, and 72.5% of these sensitive plants exhibited a significant positive correlation between GS temperature and NDVI. On the whole, an increase in GS and NGS temperature could promote plant growth of boreal IFLs, while an increase of NGS precipitation mainly inhibited plant growth. However, nearly half of total boreal IFLs displayed no sensitivity to any climatic factors chosen in our present work.

  13. Regional Instability in the Abundance of Open Stands in the Boreal Forest of Eastern Canada

    Directory of Open Access Journals (Sweden)

    Rija Rapanoela

    2016-05-01

    Full Text Available Fires are a key disturbance of boreal forests. In fact, they are the main source of renewal and evolution for forest stands. The variability of fire through space and time results in a diversified forest mosaic, altering their species composition, structure and productivity. A resilient forest is assumed to be in a state of dynamic equilibrium with the fire regime, so that the composition, age structure and succession stages of forests should be consistent with the fire regime. Dense spruce-moss stands tend, however, to diminish in favour of more open stands similar to spruce-lichen stands when subjected to more frequent and recurring disturbances. This study therefore focused on the effects of spatial and temporal variations in burn rates on the proportion of open stands over a large geographic area (175,000 km2 covered by black spruce (Picea mariana (Mill. Britton, Sterns, Poggenb.. The study area was divided into 10 different zones according to burn rates, as measured using fire-related data collected between 1940 and 2006. To test if the abundance of open stands was unstable over time and not in equilibrium with the current fire regime, forest succession was simulated using a landscape dynamics model that showed that the abundance of open stands should increase progressively over time in zones where the average burn rate is high. The proportion of open stands generated during a specific historical period is correlated with the burn rate observed during the same period. Rising annual burn rates over the past two decades have thereby resulted in an immediate increase in the proportion of open stands. There is therefore a difference between the current proportion of open stands and the one expected if vegetation was in equilibrium with the disturbance regime, reflecting an instability that may significantly impact the way forest resources are managed. It is apparent from this study that forestry planning should consider the risks associated

  14. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    Science.gov (United States)

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  15. An observational study of the factors that influence interception loss in boreal and temperate forests

    Science.gov (United States)

    Toba, T.; Ohta, T.

    2005-11-01

    This study used same methods to observe interception loss in two boreal forest sites in Siberia and five temperate forest sites in Japan; interception characteristics of the two climate regions were compared. The Siberian sites had high interception ratios of 0.2-0.3. In contrast, the Japanese sites had low interception ratios of ca. 0.15 in coniferous forests and 0.2 in broadleaf forests. Although interception loss generally increases with the plant area index (PAI), our data showed the opposite trend. This suggests that meteorological variables had a greater effect on interception loss than did differences in canopy structure. Rainfall characteristics appeared to be the main meteorological factor affecting interception loss. When mean rainfall intensity exceeded 1 mm h -1, the interception ratio remained near the upper limit of 0.2 regardless of other rainfall conditions. In contrast, windy and drier atmospheric conditions strongly affected the interception rate when the rainfall intensity dropped below 1 mm h -1. Japan and Siberia showed significant energy-balance differences related to evaporation from wet canopies. At the Siberian sites, the net all-wave radiation was always larger than the latent heat flux used for interception loss, while Japanese sites often showed the opposite pattern. When the latent heat flux exceeded the net all-wave radiation, the air temperature above the canopy during rainfall events was higher at upper levels than at lower levels, even in the daytime. These results indicate that the sensible heat flux was directed downward and suggest that both net all-wave radiation and sensible heat flux contribute to evaporation from wet canopies during and shortly after rainfall events in Japan.

  16. Stocks, Chemistry, and Sensitivity to Climate Change of Dead Organic Matter Along the Canadian Boreal Forest Transect Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Preston, C.M.; Norris, C. [Pacific Forestry Centre, Natural Resources Canada, Victoria, BC, V8Z 1M5 (Canada); Bhatti, J.S. [Northern Forestry Centre, Natural Resources Canada, Edmonton, AB, T6H 3S5 (Canada); Flanagan, L.B. [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4 (Canada)

    2006-01-15

    Improving our ability to predict the impact of climate change on the carbon (C) balance of boreal forests requires increased understanding of site-specific factors controlling detrital and soil C accumulation. Jack pine (Pinus banksiana) and black spruce (Picea mariana) stands along the Boreal Forest Transect Case Study (BFTCS) in northern Canada have similar C stocks in aboveground vegetation and large woody detritus, but thick forest floors of poorly-drained black spruce stands have much higher C stocks, comparable to living biomass. Their properties indicate hindered decomposition and N cycling, with high C/N ratios, strongly stratified and depleted d13C and d15N values, high concentrations of tannins and phenolics, and 13C nuclear magnetic resonance (NMR) spectra typical of poorly decomposed plant material, especially roots and mosses. The thinner jack pine forest floor appears to be dominated by lichen, with char in some samples. Differences in quantity and quality of aboveground foliar and woody litter inputs are small and unlikely to account for the contrasts in forest floor accumulation and properties. These are more likely associated with site conditions, especially soil texture and drainage, exacerbated by increases in sphagnum coverage, forest floor depth, and tannins. Small changes in environmental conditions, especially reduced moisture, could trigger large C losses through rapid decomposition of forest floor in poorly drained black spruce stands in this region.

  17. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model

    Science.gov (United States)

    Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael

    2017-01-01

    A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.

  18. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    Science.gov (United States)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-08-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems, covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of Northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  19. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    Directory of Open Access Journals (Sweden)

    S. A. Quideau

    2013-08-01

    Full Text Available Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities in reconstructed, novel, anthropogenic ecosystems, covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of Northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  20. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    Directory of Open Access Journals (Sweden)

    S. A. Quideau

    2013-04-01

    Full Text Available Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities in reconstructed, novel, anthropogenic ecosystems covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability, and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  1. Environmental factors regulating winter CO2 flux in snow-covered boreal forest soil, interior Alaska

    Science.gov (United States)

    Kim, Y.; Kodama, Y.

    2012-01-01

    Winter CO2 flux is an important element to assess when estimating the annual carbon budget on regional and global scales. However, winter observation frequency is limited due to the extreme cold weather in sub-Arctic and Arctic ecosystems. In this study, the continuous monitoring of winter CO2 flux in black spruce forest soil of interior Alaska was performed using NDIR CO2 sensors at 10, 20, and 30 cm above the soil surface during the snow-covered period (DOY 357 to 466) of 2006/2007. The atmospheric pressure was divided into four phases: >1000 hPa (HP: high pressure); 985emission represents 20 % of the annual CO2 emissions in this boreal black spruce forest soil. Atmospheric temperature, pressure, and soil temperature correlate at levels of 56, 25, and 31 % to winter CO2 flux, respectively, during the snow-covered period of 2006/2007, when snow depth experienced one of its lowest totals of the past 80 years. Atmospheric temperature and soil temperature at 5 cm depth, modulated by atmospheric pressure, were found to be significant factors in determining winter CO2 emission and fluctuation in snowpack. Regional/global process-based carbon cycle models should be reassessed to account for the effect of winter CO2 emissions, regulated by temperature and soil latent-heat flux, in the snow-covered soils of Arctic and sub-Arctic terrestrial ecosystems of the Northern Hemisphere.

  2. Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies.

    Science.gov (United States)

    Färber, Leonie; Sølhaug, Knut Asbjorn; Esseen, Per-Anders; Bilger, Wolfgang; Gauslaa, Yngvar

    2014-06-01

    Pendulous lichens dominate canopies of boreal forests, with dark Bryoria species in the upper canopy vs. light Alectoria and Usnea species in lower canopy. These genera offer important ecosystem services such as winter forage for reindeer and caribou. The mechanism behind this niche separation is poorly understood. We tested the hypothesis that species-specific sunscreening fungal pigments protect underlying symbiotic algae differently against high light, and thus shape the vertical canopy gradient of epiphytes. Three pale species with the reflecting pigment usnic acid (Alectoria sarmentosa, Usnea dasypoga, U. longissima) and three with dark, absorbing melanins (Bryoria capillaris, B. fremontii, B. fuscescens) were compared. We subjected the lichens to desiccation stress with and without light, and assessed their performance with chlorophyll fluorescence. Desiccation alone only affected U. longissima. By contrast, light in combination with desiccation caused photoinhibitory damage in all species. Usnic lichens were significantly more susceptible to light during desiccation than melanic ones. Thus, melanin is a more efficient light-screening pigment than usnic acid. Thereby, the vertical gradient of pendulous lichens in forest canopies is consistent with a shift in type and functioning of sunscreening pigments, from high-light-tolerant Bryoria in the upper to susceptible Alectoria and Usnea in the lower canopy.

  3. Restoring the Nitrogen Cycle in the Boreal Forest - a Case Study from Northern Alberta

    Science.gov (United States)

    Masse, Jacynthe; Grayston, Sue; Prescott, Cindy; Quideau, Sylvie

    2014-05-01

    The Athabasca oil sands deposit, located in the boreal forests of Northern Alberta, is one of the largest single oil deposits in the world. This deposit rests underneath 40,200 square kilometres of land. To date, an area of about 715 square kilometres has been disturbed by oil sands mining activity (Government of Alberta, 2013). Following surface mining, companies have the legal obligation to restore soil-like profiles that can support the previous land capabilities (Powter et al., 2012). Because of its importance for site productivity, re-establishment of the nitrogen cycle between these reconstructed soils and plants is one of the most critical factors required to insure long term sustainability of reclaimed boreal landscape. High nitrogen deposition recorded in the oil sands area combined with the high level of nitrate found in reclaimed soils raised concerns about the possibility of these reclaimed soils being in early stages of N saturation (Laxton et al 2010; Hemsley, 2012), although little evidence of net nitrification in these reclaimed soils suggests the contrary (Laxton et al. 2012). To date, results on the behaviour of the nitrogen cycle in the reclaimed sites are contradictory. A systematic study of the nitrogen cycle, and especially rates of gross mineralization, nitrification and denitrification, is needed. Our research aimed at 1) measuring the gross rates of nitrogen transformations under different vegetation treatments in both reclaimed and naturally-disturbed (fire) sites and 2) characterizing the microbial communities participating in the nitrogen cycle within the same soils. A series of 20 soils, covering different vegetation treatments (plots planted with aspen (Populus tremuloides), spruce (Picea glauca) and grassland) were investigated. Gross nitrogen transformation rates were measured using 15N pool-dilution (Müller et al. 2007). Microbial communities participating in the N-cycle were characterized using qPCR and pyrosequencing. Differences

  4. Moss species benefits from breakdown of cyclic rodent dynamics in boreal forests.

    Science.gov (United States)

    Rydgren, Knut; Økland, Rune H; Picó, F Xavier; de Kroon, Hans

    2007-09-01

    population fitness. Our results support the hypothesis that breakdown of cyclic rodent population dynamics accentuates increase in the abundance of H. splendens and other large bryophytes in boreal forests in Norway, observed empirically in recent years and primarily ascribed to climatic change.

  5. Seasonal effects on the estimation of height of boreal and deciduous forests from interferometric TanDEM-X coherence data

    Science.gov (United States)

    Olesk, Aire; Voormansik, Kaupo; Tamm, Tanel; Noorma, Mart; Praks, Jaan

    2015-10-01

    The aim of this study is to assess the performance of single-pass X-band bistatic SAR interferometric forest height estimation of boreal and temperate deciduous forests under variable seasonal conditions. For this, twelve acquisitions of single- and dual-polarized TanDEM-X coherence images over 118 forest stands were analyzed and compared against LiDAR forest height maps. Strong correlations were found between interferometric coherence magnitude and LiDAR derived forest stand height for pine forests (r2=0.94) and spruce forest (r2=0.87) as well as for deciduous trees (r2=0.94) during leaf-off conditions with temperatures below 0°C. It was found that coherence magnitude based forest height estimation is influenced by leaf-on and leaf-off conditions as well as daily temperature fluctuations, height of ambiguity and effective baseline. These factors alter the correlation and should be taken into account for accurate coherence-based height retrieval. Despite the influence of the mentioned factors, generally a strong relationship in regression analysis between X-band SAR coherence and LiDAR derived forest stand height can be found. Moreover, a simple semi empirical model, derived from Random Volume over Ground model, is presented. The model takes into account all imaging geometry dependent parameters and allows to derive tree height estimate without a priori knowledge. Our results show that X-band SAR interferometry can be used to estimate forest canopy height for boreal and deciduous forests in both summer and winter, but the conditions should be stable.

  6. Assessing various drought indicators in representing drought in boreal forests in Finland

    Science.gov (United States)

    Gao, Y.; Markkanen, T.; Thum, T.; Aurela, M.; Lohila, A.; Mammarella, I.; Hagemann, S.; Aalto, T.

    2015-08-01

    Droughts can impact on forest functioning and production, and even lead to tree mortality. However, drought is an elusive phenomenon that is difficult to quantify and define universally. In this study, we assessed the performance of a set of indicators that have been used to describe drought conditions in the summer months (June, July, August) over a 30 year period (1981-2010) in Finland. Those indicators include the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), the Soil Moisture Index (SMI) and the Soil Moisture Anomaly (SMA). Herein, regional soil moisture was produced by the land surface model JSBACH. While SPI, SPEI, and SMA show a degree of anomalies from the statistical means over a period, SMI is directly connected to plant available water and closely dependent on soil properties. Moreover, the buffering effect of soil moisture and the associated soil moisture memory can impact on the onset and duration of drought as indicated by the SMI and SMA, whereas SPI and SPEI are directly controlled by meteorological conditions. In particular, we investigated whether the SMI, SMA and SPEI are able to indicate the Extreme Drought affecting Forest health (EDF) in Finland. EDF thresholds for these indicators are suggested, based on the spatially representative statistics of forest health observations in the exceptional dry year 2006. Our results showed that SMI was the best indicator in capturing the spatial extent of forest damage induced by the extreme drought in 2006. In addition, the derived thresholds were applied to those indicators to capture EDF events over the summer months of the 30 year study period. The SPEI and SMA showed more frequent EDF events over the 30 year period, and typically described a higher fraction of influenced area than SMI. In general, the suggested EDF thresholds for those indicators may be used for the indication of EDF events in Finland or other boreal forests areas in the context

  7. Assessing various drought indicators in representing drought in boreal forests in Finland

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2015-08-01

    Full Text Available Droughts can impact on forest functioning and production, and even lead to tree mortality. However, drought is an elusive phenomenon that is difficult to quantify and define universally. In this study, we assessed the performance of a set of indicators that have been used to describe drought conditions in the summer months (June, July, August over a 30 year period (1981–2010 in Finland. Those indicators include the Standardized Precipitation Index (SPI, the Standardized Precipitation–Evapotranspiration Index (SPEI, the Soil Moisture Index (SMI and the Soil Moisture Anomaly (SMA. Herein, regional soil moisture was produced by the land surface model JSBACH. While SPI, SPEI, and SMA show a degree of anomalies from the statistical means over a period, SMI is directly connected to plant available water and closely dependent on soil properties. Moreover, the buffering effect of soil moisture and the associated soil moisture memory can impact on the onset and duration of drought as indicated by the SMI and SMA, whereas SPI and SPEI are directly controlled by meteorological conditions. In particular, we investigated whether the SMI, SMA and SPEI are able to indicate the Extreme Drought affecting Forest health (EDF in Finland. EDF thresholds for these indicators are suggested, based on the spatially representative statistics of forest health observations in the exceptional dry year 2006. Our results showed that SMI was the best indicator in capturing the spatial extent of forest damage induced by the extreme drought in 2006. In addition, the derived thresholds were applied to those indicators to capture EDF events over the summer months of the 30 year study period. The SPEI and SMA showed more frequent EDF events over the 30 year period, and typically described a higher fraction of influenced area than SMI. In general, the suggested EDF thresholds for those indicators may be used for the indication of EDF events in Finland or other boreal forests

  8. The Future of Eurasian Boreal Forests: Ecological Modeling Projections in the Russian Federation

    Science.gov (United States)

    Lutz, D.; Shugart, H.

    2008-12-01

    Ecological modeling is one of the primary methodologies for making predictions on future changes in forested ecosystems such as those occurring in Northern Eurasia and Siberia. In particular, combining ecological modeling with global circulation model simulation outputs is a method in which scientists can forecast the impact of climate change on biodiversity (Thuiller, 2007) as well as the forested landscape. Dynamic global vegetation models (DGVMs) have been designed for specifically this purpose, however, these vegetation models run at large spatial scales and as a result make predictions that are highly uncertain (Purves and Pacala, 2008). In previous papers, we discussed the FAREAST forest gap model and its ability to accurately predict boreal forest dynamics at smaller scales and higher resolution than DGVMs. This presentation investigates the use of the FAREAST gap model, modified for spatial expansion to cover the entire country of Russia, to predict future land cover trends under different warming scenarios. The poster provides the initial framework for the project, as well as some initial results. The collection of input variables needed by FAREAST to model the Russian continent will involve collaboration with the Russian Academy of Sciences (CEPF). Together we have developed a framework in which to amalgamate both original (temperature, precipitation, soil values) parameters as well as new parameters (fire probability, logging probability) into a GIS database that can be integrated with the FAREAST model. This framework will be capable of providing visual and graphical output for interpretation of large model runs. In order to ensure accuracy in FAREAST's ability to simulate the current environment, a run of the model under current-day conditions will be compared to recent remote sensing land cover maps. The GLC2000 land cover classification project (EU JRC) will be the primary validation method with additional validation through other biophysical

  9. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls

    Science.gov (United States)

    Wickland, K.P.; Neff, J.C.

    2008-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and

  10. Carbon input increases microbial nitrogen demand, but not microbial nitrogen mining in boreal forest soils

    Science.gov (United States)

    Wild, Birgit; Alaei, Saeed; Bengtson, Per; Bodé, Samuel; Boeckx, Pascal; Schnecker, Jörg; Mayerhofer, Werner; Rütting, Tobias

    2016-04-01

    Plant primary production at mid and high latitudes is often limited by low soil N availability. It has been hypothesized that plants can indirectly increase soil N availability via root exudation, i.e., via the release of easily degradable organic compounds such as sugars into the soil. These compounds can stimulate microbial activity and extracellular enzyme synthesis, and thus promote soil organic matter (SOM) decomposition ("priming effect"). Even more, increased C availability in the rhizosphere might specifically stimulate the synthesis of enzymes targeting N-rich polymers such as proteins that store most of the soil N, but are too large for immediate uptake ("N mining"). This effect might be particularly important in boreal forests, where plants often maintain high primary production in spite of low soil N availability. We here tested the hypothesis that increased C availability promotes protein depolymerization, and thus soil N availability. In a laboratory incubation experiment, we added 13C-labeled glucose to a range of soil samples derived from boreal forests across Sweden, and monitored the release of CO2 by C mineralization, distinguishing between CO2 from the added glucose and from the native, unlabeled soil organic C (SOC). Using a set of 15N pool dilution assays, we further measured gross rates of protein depolymerization (the breakdown of proteins into amino acids) and N mineralization (the microbial release of excess N as ammonium). Comparing unamended control samples, we found a high variability in C and N mineralization rates, even when normalized by SOC content. Both C and N mineralization were significantly correlated to SOM C/N ratios, with high C mineralization at high C/N and high N mineralization at low C/N, suggesting that microorganisms adjusted C and N mineralization rates to the C/N ratio of their substrate and released C or N that was in excess. The addition of glucose significantly stimulated the mineralization of native SOC in soils

  11. Soil organic matter cycling in novel and natural boreal forest ecosystems

    Science.gov (United States)

    Norris, C. E.; Mercier Quideau, S.

    2013-12-01

    The uplands of the western boreal forest of Canada are characterized by a mosaic of pure and mixed stands of aspen (Populus tremuloides Michx.) and spruce (Picea glauca (Moench) Voss). In addition to natural ecosystems, the region is now home to novel ecosystems; i.e., ecosystems composed of reclaimed stands formed from trees planted on constructed anthropogenic soils. To understand potential differences in functioning of these novel ecosystems, we must first better understand the functioning of their natural counterparts. Here we present results on both the characterization and cycling of soil organic matter in novel and natural ecosystems found in the Athabasca oil sands region. Soil organic matter from 42 long term monitoring sites was evaluated for long chain (≥ C21) n-alkane composition. The survey showed that n-alkanes were more concentrated and had distinct signatures in natural compared to novel ecosystems. Mineral soils from reclaimed stands showed a distinct microbial community structure from natural aspen and spruce stands, as was demonstrated using phospholipid fatty acids (PLFAs) as microbial biomarkers following addition of 13C-glucose in a laboratory incubation. Further probing by compound specific analysis of the 13C-enriched PLFAs determined that microbial incorporation of 13C-glucose was different among soils. In a field incubation using 15N labeled aspen litter added to the forest floor of reclaimed, harvested and mature natural aspen stands, the microbial community readily incorporated the tracer and nitrogen was cycled to the above-ground vegetation on all sites. In addition, the amendment of leaf litter to the forest floor also increased soil moisture and soil microbial biomass on both the reclaimed and harvested sites. Utilizing stable isotope tracers in addition to a multi-faceted experimental approach has provided insightful results on the development of soil biogeochemical cycling in novel ecosystems.

  12. Effect of Organic Layer Thickness on Black Spruce Aging Mistakes in Canadian Boreal Forests

    Directory of Open Access Journals (Sweden)

    Ahmed Laamrani

    2016-03-01

    Full Text Available Boreal black spruce (Picea mariana forests are prone to developing thick organic layers (paludification. Black spruce is adapted to this environment by the continuous development of adventitious roots, masking the root collar and making it difficult to age trees. Ring counts above the root collar underestimate age of trees, but the magnitude of age underestimation of trees in relation to organic layer thickness (OLT is unknown. This age underestimation is required to produce appropriate age-correction tools to be used in land resource management. The goal of this study was to assess aging errors that are done with standard ring counts of trees growing in sites with different degrees of paludification (OLT; 0–25 cm, 26–65 cm, >65 cm. Age of 81 trees sampled at three geographical locations was determined by ring counts at ground level and at 1 m height, and real age of trees was determined by cross-dating growth rings down to the root collar (root/shoot interface. Ring counts at 1 m height underestimated age of trees by a mean of 22 years (range 13–49 and 52 years (range 14–112 in null to low vs. moderately to highly paludified stands, respectively. The percentage of aging-error explained by our linear model was relatively high (R2adj = 0.71 and showed that OLT class and age at 0-m could be used to predict total aging-error while neither DBH nor geographic location could. The resulting model has important implications for forest management to accurately estimate productivity of these forests.

  13. Real and Simulated Waveform Recording LIDAR Data in Boreal Juvenile Forest Vegetation

    Science.gov (United States)

    Hovi, A.; Korpela, I.

    2013-05-01

    Airborne small-footprint LiDAR is replacing field measurements in regional-level forest inventories, but auxiliary field work is still required for the optimal management of young stands. Waveform (WF) recording sensors can provide a more detailed description of the vegetation compared to discrete return (DR) systems. Furthermore, knowing the shape of the signal facilitates comparisons between real data and those obtained with simulation tools. We performed a quantitative validation of a Monte Carlo ray tracing (MCRT) -based LiDAR simulator against real data and used simulations and empirical data to study the WF recording LiDAR for the classification of boreal juvenile forest vegetation. Geometric-optical models of three common species were used as input for the MCRT model. Simulated radiometric and geometric WF features were in good agreement with the real data, and interspecies differences were preserved. We used the simulator to study the effects of sensor parameters on species classification performance. An increase in footprint size improved the classification accuracy up to a certain footprint size, while the emitted pulse width and the WF sampling rate had minor effects. Analyses on empirical data showed small improvement in performance compared to existing studies, when classifying seedling stand vegetation to four operational classes. The results on simulator validation serve as a basis for the future use of simulation models e.g. in LiDAR survey planning or in the simulation of synthetic training data, while the empirical findings clarify the potential of WF LiDAR data in the inventory chain for the operational forest management planning in Finland.

  14. Impacts of climatic changes on carbon and water balance components of boreal forest ecosystems in central part of European Russia

    Science.gov (United States)

    Olchev, A.; Novenko, E.; Desherevskaya, O.; Kurbatova, J.

    2009-04-01

    Within the framework of the study the possible impacts of climatic changes on carbon and water balances of boreal forest ecosystems of the central part of European Russia for period up to 2100 was estimated using results of model simulations and field measurements. The boreal forests of the Central Forest State Natural Biosphere Reserve (CFSNBR) were selected for the study. They are located at the southern boundary of south taiga zone in the European part of Russia (Tver region) and it can be expected that they will be very sensitive to modern climate warming. Expected future pattern of climatic parameters in the study area was derived using the global climatic model ECHAM5 (MPI Hamburg, Germany) and climatic scenarios B1, A1B and A2 (IPCC 2007). The possible scenarios of species composition changes of the boreal forests were developed using reconstructions of Holocene vegetation cover and climatic conditions on the base of pollen and plant macrofossil analysis of peat profiles in CFSNBR. The annual future pattern of CO2 and H2O fluxes of the forests were simulated using a process-based Mixfor-SVAT model (Olchev et al. 2002, 2008). The main advantage of Mixfor-SVAT is that it allows us to describe CO2 and H2O fluxes both in mono-specific and mixed forest stands. It is able to quantify both total ecosystem fluxes and flux partitioning among different tree species and canopy layers. It is obvious that it can be very helpful to describe accurately effects of species composition changes on structure of dynamics of carbon and water balance of forest ecosystems. Results of modeling experiments show that expected climatic and vegetation changes can have significant impact on evapotranspiration, transpiration, Net Ecosystem Exchange (NEE), Gross (GPP) and Net (NPP) Primary Productivities of boreal forest ecosystems. These changes have a clear seasonal trend and they are depended on species composition of a forest stand. This study was supported by the Russian Foundation

  15. Assessment of boreal forest historical C dynamics in Yukon River Basin: relative roles of warming and fire regime change

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Fengming [ORNL; Yi, Shuhua [Cold and Arid Regions Environmental and Engineering Research Institute, CAS; McGuire, A. David [University of Alaska; Johnson, Kristopher D [University of Alaska, Fairbanks; Liang, Jingjing [University of Alaska, Fairbanks; Harden, Jennifer [USGS, Menlo Park, CA; Kasischke, Eric S. [University of Maryland, College Park; Kurz, Werner [Canadian Forest Service

    2012-01-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink

  16. Spatial variations in the molecular diversity of dissolved organic matter in water moving through a boreal forest in eastern Finland

    Science.gov (United States)

    Ide, Jun’ichiro; Ohashi, Mizue; Takahashi, Katsutoshi; Sugiyama, Yuko; Piirainen, Sirpa; Kortelainen, Pirkko; Fujitake, Nobuhide; Yamase, Keitaro; Ohte, Nobuhito; Moritani, Mina; Hara, Miyako; Finér, Leena

    2017-01-01

    Dissolved organic matter (DOM) strongly affects water quality within boreal forest ecosystems. However, how the quality of DOM itself changes spatially is not well understood. In this study, to examine how the diversity of DOM molecules varies in water moving through a boreal forest, the number of DOM molecules in different water samples, i.e., rainwater, throughfall, soil water, groundwater, and stream water was determined using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in Norway spruce and Scots pine stands in eastern Finland during May and June 2010. The number of molecular compounds identified by FT-ICR MS (molecular diversity) ranged from 865 to 2,194, revealing large DOM molecular diversity in the water samples. Additionally, some of the molecular compounds were shared between different water samples. The DOM molecular diversity linearly correlated with the number of low-biodegradable molecules, such as, lignin-like molecules (lignins), but not with dissolved organic carbon concentration. The number of lignins shared between different sampling locations was larger than that of any other biomolecular class. Our results suggest that low-biodegradable molecules, especially lignins, regulate spatial variations in DOM molecular diversity in boreal forests. PMID:28186141

  17. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Finessi

    2012-01-01

    Full Text Available The study investigates the sources of fine organic aerosol (OA in the boreal forest, based on measurements including both filter sampling (PM1 and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions.

    The NMR results supported the AMS speciation of oxidized organic aerosol (OOA into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls. Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA, based on the comparison with spectral profiles obtained from laboratory experiments of

  18. Tracking changes of forest carbon density following mega-fires: comparison studies in the Yellowstone National Park and Boreal Forests of Northeast China

    Science.gov (United States)

    Zhao, Feng; Huang, Chengquan; Huang, Chao; He, Hong; Zhu, Zhiliang

    2016-04-01

    Wildfires and post-fire management directly change C stored in biomass and soil pools, and can have indirect impacts on long-term C balance. Two mega fires occurred in the Yellowstone National Park (YNP) and the boreal forests of Northeast China in 1988 and 1987, respectively, making them ideal sites to examine and compare the effects of management and disturbances on regional carbon dynamics. In this study, we quantified effects of the 1988 Yellowstone fires on YNP carbon storages and fluxes. And then we tracked and modeled post-1988 forest carbon stocks change in YNP, and compared with simulation results of carbon stock changes in post-1987 fire boreal forests of Northeast China. Preliminary results show that in YNP, the mega fires in 1988 were responsible for an immediate loss of 900 g/m2 ecosystem average C density and it would take about a decade before the YNP ecosystem recover to the pre-fire average C condition. In boreal forests of Northeast China, fire reduced aboveground and belowground carbon by 230±60 g/m2 and 460±340 g/m2, respectively.

  19. Long-term 15N tracking from biological N fixation across different plant and humus components of the boreal forest

    Science.gov (United States)

    Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.

    2014-05-01

    Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to δ15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of δ15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of δ15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance δ15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.

  20. Ten-year responses of ground-dwelling spiders to retention harvest in the boreal forest.

    Science.gov (United States)

    Pinzon, Jaime; Spence, John R; Langor, David W; Shorthouse, David P

    2016-12-01

    The Ecosystem Management Emulating Natural Disturbances (EMEND) project tests the hypothesis that varying levels of green tree retention maintain and retain forest biodiversity better than conventional clear-cutting. We studied epigaeic spiders to assess biodiversity changes 2, 5, and 10 yr following a range of partial retention harvests (clear-cut, 10-75% retention) and unharvested controls in four boreal mixedwood cover types. A total of 56 371 adult spiders representing 220 species was collected using pitfall traps. Lasting effects on forest structure were proportional to harvest intensity. These changes strongly influenced spider richness, abundance, and species composition, as well as assemblage recovery. Distinctive assemblages were associated with disturbance level, especially with partial harvests (≤50% retention), and these were dominated by open-habitat species even 10 yr after harvest. Assemblages were more similar to those of controls in the highest (75%) retention treatment, but significant recovery toward the structure of pre-disturbance assemblages was not detected for any prescription in any cover type. Although early responses to retention harvest suggested positive effects on spider assemblages, these are better explained as lag effects after harvest because assemblages were less similar to those of unharvested controls 5 yr post-harvest, and only minor recovery was observed 10 yr following harvest. Retention of forest biodiversity decreased over time, especially in conifer stands and the lower (10-50%) retention treatments. Overall, retention harvests retained biodiversity and promoted landscape heterogeneity somewhat better than clear-cutting; however, there was a clear gradient of response and no retention "threshold" for conservation can be recommended on the basis of our data. Furthermore, results suggest that retention harvest prescriptions should be adjusted for cover type. We show that low retention ameliorated impacts in broadleaved

  1. Forest Crown Cover Estimation in Northern Boreal and Temperate European Forest

    Science.gov (United States)

    Sirro, Laura; Hame, Tuomas; Ahola, Heikki; Lonnqvist, Anne

    2012-04-01

    A method for forest crown cover estimation using high resolution optical earth observation data was developed and tested at four study sites in Europe. Crown cover was estimated using the probability estimation method of VTT and Image2006 data. The accuracy of the crown cover predictions was assessed using reference data that were collected by visual interpretation of very high resolution aerial and space borne imagery. The average crown cover values in the reference data varied from 17 % to 86 % and in the predictions from 18 % to 80 %. The absolute root mean square error of the crown cover predictions varied between 14 % and 33 %. The results of the study showed that it is possible to map forest crown cover with twenty to thirty meter spatial resolution optical earth observation data using the single pixel values. However, understanding the variable results at different sites requires further investigation.

  2. Influence of forest fires on climate change studies in the central boreal forest of Canada

    Science.gov (United States)

    Valeo, C.; Beaty, K.; Hesslein, R.

    2003-09-01

    This brief paper indicates that forest fires may have short and longer term effects on runoff and thus, can influence trend studies on the response of watersheds to climate change. Twenty-two watersheds at the Experimental Lakes Area in northwestern Ontario were studied to view the impacts of climatic variability and forest fires on runoff. A roughly 30 year database demonstrated few trends in climatological variables and even fewer trends in runoff data at the 5% significance level. Daily maximum temperature increased by 0.053 °C per year, while precipitation in the months of February and March showed significant decreases. Total snow showed a significant decrease over a 30 year period at the 8% significance level. The Mann Kendall test for trend was applied to the runoff indices of 19 watersheds and it was revealed that only six exhibited trends. Of these, five had been burned during the test period. Virtually all burned watersheds showed initial increases in runoff, however, long term runoff trended lower in the burned watersheds, while the one watershed that was not burned showed an increasing trend. Forest fires alter the age distribution of trees with subsequent impacts on water yields in the short and longer term.

  3. Using Hyperspectral Frame Images from Unmanned Airborne Vehicle for Detailed Measurement of Boreal Forest 3D Structure

    Science.gov (United States)

    de Oliveira, Raquel A.; Tommaselli, Antonio M. G.; Honkavaara, Eija

    2016-10-01

    Objective of this work was to investigate the feasibility of using multi-image matching and information extracted from image classification to improve strategies in generation of point clouds of 3D forest scene. Image data sets were collected by a Fabry-Pérot interferometer (FPI) based hyperspectral frame camera on-board a UAV in a boreal forest area. The results of the new method are analysed and compared with commercial software and LiDAR data. Experiments showed that the point clouds generated with the proposed algorithm fitted better with the LiDAR data at the ground level, which is favourable for digital terrain model (DTM) extraction.

  4. Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests

    Science.gov (United States)

    Shenoy, A.; Kielland, K.; Johnstone, J. F.

    2011-12-01

    Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (μg N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species

  5. Spatial Variation of Leaf Optical Properties in a Boreal Forest Is Influenced by Species and Light Environment

    Science.gov (United States)

    Atherton, Jon; Olascoaga, Beñat; Alonso, Luis; Porcar-Castell, Albert

    2017-01-01

    Leaf Optical Properties (LOPs) convey information relating to temporally dynamic photosynthetic activity and biochemistry. LOPs are also sensitive to variability in anatomically related traits such as Specific Leaf Area (SLA), via the interplay of intra-leaf light scattering and absorption processes. Therefore, variability in such traits, which may demonstrate little plasticity over time, potentially disrupts remote sensing estimates of photosynthesis or biochemistry across space. To help to disentangle the various factors that contribute to the variability of LOPs, we defined baseline variation as variation in LOPs that occurs across space, but not time. Next we hypothesized that there were two main controls of potentially disruptive baseline spatial variability of photosynthetically-related LOPs at our boreal forest site: light environment and species. We measured photosynthetically-related LOPs in conjunction with morphological, biochemical, and photosynthetic leaf traits during summer and across selected boreal tree species and vertical gradients in light environment. We then conducted a detailed correlation analysis to disentangle the spatial factors that control baseline variability of leaf traits and, resultantly, LOPs. Baseline spatial variability of the Photochemical Reflectance Index (PRI) was strongly influenced by species and to a lesser extent light environment. Baseline variability of spectral fluorescence derived LOPs was less influenced by species; however at longer near-infrared wavelengths, light environment was an important control. In summary, remote sensing of chlorophyll fluorescence has good potential to detect variation in photosynthetic performance across space in boreal forests given reduced sensitivity to species related baseline variability in comparison to the PRI. Our results also imply that spatially coarse remote sensing observations are potentially unrepresentative of the full scope of natural variation that occurs within a boreal

  6. Impact of Forest Harvesting on Trophic Structure of Eastern Canadian Boreal Shield Lakes: Insights from Stable Isotope Analyses

    Science.gov (United States)

    Glaz, Patricia; Sirois, Pascal; Archambault, Philippe; Nozais, Christian

    2014-01-01

    Perturbations on ecosystems can have profound immediate effects and can, accordingly, greatly alter the natural community. Land-use such as forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. The objective of this study was to evaluate the impact of forest harvesting on trophic structure in eastern Canadian Boreal Shield lakes. We measured carbon and nitrogen stable isotopes values for aquatic primary producers, terrestrial detritus, benthic macroinvertebrates, zooplankton and brook trout (Salvelinus fontinalis) over a three-year period in eight eastern Boreal Shield lakes. Four lakes were studied before, one and two years after forest harvesting (perturbed lakes) and compared with four undisturbed reference lakes (unperturbed lakes) sampled at the same time. Stable isotope mixing models showed leaf-litter to be the main food source for benthic primary consumers in both perturbed and unperturbed lakes, suggesting no logging impact on allochthonous subsidies to the littoral food web. Brook trout derived their food mainly from benthic predatory macroinvertebrates in unperturbed lakes. However, in perturbed lakes one year after harvesting, zooplankton appeared to be the main contributor to brook trout diet. This change in brook trout diet was mitigated two years after harvesting. Size-related diet shift were also observed for brook trout, indicating a diet shift related to size. Our study suggests that carbon from terrestrial habitat may be a significant contribution to the food web of oligotrophic Canadian Boreal Shield lakes. Forest harvesting did not have an impact on the diet of benthic primary consumers. On the other hand, brook trout diet composition was affected by logging with greater zooplankton contribution in perturbed lakes, possibly induced by darker-colored environment in these lakes one year after logging. PMID:24763366

  7. A Comparative Analysis of Burned Area Datasets in Canadian Boreal Forest in 2000

    Science.gov (United States)

    Núñez-Casillas, Laia; Moreno-Ruiz, José Andrés

    2013-01-01

    The turn of the new millennium was accompanied by a particularly diverse group of burned area datasets from different sensors in the Canadian boreal forests, brought together in a year of low global fire activity. This paper provides an assessment of spatial and temporal accuracy, by means of a fire-by-fire comparison of the following: two burned area datasets obtained from SPOT-VEGETATION (VGT) imagery, a MODIS Collection 5 burned area dataset, and three different datasets obtained from NOAA-AVHRR. Results showed that burned area data from MODIS provided accurate dates of burn but great omission error, partially caused by calibration problems. One of the VGT-derived datasets (L3JRC) represented the largest number of fire sites in spite of its great overall underestimation, whereas the GBA2000 dataset achieved the best burned area quantification, both showing delayed and very variable fire timing. Spatial accuracy was comparable between the 5 km and the 1 km AVHRR-derived datasets but was remarkably lower in the 8 km dataset leading, us to conclude that at higher spatial resolutions, temporal accuracy was lower. The probable methodological and contextual causes of these differences were analyzed in detail. PMID:23818817

  8. Mechanisms of Action of Indigenous Antidiabetic Plants from the Boreal Forest of Northeastern Canada

    Directory of Open Access Journals (Sweden)

    Hoda M. Eid

    2014-01-01

    Full Text Available Indigenous populations in Canada possess a wealth of native traditional knowledge. However, their rates of Type 2 diabetes mellitus (T2DM, a disease that was unheard of in their midst 50 years ago, are the highest in the country. In an effort to cut the impact of T2DM epidemic on Indigenous health, the Canadian Institutes of Health Research funded the “CIHR Team in Aboriginal Antidiabetic Medicines (CIHR-TAAM.” The goal was to explore Boreal forest medicinal plants stemming from Indigenous Traditional Medicine to be included in T2DM care. Six out of nine communities of the Cree of Eeyou Istchee (CEI participated in ethnobotanical studies that resulted in the identification of 17 potential antidiabetic plant species. These species were screened for antidiabetic activities using a platform of in vitro bioassays and in vivo models of T2DM. This paper summarizes results on the 10 most promising plant species, their active constituents, and the mechanisms behind their antidiabetic activities. In addition, potential herb-drug interactions were examined at the level of drug-metabolizing enzymes, notably the cytochrome P450 family. This review serves as a canvas onto which is discussed the value of Indigenous medicinal plants, future avenues of research, and the ethical approach required in this field.

  9. A Comparative Analysis of Burned Area Datasets in Canadian Boreal Forest in 2000

    Directory of Open Access Journals (Sweden)

    Laia Núñez-Casillas

    2013-01-01

    Full Text Available The turn of the new millennium was accompanied by a particularly diverse group of burned area datasets from different sensors in the Canadian boreal forests, brought together in a year of low global fire activity. This paper provides an assessment of spatial and temporal accuracy, by means of a fire-by-fire comparison of the following: two burned area datasets obtained from SPOT-VEGETATION (VGT imagery, a MODIS Collection 5 burned area dataset, and three different datasets obtained from NOAA-AVHRR. Results showed that burned area data from MODIS provided accurate dates of burn but great omission error, partially caused by calibration problems. One of the VGT-derived datasets (L3JRC represented the largest number of fire sites in spite of its great overall underestimation, whereas the GBA2000 dataset achieved the best burned area quantification, both showing delayed and very variable fire timing. Spatial accuracy was comparable between the 5 km and the 1 km AVHRR-derived datasets but was remarkably lower in the 8 km dataset leading, us to conclude that at higher spatial resolutions, temporal accuracy was lower. The probable methodological and contextual causes of these differences were analyzed in detail.

  10. Overview of a prescribed burning experiment within a boreal forest in Finland

    Directory of Open Access Journals (Sweden)

    A. Virkkula

    2013-08-01

    Full Text Available A prescribed burning of a boreal forest was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from wildfires and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 t (i.e., ~60 t ha−1. The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and from a research aircraft. In the middle of the burning area, CO2 concentration peaks were around 2000–3000 ppm above the baseline and peak vertical flow velocities were 6 ± 3 m s−1, as measured a 10-Hz 3-D sonic anemometer placed within the burn area. Peak particle number concentrations were approximately 1–2 × 106 cm−3 in the plume at a distance of 100–200 m from the burn area. The geometric mean diameter of the mode with the highest concentration was at 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase but at the end of the smoldering phase the largest mode was at 122 nm. In the volume size distributions geometric mean diameter of the largest volume mode was at 153 nm during the flaming phase and at 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurents was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. The radiative forcing efficiency was negative above dark surfaces, in other words, the particles cool the atmosphere. Elevated concentrations of several VOCs (including acetonitrile which is a biomass burning marker were observed in the smoke plume at ground level. The forest floor (i.e., richly organic layer of soil and debris, characteristic of forested land measurements showed that VOC fluxes were generally low and consisted mainly of monoterpenes, but a clear peak of VOC

  11. Seasonal Effects of Habitat on Sources and Rates of Snowshoe Hare Predation in Alaskan Boreal Forests.

    Directory of Open Access Journals (Sweden)

    Dashiell Feierabend

    greater influence on the sources of predation than the amount of cover in any given location within a habitat. Our observations illustrate the vulnerability of hares to predators in even the densest coniferous habitat available in the boreal forest, and indicate strong seasonal changes in the rates and sources of predation.

  12. The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem.

    Science.gov (United States)

    Owojori, Olugbenga J; Siciliano, Steven D

    2015-03-01

    Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture.

  13. The Influence of Pyrogenic, Biogenic and Anthropogenic Emissions on Ozone Production Downwind from Boreal Forest Fires

    Science.gov (United States)

    Finch, Douglas; Palmer, Paul

    2016-04-01

    Boreal forest fires emit pollutants that can have a strong influence on downwind surface ozone concentrations, with potential implications for exceeding air quality regulations. The influence of the mixing of pyrogenic, biogenic and anthropogenic emissions on ozone is not well understood. Using the nested 0.5° latitude x 0.667° longitude GEOS-Chem chemical transport model we track biomass burning plumes in North America. We identify the changes in key chemical reactions within these plumes as well as the sensitivity of ozone to the different emission sources. We illustrate the importance of this method using a case study of a multi-day forest fire during the BORTAS aircraft campaign over eastern Canada during summer 2011. We focus on emissions from the fire on the 17th of July and follow the plume for eight days. After the initial 24 hours of pyrogenic emissions the main source of VOCs is biogenic with increasing emissions from anthropogenic sources including outflow from Quebec City and Newfoundland. Using a Lagrangian framework, we show that the ozone production efficiency (OPE) of this plume decreases steadily as it moves away from the fire but increases rapidly as the plume reaches the east coast of Canada. Using a Eulerian framework we show that ozone mixing ratios of a east coast receptor region increase by approximately 15% even though the ozone tendency of the regional air mass is negative, which we find is due to the arrival of ozone precursors in the plume. We also consider the contribution of anthropogenic outflow over Nova Scotia that originates from the eastern seaboard of the United States to the local chemistry. Using these sensitivity model runs we generate a chemical reaction narrative for the plume trajectory that helps to understand the attribution of observed ozone variations.

  14. Patterns of cross-continental variation in tree seed mass in the Canadian Boreal Forest.

    Science.gov (United States)

    Liu, Jushan; Bai, Yuguang; Lamb, Eric G; Simpson, Dale; Liu, Guofang; Wei, Yongsheng; Wang, Deli; McKenney, Daniel W; Papadopol, Pia

    2013-01-01

    Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb) across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively), indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they potentially

  15. Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice.

    Science.gov (United States)

    Girardin, Martin P; Guo, Xiao Jing; De Jong, Rogier; Kinnard, Christophe; Bernier, Pierre; Raulier, Frédéric

    2014-03-01

    The 20th century was a pivotal period at high northern latitudes as it marked the onset of rapid climatic warming brought on by major anthropogenic changes in global atmospheric composition. In parallel, Arctic sea ice extent has been decreasing over the period of available satellite data records. Here, we document how these changes influenced vegetation productivity in adjacent eastern boreal North America. To do this, we used normalized difference vegetation index (NDVI) data, model simulations of net primary productivity (NPP) and tree-ring width measurements covering the last 300 years. Climatic and proxy-climatic data sets were used to explore the relationships between vegetation productivity and Arctic sea ice concentration and extent, and temperatures. Results indicate that an unusually large number of black spruce (Picea mariana) trees entered into a period of growth decline during the late-20th century (62% of sampled trees; n = 724 cross sections of age >70 years). This finding is coherent with evidence encoded in NDVI and simulated NPP data. Analyses of climatic and vegetation productivity relationships indicate that the influence of recent climatic changes in the studied forests has been via the enhanced moisture stress (i.e. greater water demands) and autotrophic respiration amplified by the declining sea ice concentration in Hudson Bay and Hudson Strait. The recent decline strongly contrasts with other growth reduction events that occurred during the 19th century, which were associated with cooling and high sea ice severity. The recent decline of vegetation productivity is the first one to occur under circumstances related to excess heat in a 300-year period, and further culminates with an intensifying wildfire regime in the region. Our results concur with observations from other forest ecosystems about intensifying temperature-driven drought stress and tree mortality with ongoing climatic changes.

  16. Patterns of cross-continental variation in tree seed mass in the Canadian Boreal Forest.

    Directory of Open Access Journals (Sweden)

    Jushan Liu

    Full Text Available Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill. B.S.P., white spruce (Picea glauca (Moench Voss and jack pine (Pinus banksiana Lamb across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively, indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they

  17. Modelling day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy

    Directory of Open Access Journals (Sweden)

    H. K. Lappalainen

    2010-08-01

    Full Text Available Three different models for day-time atmospheric methanol, acetaldehyde, acetone, isoprene and monoterpene concentrations were developed using measurements above a boreal forest stand in Southern Finland in 2006–2007 and tested against an independent dataset from the same forest measured in summer 2008. The models were based on the exponential relationship between air temperature and the concentration of biogenic volatile organic compounds (BVOC. Our first model for BVOC concentrations was a simple exponential function of air temperature (T-model. The T-model could explain 27–66% of the variation of all the compounds, but it failed to catch the extremely high concentration peaks observed in summer. To improve the temperature model we developed two other models. The second model, a Temperature-State of Development- model (T-S model, included two explaining variables: air temperature and the seasonal photosynthetic efficiency. This model performed slightly better compared to the T-model for both datasets and increased the fraction of variation explained to 29–69%, but it still could not explain the high concentration peaks. To explain those we modified the T-S model to include environmental triggers that could increase the concentrations momentarily. The triggers that improved the model most were high photosynthetically active photon flux density (PPDF compared to the seasonally available radiation and high ozone concentration. The Trigger model described the peak concentrations somewhat better than T or T-S model, thus the level of explanation was improved and was 30–71%. This study shows the importance to include seasonal variations in photosynthetic efficiency when modeling BVOC concentrations and presents the idea of a trigger model for explaining high peak concentrations of BVOCs. Our study suggests that when developing a trigger type modelfurther the model and the triggers should be more compounds-specific.

  18. Understanding COS Fluxes in a Boreal Forest: Towards COS-Based GPP Estimates.

    Science.gov (United States)

    Chen, H.; Kooijmans, L.; Franchin, A.; Keskinen, H.; Levula, J.; Mammarella, I.; Maseyk, K. S.; Pihlatie, M.; Praplan, A. P.; Seibt, U.; Sun, W.; Vesala, T.

    2015-12-01

    Carbonyl Sulfide (COS) is a promising new tracer that can be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. COS and CO2 vegetation fluxes are closely related as these gases share the same diffusion pathway into stomata, which makes COS a potentially powerful tracer for GPP. While vegetative uptake is the largest sink of COS, the environmental drivers are poorly understood, and soil fluxes represent an important but relatively unconstrained component. Therefore, the realization of the COS tracer method requires proper characterization of both soil and ecosystem fluxes. A campaign to provide better constrained soil and ecosystem COS flux data for boreal forests took place in the summer of 2015 at the SMEAR II site in Hyytiälä, Finland. Eddy covariance flux measurements were made above the forest canopy on an Aerodyne continuous-wave quantum cascade laser (QCL) system that is capable of measuring COS, CO2, CO and H2O. Soil COS fluxes were obtained using modified LI-COR LI-8100 chambers together with high accuracy concentration measurements from another Aerodyne QCL instrument. The same instrument alternately measured concentrations in and above the canopy on a cycle through 4 heights, which will be used to calculate ecosystem fluxes using the Radon-tracer method, providing ecosystem fluxes under low-turbulent conditions. We will compare ecosystem fluxes from both eddy covariance and profile measurements and show estimates of the fraction of ecosystem fluxes attributed to the soil component. With the better understanding of ecosystem and soil COS fluxes, as obtained with this dataset, we will be able to derive COS-based GPP estimates for the Hyytiälä site.

  19. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010: an overview of meteorological and chemical influences

    Directory of Open Access Journals (Sweden)

    J. Williams

    2011-10-01

    Full Text Available This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation in Hyytiälä, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce; mixed forest (Birch and conifers; and woodland scrub (e.g. Willows, Aspen; indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO, urban anthropogenic pollution (pentane and SO2 and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes. None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  20. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010: an overview of meteorological and chemical influences

    Directory of Open Access Journals (Sweden)

    J. Williams

    2011-05-01

    Full Text Available This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation in Hyytiälä, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site were characterized by a higher proportion of southerly flow. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce; mixed forest (Birch and conifers; and woodland scrub (e.g. Willows, Aspen; indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO, urban anthropogenic pollution (pentane and SO2 and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes. None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  1. Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest

    Science.gov (United States)

    Walker, Xanthe; Johnstone, Jill F.

    2014-05-01

    The responses of tree growth to recent climate warming may signal changes in the susceptibility of forest communities to compositional change and consequently impact a wide range of ecosystem processes and services. Previous research in the boreal forest has largely documented negative growth responses to climate in forest species and habitats characteristic of drier conditions, emphasizing the sensitivity of drier or warmer landscape positions to climate warming. In this study, we explored relationships between climate and tree-ring growth of black spruce, a dominant tree species typical of cool and moist habitats in the boreal forests of North America. We assessed how these responses varied with stand characteristics and landscape position across four different regions in Alaska and Yukon Territory. Approximately half of the trees measured across regions and topographic gradients exhibited reduced radial growth in response to warm temperatures in the previous growing season and current spring, which we interpret as a signal of drought stress. Although we found considerable variation in the growth responses of individual trees within sites, landscape position and stand characteristics were weak predictors of this variability, explaining ≦̸12% of the variation in any region. Our results indicate that future warming, particularly in spring, is likely to result in drought stress and a reduction of black spruce radial growth independent of region, landscape position, or stand characteristics. The occurrence of negative growth responses to temperature, even in cool and moist habitats, suggests that drought stress limitations may be more widespread in the northern boreal forest than previously anticipated, indicating broad sensitivity of ecosystem processes and services to climate change across a diverse range of habitat types.

  2. Can Airborne Laser Scanning (ALS and Forest Estimates Derived from Satellite Images Be Used to Predict Abundance and Species Richness of Birds and Beetles in Boreal Forest?

    Directory of Open Access Journals (Sweden)

    Eva Lindberg

    2015-04-01

    Full Text Available In managed landscapes, conservation planning requires effective methods to identify high-biodiversity areas. The objective of this study was to evaluate the potential of airborne laser scanning (ALS and forest estimates derived from satellite images extracted at two spatial scales for predicting the stand-scale abundance and species richness of birds and beetles in a managed boreal forest landscape. Multiple regression models based on forest data from a 50-m radius (i.e., corresponding to a homogenous forest stand had better explanatory power than those based on a 200-m radius (i.e., including also parts of adjacent stands. Bird abundance and species richness were best explained by the ALS variables “maximum vegetation height” and “vegetation cover between 0.5 and 3 m” (both positive. Flying beetle abundance and species richness, as well as epigaeic (i.e., ground-living beetle richness were best explained by a model including the ALS variable “maximum vegetation height” (positive and the satellite-derived variable “proportion of pine” (negative. Epigaeic beetle abundance was best explained by “maximum vegetation height” at 50 m (positive and “stem volume” at 200 m (positive. Our results show that forest estimates derived from satellite images and ALS data provide complementary information for explaining forest biodiversity patterns. We conclude that these types of remote sensing data may provide an efficient tool for conservation planning in managed boreal landscapes.

  3. Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon.

    Science.gov (United States)

    Ledesma, José L J; Futter, Martyn N; Laudon, Hjalmar; Evans, Christopher D; Köhler, Stephan J

    2016-08-01

    In boreal forest catchments, solute transfer to streams is controlled by hydrological and biogeochemical processes occurring in the riparian zone (RZ). However, RZs are spatially heterogeneous and information about solute chemistry is typically limited. This is problematic when making inferences about stream chemistry. Hypothetically, the strength of links between riparian and stream chemistry is time-scale dependent. Using a ten-year (2003-2012) dataset from a northern Swedish catchment, we evaluated the suitability of RZ data to infer stream dynamics at different time scales. We focus on the role of the RZ versus upslope soils in controlling sulfate (SO4(2)(-)) and dissolved organic carbon (DOC). A priori, declines in acid deposition and redox-mediated SO4(2)(-) pulses control sulfur (S) fluxes and pool dynamics, which in turn affect dissolved organic carbon (DOC). We found that the catchment is currently a net source of S, presumably due to release of the S pool accumulated during the acidification period. In both, RZ and stream, SO4(2-) concentrations are declining over time, whereas DOC is increasing. No temporal trends in SO4(2-) and DOC were observed in upslope mineral soils. SO4(2-) explained the variation of DOC in stream and RZ, but not in upslope mineral soil. Moreover, as SO4(2-) decreased with time, temporal variability of DOC increased. These observations indicate that: (1) SO4(2-) is still an important driver of DOC trends in boreal catchments and (2) RZ processes control stream SO4(2-) and subsequently DOC independently of upslope soils. These phenomena are likely occurring in many regions recovering from acidification. Because water flows through a heterogeneous mosaic of RZs before entering the stream, upscaling information from limited RZ data to the catchment level is problematic at short-time scales. However, for long-term trends and annual dynamics, the same data can provide reasonable representations of riparian processes and support

  4. Proceedings of a symposium on the reclamation and restoration of boreal peatland and forest ecosystems : towards a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, J. [Natural Resources Canada, Ottawa, ON (Canada); Foote, L.; Moran, S. [Alberta Univ., Edmonton, AB (Canada); Nadeau, L. [Northern Alberta Inst. of Technology, Edmonton, AB (Canada); Rochefort, L. [Laval Univ., Quebec City, PQ (Canada); Short, P. [Canadian Sphagnum Peat Moss Association, St. Albert, AB (Canada); Vitt, D.H. [Southern Illinois Univ., Carbondale, IL (United States); Wieder, K. [Villanova Univ., Villanova, PA (United States)] (comps.)

    2010-07-01

    Disturbances in Canada's boreal forest occur in both upland forests and in peatlands. These disturbances originate from both anthropogenic and natural causes, particularly fire. Techniques for the restoration, as well as the reclamation of peatlands and forests impacted by agriculture, urban development, or oil and gas activities, have made significant advancement over the last decade and these techniques need to be incorporated into the regulation and management of peatland and forest ecosystems. This symposium addressed the issue of how this research is affected by climate change. The sessions were entitled: (1) reclaiming forest and forest soils impacted by oil and gas production, (2) influence of oil sands development on forest communities, (3) understanding the importance of peatland and forest carbon in the twenty-first century, (4) reclaiming wetlands on mined oil sands tailing, (5) disturbance in peatlands and its relevance to minimizing disturbance footprints and informing reclamation efforts, and (6) restoration and management of harvested peatlands. The symposium featured 37 presentations, of which 6 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  5. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?

    Science.gov (United States)

    Launiainen, Samuli; Katul, Gabriel G; Kolari, Pasi; Lindroth, Anders; Lohila, Annalea; Aurela, Mika; Varlagin, Andrej; Grelle, Achim; Vesala, Timo

    2016-12-01

    Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs ), water- and light-use efficiency and surface-atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil-vegetation-atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO2 , H2 O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably 'conservative' over the studied LAI range 0.5-7.0 m(2) m(-2) . Both ET and Gs experienced a minimum in the LAI range 1-2 m(2) m(-2) caused by opposing nonproportional response of stomatally controlled transpiration and 'free' forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m(2) m(-2) ) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests.

  6. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization.

    Science.gov (United States)

    Coucheney, Elsa; Strömgren, Monika; Lerch, Thomas Z; Herrmann, Anke M

    2013-12-01

    Boreal ecosystems store one-third of global soil organic carbon (SOC) and are particularly sensitive to climate warming and higher nutrient inputs. Thus, a better description of how forest managements such as nutrient fertilization impact soil carbon (C) and its temperature sensitivity is needed to better predict feedbacks between C cycling and climate. The temperature sensitivity of in situ soil C respiration was investigated in a boreal forest, which has received long-term nutrient fertilization (22 years), and compared with the temperature sensitivity of C mineralization measured in the laboratory. We found that the fertilization treatment increased both the response of soil in situ CO2 effluxes to a warming treatment and the temperature sensitivity of C mineralization measured in the laboratory (Q10). These results suggested that soil C may be more sensitive to an increase in temperature in long-term fertilized in comparison with nutrient poor boreal ecosystems. Furthermore, the fertilization treatment modified the SOC content and the microbial community composition, but we found no direct relationship between either SOC or microbial changes and the temperature sensitivity of C mineralization. However, the relation between the soil C:N ratio and the fungal/bacterial ratio was changed in the combined warmed and fertilized treatment compared with the other treatments, which suggest that strong interaction mechanisms may occur between nutrient input and warming in boreal soils. Further research is needed to unravel into more details in how far soil organic matter and microbial community composition changes are responsible for the change in the temperature sensitivity of soil C under increasing mineral N inputs. Such research would help to take into account the effect of fertilization managements on soil C storage in C cycling numerical models.

  7. Carbon fractions and stocks in organic layers in boreal forest soils. Impacts of climatic and nutritional conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hilli, S.

    2011-07-01

    The SOM in boreal forests contains non-living heterogeneous components resulting from microbial and chemical transformations of organic debris from plant litter. The major components in the plant biomass all decompose at different rates and therefore, contribute variably to the stable storages of soil C. The aims of the current thesis were (1) to explore how climate, soil fertility and initial litter quality affect the decomposition rate of litter, (2) to study how the different carbon fractions found in the plant litter relate to the quality and quantity of SOM in forest soils, (3) to determine whether the recalcitrant fraction of litter is derived from lignin and other polyphenols or from lipophilic compounds and carbohydrates, and (4) to determine whether the litter originating from different plant growth forms affects SOM formation in a similar way. The study was conducted in six north boreal and six south boreal study sites, half of which were mesic and half were sub-xeric. The overall initial litter quality and decomposition rate of carbon fractions did not differ between the two fertility levels and climate regimes. Litter with high initial water-soluble extractives (WSE) and nitrogen (N) decomposed at a faster rate than litter with lower initial WSE and N concentration irrespective of the soil fertility or climate conditions. Although decomposition rate varies among litter types, decomposition rate cannot explain differences in SOM quality or quantity between the northern and southern boreal forests. The organic matter accumulation and relative proportion of acid-insoluble residue (AIR) in SOM was higher in south boreal sites both in sub-xeric and mesic sites. Detailed characterization of the AIR fraction using pyrolysis-GC demonstrated that in the litter layer the concentration of AIR contains lignin and other insoluble polyphenols, but in the F and H layers, lignin-derived and chemically modified polyphenolics and decomposition products of resin acids

  8. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests.

    Science.gov (United States)

    Thom, Dominik; Seidl, Rupert

    2016-08-01

    In many parts of the world forest disturbance regimes have intensified recently, and future climatic changes are expected to amplify this development further in the coming decades. These changes are increasingly challenging the main objectives of forest ecosystem management, which are to provide ecosystem services sustainably to society and maintain the biological diversity of forests. Yet a comprehensive understanding of how disturbances affect these primary goals of ecosystem management is still lacking. We conducted a global literature review on the impact of three of the most important disturbance agents (fire, wind, and bark beetles) on 13 different ecosystem services and three indicators of biodiversity in forests of the boreal, cool- and warm-temperate biomes. Our objectives were to (i) synthesize the effect of natural disturbances on a wide range of possible objectives of forest management, and (ii) investigate standardized effect sizes of disturbance for selected indicators via a quantitative meta-analysis. We screened a total of 1958 disturbance studies published between 1981 and 2013, and reviewed 478 in detail. We first investigated the overall effect of disturbances on individual ecosystem services and indicators of biodiversity by means of independence tests, and subsequently examined the effect size of disturbances on indicators of carbon storage and biodiversity by means of regression analysis. Additionally, we investigated the effect of commonly used approaches of disturbance management, i.e. salvage logging and prescribed burning. We found that disturbance impacts on ecosystem services are generally negative, an effect that was supported for all categories of ecosystem services, i.e. supporting, provisioning, regulating, and cultural services (P < 0.001). Indicators of biodiversity, i.e. species richness, habitat quality and diversity indices, on the other hand were found to be influenced positively by disturbance (P < 0.001). Our analyses thus

  9. Effect of granulated wood ash fertilization on N2O emissions in boreal peat forests

    Science.gov (United States)

    Liimatainen, Maarit; Martikainen, Pertti J.; Hytönen, Jyrki; Maljanen, Marja

    2016-04-01

    explain this decrease in N2O production. Despite of the granulation process some nutrients (e.g. K, Na, B, S) still leach quickly from the ash in form of ions, which was observed as an increased electrical conductivity. Granulated ash contains a high concentration of sulfates and we created in the laboratory experiments with the addition of K2SO4 or (NH4)2SO4 similar decrease in N2O production as observed with the addition of granulated wood ash. Our results indicate that quickly leaching ions inhibit nitrification in peat. In the field experiments the same phenomena was not observed, probably due to leaching of the nutrients (ions) deeper into the soil and due to the competition of vegetation which outcompetes microbes for available nutrients. In conclusion, the use of granulated wood ash does not increase N2O emissions in boreal peat forests.

  10. Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources

    Directory of Open Access Journals (Sweden)

    E. C. Browne

    2013-05-01

    Full Text Available In contrast with the textbook view of remote chemistry where HNO3 formation is the primary sink of nitrogen oxides, recent theoretical analyses show that formation of RONO2 (ΣANs from isoprene and other terpene precursors is the primary net chemical loss of nitrogen oxides over the remote continents where the concentration of nitrogen oxides is low. This then increases the prominence of questions concerning the chemical lifetime and ultimate fate of ΣANs. We present observations of nitrogen oxides and organic molecules collected over the Canadian boreal forest during the summer which show that ΣANs account for ~20% of total oxidized nitrogen and that their instantaneous production rate is larger than that of HNO3. This confirms the primary role of reactions producing ΣANs as a control over the lifetime of NOx (NOx = NO + NO2 in remote, continental environments. However, HNO3 is generally present in larger concentrations than ΣANs indicating that the atmospheric lifetime of ΣANs is shorter than the HNO3 lifetime. We investigate a range of proposed loss mechanisms that would explain the inferred lifetime of ΣANs finding that in combination with deposition, two processes are consistent with the observations: (1 rapid ozonolysis of isoprene nitrates where at least ~40% of the ozonolysis products release NOx from the carbon backbone and/or (2 hydrolysis of particulate organic nitrates with HNO3 as a product. Implications of these ideas for our understanding of NOx and NOy budget in remote and rural locations are discussed.

  11. Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2013-01-01

    Full Text Available In contrast with the textbook view of remote chemistry where HNO3 formation is the primary sink of nitrogen oxides, recent theoretical analyses show that formation of RONO2 (ΣANs from isoprene and other terpene precursors is the primary net chemical loss of nitrogen oxides over the remote continents where the concentration of nitrogen oxides is low. This then increases the prominence of questions concerning the chemical lifetime and ultimate fate of ΣANs. We present observations of nitrogen oxides and organic molecules collected over the Canadian boreal forest during the summer that show that ΣANs account for ~ 20% of total oxidized nitrogen and that their instantaneous production rate is larger than that of HNO3. This confirms the primary role of reactions producing ΣANs as a control over the lifetime of NOx (NOx = NO + NO2 in remote, continental environments. However, HNO3 is generally present in larger concentrations than ΣANs indicating that the atmospheric lifetime of ΣANs is shorter than the HNO3 lifetime. We investigate a range of proposed loss mechanisms that would explain the inferred lifetime of ΣANs finding that in combination with deposition, two processes are consistent with the observations: (1 rapid ozonolysis of isoprene nitrates where at least ~ 40% of the ozonolysis products release NOx from the carbon backbone and/or (2 hydrolysis of particulate organic nitrates with HNO3 as a product. Implications of these ideas for our understanding of NOx and NOy budget in remote and rural locations are discussed.

  12. Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization

    Science.gov (United States)

    Yan, Chao; Nie, Wei; Äijälä, Mikko; Rissanen, Matti P.; Canagaratna, Manjula R.; Massoli, Paola; Junninen, Heikki; Jokinen, Tuija; Sarnela, Nina; Häme, Silja A. K.; Schobesberger, Siegfried; Canonaco, Francesco; Yao, Lei; Prévôt, André S. H.; Petäjä, Tuukka; Kulmala, Markku; Sipilä, Mikko; Worsnop, Douglas R.; Ehn, Mikael

    2016-10-01

    Highly oxidized multifunctional compounds (HOMs) have been demonstrated to be important for atmospheric secondary organic aerosols (SOA) and new-particle formation (NPF), yet it remains unclear which the main atmospheric HOM formation pathways are. In this study, a nitrate-ion-based chemical ionization atmospheric-pressure-interface time-of-flight mass spectrometer (CI-APi-TOF) was deployed to measure HOMs in the boreal forest in Hyytiälä, southern Finland. Positive matrix factorization (PMF) was applied to separate the detected HOM species into several factors, relating these "factors" to plausible formation pathways. PMF was performed with a revised error estimation derived from laboratory data, which agrees well with an estimate based on ambient data. Three factors explained the majority (> 95 %) of the data variation, but the optimal solution found six factors, including two nighttime factors, three daytime factors, and a transport factor. One nighttime factor is almost identical to laboratory spectra generated from monoterpene ozonolysis, while the second likely represents monoterpene oxidation initiated by NO3. The exact chemical processes forming the different daytime factors remain unclear, but they all have clearly distinct diurnal profiles, very likely related to monoterpene oxidation with a strong influence from NO, presumably through its effect on peroxy radical (RO2) chemistry. Apart from these five "local" factors, the sixth factor is interpreted as a transport related factor. These findings improve our understanding of HOM production by confirming current knowledge and inspiring future research directions and provide new perspectives on using factorization methods to understand short-lived atmospheric species.

  13. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kathrin eRousk

    2013-06-01

    Full Text Available The biological fixation of atmospheric nitrogen (N is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50 % to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation.

  14. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems.

    Science.gov (United States)

    Rousk, Kathrin; Jones, Davey L; Deluca, Thomas H

    2013-01-01

    The biological fixation of atmospheric nitrogen (N) is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50% to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation.

  15. Analysis of the energy balance closure over a FLUXNET boreal forest in Finland

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez

    2010-08-01

    Full Text Available The imbalance in the surface energy budget, when using eddy-covariance techniques to measure turbulent fluxes, is still an unresolved problem. Important progresses have been reported in recent years identifying potential reasons for this lack of energy balance closure. In this paper we focus on the data collected in a FLUXNET boreal forest site in Sodankylä, Finland. Using one month half-hourly data, an average Energy Balance Ratio (EBR of 0.72 is obtained. The inclusion of the heat storage terms in the energy budget yields an improvement of about 6% in the total closure. The sensitivity of the energy balance closure to the turbulence intensity is analysed in terms of the friction velocity, and atmospheric stability/instability conditions. Significant better closure is obtained for high values of the friction velocity and unstable conditions. The mismatch in variable footprints for different fluxes is checked by analysing the dependence of the closure on wind direction. The inhomogeneities of the emplacement surrounding the flux tower induce a critical decrease in the EBR of up to 30% for specific wind directions. After filtering all unfavourable conditions, EBR=0.94. This is a reasonable good result for the energy balance closure. However there is still a 6% of the available energy unaccounted. Part of this remaining imbalance could be justified as the impossibility of the 30 min averaging time to capture the low frequency flux contributions, since the closure is improved by a 5% when the averaging time is expanded to 2 h.

  16. Analysis of the energy balance closure over a FLUXNET boreal forest in Finland

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez

    2010-05-01

    Full Text Available The imbalance in the surface energy budget, when using eddy-covariance techniques to measure turbulent fluxes, is still an unresolved problem. Important progresses have been reported in recent years identifying potential reasons for this lack of energy balance closure. In this paper we focus on the data collected in a FLUXNET boreal forest site in Sodankylä, Finland. Using one month half-hourly data, an average Energy Balance Ratio (EBR of 0.72 is obtained. The inclusion of the heat storage terms in the energy budget yields an improvement of about 6% in the total closure. The sensitivity of the energy balance closure to the turbulence intensity is analysed in terms of the friction velocity, and atmospheric stability/instability conditions. Significant better closure is obtained for high values of the friction velocity and unstable conditions. The mismatch in variable footprints for different fluxes is checked by analysing the dependence of the closure on wind direction. The inhomogeneities of the emplacement surrounding the flux tower induce a critical decrease in the EBR of up to 30% for specific wind directions. After filtering all unfavourable conditions, EBR=0.94. This is a reasonable good result for the energy balance closure. However there is still a 6% of the available energy unaccounted. Part of this remaining imbalance could be justified as the impossibility of the 30 min averaging time to capture the low frequency flux contributions, since the closure is improved by a 5% when the averaging time is expanded to 2 h.

  17. Tethered balloon measurements of biogenic volatile organic compounds at a Boreal forest site

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2004-01-01

    Full Text Available Measurements of biogenic volatile organic compounds (VOCs were performed at Hyytiälä, a Boreal forest site in Southern Finland as part of the OSOA (origin and formation of secondary organic aerosol project in August 2001. At this site, frequent formation of new particles has been observed and the role of biogenic VOCs in this process is still unclear. Tethered balloons served as platforms to collect VOC samples within the planetary boundary layer at heights up to 1.2 km above ground during daytime. Mean mixed layer concentrations of total monoterpenes varied between 10 and 170 pptv, with a-pinene, limonene and D3-carene as major compounds, isoprene was detected at levels of 2-35 pptv. A mixed layer gradient technique and a budget approach are applied to derive surface fluxes representative for areas of tens to hundreds of square kilometres. Effects of spatial heterogeneity in surface emissions are examined with a footprint analysis. Depending on the source area considered, mean afternoon emissions of the sum of terpenes range between 180 and 300 mg m-2 h-1 for the period of 2-12 August 2001. Surface fluxes close to Hyytiälä were higher than the regional average, and agree well with mean emissions predicted by a biogenic VOC emission model. Total rates of monoterpene oxidation were calculated with a photochemical model. The rates did not correlate with the occurrence of new particle formation, but the ozone pathway was of more importance on days with particle formation. Condensable vapour production from the oxidation of monoterpenes throughout the mixed layer can only account for a fraction of the increase in aerosol mass observed at the surface.

  18. Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources

    Science.gov (United States)

    Browne, E. C.; Min, K.-E.; Wooldridge, P. J.; Apel, E.; Blake, D. R.; Brune, W. H.; Cantrell, C. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Weinheimer, A. J.; Wennberg, P. O.; Wisthaler, A.; Cohen, R. C.

    2013-05-01

    In contrast with the textbook view of remote chemistry where HNO3 formation is the primary sink of nitrogen oxides, recent theoretical analyses show that formation of RONO2 (ΣANs) from isoprene and other terpene precursors is the primary net chemical loss of nitrogen oxides over the remote continents where the concentration of nitrogen oxides is low. This then increases the prominence of questions concerning the chemical lifetime and ultimate fate of ΣANs. We present observations of nitrogen oxides and organic molecules collected over the Canadian boreal forest during the summer which show that ΣANs account for ~20% of total oxidized nitrogen and that their instantaneous production rate is larger than that of HNO3. This confirms the primary role of reactions producing ΣANs as a control over the lifetime of NOx (NOx = NO + NO2) in remote, continental environments. However, HNO3 is generally present in larger concentrations than ΣANs indicating that the atmospheric lifetime of ΣANs is shorter than the HNO3 lifetime. We investigate a range of proposed loss mechanisms that would explain the inferred lifetime of ΣANs finding that in combination with deposition, two processes are consistent with the observations: (1) rapid ozonolysis of isoprene nitrates where at least ~40% of the ozonolysis products release NOx from the carbon backbone and/or (2) hydrolysis of particulate organic nitrates with HNO3 as a product. Implications of these ideas for our understanding of NOx and NOy budget in remote and rural locations are discussed.

  19. Impacts of Boreal Forest Fires and Post-Fire Succession on Energy Budgets and Climate in the Community Earth System Model

    Science.gov (United States)

    Rogers, B. M.; Randerson, J. T.; Bonan, G. B.

    2011-12-01

    Vegetation compositions of boreal forests are determined largely by recovery patterns after large-scale disturbances, the most notable of which is wildfire. Forest compositions exert large controls on regional energy and greenhouse gas budgets by affecting surface albedo, net radiation, turbulent energy fluxes, and carbon stocks. Impacts of boreal forest fires on climate are therefore products of direct fire effects, including charred surfaces and emitted aerosols and greenhouse gasses, and post-fire vegetation succession, which affects carbon and energy exchange for many decades after the initial disturbance. Climate changes are expected to be greatest at high latitudes, leading many to project increases in boreal forest fires. While numerous studies have documented the effects of post-fire landscape on energy and gas budgets in boreal forests, to date no continental analysis using a coupled model has been performed. In this study we quantified the effects of boreal forest fires and post-fire succession on regional and global climate using model experiments in the Community Earth System Model. We used 20th century climate data and MODIS vegetation continuous fields and land cover classes to identify boreal forests across North America and Eurasia. Historical fire return intervals were derived from a regression approach utilizing the Canadian and Alaskan Large Fire Databases, the Global Fire Emissions Database v3, and land cover and climate data. Succession trajectories were derived from the literature and MODIS land cover over known fire scars. Major improvements in model-data comparisons of long-term energy budgets were observed by prescribing post-fire vegetation succession. Global simulations using historical and future burn area scenarios highlight the potential impacts on climate from changing fire regimes and provide motivation for including vegetation succession in coupled simulations.

  20. Epigeous fruiting bodies of ectomycorrhizal fungi as indicators of soil fertility and associated nitrogen status of boreal forests.

    Science.gov (United States)

    Kranabetter, J M; Friesen, J; Gamiet, S; Kroeger, P

    2009-10-01

    Soil fertility and associated nitrogen (N) status was a key ecosystem attribute, and surveys of ectomycorrhizal fungal (EMF) communities via epigeous fruiting bodies could provide an effective biotic indicator of forest soil productivity. We explored the utility of aboveground EMF communities in this regard by surveying sporocarps over a 3-year period from contrasting plant associations of southern old-growth boreal forests of British Columbia (Canada). Cumulative richness ranged from 39 to 89 EMF species per plot (0.15 ha) and followed a skewed parabolic correlation with foliar N concentrations and soil N availability. EMF species composition was consistently distinct in ordinations and strongly correlated to the increasing rates of N mineralization aligned with soil productivity. Approximately 40 EMF species were specialists, as they collectively indicated oligotrophic, mesotrophic, and eutrophic nutrient regimes, while the remaining species were categorized as broadly tolerant (distributed over 100% of the N gradient), partially intolerant (approximately 70%), or satellites (rare). The functional organization of EMF communities reflected by distribution classes could help define the ecological integrity of forests, which was characterized in this boreal landscape by an average allotment of 20 broadly tolerant, 25 partially intolerant, 15 specialist, and ten satellite species per plot. Epigeous fruiting bodies provided a disparate yet complementary view to the belowground assessment of EMF communities that was valuable in identifying indicators for ecosystem monitoring.

  1. Spectral reflectance patterns and seasonal dynamics of common understory types in three mature hemi-boreal forests

    Science.gov (United States)

    Nikopensius, Maris; Pisek, Jan; Raabe, Kairi

    2015-12-01

    Due to the growing demand on more accurate prediction of biophysical properties (e.g., leaf area index) or carbon balance models based on remotely sensed data, the understory effect needs to be separated from the overstory. Reflectance models can provide possibility to model and retrieve understory reflectance over large scales, but ground truth data is needed to validate such models and algorithms. In this study, we documented the seasonal variation (April-September) and spectral changes occurring in understory layers of a typical European hemi-boreal forest. The understory composition was recorded and its spectra measured with an ASD FieldSpec Hand-Held UV/VNIR Spectroradiometer eight times at four site types during the growing period (from May to September) in 2013. The collected dataset presented within this study would be of much use to improve and validate algorithms or models for extracting spectral properties of understory from remote sensing data. It can be also further used as a valuable input in radiative transfer simulations that are used to quantify the roles of forest tree layer and understory components in forming a seasonal reflectance course of a hemi-boreal forest, and the upcoming phases of the RAdiation Model Intercomparison (RAMI) experiment.

  2. Nonlinear response of canopy developmental rate to temperature in temperate and boreal forest in the Northern Hemisphere

    Science.gov (United States)

    Park, H.; Ho, C. H.; Jeong, S. J.

    2015-12-01

    Understanding the changes in vegetation annual cycle is crucial for improving our knowledge about various interactions between the terrestrial ecosystem and climate. However, our understanding about the vegetation seasonality is mostly confined to some phenological timings such as spring emergence and fall senescence. This study assessed large-scale variations in the vegetation green-up rate (VGrate), which indicates the rate of canopy development from winter dormancy to summer maturity, and its relationship over Northern Hemisphere temperate and boreal forests for 1982-2011. VGrate and local temperature changes show a positive correlation over the region of interest, and it indicates that a temperature increase during green-up period leads to faster canopy development. The responses of VGrate tend to be more sensitive to positive temperature anomalies than negative anomalies despite same magnitude of the temperature changes. These nonlinear responsiveness of VGrate to local temperature change is clearly observed in deciduous broadleaf forests over Eurasia compared to woodlands over North America. These results suggest that anomalous warming in green-up period would make canopy developments faster over wide temperate and boreal forest areas.

  3. Seasonal and inter annual variability of energy exchange above a boreal Scots pine forest

    Directory of Open Access Journals (Sweden)

    S. Launiainen

    2010-08-01

    Full Text Available Twelve-years of eddy-covariance measurements conducted above a boreal Scots pine forest in Hyytiälä, Southern Finland, were analyzed to assess the seasonal and inter-annual variability of surface conductance (gs and energy partitioning. The gs had distinct annual course, driven by the seasonal cycle of the Scots pine. Low gs (2–3 mm s−1 in April restricted transpiration in springtime and caused the sensible heat flux to peak in May–June while evapotranspiration takes over later in July–August when gs is typically 5–7 mm s−1. Hence, during normal years Bowen ratio decreases from 4–6 in April to 0.7–0.9 in August. Sensitivity of gs to ambient vapor pressure deficit (D was relatively constant but the reference value at D=1 kPa varied seasonally and between years. Only two drought episodes when volumetric soil moisture content in upper mineral soil decreased below 0.15 m3 m−3 occurred during the period. Below this threshold value transpiration was strongly reduced, which promoted sensible heat exchange increasing Bowen ratio to 3–4. Annual evapotranspiration varied between 218 and 361 mm and accounted between 50% and 90% of equilibrium evaporation. The forest floor contributed between 16 and 25% of the total evapotranspiration on annual scale. The fraction stayed similar over the observed range of environmental conditions including drought. The inter-annual variability of evapotranspiration could not be linked to any mean climate parameter while the summertime sensible heat flux and net radiation were well explained by global radiation. The energy balance closure varied annually between 0.66 and 0.95 and had a distinct seasonal cycle with worse closure in spring when large proportion of available energy is partitioned into sensible heat.

  4. Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest

    Directory of Open Access Journals (Sweden)

    S. Launiainen

    2010-12-01

    Full Text Available Twelve-years of eddy-covariance measurements conducted above a boreal Scots pine forest in Hyytiälä, Southern Finland, were analyzed to assess the seasonal and inter-annual variability of surface conductance (gs and energy partitioning. The gs had distinct annual course, driven by the seasonal cycle of the Scots pine. Low gs (2–3 mm s−1 in April cause the sensible heat flux to peak in May–June while evapotranspiration takes over later in July–August when gs is typically 5–7 mm s−1. Hence, during normal years Bowen ratio decreases from 4–6 in April to 0.7–0.9 in August. Sensitivity of gs to ambient vapor pressure deficit (D was relatively constant but the reference value at D = 1 kPa varied seasonally and between years. Only two drought episodes when volumetric soil moisture content in upper mineral soil decreased below 0.15 m3 m−3 occurred during the period. Below this threshold value, transpiration was strongly reduced, which promoted sensible heat exchange increasing Bowen ratio to 3–4. Annual evapotranspiration varied between 218 and 361 mm and accounted between 50% and 90% of equilibrium evaporation. The forest floor contributed between 16 and 25% of the total evapotranspiration on annual scale. The fraction stayed similar over the observed range of environmental conditions including drought periods. The inter-annual variability of evapotranspiration could not be linked to any mean climate variable while the summertime sensible heat flux and net radiation were well explained by global radiation. The energy balance closure varied annually between 0.66 and 0.95 and had a distinct seasonal cycle with worse closure in spring when a large proportion of available energy is partitioned into sensible heat.

  5. Constraining ecosystem model with adaptive Metropolis algorithm using boreal forest site eddy covariance measurements

    Science.gov (United States)

    Mäkelä, Jarmo; Susiluoto, Jouni; Markkanen, Tiina; Aurela, Mika; Järvinen, Heikki; Mammarella, Ivan; Hagemann, Stefan; Aalto, Tuula

    2016-12-01

    We examined parameter optimisation in the JSBACH (Kaminski et al., 2013; Knorr and Kattge, 2005; Reick et al., 2013) ecosystem model, applied to two boreal forest sites (Hyytiälä and Sodankylä) in Finland. We identified and tested key parameters in soil hydrology and forest water and carbon-exchange-related formulations, and optimised them using the adaptive Metropolis (AM) algorithm for Hyytiälä with a 5-year calibration period (2000-2004) followed by a 4-year validation period (2005-2008). Sodankylä acted as an independent validation site, where optimisations were not made. The tuning provided estimates for full distribution of possible parameters, along with information about correlation, sensitivity and identifiability. Some parameters were correlated with each other due to a phenomenological connection between carbon uptake and water stress or other connections due to the set-up of the model formulations. The latter holds especially for vegetation phenology parameters. The least identifiable parameters include phenology parameters, parameters connecting relative humidity and soil dryness, and the field capacity of the skin reservoir. These soil parameters were masked by the large contribution from vegetation transpiration. In addition to leaf area index and the maximum carboxylation rate, the most effective parameters adjusting the gross primary production (GPP) and evapotranspiration (ET) fluxes in seasonal tuning were related to soil wilting point, drainage and moisture stress imposed on vegetation. For daily and half-hourly tunings the most important parameters were the ratio of leaf internal CO2 concentration to external CO2 and the parameter connecting relative humidity and soil dryness. Effectively the seasonal tuning transferred water from soil moisture into ET, and daily and half-hourly tunings reversed this process. The seasonal tuning improved the month-to-month development of GPP and ET, and produced the most stable estimates of water use

  6. Impacts of Thermokarst Formation and Wildfire on Boreal Forest Carbon Cycling

    Science.gov (United States)

    Fisher, J. P.; Estop-Aragones, C.; Thierry, A.; Hartley, I. P.; Murton, J.; Charman, D.; Williams, M.; Phoenix, G. K.

    2014-12-01

    At the global scale permafrost temperatures are increasing, leading to a thickening of the active layer and an increase in the amount of previously immobilised C exposed to microbial decay and subsequent release to the atmosphere. Against the backdrop of this overall trend, perturbations to permafrost systems caused by wildfires or thermokarst driven wetland formation can cause dramatic shifts in the C exchange of these ecosystems as a result of the changes in plant communities and soil thermal regimes they cause. These dynamic components of permafrost landscapes are often neglected in coupled climate-C models. However, a clear understanding of the impact of these perturbations on C cycling is crucial if we are to accurately predict future permafrost feedbacks to climate change. This is particularly pertinent given that the frequency of both forest fires and thermokarst formation is likely to increase with future climate warming. In order to assess the impact of these perturbations on C cycling we established paired burned and unburned spruce forest and paired peat plateau and thaw feature field sites near Whitehorse, YT and Yellowknife, NT within the boreal region of Canada. At each site tree photosynthetic biomass was quantified using DBH based allometric scaling equations. A combination of percentage cover surveys, biomass harvests, and leaf area determination were used to calculate understory and wetland photosynthetic biomass. Measurements of spruce and understory photosynthesis and plant and soil respiration were made using specialised acrylic chambers and an IRGA. Combining these data has allowed us to determine the impact of thermokarst formation and wildfire on C exchange with the atmosphere. This has allowed us to assess whether the dramatic increase in plant productivity between peat plateau and wetland habitats has the potential to offset thermokarst associated C losses. We have also gained an understanding of whether increases in light availability for

  7. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

    Science.gov (United States)

    Kontkanen, Jenni; Paasonen, Pauli; Aalto, Juho; Bäck, Jaana; Rantala, Pekka; Petäjä, Tuukka; Kulmala, Markku

    2016-10-01

    The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006-2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

  8. Understanding the Effect of Land Cover Classification on Model Estimates of Regional Carbon Cycling in the Boreal Forest Biome

    Science.gov (United States)

    Kimball, John; Kang, Sinkyu

    2003-01-01

    The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.

  9. The carbon balance of forest soils: detectability of changes in soil carbon stocks in temperate and Boreal forests.

    Science.gov (United States)

    Conen, Frauz; Zerva, Argyro; Arrouays, Dominique; Jolivet, Claude; Jarvis, Paul G; Grace, John; Mencuccini, Maurizio

    2005-01-01

    Estimating soil carbon content as the product of mean carbon concentration and bulk density can result in considerable overestimation. Carbon concentration and soil mass need to be measured on the same sample and carbon contents calculated for each individual sample before averaging. The effect of this bias is likely to be smaller (but still greater than zero) when the primary objective is to determine stock changes over time. Variance and mean carbon content are significantly and positively related to each other, although some sites showed much higher variability than predicted by this relationship, as a likely consequence of their particular site history, forest management, and micro-topography. Because of the proportionality between mean and variance, the number of samples required to detect a fixed change in soil carbon stocks varied directly with the site mean carbon content from less than 10 to several thousands across the range of carbon stocks normally encountered in temperate and Boreal forests. This raises important questions about how to derive an optimal sampling strategy across such a varied range of conditions so as to achieve the aims of the Kyoto Protocol. Overall, on carbon-poor forest sites with little or no disturbance to the soil profile, it is possible to detect changes in total soil organic carbon over time of the order of 0.5 kg (C) m(-2) with manageable sample sizes even using simple random sampling (i.e., about 50 samples per sampling point). More efficient strategies will reveal even smaller differences. On disturbed forest sites (ploughed, windthrow) this is no longer possible (required sample sizes are much larger than 100). Soils developed on coarse aeolian sediments (sand dunes), or where buried logs or harvest residues of the previous rotation are present, can also exhibit large spatial variability in soil carbon. Generally, carbon-rich soils will always require larger numbers of samples. On these sites, simple random sampling is

  10. Evaluating Biosphere Model Estimates of the Start of the Vegetation Active Season in Boreal Forests by Satellite Observations

    Directory of Open Access Journals (Sweden)

    Kristin Böttcher

    2016-07-01

    Full Text Available The objective of this study was to assess the performance of the simulated start of the photosynthetically active season by a large-scale biosphere model in boreal forests in Finland with remote sensing observations. The start of season for two forest types, evergreen needle- and deciduous broad-leaf, was obtained for the period 2003–2011 from regional JSBACH (Jena Scheme for Biosphere–Atmosphere Hamburg runs, driven with climate variables from a regional climate model. The satellite-derived start of season was determined from daily Moderate Resolution Imaging Spectrometer (MODIS time series of Fractional Snow Cover and the Normalized Difference Water Index by applying methods that were targeted to the two forest types. The accuracy of the satellite-derived start of season in deciduous forest was assessed with bud break observations of birch and a root mean square error of seven days was obtained. The evaluation of JSBACH modelled start of season dates with satellite observations revealed high spatial correspondence. The bias was less than five days for both forest types but showed regional differences that need further consideration. The agreement with satellite observations was slightly better for the evergreen than for the deciduous forest. Nonetheless, comparison with gross primary production (GPP determined from CO2 flux measurements at two eddy covariance sites in evergreen forest revealed that the JSBACH-simulated GPP was higher in early spring and led to too-early simulated start of season dates. Photosynthetic activity recovers differently in evergreen and deciduous forests. While for the deciduous forest calibration of phenology alone could improve the performance of JSBACH, for the evergreen forest, changes such as seasonality of temperature response, would need to be introduced to the photosynthetic capacity to improve the temporal development of gross primary production.

  11. Paleodata-model integration reveals uncertain boreal forest carbon balance due to rapid recent fire regime change

    Science.gov (United States)

    Kelly, R.; Genet, H.; McGuire, D.; Hu, F.

    2013-12-01

    Climate warming is expected to increase the frequency and severity of natural fires in the boreal forest biome. Boreal forests represent >30% of terrestrial carbon (C) stocks, and fire is a key component of the C cycle in these ecosystems. However, predictions of fire-regime change face substantial uncertainty, largely because complex fire-climate-vegetation interactions are poorly characterized in brief observational records. Furthermore, previous studies suggest that model projections of future C dynamics are sensitive to assumptions about the prehistoric fire regime. Paleofire reconstructions offer valuable insights to address these limitations. We collected 14 lake-sediment cores from the Yukon Flats, Alaska to elucidate patterns of long-term environmental change. We then converted fire-regime reconstructions from these data to input drivers for the Dynamic Organic Soils version of the Terrestrial Ecosystem Model (DOS-TEM). Combined with simulated paleoclimate from an Earth System Model and CO2 data from ice core analysis, these 'paleo-forcing' data allowed us to model past changes in ecosystem C storage in our study area to (1) assess the relative importance of climate, atmospheric CO2 concentration, and fire in driving C dynamics of the past millennium, and (2) evaluate the effect of assumptions about prehistoric fire regime on predictions of current and future boreal-forest C balance. Fire-regime variations were the dominant control on simulated C storage, producing fluctuations of ~3 kg C/m2 (~25% of total ecosystem C) on centennial timescales. By comparison, climate and CO2 concentration played minor roles. Fire frequency shifts were particularly influential, suggesting that the role of fire in dictating stand age distribution at the landscape scale is of paramount importance to net C dynamics. That shifts in fire-regime were responsible for large and rapid losses of C in the past emphasizes the importance of incorporating fire into methodologies that

  12. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, France

    2000-07-01

    Frost heaving can be a leading cause of tree seedling mortality in many places in the boreal forest of Northern Sweden. The aim of this investigation was to improve our understanding of frost heaving of planted tree seedlings as related to snow cover, scarification, planting methods and soil types. The thesis is based on a review paper, three field experiments and one laboratory experiment. The experiments focus on different methods to control frost heaving of forest tree seedlings and on a number of factors affecting the extent of frost heaving. The review paper identifies the many aspects of frost heaving of forest tree seedlings and agricultural crops based on an intensive review of the research contributions made during the last century. Even if many investigations have been carried out with the aim to decrease the extent of frost heaving, very little quantitative results are available for tree seedlings. In a field experiment, the choice of planting positions was effective in decreasing frost heaving of planted seedlings following mounding or disc-trenching. Seedlings planted in the depressions were largely affected by frost heaving with a maximal vertical displacement of 5.4 cm while frost heaving did not occur on the top of the mound. On the other hand, the planting time and planting depth had no influence on the extent of frost heaving. In another field experiment the size of the scarified patches was strongly correlated to frost heaving which reached between 7.6 and 11.5 cm in 4 and 8-dm patches compared to between 4.4 and 5.3 in non-scarified soil and in a 1-dm patch. Ground vegetation probably decreases the diurnal temperature variation and the number of freezing-thawing cycles. The duration and magnitude of frost temperatures, the frost hour sum, increased with patch size. The difference between the 8-dm and 1-dm patch increased to 2064 hour-degrees at the end of the winter. In larger patches, the planting depth seemed to be effective in reducing the

  13. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  14. Response of a boreal forest to canopy opening: assessing vertical and lateral tree growth with multi-temporal lidar data.

    Science.gov (United States)

    Vepakomma, Udayalakshmi; St-Onge, Benoit; Kneeshaw, Daniel

    2011-01-01

    Fine-scale height-growth response of boreal trees to canopy openings is difficult to measure from the ground, and there are important limitations in using stereophotogrammetry in defining gaps and determining individual crowns and height. However, precise knowledge on height growth response to different openings is critical for refining partial harvesting techniques. In this study, we question whether conifers and hardwoods respond equally in terms of sapling growth or lateral growth to openings. We also ask to what distance gaps affect tree growth into the forest. We use multi-temporal lidar to characterize tree/sapling height and lateral growth responses over five years to canopy openings and high resolution images to identify conifers and hardwoods. Species-class-wise height-growth patterns of trees/saplings in various neighborhood contexts were determined across a 6-km matrix of Canadian boreal mixed deciduous coniferous forests. We then use statistical techniques to probe how these growth responses vary by spatial location with respect to the gap edge. Results confirm that both mechanisms of gap closure contribute to the closing of canopies at a rate of 1.2% per annum. Evidence also shows that both hardwood and conifer gap edge trees have a similar lateral growth (average of 22 cm/yr) and similar rates of height growth irrespective of their location and initial height. Height growth of all saplings, however, was strongly dependent on their position within the gap and the size of the gap. Results suggest that hardwood and softwood saplings in gaps have greatest growth rates at distances of 0.5-2 m and 1.5-4 m from the gap edge and in openings smaller than 800 m2 and 250 m2, respectively. Gap effects on the height growth of trees in the intact forest were evident up to 30 m and 20 m from gap edges for hardwood and softwood overstory trees, respectively. Our results thus suggest that foresters should consider silvicultural techniques that create many small

  15. Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar

    Directory of Open Access Journals (Sweden)

    K. Knobelspiesse

    2011-07-01

    Full Text Available Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP. The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS, which was due to be launched as part of the (ultimately failed NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS. During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the contraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within

  16. Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar

    Directory of Open Access Journals (Sweden)

    K. Knobelspiesse

    2011-03-01

    Full Text Available Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. The Aerosol Polarimetery Sensor (APS, which is on the NASA Glory satellite scheduled for launch in the spring of 2011, is designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. Field observations with the Research Scanning Polarimeter (RSP, the APS airborne prototype, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS. During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the contraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to independent observations. The convergence to an unrealistic local minimum by the optimal estimator is related to the relatively low sensitivity to particles smaller than 0.1 µm at large optical thicknesses. Thus, optimization algorithms used for

  17. Mobility of radiocaesium in boreal forest ecosystems: Influence of precipitation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Steinnes, E. [Department of Chemistry, Norwegian University of Science and Technology (Norway); Gjelsvik, R.; Skuterud, L.; Thoerring, H. [Norwegian Radiation Protection Authority (Norway)

    2014-07-01

    Mobility and plant uptake of Cs in soils is generally limited by the presence of clay minerals in the soil. However, cations supplied by precipitation may substantially influence the mobility of radiocaesium in natural surface soil and subsequent transfer to food chains. The chemical composition of precipitation shows substantial variation among different areas in Norway for two main reasons. At sites close to the coast the atmospheric supply of marine cations and anions is many-fold greater than in regions shielded from marine influence by mountains. The southernmost part of the country has been, and still is, substantially affected by soil acidification due to long-range atmospheric transport of acidifying substances from areas elsewhere in Europe. This may explain a much higher greater uptake of {sup 137}Cs from the Chernobyl accident in moose in this region than elsewhere (Steinnes et al., 2009), in spite of the fact that some areas farther north received substantially greater fallout. Similarly a much greater transfer of {sup 137}Cs to natural birch forest vegetation is evident from the more acidified soils in the south than in comparable ecosystems elsewhere in the country (Thoerring et al., 2012). Repeated recordings of activity levels in natural surface soils showed faster leaching of Chernobyl {sup 137}Cs relative to inland areas not only in the south but also in coastal areas farther north (Gjelsvik and Steinnes, 2013), indicating that the amounts of marine cations in precipitation also has an appreciable effect on the Cs leaching. The geographical leaching differences still became less prominent with time. Recent lysimeter experiments with undisturbed soil columns obtained from an area receiving high radiocaesium deposition from the Chernobyl accident, applying precipitation with ionic composition characteristic of the different regions mentioned above, did not change the current depth distribution of {sup 137}Cs. However, acidic precipitation increased

  18. Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar

    Science.gov (United States)

    Knobelspiesse, K.; Cairns, B.; Ottaviani, M.; Ferrare, R.; Haire, J.; Hostetler, C.; Obland, M.; Rogers, R.; Redemann, J.; Shinozuka, Y.; Clarke, A.; Freitag, S.; Howell, S.; Kapustin, V.; McNaughton, C.

    2011-01-01

    Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP). The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS), which was due to be launched as part of the (ultimately failed) NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the constraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point) of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to

  19. Carbon isotope labeling in boreal forests to assess roles of fungal species in decomposition

    Science.gov (United States)

    Treseder, K. K.; Czimczik, C. I.; Trumbore, S. E.; Allison, S. D.

    2006-12-01

    We used 14C and 13C labeling to assess the in situ respiration of alanine-, starch-, and lignocellulose-derived carbon from the sporocarps of particular fungal species fruiting in a boreal forest in Alaska. By measuring isotopically-labeled respiration of sporocarps, which can be identified to species, we were able to attribute turnover of carbon compounds to specific fungal groups. Moreover, collection of sporocarp respiration is non-destructive, so we could return to the same sporocarps to collect a time series of measurements that spanned hours to days. We tested the hypotheses that alanine and starch turn over more quickly than lignocellulose, and that saprotrophic fungi would use starch-C and lignocellulose-C but ectomycorrhizal fungi would not. Small amounts of 14C-labeled alanine (about 100,000 permil) were dispensed into the soil within three meters of sporocarps of the ectomycorrhizal fungus Lactarius alnicola. Δ14CO2 values of sporocarp respiration climbed from 75.8 +/- 6.3 permil to 7855 +/- 3940 permil within one hour of additions, indicating that the fungus quickly acquired, transported, and transformed the alanine-C. In a separate approach, a mixture of 13C-labeled starch (about 15,000 permil) and 14C-labeled lignocellulose (about 36,000 permil) was applied in 9 m2 plots containing sporocarps of the ectomycorrhizal genera Phellodon and Sarcodon and the saprotrophic genera Lycoperdon and Polyporus. An unlabeled control plot was also established. We observed no detectable increase in 14CO2 or 13CO2 over a 144 hour period, suggesting that neither ectomycorrhizal nor saprotrophic fungi significantly broke down starch or lignocellulose during this time. The alanine experiment is one of the first to indicate that ectomycorrhizal fungi can influence the spatial distribution and storage of soil carbon over short time scales. This influence may be restricted to carbon of organic compounds like amino acids. In contrast, starch was not transformed quickly even

  20. Trophic position of soil nematodes in boreal forests as indicated by stable isotope analysis

    Science.gov (United States)

    Kudrin, Alexey; Tsurikov, Sergey

    2016-04-01

    Despite the well-developed trophic classification of soil nematodes, their position in soil food webs is still little understood. Observed deviations from the typical feeding strategy indicate that a simplified trophic classification probably does not fully reflect actual trophic interactions. Furthermore, the extent and functional significance of nematodes as prey for other soil animals remains unknown. Stable isotope analysis (SIA) is powerful tool for investigating the structure of soil food webs, but its application to the study of soil nematodes has been limited to only a few studies. We used stable isotope analysis to gain a better understanding of trophic links of several groups of soil nematodes in two boreal forests on albeluvisol. We investigated four taxonomic groups of nematodes: Mononchida, Dorylaimida, Plectidae and Tylenchidae (mostly from the genus Filenchus), that according to the conventional trophic classification represent predators, omnivores, bacterivores and root-fungal feeders, respectively. To assess the trophic position of nematodes, we used a comparison against a set of reference species including herbivorous, saprophagous and predatory macro-invertebrates, oribatid and mesostigmatid mites, and collembolans. Our results suggest that trophic position of the investigated groups of soil nematodes generally corresponds to the conventional classification. All nematodes were enriched in 13C relative to Picea abies roots and litter, and mycorrhizal fungal mycelium. Root-fungal feeders Tylenchidae had δ15N values similar to those of earthworms, enchytraeids and Entomobrya collembolans, but slightly lower δ13C values. Bacterivorous Plectidae were either equal or enriched in 15N compared with saprophagous macroinvertebrates and most mesofauna species. Omnivorous Dorylaimida and predatory Mononchida were further enriched in 15N and their isotopic signature was similar to that of predatory arthropods. These data confirm a clear separation of

  1. Impact of forest harvesting on water quality and fluorescence characteristics of dissolved organic matter in Eastern Canadian Boreal Shield lakes

    Directory of Open Access Journals (Sweden)

    P. Glaz

    2015-06-01

    Full Text Available Forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. Water quality and fluorescence characteristics of dissolved organic matter (DOM were measured over a three-year period in eight Eastern Boreal Shield lakes: four lakes were studied before, one and two years after forest harvesting (perturbed lakes and compared with four undisturbed reference lakes (unperturbed lakes sampled at the same time. ANOVAs showed a significant increase in total phosphorus (TP in perturbed lakes when the three sampling dates were considered and in DOC concentrations when considering one year before and one year after the perturbation only. At one year post-clear cutting DOC concentrations were about 15 % greater in the perturbed lakes at ~15 mg C L−1 compared to 12.5 mg C L−1 in the unperturbed lakes. In contrast, absorbance and fluorescence measurements showed that all metrics remained within narrow ranges compared to the range observed in natural waters, indicating that forest harvesting did not affect the nature of DOM characterised with spectroscopic techniques. Multivariate statistical analysis showed lakes to be significantly different one year after the perturbation. These results confirm an impact of forestry activities one year after the perturbation. However, this effect seems to be mitigated two years after, indicating that the system shows high resilience and may be able to return to its original condition.

  2. The Effect of Bark Borer Herbivory on BVOC Emissions in Boreal Forests and Implications for SOA Formation

    Science.gov (United States)

    Faiola, Celia; Joutsensaari, Jorma; Holopainen, Jarmo; Yli-Juuti, Taina; Kokkola, Harri; Blande, James; Guenther, Alex; Virtanen, Annele

    2015-04-01

    Herbivore outbreaks are expected to increase as a result of climate change. These outbreaks can have significant effects on the emissions of biogenic volatile organic compound (BVOC) from vegetation, which contribute to the formation of secondary organic aerosol (SOA). We have synthesized the published results investigating changes to BVOC emissions from herbivory by the pine weevil, Hylobius abietis--a bark borer herbivore. Previous lab experiments have shown that bark borer herbivory on Scots pine trees increases monoterpene emissions 4-fold and sesquiterpene emissions 7-fold. Norway spruce exhibits a similar response. The BVOCs most impacted were linalool, beta-phellandrene, limonene, alpha-pinene, beta-pinene, myrcene, and sesquiterpenes like beta-farnesene, beta-bourbonene, and longifolene. The quantitative results from these studies were used to estimate potential impacts of bark borer herbivory on BVOC emissions at a regional scale using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). MEGAN was run under baseline and herbivore outbreak conditions for a typical boreal forest environment in spring. Emissions output from MEGAN was used to run a microphysical box model to estimate the SOA formation potential under baseline and outbreak conditions. This estimate could provide us with an upper limit to the potential impact of bark borer outbreaks on SOA formation in a boreal forest.

  3. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs, CO2, CO, NO2, NO, HCN and CH3CN

    Directory of Open Access Journals (Sweden)

    M. Yang

    2011-07-01

    Full Text Available Boreal regions comprise about 17 % of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs for individual species were formaldehyde (2.1 ± 0.2 g kg−1, followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr−1 in the form of NMVOCs, with approximately 41 % of the carbon released as C1-C2 NMVOCs and 21 % as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6 × 10−4 g kg−1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3 or methyl

  4. Radioactive caesium in Boreal forest landscapes - Dynamics and transport in food webs. Summary of research 1986-1996

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, R.; Nylen, T.; Palo, T

    1998-12-01

    The need for - but also the paucity of - radioecological knowledge concerning the boreal forest became particularly apparent after the nuclear power plant accident in Chernobyl in April 1986. As a consequence several new projects were initiated in the Nordic countries with particular focus on the behaviour of radioactivecaesium in terrestrial and aquatic systems characteristic for the Fenno-Scandinavian landscapes. Among these new projects a multi-disciplinary co-operation in Umeaa between scientists at the Swedish University of Agricultural Sciences, and the Defence Research Establishment emerged. Initially this joint work focused mainly on descriptions of the dynamic changes of the content of radioactive caesium in soil-plant and animal communities in the county of Vaesterbotten. Most of the studies have been performed at the Vindeln experimental forest, 60 km NW of Umeaa. Plants of key interest were: bilberry (Vaccinium myrtillus), birch (Betula spp.), and pine (Pinus sylvestris), and among the animals: the moose (Alces alces) and a small rodent, the forest vole (Clethrionomus glareolus). Gradually over the past ten years the research has entered the stage where the specific causes of the caesium behaviour have been addressed - partly by the help of models developed for simulating forest ecosystems, partly by complementary field experiments. This paper reviews our main findings on this theme concerning the behaviour of radioactive caesium in boreal landscapes and significant pathways to man, as has become apparent from the radioecological co-operation dating from about ten years back. A list of the publications arising from these studies since 1986 is also presented in this report.

  5. Carbon balance of an old hemi-boreal pine forest in Southern Estonia determined by different methods

    Science.gov (United States)

    Soosaar, Kaido; Repp, Kalev; Lõhmus, Krista; Uri, Veiko; Rannik, Kaire; Krasnova, Alisa; Ostonen, Ivika; Kukumägi, Mai; Maddison, Martin; Mander, Ülo

    2016-04-01

    The Soontaga Forest Station is located in hemi-boreal 200-years old pine forest (South Estonia; 58o01'N 26o04'E) with a second layer of spruce. The station has the instrumentation to assess the exchange of carbon dioxide (net ecosystem exchange, NEE), soil respiration, tree biomass (above and below ground biomass) and different environmental and meteorological parameters. In this study we quantified carbon balance by analyzing eddy-covariance CO2 flux data (carbon exchange) vs chamber-based measurements (ecosystem respiration) and CO2assimilation (soil and biomass). The annual NEE in this mature coniferous forest was -2.3 t C ha yr-1, showing a clear diurnal and seasonal trend. During the daytime in summer the forest sequestered CO2, while during the night and late night CO2 emitted from the ecosystem to the atmosphere. Within the growing period, the sequestration of CO2 by plants was greater than soil respiration. Thus, the ecosystem sequestered carbon. Most of the carbon is bound in tree biomass (above and below ground biomass) but as well into soil, while the sequestration in soil increases with stand age. In addition, the biomass of understory, especially belowground litter, is playing essential part in carbon input. A modelling approach of long-term C budget in the Soontaga pine forest is presented.

  6. New insights on the link between phenology and productivity of temperate and boreal broadleaf deciduous forests across the globe

    Science.gov (United States)

    Sonnentag, O.; Hufkens, K.; Keenan, T. F.; Friedl, M. A.; Richardson, A. D.

    2011-12-01

    Shifts in the timing of key phenological phases in plants have been indentified as useful indicators to track the impact of ongoing climate change. Phenological responses themselves provide important feedbacks to the climate system as they exert control over most above- and belowground ecosystem processes and productivity. Recent advances in near-surface remote sensing enable automated and consistent observation of vegetation status at spatial and temporal scales suitable for integration with eddy covariance measurements. This allows us to gain phenological understanding of biosphere-atmosphere energy, water vapor and trace gas exchanges and thus productivity. Several previous studies have investigated the link between key phenological phases in temperate and boreal forests and their productivity across sites and years. Most of these studies focused on shifts in the timing of spring phenological events such as budburst. Few studies, however, have investigated the importance of the rates of changes across key phenological phases such as leaf development and senescence in spring and autumn, respectively, as explanatory variables of observed interannual and across-site variability in forest productivity. To shed light on this question we first optimized and evaluated a popular bioclimatic index (the growing season index of Jolly et al., 2005) that integrates known controls on temperate and boreal forest canopy development (i.e., air temperature, photoperiod, soil water balance) with multiple years of digital repeat photography at different sites from the PhenoCam network. Next, using meteorological and eddy covariance measurements from 24 temperate and boreal broadleaf deciduous forest sites across the globe (113 site years) as provided by the FLUXNET 'La Thuile' data set, we characterized continuous canopy development with the optimized bioclimatic index and derived spring and autumn phenological dates and rates and annual integrals of net ecosystem productivity (NEP

  7. Forecasting the development of boreal paludified forests in response to climate change: a case study using Ontario ecosite classification

    Directory of Open Access Journals (Sweden)

    Benoit Lafleur

    2015-01-01

    Full Text Available Background Successional paludification, a dynamic process that leads to the formation of peatlands, is influenced by climatic factors and site features such as surficial deposits and soil texture. In boreal regions, projected climate change and corresponding modifications in natural fire regimes are expected to influence the paludification process and forest development. The objective of this study was to forecast the development of boreal paludified forests in northeastern North America in relation to climate change and modifications in the natural fire regime for the period 2011–2100. Methods A paludification index was built using static (e.g. surficial deposits and soil texture and dynamic (e.g. moisture regime and soil organic layer thickness stand scale factors available from forest maps. The index considered the effects of three temperature increase scenarios (i.e. +1°C, +3°C and +6°C and progressively decreasing fire cycle (from 300 years for 2011–2041, to 200 years for 2071–2100 on peat accumulation rate and soil organic layer (SOL thickness at the stand level, and paludification at the landscape level. Results Our index show that in the context where in the absence of fire the landscape continues to paludify, the negative effect of climate change on peat accumulation resulted in little modification to SOL thickness at the stand level, and no change in the paludification level of the study area between 2011 and 2100. However, including decreasing fire cycle to the index resulted in declines in paludified area. Overall, the index predicts a slight to moderate decrease in the area covered by paludified forests in 2100, with slower rates of paludification. Conclusions Slower paludification rates imply greater forest productivity and a greater potential for forest harvest, but also a gradual loss of open paludified stands, which could impact the carbon balance in paludified landscapes. Nonetheless, as the thick Sphagnum layer

  8. Quantifying the Implications of Different Land Users' Priorities in the Management of Boreal Multiple-Use Forests

    Science.gov (United States)

    Horstkotte, Tim; Lind, Torgny; Moen, Jon

    2016-04-01

    In the management of natural resources, conflicting interests and objectives among different stakeholders often need to be considered. Here, we examine how two contrasting management scenarios of boreal forests in northern Sweden differ in their consequences on forest structural composition and the economic gains at harvest. Management strategies prioritize either (i) forest characteristics that promote grazing resources for reindeer herded by the indigenous Sámi, or (ii) timber production as practiced in Sweden today. When prioritizing reindeer grazing, forest stands develop a higher abundance of older age classes with larger trees and lower stem density, which reduces harvest and revenue levels by approximately 20 % over a 100-year period. The differences between these strategies illustrate the complexity in finding a trade-off for coexistence between industrial land users and other livelihoods that share the same landscape. Political support and institutional solutions are necessary to initiate changes in policy in finding such trade-offs in the management of environmental resources and thereby influence the optimal distribution of costs and benefits between different actors.

  9. Responses of fungal and plant communities to partial humus removal in mid-boreal N-enriched forests.

    Science.gov (United States)

    Tarvainen, Oili; Hamberg, Leena; Ohenoja, Esteri; Strömmer, Rauni; Markkola, Annamari

    2012-10-15

    Partial removal of the forest humus layer was performed in nitrogen-enriched urban Scots pine forest stands in the northern Finland in order to improve soil conditions for ectomycorrhizal (ECM) fungi, important symbionts of trees. Aboveground part of understory vegetation and the uppermost half of the humus layer were removed (REMOVAL treatment) from sample plots in six urban and eight rural reference forest sites at the beginning of the 2001 growing season. During the seasons 2001-2005, we inventoried sporocarp production of ECM and saprophytic fungi, and in 2003 the recovery of understory vegetation. The REMOVAL treatment resulted in a higher number of fruiting ECM species and sporocarps than controls at the rural, but not at urban sites. The sporocarp number of saprophytic fungi declined in the REMOVAL subplots at the urban sites. The recovery of bryophytes and lichens in the REMOVAL treatment was slow at both the urban and rural sites, whereas Vaccinium dwarf shrub cover, and herb and grass cover returned rapidly at the urban sites. We conclude that the partial vegetation and humus layer removal as a tool to promote the reproduction of ECM fungal species is limited in the boreal urban forests.

  10. Uneven-aged forest management in boreal Sweden: local forestry stakeholders' perceptions of different sustainability dimensions

    OpenAIRE

    Axelsson, Robert; Angelstam, Per

    2011-01-01

    To implement policies on sustainable forest management (SFM), there is a need to satisfy economical, ecological and socio-cultural sustainability objectives. Due to a long history of sustained yield wood production to satisfy the needs of the forest industry, clearfelling management systems are used in similar to 96 per cent of managed forests in Sweden. To satisfy the intentions of contemporary forest and land use policies, uneven-aged forest management systems as a complement are currently ...

  11. Biomass burning in boreal forests and peatlands: Effects on ecosystem carbon losses and soil carbon stabilization as black carbon

    Science.gov (United States)

    Turetsky, M. R.; Kane, E. S.; Benscoter, B.

    2011-12-01

    Climate change has increased both annual area burned and the severity of biomass combustion in some boreal regions. For example, there has been a four-fold increase in late season fires in boreal Alaska over the last decade relative to the previous 50 years. Such changes in the fire regime are expected to stimulate ecosystem carbon losses through fuel combustion, reduced primary production, and increased decomposition. However, biomass burning also will influence the accumulation of black carbon in soils, which could promote long-term soil carbon sequestration. Variations in slope and aspect regulate soil temperatures and drainage conditions, and affect the development of permafrost and thick peat layers. Wet soil conditions in peatlands and permafrost forests often inhibit combustion during wildfires, leading to strong positive correlations between pre- and post- fire organic soil thickness that persist through multiple fire cycles. However, burning can occur in poorly drained ecosystems through smouldering combustion, which has implications for emission ratios of CO2:CH4:CO as well as black carbon formation. Our studies of combustion severity and black carbon concentrations in boreal soils show a negative relationship between concentrations of black carbon and organic carbon in soils post-fire. Relative to well drained stands, poorly drained sites with thick peat layers (such as north-facing stands) had less severe burning and low concentrations of black carbon in mineral soils post-fire. Conversely, drier forests lost a greater proportion of their organic soils during combustion but retained larger black carbon stocks following burning. Overall, we have quantified greater black carbon concentrations in surface mineral soil horizons than in organic soil horizons. This is surprising given that wildfires typically do not consume the entire organic soil layer in boreal forests, and could be indicative of the vulnerability of black carbon formed in organic horizons

  12. Estimating Fire-Caused Boreal Forest Disturbances Using Remote Sensing Data

    Science.gov (United States)

    Sukhinin, A. I.; Slinkina, O. A.; Soja, A. J.; Buryak, L. V.; Conard, S. G.; McRae, D.; Yurikova, E. Y.; Cahoon, D. R.

    2008-12-01

    Russia accounts for about half of the world's forests, most of which are in Siberia. Numerous forest fires, mostly human-caused, and extensive forest harvesting, including illegal logging, have resulted in considerable ecological damage and economic loss. At present, forest inventory agencies assess the effects of fire based on the known forest area burned. Due to potential cost and difficulty of access types and severity of fire effects are normally not assessed. The lack of reliable estimates of ecological and economic impacts of forest fires prevents development of effective approaches for forest management and forest fire protection. Remote sensing and GIS-based technologies provide for the development of fundamental new methods to assess and monitor forest condition and wildfire behavior and effects. Wildfire and insect and disease outbreaks are the main natural factors responsible for partial or complete mortality of forest stands in Siberia. Negative human influences include forest harvesting, mining, industrial pollution, and human-caused fires. Estimating the scale, rate, and severity of disturbance is of key importance for appraising the resulting ecological and economical damage. In this study, we developed a GIS- and satellite-based methodology to appraise forest damage by taking advantage of unique spectral signature of the underlying forest types. Our focus was on an area of intensive forest harvest in the Angara river basin, which includes the southern and central taiga zones. We have assessed the type, extent, and severity of disturbances in vegetation cover and mapped the current condition of disturbed forest sites.

  13. Modelling Temporal Variability in the Carbon Balance of a Spruce/Moss Boreal Forest

    Science.gov (United States)

    Frolking, S.; Goulden, M. L.; Wofsy, S. C.; Fan, S.-M.; Sutton, D. J.; Munger, J. W.; Bazzaz, A. M.; Daube, B. C.; Crill, P. M.; Aber, J. D.; Band, L. E.; Wang, X.; Savages, K.; Moore, T.; Harriss, R. C.

    1996-01-01

    A model of the daily carbon balance of a black spruce/feathermoss boreal forest ecosystem was developed and results compared to preliminary data from the 1994 BOREAS field campaign in northern Manitoba, Canada. The model, driven by daily weather conditions, simulated daily soil climate status (temperature and moisture profiles), spruce photosynthesis and respiration, moss photosynthesis and respiration, and litter decomposition. Model agreement with preliminary field data was good for net ecosystem exchange (NEE), capturing both the asymmetrical seasonality and short-term variability. During the growing season simulated daily NEE ranged from -4 g C m(exp -2) d(exp -1) (carbon uptake by ecosystem) to + 2 g C m(exp -2) d(exp -1) (carbon flux to atmosphere), with fluctuations from day to day. In the early winter simulated NEE values were + 0.5 g C m(exp -2) d(exp -1), dropping to + 0.2 g C m(exp -2) d(exp -1) in mid-winter. Simulated soil respiration during the growing season (+ 1 to + 5 g C m(exp -2) d(exp -1)) was dominated by metabolic respiration of the live moss, with litter decomposition usually contributing less than 30% and live spruce root respiration less than 10% of the total. Both spruce and moss net primary productivity (NPP) rates were higher in early summer than late summer. Simulated annual NEE for 1994 was -51 g C m(exp -2) y(exp -1), with 83% going into tree growth and 17% into the soil carbon accumulation. Moss NPP (58 g C m(exp -2) d(exp -1)) was considered to be litter (i.e. soil carbon input; no net increase in live moss biomass). Ecosystem respiration during the snow-covered season (84 g Cm(exp -2)) was 58% of the growing season net carbon uptake. A simulation of the same site for 1968-1989 showed about 10-20% year-to-year variability in heterotrophic respiration (mean of + 113 g C m-2 y@1). Moss NPP ranged from 19 to 114 g C m(exp -2) y(exp -1); spruce NPP from 81 to 150 g C nt-2 y,@l; spruce growth (NPP minus litterfall) from 34 to 103 g C m

  14. Composition and temporal behavior of ambient ions in the boreal forest

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2010-09-01

    Full Text Available A recently developed atmospheric pressure interface mass spectrometer (APi-TOF measured the negative and positive ambient ion composition at a boreal forest site. As observed in previous studies, the negative ions were dominated by strong organic and inorganic acids (e.g. malonic, nitric and sulfuric acid, whereas the positive ions consisted of strong bases (e.g. alkyl pyridines and quinolines. Several new ions and clusters of ions were identified based on their exact masses, made possible by the high resolution, mass accuracy and sensitivity of the APi-TOF. Time series correlograms aided in peak identification and assigning the atomic compositions to molecules. Quantum chemical calculations of proton affinities and cluster stabilities were also used to confirm the plausibility of the assignments. Acids in the gas phase are predominantly formed by oxidation in the gas phase, and thus the concentrations are expected to vary strongly between day and night. This was also the case in this study, where the negative ions showed strong diurnal behavior, whereas the daily changes in the positive ions were considerably smaller. A special focus in this work was the changes in the ion distributions occurring during new particle formation events. We found that sulfuric acid, together with its clusters, dominated the negative ion spectrum during these events. The monomer (HSO4 was the largest peak, together with the dimer (H2SO4 · HSO4 and trimer ((H2SO42 · HSO4. SO5 also tracked HSO4 at around 20% of the HSO4 concentration at all times. During the strongest events, the tetramer and a cluster with the tetramer and ammonia were also detected. Quantum chemical calculations predict that sulfuric acid clusters containing ammonia are much more stable when

  15. Composition and temporal behavior of ambient ions in the boreal forest

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2010-06-01

    Full Text Available A recently developed atmospheric pressure interface mass spectrometer (APi-TOF measured the negative and positive ambient ion composition at a boreal forest site. As observed in previous studies, the negative ions were dominated by strong organic and inorganic acids (e.g. malonic, nitric and sulfuric acid, whereas the positive ions consisted of strong bases (e.g. alkyl pyridines and quinolines. Several new ions and clusters of ions were identified based on their exact masses, made possible by the high resolution, mass accuracy and sensitivity of the APi-TOF. Time series correlograms aided in peak identification and assigning the atomic compositions to molecules. Quantum chemical calculations of proton affinities and cluster stabilities were also used to confirm the plausibility of the assignments. Acids in the gas phase are predominantly formed by oxidation in the gas phase, and thus the concentrations are expected to vary strongly between day and night. This was also the case in this study, where the negative ions showed strong diurnal behavior, whereas the daily changes in the positive ions were considerably smaller. A special focus in this work was the changes in the ion distributions occurring during new particle formation events. We found that sulfuric acid, together with its clusters, dominated the negative ion spectrum during these events. The monomer (HSO4 was the largest peak, together with the dimer (H2SO4·HSO4 and trimer ((H2SO42·HSO4. SO5 also tracked HSO4 at around 20% of the HSO4 concentration at all times. During the strongest events, also the tetramer and a cluster with the tetramer and ammonia were detected. Quantum chemical calculations predict that sulfuric acid clusters containing ammonia are much more stable when neutral

  16. Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest

    Institute of Scientific and Technical Information of China (English)

    Ahmed; El-Guellab; Hugo; Asselin; Sylvie; Gauthier; Yves; Bergeron; Adam; A.Ali

    2015-01-01

    Background: Cumulative impacts of wildfires and forest harvesting can cause shifts from closed-crown forest to open woodland in boreal ecosystems. To lower the probability of occurrence of such catastrophic regime shifts,forest logging must decrease when fire frequency increases, so that the combined disturbance rate does not exceed the Holocene maximum. Knowing how climate warming will affect fire regimes is thus crucial to sustainably manage the forest. This study aimed to provide a guide to determine sustainable forest harvesting levels, by reconstructing the Holocene fire history at the northern limit of commercial forestry in Quebec using charcoal particles preserved in lake sediments.Methods: Sediment cores were sampled from four lakes located close to the northern limit of commercial forestry in Quebec. The cores were sliced into consecutive 0.5 cm thick subsamples from which 1 cm3 was extracted to count and measure charcoal particles larger than 150 microns. Age-depth models were obtained for each core based on accelerator mass spectroscopy(AMS) radiocarbon dates. Holocene fire histories were reconstructed by combining charcoal counts and age-depth models to obtain charcoal accumulation rates and, after statistical treatment,long-term trends in fire occurrence(expressed as number of fires per 1000 years).Results: Fire occurrence varied between the four studied sites, but fires generally occurred more often during warm and dry periods of the Holocene, especially during the Holocene Thermal Maximum(7000–3500 cal. BP), when fire occurrence was twice as high as at present.Conclusions: The current fire regime in the study area is still within the natural range of variability observed over the Holocene. However, climatic conditions comparable to the Holocene Thermal Maximum could be reached within the next few decades, thus substantially reducing the amount of wood available to the forest industry.

  17. Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest

    Directory of Open Access Journals (Sweden)

    Ahmed El-Guellab

    2015-05-01

    Full Text Available Background Cumulative impacts of wildfires and forest harvesting can cause shifts from closed-crown forest to open woodland in boreal ecosystems. To lower the probability of occurrence of such catastrophic regime shifts, forest logging must decrease when fire frequency increases, so that the combined disturbance rate does not exceed the Holocene maximum. Knowing how climate warming will affect fire regimes is thus crucial to sustainably manage the forest. This study aimed to provide a guide to determine sustainable forest harvesting levels, by reconstructing the Holocene fire history at the northern limit of commercial forestry in Quebec using charcoal particles preserved in lake sediments. Methods Sediment cores were sampled from four lakes located close to the northern limit of commercial forestry in Quebec. The cores were sliced into consecutive 0.5 cm thick subsamples from which 1 cm3 was extracted to count and measure charcoal particles larger than 150 microns. Age-depth models were obtained for each core based on accelerator mass spectroscopy (AMS radiocarbon dates. Holocene fire histories were reconstructed by combining charcoal counts and age-depth models to obtain charcoal accumulation rates and, after statistical treatment, long-term trends in fire occurrence (expressed as number of fires per 1000 years. Results Fire occurrence varied between the four studied sites, but fires generally occurred more often during warm and dry periods of the Holocene, especially during the Holocene Thermal Maximum (7000–3500 cal. BP, when fire occurrence was twice as high as at present. Conclusions The current fire regime in the study area is still within the natural range of variability observed over the Holocene. However, climatic conditions comparable to the Holocene Thermal Maximum could be reached within the next few decades, thus substantially reducing the amount of wood available to the forest industry.

  18. Radial Growth Response of Black Spruce Stands Ten Years after Experimental Shelterwoods and Seed-Tree Cuttings in Boreal Forest

    Directory of Open Access Journals (Sweden)

    Miguel Montoro Girona

    2016-10-01

    Full Text Available Partial cutting is thought to be an alternative to achieve sustainable management in boreal forests. However, the effects of intermediate harvest intensity (45%–80% on growth remain unknown in black spruce (Picea mariana (Mill. B.S.P. stands, one of the most widely distributed boreal species with great commercial interest. In this study, we analysed the effect of three experimental shelterwood and one seed-tree treatments on tree radial growth in even-aged black spruce stands, 10 years after intervention. Our results show that radial growth response 8–10 years after cutting was 41% to 62% higher than in untreated plots, with stand structure, treatment, tree position relative to skidding trails, growth before cutting and time having significant interactions. The stand structure conditioned tree growth after cutting, being doubled in younger and denser stands. Tree spatial position had a pronounced effect on radial growth; trees at the edge of the skidding trails showed twice the increase in growth compared to interior trees. Dominant trees before cutting located close to the skidding trails manifested the highest growth response after cutting. This research suggests that the studied treatments are effective to enhance radial wood production of black spruce especially in younger stands, and that the edge effect must be considered in silvicultural management planning.

  19. Energy, water and carbon exchange in a boreal forest landscape - NOPEX experiences

    DEFF Research Database (Denmark)

    Halldin, S.; Gryning, Sven-Erik; Gottschalk, L.;

    1999-01-01

    of the European boreal zone. This paper summarises results from NOPEX in its first phase, dealing with spring- and summertime conditions. Two concentrated field efforts (CFE1 on 27 May-23 June 1994, CFE2 on 18 April-14 July 1995) were carried out with coordinated measurements of energy, water, and CO2 budgets...... as an integrated part of this Special Issue. (C) 1999 Elsevier Science B.V. All rights reserved....

  20. Occurrence and Distribution of Synthetic Organic Substances in Boreal Coniferous Forest Soils Fertilized with Hygienized Municipal Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Mats Tysklind

    2013-07-01

    Full Text Available The occurrence and distribution of synthetic organic substances following application of dried and granulated (hygienized municipal sewage sludge in Swedish boreal coniferous forests were investigated. Elevated concentrations of triclosan (TCS, polybrominated diphenyl ethers (PBDEs, and polychlorinated biphenyls (PCBs were detected in the humus layer. Concentrations of ethinyl estradiol (EE2, norfloxacin, ciprofloxacin, ofloxacin (FQs, and polyaromatic hydrocarbons (PAHs were not significantly influenced. Maximum concentrations in humus were as follows (in ng/g dry matter: TCS; 778; PBDEs; 25; and PCB7; 16.7. Fertilization did not alter the levels of the substances in mineral soil, ground water, and various types of samples related to air. Further research within this area is needed, including ecotoxicological effects and fate, in order to improve the knowledge regarding the use of sludge as a fertilizing agent. Continuous annual monitoring, with respect to sampling and analysis, should be conducted on the already-fertilized fields.

  1. Effect of ecosystem retrogression on stable nitrogen and carbon isotopes of plants, soils and consumer organisms in boreal forest islands.

    Science.gov (United States)

    Hyodo, Fujio; Wardle, David A

    2009-07-01

    In the prolonged absence of catastrophic disturbance, ecosystem retrogression occurs, and this involves increased nutrient limitation, and reduced aboveground and belowground ecosystem processes rates. Little is known about how the nitrogen and carbon stable isotope ratios (delta(15)N and delta(13)C) of plants, soils and consumer organisms respond to retrogression in boreal forests. We investigated a 5000 year chronosequence of forested islands in the boreal zone of northern Sweden, for which the time since lightning-induced wildfire increases with decreasing island size, leading to ecosystem retrogression. For this system, tissue delta(15)N of three abundant plant species (Betula pubescens, Vaccinium myrtillus and Pleurozium schreberi) and humus all increased as retrogression proceeded. This is probably due to enhanced ecosystem inputs of N by biological fixation, and greater dependency of the plants on organic N during retrogression. The delta(13)C of B. pubescens and plant-derived humus also increased during retrogression, probably through nutrient limitation increasing plant physiological stress. Unlike the plants, delta(15)N of invertebrates (lycosid spiders and ants) did not increase during retrogression, probably because of their partial dependence on aquatic-derived prey that had a variable delta(15)N signature. The delta(13)C of the invertebrates increased as retrogression proceeded and converged towards that of an aquatic prey source (chironomid flies), suggesting increased dependence on aquatic-derived prey during retrogression. These results show that measurement of delta(15)N and delta(13)C of plants, soils, and consumers across the same environmental gradient can provide insights into environmental factors that drive both the aboveground and belowground subsystems, as well as the linkages between them.

  2. Chronic Nitrogen Deposition Has a Minor Effect on the Quantity and Quality of Aboveground Litter in a Boreal Forest.

    Science.gov (United States)

    Maaroufi, Nadia I; Nordin, Annika; Palmqvist, Kristin; Gundale, Michael J

    2016-01-01

    There is evidence that anthropogenic nitrogen (N) deposition enhances carbon (C) sequestration in boreal soils. However, key underlying mechanisms explaining this increase have not been resolved. Two potentially important mechanisms are that aboveground litter production increases, or that litter quality changes in response to N enrichment. As such, our aim was to quantify whether simulated chronic N deposition caused changes in aboveground litter production or quality in a boreal forest. We conducted a long-term (17 years) stand-scale (0.1 ha) forest experiment, consisting of three N addition levels (0, 12.5, and 50 kg N ha-1 yr-1) in northern Sweden, where background N deposition rates are very low. We measured the annual quantity of litter produced for 8 different litter categories, as well as their concentrations of C, N, phosphorus (P), lignin, cellulose and hemi-cellulose. Our results indicate that mosses were the only major litter component showing significant quantitative and qualitative alterations in response to the N additions, indicative of their ability to intercept a substantial portion of the N added. These effects were, however, offset by the other litter fractions where we found no changes in the total litter fluxes, or individual chemical constituents when all litter categories were summed. This study indicates that the current annual litter fluxes cannot explain the increase in soil C that has occurred in our study system in response to simulated chronic N application. These results suggest that other mechanisms are likely to explain the increased soil C accumulation rate we have observed, such as changes in soil microbial activity, or potentially transient changes in aboveground litter inputs that were no longer present at the time of our study.

  3. Short-term effects of thinning, clear-cutting and stump harvesting on methane exchange in a boreal forest

    Directory of Open Access Journals (Sweden)

    E. Sundqvist

    2014-03-01

    Full Text Available Forest management practices can alter soil conditions, affecting the consumption and production processes that control soil methane (CH4 exchange. We studied the short-term effects of thinning, clear-cutting and stump harvesting on the CH4 exchange between soil and atmosphere at a boreal forest site in central Sweden, using an undisturbed plot as the control. Chambers in combination with a high precision laser gas analyser were used for continuous measurements. Both the undisturbed plot and the thinned plot were net sinks of CH4, whereas the clear-cut plot and the stump harvested plot were net CH4 sources. The CH4 uptake at the thinned plot was reduced in comparison to the undisturbed plot. The shift from sink to source at the clear-cut and stump harvested plots was probably due to a rise of the water table and an increase in soil moisture, leading to lower gas diffusivity and more reduced conditions which favour CH4 production by archea. Reduced evapotranspiration after harvesting leads to wetter soils, decreased CH4 consumption and increased CH4 production, and should be accounted for in the CH4 budget of managed forests.

  4. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    Science.gov (United States)

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  5. Disturbances (fire and grazing by reindeer) and soil methane fluxes -- case studies from the subarctic boreal forest of Finish Lapland.

    Science.gov (United States)

    Köster, Kajar; Köster, Egle; Berninger, Frank; Pumpanen, Jukka

    2016-04-01

    In aerobic, well-drained environments such as boreal upland forest soils, methane (CH4) is oxidized by microbes, resulting into the soils acting as a sink of atmospheric CH4. The emission of CH4 is controlled primarily by soil moisture and temperature, but also by the availability of organic carbon. Forest fires are one of the predominant natural disturbances in subarctic boreal forests that strongly influence soil moisture and soil temperature values and carbon dynamics of the soils. At the same time also the effect of reindeer (Rangifer tarandus L.) grazing on soil moisture and temperature regimes in the lichen-dominated Arctic ecosystems has been found to be considerable. By removing the lichen carpet and damaging the secondary vegetation mat, reindeer make patches of bare soil common, and these factors in combination with trampling allow for soil to warm up faster, reach higher temperatures, and reduce the soil moisture content. We studied the effect of reindeer grazing and forest fire on fluxes of CH4 in northern boreal subarctic Scots pine forest stands. The study areas are in eastern Lapland, Värriö Strict Nature Reserve, Finland (67° 46' N, 29° 35' E). The sites are situated north of the Arctic Circle, near to the northern timberline at an average of 300 m altitude. For studing the effect of fire we have established sample areas (with three replicate plots in each) in a chronosequence of 4 age classes (2 to 152 years since the last fire). The fire chronosequence consisted of four types of areas with different time since the last forest fire: i) 5 years, ii) 45 years, iii) 70 years and iv) 155 years after fire. For studing the effect of reindeer grazing (comparison of grazed and non-grazed areas) we have established the study areas (10 sample plots in total established in year 2013) along the borderline between Finland and Russia. The ungrazed area was excluded from the reindeer grazing already in 1918, to prevent the Finnish reindeer from going to the

  6. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests.

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno

    2017-02-13

    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP; including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought and insect outbreaks in order to better reproduce observation-based spatial patterns in k is identified. Since direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects like carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects

  7. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    Science.gov (United States)

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation

  8. Development of soft extraction method for structural characterization of boreal forest soil proteins with MALDI-TOF/MS

    Science.gov (United States)

    Kanerva, Sanna; Ketola, Raimo A.; Kitunen, Veikko; Smolander, Aino; Kotiaho, Tapio

    2010-05-01

    Nitrogen (N) is usually the nutrient restricting productivity in boreal forests. Forest soils contain a great amount of nitrogen, but only a small part of it is in mineral form. Most part of soil N is bound in the structures of different organic compounds such as proteins, peptides, amino acids and more stabilized, refractory compounds. Due to the fact that soil organic N has a very important role in soil nutrient cycling and in plant nutrition, there is a need for more detailed knowledge of its chemistry in soil. Conventional methods to extract and analyze soil organic N are usually very destructive for structures of higher molecular weight organic compounds, such as proteins. The aim of this study was to characterize proteins extracted from boreal forest soil by "soft" extraction methods in order to maintain their molecular structure. The organic layer (F) from birch forest floor containing 78% of organic matter was sieved, freeze dried, pulverized, and extracted with a citrate or phosphate buffer (pH 6 or 8). Sequential extraction with the citrate or phosphate buffer and an SDS buffer (pH 6.8), slightly modified from the method of Chen et al. (2009, Proteomics 9: 4970-4973), was also done. Proteins were purified from the soil extract by extraction with buffered phenol and precipitated with methanol + 0.1M ammonium acetate at -20°C. Characterization of proteins was performed with matrix assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF/MS) and the concentration of total proteins was measured using Bradford's method. Bovine serum albumin (BSA) was used as a positive control in the extractions and as a standard protein in Bradford's method. Our results showed that sequential extraction increased the amount of extracted proteins compared to the extractions without the SDS-buffer; however, it must be noted that the use of SDS-buffer very probably increased denaturization of proteins. Purification of proteins from crude soil extracts

  9. Terrestrial laser scanning and pin meter measurements for erosion and roughness assessment in boreal peatland forest ditches

    Science.gov (United States)

    Stenberg, Leena; Tuukkanen, Tapio; Finér, Leena; Marttila, Hannu; Piirainen, Sirpa; Kløve, Bjørn; Koivusalo, Harri

    2016-04-01

    Drainage and the maintenance of drainage ditches in peatland forests increase erosion and sediment load reducing water quality downstream. The understanding of the sediment source area processes requires reliable methods for topographical change detection in the peatland forest ditches. The objective of this study was to quantify erosion and changes in surface roughness with two different methods: terrestrial laser scanning (TLS) and manual pin meter measurements. Two newly cleaned boreal peatland forest ditches were studied, one peat ditch and one with exposed till soil under the thin peat layer. The topographies of a 4-meter-long section of the ditches were measured sequentially during the 11-20 months study period. In the ditch with thin peat layer, erosion estimates were quite similar with both methods. However, in the peat ditch the erosion measured with the pin meter considerably exceeded the results provided by TLS. Surface roughness indicated by the TLS data was greater than the surface roughness calculated from the pin meter data. According to both methods, surface roughness increased more at the ditch with thin peat layer. Both methods could be adopted to measure erosion and surface roughness in peatland forest conditions. However, the methods had difficulties to distinguish the bed of the peat ditch. TLS encountered problems to detect dark peat soil bed under shallow layer of humic ditch water resulting in no-data areas at the bed of the ditch. Pin meter device was able to measure under the water but the soft peat bed increased the uncertainty of the measurements.

  10. Peatland simulator connecting drainage, nutrient cycling, forest growth, economy and GHG efflux in boreal and tropical peatlands

    Science.gov (United States)

    Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Lehtonen, Aleksi

    2016-04-01

    the stand growth, nutrient availability, and CO2 efflux. Potassium was the main limiting factor for the forest growth. This indicates that management aiming at decreasing heterotrophic CO2 efflux by raising the ground water table will decrease the forest growth. From the C balance perspective the growth rate of the tree stand becomes essential. Modelling approach enables a search for an optimal management schedule for producing timber in situation when there is a price given for release of C. Ditch network maintenance by ditch cleaning becomes profitable if: i) the initial drainage is very poor, ii) the availability of the critical nutrient is sufficient, iii) during prolonged rainy conditions, and iv) the tree stand is Scots pine (Pinus sylvestris) dominated and v) in a phase where most of the extra yield is allocated into sawlogs. The simulator and its holistic approach has been successfully implemented in both tropical pulpwood plantations in Sumatra, Indonesia and in Finnish boreal forests.

  11. Potentials and limitations for human control over historic fire regimes in the boreal forest.

    Science.gov (United States)

    Granström, Anders; Niklasson, Mats

    2008-07-12

    Fire, being both a natural and cultural phenomenon, presents problems in disentangling the historical effect of humans from that of climate change. Here, we investigate the potential impact of humans on boreal fire regimes from a perspective of fuels, ignitions and culture. Two ways for a low technology culture to impact the fire regime are as follows: (i) by altering the number of ignitions and their spatial distribution and timing and (ii) by hindering fire spread. Different cultures should be expected to have quite different impacts on the fire regimes. In northern Fennoscandia, there is evidence for fire regime changes associated with the following: a reindeer herding culture associated with few ignitions above the natural; an era of cattle husbandry with dramatically increased ignitions and somewhat higher fire frequency; and a timber exploitation era with decreasing fire sizes and diminishing fire frequency. In other regions of the boreal zone, such schemes can look quite different, but we suggest that a close look at the resource extraction and land use of different cultures should be part of any analysis of past fire regimes.

  12. Peat properties and water retention in boreal forested peatlands subject to wildfire

    Science.gov (United States)

    Thompson, Dan K.; Waddington, James M.

    2013-06-01

    Peat cores from a recently burned peatland and one over 75 years since fire in Alberta, Canada were analyzed for physical properties and water retention. Wildfire exposed denser peat at the peat surface, more so in hollow than hummock microforms. Water retention in peat has implications for postfire Sphagnum regeneration, as this more dense peat requires smaller volumes of water loss before a critical growth-inhibiting pore-water pressure of -100 mb is reached. Simulations of water retention after fire showed that hollow microforms are at a higher risk of losing low-density surface peat, which moderates water table (WT) declines via high specific yield. Exposure of dense peat to the surface after fire increases surface moisture under a constant WT. The net effect of decreasing specific yield and increasing water retention at the surface has implications on hydrologic stability and resilience of boreal peatlands to future wildfire risk under a changing climate. Earth system models incorporating wildfire disturbance in boreal peatlands would benefit from the inclusion of these hydrological feedbacks in this globally significant carbon reservoir.

  13. Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core

    Science.gov (United States)

    Zennaro, P.; Kehrwald, N.; McConnell, J. R.; Schüpbach, S.; Maselli, O. J.; Marlon, J.; Vallelonga, P.; Leuenberger, D.; Zangrando, R.; Spolaor, A.; Borrotti, M.; Barbaro, E.; Gambaro, A.; Barbante, C.

    2014-10-01

    Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales spanning millennia, and are thus useful to examine the role of fire in the carbon cycle and climate system. Here we use the specific biomarker levoglucosan together with black carbon and ammonium concentrations from the North Greenland Eemian (NEEM) ice cores (77.49° N, 51.2° W; 2480 m a.s.l) over the past 2000 years to infer changes in boreal fire activity. Increases in boreal fire activity over the periods 1000-1300 CE and decreases during 700-900 CE coincide with high-latitude NH temperature changes. Levoglucosan concentrations in the NEEM ice cores peak between 1500 and 1700 CE, and most levoglucosan spikes coincide with the most extensive central and northern Asian droughts of the past millennium. Many of these multi-annual droughts are caused by Asian monsoon failures, thus suggesting a connection between low- and high-latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the Greenland Ice Cap. During major fire events, however, isotopic analyses of dust, back trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.

  14. Long term implications of fire to soil C content and soil CO2 efflux in northern boreal forests

    Science.gov (United States)

    Koster, Kajar; Berninger, Frank; Pumpanen, Jukka

    2014-05-01

    Fire is the primary process which organizes the physical and biological attributes of the boreal biome and influences energy flows and biogeochemical cycles, particularly the carbon (C) cycle. Especially the soil organic matter pool in boreal forests is an important C storage with a long C turnover time, but fire frequencies that are expected to increase with changing climate, can change that. We compared the initial recovery of C pools and CO2 efflux following fire disturbance in Scots pine (Pinus sylvesteris) stands in the northern boreal forests, of eastern Lapland, Värriö Strict Nature Reserve, Finland (67°46' N, 29°35' E). The sites are situated north of the Arctic Circle, near to the northern timberline at an average of 300 m altitude. We have established 8 sample areas (with two replicate plots in each) in a chronosequence of 4 age classes (2 to 152 years since the last fire). The chronosequence consisted of four types of areas: (i) fire 2 years ago old areas, (ii) fire 42 years ago, (iii) fire around 60 years ago, (iv) fire 152years ago. The total C contents in the first 10 cm of the topsoil were highest on old areas (fire 150 years ago) and lowest on new areas (fire 2-40 years ago). The total C pool at the old site was 2411 g m-2. The area where the fire was 2 years ago had the lowest total C pools, 1474 g m-2 respectively. The lowest C pools were measured from area where the fire was 60 years ago, and from B horizon. The highest C pools were measured on old areas from top soil horizons (consisting of decomposing litter). When we compared the total C pools, the newly burned areas (areas where the fire was 2 - 40 years ago) formed one group (had similar values of total C) and old areas (areas where the fire was 60-150 years ago) formed another group with similar values. These results are also correlating to the soil respiration measurements. Soil CO2 efflux was lowest straight after the fire (0.042 mg CO2 m-2 s-1) and it reached a stable level of around

  15. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Montesino Pouzols, Federico; Mönkkönen, Mikko;

    2016-01-01

    standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed...

  16. Climatic sensitivity, water-use efficiency, and growth decline in boreal jack pine (Pinus banksiana) forests in Northern Ontario

    Science.gov (United States)

    Dietrich, Rachel; Bell, F. Wayne; Silva, Lucas C. R.; Cecile, Alice; Horwath, William R.; Anand, Madhur

    2016-10-01

    Rises in atmospheric carbon dioxide (atmCO2) levels are known to stimulate photosynthesis and increase intrinsic water-use efficiency (iWUE) in trees. Stand-level increases in iWUE depend on the physiological response of dominant species to increases in atmCO2, while tree-level response to increasing atmCO2 depends on the balance between the direct effects of atmCO2 on photosynthetic rate and the indirect effects of atmCO2 on drought conditions. The aim of this study was to characterize the response of boreal jack pine (Pinus banksiana) stands in Northern Ontario to changes in atmCO2 and associated climatic change over the past 100 years. The impact of changes in growing season length, temperature, and precipitation, as well as atmCO2 on tree growth, was determined using stable carbon isotopes and dendrochronological analysis. Jack pine stands in this study were shown to be in progressive decline. As expected, iWUE was found to increase in association with rising atmCO2. However, increases in iWUE were not directly coupled with atmCO2, suggesting that the degree of iWUE improvement is limited by alternative factors. Water-use efficiency was negatively associated with tree growth, suggesting that warming- and drought-induced stomatal closure has likely led to deviations from expected atmCO2-enhanced growth. This finding corroborates that boreal forest stands are likely to face continued stress under future climatic warming.

  17. Climate sensitivity of reproduction in a mast-seeding boreal conifer across its distributional range from lowland to treeline forests.

    Science.gov (United States)

    Roland, Carl A; Schmidt, Joshua H; Johnstone, Jill F

    2014-03-01

    Mast-seeding conifers such as Picea glauca exhibit synchronous production of large seed crops over wide areas, suggesting climate factors as possible triggers for episodic high seed production. Rapidly changing climatic conditions may thus alter the tempo and spatial pattern of masting of dominant species with potentially far-reaching ecological consequences. Understanding the future reproductive dynamics of ecosystems including boreal forests, which may be dominated by mast-seeding species, requires identifying the specific cues that drive variation in reproductive output across landscape gradients and among years. Here we used annual data collected at three sites spanning an elevation gradient in interior Alaska, USA between 1986 and 2011 to produce the first quantitative models for climate controls over both seedfall and seed viability in P. glauca, a dominant boreal conifer. We identified positive associations between seedfall and increased summer precipitation and decreased summer warmth in all years except for the year prior to seedfall. Seed viability showed a contrasting response, with positive correlations to summer warmth in all years analyzed except for one, and an especially positive response to warm and wet conditions in the seedfall year. Finally, we found substantial reductions in reproductive potential of P. glauca at high elevation due to significantly reduced seed viability there. Our results indicate that major variation in the reproductive potential of this species may occur in different landscape positions in response to warming, with decreasing reproductive success in areas prone to drought stress contrasted with increasing success in higher elevation areas currently limited by cool summer temperatures.

  18. Mapping boreal forest biomass with imagery from polarimetric and semi-polarimetric SAR sensors / Mapeamento da biomassa fl orestal boreal com imagens dos sensores SAR polarimétricos e semi-polarimétricos

    Directory of Open Access Journals (Sweden)

    Yrjo Rauste

    2008-09-01

    Full Text Available Data from ALOS/Palsar and TerraSAR-X were used to estimate forest biomass in Boreal forest zone in Finland. In the study site in Heinavesi (forest biomass between 0 and 255 tons/ha, the HH-polarised componentof dual-polarised ALOS/Palsar produced biomass estimation accuracies (RMSE between 35 and 42 tons/ha. In the Kuortane site (biomass0…188 tons/ha the RMSE varied between 25 and 28 tons/ha. Since onlytwo winter-time scenes from TerraSAR-X were available, TerraSAR-X results were very preliminary. The phase of the HH-VV cross-coherenceproduced the highest biomass-correlations among the TerraSAR-X derived features. This produced a biomass estimation accuracy (RMSE of 49 tons/ha in the Heinavesi study site.

  19. On the decline of ground lichen forests in the Swedish boreal landscape: Implications for reindeer husbandry and sustainable forest management.

    Science.gov (United States)

    Sandström, Per; Cory, Neil; Svensson, Johan; Hedenås, Henrik; Jougda, Leif; Borchert, Nanna

    2016-05-01

    Lichens are a bottleneck resource for circumpolar populations of reindeer, and as such, for reindeer husbandry as an indigenous Sami land-use tradition in northern Sweden. This study uses ground lichen data and forest information collected within the Swedish National Forest Inventory since 1953, on the scale of northern Sweden. We found a 71 % decline in the area of lichen-abundant forests over the last 60 years. A decline was observed in all regions and age classes and especially coincided with a decrease of >60 year old, open pine forests, which was the primary explanatory factor in our model. The effects of reindeer numbers were inconclusive in explaining the decrease in lichen-abundant forest. The role that forestry has played in causing this decline can be debated, but forestry can have a significant role in reversing the trend and improving ground lichen conditions.

  20. Increased autumn rainfall disrupts predator-prey interactions in fragmented boreal forests.

    Science.gov (United States)

    Terraube, Julien; Villers, Alexandre; Poudré, Léo; Varjonen, Rauno; Korpimäki, Erkki

    2016-07-02

    There is a pressing need to understand how changing climate interacts with land-use change to affect predator-prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food-storing behaviour of a generalist predator, the pygmy owl, using a unique data set of 15 850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High-quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex-specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex-specific foraging strategies and energy requirements. Long-term temporal stability in local vole abundance refutes the hypothesis of climate-driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability.

  1. Differential response of bird functional traits to post-fire salvage logging in a boreal forest ecosystem

    Science.gov (United States)

    Azeria, Ermias T.; Ibarzabal, Jacques; Hébert, Christian; Boucher, Jonathan; Imbeau, Louis; Savard, Jean-Pierre L.

    2011-05-01

    The concept of functional trait-environment relationship posits that species in a local community should possess similar traits that match the selective environment. The present study examines species trait-habitat (using Fourth-corner and RLQ analyses) and habitat occupancy patterns (logistic regression models) of bird assemblages in boreal forest stands following disturbances by forest fire and salvage logging. The stands differed in the amount and composition of residual tree retention, salvage- and aquatic-edges, degree of burn severity (all measured at 100 and 500 m buffers), as well as landscape-level variables such as distance to previously burned forests. Tests of trait-habitat relationships showed that canopy-nesters and bark- and foliage- insectivores required high levels of residual trees of low burn severity, with the feeding guilds showing affinity for different stand composition. In contrast, ground-nesters and omnivores thrived in salvaged areas and associated edges. In addition, cavity-nesting and ground-foragers were associated with severely burned stands. The species' habitat occupancy patterns were commensurate with trait requirements, which also appeared to be scale-dependent. For example, some fire-associated species had high occupancy probability in severely burned stands at small-scale (100 m buffer), which was consistent with their cavity-nesting trait. This pattern, however, was not evident at large-scale, where their feeding requirement (bark-insectivores) for low-severity burns dominated. Our study suggests that trait-habitat relationships can provide critical information to the complex ways species' relate to key habitat factors following natural and anthropogenic disturbances.

  2. Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data

    Directory of Open Access Journals (Sweden)

    N. Spichtinger

    2004-01-01

    Full Text Available Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS aerosol index (AI data and Global Ozone Monitoring Experiment (GOME tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.

  3. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    Science.gov (United States)

    Steyaert, L.T.; Hall, F.G.; Loveland, T.R.

    1997-01-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within

  4. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    Science.gov (United States)

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree

  5. Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate.

    Science.gov (United States)

    Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui

    2014-06-01

    Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P climate moisture index (CMI) and decreased significantly with annual minimum temperature (T min), annual mean temperature (T mean) and the number of degree days below 0°C (DD0), which was inconsistent with previous studies (Adams et al. 2009; van Mantgem et al. 2009; Allen et al. 2010). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate.

  6. Boreal Forest Land Cover Mapping in Iceland and Finland Using Sentinel-1A

    Science.gov (United States)

    Haarpaintner, J.; Davids, C.; Storvold, R.; Johansen, K. S.; Arnason, K.; Rauste, Y.; Mutanen, T.

    2016-08-01

    The complete Sentinel-1A (S1A) data set since autumn 2014 until September 2015 over two test sites of the EU FP7 project NorthState has been collected: Hallormsstaður in the north-east of Iceland of 50x50 km2 and Hyytiälä in southern Finland of 200x200 km2. The dense 20m-resolution dual-polarization S1A time series allow for a new level of forest land cover monitoring capabilities compared to ESA's former Envisat A(dvanced)SAR sensor. Temporal filtered dual- polarized mosaics clearly show different land covers that can be classified into forest land cover (FLC) products. Even single agricultural fields can be distinguished from these mosaics. The S1A data set also allowed the construction of a precise water mask for these sites. Results of S1A-based FLC based on two different approaches are compared to 2010 ALOS PALSAR derived FLC results and very high resolution (VHR) NDVI aerial photos. The forest land cover classes extracted are forest, disturbed forest, peatland, grassland, bare land, and settlements.

  7. Leaf Area Index (LAI Estimation of Boreal Forest Using Wide Optics Airborne Winter Photos

    Directory of Open Access Journals (Sweden)

    Pauline Stenberg

    2009-12-01

    Full Text Available A new simple airborne method based on wide optics camera is developed for leaf area index (LAI estimation in coniferous forests. The measurements are carried out in winter, when the forest floor is completely snow covered and thus acts as a light background for the hemispherical analysis of the images. The photos are taken automatically and stored on a laptop during the flights. The R2 value of the linear regression of the airborne and ground based LAI measurements was 0.89.

  8. Behaviour of {sup 137}Cs in the Boreal forest ecosystem of central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Fawaris, B.H.

    1995-12-31

    Behaviour of Chernobyl fallout 1{sup 37}Cs in a coniferous forest ecosystem in central Sweden was investigated between 1990 and 1994. Results demonstrated that forest soil belongs to nutrient deficient type, and deposited fallout 1{sup 37}Cs from Chernobyl nuclear accident (CNA) was retained in the upper 5 cm of humic forest soil layer, with a venial migration deeper into soil profile. No correlation between forest soil exchangeable and total potassium (K{sup +}) and 1{sup 37}Cs transfer parameters was observed. However, addition of K{sup +}, found to efficiently reduce 1{sup 37}Cs uptake by sheep`s fescue and the addition of stable caesium (1{sup 33}Cs{sup +}) enhanced it. The addition of ammonium (NH{sub 4}{sup +}) was slightly stimulating the uptake of 1{sup 37}Cs by sheep`s fescue in the first cut only. Field plants showed a considerably reduction in their 1{sup 37}Cs activity concentrations. Relative to their 1{sup 37}Cs levels of 1986-89, a little reduction in heather occurred eight years after CNA. In contrast the reductions in lingonberry and bilberry were 87% and 68%, respectively. Three fractions of forest soil bound 1{sup 37}Cs were observed due to sequential extraction procedure (SEP). The first, is easily extractable 1{sup 37}Cs fraction, it comprises 22% of total forest soil 1{sup 37}Cs inventory in the upper 5 cm layer. The second, is soil organically and biologically bound 1{sup 37}Cs comprises about 30% of soil bound 1{sup 37}Cs. This fraction might be accounted for long-term soil available 1{sup 37}Cs for plant uptake after bio-degradation processes by soil microorganisms. The third, is the residual fraction, it comprises more than 35% of total forest soil 1{sup 37}Cs inventory, and may be associated with soil components which are probably of organic nature. Sorption of 1{sup 37}Cs by zeolite (Mordenite) revealed that soil bound 1{sup 37}Cs is to some extent more mobile in forest soils with high OM% and low pH than those with low OM%.

  9. Modeling feedbacks between a boreal forest and the planetary boundary layer

    Science.gov (United States)

    Hill, T. C.; Williams, M.; Moncrieff, J. B.

    2008-08-01

    The atmosphere and biosphere interact strongly in the planetary boundary layer. Understanding the mechanisms controlling the coupled atmosphere-biosphere system allows improved scaling between observations at the stand scale (e.g., flux towers) and those at larger scales, e.g., airborne or satellite measurements. Simulation of the joint atmosphere-biosphere system permits the study of feedbacks occurring within the coupled system. In this paper, two well-tested models, one a process-based biosphere model (SPA) and the other a planetary boundary layer model (CAPS), were coupled to allow simulation of atmosphere-biosphere feedbacks and interactions with a focus on ecological controls. As part of the validation process, the biosphere model was tested using eddy covariance, surface meteorology, and soil data collected during a 120 day period at a boreal black spruce site during the 1994 BOREAS field campaign. The coupled atmosphere-biosphere model was also validated with radiosonde data above the black spruce site, demonstrating that atmosphere and biosphere models can be coherently combined. We show that negative feedbacks at the black spruce site have strong moderating effects. The feedbacks reduce the mean impact of LAI changes on the atmospheric surface layer by 21% for latent energy, 64% for air temperature, and 44% for water mixing ratio. We show that both radiative and hydraulic limitations imposed by the vegetation structure strongly affected the interactions within the atmosphere-biosphere system, while the impact of the canopy roughness length was weak.

  10. Snowfall Measurements at a Boreal Forest Site in Saskatchewan/Canada: Contribution to WMO Solid Precipitation Intercomparison Experiment (SPICE)

    Science.gov (United States)

    Yang, D.

    2015-12-01

    Snowfall is important to cold region climate and hydrology including Canada. Large uncertainties and biases exist in gauge-measured precipitation datasets and products. These uncertainties affect important decision-making, water resources assessments, climate change analyses, and calibrations of remote sensing algorithms and land surface models. Efforts have been made at both the national and international levels to quantity the errors/biases in precipitation measurements, such as the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE). As part of Canada's contribution to the WMO SPICE project, a test site has been set up in the southern Canadian Boreal forest to compare the DFIR and bush gauge and test other instruments. Snowfall and meteorological data have been collected over the past 2 winters. This presentation will summarize the results of recent data analyses, evaluate the performance of various gauges for snowfall observations in the northern regions, and discuss future perspectives regarding cold/mountain region precipitation research. The methods and results of this research will improve precipitation measurements and data quality over the cold and mountain regions, directly supporting the WMO SPICE and the MOUNTerrain projects.

  11. Airborne measurements over the boreal forest of southern Finland during new particle formation events in 2009 and 2010

    Energy Technology Data Exchange (ETDEWEB)

    Schobesberger, S.; Vaananen, R.; Leino, K. [Helsinki Univ. (Finland). Dept. of Physics, Division of Atmospheric Sciences] [and others

    2013-06-01

    We conducted airborne observations of aerosol physical properties over the southern Finland boreal forest environment. The aim was to investigate the lower tropospheric aerosol (up to 4-km altitude) over an area of 250 by 200 km, in particular during new particle formation (NPF) events, and to address the spatial variability of aerosol number concentration and number size distribution. The regional NPF events, detected both airborne and at the ground, with air masses originating from the Arctic or northern Atlantic Ocean were studied throughout the boundary layer and throughout the area covered. Three suitable case studies are presented in more detail. In two of these studies, the concentrations of nucleation mode particles (3-10 nm in diameter) were found considerably higher (up to a factor of 30) in the upper parts of the planetary boundary layer compared to ground-based measurements during the nucleation events. The observed vertical variation can be connected to boundary layer dynamics and interactions between the boundary layer and the lower free troposphere, likely yielding high concentrations of newly formed aerosol particles. Our results suggest that nucleation does not necessarily occur close to the surface. In one presented case we found evidence of NPF occurring in a limited area above cloud, in the complete absence of a regional NPF event. (orig.)

  12. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    Science.gov (United States)

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  13. N cycling and the composition of terpenes and tannins in boreal forest soils: Effects of logging residues

    Science.gov (United States)

    Smolander, Aino; Kitunen, Veikko; Kukkola, Mikko; Tamminen, Pekka

    2014-05-01

    There is increasing evidence available that certain terpenes and tannins may mediate substantial changes in nitrogen cycling processes in boreal forest soils. Terpenes and tannins are two important groups of plant secondary metabolites: Terpenes are hydrocarbons having different number of isoprene-derived units and tannins are complex polyphenolic compounds able to interact with proteins. Logging residues, consisting of fresh tree tops and branches with needles contain large amounts of terpenes and tannins. Currently there is increasing demand for forest biomass for bioenergy production. Therefore, harvesting of logging residues has become more common from both clear-cutting and thinning stands, instead of conventional stem-only harvest where logging residues are retained on the site. Our aim was to determine how logging residues affect soil N cycling processes in Scots pine and Norway spruce thinning stands in long-term, and how these processes are related to the composition of terpenes and tannins in the soil. Samples were taken from the humus layer of pine and spruce experiments which had been thinned 4-to-19 years before; in the thinning different amounts of logging residues had been distributed on the plots. Logging residues had only little effect on soil microbial biomass N or C. However, in several sites logging residues increased the rate of net N mineralization and the ratios net N mineralization/ C mineralization and net N mineralization/microbial biomass N, and these positive effects were very long-lasting. Logging residues also changed the composition of different terpenes and condensed tannins in soil. In general, with regard to the processes and ratios indicating N availability, stem-only harvest seems to be more favorable than whole-tree harvest. The results from long-term field experiments will be discussed in relation to the effects of different terpenes and tannins, observed in short-term laboratory experiments, on N cycling processes.

  14. Temporal Trends of Ecosystem Development on Different Site Types in Reclaimed Boreal Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2015-06-01

    Full Text Available Forest development after land reclamation in the oil sands mining region of northern Alberta, Canada was assessed using long-term monitoring plots from both reclaimed and natural forests. The metrics of ecosystem development analyzed included measures of plant community structure and composition and soil nutrient availability. Early seral reclamation plots were grouped by site type (dry and moist-rich and age categories, and these were compared with mature natural forests. There were few significant differences in ecosystem metrics between reclamation site types, but natural stands showed numerous significant differences between site types. Over time, there were significant changes in most plant community metrics such as species richness and cover of plant community groups (e.g., forbs, shrubs, and non-native species, but these were still substantially different from mature forests 20 years after reclamation. Available soil nitrogen did not change over time or by reclamation site type but available soil phosphorus did, suggesting that phosphorus may be a more suitable indicator of ecosystem development. The significant temporal changes in these reclaimed ecosystems indicate that studies of ecosystem establishment and development on reclaimed areas should be conducted over the long-term, emphasizing the utility of monitoring using long-term plot networks.

  15. Effects of Conversion from Boreal Forest to Arctic Steppe on Soil Communities and Ecosystem Carbon Pools

    Science.gov (United States)

    Han, P. D.; Natali, S.; Schade, J. D.; Zimov, N.; Zimov, S. A.

    2014-12-01

    The end of the Pleistocene marked the extinction of a great variety of arctic megafauna, which, in part, led to the conversion of arctic grasslands to modern Siberian larch forest. This shift may have increased the vulnerability of permafrost to thawing because of changes driven by the vegetation shift; the higher albedo of grassland and low insulation of snow trampled by animals may have decreased soil temperatures and reduced ground thaw in the grassland ecosystem, resulting in protection of organic carbon in thawed soil and permafrost. To test these hypothesized impacts of arctic megafauna, we examined an experimental reintroduction of large mammals in northeast Siberia, initiated in 1988. Pleistocene Park now contains 23 horses, three musk ox, one bison, and several moose in addition to the native fauna. The park is 16 square km with a smaller enclosure (animals spend most of their time and our study was focused. We measured carbon-pools in forested sites (where scat surveys showed low animal use), and grassy sites (which showed higher use), within the park boundaries. We also measured thaw depth and documented the soil invertebrate communities in each ecosystem. There was a substantial difference in number of invertebrates per kg of organic soil between the forest (600 ± 250) and grassland (300 ± 250), though these differences were not statistically significant they suggest faster nutrient turnover in the forest or a greater proportion of decomposition by invertebrates than other decomposers. While thaw depth was deeper in the grassland (60 ± 4 cm) than in the forest (40 ± 6 cm), we did not detect differences in organic layer depth or percent organic matter between grassland and forest. However, soil in the grassland had higher bulk density, and higher carbon stocks in the organic and mineral soil layers. Although deeper thaw depth in the grassland suggests that more carbon is available to microbial decomposers, ongoing temperature monitoring will help

  16. Linking belowground and aboveground phenology in two boreal forests in Northeast China.

    Science.gov (United States)

    Du, Enzai; Fang, Jingyun

    2014-11-01

    The functional equilibrium between roots and shoots suggests an intrinsic linkage between belowground and aboveground phenology. However, much less understanding of belowground phenology hinders integrating belowground and aboveground phenology. We measured root respiration (Ra) as a surrogate for root phenology and integrated it with observed leaf phenology and radial growth in a birch (Betula platyphylla)-aspen (Populus davidiana) forest and an adjacent larch (Larix gmelinii) forest in Northeast China. A log-normal model successfully described the seasonal variations of Ra and indicated the initiation, termination and peak date of root phenology. Both root phenology and leaf phenology were highly specific, with a later onset, earlier termination, and shorter period of growing season for the pioneer tree species (birch and aspen) than the dominant tree species (larch). Root phenology showed later initiation, later peak and later termination dates than leaf phenology. An asynchronous correlation of Ra and radial growth was identified with a time lag of approximately 1 month, indicating aprioritization of shoot growth. Furthermore, we found that Ra was strongly correlated with soil temperature and air temperature, while radial growth was only significantly correlated with air temperature, implying a down-regulating effect of temperature. Our results indicate different phenologies between pioneer and dominant species and support a down-regulation hypothesis of plant phenology which can be helpful in understanding forest dynamics in the context of climate change.

  17. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest

    Science.gov (United States)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.

    1994-01-01

    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  18. Death by a thousand cuts : impacts of in situ oil sands development on Alberta's boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R. [Canadian Parks and Wilderness Society, Edmonton, AB (Canada); Dyer, S. [Pembina Institute, Drayton Valley, AB (Canada)

    2006-08-15

    In situ oil sands development techniques are significantly more damaging to the environment than conventional oil extraction methods. The area impacted by oil sands development in Alberta is expected to be in the region of 13.8 million hectares, equal to 21 per cent of the province. In this report, the 10,600 hectare OPTI-Nexen Long Lake project was used as a case study of a state-of-the art steam assisted gravity drainage (SAGD) operation. The study suggested that a total of 8.3 per cent of the Long Lake lease will be cleared for SAGD infrastructure. Approximately 80 per cent of the land parcel will be within 250 m of an industrial feature. Nearly 24,000 m{sup 3} of water will be needed each day for steam production and processing. If all leases for oil sands development in Alberta are subjected to the same industrial footprint as the Long Lake project, 296,00 hectares of forest will be cleared and over 30,000 km of access roads will be built. The boreal forest in which the SAGD developments are taking place is home to many wildlife species who are sensitive to industrial disturbances. Habitats for many wildlife species will be reduced to small scattered islands, which may result in a serious decline in regional biodiversity. Ecological tipping points for many species are already being exceeded at current levels of industrial development. This report presented evidence from studies of caribou, furbearers such as lynx and martens and forest birds which indicated that some species are at risk of extirpation from oil sands development. The report recommended the immediate implementation of conservation offset measures such as the establishment of wildlife reserves where industrial development is not permitted. It was recommended that a cap be placed on cumulative industrial impacts to maintain basic ecological function. It was concluded that there is an urgent need for the development of a regional strategic plan that includes long-term management objectives that are

  19. Modelling Marten (Martes americana Movement Costs in a Boreal Forest: Effects of Grain Size and Thematic Resolution

    Directory of Open Access Journals (Sweden)

    Ophélie Planckaert

    2012-01-01

    Full Text Available We investigated landscape resistance to movements of American marten (Martes americana based on snow-tracking data. We generated movement cost maps of the study area with different grain size, thematic resolution, and habitat-specific resistance to movements. We compared simulated tracks obtained from resistance maps to real tracks plotted along transects that we surveyed in winters 2004 to 2008 at the Montmorency Forest, Quebec, Canada. Simulated tracks were located at the intersection between least-cost paths simulated across the study area and transects. We used nearest-neighbour distances between simulated and real tracks to assess the performance of resistance maps and estimate landscape resistance parameters. Simulations with specified costs to movement for open areas, young forest, and mature forest performed better than simpler resistance scenarios, suggesting that resistance to marten movements differed among those landscape attributes that were considered. Simulations with a map grain size of 100 m performed significantly better than 5, 25, and 300 m, possibly because of gap crossing avoidance. Model performance (compared to null model was maximal when resistance to movement in open habitat was set to 20 times higher than in mature forest, but uncertainty around this estimate was large. This research demonstrates that presence-only (point data can be used to parameterize movements using spatially explicit modelling.

  20. Application of boreal forest toxicity data in the decision-making process for contaminated soil clean-up remediation at oil and gas fields in Western Canada

    Energy Technology Data Exchange (ETDEWEB)

    Scroggins, R.; Princz, J. [Environment Canada, Ottawa, ON (Canada); Moody, M. [Saskatchewan Research Council, Regina, SK (Canada); Olsgard-Dumanski, M.; Haderlein, L. [WorleyParsons Canada, Calgary, AB (Canada); Moore, B. [Devon Canada Corp., Calgary, AB (Canada)

    2010-07-01

    This presentation reported on a multi-year research project in which a broad range of boreal forest test methods for assessing petroleum hydrocarbon (PHC) toxicity in contaminated soil were used to show that clean-up decisions can be made on a field-wide basis through focused biological testing of typical drill sump and flare pit locations within an oil and gas field. Remediation at most sites will likely be limited to the Alberta soil eco-contact guidelines for PHC F2 and F3 fractions. Since Tier 1 eco-contact guidelines are derived using toxicity data from fresh crude and using agricultural plant species, it was more logical to follow a Tier 2 eco-contact pathway approach because most contamination was related to drilling sumps and flare pits containing highly weathered PHCs and species native to the boreal eco-zone of Canada. The site-specific remedial objective (SSRO) option within the Tier 2 guideline was used because of the large number of sites requiring remediation, and the similarity of sites within pre-determined Risk Assessment Zones. For representative contaminated soils, a SSRO was derived from the twenty-fifth percentile of the estimated species sensitivity distribution of all acceptable boreal plant, earthworm, springtail and mite test endpoints. The purpose of the project was to reduce soil volumes sent to landfill during site remediation by showing that residual impacts from weathered PHC in soil do not have damaging effects on boreal forest receptors following remediation. Data was included to show the value of this approach and the variability between sites and their effect on regionalizing a Tier 2 eco-contact guideline.

  1. Optimizing any-aged management of mixed boreal forest under residual basal area constraints

    Institute of Scientific and Technical Information of China (English)

    Timo Pukkala; Erkki Lähde; Olavi Laiho

    2014-01-01

    The current trend of forest management in many countries is reduced use of clear-felling and planting, and increased use of continuous cover management. In Finland, the new forest act of 2014 made all types of cuttings equally allowable on the condition that if the post-cutting residual stand basal area is too low, the stand must be regenerated within certain time frame. Forest landowner can freely choose between even-and uneven-aged management. This study developed a method for opti-mizing the timing and type of cuttings without the need to categorize the management system as either even-aged or uneven-aged. A management system that does not set any requirements on the sequence of post-cutting diameter distributions is called any-aged management. Planting or sow-ing was used when stand basal area fell below the required minimum basal area and the amount of advance regeneration was less than required in the regulations. When the cuttings of 200 stands managed earlier with even-aged silviculture were optimized with the developed system, final felling followed by artificial regeneration was selected for almost 50%of stands. Reduction of the minimum basal area limit greatly decreased the use of artificial regeneration but improved profitability, suggesting that the truly optimal management would be to use natural regeneration in financially mature stands. The optimal type of thinning was high thinning in 97-99%of cases. It was calculated that the minimum basal area re-quirement reduced the mean net present value of the stands by 12-16%when discount rate was 3-5%.

  2. Functional responses and resilience of boreal forest ecosystem after reduction of deer density.

    Directory of Open Access Journals (Sweden)

    Marianne Bachand

    Full Text Available The functional trait-based approach is increasingly used to predict responses of ecological communities to disturbances, but most studies target a single taxonomic group. Here, we assessed the resilience of a forest ecosystem to an overabundant herbivore population by assessing changes in 19 functional traits for plant, 13 traits for ground beetle and 16 traits for songbird communities after six years of controlled browsing on Anticosti Island (Quebec, Canada. Our results indicated that plants were more responsive to 6 years of reduced browsing pressure than ground beetles and songbirds. However, co-inertia analysis revealed that ground beetle communities responded in a similar way than plant communities with stronger relationships between plant and ground beetle traits at reduced deer density, a pattern not detected between plant and songbird. High deer density favored plants species that reproduce vegetatively and with abiotic pollination and seed dispersal, traits implying little interaction with animal. On the other hand, traits found at reduced deer density mostly involved trophic interaction. For example, plants in this treatment had fleshy fruits and large seeds dispersed by birds or other animals whereas ground beetle species were carnivorous. Overall, our results suggest that plant communities recovered some functional components to overabundant herbivore populations, since most traits associated with undisturbed forests were reestablished after six years of deer reduction. The re-establishment of functional plant communities with traits involving trophic interaction induces changes in the ground-beetle trait community, but forest structure remains likely insufficiently heterogeneous to shift the songbird trait community within six years.

  3. Functional responses and resilience of boreal forest ecosystem after reduction of deer density.

    Science.gov (United States)

    Bachand, Marianne; Pellerin, Stéphanie; Moretti, Marco; Aubin, Isabelle; Tremblay, Jean-Pierre; Côté, Steeve D; Poulin, Monique

    2014-01-01

    The functional trait-based approach is increasingly used to predict responses of ecological communities to disturbances, but most studies target a single taxonomic group. Here, we assessed the resilience of a forest ecosystem to an overabundant herbivore population by assessing changes in 19 functional traits for plant, 13 traits for ground beetle and 16 traits for songbird communities after six years of controlled browsing on Anticosti Island (Quebec, Canada). Our results indicated that plants were more responsive to 6 years of reduced browsing pressure than ground beetles and songbirds. However, co-inertia analysis revealed that ground beetle communities responded in a similar way than plant communities with stronger relationships between plant and ground beetle traits at reduced deer density, a pattern not detected between plant and songbird. High deer density favored plants species that reproduce vegetatively and with abiotic pollination and seed dispersal, traits implying little interaction with animal. On the other hand, traits found at reduced deer density mostly involved trophic interaction. For example, plants in this treatment had fleshy fruits and large seeds dispersed by birds or other animals whereas ground beetle species were carnivorous. Overall, our results suggest that plant communities recovered some functional components to overabundant herbivore populations, since most traits associated with undisturbed forests were reestablished after six years of deer reduction. The re-establishment of functional plant communities with traits involving trophic interaction induces changes in the ground-beetle trait community, but forest structure remains likely insufficiently heterogeneous to shift the songbird trait community within six years.

  4. Forest-stream linkages: effects of terrestrial invertebrate input and light on diet and growth of brown trout (Salmo trutta in a boreal forest stream.

    Directory of Open Access Journals (Sweden)

    Tibor Erős

    Full Text Available Subsidies of energy and material from the riparian zone have large impacts on recipient stream habitats. Human-induced changes, such as deforestation, may profoundly affect these pathways. However, the strength of individual factors on stream ecosystems is poorly understood since the factors involved often interact in complex ways. We isolated two of these factors, manipulating the flux of terrestrial input and the intensity of light in a 2×2 factorial design, where we followed the growth and diet of two size-classes of brown trout (Salmo trutta and the development of periphyton, grazer macroinvertebrates, terrestrial invertebrate inputs, and drift in twelve 20 m long enclosed stream reaches in a five-month-long experiment in a boreal coniferous forest stream. We found that light intensity, which was artificially increased 2.5 times above ambient levels, had an effect on grazer density, but no detectable effect on chlorophyll a biomass. We also found a seasonal effect on the amount of drift and that the reduction of terrestrial prey input, accomplished by covering enclosures with transparent plastic, had a negative impact on the amount of terrestrial invertebrates in the drift. Further, trout growth was strongly seasonal and followed the same pattern as drift biomass, and the reduction of terrestrial prey input had a negative effect on trout growth. Diet analysis was consistent with growth differences, showing that trout in open enclosures consumed relatively more terrestrial prey in summer than trout living in covered enclosures. We also predicted ontogenetic differences in the diet and growth of old and young trout, where we expected old fish to be more affected by the terrestrial prey reduction, but we found little evidence of ontogenetic differences. Overall, our results showed that reduced terrestrial prey inputs, as would be expected from forest harvesting, shaped differences in the growth and diet of the top predator, brown trout.

  5. Soil Moisture Limitations on Monitoring Boreal Forest Regrowth Using Spaceborne L-Band SAR Data

    Science.gov (United States)

    Kasischke, Eric S.; Tanase, Mihai A.; Bourgeau-Chavez, Laura L.; Borr, Matthew

    2011-01-01

    A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007 and one date in the summer of 2009 were used. Significant linear correlations were found between the log of aboveground biomass (range of 0.02 to 22.2 t ha-1) and (L-HH) and (L-HV) for the data collected on each of the three dates, with the highest correlation found using the LHV data collected when soil moisture was highest. Soil moisture, however, did change the correlations between L-band and aboveground biomass, and the analyses suggest that the influence of soil moisture is biomass dependent. The results indicate that to use L-band SAR data for mapping aboveground biomass and monitoring forest regrowth will require development of approaches to account for the influence that variations in soil moisture have on L-band microwave backscatter, which can be particularly strong when low levels of aboveground biomass occur

  6. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements

    Directory of Open Access Journals (Sweden)

    E. Finessi

    2011-08-01

    Full Text Available The study investigates the sources of fine organic aerosol (OA in the boreal forest, based on measurements including both filter sampling (PM1 and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS were employed to measure on-line air mass concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions.

    The NMR results supported the AMS speciation of oxidized organic aerosol (OOA into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls. Such component, contributing on average 50 % of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component showed features consistent with less oxygenated aerosols and was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated to the formation of terrestrial biogenic secondary organic aerosol (BSOA, based on the

  7. Evaluating the relationship between wildfire extent and nitrogen dry deposition in a boreal forest in interior Alaska

    Science.gov (United States)

    Nagano, Hirohiko; Iwata, Hiroki

    2017-03-01

    Alaska wildfires may play an important role in nitrogen (N) dry deposition in Alaskan boreal forests. Here we used annual N dry deposition data measured by CASTNET at Denali National Park (DEN417) during 1999-2013, to evaluate the relationships between wildfire extent and N dry deposition in Alaska. We established six potential factors for multiple regression analysis, including burned area within 100 km of DEN417 (BA100km) and in other distant parts of Alaska (BAAK), the sum of indexes of North Atlantic Oscillation and Arctic Oscillation (OI), number of days with negative OI (OIday), precipitation (PRCP), and number of days with PRCP (PRCPday). Multiple regression analysis was conducted for both time scales, annual (using only annual values of factors) and six-month (using annual values of BAAK and BA100km, and fire and non-fire seasons' values of other four factors) time scales. Together, BAAK, BA100km, and OIday, along with PRCPday in the case of the six-month scale, explained more than 92% of the interannual variation in N dry deposition. The influence of BA100km on N dry deposition was ten-fold greater than from BAAK; the qualitative contribution was almost zero, however, due to the small BA100km. BAAK was the leading explanatory factor, with a 15 ± 14% contribution. We further calculated N dry deposition during 1950-2013 using the obtained regression equation and long-term records for the factors. The N dry deposition calculated for 1950-2013 revealed that an increased occurrence of wildfires during the 2000s led to the maximum N dry deposition exhibited during this decade. As a result, the effect of BAAK on N dry deposition remains sufficiently large, even when large possible uncertainties (>40%) in the measurement of N dry deposition are taken into account for the multiple regression analysis.

  8. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.

    Science.gov (United States)

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-09-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.

  9. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2007-01-01

    Full Text Available The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.

  10. Stomata-controlled nighttime COS fluxes in a boreal forest: implications for the use of COS as a GPP tracer

    Science.gov (United States)

    Kooijmans, Linda M. J.; Maseyk, Kadmiel; Seibt, Ulli; Vesala, Timo; Mammarella, Ivan; Baker, Ian T.; Franchin, Alessandro; Kolari, Pasi; Sun, Wu; Keskinen, Helmi; Levula, Janne; Chen, Huilin

    2016-04-01

    Carbonyl Sulfide (COS) is a promising new tracer that can be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. COS and CO2 vegetation fluxes are closely related as these gases share the same diffusion pathway into stomata. This close coupling is the fundamental principle for the use of COS as tracer for GPP. Nonetheless, in contrast to CO2 , the uptake of COS by vegetation is not light-dependent, and therefore the vegetative uptake of COS can continue during the night as long as stomata are open. Nighttime stomatal conductance is observed in a variety of studies, and also nighttime depletion of COS concentrations is reported several times but it is not confirmed with field measurements that the depletion of COS in the night is indeed driven by stomatal opening. In the summer of 2015 a campaign took place at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests using a combination of COS measurements, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes, and collocated measurements of stomatal conductance and 222Radon. A high correlation between concentrations of 222Radon and COS implies that the radon-tracer method is a valuable tool to derive nighttime ecosystem COS fluxes. We find that soils contribute to 17% of the total ecosystem COS flux during nighttime in the peak growing season. Nighttime ecosystem COS fluxes show a correlation with stomatal conductance (R2 = 0.3), indicating that nighttime COS fluxes are primarily driven by vegetation. The COS vegetation fluxes will be compared with calculated fluxes from the Simple Biosphere model. Furthermore, the nighttime vegetative COS uptake covers a substantial fraction (25%) of the daily maximum COS uptake by vegetation. Accurate quantification of nighttime COS uptake is required to be able to use COS as a useful tracer for GPP.

  11. Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems

    DEFF Research Database (Denmark)

    Berg, Björn; Erhagen, Björn; Johansson, Maj-Britt

    2015-01-01

    We have reviewed the literature on the role of manganese (Mn) in the litter fall-to-humus subsystem. Available data gives a focus on North European coniferous forests. Manganese concentrations in pine (Pinus spp.) foliar litter are highly variable both spatially and temporally within the same...... litter species and for the genus Pinus we found a range from 0.03 to 3.7 mg g−1. Concentrations were related negatively to site mean annual temperature (MAT) and annual actual evapotranspiration (AET) for pine species litter but not for that of Norway spruce (Picea abies) as a single species. Combined...... data for several species showed a highly significant relationship to MAT. Manganese peroxidase is an Mn-dependent enzyme, found in white-rot fungi, essential for the degradation of lignin and ligninlike compounds. The decomposition rates of lignified litter tissue (late phase) is positively related...

  12. Carbon and nitrogen pools and mineralization rates in boreal forest soil after stump harvesting

    Science.gov (United States)

    Kaarakka, Lilli; Hyvönen, Riitta; Strömgren, Monika; Palviainen, Marjo; Persson, Tryggve; Olsson, Bengt A.; Helmisaari, Heljä-Sisko

    2016-04-01

    The use of forest-derived biomass has steadily increased in the Finland and Sweden during the past decades. Thus, more intensive forest management practices are becoming more common in the region, such as whole-tree harvesting, both above- and belowground. Stump harvesting causes a direct removal of carbon (C) in the form of biomass from the stand and can cause extensive soil disturbance, which in turn can result in increased C mineralization. In this study, the effects of stump harvesting on soil C and nitrogen (N) mineralization, and soil surface disturbance were studied at two different clear-felled Norway spruce (Picea abies) stands in Central Finland. The treatments were conventional stem-only harvesting combined with mounding (WTH) and stump harvesting (i.e. complete tree harvesting) combined with mounding (WTH+S). Logging residues were removed from all study sites. Soil samples down to a depth of 20 cm were systematically collected from the different soil disturbance surfaces (undisturbed soil, the mounds and the pits) 12-13 years after final harvest. Soil samples were incubated in the laboratory to determine the C and N mineralization rates. In addition, total C and N pools were estimated for each disturbance class and soil layer. Soil C and N pools were lower following stump harvesting, however, no statistically significant treatment effect was detected. Instead, C mineralization responses to treatment intensity was site-specific. C/N-ratio and organic matter content were significantly affected by harvest intensity. The observed changes in C and N pools appear to be related to the intrinsic variation of the surface disturbance and soil characteristics, and harvesting per se, rather than treatment intensity. Long-term studies are however needed to draw long-term conclusions whether stump harvesting significantly changes soil C and nutrient dynamics.

  13. Contrasting total carbon and nitrogen stocks between ecological site types in a Sub-Boreal research forest in central British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Bois, C.H.; Janzen, D.T. [Northern British Columbia Univ., Prince George, BC (Canada). Ecosystem Science and Management Program; Sanborn, P.T.; Fredeen, A.L. [Northern British Columbia Univ., Prince George, BC (Canada). Ecosystem Science and Management Program]|[Northern British Columbia Univ., Prince George, BC (Canada). Natural Resources and Environmental Studies Inst.

    2006-07-01

    Carbon (C) sequestration and carbon stocks within managed and natural forests have become topical issues since the adoption of the Kyoto Protocol. A multi-year study was conducted to evaluate the total C stocks present in a 10 km{sup 2} area of University of British Columbia's Aleza Lake Research Forest located 60 km east of Prince George in the Sub-Boreal Spruce biogeoclimatic zone of east-central British Columbia. The purpose was to address gaps in knowledge about forest C budgets, total pool sizes, dynamics of forest floor and mineral soil carbon by studying the effects of forest management. Sampling plots were chosen randomly within strata composed of the dominant ecological site classes, soil textures and management histories. The study involved the creation of 137 plots, of which 108 and 29 were located on fine and coarse textured soils, respectively. Sampling was reduced in these strata due to a shortage of middle-aged stands and the near lack of coarse textured soils. Data collection and sampling methodology were adapted from the National Forest Inventory Ground Sampling Guidelines of the Canadian Forest Service. Carbon stocks were measured in forest floor and mineral soil to a depth of 1 metre. The Dumas-combustion method was used to determine C and nitrogen (N) concentrations. It was determined that stand age did not decidedly change the forest floor or mineral soil total C and N in either fine or coarse textured soil plots. However, forest floor C and N were considerably higher in coarse textured soils compared to C and N measured in fine soil plots. Mineral soil C concentration decreased methodically with depth from 4.6 per cent C at 0 cm to 0.2 per cent at 100 cm. The paper also addressed the breakdown of forest floor and mineral soil C and N pools according to ecological site series.

  14. Leaf Area Index (LAI Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR and WorldView-2 Imagery

    Directory of Open Access Journals (Sweden)

    Paul Treitz

    2013-10-01

    Full Text Available Leaf Area Index (LAI is an important input variable for forest ecosystem modeling as it is a factor in predicting productivity and biomass, two key aspects of forest health. Current in situ methods of determining LAI are sometimes destructive and generally very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not provide sufficient spatial resolution or the precision required by forest managers for tactical planning. This paper focuses on estimating LAI from: (i height and density metrics derived from Light Detection and Ranging (LiDAR; (ii spectral vegetation indices (SVIs, in particular the Normalized Difference Vegetation Index (NDVI; and (iii a combination of these methods. For the Hearst Forest of Northern Ontario, in situ measurements of LAI were derived from digital hemispherical photographs (DHPs while remote sensing variables were derived from low density LiDAR (i.e., 1 m−2 and high spatial resolution WorldView-2 data (2 m. Multiple Linear Regression (MLR models were generated using these variables. Results from these analyses demonstrate: (i moderate explanatory power (i.e., R2 = 0.53 for LiDAR height and density metrics that have proven to be related to canopy structure; (ii no relationship when using SVIs; and (iii no significant improvement of LiDAR models when combining them with SVI variables. The results suggest that LiDAR models in boreal forest environments provide satisfactory estimations of LAI, even with narrow ranges of LAI for model calibration. Models derived from low point density LiDAR in a mixedwood boreal environment seem to offer a reliable method of estimating LAI at high spatial resolution for decision makers in the forestry community. This method can be easily incorporated into simultaneous modeling efforts for forest inventory variables using LiDAR.

  15. Underestimation of soil carbon stocks by Yasso07, Q, and CENTURY models in boreal forest linked to overlooking site fertility

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-04-01

    The soil organic carbon stock (SOC) changes estimated by the most process based soil carbon models (e.g. Yasso07, Q and CENTURY), needed for reporting of changes in soil carbon amounts for the United Nations Framework Convention on Climate Change (UNFCCC) and for mitigation of anthropogenic CO2 emissions by soil carbon management, can be biased if in a large mosaic of environments the models are missing a key factor driving SOC sequestration. To our knowledge soil nutrient status as a missing driver of these models was not tested in previous studies. Although, it's known that models fail to reconstruct the spatial variation and that soil nutrient status drives the ecosystem carbon use efficiency and soil carbon sequestration. We evaluated SOC stock estimates of Yasso07, Q and CENTURY process based models against the field data from Swedish Forest Soil National Inventories (3230 samples) organized by recursive partitioning method (RPART) into distinct soil groups with underlying SOC stock development linked to physicochemical conditions. These models worked for most soils with approximately average SOC stocks, but could not reproduce higher measured SOC stocks in our application. The Yasso07 and Q models that used only climate and litterfall input data and ignored soil properties generally agreed with two third of measurements. However, in comparison with measurements grouped according to the gradient of soil nutrient status we found that the models underestimated for the Swedish boreal forest soils with higher site fertility. Accounting for soil texture (clay, silt, and sand content) and structure (bulk density) in CENTURY model showed no improvement on carbon stock estimates, as CENTURY deviated in similar manner. We highlighted the mechanisms why models deviate from the measurements and the ways of considering soil nutrient status in further model development. Our analysis suggested that the models indeed lack other predominat drivers of SOC stabilization

  16. Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado

    Directory of Open Access Journals (Sweden)

    C. J. Schumacher

    2013-06-01

    Full Text Available Biological aerosol particles have become increasingly important for atmospheric study, but continuous measurements at high time and size resolution have not been available until recently. Here we report seasonal cycles of fluorescent biological aerosol particles (FBAP from the boreal forest in Hyytiälä, Finland (18 months and the semi-arid Manitou Experimental Forest, Colorado (10 months. FBAP at both locations were observed to be highest in summer and lowest in winter, increasing by factors of 12 and 5 between these seasons, respectively. In addition to the low temperatures and reduced sunlight during winter, we suggest that snow cover inhibited FBAP release from local terrestrial surfaces and that more extensive snow cover at the Finland site contributed to lower winter FBAP concentrations. Average size distributions at each site exhibited peaks between 1.5 and 6 μm in aerodynamic diameter. The Finland site consistently showed a dominant, narrow FBAP peak at ~3 μm in addition to discreet modes at ~1.5 and ~5 μm, whereas the Colorado site showed broader peaks at 1.5 and 5 μm, suggesting different modes of biological particles at the two sites. FBAP concentrations in both locations were shown to correlate with daily patterns of relative humidity (RH during each season. Also during summer at each site, average FBAP concentration scaled with RH, but at the Finland site RH values above ~82% led to a significant decrease in FBAP concentration. We hypothesize that this is due to dew formation that inhibits bioparticle release. Lastly we show that rain during summer at each location led to pronounced increases in both fluorescent and total particle concentrations with FBAP peak particle size at ~2 μm and concentration scaling with rain intensity. We suggest that these particles are primarily fungal spores and other bioparticles lofted from splashing of rain droplets hitting soil and leaf surfaces. During the summer at the Colorado site we

  17. Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado

    Science.gov (United States)

    Schumacher, C. J.; Pöhlker, C.; Aalto, P.; Hiltunen, V.; Petäjä, T.; Kulmala, M.; Pöschl, U.; Huffman, J. A.

    2013-12-01

    Biological aerosol particles have become increasingly important for atmospheric study, but continuous measurements at high time and size resolution have not been available until recently. Here we report seasonal cycles of fluorescent biological aerosol particles (FBAP) from the boreal forest in Hyytiälä, Finland (18 months) and the semi-arid Manitou Experimental Forest, Colorado (10 months). FBAP at both locations were observed to be highest in summer and lowest in winter, increasing by factors of 12 and 5 between these seasons, respectively. In addition to the low temperatures and reduced sunlight during winter, we suggest that snow cover inhibited FBAP release from local terrestrial surfaces and that more extensive snow cover at the Finland site contributed to lower winter FBAP concentrations. Average size distributions at each site exhibited peaks between 1.5 and 6 μm in aerodynamic diameter. The Finland site consistently showed a dominant, narrow FBAP peak at ~ 3 μm in addition to discreet modes at ~ 1.5 and ~ 5 μm, whereas the Colorado site showed broader peaks at 1.5 and 5 μm, suggesting different modes of biological particles at the two sites. FBAP concentrations in both locations were shown to correlate with daily patterns of relative humidity (RH) during each season. Also during summer at each site, average FBAP concentration scaled with RH, but at the Finland site RH values above ~ 82% led to a significant decrease in FBAP concentration. We hypothesize that this is due to dew formation that inhibits bioparticle release. Lastly we show that rain during summer at each location led to pronounced increases in both fluorescent and total particle concentrations with FBAP peak particle size at ~ 2 μm and concentration scaling with rain intensity. We suggest that these particles are primarily fungal spores and other bioparticles lofted from splashing of rain droplets hitting soil and leaf surfaces. During the summer at the Colorado site we consistently

  18. Testing the use of a land cover map for habitat ranking in boreal forests.

    Science.gov (United States)

    Hilli, Milla; Kuitunen, Markku T

    2005-04-01

    Habitat loss and modification is one of the major threats to biodiversity and the preservation of conservation values. We use the term ''conservation value'' to mean the benefit of nature or habitats for species. The importance of identifying and preserving conservation values has increased with the decline in biodiversity and the adoption of more stringent environmental legislation. In this study, conservation values were considered in the context of land-use planning and the rapidly increasing demand for more accurate methods of predicting and identifying these values. We used a k-nearest neighbor interpreted satellite (Landsat TM) image classified in 61 classes to assess sites with potential conservation values at the regional and landscape planning scale. Classification was made at the National Land Survey of Finland for main tree species, timber volume, land-use type, and soil on the basis of spectral reflectance in satellite image together with broad numerical reference data. We used the number and rarity of vascular plant species observed in the field as indicators for potential conservation values. We assumed that significant differences in the species richness, rarity, or composition of flora among the classes interpreted in the satellite image would also mean a difference in conservation values among these classes. We found significant differences in species richness among the original satellite image classes. Many of the classes examined could be distinguished by the number of plant species. Species composition also differed correspondingly. Rare species were most abundant in old spruce forests (>200 m3/ha), raising the position of such forests in the ranking of categories according to conservation values. The original satellite image classification was correct for 70% of the sites studied. We concluded that interpreted satellite data can serve as a useful source for evaluating habitat categories on the basis of plant species richness and rarity

  19. Meteorological pre-processing of incoming solar radiation and heat flux over a sparse boreal forest at a northern site during winter conditions

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2001-01-01

    Measurements from Northern Finland on radiation and turbulent fluxes over a sparse boreal forest with snow-covered ground were analysed. The measurements represent harsh winter conditions characterized by low sun angles. The absorption of incoming solar radiation in clear skies (turbidity......) was found to be a strong function of the solar elevation. At low solar elevation angles, commonly used expressions for turbidity did not fit the measurements well. A simple energy balance type met-processor performed well during daytime, but it was not satisfactory during night time. Simplifications...

  20. VOC measurements within a boreal forest during spring 2005: the role of monoterpenes and sulphuric acid in selected intense nucleation events

    Directory of Open Access Journals (Sweden)

    G. Eerdekens

    2009-06-01

    Full Text Available In this study we present measurements of selected trace gases and aerosol made in a boreal forest during the BACCI-QUEST IV intensive field campaign in Hyytiälä, Finland in April 2005. Several clear aerosol "nucleation events" were observed and characterized. One type of "event" occurred synchronously with huge increases in monoterpenes, while a second event type correlated instead with sulphuric acid. Here we elucidate the origin of these two distinct forms of aerosol production at the Hyytiälä site using the measurement data, airmass back trajectories and the optical stereoisomery of monoterpenes.

  1. Trends in concentrations and export of nitrogen in boreal forest streams

    Energy Technology Data Exchange (ETDEWEB)

    Sarkkola, S.; Nieminen, M. [Finnish Forest Research Inst., Vantaa (Finland); Koivusalo, H. [Aalto University School of Science and Technology, Espoo (Finland), Dept. of Civil and Environmental Engineering] [and others

    2012-11-01

    Temporal trends in inorganic and organic nitrogen (N) export in the stream water between 1979 and 2006 were studied in eight forested headwater catchments in eastern Finland, where an increasing air-temperature trend and a decreasing N-deposition trend has been observed since the 1980s. The Seasonal Kendall test was conducted to study if the stream water N concentrations have changed concurrently and a mixed model regression analysis was used to study which catchment characteristics and hydrometeorological variables were related to the variation in stream water N. The annual concentrations of total organic N (TON) increased at two catchments and the concentrations of nitrate (NO{sub 3}-N) and ammonium (NH{sub 4}-N) decreased at three and four catchments, respectively. The main factor explaining variation in concentrations and export of N was percentage of peatlands in a catchment. The NH{sub 4}-N concentrations were also related to the N deposition, and the exports of NO{sub 3}, NH{sub 4}, and TON to precipitation. Quantitative changes in both the N concentrations and exports were small. The results suggested relatively small changes in the N concentrations and exports between 1979 and 2006, most probably because the effects of increased air and stream water temperatures largely have been concealed behind the concurrent decrease in N deposition. (orig.)

  2. Thorium and uranium in soil fractions and certain macromycete species in boreal forest ecosystems

    Directory of Open Access Journals (Sweden)

    M. M. Vinichuk

    2012-07-01

    Full Text Available The content of thorium (Th and uranium (U in fractions of soil edaphosphere, rhizosphere, rhizoplane, fungal mycelium and fruit bodies were investigated. The concentrations of thorium in edaphosphere and rhizosphere fractions and mycelia of fungi are not different significantly and vary in the range of 0.74–1.45 mg kg–1 dry matter. The concentration of thorium in the rhizoplane fraction is 4 times lower than in the bulk soil – edaphosphere. The concentrations of uranium in edaphosphere, rhizosphere and rhizoplane fractions and fungi mycelium are not significantly different and vary between 3.11 and 9.36 mg kg–1 dry matter. The content of the studied natural isotopes in fruit bodies of fungi is 270 times lower than in the bulk soil: biological absorption coefficients of uranium and thorium in fruit bodies are on average 0.035 and 0.006, respectively. The contents of thorium and uranium in fungal mycelium and fruit bodies increase with increasing their concentrations in the soil. It is shown that in the fungi mycelium of the upper (0–5 cm layer of forest soil can be allocated 2.0–5.0 and 1.4–2.7 % of the total thorium and uranium soil content, respectively.

  3. Distribution of {sup 210}Pb and {sup 210}Po in boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Vaaramaa, Kaisa, E-mail: kaisa.vaaramaa@stuk.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Aro, Lasse [Finnish Forest Research Institute (METLA), Parkano Research Unit, Kaironiementie 54, 39700 Parkano (Finland); Solatie, Dina [STUK-Radiation and Nuclear Safety Authority, Regional Laboratory in Northern Finland, Laehteentie 2, 96400 Rovaniemi (Finland); Lehto, Jukka [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2010-11-15

    Vertical distribution and activity contents of {sup 210}Pb and {sup 210}Po were investigated in forest soils of Scots pine-dominated (Pinus sylvestris L.) stands from seven different locations in Finland. The mean total inventory in the soil profile, up to 20 cm, of {sup 210}Pb was 4.0 kBq m{sup -2} (range 3.1-5.0 kBq m{sup -2}) and {sup 210}Po 5.5 kBq m{sup -2} (range 4.0-7.4 kBq m{sup -2}), the organic soil layer containing 45% of the total inventory of both nuclides. In both the organic and the mineral layers the {sup 210}Po/{sup 210}Pb ratio was close to unity indicating a radioactive equilibrium between them. In the litter layer there was, however, a clear excess of {sup 210}Po suggesting that polonium is recycled via root uptake from the root zone to the ground surface. The activity concentration (Bq kg{sup -1}) of {sup 210}Pb clearly correlated with organic matter and the Fe, Al and Mn concentrations in soil indicating that radioactive lead is associated both with humic substances and the oxides of iron, aluminium and manganese. Radioactive lead was also seen to follow the behavior of stable lead. No systematic correlation between polonium and soil properties was seen.

  4. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, J.S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  5. Usability of multiangular imaging spectroscopy data for analysis of vegetation canopy shadow fraction in boreal forest

    Science.gov (United States)

    Markiet, Vincent; Perheentupa, Viljami; Mõttus, Matti; Hernández-Clemente, Rocío

    2016-04-01

    Imaging spectroscopy is a remote sensing technology which records continuous spectral data at a very high (better than 10 nm) resolution. Such spectral images can be used to monitor, for example, the photosynthetic activity of vegetation. Photosynthetic activity is dependent on varying light conditions and varies within the canopy. To measure this variation we need very high spatial resolution data with resolution better than the dominating canopy element size (e.g., tree crown in a forest canopy). This is useful, e.g., for detecting photosynthetic downregulation and thus plant stress. Canopy illumination conditions are often quantified using the shadow fraction: the fraction of visible foliage which is not sunlit. Shadow fraction is known to depend on view angle (e.g., hot spot images have very low shadow fraction). Hence, multiple observation angles potentially increase the range of shadow fraction in the imagery in high spatial resolution imaging spectroscopy data. To investigate the potential of multi-angle imaging spectroscopy in investigating canopy processes which vary with shadow fraction, we obtained a unique multiangular airborne imaging spectroscopy data for the Hyytiälä forest research station located in Finland (61° 50'N, 24° 17'E) in July 2015. The main tree species are Norway spruce (Picea abies L. karst), Scots pine (Pinus sylvestris L.) and birch (Betula pubescens Ehrh., Betula pendula Roth). We used an airborne hyperspectral sensor AISA Eagle II (Specim - Spectral Imaging Ltd., Finland) mounted on a tilting platform. The tilting platform allowed us to measure at nadir and approximately 35 degrees off-nadir. The hyperspectral sensor has a 37.5 degrees field of view (FOV), 0.6m pixel size, 128 spectral bands with an average spectral bandwidth of 4.6nm and is sensitive in the 400-1000 nm spectral region. The airborne data was radiometrically, atmospherically and geometrically processed using the Parge and Atcor software (Re Se applications Schl

  6. Interannual variations in soil moisture and productivity of boreal forest in Eastern Siberia

    Science.gov (United States)

    Sugimoto, A.; Tei, S.; Ohte, N.; Osaka, K.; Naito, D.; Maximov, T. C.

    2008-12-01

    Interannual variations in soil moisture and vegetation parameters were observed for 9 years in a larch forest near Yakutsk, Russia in Eastern Siberia, to investigate the response of the ecosystem. Soil moisture varied depending on both the amount of summer rainfall in the year and soil moisture at the end of the previous summer carried over as ice. The annual water budget of soil moisture (dQs) from the previous August to the current year primarily corresponds to precipitation, with a deviations caused by runoff (decrease in dQs), limited transpiration and/or upward transport of ice meltwater from the bottom of the active layer (increase in dQs). The source of water for transpiration was inferred from sap water delta18O. Snow meltwater with low delta18O preset in spring was used in early summer (June) every year, while, summer precipitation with high delta18O was transpired in a wet summer and ice meltwater with low delta18O was a major contributor to transpiration during droughts. Tree growth (GBH increment) correlated with soil moisture in August of the same year, and there was no correlation observed with the date of snow thaw. Larch needle delta13C showed negative correlation with soil moisture in the previous August, indicating lowering of stomatal conductance during a drought and carrying over of carbon until the following year. Litter fall production seems to increase with a two-year time lag behind the increase in soil moisture due to carrying over of soil moisture and response of vegetation. Larch needle delta15N (-1.3?n on average) negatively correlated with C/N ratio, possibly caused by water and nutrient availability.

  7. Vascular plant removal effects on biological N fixation vary across a boreal forest island gradient.

    Science.gov (United States)

    Gundale, Michael J; Wardle, David A; Nilsson, Marie-Charlotte

    2010-06-01

    There is currently much interest in understanding how biodiversity loss affects the functioning of ecosystems, but few studies have evaluated how ecosystem processes change in response to one another following biodiversity loss. We focused on a well-described gradient of 30 forested lake islands in northern Sweden, where island size determines the occurrence of lightning-ignited wildfire, which in turn determines successional stage, plant species composition, and productivity. We investigated the effect of biodiversity loss on biological nitrogen fixation by feathermosses through an experiment consisting of factorial removals of three understory shrub species (Vaccinium myrtillis, Vaccinium vitis-idaea, and Empetrum hermaphroditum) and two plant functional groups (shrubs and tree roots). We tested the hypothesis that, following vascular plant species loss, N fixation rates would be impaired by changes in pools or processes that increase extractable soil N, because changes in the supply rate of N to feathermosses should influence their demand for newly fixed N. Further, we hypothesized that the effects of removals on N fixation would depend on environmental context (i.e., island size), because it has been previously demonstrated that the effect of vascular plant species removal on N recycling pools and processes was strongest on productive islands. The data demonstrated that removal of two shrub species (V. vitis-idaea and E. hermaphroditum) negatively aflected the N fixation of Hylocomium splendens, but positively affected Pleurozium schreberi, resulting in unchanged areal N fixation rates. In the functional removal experiment, tree root removal resulted in a significant negative effect on N fixation. The effects of shrub and root removals on N fixation occurred only on small islands and thus were context dependent. This pattern did not correspond to the effect of shrub and root removal treatments on N-recycling pools or processes, which only occurred in response

  8. A multi-sensor lidar, multi-spectral and multi-angular approach for mapping canopy height in boreal forest regions

    Science.gov (United States)

    Selkowitz, David J.; Green, Gordon; Peterson, Birgit E.; Wylie, Bruce

    2012-01-01

    Spatially explicit representations of vegetation canopy height over large regions are necessary for a wide variety of inventory, monitoring, and modeling activities. Although airborne lidar data has been successfully used to develop vegetation canopy height maps in many regions, for vast, sparsely populated regions such as the boreal forest biome, airborne lidar is not widely available. An alternative approach to canopy height mapping in areas where airborne lidar data is limited is to use spaceborne lidar measurements in combination with multi-angular and multi-spectral remote sensing data to produce comprehensive canopy height maps for the entire region. This study uses spaceborne lidar data from the Geosciences Laser Altimeter System (GLAS) as training data for regression tree models that incorporate multi-angular and multi-spectral data from the Multi-Angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging SpectroRadiometer (MODIS) to map vegetation canopy height across a 1,300,000 km2 swath of boreal forest in Interior Alaska. Results are compared to in situ height measurements as well as airborne lidar data. Although many of the GLAS-derived canopy height estimates are inaccurate, applying a series of filters incorporating both data associated with the GLAS shots as well as ancillary data such as land cover can identify the majority of height estimates with significant errors, resulting in a filtered dataset with much higher accuracy. Results from the regression tree models indicate that late winter MISR imagery acquired under snow-covered conditions is effective for mapping canopy heights ranging from 5 to 15 m, which includes the vast majority of forests in the region. It appears that neither MISR nor MODIS imagery acquired during the growing season is effective for canopy height mapping, although including summer multi-spectral MODIS data along with winter MISR imagery does appear to provide a slight increase in the accuracy of resulting

  9. How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?

    Science.gov (United States)

    Chen, Xuemeng; Kerminen, Veli-Matti; Paatero, Jussi; Paasonen, Pauli; Manninen, Hanna E.; Nieminen, Tuomo; Petäjä, Tuukka; Kulmala, Markku

    2016-11-01

    Most of the ion production in the atmosphere is attributed to ionising radiation. In the lower atmosphere, ionising radiation consists mainly of the decay emissions of radon and its progeny, gamma radiation of the terrestrial origin as well as photons and elementary particles of cosmic radiation. These types of radiation produce ion pairs via the ionisation of nitrogen and oxygen as well as trace species in the atmosphere, the rate of which is defined as the ionising capacity. Larger air ions are produced out of the initial charge carriers by processes such as clustering or attachment to pre-existing aerosol particles. This study aimed (1) to identify the key factors responsible for the variability in ionising radiation and in the observed air ion concentrations, (2) to reveal the linkage between them and (3) to provide an in-depth analysis into the effects of ionising radiation on air ion formation, based on measurement data collected during 2003-2006 from a boreal forest site in southern Finland. In general, gamma radiation dominated the ion production in the lower atmosphere. Variations in the ionising capacity came from mixing layer dynamics, soil type and moisture content, meteorological conditions, long-distance transportation, snow cover attenuation and precipitation. Slightly similar diurnal patterns to variations in the ionising capacity were observed in air ion concentrations of the cluster size (0.8-1.7 nm in mobility diameters). However, features observed in the 0.8-1 nm ion concentration were in good connection to variations of the ionising capacity. Further, by carefully constraining perturbing variables, a strong dependency of the cluster ion concentration on the ionising capacity was identified, proving the functionality of ionising radiation in air ion production in the lower atmosphere. This relationship, however, was only clearly observed on new particle formation (NPF) days, possibly indicating that charges after being born underwent different

  10. Assessing boreal forest fire smoke aerosol impacts on U.S. air quality: A case study using multiple data sets

    Science.gov (United States)

    Miller, David J.; Sun, Kang; Zondlo, Mark A.; Kanter, David; Dubovik, Oleg; Welton, Ellsworth Judd; Winker, David M.; Ginoux, Paul

    2011-11-01

    We synthesize multiple ground-based and satellite measurements to track the physical and chemical evolution of biomass burning smoke plumes transported from western Canada to the northeastern U.S. This multiple data set case study is an advantageous methodology compared with using individual or small groups of data sets, each with their own limitations. The case study analyzed is a Canadian boreal forest fire event on July 4, 2006 with carbonaceous aerosol smoke emission magnitudes comparable to those during the summer fire seasons of the previous decade. We track long-range transport of these aerosol plumes with data from space-borne remote sensing satellite instruments (MODIS, OMI, MISR, CALIOP lidar, AIRS) and ground-based in situ and remote aerosol observations (AERONET CIMEL sky/Sun photometer, MPLNET lidar, IMPROVE, EPA AirNow). Convective lofting elevated smoke emissions above the boundary layer into the free troposphere, where high speed winds aloft led to rapid, long-range transport. Aerosol layer subsidence occurred during transport due to a region of surface high pressure. Smoke aerosols reaching the boundary layer led to surface fine particulate matter (PM2.5) enhancements accompanied by changes in aerosol composition as the plume mixed with anthropogenic aerosols over the northeastern U.S. The extensive coverage of this smoke plume over the northeastern U.S. affected regional air quality, with increases of 10-20 μg m-3 PM2.5 attributable to biomass burning smoke aerosols and EPA 24-hour PM2.5 standard exceedances along the U.S. East Coast. Although each data set individually provides a limited view of the transport of smoke emissions, we demonstrate that a multi-data set approach results in a more comprehensive view of potential impacts due to long-range transport of smoke from a less extreme fire event. Our case study demonstrates that fires emit smoke aerosols that under certain meteorological conditions can degrade regional air quality 3000 km from

  11. Environmental factors regulate the effects of roach Rutilus rutilus and pike Esox lucius on perch Perca fluviatilis populations in small boreal forest lakes.

    Science.gov (United States)

    Olin, M; Vinni, M; Lehtonen, H; Rask, M; Ruuhijärvi, J; Saulamo, K; Ala-Opas, P

    2010-04-01

    In this study of 18 small boreal forest lakes, the effects of abiotic and biotic factors (roach Rutilus rutilus and pike Esox lucius) on various population variables of perch Perca fluviatilis were examined. As a single variable, the gillnet catch per unit effort (CPUE) of R. rutilus was negatively related to the mean mass of small ( or = 200 mm) P. fluviatilis was the highest at intermediate CPUE of R. rutilus. Redundancy analysis including environmental factors and P. fluviatilis population variables suggested that 'predation-productivity-humus' gradient affected P. fluviatilis populations by decreasing the CPUE and mean mass of small individuals but increasing these variables of large individuals. The CPUE of R. rutilus and lake area had a negative effect on small and a positive effect on large P. fluviatilis growth rate. In small boreal forest lakes, P. fluviatilis populations are affected by the partially opposite forces of competition by R. rutilus and predation by E. lucius, and the intensity of these interactions is regulated by several environmental factors.

  12. Impact of forest harvesting on water quality and fluorescence characteristics of dissolved organic matter in eastern Canadian Boreal Shield lakes in summer

    Science.gov (United States)

    Glaz, P.; Gagné, J.-P.; Archambault, P.; Sirois, P.; Nozais, C.

    2015-12-01

    Forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. Water quality and fluorescence characteristics of dissolved organic matter (DOM) were measured over a 3-year period in eight eastern Boreal Shield lakes: four lakes were studied before, 1 and 2 years after forest harvesting (perturbed lakes) and compared with four undisturbed reference lakes (unperturbed lakes) sampled at the same time. ANOVAs showed a significant increase in total phosphorus (TP) in perturbed lakes when the three sampling dates were considered and in DOC concentrations when considering 1 year before and 1 year after the perturbation only. At 1 year post-clear cutting DOC concentrations were about 15 % greater in the perturbed lakes at ~ 15 mgC L-1 compared to 12.5 mgC L-1 in the unperturbed lakes. In contrast, absorbance and fluorescence measurements showed that all metrics remained within narrow ranges compared to the range observed in natural waters, indicating that forest harvesting did not affect the nature of DOM characterized with spectroscopic techniques. These results confirm an impact of forestry activities 1 year after the perturbation. However, this effect seems to be mitigated 2 years after, indicating that the system shows high resilience and may be able to return to its original condition in terms of water quality parameters assessed in this study.

  13. Burned Area Detection in the Canadian Boreal Forest Using MODIS Imagery%加拿大北方森林火烧迹地遥感分析

    Institute of Scientific and Technical Information of China (English)

    尤慧; 刘荣高; 祝善友; 刘洋

    2013-01-01

    The boreal forest biome is one of the largest on earth, covering 17%of total land area. The major eco-systems within the boreal zone contain more than 30%of terrestrial carbon stores, thus representing a major com-ponent of the global carbon budget. Wildfires are a main disturbance factor in the Canadian boreal forests, which play an important role in boreal ecosystems. In this paper, we mapped the forest burned area in Saskatchewan and Alberta of Canada during 2004-2011, using two data sets of Moderate Resolution Imaging Spectroradiome-ter (MODIS) Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI) imagery at 1 km resolu-tion. The MODIS global disturbance index algorithm (MGDI) was used to detect the forest burned area. It is based on the consistent radiometric relationship between annual maximum LST and the maximum EVI value that occurs after the LST during the same year at every pixel. The performance of the algorithm was evaluated by comparing the results with the MODIS MCD45A1 products and the inventory data from Forestry Bureau of Canada. The results show that the majority of fire events is captured by the MGDI techniques, and the burned ar-ea estimated by the fires pixels is better in good agreement with the inventory data than MODIS products. Com-pared with the Canadian Forestry Bureau data, the average relative error of our algorithm results is only 8.03%, while the MODIS product results is up to 70.53%. The results estimated that the average burned forest area is about 763 600 ha annually, which is about 3.36%of the total forest in this region. A mean annual burned forest is 468 300 ha for Saskatchewan and 295 300ha for Alberta respectively. The Canadian boreal forest fires show a significant interannual variation and severity, the burned scar mainly appeared in the years of 2006, 2008 and 2010-2011. Forest burned area mainly concentrated in the ecotone of the Boreal Shield, Taiga Shield, Taiga plains and the Wood Buffalo National Park

  14. Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex.

    Science.gov (United States)

    Godbout, Julie; Yeh, Francis C; Bousquet, Jean

    2012-08-01

    Jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta var. latifolia) are two North American boreal hard pines that hybridize in their zone of contact in western Canada. The main objective of this study was to characterize their patterns of introgression resulting from past and recent gene flow, using cytoplasmic markers having maternal or paternal inheritance. Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) diversity was assessed in allopatric populations of each species and in stands from the current zone of contact containing morphological hybrids. Cluster analyses were used to identify genetic discontinuities among groups of populations. A canonical analysis was also conducted to detect putative associations among cytoplasmic DNA variation, tree morphology, and site ecological features. MtDNA introgression was extensive and asymmetric: it was detected in P. banksiana populations from the hybrid zone and from allopatric areas, but not in P. contorta populations. Very weak cpDNA introgression was observed, and only in P. banksiana populations. The mtDNA introgression pattern indicated that central Canada was first colonized by migrants from a P. contorta glacial population located west of the Rocky Mountains, before being replaced by P. banksiana migrating westward during the Holocene. In contrast, extensive pollen gene flow would have erased the cpDNA traces of this ancient presence of P. contorta. Additional evidence for this process was provided by the results of canonical analysis, which indicated that the current cpDNA background of trees reflected recent pollen gene flow from the surrounding dominant species rather than historical events that took place during the postglacial colonization.

  15. Environment and paleoecology of a 12 ka mid-North American Younger Dryas forest chronicled in tree rings

    Science.gov (United States)

    Panyushkina, Irina P.; Leavitt, Steven W.; Thompson, Todd A.; Schneider, Allan F.; Lange, Todd

    2008-01-01

    Until now, availability of wood from the Younger Dryas abrupt cooling event (YDE) in N. America ca. 12.9 to 11.6 ka has been insufficient to develop high-resolution chronologies for refining our understanding of YDE conditions. Here we present a multi-proxy tree-ring chronology (ring widths, “events” evidenced by microanatomy and macro features, stable isotopes) from a buried black spruce forest in the Great Lakes area (Liverpool East site), spanning 116 yr at ca. 12,000 cal yr BP. During this largely cold and wet period, the proxies convey a coherent and precise forest history including frost events, tilting, drowning and burial in estuarine sands as the Laurentide Ice Sheet deteriorated. In the middle of the period, a short mild interval appears to have launched the final and largest episode of tree recruitment. Ultimately the tops of the trees were sheared off after death, perhaps by wind-driven ice floes, culminating an interval of rising water and sediment deposition around the base of the trees. Although relative influences of the continental ice sheet and local effects from ancestral Lake Michigan are indeterminate, the tree-ring proxies provide important insight into environment and ecology of a N. American YDE boreal forest stand.

  16. A new Open Top Chamber designed to test in situ effects of climatic and atmospheric changes on nitrogen fixation in boreal forest floor mosses

    Science.gov (United States)

    Bringuier, Charline; Bradley, Robert; Bellenger, Jean-Philippe; Morin, Hubert; Lindo, Zoë

    2014-05-01

    Biological nitrogen fixation (BNF) by cyanobacteria dwelling in forest floor moss layers is an important determinant of boreal black spruce forest productivity. Recent studies have suggested that these BNF rates may increase with increasing atmospheric CO2 and increasing temperature, as predicted by current weather models. This potential increase in BNF may be offset, however, by increasing atmospheric deposition of nitrogen, or by increasing demands for phosphorus (i.e. driving nodular ATP content) and for micronutrients such as Mo, Va and Fe (i.e. co-factors of nitrogenase enzyme). In order to study the relative and interactive effects of these factors controlling in situ BNF rates in boreal forest floor moss layers, a new Open Top Chamber (OTC) was developed in summer of 2013. The chambers measure 1.60 cm dia. × 60 cm height, and are equipped with an automated CO2 delivery system designed to maintain atmospheric daytime CO2 concentrations at 800 ppm, as well as buried heating coils that increase soil temperature by 4 ° C for 3 weeks in springtime. These 2 experimental factors are crossed in a full factorial (2 × 2) design that is replicated in 4 complete blocks. Each of the 16 OTCs is divided into 4 compartments, each of which are assigned 1 of 4 sub-plot factors. These include chronic additions of either atmospheric nitrogen, phosphorus, micronutrients or a non-amended control. Staring in summer 2014, a series of measurements will be made to assess the effects of treatments on BNF rates, cyanobacterial colonization and soil nitrogen cycling. Our poster will describe in detail the design and operation of the OTCs, as well as their construction and maintenance costs.

  17. Towards a comprehensive emission inventory of terpenoids from boreal ecosystems

    Science.gov (United States)

    Tarvainen, V.; Hakola, H.; Rinne, J.; Hellén, H.; Haapanala, S.

    2007-07-01

    The biogenic volatile organic compound emissions in the south boreal, middle boreal and north boreal vegetation zones in Finland were calculated utilizing satellite land cover information and actual meteorological data in a BEIS-type canopy emission model. The sesquiterpene emissions from the boreal forest were estimated for the first time, and the inventory was further complemented by the inclusion of wetland isoprene emissions from open fens. Recently published results from emission measurements carried out in various parts of the boreal region were utilized in the compilation of the standard emission potentials and monoterpene emission spectra for the deciduous and coniferous forest categories and wetlands. The average annual isoprene emission fluxes from forests were 73, 56 and 45, and those of monoterpenes 657, 567 and 342 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The average annual sesquiterpene fluxes were of the same order of magnitude as isoprene, being 54, 46 and 26 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The isoprene emissions from wetlands were significant, contributing 3%, 18% and 31% of the annual isoprene emissions in the south boreal, middle boreal and north boreal vegetation zones, respectively. Throughout the boreal region, the main emitted monoterpenes were α-pinene and Δ3-carene, with significant contributions from β-pinene and sabinene in summer and autumn. Due to the new seasonal emission potentials of the coniferous species introduced in this work, the overwhelming role of spruce as the main isoprene and monoterpene emitter in the boreal forest is subdued. The new emission inventory also accentuates the role of the boreal deciduous trees as terpenoid emitters in the late summer months.

  18. Quantifying the Impact of BOReal Forest Fires on Tropospheric Oxidants Over the Atlantic Using Aircraft and Satellites (BORTAS) Experiment: Design, Execution, and Science Overview

    Science.gov (United States)

    Palmer, Paul I.; Parrington, Mark; Lee, James D.; Lewis, Alistair C.; Richard, Andrew R.; Bernath, Peter F.; Pawson, Steven; daSilva, Arlindo M.; Duck, Thomas J.; Waugh, David L.; Tarasick, Daivd W.; Andrews, Stephen; Aruffo, Eleonora; Bailey, Loren J.; Barrett, Lucy; Bauguitte, Stephan J.-B.; Curry, Kevin R.; DiCarlo, Piero; Chisholm, Lucy; Dan, Lin; Forster, Grant; Franklin, Jonathan E.; Gibson, Mark D.; Griffin, Debora; Moore, David P.

    2013-01-01

    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of airmasses that contain the emission products from seasonal boreal wildfires and how these airmasses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada. The planned July 2010 deployment of the ARA was postponed by 12 months because of activities related to the dispersal of material emitted by the Eyjafjallaj¨okull volcano. However, most other planned model and measurement activities, including ground-based measurements at the Dalhousie University Ground Station (DGS), enhanced ozonesonde launches, and measurements at the Pico Atmospheric Observatory in the Azores, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 included the same measurements, but included the ARA, special satellite observations and a more comprehensive measurement suite at the DGS. Integrating these data helped us to describe pyrogenic plumes from wildfires on a wide spectrum of temporal and spatial scales. We interpret these data using a range of chemistry models, from a near-explicit gas-phase chemical mechanism to regional and global models of atmospheric transport and lumped chemistry. We also present an overview of some of the new science that has originated from this project.

  19. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong; Reich, Peter B; Searle, Eric B; Biswas, Shekhar R

    2016-09-01

    The impacts of climate change on forest net biomass change are poorly understood but critical for predicting forest's contribution to the global carbon cycle. Recent studies show climate change-associated net biomass declines in mature forest plots. The representativeness of these plots for regional forests, however, remains uncertain because we lack an assessment of whether climate change impacts differ with forest age. Using data from plots of varying ages from 17 to 210 years, monitored from 1958 to 2011 in western Canada, we found that climate change has little effect on net biomass change in forests ≤ 40 years of age due to increased growth offsetting increased mortality, but has led to large decreases in older forests due to increased mortality accompanying little growth gain. Our analysis highlights the need to incorporate forest age profiles in examining past and projecting future forest responses to climate change.

  20. Prediction of Macronutrients at the Canopy Level Using Spaceborne Imaging Spectroscopy and LiDAR Data in a Mixedwood Boreal Forest

    Directory of Open Access Journals (Sweden)

    Kemal Gökkaya

    2015-07-01

    Full Text Available Information on foliar macronutrients is required in order to understand plant physiological and ecosystem processes such as photosynthesis, nutrient cycling, respiration and cell wall formation. The ability to measure, model and map foliar macronutrients (nitrogen (N, phosphorus (P, potassium (K, calcium (Ca and magnesium (Mg at the forest canopy level provides information on the spatial patterns of ecosystem processes (e.g., carbon exchange and provides insight on forest condition and stress. Imaging spectroscopy (IS has been used particularly for modeling N, using airborne and satellite imagery mostly in temperate and tropical forests. However, there has been very little research conducted at these scales to model P, K, Ca, and Mg and few studies have focused on boreal forests. We report results of a study of macronutrient modeling using spaceborne IS and airborne light detection and ranging (LiDAR data for a mixedwood boreal forest canopy in northern Ontario, Canada. Models incorporating Hyperion data explained approximately 90% of the variation in canopy concentrations of N, P, and Mg; whereas the inclusion of LiDAR data significantly improved the prediction of canopy concentration of Ca (R2 = 0.80. The combined used of IS and LiDAR data significantly improved the prediction accuracy of canopy Ca and K concentration but decreased the prediction accuracy of canopy P concentration. The results indicate that the variability of macronutrient concentration due to interspecific and functional type differences at the site provides the basis for the relationship observed between the remote sensing measurements (i.e., IS and LiDAR and macronutrient concentration. Crown closure and canopy height are the structural metrics that establish the connection between macronutrient concentration and IS and LiDAR data, respectively. The spatial distribution of macronutrient concentration at the canopy scale mimics functional type distribution at the site. The

  1. Temperature & wood source control PyOM turnover in a Northern American forest

    Science.gov (United States)

    Hatton, Pierre-Joseph; Le Moine, James; Auclerc, Apolline; Gormley, Mark; Filley, Tim R.; Nadelhoffer, Knute J.; Bird, Jeff. A.

    2016-04-01

    Surprisingly little is known about how pyrolysis temperature and wood source affect the stability of forest-fire derived pyrogenic organic matter (PyOM). Here, we show that wood source and temperature affect in situ mineralization rates of PyOM in soils for two co-occurring gymnosperm (jack pine; JP [Pinus banksiana]) and angiosperm (red maple; RM [Acer rubrum])¬ species from North American boreal-temperate ecotones. We assess the effect of pyrolysis temperature on PyOM fates by following the decay of 13C/15N-enriched JP wood (JPwood) and PyOM produced at 300 °C (JP300) and 450 °C (JP450); and assess the effect of PyOM wood source by comparing fates of JP450 and RM450. JPwood mineralized 18× faster than JP300 and 44× faster than JP450 after 2.8y. RM450 mineralized initially faster than JP450 during the first ~2y, but became equivalent afterwards (1.1±0.2% of CO¬2 losses after 2.8y). Modeled turnover times suggest that this can be attributed to ~1% of fast-cycling PyOM (wood source (yet); N recoveries did not differ. PLFA-(13)C data reveal that (i) treatments have similar microbial communities after 1y, (ii) JPwood is preferentially utilized by fungi, and (iii) bacteria increasingly utilize PyOM as pyrolysis temperature increases. Estimated carbon use efficiency decreased with increasing pyrolysis temperature (JPwood~JP300>JP450~RM450). Although insignificant, potential phenol oxidase and peroxidase activities decrease with increasing pyrolysis temperature. Neither PyOM nor wood additions (~11% of soil C stock 0-20 cm depth) affected pH or Ec after 1y. We provide the first, field experimental evidence that pyrolysis temperature and wood source affect the turnover of PyOM in soil. We show faster, initial decay for PyOM produced at lesser temperature and RM (angiosperm) compared with JP (gymnosperm). This study offers realistic insights on (i) the controls underlying in situ PyOM turnover, and on (ii) how ongoing/projected changes in tree species composition

  2. Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a Burned Boreal Forest in NWT, Canada

    Directory of Open Access Journals (Sweden)

    Robert H. Fraser

    2017-03-01

    Full Text Available Wildfires are a dominant disturbance to boreal forests, and in North America, they typically cause widespread tree mortality. Forest fire burn severity is often measured at a plot scale using the Composite Burn Index (CBI, which was originally developed as a means of assigning severity levels to the Normalized Burn Ratio (NBR computed from Landsat satellite imagery. Our study investigated the potential to map biophysical indicators of burn severity (residual green vegetation and charred organic surface at very high (3 cm resolution, using color orthomosaics and vegetation height models derived from UAV-based photographic surveys and Structure from Motion methods. These indicators were scaled to 30 m resolution Landsat pixel footprints and compared to the post-burn NBR (post-NBR and differenced NBR (dNBR ratios computed from pre- and post-fire Landsat imagery. The post-NBR showed the strongest relationship to both the fraction of charred surface (exponential R2 = 0.79 and the fraction of green crown vegetation above 5 m (exponential R2 = 0.81, while the dNBR was more closely related to the total green vegetation fraction (exponential R2 = 0.69. Additionally, the UAV green fraction and Landsat indices could individually explain more than 50% of the variance in the overall CBI measured in 39 plots. These results provide a proof-of-concept for using low-cost UAV photogrammetric mapping to quantify key measures of boreal burn severity at landscape scales, which could be used to calibrate and assign a biophysical meaning to Landsat spectral indices for mapping severity at regional scales.

  3. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S.; Roivainen, Paeivi, E-mail: paivi.roivainen@uef.fi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-12-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R{sup 2}-values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  4. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: a cross disciplinary approach to assessing diffuse pollution to surface waters.

    Science.gov (United States)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Köhler, Stephan; Jones, Kevin C; Tysklind, Mats; Wiberg, Karin

    2010-09-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day(-1) during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons.

  5. In-situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. L. Vogel

    2013-07-01

    Full Text Available The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland is presented. The focus lies on online measurements of organic acids, which was achieved by using atmospheric pressure chemical ionization (APCI ion trap mass spectrometry (IT-MS. These measurements were accompanied by Aerosol Mass Spectrometry (AMS measurements and Fourier-Transform Infrared Spectroscopy (FTIR of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas phase measurements solely and measuring the sum of gas- and particle-phase. The AMS measurements of C, H and O elemental composition show that the aerosol during the campaign was highly oxidized, which appears reasonable due to high and prolonged radiation during the boreal summer measurement period as well as the long transport times of some of the aerosol. In order to contrast ambient and laboratory aerosol, an average organic acid pattern, measured by APCI-IT-MS during the campaign, was compared to terpene ozonolysis products in a laboratory reaction chamber. Identification of single organic acid species remains a major challenge due to the complexity of the boreal forest aerosol. Unambiguous online species identification was attempted by the combinatorial approach of identifying unique fragments in the MS2-mode of standards, and then comparing these results with MS2 field spectra. During the campaign, unique fragments of limonene derived organic acids (limonic acid and ketolimononic acid and of the biomass burning tracer vanillic acid were detected. Other specific fragments (neutral loss of 28 Da in the MS2 suggest the occurrence of semialdehydes. Furthermore, an approach to determine the average molecular weight of the aerosol is presented. The campaign average organic molecular weight was determined to be 300 g mol−1. However, a plume of aged biomass burning aerosol, arriving at Hyyti

  6. Carbon reservoirs in temperate South American Nothofagus forests.

    Science.gov (United States)

    Böswald, Klaus; Lencinas, José D; Loguercio, Gabriel

    2002-01-08

    Humans are influencing the global carbon (C) cycle due to the combustion of fossil fuels and due to changes in land use management. These activities are fostering the manmade greenhouse effect and thus global climate change. Negative effects for life on earth are accounted for. Among others the international climate debate focused attention on forests and forestry, knowing about their considerable influence on global climate change. Whilst the global C budget is described fairly well, there is a lack of regional data describing the C reservoirs and flows in detail. This has to be constituted especially for forests in developing countries. This paper presents an investigation at regional scale of the C reservoirs in a South American forest ecosystem. The investigation puts emphasis on the area and stand volume estimation and the development of expansion and reduction factors. Vegetation types are classified and stratified, determining the corresponding areas and estimating the stand volume. Converting factors are developed to calculate C in branches and roots as a percentage of standing wood measured by inventories.

  7. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level

    Energy Technology Data Exchange (ETDEWEB)

    Vanhala, Pekka, E-mail: pekka.vanhala@ymparisto.fi [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Bergström, Irina [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Haaspuro, Tiina [University of Helsinki, Department of Environmental Sciences, P.O. Box 65, Viikinkaari 1, 00014 Helsinki (Finland); Kortelainen, Pirkko; Holmberg, Maria; Forsius, Martin [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland)

    2016-07-01

    Ecosystem services have become an important concept in policy-making. Carbon (C) sequestration into ecosystems is a significant ecosystem service, whereas C losses can be considered as an ecosystem disservice. Municipalities are in a position to make decisions that affect local emissions and therefore are important when considering greenhouse gas (GHG) mitigation. Integrated estimations of fluxes at a regional level help local authorities to develop land use policies for minimising GHG emissions and maximising C sinks. In this study, the Finnish national GHG accounting system is modified and applied at the municipal level by combining emissions and sinks from agricultural land, forest areas, water bodies and mires (land use-related GHG emissions) with emissions from activities such as energy production and traffic (anthropogenic GHG emissions) into the LUONNIKAS calculation tool. The study area consists of 14 municipalities within the Vanajavesi catchment area located in Southern Finland. In these municipalities, croplands, peat extraction sites, water bodies and undrained mires are emission sources, whereas forests are large carbon sinks that turn the land use-related GHG budget negative, resulting in C sequestration into the ecosystem. The annual land use-related sink in the study area was 78 t CO{sub 2} eq km{sup −2} and 2.8 t CO{sub 2} eq per capita. Annual anthropogenic GHG emissions from the area amounted to 250 t CO{sub 2} eq km{sup −2} and 9.2 t CO{sub 2} eq per capita. Since forests are a significant carbon sink and the efficiency of this sink is heavily affected by forest management practices, forest management policy is a key contributing factor for mitigating municipal GHG emissions. - Highlights: • The significance of natural landscapes in the regional C budgets is shown. • Boreal forests can be remarkable C sinks enabling net C sequestration in ecosystems. • The large area of forest may compensate for all C emissions in the municipality.

  8. Study of micronutrients cycling in boreal forest of Central Siberia on continuous permafrost using Copper (Cu) and zinc (Zn) isotope fractionation

    Science.gov (United States)

    Viers, Jérôme; Prokushkin, Anatoly; Pokrovsky, Oleg; Kirdyanov, Anatoly; Chabaux, François; Oliva, Priscia

    2010-05-01

    Boreal forests mainly located between the latitudes 46°N and 72°N play a key role in regulating the global carbon cycle and climate of the Earth. These forests store about 140 gigatons of carbon (Gt C) in above ground biomass and 180 Gt C in soil organic matter that represents about 25% and 12% of the global amounts (Tarnocai et al., 2009). Within the context of global warming, forested permafrost regions appear to be very sensitive and are likely to be deeply modified in the near future due to the increase of soil temperature and the active layer thickness, as well as the northward shift of the vegetation. Before the quantitative modelling of the evolution of these ecosystems face to the climate change and their reciprocal influence on the whole Earth system become available, we have to constrain the main processes and parameters that control elements transfer between and within mineral and organic reservoirs in order to calculate the associated element fluxes. Indeed, the hydro- and biogeochemical functioning of these boreal environments is still poorly understood. This study will present new results on two important metal micro-nutrient and toxicants (Cu and Zn) concentrations in soil and plants and Zn and Cu isotopes fractionation data we acquired within the pilot site of Tura (Central Siberia, Yenissey basin). This pilot site is located in the drainage area of Nizhnaya Tunguska River, the largest tributary of the Yenissey River, on continuous permafrost of 100 to 300 m thickness. This watershed is located in the field of Central Siberia basalts ages 248+/-20 millions years. The landscape morphology presents north-facing slopes and south facing slopes separated by riparian zones. These environments exhibit peculiarities in terms of hydrological regime, active soil depth, that is, seasonal thawing permafrost depth, nutrients availability, total biomass and plants community distribution (Prokushkin et al., 2007). This region is dominated by deciduous Dahurian

  9. Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiälä, Finland, during HUMPPA-COPEC 2010

    Science.gov (United States)

    Corrigan, A. L.; Russell, L. M.; Takahama, S.; Äijälä, M.; Ehn, M.; Junninen, H.; Rinne, J.; Petäjä, T.; Kulmala, M.; Vogel, A. L.; Hoffmann, T.; Ebben, C. J.; Geiger, F. M.; Chhabra, P.; Seinfeld, J. H.; Worsnop, D. R.; Song, W.; Auld, J.; Williams, J.

    2013-12-01

    Submicron aerosol particles were collected during July and August 2010 in Hyytiälä, Finland, to determine the composition and sources of aerosol at that boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFGs). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at Hyytiälä were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, transported 4-5 days from large wildfires burning near Moscow, Russia, and northern Ukraine. The robustness of this apportionment is supported by the agreement of two independent analytical methods for organic measurements with three statistical techniques. FTIR factor analysis was more sensitive to the chemical differences between biogenic and biomass burning organic components, while AMS factor analysis had a higher time resolution that more clearly linked the temporal behavior of separate OM factors to that of different source tracers even though their fragment mass spectrum were similar. The greater chemical sensitivity of the FTIR is attributed to the nondestructive preparation and the functional group specificity of spectroscopy. The FTIR spectra show strong similarities among biogenic and biomass burning factors from different regions as well as with reference OM (namely olive tree burning organic aerosol and α-pinene chamber secondary organic aerosol (SOA)). The biogenic factor correlated strongly with temperature and oxidation products of biogenic volatile organic compounds (BVOCs), included more than half of the oxygenated OFGs (carbonyl groups at 29% and carboxylic acid groups at 22%), and represented 35% of the submicron OM. Compared to previous studies at Hyytiälä, the

  10. Seasonality in a boreal forest ecosystem affects the use of soil temperature and moisture as predictors of soil CO2 efflux

    Directory of Open Access Journals (Sweden)

    S. Kellomäki

    2011-03-01

    Full Text Available Our objectives were to identify factors related to temporal variation of soil CO2 efflux in a boreal pine forest and to evaluate simple predictive models of temporal variation of soil CO2 efflux. Soil CO2 efflux was measured with a portable chamber in a Finnish Scots pine forest for three years, with a fourth year for model evaluation. Plot averages for soil CO2 efflux ranged from 0.04 to 0.90 g CO2 m−2 h−1 during the snow-free period, i.e. May–October, and from 0.04 to 0.13 g CO2 m−2 h−1 in winter. Soil temperature was a good predictor of soil CO2 efflux. A quadratic model of ln-transformed efflux explained 76–82% of the variation over the snow-free period. The results revealed strong seasonality: at a given soil temperature, soil CO2 efflux was higher later in the snow-free period than in spring and early summer. Regression coefficients for temperature (approximations of a Q10 value of month-specific models decreased with increasing average soil temperatures. Efflux in July, the month of peak photosynthesis, showed no clear response to temperature or moisture. Inclusion of a seasonality index, degree days, improved the accuracy of temperature response models to predict efflux for the fourth year of measurements, which was not used in building of regression models. Underestimation during peak efflux (mid-July to late-August remained uncorrected. The strong influence of the flux of photosynthates belowground and the importance of root respiration could explain the relative temperature insensitivity observed in July and together with seasonality of growth of root and root-associated mycorrhizal fungi could explain partial failure of models to predict magnitude of efflux in the peak season from mid-July to August. The effect of moisture early in the season was confounded by simultaneous advancement of the growing season and increase in temperature. In a dry year, however, the effect of drought was evident as soil CO2 efflux was some 30

  11. Variation in Trembling Aspen and White Spruce Wood Quality Grown in Mixed and Single Species Stands in the Boreal Mixedwood Forest

    Directory of Open Access Journals (Sweden)

    Francis De Araujo

    2015-05-01

    Full Text Available The Canadian boreal forest is largely represented by mixed wood forests of white spruce (Picea glauca (Moench Voss and trembling aspen (Populus tremuloides Michx. In this study, a total of 300 trees originating from three sites composed of trembling aspen and white spruce with varying compositions were investigated for wood quality traits: one site was composed mainly of aspen, one mainly of spruce and a third was a mixed site. Four wood quality traits were examined: wood density, microfibril angle (MFA, fibre characteristics, and cell wall chemistry. Social classes were also determined for each site in an attempt to provide a more in-depth comparison. Wood density showed little variation among sites for both species, with only significant differences occurring between social classes. The aspen site showed statistically lower MFAs than the aspen from the mixed site, however, no differences were observed when comparing spruce. Fibre characteristics were higher in the pure species sites for both species. There were no differences in carbohydrate contents across sites, while lignin content varied. Overall, the use of social classes did not refine the characterization of sites.

  12. Spatial Enhancement of MODIS-based Images of Leaf Area Index: Application to the Boreal Forest Region of Northern Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Charles P.-A. Bourque

    2010-01-01

    Full Text Available Leaf area index (LAI is one of the most commonly used ecological variables in describing forests. Since 2000, 1-km resolution Moderate Resolution Imaging Spectroradiometer (MODIS-based 8-day composites of LAI have been operationally available from the National Aeronautics and Space Administration (NASA, USA, at no cost to the user. In this paper, we present a simple protocol to enhance the spatial resolution of NASA-produced LAI composites to 250-m resolution. This is done by fusing MODIS-based estimates of enhanced vegetation index (EVI, consisting of 16-day 250-m resolution composites (also from NASA, with estimates of LAI. We apply the protocol to derive 250-m resolution maps of LAI for the boreal forest region of northern Alberta, Canada. Data fusion was possible in this study because of the inherent linear correlation that exists between EVI and LAI for the April to October growing period of 2005–2008, producing r2-values of 0.85–0.95 and p-values < 0.0001. Comparison of MODIS-based LAI with field-based measurements using the Tracing Radiation and Architecture of Canopies (TRAC sensor and LAI-2000 Plant Canopy Analyzer showed reasonable agreement across values; statistical comparison of LAI data points produced an r2-value of 0.71 and a p-value < 0.0001. Seventy one percent of MODIS-based LAI were within ±20% of field estimates.

  13. Boreal Forest Carbon Sequestration Strategies : a Case Study of the Little Red River Cree First Nation Land Tenures

    NARCIS (Netherlands)

    Krcmar, E.; Kooten, van G.C.

    2005-01-01

    In this paper, creation of carbon offset and emission reduction credits are examined from the perspective of the Little Red River Cree Nation (LRRCN), a forest tenure holder in northern Alberta. Carbon credits are produced under three scenarios: (1) carbon uptake in forest ecosystems, with postharve

  14. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    OpenAIRE

    Chazdon, Robin L; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Pedro H. S. Brancalion; Craven, Dylan; Jarcilene S Almeida-Cortez; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, i...

  15. 北方森林生态系统对全球气候变化的响应研究进展%Response of boreal forest ecosystem to global climate change:a review

    Institute of Scientific and Technical Information of China (English)

    韩士杰; 王庆贵

    2016-01-01

    北方森林是地球上第2大生物群区,约占陆地森林面积的30%,提供了从局地到全球的生态系统服务功能。1850年以来,全球性持续升温不断显现,2000—2050年全球至少升高2℃,甚至更高。预计到2100年,北方森林区冬季平均温度将升高1.3~6.3℃。与此同时,几乎所有的北方森林生态系统功能都将会受到影响,尤其是近几十年来,该区域发生了很多与温度升高相关的潜在生态响应。本文从碳循环、生物多样性、干旱化和林火发生频率以及冻土变化等方面具体综述了北方森林生态系统对于全球气候变化的响应。响应结果如下:1)气候变化对于北方森林碳循环动态的影响是极其复杂的,迄今为止并没有达成共识;分解对于温度的反应敏感程度至今仍存在很多不确定性。2)动物、植物和微生物(真菌)均对气候变化产生了一定的响应,表现为动物和植物的分布区进一步北移,但真菌的多样性和生产力响应机制尚无法确定。3)北方森林区随气候变化表现为进一步的干旱化和林火发生明显增加。4)北方森林区与冻土伴生,冻土随气候变暖表现出了面积缩小和活动层扩大的趋势。可见,北方森林对气候变化响应明显,尽管到目前为止有些响应机制尚不清楚,但变化趋势十分明显。本文旨在为北方森林的经营和管理提供基础数据和技术支持,实现北方森林的可持续经营。%The boreal forest, one of the largest biomes on the Earth, encompasses ~30% of the global forest area and provides ecosystem services that benefit society at levels ranging from local to global. Warming since the 1850s increases the annual mean temperature from 2000 to 2050 at least 2 ℃ or even more. Annual winter mean temperatures across the boreal zone could be 1. 3-6. 3℃ warmer than today' s by 2100. In the meantime, all aspects of boreal forest ecosystem function are likely to be

  16. Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    C. J. Ebben

    2011-06-01

    Full Text Available We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O3 concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way.

  17. Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    C. J. Ebben

    2011-10-01

    Full Text Available We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O3 concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way.

  18. Substrate Geochemistry and Soil Development in Boreal Forest and Tundra Ecosystems in the Yukon-Tanana Upland and Seward Peninsula, Alaska

    Science.gov (United States)

    Gough, L.P.; Crock, J.G.; Wang, B.; Day, W.C.; Eberl, D.D.; Sanzolone, R.F.; Lamothe, P.J.

    2008-01-01

    We report on soil development as a function of bedrock type and the presence of loess in two high latitude ecosystems (boreal forest and tundra) and from two regions in Alaska?the Yukon-Tanana Upland (YTU, east-central Alaska) and the Seward Peninsula (SP, far-west coastal Alaska). This approach to the study of 'cold soils' is fundamental to the quantification of regional geochemical landscape patterns. Of the five state factors in this study, bedrock and biota (ecosystem; vegetation zone) vary whereas climate (within each area) and topography are controlled. The influence of time is assumed to be controlled, as these soils are thousands of years old (late Quaternary to Holocene). The primary minerals in soils from YTU, developed over loess and crystalline bedrock (metamorphic and intrusive), are quartz, plagioclase, and 2:1 clays; whereas in the SP, where loess and metasedimentary bedrock (schist and quartzite) predominate, they are quartz and muscovite. The A horizon of both regions is rich in peat. Examination of the ratio of mobile (K2O, CaO, and Fe2O3) to immobile (TiO2) major oxides, within each region, shows that very little difference exists in the chemical weathering of soils developed between the two ecosystems examined. Differences were observed between tundra soils developed in the two regions. These differences are most probably due to the dissimilarity in the geochemical importance of both loess and bedrock. A minimal loss of cadmium with soil depth is seen for soils developed over YTU crystalline bedrock in the boreal forest environments. This trend is related to the mobility of cadmium in these soils as well as to its biogenic cycling. Major differences were observed in the proportion of cadmium and zinc among the A, B, and C horizon material sequestered in various soil fractions as measured by sequential soil extractions. These trends followed such variables as the decrease with depth in organic matter, the change in clay minerals, and the change

  19. Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS experiment: design, execution and science overview

    Directory of Open Access Journals (Sweden)

    P. I. Palmer

    2013-07-01

    Full Text Available We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground

  20. Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    Science.gov (United States)

    Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Bernath, P. F.; Duck, T. J.; Waugh, D. L.; Tarasick, D. W.; Andrews, S.; Aruffo, E.; Bailey, L. J.; Barrett, E.; Bauguitte, S. J.-B.; Curry, K. R.; Di Carlo, P.; Chisholm, L.; Dan, L.; Forster, G.; Franklin, J. E.; Gibson, M. D.; Griffin, D.; Helmig, D.; Hopkins, J. R.; Hopper, J. T.; Jenkin, M. E.; Kindred, D.; Kliever, J.; Le Breton, M.; Matthiesen, S.; Maurice, M.; Moller, S.; Moore, D. P.; Oram, D. E.; O'Shea, S. J.; Owen, R. C.; Pagniello, C. M. L. S.; Pawson, S.; Percival, C. J.; Pierce, J. R.; Punjabi, S.; Purvis, R. M.; Remedios, J. J.; Rotermund, K. M.; Sakamoto, K. M.; da Silva, A. M.; Strawbridge, K. B.; Strong, K.; Taylor, J.; Trigwell, R.; Tereszchuk, K. A.; Walker, K. A.; Weaver, D.; Whaley, C.; Young, J. C.

    2013-07-01

    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of

  1. Low-Density LiDAR and Optical Imagery for Biomass Estimation over Boreal Forest in Sweden

    Directory of Open Access Journals (Sweden)

    Iurii Shendryk

    2014-05-01

    Full Text Available Knowledge of the forest biomass and its change in time is crucial to understanding the carbon cycle and its interactions with climate change. LiDAR (Light Detection and Ranging technology, in this respect, has proven to be a valuable tool, providing reliable estimates of aboveground biomass (AGB. The overall goal of this study was to develop a method for assessing AGB using a synergy of low point density LiDAR-derived point cloud data and multi-spectral imagery in conifer-dominated forest in the southwest of Sweden. Different treetop detection algorithms were applied for forest inventory parameter extraction from a LiDAR-derived canopy height model. Estimation of AGB was based on the power functions derived from tree parameters measured in the field, while vegetation classification of a multi-spectral image (SPOT-5 was performed in order to account for dependences of AGB estimates on vegetation types. Linear regression confirmed good performance of a newly developed grid-based approach for biomass estimation (R2 = 0.80. Results showed AGB to vary from below 1 kg/m2 in very young forests to 94 kg/m2 in mature spruce forests, with RMSE of 4.7 kg/m2. These AGB estimates build a basis for further studies on carbon stocks as well as for monitoring this forest ecosystem in respect of disturbance and change in time. The methodology developed in this study can be easily adopted for assessing biomass of other conifer-dominated forests on the basis of low-density LiDAR and multispectral imagery. This methodology is hence of much wider applicability than biomass derivation based on expensive and currently still scarce high-density LiDAR data.

  2. Holocene occurrence of Lophodermium piceae, a black spruce needle endophyte and possible paleoindicator of boreal forest health

    Science.gov (United States)

    Jasinski, J. P. Paul; Payette, Serge

    2007-01-01

    Holocene occurrences of conifer needle endophytes have not previously been reported. We report the fossil remains of Lophodermium piceae (Fckl.) Hoehn., a fungal endophyte of black spruce ( Picea mariana (Mill.) B.S.P.) needles, in macrofossils dating back to 8000 cal yr BP. Spruce budworm head capsules and L. piceae remains were found preceding charcoal layers delineating the transformation of four spruce-moss forest sites to spruce-lichen woodland. As L. piceae is found solely on senescent needles, its increased presence during these transformation periods likely indicates that the forests were in decline due to the spruce budworm ( Choristoneura fumiferana (Clem.)) when they burned. Future paleoecological studies incorporating needle fungi observations could be used to investigate the historical occurrence of tree disease and the role of fungi in forest health and decline.

  3. Modelling growth-competition relationships in trembling aspen and white spruce mixed boreal forests of Western Canada.

    Directory of Open Access Journals (Sweden)

    Jian-Guo Huang

    Full Text Available We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA, the sum of stem diameter at breast height (SDBH, and density (N for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR, were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10-25 years for aspen and ≥ 25 for spruce. Our model demonstrated a remarkable capability (adjusted R(2>0.67 to represent this complex variation in growth as a function of site, size and competition.

  4. Influence of soil frost on the character and degradability of dissolved organic carbon in boreal forest soils

    Science.gov (United States)

    Panneer Selvam, B.; Laudon, H.; Guillemette, F.; Berggren, M.

    2016-03-01

    Recent studies suggest that increases in extent and duration of winter soil frost increases dissolved organic carbon (DOC) concentrations in boreal riparian soils and connected aquatic systems during the subsequent spring and summer. However, little is known about the impact of frost on DOC character and its degradability. We applied three experimental treatments to riparian soils in northern Sweden—shallow soil frost (insulated), deep soil frost (snow removed) and control plots—to test the effect of different soil frost regimes on the chemical characteristics and degradability of soil DOC. Soil pore water samples were analyzed using excitation-emission fluorescence (parallel factor analysis) combined with biological and photochemical degradation experiments. We found that the absolute bacterial metabolic rates were significantly lower in samples from the shallow soil frost treatments, compared with the other treatments. Explorative multivariate analyses indicate that increasing soil frost is contributing to increased protein-like fluorescence and to increased biological degradability of the DOC. Our study shows that decreases in riparian soil frost due to climate warming may not only contribute to decreased riparian DOC concentrations but also lead to shifts in the DOC composition, resulting in decreased biodegradability (yet similar photodegradability) of the DOC that is exported from riparian soils to streams.

  5. Modelling growth-competition relationships in trembling aspen and white spruce mixed boreal forests of Western Canada.

    Science.gov (United States)

    Huang, Jian-Guo; Stadt, Kenneth J; Dawson, Andria; Comeau, Philip G

    2013-01-01

    We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA), the sum of stem diameter at breast height (SDBH), and density (N) for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR), were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10-25 years for aspen and ≥ 25 for spruce. Our model demonstrated a remarkable capability (adjusted R(2)>0.67) to represent this complex variation in growth as a function of site, size and competition.

  6. Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland

    Directory of Open Access Journals (Sweden)

    M. K. Kajos

    2015-04-01

    Full Text Available Proton transfer reaction mass spectrometry (PTR-MS and gas chromatography mass spectrometry GC-MS allow real-time measurements of various atmospheric volatile organic compounds (VOC. By taking parallel measurements in ambient conditions, two PTR-MSs and two GC-MSs were studied for their ability to measure methanol, acetaldehyde, acetone, benzene and toluene. The measurements were conducted at a rural boreal forest site in southern Finland between 13 April and 14 May 2012. This paper presents correlations and possible biases between the concentrations measured using the four instruments. This paper presents correlations and possible biases between the concentrations measured using the four instruments. A very good correlation was found for benzene and acetone measurements between all instruments (the mean R value was 0.88 for both compounds, while for acetaldehyde and toluene the correlation was weaker (with a mean R value of 0.50 and 0.62, respectively. For some compounds, notably for methane, there were considerable systematic differences in the mixing ratios measured by the different instruments, despite the very good correlation between the instruments (mean R = 0.90. The systematic difference arises as a difference in the linear regression slope between measurements conducted between instruments, rather than as an offset. This mismatch indicates that the systematic uncertainty in the sensitivity of a given instrument can lead to an uncertainty of 50–100% in the methanol emissions measured by commonly used methods.

  7. You can hide but you can't run: apparent competition, predator responses and the decline of Arctic gr