WorldWideScience

Sample records for america residential system

  1. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  2. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  3. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  4. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  5. Residential Segregation: Challenge to White America.

    Science.gov (United States)

    Denton, Nancy A.

    1994-01-01

    Examines the problem of residential segregation and demonstrates that it is a problem of social structure. The author contends that residential segregation has affirmed the continued subordination of blacks in American society over the past 50 years. New leadership in the Department of Housing and Urban Development is viewed as a positive…

  6. Residential Solar Systems.

    Science.gov (United States)

    Fulkerson, Dan

    This publication contains student and teacher instructional materials for a course in residential solar systems. The text is designed either as a basic solar course or as a supplement to extend student skills in areas such as architectural drafting, air conditioning and refrigeration, and plumbing. The materials are presented in four units…

  7. Working towards residential radon survey in South America

    International Nuclear Information System (INIS)

    Information about residential radon levels in low and middle income countries is very sparse. In response to the World Health Organization initiative in the International Radon Project, we propose a research project that will address this knowledge gap in South America by conducting a residential radon survey. Following initial in vitro and in vivo studies of radon and studies of uranium miners exposed to radon, over twenty large case-control studies of lung cancer risk from exposure to residential radon have been completed worldwide by year 2004. Recently pooled data from these individual studies have been analyzed. These collaborative analyses of the indoor studies in Europe, North America, and China provide strong direct evidence that radon is causing a substantial number of lung cancers in the general population. To reduce radon lung cancer risk, national authorities must have methods and tools based on solid scientific evidence to develop sound public health policies. We propose to conduct a survey in ten South American countries using the distribution and analysis of passive alpha tracking detectors in houses selected at random in pre-selected cities in each participating country. We also present an approach to estimate the cost of carrying out such a survey and the radon laboratory infrastructure needed. The results of the proposed survey will allow to conduct assessment of the exposure to residential radon in the populations of South American countries and to assess the health impact of this exposure. The results of the project will also help national health authorities in developing national residential radon action levels and regulations, as well as provide public health guidance for radon awareness and mitigation. (author)

  8. Working towards residential Radon survey in South America

    International Nuclear Information System (INIS)

    Information about residential radon levels in low and middle income countries is very sparse. In response to the World Health Organization initiative in the International Radon Project, we propose a research project that will address this knowledge gap in South America by conducting a residential radon survey. Following initial in vitro and in vivo studies of radon and studies of uranium miners exposed to radon, over twenty large case-control studies of lung cancer risk from exposure to residential radon have been completed worldwide by year 2004. Recently pooled data from these individual studies have been analyzed. These collaborative analyses of the indoor studies in Europe, North America, and China provide strong direct evidence that radon is causing a substantial number of lung cancers in the general population. To reduce radon lung cancer risk, national authorities must have methods and tools based on solid scientific evidence to develop sound public health policies. We propose to conduct a survey in ten South American countries using the distribution and analysis of passive alpha tracking detectors in houses selected at random in pre-selected cities in each participating country. We also present an approach to estimate the cost of carrying out such a survey and the radon laboratory infrastructure needed. The results of the proposed survey will allow to conduct assessment of the exposure to residential radon in the populations of South American countries and to assess the health impact of this exposure. The results of the project will also help national health authorities in developing national residential radon action levels and regulations, as well as provide public health guidance for radon awareness and mitigation. (author)

  9. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  10. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  11. Multi-Scale Residential Segregation: Black Exceptionalism and America's Changing Color Line

    Science.gov (United States)

    Parisi, Domenico; Lichter, Daniel T.; Taquino, Michael C.

    2011-01-01

    America's changing color line is perhaps best expressed in shifting patterns of neighborhood residential segregation--the geographic separation of races. This research evaluates black exceptionalism by using the universe of U.S. blocks from the 1990 and 2000 decennial censuses to provide a "single" geographically inclusive national estimate…

  12. Residential photovoltaic system simulation: Thermal aspects

    Science.gov (United States)

    Hart, G. W.; Raghuraman, P.

    1982-04-01

    A TRNSYS simulation was developed to simulate the performance of utility interactive residential photovoltaic energy systems. The PV system is divided into its major functional components, which are individually described with computer models. These models are described in detail. The results of simulation and actual measured data obtained a MIT Lincoln Laboratory's Northeast Residential Station are compared. The thermal influences on the design of such photovoltaic energy systems are given particular attention.

  13. Planning meeting combined analysis, North America residential radon studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report describes the Third International Department of Energy/ Commission of European Communities Workshop on Residential Radon Epidemiology held in February 1995 in Baltimore, MD. This culminates a major effort begun 1988, co-sponsored by the DOE and the CEC Radiation Protection Programme to identify and bring together all those scientists worldwide performing epidemiological case control studies of residential radon and lung cancer. Two prior meetings were held in 1989 and 1991. The goal of this effort is to work with the investigators and to pool these studies to increase their limited statistical power and to maximize any information that could be gained from them. That goal has now been met. At this Workshop the task moved from planning and agreement to implementation, as many of the studies were finally being completed and published. This report provides a summary of the Workshop as well as that of the first implementation workgroup meeting hosted by Health Canada. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. Residential solar-heating/cooling system

    Science.gov (United States)

    1980-01-01

    Report documents progress of residential solar-heating and cooling system development program at 5-month mark of anticipated 17-month program. System design has been completed, and development and component testing has been initiated. Report includes diagrams, operation overview, optimization studies of subcomponents, and marketing plans for system.

  15. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  16. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  17. MICRO-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  18. Energy efficient residential house wall system

    International Nuclear Information System (INIS)

    The energy consumption and greenhouse gas emission by the residential housing sector are considered to be one of the largest in economically developed countries. The larger energy consumption and greenhouse gas emission not only put additional pressure on finite fossil fuel resources but also cause global warming and climate change. Additionally, the residential housing sector will be consuming more energy as the house demand and average house floor area are progressively increasing. With currently used residential house wall systems, it is hard to reduce energy consumption for ongoing house space heating and cooling. A smart house wall envelope with optimal thermal masses and insulation materials is vital for reducing our increasing energy consumption. The major aim of this study is to investigate thermal performance and energy saving potential of a new house wall system for variable climate conditions. The thermal performance modelling was carried out using commercially developed software AccuRate®. The findings indicate that a notable energy savings can be accomplished if a smart house wall system is used. -- Highlights: • Smart house wall system. • Thermal performance modelling and star energy rating. • Energy savings and greenhouse gas reduction

  19. Analysis of Residential System Strategies Targeting Least-Cost Solutions Leading to Net Zero Energy Homes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-04-01

    The U. S. Department of Energy's Building America residential systems research project uses an analysis-based system research approach to identify research priorities, identify technology gaps and opportunities, establish a consistent basis to track research progress, and identify system solutions that are most likely to succeed as the initial targets for residential system research projects. This report describes the analysis approach used by the program to determine the most cost-effective pathways to achieve whole-house energy-savings goals. This report also provides an overview of design/technology strategies leading to net zero energy buildings as the basis for analysis of future residential system performance.

  20. Assessment of Residential GSHP System

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL

    2010-09-01

    This report first briefly reviews geothermal heat pump (GHP) technology and the current status of the GHP industry in the United States. Then it assesses the potential national benefits, in terms of energy savings, reduced summer peak electrical demand, consumer energy cost savings, and reduced CO{sub 2} emissions from retrofitting the space heating, space cooling, and water heating systems in existing U.S. single-family homes with state-of-the-art GHP systems. The investment for retrofitting typical U.S. single-family homes with state-of-the-art GHP systems is also analyzed using the metrics of net present value and levelized cost.

  1. Review of Residential Low-Load HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

    2013-09-01

    In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  2. Micro-CHP systems for residential applications

    International Nuclear Information System (INIS)

    Micro-CHP systems are now emerging on the market. In this paper, a thorough analysis is made of the operational parameters of 3 types of micro-CHP systems for residential use. Two types of houses (detached and terraced) are compared with a two storey apartment. For each building type, the energy demands for electricity and heat are dynamically determined. Using these load profiles, several CHP systems are designed for each building type. Data were obtained for two commercially available gas engines, two Stirling engines and a fuel cell. Using a dynamic simulation, including start up times, these five system types are compared to the separate energy system of a natural gas boiler and buying electricity from the grid. All CHP systems, if well sized, result in a reduction of primary energy use, though different technologies have very different impacts. Gas engines seem to have the best performance. The economic analysis shows that fuel cells are still too expensive and that even the gas engines only have a small internal rate of return (<5%), and this only occurs in favourable economic circumstances. It can, therefore, be concluded that although the different technologies are technically mature, installation costs should at least be reduced by 50% before CHP systems become interesting for residential use. Condensing gas boilers, now very popular in new homes, prove to be economically more interesting and also have a modest effect on primary energy consumption

  3. Making the most of residential photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.; Parker, D.; Hayter, S.

    1999-10-18

    Making the Most of Residential Photovoltaic Systems, was recently produced by NREL Communications and Public Affairs. It showcases a demonstration project in Florida that produced some remarkable results by incorporating both energy efficiency and photovoltaic systems into newly built housing. The brochure points up the benefits of making wise personal choices about energy use, and how large-scale use of advanced energy technologies can benefit the nation. This is one of a series of brochures that presents stimulating information about photovoltaics, with a goal of helping to push this technology into the power-generation mix in different utilities, communities, and states.

  4. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  5. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank;

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both...... onto the market. In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a...

  6. Air leakage in residential solar heating systems

    Science.gov (United States)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  7. Optimizing Hydronic System Performance in Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Faakye, O.

    2013-10-01

    Even though new homes constructed with hydronic heat comprise only 3% of the market (US Census Bureau 2009), of the 115 million existing homes in the United States, almost 14 million of those homes (11%) are heated with steam or hot water systems according to 2009 US Census data. Therefore, improvements in hydronic system performance could result in significant energy savings in the US. When operating properly, the combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater is a viable option for high-efficiency residential space heating in cold climates. Based on previous research efforts, however, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency. Furthermore, guidance on proper design and commissioning for heating contractors and energy consultants is hard to find and is not comprehensive. Through modeling and monitoring, CARB sought to determine the optimal combination(s) of components - pumps, high efficiency heat sources, plumbing configurations and controls - that result in the highest overall efficiency for a hydronic system when baseboard convectors are used as the heat emitter. The impact of variable-speed pumps on energy use and system performance was also investigated along with the effects of various control strategies and the introduction of thermal mass.

  8. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  9. LED Context Lighting System in Residential Areas

    Directory of Open Access Journals (Sweden)

    Sook-Youn Kwon

    2014-01-01

    Full Text Available As issues of environment and energy draw keen interest around the globe due to such problems as global warming and the energy crisis, LED with high optical efficiency is brought to the fore as the next generation lighting. In addition, as the national income level gets higher and life expectancy is extended, interest in the enhancement of life quality is increasing. Accordingly, the trend of lightings is changing from mere adjustment of light intensity to system lighting in order to enhance the quality of one’s life as well as reduce energy consumption. Thus, this study aims to design LED context lighting system that automatically recognizes the location and acts of a user in residential areas and creates an appropriate lighting environment. The proposed system designed in this study includes three types of processing: first, the creation of a lighting environment index suitable for the user’s surroundings and lighting control scenarios and second, it measures and analyzes the optical characteristics that change depending on the dimming control of lighting and applies them to the index. Lastly, it adopts PIR, piezoelectric, and power sensor to grasp the location and acts of the user and create a lighting environment suitable for the current context.

  10. LED context lighting system in residential areas.

    Science.gov (United States)

    Kwon, Sook-Youn; Im, Kyoung-Mi; Lim, Jae-Hyun

    2014-01-01

    As issues of environment and energy draw keen interest around the globe due to such problems as global warming and the energy crisis, LED with high optical efficiency is brought to the fore as the next generation lighting. In addition, as the national income level gets higher and life expectancy is extended, interest in the enhancement of life quality is increasing. Accordingly, the trend of lightings is changing from mere adjustment of light intensity to system lighting in order to enhance the quality of one's life as well as reduce energy consumption. Thus, this study aims to design LED context lighting system that automatically recognizes the location and acts of a user in residential areas and creates an appropriate lighting environment. The proposed system designed in this study includes three types of processing: first, the creation of a lighting environment index suitable for the user's surroundings and lighting control scenarios and second, it measures and analyzes the optical characteristics that change depending on the dimming control of lighting and applies them to the index. Lastly, it adopts PIR, piezoelectric, and power sensor to grasp the location and acts of the user and create a lighting environment suitable for the current context. PMID:25101325

  11. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    . The improved modelling of residential heat pumps proved to have influence on the results. First, it would be optimal to invest in more ground-source heat pumps, but there is not enough available ground area. Second, the total system costs are higher when COPs are modelled as temperature......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...

  12. Definition study for photovoltaic residential prototype system

    Science.gov (United States)

    Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.

    1976-01-01

    A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.

  13. Community Design Parameters and the Performance of Residential Cogeneration Systems

    OpenAIRE

    Hazem Rashed-Ali

    2012-01-01

    The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigat...

  14. Modular Energy Management System Applicable to Residential Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises;

    2016-01-01

    In this paper, an energy management system is defined as a flexible architecture. This proposal can be applied to home and residential areas when they include generation units. The system has been integrated and tested in a grid-connected microgrid prototype, where optimal power generation profiles...

  15. Computer support system for residential environment evaluation for citizen participation

    Institute of Scientific and Technical Information of China (English)

    GE Jian; TEKNOMO Kardi; LU Jiang; HOKAO Kazunori

    2005-01-01

    Though the method of citizen participation in urban planning is quite well established, for a specific segment of residential environment, however, existing participation system has not coped adequately with the issue. The specific residential environment has detailed aspects that need positive and high level involvement of the citizens in participating in all stages and every field of the plan. One of the best and systematic methods to obtain a more involved citizen is through a citizen workshop. To get a more "educated" citizen who participates in the workshop, a special session to inform the citizen on what was previously gathered through a survey was revealed to be prerequisite before the workshop. The computer support system is one of the best tools for this purpose. This paper describes the development of the computer support system for residential environment evaluation system, which is an essential tool to give more information to the citizens before their participation in public workshop. The significant contribution of this paper is the educational system framework involved in the workshop on the public participation system through computer support, especially for residential environment. The framework, development and application of the computer support system are described. The application of a workshop on the computer support system was commented on as very valuable and helpful by the audience as it resulted in greater benefit to have wider range of participation, and deeper level of citizen understanding.

  16. A review of residential computer oriented energy control systems

    Energy Technology Data Exchange (ETDEWEB)

    North, Greg

    2000-07-01

    The purpose of this report is to bring together as much information on Residential Computer Oriented Energy Control Systems as possible within a single document. This report identifies the main elements of the system and is intended to provide many technical options for the design and implementation of various energy related services.

  17. Residential Forced Air System Cabinet Leakage and Blower Performance

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  18. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject the...... power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  19. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    Full Text Available The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigated include: 1 density, 2 use mix, 3 street configuration, 4 housing typology, 5 envelope and building systems’ efficiencies, and 6 passive solar energyutilization. The study integrated several simulation tools into a procedure to assess the impact of each design parameter on the cogeneration system performance. This assessment procedure included: developing a base-line model representing typical design characteristics of U.S. residential communities; assessing the cogeneration system’s performance within this model using three performance indicators: percentage of reduction in primary energy use, percentage of reduction in CO2 emissions; and internal rate of return; assessing the impact of each parameter on the system performance through developing 46 design variations of the base-line model representing potential changes in each parameter and calculating the three indicators for each variation; and finally, using a multi-attribute decision analysis methodology to evaluate the relative impact of each parameter on the cogeneration system performance. The study results show that planning parameters had a higher impact on the cogeneration system performance than architectural ones. Also, a significant correlation was found between design characteristics identified as favorable for the cogeneration system performance and those of sustainable residential communities. These include high densities, high use mix, interconnected street networks, and mixing of

  20. Residential cogeneration systems: review of the current technology

    International Nuclear Information System (INIS)

    There is a growing potential for the use of micro-cogeneration systems in the residential sector because they have the ability to produce both useful thermal energy and electricity from a single source of fuel such as oil or natural gas. In cogeneration systems, the efficiency of energy conversion increases to over 80% as compared to an average of 30-35% for conventional fossil fuel fired electricity generation systems. This increase in energy efficiency can result in lower costs and reduction in greenhouse gas emissions when compared to the conventional methods of generating heat and electricity separately. Cogeneration systems and equipment suitable for residential and small-scale commercial applications like hospitals, hotels or institutional buildings are available, and many new systems are under development. These products are used or aimed for meeting the electrical and thermal demands of a building for space and domestic hot water heating, and potentially, absorption cooling. The aim of this paper is to provide an up-to-date review of the various cogeneration technologies suitable for residential applications. The paper considers the various technologies available and under development for residential, i.e. single-family (e) and multi-family (10-30kWt) applications, with focus on single-family applications. Technologies suitable for residential cogeneration systems include reciprocating internal combustion engine, micro-turbine, fuel cell, and reciprocating external combustion Stirling engine based cogeneration systems. The paper discusses the state of development and the performance, environmental benefits, and costs of these technologies. (author)

  1. Emerging Themes in Residential Child and Youth Care Practice in North America

    OpenAIRE

    Garfat, Thom

    2003-01-01

    Child and Youth Care practice in North America is, as it should be, in constant evolution. A review of the literature, conversations about practice and participation in the activities of the field reveal certain treads or themes which reft.ect the state of the field at this particular point in time. This paper identifies and reft.ects on some of those that seem most relevant to contemporary Child and Youth Care practice in North America.

  2. Waste removal systems and recycling participation in residential environments

    DEFF Research Database (Denmark)

    Thøgersen, John

    2002-01-01

    form of recycling (Ackerman, 1997; Pieters, 1989). Therefore, residential environments in developed countries increasingly contain separate collection systems for that fraction of waste that can be recycled, and hence re-utilized, in the production of new goods. These collection systemsare in addition...... to systems to keep waste removal tidy and sanitary. This chapter discusses the importance of the careful design of such systems, which I - for reasons explained in below - call recycling channels....

  3. Residential Treatment and the Invention of the Emotionally Disturbed Child in Twentieth-Century America.

    Science.gov (United States)

    Doroshow, Deborah Blythe

    2016-01-01

    In the 1930s, children who were violent, depressed, psychotic, or suicidal would likely have been labeled delinquent and sent to a custodial training school for punitive treatment. But starting in the 1940s, a new group of institutions embarked on a new experiment to salvage and treat severely deviant children. In the process, psychiatrists, psychologists, and social workers at these residential treatment centers (RTCs) made visible, and indeed invented, a new patient population. This article uses medical literature, popular media, and archival sources from several RTCs to argue that staff members created what they called the "emotionally disturbed" child. While historians have described the identification of the mildly "troublesome" child in child guidance clinics, I demonstrate how a much more severely ill child was identified and defined in the process of creating residential treatment and child mental health as a professional enterprise. PMID:27040027

  4. A systems approach to retrofitting residential HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Walker, I.S.

    2004-05-01

    A Best Practices Guide for retrofitting residential HVAC systems has recently been completed by DOE. The guide uses diagnostics and checklists to guide the user to specific retrofit packages that maximize retrofit energy savings, comfort and safety potential. The guide uses a systems approach to retrofitting where the interaction of different building components is considered throughout the retrofit selection process. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC systems can be used. In this study, several houses were surveyed using the Best Practices Guide and a single house was selected for retrofitting. The objectives were to demonstrate how a successful system-wide retrofit can be carried out and to provide feedback to improve the guide. Because it represents a departure from current practice, a key aspect of this study was to investigate the interactions with contractors and code officials who are unfamiliar with the systems approach. The study found that the major barrier to the systems approach in retrofits was in changing the working practices of contractors and code officials.

  5. Technology Solutions Case Study: Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-11-01

    Condensing boiler technology has been around for many years and has proven to be a durable, reliable method of heating. Based on previous research efforts, however, it is apparent that these types of systems are not designed and installed to achieve maximum efficiency. For example, in order to protect their equipment in the field, manufacturers of low-mass condensing boilers typically recommend design strategies and components that ensure steady, high flow rates through the heat exchangers, such as primary-secondary piping, which ultimately result in decreased efficiency. There is also a significant lack of information for contractors on how to configure these systems to optimize overall efficiency. In response to these findings, researchers from Building America team Consortium for Advanced Residential Buildings worked with industry partners to develop hydronic system designs that would address these issues and result in higher overall system efficiencies and improved response times.

  6. Residential Building Management System Features and Underlying Factors

    OpenAIRE

    Puķīte, I; Geipele, I

    2015-01-01

    For the implementation of real estate management, in accordance with the legislative framework of good practice and quality management, a system is required that helps the processes to be arranged according to their fundamental values, criteria and functions. The study sets residential property management elements and factors influencing them. The significance of the topic is set by the developing industry and the requirement for quality and sustainable management model that includes all inte...

  7. Strategies for controlling residential combined cooling, heating and power systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2004-07-01

    Residential cogeneration technologies are considered to be excellent candidates for combined cooling, heating and power (CCHP) technology. The characteristics of CCHP technology were outlined in this paper along with control strategies required for meeting concurrent cooling, heating and electrical loads. The integration of these control strategies into a CCHP system controller model was also discussed. In particular, a model of a thermally-activated cooling (TAC) unit was developed at the CANMET Energy Technology Centre. The model was integrated into the ESP-r/HOT3000 residential simulation modelling tool. The TAC unit model was then combined with a previously developed fuel cell model in a residential HVAC network. The study showed that if a cogeneration system was coupled to a TAC unit such as an absorption chiller, any surplus heat could be exploited during the summer months to deliver useful cooling to the building using CCHP technology. The modelling results suggest that a CCHP controller can be compatible with improved, dynamic fuel-cells models. Future work will focus on including electrical storage systems and on-site renewable technologies such as photovoltaic panels. 6 refs., 2 tabs., 8 figs.

  8. Optimizing Hydronic System Performance in Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    Even though new homes constructed with hydronic heat comprise only 3% of the market (US Census Bureau 2009), of the 115 million existing homes in the United States, almost 14 million of those homes (11%) are heated with steam or hot water systems according to 2009 US Census data. Therefore, improvements in hydronic system performance could result in significant energy savings in the US.

  9. Long-term assessment of residential radon-mitigation systems

    International Nuclear Information System (INIS)

    In New York State a survey in 1982-83 discovered fourteen houses with moderately high natural radon levels, and in early 1984 low-cost radon mitigation systems were installed in these houses. The radon reduction techniques included sealing cracks, sealing and sub-slab depressurization, isolating and venting unpaved crawl-spaces, and installing heat-recovery ventilators. These mitigation systems represent some of the earliest systems installed in the United States using low-cost common residential construction materials and methods. In this report, the authors discuss how they returned to these installations, inspected the longevity of the various components of the systems and assessed their long-term effectiveness

  10. Residential Photovoltaic/Thermal Energy System

    Science.gov (United States)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  11. Economics of Residential PV Systems in Europe

    OpenAIRE

    Huld, Thomas; Szabo, Sandor; JAEGER-WALDAU Arnulf; OSSENBRINK Heinz

    2014-01-01

    Since 2000 grid-connected solar photovoltaic systems have increased their world-wide cumulative capacity about 200 times to exceed 135 GW at the end of 2013. A further doubling is forecast until 2016 and the further development is coupled with the question at what prices solar photovoltaic electricity can be delivered to the customers.

  12. Opinion leadership and willingness to pay for residential photovoltaic systems

    International Nuclear Information System (INIS)

    According to diffusion theory, opinion leaders play an important role in the diffusion of new technologies through interpersonal communication with potential adopters. This study investigates the role and utility of opinion leadership in photovoltaic (PV) system diffusion. Specifically, the study proposes, examines, and considers the implications of the hypothesis that there is a positive relationship between willingness to pay (WTP) for a PV system and opinion leadership on PV-system adoption. The investigation employed an internet-based questionnaire to assess the use of interpersonal communication in decision-making on adoption, to identify opinion leaders on adoption, and to characterize their WTP. The response pool consisted of 488 individuals who lived in a detached house, owned a residential PV system, and were responsible for making the decision to adopt the system. The results support the hypothesis. Considering that subsidization preferentially incentivizes households with greater WTP to adopt PV systems, this suggests that subsidization is more effective than purchases of PV power under feed-in tariffs in promoting the diffusion of residential PV systems through interpersonal communication. -- Highlights: •Interpersonal communication about the adoption of PV systems is analyzed. •A questionnaire survey is conducted. •Opinion leaders on PV-system adoption are identified. •A relationship is confirmed between willingness to pay and opinion leadership. •Subsidization is more essential than feed-in tariffs from this point of view

  13. Technical assessment of an oil-fired residential cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1993-01-01

    The definition of cogeneration, within the context of this project, is the simultaneous production of electricity and heat energy from a single machine. This report will present the results of an engineering analysis of the efficiency and energy-conservation potential associated with a unique residential oil-fired cogeneration system that provides both heat and electric power. The system operates whenever a thermostat signals a call for heat in the home, just as a conventional heating system. However, this system has the added benefit of cogenerating electricity whenever it is running to provide space heating comfort. The system is designed to burn No. 2 heating oil, which is consumed in an 11-horsepower, two cylinder, 56.75-cubic-inch, 1850-RPM diesel engine. This unit is the only pre-production prototype residential No. 2 oil-fired cogeneration system known to exist in the world. As such, it is considered a landmark development in the field of oil-heat technology.

  14. Capital disadvantage: America's failing capital investment system.

    Science.gov (United States)

    Porter, M E

    1992-01-01

    The U.S. system of allocating investment capital is failing, putting American companies at a serious disadvantage and threatening the long-term growth of the nation's economy. The problem, says Michael Porter, goes beyond the usual formulation of the issue: accusations of "short-termism" by U.S. managers, ineffective corporate governance by directors, or a high cost of capital. The problem involves the external capital allocation system by which capital is provided to companies, as well as the system by which companies allocate capital internally. America's system is marked by fluid capital and a financial focus. Other countries--notably Japan and Germany--have systems with dedicated capital and a focus on corporate position. In global competition, where investment increasingly determines a company's capacity to upgrade and innovate, the U.S. system does not measure up. These conclusions come out of a two-year research project sponsored by the Harvard Business School and the Council on Competitiveness. Porter recommends five far-reaching reforms to make the U.S. system superior to Japan's and Germany's: 1. Improve the present macroeconomic environment. 2. Expand true ownership throughout the system so that directors, managers, employees, and even customers and suppliers hold positions as owners. 3. Align the goals of capital providers, corporations, directors, managers, employees, customers, suppliers, and society. 4. Improve the information used in decision making. 5. Foster more productive modes of interaction and influence among capital providers, corporations, and business units. PMID:10121317

  15. Integrated evaluation of radiative heating systems for residential buildings

    International Nuclear Information System (INIS)

    Based on the need to reduce CO2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  16. Tracking the Sun VIII. The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spears, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Grue, Nick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-01

    Now in its eighth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and nonresidential systems installed through year-end 2014, with preliminary trends for the first half of 2015. As noted in the text box below, this year’s report incorporates a number of important changes and enhancements. Among those changes, this year's report focuses solely on residential and nonresidential PV systems; data on utility-scale PV are reported in LBNL’s companion Utility-Scale Solar report series. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. In total, data were collected for roughly 400,000 individual PV systems, representing 81% of all U.S. residential and non-residential PV capacity installed through 2014 and 62% of capacity installed in 2014, though a smaller subset of this data were used in analysis.

  17. Cost Estimates of Electricity from a TPV Residential Heating System

    Science.gov (United States)

    Palfinger, Günther; Bitnar, Bernd; Durisch, Wilhelm; Mayor, Jean-Claude; Grützmacher, Detlev; Gobrecht, Jens

    2003-01-01

    A thermophotovoltaic (TPV) system was built using a 12 to 20 kWth methane burner which should be integrated into a conventional residential heating system. The TPV system is cylindrical in shape and consists of a selective Yb2O3 emitter, a quartz glass tube to prevent the exhaust gases from heating the cells and a 0.2 m2 monocrystalline silicon solar cell module which is water cooled. The maximum system efficiency of 1.0 % was obtained at a thermal input power of 12 kWth. The electrical power suffices to run a residential heating system in the full power range (12 to 20 kWth) independently of the grid. The end user costs of the TPV components - emitter, glass tube, photocells and cell cooling circuit - were estimated considering 4 different TPV scenarios. The existing technique was compared with an improved system currently under development, which consists of a flexible photocell module that can be glued into the boiler housing and with systems with improved system efficiency (1.5 to 5 %) and geometry. Prices of the electricity from 2.5 to 22 EURcents/kWhel (excl. gas of about 3.5 EURcents/kWh), which corresponds to system costs of 340 to 3000 EUR/kWel,peak, were calculated. The price of electricity by TPV was compared with that of fuel cells and gas engines. While fuel cells are still expensive, gas engines have the disadvantage of maintenance, noise and bulkiness. TPV, in contrast, is a cost efficient alternative to produce heat and electricity, particularly in small peripheral units.

  18. Simulation of a residential thermal solar system performance

    Energy Technology Data Exchange (ETDEWEB)

    Morejon, Camilo F.M.; Abugderah, Mabruk M. [Universidade Estadual do Oeste do Parana, Toledo, PR (Brazil). Dept. de Engenharia Quimica]. E-mails: camilo@unioeste.br; mabruk@yahoo.com

    2000-07-01

    This paper presents the thermal performance of a residential water heating thermal storage system in function of design and operating parameters. A mathematical model is obtained by an energy balance around the thermal storage water tank. The obtained model describes the conversion of the solar radiation absorbed by the collector into useful energy gain, and thermal losses. The obtained mathematical expression is used to investigate the sensitivity of the stored water temperature to the collector plate absorber area, water volume, global heat transfer coefficient, type of collector, maximum solar radiation and water consumption. The last is considered to be in a steady state flow. The daily solar radiation distribution is estimated by an analytical model and validated using an experimental data obtained from the scientific literature. This analysis is useful in the prediction of the thermal performance and the optimisation of the design and operational parameters of thermal solar systems. (author)

  19. Building America Systems Integration Research Annual Report: FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  20. Building America Systems Integration Research Annual Report. FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  1. Residential environment index system and evaluation model established by subjective and objective methods

    Institute of Scientific and Technical Information of China (English)

    葛坚; HOKAOKazunori

    2004-01-01

    In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential environment was first analyzed; then the subjective evaluation data-base was established by questionnaire survey; and at the same time, the objective evaluation data-base was constructed by Geographic Information System (GIS); and then the related equation system between subjective and objective system was developed by multiple regression analysis. This research could benefit evaluation of the residential environment quality for various purposes, and also provide important rudimentary data-base for the development and improvement of residential environment for officials. Furthermore, the index system and evaluation model established in this research could construct a strong relation between subjective evaluation and objective data; and thus could provide a comprehensive, efficient and effective methodology for the evaluation of residential environment.

  2. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  3. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  4. Biomass gasification systems for residential application: An integrated simulation approach

    International Nuclear Information System (INIS)

    The energy policy of the European member States is promoting high-efficiency cogeneration systems by means of the European directive 2012/27/EU. Particular facilitations have been implemented for the small-scale and micro-cogeneration units. Furthermore, the directive 2010/31/EU promotes the improvement of energy performance of buildings and use of energy from renewable sources for the building sector. In this scenario, systems based on gasification are considered a promising technological solution when dealing with biomass and small scale systems. In this paper, an integrated approach has been implemented to assess the energy performance of combined heat and power (CHP) systems based on biomass gasification and installed in residential blocks. The space-heating loads of the considered building configurations have been simulated by means of EnergyPlus. The heat load for domestic hot water demand has been calculated according to the average daily profiles suggested by the Italian and European technical standards. The efficiency of the whole CHP system has been evaluated supplementing the simulation of the gasification stage with the energy balance of the cogeneration set (i.e., internal combustion engine) and implementing the developed routines in the Matlab-Simulink environment. The developed model has been used to evaluate the primary energy saving (PES) of the CHP system compared to a reference case of separate production of heat and power. Economic analyses are performed either with or without subsidizations for the generated electricity. The results highlight the capability of the integrated approach to estimate both energy and economic performances of CHP systems applied to the residential context. Furthermore, the importance of the generated heat valorisation and the proper system sizing have been discussed. - Highlights: • CHP system based on biomass gasification to meet household energy demand is studied. • Influence of CHP size and operation time on

  5. Sustainability of Rainwater Harvesting Systems in Multistorey Residential Buildings

    Directory of Open Access Journals (Sweden)

    A. Rahman

    2010-01-01

    Full Text Available Problem statement: The urban water supply systems in Australian large cities, which generally depend on large surface water reservoirs, are highly stressed due to rapid urban growth and severe drought conditions during the current decade. To ensure the long term sustainability of urban water supply, various alternative water sources including rainwater tanks, grey water, wastewater and desalination plants are being examined in Australia. In the previous research, it has been shown that rainwater tank of appropriate size, installed in detached small dwellings, can meet a significant proportion of household water demand, but there has been limited study on water savings and financial viability of Rain Water Harvesting System (RWHS for multistorey residential buildings. This study examines the sustainability of RWHS in multistorey residential buildings in Sydney under different scenarios such as varying roof area, number of floors in the building, water price and interest rate to identify favorable condition where RWHS proves to be sustainable. Approach: A hypothetical multistorey building was considered and various scenarios in relation to site area and floor arrangement were established. A water balance model was developed to calculate water savings for various scenarios. Finally, life cycle costing was undertaken to identify most sustainable RWHS scenario for the hypothetical multistorey building. Results: It was found that a higher roof area is more favorable in terms of water savings and financial benefits. Capital and maintenance costs account for the majority of the expenditure of a RWHS. Plumbing cost forms the largest single component of the capital cost. It is shown that lower interest and increased water price regimes enhance the financial viability of RWHS. Conclusion: It was found that it is possible to achieve “pay back” for a RWHS under some favorable scenarios and conditions thus making the RWHS for multistorey buildings in Sydney

  6. Controls on the quality of harvested rainwater in residential systems

    Science.gov (United States)

    Sojka, S. L.; Phung, D.; Hollingsworth, C.

    2014-12-01

    Rainwater harvesting systems, in which runoff from roofs is collected and used for irrigation, toilets and other purposes, present a viable solution to limited freshwater supplies and excess stormwater runoff. However, a lack of data on the quality of harvested rainwater hinders adoption of rainwater harvesting systems and makes development of rainwater harvesting regulations difficult. We conducted monthly surveys of 6 existing residential rainwater harvesting systems ranging in age from 1 to 11 years measuring pH, temperature, dissolved oxygen, total suspended solids, dissolved organic carbon, and coliform bacteria. We also examined a subset of the samples for iron, lead, mercury and arsenic. Many of the systems routinely met the water quality requirements for non-potable use without additional treatment, which is often required by regulations. In addition, while previous studies have shown that roof runoff contains heavy metals, the water in all systems showed very low or undetectable levels of metal contamination. Coliform bacteria concentration ranged from 20 to greater than 1400 CFU's per 100 mL and correlated with total suspended solids, which ranged from 2 - 7 mg l-1. The relationship between suspended solids and bacteria population was confirmed in a controlled experiment on the impact of filtering the rainwater before storage. Filtration decreased total suspended solids and total coliforms and increased dissolved oxygen concentration. This project provides insight into the effects of system design and a baseline assessment of the quality of harvested rainwater in existing systems.

  7. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  8. Residential commissioning to assess envelope and HVAC system performance

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Sherman, Max H.

    2001-08-31

    Houses do not perform optimally or even as many codes and forecasts predict. For example, Walker et al. (1998a) found large variations in thermal distribution system efficiency, as much as a factor of two even between side-by-side houses with the same system design and installation crew. This and other studies (e.g., Jump et al. 1996) indicate that duct leakage testing and sealing can readily achieve a 25 to 30% reduction in installed cooling capacity and energy consumption. As another example, consider that the building industry has recognized for at least 20 years the substantial impact that envelope airtightness has on thermal loads, energy use, comfort, and indoor air quality. However, Walker et al. (1998a) found 50% variances in airtightness for houses with the same design and construction crews, within the same subdivision. A substantial reason for these problems is that few houses are now built or retrofitted using formal design procedures, most are field assembled from a large number of components, and there is no consistent process to identify problems or to correct them. Solving the problems requires field performance evaluations of houses using appropriate and agreed upon procedures. Many procedural elements already exist in a fragmented environment; some are ready now to be integrated into a new process called residential commissioning (Wray et al. 2000). For example, California's Title 24 energy code already provides some commissioning elements for evaluating the energy performance of new houses. A house consists of components and systems that need to be commissioned, such as building envelopes, air distribution systems, cooling equipment, heat pumps, combustion appliances, controls, and other electrical appliances. For simplicity and practicality, these components and systems are usually evaluated individually, but we need to bear in mind that many of them interact. Therefore, commissioning must not only identify the energy and non

  9. An Outcomes Perspective of the Role of Residential Treatment in the System of Care

    Science.gov (United States)

    Lyons, John S.; Woltman, Heather; Martinovich, Zoran; Hancock, Brian

    2009-01-01

    A variety of factors are putting great pressure on residential treatment centers to justify their role in the child serving system through evidence of impact on the lives of children, youth, and families. The present study describes the role of residential treatment from an outcomes perspective in a midsized state over the course of a 5 year…

  10. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  11. [Systemic concepts in residential placement: considerations for pedagogics, counseling and organization].

    Science.gov (United States)

    Schweitzer, J; Reuter, D

    1991-01-01

    The paper starts from an analysis of typical problems in residential child care, which can be identified on different system levels (family, family and residential child care unit, family and larger systems, child care as a profession). More recent systems concepts (such as autopoiesis, role of the observer, "fitting", limits of planning in human systems) are used to develop suggestions for everyday practice of residential child care--from intake to dismissal, from crisis intervention to family education, from job satisfaction to management issues. PMID:1871061

  12. Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

    2006-10-01

    The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

  13. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  14. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  15. Emissions from realistic operation of residential wood pellets heating systems

    OpenAIRE

    Win, Kaung Myat

    2015-01-01

    Emissions from residential combustion appliances vary significantly depending on the firing behaviours and combustion conditions, in addition to combustion technologies and fuel quality. Although wood pellet combustion in residential heating boilers is efficient, the combustion conditions during start-up and stop phases are not optimal and produce significantly high emissions such as carbon monoxide and hydrocarbon from incomplete combustion. The emissions from the start-up and stop phases of...

  16. Tracking Electricity Production Patterns for Residential Solar Electric Systems in Massachusetts

    OpenAIRE

    Youngblood, Elizabeth A.

    2015-01-01

    The number of residential small-scale solar electric, or photovoltaic (PV) systems installed in Massachusetts has increased over the past five years. However, expanded deployment of residential solar PV may be hindered by lack of awareness of expected electricity generation of solar PV systems, and corresponding financial return. Policymakers are also interested in using limited state resources to support the installation of well-producing solar PV systems that will help meet state greenhouse...

  17. Criteria for multiple noises in residential buildings using combined rating system

    Science.gov (United States)

    Jeon, Jin Yong; Ryu, Jong Kwan; Jeong, Young

    2005-04-01

    Multiple residential noises such as floor impact, air-borne, bathroom, drainage, and traffic noises were classified using a combined rating system developed from a social noise survey and auditory experiments. The effect of individual noise perception on the evaluation of the overall noise environment was investigated through a questionnaire survey on annoyance, disturbance, and noise sensitivity. In addition, auditory experiments were undertaken to determine the allowable sound pressure level for each residential noise source and the percent satisfaction for individual noise levels. From the results of the survey and the auditory experiments, a combined rating system was developed and annoyance criteria for multiple residential noises were suggested.

  18. Height System Unification in North America

    Science.gov (United States)

    Sideris, Michael; Amjadiparvar, Babak

    2015-04-01

    GOCE has contributed important gravity information towards the definition and realization of the new North American height reference system. In addition to the new gravimetric geoid models based on GOCE, offsets of the classical levelling-based vertical datums in North America, namely CGVD28 in Canada and NAVD88 in the USA and Mexico, can be computed with respect to a global equipotential surface defined by means of a GOCE-based geoid. Although the two datums will eventually be replaced by a common and continent-wide vertical datum (and in fact the new Canadian height datum established in 2013 is already geoid based), their connection and unification is of great interest to the scientific and user communities. This study investigates the practical implementation of the geodetic boundary value problem (GBVP) approach as a rigorous method for unifying classical levelling-based vertical datums. The so-called indirect bias term, the effect of the GOCE geoid omission error, the effect of the systematic levelling datum errors and distortions, and the effect of the data errors on the datum unification are of great importance for the practical implementation of this approach. These factors are investigated numerically using the GNSS-levelling and tide gauge (TG) stations in Canada, the USA, Alaska, and Mexico. The results show that the indirect bias term can be omitted if a GOCE-based global geopotential model is used in geoid computation. This is significant because the omission of the indirect bias term simplifies the geoid computations as well as the linear system of equations for the estimation of datum offsets. Because of the existing systematic levelling errors and distortions in the Canadian and US levelling networks, the datum offsets are investigated in eight smaller regions along Canadian and US coastal areas instead of over the whole North American land mass. The effect of the omission error on the datum offsets decreases significantly in areas with good

  19. POSSIBLE ROLE OF INDOOR RADON REDUCTION SYSTEMS IN BACK-DRAFTING RESIDENTIAL COMBUSTION APPLIANCES

    Science.gov (United States)

    The article gives results of a computational sensitivity analysis conducted to identify conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might contribute to or create back-drafting of natural draft combustion appliances. Par...

  20. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  1. Intelligent demand side management of residential building energy systems

    Science.gov (United States)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  2. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  3. [Health system reforms in South America: an opportunity for UNASUR].

    Science.gov (United States)

    Gomes-Temporão, José; Faria, Mariana

    2014-01-01

    Health systems in South America still support segmentation, privatization and fragmentation. Health reforms of the structural adjustment programs in the 1980s and 1990s in South America followed different purposes and strategies ranging from privatization, commodification and state intervention for the implementation of a national public health service with universal access as a right of the citizens. Since the 2000s, many countries have expanded social policies, reduced poverty and social inequalities, and improved access to healthcare. This article proposes to discuss the health systems in South America from historical and political backgrounds, and the progress from the reforms in the last three decades. It also presents the three paradigmatic models of reform and their evolution, as well as the contrasts between universal coverage and universal systems. Finally, it presents current strengths and weaknesses of the twelve South American health systems as well as current opportunities and challenges in health for UNASUR. PMID:25597728

  4. RESIDENTIAL BUILDING ADAPTIVE ENERGY MANAGEMENT SYSTEM (R-BAEMS) DESIGN

    Science.gov (United States)

    The expected outcomes from Phase I included 1) a set of guidelines for implementing R-BAEMS in residential structures from both a retrofit and original design perspective and 2) a cost and energy analysis of R-BAEMS impact on the environment. The status of each of the outcomes...

  5. Sensorless PV Array Diagnostic Method for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso; Spataru, Sergiu; Mathe, Laszlo; Kerekes, Tamas; Teodorescu, Remus

    This work proposes a temperature and irradiance sensorless diagnostic method suitable for small residential PV installations, focusing on detection of partial shadows. The method works by detection of failures in crystalline silicone PV arrays by concomitant monitoring of some of their key...

  6. Integrated Strip Foundation Systems for Small Residential Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2010-01-01

    A prefabricated lightweight element was designed for a strip foundation that was used on site as the bases of two small residential buildings, in this case single-family houses; one was built with a double-brick exterior wall separated by mineral fiber insulation and the other was built with a wood...

  7. Homeowners' Preferences for Adopting Residential Heating Systems: A Discrete Choice Analysis for Germany

    OpenAIRE

    Michelsen , Carl Christian; Madlener, Reinhard

    2011-01-01

    Space heating accounts for a large fraction of the primary energy consumption and CO2 emissions of residential buildings. Besides targeting the insulation standard, residential heating systems (RHS) based on renewable energy sources offer the potential to reduce energy demand for space heating. Therefore, understanding the determinants of the homeowners’ adoption decisions in favor of RHS becomes increasingly important. In this paper, we analyze the influence of preferences about RHS-specific...

  8. Residential Forced Air System Cabinet Leakage and Blower Performance

    OpenAIRE

    Walker, Iain S.

    2010-01-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the developm...

  9. Simulation of Old Urban Residential Area Evolution Based on Complex Adaptive System

    Institute of Scientific and Technical Information of China (English)

    YANG Fan; WANG Xiao-ming; HUA Hong

    2009-01-01

    On the basis of complex adaptive system theory,this paper proposed an agent-based model of old urban residential area,in which,residents and providers are the two adaptive agents.The behaviors of residents and providers in this model are trained with back propagation and simulated with Swarm software based on environment-rules-agents interaction.This model simulates the evolution of old urban residential area and analyzes the relations between the evolution and urban management with the background of Chaozhou city.As a result,the following are obtained:(1) Simulation without government intervention indicates the trend of housing ageing,environmental deterioration,economic depression,and social filtering-down in old urban residential area.If the development of old urban residential area is under control of developers in market,whose desire is profit maximization,and factors such as social justice,historic and culture value will be ignored.(2) If the government carries out some policies and measures which will perfectly serve their original aims,simulation reveals that old urban residential area could be adapted to environment and keep sustainable development.This conclusion emphasizes that government must act as initiator and program maker for guiding residents and other providers directly in the development of old urban residential area.

  10. Building America Case Study: Indirect Solar Water Heating Systems in Single-Family Homes, Greenfield, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    Solar water heating systems are not new, but they have not become prevalent in most of the U.S. Most of the country is cold enough that indirect solar thermal systems are required for freeze protection, and average installed cost of these systems is $9,000 to $10,000 for typical systems on single-family homes. These costs can vary significantly in different markets and with different contractors, and federal and regional incentives can reduce these up-front costs by 50% or more. In western Massachusetts, an affordable housing developer built a community of 20 homes with a goal of approaching zero net energy consumption. In addition to excellent thermal envelopes and PV systems, the developer installed a solar domestic water heating system (SDHW) on each home. The Consortium for Advanced Residential Buildings (CARB), a research consortium funded by the U.S. Department of Energy Building America program, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.

  11. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by......Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... the scouts twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the...

  12. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by...... the scouts twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the...

  13. Interconnected power systems of the countries of America Central (SIEPAC)

    International Nuclear Information System (INIS)

    This presentation shows the project SIEPAC (Sistema de interconexion electrica de los paises de Centro America) describes the current transmission system, and planned SIEPAC transmission system, also describes the objectives: implementation of an central american electrical market named Mercado Electrico Regional that contributes to sustaintable development of the region. Also describes the power transmission lines, the structure of line transmission and its market to be covered. Financing of the project from lending institutions is explained

  14. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V.; Taylor, Zachary T.

    2014-09-10

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype building models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.

  15. Method of energy efficiency of residential house by implementing of automatic controlled heat metering system

    Directory of Open Access Journals (Sweden)

    Taisiya Olegovna Zadvinskaya

    2014-08-01

    Full Text Available The method of increasing the efficiency of heat energy describes in this article. The method is based on installation of heat metering system and automatic controlled domestic heating plant in residential building. An example of comparative calculation of the heat input and estimation for heat energy in a typical residential building, according to different methods which are used for the calculation of extra charge by the energy supplier, in the presence of the heat metering system and automatic controlled domestic heating plant and without. Payback period of the proposed activities was calculated.

  16. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    Energy Technology Data Exchange (ETDEWEB)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  17. Feasibility study and roadmap to improve residential hot water distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.

    2004-03-31

    Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

  18. Comparative study of forensic psychiatric system between China and America.

    Science.gov (United States)

    Li, Gangqin; Gutheil, Thomas G; Hu, Zeqing

    2016-01-01

    Laws and regulations about the forensic psychiatric systems in China and America were compared, and suggestions for improving the forensic psychiatric system of China were provided. There are many differences regarding the role of the forensic psychiatrist, the initiation of the assessment and the admission of expert opinion because of elements in the legal systems in China and America. The Chinese system has the advantages of objectivity, cost saving and high efficiency; but it has deficiencies in procedural justice and the admission of expert opinion. China can persist with the current system while taking measures to give more rights to the litigants to participate in their assessment, and while improving the quality and utility of the expert opinion; however, this review article will compare broadly the two systems without addressing human rights issues or procedural justice issues, nor will it presume to address the entirety of Chinese systems. In addition, China is developing its legal system for dealing with the mentally ill defendant in situations involving the criminal justice system and civil commitment. Although China enacted new laws regarding the mandatory treatment for the mentally ill, both in criminal and civil systems, there remain many aspects to be improved, including but not limited to a system of review of the decision to detain a patient on psychiatric grounds, and the need for provisions in the laws preventing indefinite detention. From this viewpoint, America's laws and regulations are instructive for us, in matters such as the method of dealing with the mentally ill defendant who is "incompetent to stand trial", "not guilty only by reason of insanity" or "guilty but mentally ill". The conditional release of the committed mentally ill person and the special programs in the forensic security hospital are all worthy of study by China in order to manage the mentally ill offender and to reduce the recidivism rate. PMID:27292971

  19. Electric power of residential photovoltaic power system; Jutakuyo taiyoko hatsuden system no hatsudenryo

    Energy Technology Data Exchange (ETDEWEB)

    Asano, K.; Kawamura, H.; Yamanaka, S.; Kawamura, H.; Ono, H.; Hayashi, K.; Naganawa, H. [Meijo University, Nagoya (Japan); Asai, H.

    1996-10-27

    Measurement was done on the annual power generation of a residential photovoltaic power system that was most suitable for the present situation in utilizing solar energy; and an examination was made on the basis of the data of a module in which an optimal operation load control was separately installed in order to operate the system more effectively. As a result, it was found that the introduction of a 3kW class system was currently most desirable as a residential photovoltaic power system, and that the problem of the optimal operation load control was crucial for the more efficient power generation. The resistance value of the optimal operation load was stable between 6 and 8 ohm in the daytime in fine weather. However, it was observed that, where no sufficient insolation was expected, the optimal operation load was ten times as much as in fine weather, being easily influenced by the environmental elements. In addition, it was revealed that, if the operation load was fixed at a specific value (6 ohm) in a clear day, the power generation was only about 85% compared with the case of controlling the optimal operation load. This figure was obtained under comparatively favorable conditions, however. 8 refs., 7 figs.

  20. Gray-box modeling and validation of residential HVAC system for control system design

    International Nuclear Information System (INIS)

    Highlights: • Gray-box models of residential HVAC system are developed. • Measurements were made on the inputs and outputs of each subsystem. • The parameters of the models were found by nonlinear least squares optimization. • Models were simulated in Matlab Simulink® and compared with the measurements. • Integrated HVAC model was developed by cascading the individual subsystem models. - Abstract: In this paper gray-box models of the residential heating, ventilation and air conditioning (HVAC) system were developed. The HVAC system comprises of several subsystems such as energy recovery ventilator (ERV), air handling unit (AHU), buffer tank (BT), radiant floor heating (RFH) system, zone and ground source heat pump (GSHP) whose models can be identified separately and combined to obtain the model of the full system. The parameters of the subsystem models were identified from the data measured from the instrumented TRCA Archetype Sustainable House (TRCA-ASH) HVAC systems located at Kortright Centre for Conservation in Vaughan, Ontario, Canada. Individual subsystem models were combined to obtain the full system model which replicates the performance of the existing HVAC system and provides the cost estimate for running the HVAC system. Existing HVAC system uses ON/OFF controllers for zone temperature and BT temperature control. The ON/OFF controllers were integrated into the full scale system model and energy estimates were calculated for the operation of primary and secondary components (e.g., GSHP, fans and pumps). This model can be used to further investigate the effects of more advanced controllers (e.g., PID, model predictive control-MPC) and energy conservation strategies (e.g., set-point reset, passive/active thermal energy storage) in the simulation before implementing on the existing HVAC system

  1. Analysis of Anchors and Bracing Configurations for Personal Fall Arrest Systems in Residential Construction

    OpenAIRE

    Morris, Justin Collins

    2013-01-01

    AbstractAnalysis of Anchors and Bracing Configurations with Personal Fall Arrest Systems in Residential ConstructionJustin Collins Morris    Falls continue to be a major problem in the residential construction industry and account for a large number of injuries and fatalities each year (US Department of Labor, 2012).  The effects of a fall are catastrophic to the workers and their families as well as the construction company and surrounding community.  Prevention of these incidents has been t...

  2. An Overview of Low Voltage DC Distribution Systems for Residential Applications

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Firoozabadi, Mehdi Savaghebi; Quintero, Juan Carlos Vasquez;

    2015-01-01

    The concept of a microgrid has drawn the interest of research community in recent years. The most interesting aspects are the integration of renewable energy sources and energy storage systems at the consumption level, aiming to increase power quality, reliability and efficiency. On top of this...... applications. Several publications that study the potential energy savings and overall advantages of the LVDC distribution systems are analysed. Different power architectures and topologies are discussed. The existing demonstration facilities where LVDC distribution systems have been implemented are also shown......., the increasing of DC-based loads has re-open the discussion of DC vs AC distribution systems. As a consequence a lot of research has been done on DC distribution systems and its potential for residential applications. This paper presents an overview of the LVDC distribution systems used in residential...

  3. A System to Detect Residential Area in Multispectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Seyfallah Bouraoui

    2011-11-01

    Full Text Available In this paper, we propose a new solution to extract complex structures from High-Resolution (HR remote-sensing images. We propose to represent shapes and there relations by using region adjacency graphs. They are generated automatically from the segmented images. Thus, the nodes of the graph represent shape like houses, streets or trees, while arcs describe the adjacency relation between them. In order to be invariant to transformations such as rotation and scaling, the extraction of objects of interest is done by combining two techniques: one based on roof color to detect the bounding boxes of houses, and one based on mathematical morphology notions to detect streets. To recognize residential areas, a model described by a regular language is built. The detection is achieved by looking for a path in the region adjacency graph, which can be recognized as a word belonging to the description language. Our algorithm was tested with success on images from the French satellite SPOT 5 representing the urban area of Strasbourg (France at different spatial resolution.

  4. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Charles [Delta Products, Triangle Park, NC (United States)

    2015-05-15

    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical

  5. Global crisis and the Europe-Latin America migration system

    Directory of Open Access Journals (Sweden)

    Susana M. Sassone

    2014-09-01

    Full Text Available This article discusses some of the changes in the connections of the European-Latin American migration system over the past decades. First, we analyse the changing trends and re-routing of the flows between the two ends of the system. Then, we address the complex rearrangements of immigration policies, which in both spaces are again beginning to turn inwards. Lastly, we briefly review the partnerships that are being established between Europe and Latin America via Spain. Within this framework, we wonder whether we are entering a new phase of the globalisation of migration, the dynamic of which is a pendulum with global and regional effects.

  6. On the value of decentralised PV systems for the GCC residential sector

    International Nuclear Information System (INIS)

    Based on the rich natural potential of the Gulf region, solar energy is expected to play a greater role in the future of the Gulf Corporation Council (GCC) countries. This study examines whether the integration of the photovoltaic (PV) into individual residential buildings in the GCC countries is worth the investment. A prototype residential building is developed and a building integrated photovoltaic (BiPV) system is then designed. The system performance is simulated, and through economic analysis, it is shown that the current BiPV technology is not a cost-effective option for the GCC countries based on the present electricity tariff, PV system cost and system efficiency. The only way such a system would be viable with current technology is if the electricity tariff were to increase substantially. However, if the tariff remains constant for the foreseeable future, BiPV solar energy technology will only be feasible if the total system cost drops drastically. This study shows that BiPV systems offer cost reductions in both energy and economic terms over centralised PV plants, especially if the costs of avoided building construction materials are taken into account. To bring about the benefits of BiPV technology for the GCC residential sector, therefore, the first logical and most practical step is the implementation of a continuous promotion strategy that consists of both subsidies for investments and reasonable tariffs. - Research highlights: → Techno-economic analysis of decentralised PV systems for the GCC residential sector. → The current BiPV technology is not a cost-effective option for the GCC countries based on the present electricity tariff, PV system cost and system efficiency. → The only way such a system would be viable with current technology is if the electricity tariff were to increase substantially. → If the tariff remains constant for the foreseeable future, BiPV solar energy technology will only be feasible if the total system cost drops

  7. Modeling and Optimization of a Residential Solar Stand-Alone Power System

    OpenAIRE

    Beshr, Mohamed H.; Amr A. Abdelraouf; Khater, Hany A.

    2011-01-01

    Modeling and optimization of a residential solar-powered stand-alone power system comprising photovoltaic (PV) arrays and secondary batteries are presented. Moreover, an economic study is performed to determine the cost of electricity (COE) produced from this system so as to determine its competitiveness with the conventional sources of electricity. All of the calculations are performed using a computer code developed by using MATLAB. The system output was calculated for Cairo city (30°01′N, ...

  8. Development of a new energy efficiency rating system for existing residential buildings

    International Nuclear Information System (INIS)

    Building energy efficiency rating systems have been established worldwide to systematically manage the energy consumption of existing buildings. This study aimed to develop a new energy efficiency rating system for existing residential buildings from two perspectives: (i) establishment of reasonable and fair criteria for the building energy efficiency rating system; and (ii) establishment of comparative incentive and penalty programs to encourage the voluntary participation of all residents in the energy saving campaign. Based on the analysis of the conventional energy efficiency rating system for existing residential buildings, this study was conducted in five steps: (i) data collection and analysis; (ii) correlation analysis between the household size and the CO2 emission density (i.e., CO2 emission per unit area); (iii) cluster formation based on results of the correlation analysis using a decision tree; (iv) establishment of a new energy efficiency rating system for existing buildings; and (v) establishment of incentive and penalty programs using advanced case-based reasoning. The proposed system can allow a policymaker to establish a reasonable and fair energy efficiency rating system for existing residential buildings and can encourage the voluntary participation of all residents in the energy saving campaign. - Highlights: • A new energy efficiency rating system for the residential building was developed. • The incentive and penalty programs were established using an advanced CBR model. • The new system was established using reasonable and fair standards. • It allows all residents to voluntarily participate in the energy saving campaign. • It can be applied to any country or sector in the global environment

  9. Modeling and simulation of a residential micro-CHP system based on HT-PEMFC technology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Combined-heat-and-power (CHP) technology is a well known and proved method to produce simultaneously power and heat at high efficiencies. This can be further improved by the introduction of a novel micro-CHP residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT......-PEMFC). The HT-PEMFC (based on PBI-membrane technology) operates at temperatures near 200oC, and this can be an ideal match for cogeneration residential systems. The proposed system provides electric power, hot water, and space heating for a typical household (1-5 kWe, 5-10 kWth). The micro-CHP system is...

  10. Native America: American Indian Geoscientists & Earth System Science Leaders

    Science.gov (United States)

    Bolman, J. R.

    2011-12-01

    We are living in a definite time of change. Distinct changes are being experienced in our most sacred and natural environments. This is especially true on Native lands across the Americas. Native people have lived for millennia in distinct and unique ways. The knowledge of balancing the needs of people with the needs of our natural environments is paramount in all Tribal societies. These changes have accelerated the momentum to ensure the future of American Indian Geoscientists and Earth Systems Science Leaders. The presentation will bring to prominence the unique recruitment and mentoring necessary to achieve success that emerged through working with Tribal people. The presentation will highlight: 1) past and present philosophies on recruitment and mentoring of Native/Tribal students in geoscience and earth systems science; 2) current Native leadership and research development; 3) unique collaborations "bridging" Native people across geographic areas (International) in developing educational/research experiences which integrate the distinctive geoscience and earth systems science knowledge of Tribal peoples throughout the Americas. The presentation will highlight currently funded projects and initiatives as well as success stories of emerging Native geoscientists and earth systems science leaders.

  11. Integrated Theoretical Framework for a Homeowner's Decision in Favor of an Innovative Residential Heating System

    OpenAIRE

    Michelsen , Carl Christian; Madlener, Reinhard

    2010-01-01

    Insight into the homeowner’s adoption decisions in favor of a specific innovative residential heating system (RHS) helps us to understand and assess the dynamics of the adoption and diffusion of such technological systems as a “social” phenomenon. This phenomenon emerges from the individual decisions of a set of heterogeneous actors on the market. In our research, we develop an integrated theoretical framework for assessing a homeowner’s adoption decision in favor of a specific innovative RHS...

  12. Chronic Residential Exposure to Particulate Matter Air Pollution and Systemic Inflammatory Markers

    OpenAIRE

    Hoffmann, Barbara; Moebus, Susanne; Dragano, Nico; Stang, Andreas; Möhlenkamp, Stefan; Schmermund, Axel; Memmesheimer, Michael; Bröcker-Preuss, Martina; Mann, Klaus; Erbel, Raimund; Jöckel, Karl-Heinz

    2009-01-01

    Background Long-term exposure to urban air pollution may accelerate atherogenesis, but mechanisms are still unclear. The induction of a low-grade systemic inflammatory state is a plausible mechanistic pathway. Objectives: We analyzed the association of residential long-term exposure to particulate matter (PM) and high traffic with systemic inflammatory markers. Methods We used baseline data from the German Heinz Nixdorf Recall Study, a population-based, prospective cohort study of 4,814 parti...

  13. Expanding Photovoltaic Penetration with Residential Distributed Generation from Hybrid Solar Photovoltaic. Combined Heat and Power Systems

    OpenAIRE

    Pearce, Joshua

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV CHP hybrid systems in order increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly sh...

  14. New challenges to electrical interconnection systems in Central America

    International Nuclear Information System (INIS)

    The electrical interconnection between Central America countries is a project of regional integration, whose purpose is to optimize the advantage of interconnecting of six electrical systems of their respective countries. This require the establishment of legal procedures to operate the high voltage transmission grid from Guatemala to Panama. The mid and long term planning of the interconnected electrical grid, is a new challenge for the electrical companies, considering that as up to now, they have been satisfying small markets. The possibility to use nuclear energy to satisfy a bigger market is now feasible and deserves to be considered since the beginning of the interconnection project. (author)

  15. Choosing The Right Technology - Optimized Design Of Renewable Supply Systems For Residential Houses

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2012-01-01

    based on mixed integer linear programming. The methodology chooses the right combination of technologies and sizes the components based on on-site weather data and expected consumption profiles. Through this approach the fluctuations of RES as well as the user behavior are taken into account already......The use of renewable energy sources (RES) has continuously increased throughout the last decade. In the residential building sector the trend goes towards energy supply systems based on multiple RES. This is mainly due to political requirements, governmental subsidies and fuel price development....... These systems not only require an optimal design with respect to the installed capacities but also the right choice in combining the available technologies assuring a cost-effective solution. The aim of this paper is to present an optimization methodology for residential on-site energy supply systems...

  16. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin;

    2015-01-01

    The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric vehi......'s energy consumption during a period of one year. Furthermore, simulations were performed considering real data of PV generation, consumption, prices taken from the Spanish market and costs of battery and photovoltaic systems....... vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user...

  17. Building America Top Innovations 2013 Profile – Quality Management System Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    This Top Innovation profile describes quality management system tools that were customized for residential construction by BSC, IBACOS, and PHI, for use by builders, trades, and designers to help eliminate mistakes that would require high-cost rework.

  18. Evaluation of Active Cooling Systems for Non-Residential Buildings

    OpenAIRE

    M.A. Othuman Mydin

    2014-01-01

    Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air...

  19. Solar residential heating and cooling system development test program

    Science.gov (United States)

    Humphries, W. R.; Melton, D. E.

    1974-01-01

    A solar heating and cooling system is described, which was installed in a simulated home at Marshall Space Flight Center. Performance data are provided for the checkout and initial operational phase for key subsystems and for the total system. Valuable information was obtained with regard to operation of a solar cooling system during the first summer of operation. Areas where improvements and modifications are required to optimize such a system are discussed.

  20. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  1. The impact of residential demand response on the costs of a fossil-free system reserve

    DEFF Research Database (Denmark)

    Katz, Jonas; Balyk, Olexandr; Hevia Koch, Pablo Alejandro

    2016-01-01

    In order to achieve a better understanding of the system value of residential demand response, we study the potential impact of flexible demand on the costs of system reserves in a fossil-free electricity supply. Comparing these costs with traditional means of regulation our analysis aims to...... contribute to determining the least-cost options for regulation in a fossil-free power system. We extend an existing energy system model with demand response and reserve modelling and analyse the impact for the case of Denmark in 2035 to reflect a system based on renewable resources for electricity and...

  2. Performance of Early Warning Systems on Landslides in Central America

    Science.gov (United States)

    Strauch, W.; Devoli, G.

    2012-04-01

    We performed a reconnaissance about Early Warning Systems (EWS) on Landslides (EWSL) in the countries of Central America. The advance of the EWSL began in the 1990-ies and accelerated dramatically after the regional disaster provoked by Hurricane Mitch in 1998. In the last decade, Early Warning Systems were intensely promoted by national and international development programs aimed on disaster prevention. Early Warning on landslides is more complicated than for other geological phenomena. But, we found information on more than 30 EWSL in the region. In practice, for example in planning, implementation and evaluation of development projects, it is often not clearly defined what exactly is an Early Warning System. Only few of the systems can be classified as true EWSL that means 1) being directly and solely aimed at persons living in the well-defined areas of greatest risk and 2) focusing their work on saving lives before the phenomenon impacts. There is little written information about the work of the EWSL after the initial phase. Even, there are no statistics whether they issued warnings, if the warnings were successful, how many people were evacuated, if there were few false alerts, etc.. Actually, we did not find a single report on a successful landslide warning issued by an EWSL. The lack of information is often due to the fact that communitarian EWSL are considered local structures and do not have a clearly defined position in the governmental hierarchy; there is little oversight and no qualified support and long-term support. The EWSL suffer from severe problems as lack of funding on the long term, low technical level, and insufficient support from central institutions. Often the EWSL are implemented by NGÓs with funding from international agencies, but leave the project alone after the initial phase. In many cases, the hope of the local people to get some protection against the landslide hazard is not really fulfilled. There is one case, where an EWSL with a

  3. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    OpenAIRE

    Alexandre Hugo; Radu Zmeureanu

    2012-01-01

    The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS softwar...

  4. Beyond Technology Adoption: Homeowner Satisfaction with Newly Adopted Residential Heating Systems

    OpenAIRE

    Michelsen , Carl Christian; Madlener, Reinhard

    2015-01-01

    In this paper we study homeowner satisfaction with respect to innovative residential heating systems. In particular, we focus on the role of attributes of the home, homeowners’ socio-demographic characteristics, RHS-related knowledge, and adoption motivations. For this purpose, we apply a linear regression model on a dataset obtained from a survey among homeowners in Germany (N=2,135) that had adopted a RHS shortly before the survey was conducted. Moreover, we investigate differences between ...

  5. Building America Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House, Mount Joy, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-01

    This report presents the design and evaluation of a innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wall system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.

  6. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test

  7. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  8. Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil

    International Nuclear Information System (INIS)

    We analyze the economic competitiveness of grid-connected, distributed solar photovoltaic generation through small-scale rooftop installations in five Brazilian state-capitals. The locations represent a comprehensive set of the two essential parameters for the economic viability of PV—solar irradiation and local electricity tariffs. Levelized electricity costs (LEC) for PV generation and net present values (NPV) for a specific PV system are presented. The analysis comprises three different interest rate scenarios reflecting different conditions for capital acquisition to finance the generators; subsidized, mature market and country-specific risk-adjusted interest. In the NPV analysis, revenue flow is modeled by the sale of PV electricity at current residential tariffs assuming net metering. Using subsidized interest rates, the analysis shows that solar PV electricity is already competitive in Brazil, while in the country-specific risk-adjusted rate, the declining, but still high capital costs of PV make it economically unfeasible. At a mature market interest rate, PV competitiveness is largely dependent on the residential tariff. Economic competitiveness in this scenario is given for locations with high residential tariffs. We demonstrate the high potential of distributed generation with photovoltaic installations in Brazil, and show that under certain conditions, grid-connected PV can be economically competitive in a developing country. - Highlights: ► Debt financed grid-connected PV on Brazilian rooftops can be economically feasible since 2011. ► The cost of capital in Brazil is the decisive parameter in PV competitiveness with conventional generation sources. ► Low-cost, long-term financing is an essential requirement for PV to become an economically justifiable generation alternative. ► The Brazilian market holds huge potential for distributed, residential rooftop PV systems of small size.

  9. VOLTTRON-Based System for Providing Ancillary Services with Residential Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin

    2016-07-01

    Ancillary services entail controlled modulation of building equipment to maintain a stable balance of generation and load in the power system. Ancillary services include frequency regulation and contingency reserves, whose acting time ranges from several seconds to several minutes. Many pilot studies have been implemented to use industrial loads to provide ancillary services, and some have explored services from commercial building loads or electric vehicle charging loads. Residential loads, such as space conditioning and water heating, represent a largely untapped resource for providing ancillary services. The residential building sector accounts for a significant fraction of the total electricity use in the United States. Many loads in residential buildings are flexible and could potentially be curtailed or shifted at the request of the grid. However, there are many barriers that prevent residential loads being widely used for ancillary services. One of the major technical barriers is the lack of communication capabilities between end-use devices and the grid. End-use devices need to be able to receive the automatic generation control (AGC) signal from the grid operator and supply certain types of telemetry to verify response. With the advance of consumer electronics, communication-enabled, or 'connected,' residential equipment has emerged to overcome the communication barrier. However, these end-use devices have introduced a new interoperability challenge due to the existence of numerous standards and communication protocols among different end devices. In this paper, we present a VOLTTRON-based system that overcomes these technical challenges and provides ancillary services with residential loads. VOLTTRON is an open-source control and sensing platform for building energy management, facilitating interoperability solutions for end devices. We have developed drivers to communicate and control different types of end devices through standard

  10. Solar Heating and Cooling of Residential Buildings: Design of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…

  11. Latino residential segregation and self-rated health among Latinos: Washington State Behavioral Risk Factor Surveillance System, 2012-2014.

    Science.gov (United States)

    Plascak, Jesse J; Molina, Yamile; Wu-Georges, Samantha; Idris, Ayah; Thompson, Beti

    2016-06-01

    The relationship between Latino residential segregation and self-rated health (SRH) is unclear, but might be partially affected by social capital. We investigated the association between Latino residential segregation and SRH while also examining the roles of various social capital measures. Washington State Behavioral Risk Factor Surveillance System (2012-2014) and U.S. Census data were linked by zip code and zip code tabulation area. Multilevel logistic regression models were used to estimate odds of good or better SRH by Latino residential segregation, measured by the Gini coefficient, and controlling for sociodemographic, acculturation and social capital measures of neighborhood ties, collective socialization of children, and social control. The Latino residential segregation - SRH relationship was convex, or 'U'-shaped, such that increases in segregation among Latinos residing in lower segregation areas was associated with lower SRH while increases in segregation among Latinos residing in higher segregation areas was associated with higher SRH. The social capital measures were independently associated with SRH but had little effect on the relationship between Latino residential segregation and SRH. A convex relationship between Latino residential segregation and SRH could explain mixed findings of previous studies. Although important for SRH, social capital measures of neighborhood ties, collective socialization of children, and social control might not account for the relationship between Latino residential segregation and SRH. PMID:27173739

  12. Methods of Improving Water Treatment Systems for Individual Residential Houses

    Directory of Open Access Journals (Sweden)

    Pavlov Sergey

    2016-01-01

    Full Text Available One of hot topics for ecological management is sewage treatment today in places where there is no sewerage. The volume of country construction in territories, which are not connected to the public sewage system increasing nowadays. Therefore, problem of wastewater treatment take place. Currently, there are a lot of different designs of local waste treatment plants is offered to consumers. However, a large number of negative reviews indicate serious shortcomings in most of the local plants offered in the market. The purpose of this paper is the proposal of improvement of the most common local treatment plants in Russia.

  13. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  14. Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.

    Science.gov (United States)

    Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln

    2016-02-16

    This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton). PMID:26745347

  15. Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions

    International Nuclear Information System (INIS)

    The objective of this study was to examine the effect of production-based support schemes on the economic feasibility of residential-scale PV systems (1–10 kW) in Finland. This was done by calculating the payback time for various sizes of newly installed PV systems for a Finnish detached house with district heating. Three types of economic support schemes (guaranteed selling price, fixed premiums and self-consumption incentives) were tested in an hourly simulation. The load of the building was based on real-life measurements, while PV output was simulated with TRNSYS software. The energy results were post-processed with economic data in MATLAB to find the payback time. Hourly electricity prices from the Nordic energy market were used with PV system prices from Finnish companies. Unsubsidised residential PV systems in Finland had payback times of more than 40 years. The production-based support for PV generation needs to be two to three times the buying price of electricity, to make it possible to pay back the initial investment in 20 years. Low capacity systems with more than 50% self-consumption (under 3 kW) were favoured by self-consumption incentives, while high capacity systems with less than 40% self-consumption (over 5 kW) were favoured by the FIT-type support schemes. - Highlights: • Unsubsidised residential PV is uneconomical in Finland. • Support rate must be 2 times the electricity price for reasonable payback time. • Even using all electricity on-site is not profitable enough without support. • Assumed real interest rate had great influence on payback time. • Hourly electricity prices are much lower than average values from Finnish statistics

  16. Energy and exergy performance of residential heating systems with separate mechanical ventilation

    International Nuclear Information System (INIS)

    The paper brings new evidence on the impact of separate mechanical ventilation system on the annual energy and exergy performance of several design alternatives of residential heating systems, when they are designed for a house in Montreal. Mathematical models of residential heating, ventilation and domestic hot water (HVAC-DHW) systems, which are needed for this purpose, are developed and furthermore implemented in the Engineering Equation Solver (EES) environment. The Coefficient of Performance and the exergy efficiency are estimated as well as the entropy generation and exergy destruction of the overall system. The equivalent greenhouse gas emissions due to the on-site and off-site use of primary energy sources are also estimated. The addition of a mechanical ventilation system with heat recovery to any HVAC-DHW system discussed in the paper increases the energy efficiency; however, it decreases the exergy efficiency, which indicates a potential long-term damaging impact on the natural environment. Therefore, the use of a separate mechanical ventilation system in a house should be considered with caution, and recommended only when other means for controlling the indoor air quality cannot be applied

  17. A cost optimization model for 100% renewable residential energy supply systems

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2012-01-01

    interdependencies between the different supply technologies as well as the construction energy of the installations, consumption profiles and on-site energy resource availability. This paper aims at developing such a model for the optimal sizing of renewable energy supply systems (RES) for residential Net ZEB......The concept of net zero energy buildings (Net ZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of these buildings. To achieve this, a holistic approach is needed which accounts for the...

  18. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments

    Science.gov (United States)

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-01-01

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377

  19. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.

    Science.gov (United States)

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-01-01

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377

  20. The development of a solar-powered residential heating and cooling system

    Science.gov (United States)

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  1. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  2. 78 FR 48466 - Hewlett Packard Company, Printing & Personal System Americas Division, Marketing Services...

    Science.gov (United States)

    2013-08-08

    ..., Marketing Services, Houston, Texas; Notice of Investigation Pursuant to Section 221 of the Trade Act of 1974... Hewlett Packard Company, Printing & Personal System Americas Division, Marketing Services, Houston, Texas... included the workers and former workers of Printing & Personal System Americas Division, Marketing...

  3. Home Energy Article: A Systems Approach to RetrofittingResidential HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Jennifer A.; Walker, Iain S.

    2005-04-01

    Over the past couple of years, a Best Practices Guideline for Residential HVAC Retrofits has been developed by the US Department of Energy (DOE) to provide guidance for contractors in performing whole house retrofits. Because of the strongly cost-limited nature of retrofits, combined with the wide range of existing home performance, the DOE guideline has several levels of retrofit packages depending on the level of intervention that a homeowner can afford, or is justified by the condition of the home and its HVAC system. The packages are pre-selected combinations of individual retrofit activities that provide simple whole house guidance for contractors. This guideline has been evaluated by potential users such as contractors and weatherization experts. Part of this evaluation included a field pilot study applying the guidelines to eight test houses. The application of the guidelines to these houses resulted in feedback that helped to update and improve the guidelines. In order to have an independent assessment of the guidelines, two of the houses were evaluated by an independent energy efficiency contractor. One of the test houses was chosen to be retrofitted and had the Best Practices Guideline diagnostic screening tests repeated after the retrofit to compare pre- and post-retrofit performance, as well as being the subject of extensive monitoring to determine the change in house performance due to the retrofit. More details of these test results and the application and development of the Retrofit Guide can be found in Walker [2003].

  4. An analysis of residential PV system price differences between the United States and Germany

    International Nuclear Information System (INIS)

    Residential photovoltaic (PV) systems were twice as expensive in the United States as in Germany (median of $5.29/W vs. $2.59/W) in 2012. This price discrepancy stems primarily from differences in non-hardware or “soft” costs between the two countries, which can only in part be explained by differences in cumulative market size and associated learning. A survey of German PV installers was deployed to collect granular data on PV soft costs in Germany, and the results are compared to those of a similar survey of U.S. PV installers. Non-module hardware costs and all analyzed soft costs are lower in Germany, especially for customer acquisition, installation labor, and profit/overhead costs, but also for expenses related to permitting, interconnection, and inspection procedures. Additional costs occur in the United States due to state and local sales taxes, smaller average system sizes, and longer project-development times. To reduce the identified additional costs of residential PV systems, the United States could introduce policies that enable a robust and lasting market while minimizing market fragmentation. Regularly declining incentives offering a transparent and certain value proposition—combined with simple interconnection, permitting, and inspection requirements—might help accelerate PV cost reductions in the United States. - Highlights: • Residential PV system prices are twice as high in the USA than in Germany in 2012. • Different cumulative national PV market sizes explain only 35% of price gap. • Installer surveys show that price differences stem from non-module and soft costs. • Largest cost differences stem from customer acquisition and installation labor. • Incentives in the US are less effective in driving and following cost reductions

  5. How PV system ownership can impact the market value of residential homes.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Johnson, Jamie L.

    2014-01-01

    There are multiple ways for a homeowner to obtain the electricity generating and savings benefits offered by a photovoltaic (PV) system. These include purchasing a PV system through various financing mechanisms, or by leasing the PV system from a third party with multiple options that may include purchase, lease renewal or PV system removal. The different ownership options available to homeowners presents a challenge to appraisal and real estate professionals during a home sale or refinance in terms of how to develop a value that is reflective of the PV systems operational characteristics, local market conditions, and lender and underwriter requirements. This paper presents these many PV system ownership options with a discussion of what considerations an appraiser must make when developing the contributory value of a PV system to a residential property.

  6. Drop-in Performance of Low GWP Refrigerants in a Heat Pump System for Residential Applications

    OpenAIRE

    Barve, Atharva; Cremaschi, Lorenzo

    2012-01-01

    R410A is one of the main refrigerants used for air conditioning and heat pump systems in residential applications. It has zero ozone depletion potential but its global warming potential is about 2,000. In China and Japan, refrigerant R32 (GWP = 675, zero ODP) has been proposed, as possible replacement for R410A but this refrigerant is slightly flammable. HFO-1234yf is a refrigerant with low GWP (GWP = 4, zero ODP) that is currently being used in European car market as a possible replacement f...

  7. Feasibility Study of Residential Grid-Connected Solar Photovoltaic Systems in the State of Indiana

    Science.gov (United States)

    Al-Odeh, Mahmoud

    This study aims to measure the financial viability of installing and using a residential grid-connected PV system in the State of Indiana while predicting its performance in eighteen geographical locations within the state over the system's expected lifetime. The null hypothesis of the study is that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. Using a systematic approach consisting of six steps, data regarding the use of renewable energy in the State of Indiana was collected from the website of the US Department of Energy to perform feasibility analysis of the installation and use of a standard-sized residential PV system. The researcher was not able to reject the null hypothesis that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. This study found that the standard PV system does not produce a positive project balance and does not pay for itself within 25 years (the life time of the system) assuming the average cost of a system. The government incentive programs are not enough to offset the cost of installing the system against the cost of the electricity that would not be purchased from the utility company. It can be concluded that the cost of solar PV is higher than the market valuation of the power it produces; thus, solar PV did not compete on the cost basis with the traditional competitive energy sources. Reducing the capital cost will make the standard PV system economically viable in Indiana. The study found that the capital cost for the system should be reduced by 15% - 56%.

  8. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  9. Building America Top Innovations 2012: Basement Insulation Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    This Building America Top Innovations profile describes research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  10. Ecosystem biophysical memory in the southwestern North America climate system

    International Nuclear Information System (INIS)

    To elucidate the potential role of vegetation to act as a memory source in the southwestern North America climate system, we explore correlation structures of remotely sensed vegetation dynamics with precipitation, temperature and teleconnection indices over 1982–2006 for six ecoregions. We found that lagged correlations between vegetation dynamics and climate variables are modulated by the dominance of monsoonal or Mediterranean regimes and ecosystem-specific physiological processes. Subtropical and tropical ecosystems exhibit a one month lag positive correlation with precipitation, a zero- to one-month lag negative correlation with temperature, and modest negative effects of sea surface temperature (SST). Mountain forests have a zero month lag negative correlation with precipitation, a zero–one month lag negative correlation with temperature, and no significant correlation with SSTs. Deserts show a strong one–four month lag positive correlation with precipitation, a low zero–two month lag negative correlation with temperature, and a high four–eight month lag positive correlation with SSTs. The ecoregion-specific biophysical memories identified offer an opportunity to improve the predictability of land–atmosphere interactions and vegetation feedbacks onto climate. (letter)

  11. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  12. The Marriage of Residential Energy Codes and Rating Systems: Conflict Resolution or Just Conflict?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Zachary T.; Mendon, Vrushali V.

    2014-08-21

    After three decades of coexistence at a distance, model residential energy codes and residential energy rating systems have come together in the 2015 International Energy Conservation Code. At the October, 2013, International Code Council’s Public Comment Hearing, a new compliance path based on an Energy Rating Index was added to the IECC. Although not specifically named in the code, RESNET’s HERS rating system is the likely candidate Index for most jurisdictions. While HERS has been a mainstay in various beyond-code programs for many years, its direct incorporation into the most popular model energy code raises questions about the equivalence of a HERS-based compliance path and the traditional IECC performance compliance path, especially because the two approaches use different efficiency metrics, are governed by different simulation rules, and have different scopes with regard to energy impacting house features. A detailed simulation analysis of more than 15,000 house configurations reveals a very large range of HERS Index values that achieve equivalence with the IECC’s performance path. This paper summarizes the results of that analysis and evaluates those results against the specific Energy Rating Index values required by the 2015 IECC. Based on the home characteristics most likely to result in disparities between HERS-based compliance and performance path compliance, potential impacts on the compliance process, state and local adoption of the new code, energy efficiency in the next generation of homes subject to this new code, and future evolution of model code formats are discussed.

  13. Techno-economic assessment and optimization of Stirling engine micro-cogeneration systems in residential buildings

    International Nuclear Information System (INIS)

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO2 emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO2 emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 Euro kW h-1. As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate.

  14. Techno-economic assessment and optimization of stirling engine micro-cogeneration systems in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Alanne, Kari; Soederholm, Niklas; Siren, Kai [Dept. of Energy Technology, Helsinki University of Technology, P.O. Box 4100, 02015 TKK (Finland); Beausoleil-Morrison, Ian [Dept. of Mechanical and Aerospace Engineering, Carleton University, Ottawa (Canada)

    2010-12-15

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO{sub 2} emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO{sub 2} emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 EUR kW h{sup -1}. As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate. (author)

  15. An innovative radon mitigation-energy conservation retrofit system for residential buildings

    International Nuclear Information System (INIS)

    Field tests were performed on an innovative radon mitigation system that provides basement pressurization and dilution while conserving heating fuel, improving indoor air quality and human comfort. This year-round radon reduction retrofit device has been successfully installed and monitored in a Wisconsin home that exhibited elevated radon levels. In the design, a secondary heat exchanger for a conventional-type residential furnace is modified to provide heated fresh air exchange and intermittent pressure regulation. Experiments have shown that the average indoor radon level can be reduced by 97 percent and that employment of this system during the heating months exhibits a zero operational cost. Measurements of radon reduction levels, fuel usage and environmental factors that affect radon migration are documented. A state-of-the-art PC-data acquisition system with accompanying instrumentation for radon measurements is also described. 13 refs., 4 figs., 1 tab

  16. Overview of existing residential energy-efficiency rating systems and measuring tools

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.; Garrett-Price, B.A.; Williams, T.A.

    1982-10-01

    Three categories of rating systems/tools were identified: prescriptive, calculational, and performance. Prescriptive systems include rating systems that assign points to various conservation features. Most systems that have been implemented to date have been prescriptive systems. The vast majority of these are investor-owned utility programs affiliated with the National Energy Watch program of the Edison Electric Institute. The calculational category includes computational tools that can be used to estimate energy consumption. This estimate could then be transformed, probably by indexing, into a rating. The available computational tools range from very simple to complex tools requiring use of a main-frame computer. Performance systems refer to residential energy-efficiency ratings that are based on past fuel consumption of a home. There are few of these systems. For each identified system/tool, the name, address, and telephone number of the developer is included. In addition, relevant publications discussing the system/tool are cited. The extent of field validation/verification of individual systems and tools is discussed. In general, there has been little validation/verification done. A bibliography of literature relevant to the use and implementation of a home energy rating system is also included.

  17. Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B. C.; Buhrmann, J.

    1998-07-01

    The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

  18. U.S. Photovoltaic Prices and Cost Breakdowns. Q1 2015 Benchmarks for Residential, Commercial, and Utility-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ardani, Kristen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has continued to decline across all major market sectors. This report provides a Q1 2015 update regarding the prices of residential, commercial, and utility scale PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variations in business models, labor rates, and system architecture choice. We estimate a weighted-average cash purchase price of $3.09/W for residential scale rooftop systems, $2.15/W for commercial scale rooftop systems, $1.77/W for utility scale systems with fixed mounting structures, and $1.91/W for utility scale systems using single-axis trackers. All systems are modeled assuming standard-efficiency, polycrystalline-silicon PV modules, and further assume installation within the United States.

  19. Building America System Research Results. Innovations for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-05-01

    This report provides a summary of key lessons learned from the first 10 years of the Building America program and also included a summary of the future challenges that must be met to reach the program’s long term performance goals.

  20. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  1. Model documentation report: Residential sector demand module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  2. Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany

    International Nuclear Information System (INIS)

    Heating demand accounts for a large fraction of the overall energy demand of private households in Germany. A better understanding of the adoption and diffusion of energy-efficient and renewables-based residential heating systems (RHS) is of high policy relevance, particularly against the background of climate change, security of energy supply and increasing energy prices. In this paper, we explore the multi-dimensionality of the homeowners’ motivation to decide between competing RHS. A questionnaire survey (N=2440) conducted in 2010 among homeowners who had recently installed a RHS provides the empirical foundation. Principal component analysis shows that 25 items capturing different adoption motivations can be grouped around six dimensions: (1) cost aspects, (2) general attitude towards the RHS, (3) government grant, (4) reactions to external threats (i.e., environmental or energy supply security considerations), (5) comfort considerations, and (6) influence of peers. Moreover, a cluster analysis with the identified motivational factors as segmentation variables reveals three adopter types: (1) the convenience-oriented, (2) the consequences-aware, and (3) the multilaterally-motivated RHS adopter. Finally, we show that the influence of the motivational factors on the adoption decision also differs by certain characteristics of the homeowner and features of the home. - Highlights: ► Study of the multi-dimensionality of the motivation to adopt residential heating systems (RHS). ► Principal component and cluster analysis are applied to representative survey data for Germany. ► Motivation has six dimensions, including rational decision-making and emotional factors. ► Adoption motivation differs by certain characteristics of the homeowner and of the home. ► Many adopters are driven by existing habits and perceptions about the convenience of the RHS

  3. Efficiency Analysis of Independent and Centralized Heating Systems for Residential Buildings in Northern Italy

    Directory of Open Access Journals (Sweden)

    Fabio Rinaldi

    2011-11-01

    Full Text Available The primary energy consumption in residential buildings is determined by the envelope thermal characteristics, air change, outside climatic data, users’ behaviour and the adopted heating system and its control. The new Italian regulations strongly suggest the installation of centralized boilers in renovated buildings with more than four apartments. This work aims to investigate the differences in primary energy consumption and efficiency among several independent and centralized heating systems installed in Northern Italy. The analysis is carried out through the following approach: firstly building heating loads are evaluated using the software TRNSYS® and, then, heating system performances are estimated through a simplified model based on the European Standard EN 15316. Several heating systems have been analyzed, evaluating: independent and centralized configurations, condensing and traditional boilers, radiator and radiant floor emitters and solar plant integration. The heating systems are applied to four buildings dating back to 2010, 2006, 1960s and 1930s. All the combinations of heating systems and buildings are analyzed in detail, evaluating efficiency and primary energy consumption. In most of the cases the choice between centralized and independent heating systems has minor effects on primary energy consumption, less than 3%: the introduction of condensing technology and the integration with solar heating plant can reduce energy consumption by 11% and 29%, respectively.

  4. Evaluation of a hybrid paper-electronic medication management system at a residential aged care facility.

    Science.gov (United States)

    Elliott, Rohan A; Lee, Cik Yin; Hussainy, Safeera Y

    2016-06-01

    Objectives The aims of the study were to investigate discrepancies between general practitioners' paper medication orders and pharmacy-prepared electronic medication administration charts, back-up paper charts and dose-administration aids, as well as delays between prescribing, charting and administration, at a 90-bed residential aged care facility that used a hybrid paper-electronic medication management system. Methods A cross-sectional audit of medication orders, medication charts and dose-administration aids was performed to identify discrepancies. In addition, a retrospective audit was performed of delays between prescribing and availability of an updated electronic medication administration chart. Medication administration records were reviewed retrospectively to determine whether discrepancies and delays led to medication administration errors. Results Medication records for 88 residents (mean age 86 years) were audited. Residents were prescribed a median of eight regular medicines (interquartile range 5-12). One hundred and twenty-five discrepancies were identified. Forty-seven discrepancies, affecting 21 (24%) residents, led to a medication administration error. The most common discrepancies were medicine omission (44.0%) and extra medicine (19.2%). Delays from when medicines were prescribed to when they appeared on the electronic medication administration chart ranged from 18min to 98h. On nine occasions (for 10% of residents) the delay contributed to missed doses, usually antibiotics. Conclusion Medication discrepancies and delays were common. Improved systems for managing medication orders and charts are needed. What is known about the topic? Hybrid paper-electronic medication management systems, in which prescribers' orders are transcribed into an electronic system by pharmacy technicians and pharmacists to create medication administration charts, are increasingly replacing paper-based medication management systems in Australian residential aged care

  5. Electric systems expansion in Latin America: the financier restriction

    International Nuclear Information System (INIS)

    The goal of this paper is to discuss the financing problems in the electric supply industries of the Latin America Countries in the long-run. The paper examines the economics aspects of the investments in the power sector, shows how the financial structure has degenerated and concludes with a discussion about the role of the new financial alternatives to increase the electricity generation. (author)

  6. Social Protection Systems in Latin America and the Caribbean: Chile

    OpenAIRE

    Claudia Robles Farías

    2015-01-01

    Chile has a long history of implementing social policies. It was one of the first countries in Latin America to expand free health care coverage and education, incorporating cash and in-kind transfers to promote access to social services and offer diverse protection mechanisms for its most vulnerable population groups. That said, its current social protection model is the result of a series of efforts, institutions and policies that have been consolidated over time.(?)

  7. Efficiency Analyses of a DC Residential Power Distribution System for the Modern Home

    Directory of Open Access Journals (Sweden)

    GELANI, H. E.

    2015-02-01

    Full Text Available The electric power system started as DC back in the nineteenth century. However, the DC paradigm was soon ousted by AC due to inability of DC to change its voltage level. Now, after many years, with the development of power electronic converters capable of stepping-up and down DC voltage and converting it to-and-from AC, DC appears to be challenging AC and attempting a comeback. We now have DC power generation by solar cells, fuel cells and wind farms, DC power transmission in the form of HVDC (High Voltage DC transmission, DC power utilization by various modern electronic loads and DC power distribution that maybe regarded as still in research phase. This paper is an attempt to investigate feasibility of DC in the distribution portion of electrical power system. Specifically, the efficiency of a DC distribution system for residential localities is determined while keeping in view the concept of daily load variation. The aim is to bring out a more practical value of system efficiency as the efficiencies of DC/DC converters making up the system vary with load variation. This paper presents the modeling and simulation of a DC distribution system and efficiency results for various scenarios are presented.

  8. Residential PV system users' perception of profitability, reliability, and failure risk: An empirical survey in a local Japanese municipality

    International Nuclear Information System (INIS)

    Although previous studies have addressed the reliability of residential PV systems in order to improve the dissemination of the systems among individual users and societies, few have examined users' perception of their own PV systems, which might contain solutions to firmly establish the system into society. First, the present paper examined the extent to which residential PV system users understand specification, reliability, and failure risk of their own systems. Second, causal factors affecting users' satisfaction with PV systems were examined. By analyzing data collected in Kakegawa City, this paper revealed that users did not appropriately understand the basic specifications of their residential PV systems, and in particular, the fact that the systems sometimes failed and therefore needed proper maintenance. Furthermore, a strong causal relationship between users' expectations of financial return from the system and their level of satisfaction was confirmed empirically. These results suggested that excessive focus on profitability and relatively low interest in the systems' reliability and failure risk should be addressed more to avoid problems that could potentially hamper the establishment of this technology into society. - Highlights: → We examined PV users' perception of its specification, reliability, and failure risk. → Data for analysis were collected by questionnaire survey in a Japanese local municipality. → We revealed users did not appropriately understand the basic specifications. → A strong causal relationship between users' expectations of financial return and their level of satisfaction was confirmed empirically.

  9. A dynamic landslide hazard assessment system for Central America and Hispaniola

    OpenAIRE

    Kirschbaum, D. B.; T. Stanley(STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, UK); Simmons, J.

    2015-01-01

    Landslides pose a serious threat to life and property in Central America and the Caribbean Islands. In order to allow regionally coordinated situational awareness and disaster response, an online decision support system was created. At its core is a new flexible framework for evaluating potential landslide activity in near real time: Landslide Hazard Assessment for Situational Awareness. This framework was implemented in Central America and the Caribbean by integrating a reg...

  10. A dynamic landslide hazard assessment system for Central America and Hispaniola

    OpenAIRE

    D. B. Kirschbaum; Stanley, T.; Simmons, J

    2015-01-01

    Landslides pose a serious threat to life and property in Central America and the Caribbean Islands. In order to allow regionally coordinated situational awareness and disaster response, an online decision support system was created. At its core is a new flexible framework for evaluating potential landslide activity in near real-time: Landslide Hazard Assessment for Situational Awareness. This framework was implemented in Central America and the Caribbean by ...

  11. Instructor's Manual for Teaching and Practical Courses on Design of Systems and Sizing, Installation and Operation of Systems for Solar Heating and Cooling of Residential Buildings.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    Presented are guidelines for instructors of two courses in the design, installation, and operation of solar heating and cooling systems. These courses are: (1) Design of Systems, and (2) Sizing, Installation, and Operation of Systems. Limited in scope to active solar systems for residential buildings, these courses place primary emphasis upon…

  12. An energetic-exergetic analysis of a residential CHP system based on PEM fuel cell

    International Nuclear Information System (INIS)

    Highlights: → A zero-dimensional of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) has been developed. → The electrochemical model has been validated with experimental data. → The performances of this CHP system have been evaluated through a series of simulations. → An energy/exergy analysis of the simulation results has allowed to define the PEMFC optimal operating conditions. → The PEMFC optimal operating conditions detected are: 1 atm, 353.15 K and 100% RH. -- Abstract: The use of fuel cell systems for distributed residential power generation represents an interesting alternative to traditional thermoelectric plants due to their high efficiency and the potential recovering of the heat generated by the internal electrochemical reactions. In this paper the study of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) is reported. With the aim to evaluate the performance and then the feasibility of this non-conventional energy system, in consideration of thermal and electrical basic demand of a multifamily apartment blocks, a zero-dimensional PEMFC model in Aspen Plus environment has been developed. A simulations sequence has been carried out at different operating conditions of the fuel cell (varying temperature, pressure and relative humidity). Subsequently, on the basis of the obtained results, an energy/exergy analysis has been conducted to define the optimal operating conditions of the PEMFC that ensures the most efficient use of the energy and exergy inputs.

  13. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical

  14. Using Multi-agent System for Residential Expansion Models——A Case Study of Hongshan District, Wuhan City

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Residential expansion is gaining more and more attention from government authorities and urban planners.However, most of the current urban models focus heavily on presenting economic, political and ecological objectives of urban development, while seldom taking the effects of human behavior into consideration. Multi-agent systems for land use/cover change (MAS/LUCC), which mainly concern the behavioral effects of stakeholders on the processes of land use/cover change, are promising to fill the gap. This article, based on the concepts of MAS/LUCC model, constructs a multi-agent system for residential expansion model (MAS/RE)through the analysis of the behavior of government authorities and households. The model takes complex human actions into account, namely urban master planning, planning review and approval, policies of traffic, economy and environment, location and allocation choices of the households and their interrelationships. Taking Hongshan District of Wuhan City, Hubei Province as an illustration,the model is implemented on Arc/info platform to simulate residential expansion between 1996 and 2002. The study result shows that the model is suitable for understanding the process of residential expansion with the effects of human actions, and is especially effective for its capacity in presenting spatio-temporal and behavioral complexity. Therefore,the model can be a reference for policy-making for government authorities and urban planners.

  15. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  16. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net

  17. Building America Research Benchmark Definition: Updated August 15, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2007-09-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a 'moving target'.

  18. Building America Research Benchmark Definition: Updated December 20, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2008-01-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a 'moving target'.

  19. Building America Research Benchmark Definition, Updated December 15, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2007-01-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a ''moving target''.

  20. Comparative analysis of greenhouse gas emissions of various residential heating systems in the Canadian provinces

    International Nuclear Information System (INIS)

    The Kyoto Protocol compels signatory countries to reduce their greenhouse gas emissions by at least 5 percent by 2010 as compared to 1990 levels. In Canada, however, questions remain regarding the effects of greenhouse gases as they relate to the adoption of geoexchange systems in certain provinces because of the sources of electricity. This report presented a comprehensive analysis of the specific and strategic role of geoexchange technology, and ground source heat pumps in particular. The purpose was to compare, on a common basis, the greenhouse gas emissions of different residential heating systems utilized in the Canadian provinces. Comparisons were conducted from an environmental standpoint, and excluded the exergy and economic aspect, or other related issues. The report discussed the methodology and hypotheses of the study and presented the results for Canada, and for each province. It was concluded that according to the hypotheses employed for the purposes of this study, geoexchange systems offer a solution for greenhouse gas reduction and climatic change in all of the analyzed scenarios, with few exceptions and for a specific scenario. 32 refs., 37 tabs., 12 figs., 4 appendices.

  1. Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Robert Tichy; Chuck Murray

    2006-05-31

    This document serves as the Topical Report documenting work completed by Washington State University (WSU) under U.S. Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project was conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August 2002 through June 2006. WSU's primary experimental role is the design and implementation of a field testing protocol that monitored long term changes in the hygrothermal response of wall systems. During the project period WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, installed instrumentation in the test walls and recorded data from the test wall specimens. Each year reports were published documenting the hygrothermal response of the test wall systems. Public presentation of the results was, and will continue to be, made available to the building industry at large by industry partners and the University.

  2. Residential on site solar heating systems: a project evaluation using the capital asset pricing model

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, S.R.

    1978-12-01

    An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

  3. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  4. Wood pellet use in Sweden. A systems approach to the residential sector

    International Nuclear Information System (INIS)

    This empirically based thesis deals with a biofuel market in a systems context with focus on Sweden. Fuel pellets is a new consumer market for wood products. Initially used mainly by large-scale heating plants, wood pellets expanded into the Swedish residential heating market in the mid 1990s. The overall aim of this work is to provide a deeper understanding of the system for small-scale use of densified wood fuels. The objective was to provide a mapping and logistic analysis of fuel and delivery chains primarily for wood pellets. The description includes both technical as well as economic and organisational aspects. The thesis in particular investigates (i) experience from practical densification operations in the past, (ii) wood pellet retailers in Sweden, (iii) wood pellet consumers in Austria, Sweden and the United States, (iv) imports of wood pellets, and (v) forecasting of pellet consumption and inventory management for wood pellet distributors. Previous international studies revealed that the availability of cheap raw materials for fuel production and the price and availability of the most important competing fuels: coal, oil and natural gas were important factors that have guided production and use of densified wood and bark fuels. A major network of wood pellet distributors was mapped. It was concluded from a survey to these retailers that the Swedish residential market was now firmly in place and that the price of wood pellets was competitive with prices of traditional national fuels. A majority of pellet users in Austria, Sweden and the United States were pleased with pellet heating. One way to improve pellet distribution systems would be to optimise inventory management. An internal model for optimising inventory management, Pell-Sim, was constructed. For Sweden, wood pellets in 1997 represented the second most traded biofuel assortment, with 4.35 PJ or 18% of the total biofuel imports. Contrary to trade with other biofuel assortments, wood pellet trade

  5. The Effect of Electric Load Profiles on the Performance of Off-Grid Residential Hybrid Renewable Energy Systems

    OpenAIRE

    Stephen Treado

    2015-01-01

    This paper investigates the energy performance of off-grid residential hybrid renewable electric power systems, particularly the effect of electric load profiles on the ability to harvest available solar energy and avoid the consumption of auxiliary energy in the form of propane. The concepts are illustrated by an analysis of the energy performance of electric and propane-fired refrigerators. Off-grid electric power systems frequently incorporate a renewable source, such as wind or solar phot...

  6. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    Science.gov (United States)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their

  7. Distributed and Decentralized Control of Residential Energy Systems Incorporating Battery Storage

    OpenAIRE

    Worthmann, Karl; Kellett, Christopher M.; Braun, Philipp; Grüne, Lars; weller, steven R.

    2014-01-01

    The recent rapid uptake of residential solar photo-voltaic (PV) installations provides many challenges for electricity distribution networks designed for one-way power flow from the distribution company to the residential customer. For grid-connected installations, intermittent generation as well as large amounts of generation during low load periods can lead to a degradation of power quality and even outages due to overvoltage conditions. In this paper we present four control methodologies t...

  8. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  9. Evaluation of region-specific residential energy systems for GHG reductions: Case studies in Canadian cities

    International Nuclear Information System (INIS)

    This study estimates energy use and greenhouse gas (GHG) emissions associated with operations of alternative residential energy systems. In case studies, the same detached four-bedroom house built in accordance with R2000 standards is studied in five Canadian cities with different climate and electricity mix. Conventional energy systems and alternatives using three technologies, namely ground source heat pumps (GSHPs), photovoltaics, and energy-efficient appliances; and their combinations are investigated. The results show that using a GSHP in Calgary may increase overall GHG emissions, as electricity to drive the pump is primarily produced in coal-fired power stations. Using photovoltaics to generate electricity from carbon-free sources or energy-efficient appliances to reduce electricity demands result in almost no GHG reductions in Montreal and Vancouver, where over 90% of electricity comes from hydro power. The results also show that the use of photovoltaics in combination with GSHPs in Ottawa and Toronto, or with energy-efficient appliances in Calgary, can lead to more GHG reductions, compared to the use of a single technology. As a result, while climate affects energy use to some degree, local sources of electricity may have a greater impact on overall GHG emissions, which is an important measure of environmental impacts

  10. Willingness to Pay for Improving the Residential Waste Disposal System in Korea: A Choice Experiment Study

    Science.gov (United States)

    Ku, Se-Ju; Yoo, Seung-Hoon; Kwak, Seung-Jun

    2009-08-01

    This study attempts to apply choice experiments with regard to the residential waste disposal system (RWDS) in Korea by considering various attributes that are related to RWDS. Using data from a survey conducted on 492 households, the empirical analysis yields estimates of the willingness to pay for a clean food-waste collection facility, the collection of small items (such as obsolete mobile phones and add-ons for personal computers), and a more convenient large waste disposal system. The estimation results of multinomial logit models are quite similar to those of nested logit models. The results reveal that residents have preferences for the cleanliness of facilities and the collection of small items. In Korea, residents are required to purchase and attach stickers for the disposal of large items; they want to be able to obtain stickers at not only village offices but also supermarkets. On the other hand, the frequency of waste collection is not a significant factor in the choice of the improved waste management program.

  11. Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2015-03-01

    Full Text Available In recent years there has been a growing interest in the development and thermal-energy analysis of passive solutions for reducing building cooling needs and thus improving indoor thermal comfort conditions. In this view, several studies were carried out about cool roofs and cool coatings, producing acknowledged mitigation effects on urban heat island phenomenon. The purpose of this work is to investigate the thermal-energy performance of cool louvers of shutters, usually installed in residential buildings, compared to dark color traditional shading systems. To this aim, two full-scale prototype buildings were continuously monitored under summer conditions and the role of the cool shutter in reducing the overheating of the shading system and the energy requirements for cooling was analyzed. After an in-lab optical analysis of the cool coating, showing a huge solar reflectance increase with respect to the traditional configuration, i.e., by about 75%, field monitoring results showed that the cool shutter is able to decrease the indoor air temperature up to 2 °C under free floating conditions. The corresponding energy saving was about 25%, with even much higher peaks during very hot summer conditions.

  12. Particles and gaseous emissions from realistic operation of residential wood pellet heating systems

    Science.gov (United States)

    Win, Kaung Myat; Persson, Tomas; Bales, Chris

    2012-11-01

    Gaseous and particulate emissions from six residential wood pellet heating systems are determined at a realistic six day operation sequence. The study aims to investigate the total emissions from a realistic operation of the heating systems including start-up and stop phases. Five combined solar and pellet heating systems and one reference boiler without solar system with an integrated DHW preparation was tested in a laboratory at realistic operation conditions. The investigated emissions comprised carbon monoxide (CO), nitrogen oxide (NO), total organic carbon (TOC) and particulate matter (PM2.5). In this study, the emissions are presented as accumulated total emissions from the whole six days period and the emissions from start-up and stop phases are also presented separately to evaluate the influence of the emissions from these phases on the total emissions. Emission factors of the measured systems from the six day period are between 192 and 547 mg MJ-1 for the CO emissions, between 61 and 95 mg MJ-1 for the NO, between 6 and 45 mg MJ-1 for the TOC, between 31 and 116 mg MJ-1 for the particulate matter and between 2.1 × 1013 and 4 × 1013 for the number of particles. The emissions from the start-up and stop phases are significantly high for the CO (63-95 %) and the TOC (48-93 %). NO and particles emissions are shown to dominate during stationary operation. However, 30-40 % of the particle emissions arise from the start and stop periods. It is also shown that the average emissions of CO, TOC and particles under the realistic annual conditions were higher than the limit values of two eco labels.

  13. Can PV or solar thermal systems be cost effective ways of reducing CO 2 emissions for residential buildings?

    OpenAIRE

    Croxford, B.; Scott, K

    2006-01-01

    This paper compares two solar systems, an actual building integrated, photovoltaic roof (BIPV) and a notional solar thermal system for a residential block in London, UK. The carbon payback for the solar thermal system is 2 years, the BIPV system has a carbon payback of 6 years. Simple economic payback times for both systems are more than 50 years. Calculations considering the current UK energy price increase (10%/yr), reduce the economic payback time for the PV roof to under 30 years.The cost...

  14. Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings

    International Nuclear Information System (INIS)

    Highlights: ► The profitability of Thermo-Photo-Voltaic generator systems for a single-family dwelling is analyzed. ► Heat and electricity load profiles depending on hour of the day are considered for an entire year. ► The effect of Thermo-Photo-Voltaic generator size is evaluated for different household utilities. ► Results allow to identify the conditions for the energetic and economic convenience of Thermo-Photo-Voltaic system. -- Abstract: The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic gas furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

  15. Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Christian Pötzinger

    2015-08-01

    Full Text Available This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose, a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems, simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore, the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However, the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV system (nearly 100% self-consumption. Thereby, the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings, some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.

  16. Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management

    OpenAIRE

    Julio Pascual; Pablo Sanchis; Luis Marroyo

    2014-01-01

    This paper proposes an energy management strategy for a residential electrothermal microgrid, based on renewable energy sources. While grid connected, it makes use of a hybrid electrothermal storage system, formed by a battery and a hot water tank along with an electrical water heater as a controllable load, which make possible the energy management within the microgrid. The microgrid emulates the operation of a single family home with domestic hot water (DHW) consumption, a heating, ventilat...

  17. Economics of Residential Photovoltaic and Wind Systems in Arizona and California

    Science.gov (United States)

    An, Wen

    Renewable energy has been a very hot topic in recent years due to the traditional energy crisis. Incentives that encourage the renewables have been established all over the world. Ordinary homeowners are also seeking ways to exploit renewable energy. In this thesis, residential PV system, wind turbine system and a hybrid wind/solar system are all investigated. The solar energy received by the PV panels varies with many factors. The most essential one is the irradiance. As the PV panel been installed towards different orientations, the incident insolation received by the panel also will be different. The differing insolation corresponds to the different angles between the irradiance and the panel throughout the day. The result shows that for PV panels in the northern hemisphere, the ones facing south obtain the highest level insolation and thus generate the most electricity. However, with the two different electricity rate plans, flat rate plan and TOU (time of use) plan, the value of electricity that PV generates is different. For wind energy, the wind speed is the most significant variable to determine the generation of a wind turbine. Unlike solar energy, wind energy is much more regionally dependent. Wind resources vary between very close locations. As expected, the result shows that, larger wind speed leads to more electricity generation and thus shorter payback period. For the PV/wind hybrid system, two real cases are analyzed for Altamont and Midhill, CA. In this part, the impact of incentives, system cost and system size are considered. With a hybrid system, homeowners may choose different size combinations between PV and wind turbines. It turns out that for these two locations, the system with larger PV output always achieve a shorter payback period due to the lower cost. Even though, for a longer term, the system with a larger wind turbine in locations with excellent wind resources may lead to higher return on investment. Meanwhile, impacts of both wind

  18. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  19. 77 FR 32497 - Grant of Authority for Subzone Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine...

    Science.gov (United States)

    2012-06-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Grant of Authority for Subzone Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine Nacelles and Generating Sets) Fort Smith, AR Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended...

  20. Building Response Strategies to Climate Change in Agricultural Systems in Latin America

    OpenAIRE

    World Bank

    2009-01-01

    This report, Building Response Strategies to Climate Change in Agricultural Systems in Latin America, reports the results of action research to identify and prioritize stakeholder driven, locally relevant response options to climate change in Latin American agriculture. The study has three primary objectives. The first is to develop and apply a pilot methodology for assessing agricultural ...

  1. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2012-01-01

    A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas...... shift (WGS) reactor, heat exchangers, and other balance-of-plant (BOP) components. The objective function of the single-objective optimization strategy is the net electrical efficiency of the micro-CHP system. The implemented optimization procedure attempts to maximize the objective function by...

  2. A comparison of substance dependence treatment information system in America, England, and Iran

    OpenAIRE

    AJAMI, Sima; Mellat-Karkevandi, Zahra; Saghaeiannejad-Isfahani, Sakineh; Salehi, Mehrdad; Jahanbakhsh, Maryam

    2014-01-01

    Context: Addiction, as a social problem, is a phenomenon that causes structural changes in cultural, social, political, and economic system in society. Prevention of this problem means decrease of risk factors and increase of protective factors; and recognition of these factors is possible with the help of update, accurate, and complete information in information systems. Aims: The aim of this study was to compare substance dependence treatment information system (SDTIS) in America, England, ...

  3. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand.

    Directory of Open Access Journals (Sweden)

    Jim Lewis

    Full Text Available Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers' peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers' location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs such as tariffs, price, managed supply, etc., in a conceptual 'map' of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each

  4. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand.

    Science.gov (United States)

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers' peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers' location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual 'map' of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations

  5. Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporators

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian;

    2011-01-01

    Refrigerant and airflow maldistribution in fin-and-tube evaporators for residential air-conditioning was investigated with numerical modeling. Fin-and-tube heat exchangers usually have a pre-defined circuitry. However, the objective in this study was to perform a generic investigation of each...

  6. 77 FR 39985 - Information Collection; Forest Industries and Residential Fuelwood and Post Data Collection Systems

    Science.gov (United States)

    2012-07-06

    ... Resources Planning Act of 1974 and the Forest and Rangeland Renewable Resources Research Act of 1978 require... addressed to: USDA, Forest Service, Attn: Ronald Piva, Northern Research Station, Forest Inventory and... Forest Service Information Collection; Forest Industries and Residential Fuelwood and Post...

  7. A Regional Strategy for the Assessment and Management of Transboundary Aquifer Systems in the Americas

    Science.gov (United States)

    Hanson, R. T.; Rivera, A.; Tujchneider, O.; Guillén, C.; Campos, M.; Da Franca, N.; May, Z.; Aureli, A.

    2015-12-01

    The UNESCO-IHP ISARM-Americas technical committee has developed a regional strategy for the assessment and management of transboundary aquifer systems in the Americas as part of their ongoing cooperative assistance to help neighboring countries sustain water resources and reduce potential conflict. The fourth book in the series of publications sponsored by UNESCO and OAS documents this strategy. The goal of this strategy is the collective understanding, developing, managing, and protecting of the transboundary aquifers in the Americas This strategy includes technical, social, and governance recommendations for an integrated resource management of groundwater based on flexible arrangements that not only manage but also demand social participation in solving problems, consider changes in land use and water use and promote the increase of water sustainability for all transboundary neighbors. The successful implementation of this strategy starts with sharing information of the status and use of land and water as well as intergovernmental partnerships to link science and policy with existing instruments for managing the water resources. International organizations such as UNESCO and OAS also can help facilitate the development of transboundary agreements and establish cooperation on transboundary aquifers between neighbors. The UNESCO-IHP ISARM-Americas technical committee has been successful in creating a network of partners from 24 countries and in translating existing aquifer knowledge into a meaningful strategy for the American hemisphere. The strategy aims to explain and develop the role of science and the informed-decision approach. Examples from North and South America show how the process has begun to develop for selected transboundary aquifers. These include the Milk River basin between the US and Canada, the Rio Grande and Colorado River basins between the US and Mexico, and the Guarani River basin in South America.

  8. New Generation System. "An Interstate Information Network Serving America's Children."

    Science.gov (United States)

    Texas A and I Univ., Kingsville.

    The New Generation System (NGS) is a computer network developed to transfer academic records of migrant students. NGS was developed as a result of the phasing out of the Migrant Student Record Transfer System. NGS is backed by a 29-state consortium that uses the Internet to transfer records because of its speed, availability, and…

  9. Comparative Analysis on Pesticide Management System between America and China

    Institute of Scientific and Technical Information of China (English)

    Cunzheng; ZHANG; Yong; GONG; Weili; SHAN; Xianjin; LIU

    2013-01-01

    The production and usage amount of pesticides in US rank the leading position in the world. On the basis of protecting the environment and human health, US government has enacted a series of laws and regulations to normalize and manage the production and use of pesticides so as to ensure the development of modern agriculture. In this paper, US pesticide management system is briefly reviewed and compared with the pesticide management system of China, which may provide good reference for china in establishing its own management system and make steps towards the international standard.

  10. 77 FR 45596 - Shell Energy North America (US), L.P. v. California Independent System Operator Corporation...

    Science.gov (United States)

    2012-08-01

    ... Energy Regulatory Commission Shell Energy North America (US), L.P. v. California Independent System... Energy North America (US), L.P. (Complainant) filed a formal complaint against the California Independent... Commission's list of Corporate Officials. Any person desiring to intervene or to protest this filing...

  11. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  12. Social Protection Systems in Latin America and the Caribbean: Colombia

    OpenAIRE

    Lucía Mina

    2014-01-01

    Social protection tends to revolve around the labour market, social security and social welfare. In Colombia, these issues are characterised by social disarticulation, both at the level of institutional capacity, as well as between supply and demand. In the early 21st century, the social protection system began to adopt a social risk management approach, understood as a set of public policies to reduce vulnerability and improve the quality of life of Colombians, especially among the most unpr...

  13. The Technical-Economic Analysis of Hot Water Supply Systems for Residential Buildings

    OpenAIRE

    Tumanova, Karīna; Cimbale, Aleksandra

    2015-01-01

    The article presents the measurements of hot water and supplied thermal energy consumption in residential buildings, where alterations in bottom distribution were made. Diagrams of hot water and supplied thermal energy consumption for 1 m³ hot water preparation were constructed, using the aggregated data. The research results show that hot water consumption differs from values offered in Regulations of Building Standard LBN 221-98, but the supplied thermal energy consumption for 1 m³ hot wate...

  14. Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, L.; Sawyer, A.; Grove, J.

    2011-02-01

    This handbook is intended as a road map for project planners and solar advocates who want to convert interest into action, to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The handbook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

  15. Case study field evaluation of a systems approach to retrofitting a residential HVAC system

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

    2003-09-01

    This case study focusing on a residence in northern California was undertaken as a demonstration of the potential of a systems approach to HVAC retrofits. The systems approach means that other retrofits that can affect the HVAC system are also considered. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC system can be used. Secondly, we wanted to examine the practical issues and interactions with contractors and code officials required to accomplish the systems approach because it represents a departure from current practice. We identified problems in the processes of communication and installation of the retrofit that led to compromises in the final energy efficiency of the HVAC system. These issues must be overcome in order for HVAC retrofits to deliver the increased performance that they promise. The experience gained in this case study was used to optimize best practices guidelines for contractors (Walker 2003) that include building diagnostics and checklists as tools to assist in ensuring the energy efficiency of ''house as a system'' HVAC retrofits. The best practices guidelines proved to be an excellent tool for evaluating the eight existing homes in this study, and we received positive feedback from many potential users who reviewed and used them. In addition, we were able to substantially improve the energy efficiency of the retrofitted case study house by adding envelope insulation, a more efficient furnace and air conditioner, an economizer and by reducing duct leakage.

  16. Application analysis of solar total energy systems to the residential sector. Volume II, energy requirements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This project analyzed the application of solar total energy systems to appropriate segments of the residential sector and determined their market penetration potential. This volume covers the work done on energy requirements definition and includes the following: (1) identification of the single-family and multi-family market segments; (2) regionalization of the United States; (3) electrical and thermal load requirements, including time-dependent profiles; (4) effect of conservation measures on energy requirements; and (5) verification of simulated load data with real data.

  17. Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management

    Directory of Open Access Journals (Sweden)

    Julio Pascual

    2014-01-01

    Full Text Available This paper proposes an energy management strategy for a residential electrothermal microgrid, based on renewable energy sources. While grid connected, it makes use of a hybrid electrothermal storage system, formed by a battery and a hot water tank along with an electrical water heater as a controllable load, which make possible the energy management within the microgrid. The microgrid emulates the operation of a single family home with domestic hot water (DHW consumption, a heating, ventilation and air conditioning (HVAC system as well as the typical electric loads. An energy management strategy has been designed which optimizes the power exchanged with the grid profile in terms of peaks and fluctuations, in applications with high penetration levels of renewables. The proposed energy management strategy has been evaluated and validated experimentally in a full scale residential microgrid built in our Renewable Energy Laboratory, by means of continuous operation under real conditions. The results show that the combination of electric and thermal storage systems with controllable loads is a promising technology that could maximize the penetration level of renewable energies in the electric system.

  18. Shock to the system: Restructuring America's electricity industry

    International Nuclear Information System (INIS)

    Recent decades have seen revolutions in communications, finance, and transportation. In a similar way, technological, economic, and political developments are reshaping the US electricity industry. This concise, balanced, and readable primer, produced by a team of economic analysts at Resources for the Future, introduces the concepts, crucial elements, and terminology used in discussions about electricity restructuring. A Shock to the System provides the background necessary to understand the increasing role of competition in electricity markets. The authors present the history of public policy regarding electricity, identify the significant proposals for implementing competition, and examine their potential consequences for utility regulation, industry structure, cost recovery, and the environment. This volume is an instructive guide to the decisions that electricity providers, customers, and policy makers will face, what forms the decisions are likely to take, and what the long-term ramifications may be

  19. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV. We investigate the impact of a range of electricity market scenarios on retail electricity prices and rate structures, and the resulting effects on the value of bill savings from PV. The scenarios include various levels of renewable and solar energy deployment, high and low natural gas prices, the possible introduction of carbon pricing, and greater or lesser reliance on utility-scale storage and demand response. We examine the bill savings from PV with time-invariant, flat residential retail rates, as well as with time-varying retail rates, including time-of-use (TOU) rates and real-time pricing (RTP). In addition, we explore a flat rate with increasing-block pricing (IBP). We evaluate the bill savings from PV with net metering, as currently allowed in many states, as well as scenarios with hourly netting, a partial form of net metering. This scoping study is the first known effort to evaluate these types of interactions in a reasonably comprehensive fashion, though by no means have we considered every possible change to electricity market conditions, retail rate structures, or PV compensation mechanisms. It focuses solely on the private value of bill savings for residential PV and does not seek to quantify the broader social or economic cost or value of solar electricity. Our analysis applies assumptions based loosely on California’s electricity market in a future year (2030); however, it is neither intended to forecast California’s future

  20. Latin America as new PV market opportunity

    International Nuclear Information System (INIS)

    It is important to recognize solar energy as an international and strategic opportunity for the European market to expand. The objective of this paper is to apply the methodology created during the PV Parity project for analyzing PV Competitiveness in the emerging residential PV market in Brazil, using information from the State of Rio de Janeiro. The dynamic competitiveness analysis was performed considering the price with and without taxes in order to assess the year when PV will reach grid parity in Rio de Janeiro and how the taxes impact on the results. Results are divided into 3 scenarios: Optimistic, Conservative, and Conservative Moderate. The LCOE of residential systems will likely become competitive with the residential electricity tariffs between 2020 and 2030, assuming the residential tariffs in Rio de Janeiro. This is an indicator that PV energy business opportunities are increasing in Brazil and, with the adequate policy support, its market competitiveness could be improved. We are also looking in other markets of Latin America. (full text)

  1. Lithosphere-asthenosphere system in shield areas of North America and Europe

    Directory of Open Access Journals (Sweden)

    P. Pierri

    1997-06-01

    Full Text Available In previous papers surface dispersion data have been combined with the results of deep seismic refraction data to derive a regionalization of the lithosphere-asthenosphere system and to investigate the presence of significant heterogeneity down to depths of 350 km along two profiles in the North European Fennoscandian area; a regionalized upper mantle model for the whole area down to more than 400 km is given as cross sections. We have extended that approach to North America. The older part of the shield shows lid thickness up to more than 100 km with, if any, weak shear velocity contrast to the underlying layer. The surrounding areas are characterized by a thinner lid; a stronger low-velocity zone to lid contrast may be found in peripheral areas. A map of the lithosphere-asthenosphere system has been derived, permitting a better regional resolution of the shear-wave velocity distribution with depth beneath different regions of North America. The correlation between the lithosphere-asthenosphere system structure and other geophysical data is commented as well as the results for North America and those obtained for the corresponding North European area, in order to outline the geophysical characteristics of shield areas that might give useful constraints for the geodynamic behaviour of the plates to which they belong.

  2. Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.; Friedman, B.; Margolis, R.

    2013-10-01

    Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

  3. ON REASONABLE ESTIMATE OF ENERGY PERFORMANCE OF THE RESIDENTIAL BUILDINGS SUSTENANCE WITH CENTRALIZED HEAT-SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2016-01-01

    Full Text Available As consisted with Directive No 3 of President of the Republic of Belarus of June, 14th 2007 ‘Economy and Husbandry – the Major Factors of Economic Security of the Republic of Belarus’, saving fuel-and-energy resources over the republic in 2010–2015 should amount to 7,1–8,9 MIO tons of fuel equivalent including 1,00–1,25 MIO tons of fuel equivalent at the expense of heat-supply optimization and 0,25–0,40 MIO tons of fuel equivalent at the expense of increasing enclosing structures heat resistance of the buildings, facilities and housing stock. It means, where it is expected to obtain around 18 % of general thermal resources economy in the process of heat-supply optimization, then by means of enhancing the cladding structure heat resistance of the buildings and constructions of various applications – only about 3–5 % and even a bit less so of the housing stock. Till 1994, in residential sector of the Republic of Belarus, the annual heat consumption of the heating and ventilation averaged more than 130 kW×h/(m2×year (~56 %, of the hot-water supply – around 100 kW×h/(m2×year (~44 %. In residential houses, built from 1994 to 2009, heat consumption of the heating and ventilation is already 90 kW×h/(m2×year, of the hot-water supply – around 70 kW×h/(m2×year. In buildings of modern mainstream construction, they expend 60 kW×h/(m2×year (~46 % on heating and ventilation and 70 kW×h/(m2×year (~54 % on hot-water supply. In some modern residential buildings with the exhausted warm air secondary energy resource utilization, the heating and ventilation takes around 30–40 kW×h/(m2×year of heat. Raising energy performance of the residential buildings by means of reducing heat expenses on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy performance process are producing heat and transporting it over the main lines and outside distribution networks. In

  4. Residential Energy Efficiency Research Planning Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  5. Application of an almost ideal demand system (AIDS) to Ethiopian rural residential energy use: Panel data evidence

    International Nuclear Information System (INIS)

    It is well known that poor rural households in low-income economies are reliant on traditional fuels to meet basic domestic energy needs, but little is known about the specific underlying socio-economic drivers of residential fuel choices in Ethiopia. I used the linear approximation almost ideal demand system (LAAIDS) with normalized prices to compute expenditure elasticity and a multinomial logit model (MLM) to examine household fuel use. The LAAIDS model result showed that expenditure was elastic for modern fuels, but inelastic for traditional fuels. Regression results from the MLM indicated that fuel choice behaviour of rural households could be more accurately described as ‘fuel stacking’ behaviour as opposed to the ‘energy ladder’ hypothesis. In rural areas household fuel choice may be constrained by limited access to commercial fuels and efficient cook stoves, supply dependency and affordability, consumer preferences and a web of other intricate factors. Rural households had less incentive for fuel switching due to underlying factors and the availability of fuel wood without direct financial cost. With continued deforestation and receding forests, households are expected to develop inter fuel substitution and switching behaviour conditional on access to modern energy technologies. - Highlights: ► Two step LAAIDS model and MLM were applied to analysis of residential fuel use. ► I examined issues of ‘energy ladder’ versus ‘fuel stacking’ behavior of households. ► Controlling other factors increase in welfare increases demand for modern fuel. ► Traditional fuels are income inelastic but not necessarily cheaper. ► Residential fuel choice is determined by intricate web of socio-economic factors.

  6. Making central-local relations work:Comparing America and China environmental governance systems

    Institute of Scientific and Technical Information of China (English)

    Dan GUTTMAN; SONG Yaqin

    2007-01-01

    The challenge of making central requirements work at local levels is a common problem for environmental governance throughout the world.Countries can learn from one another's approaches,but must understand the local con text in which they are set.This paper compares the features of the China and US environmental governance systems that need be understood by those working between the systems.Key features include:(1) common values which shape the environmental governance choices in both countries,but which may have different practical meanings in each country;(2) America's common law-based environmental governance system,and China's civil law system,which involves plan(s)as well as law;(3) America's Federal central-local system,and China's unitary central local system.This paper concludes by suggesting areas in which further comparative understanding may be of value,including:(1) better under standing of the role of plan and law in China's governance system;(2) comparing the American Federal-state agreement system for implementation of environmental law with the China central-local system of target responsibility agreements for plan implementation;(3) improving understanding of nongovernmental resources needed to assure compliance with environmental laws and plans;(4) identifying institutions that can coordinate central-local and cross-border environmental governance.

  7. Electronic Information Systems Use in Residential Care Facilities: The Differential Effect of Ownership Status and Chain Affiliation.

    Science.gov (United States)

    Davis, Jullet A; Zakoscielna, Karolina; Jacobs, Lindsey

    2016-03-01

    The use of electronic information systems (EISs) including electronic health records continues to increase in all sectors of the health care industry. Research shows that EISs may be useful for improving care delivery and decreasing medical errors. The purpose of this project is twofold: First, we describe the prevalence of EIS use among residential care facilities (RCFs), and second, we explore utilization differences by ownership status and chain affiliation. We anticipate that RCFs that are non-profit and non-chain will use more EIS than other categories of RCFs. Data for this project come from the 2010 National Survey of Residential Care Facilities. The sample consists of 2,300 facilities. Overall use of EIS was greatest among RCFs that are non-profit and chain-affiliated. Conversely, the use was lowest among for-profit RCFs that were also non-chain affiliated. This may suggest that these facilities lack the necessary resources or motivation to invest in information systems. PMID:25537650

  8. An Evaluation Study of the Reduction Effects of the CO2 Emission Quantity and the Primary Energy in the Residential PEFC Co-generation System

    Science.gov (United States)

    Maeda, Kazushige; Yonemori, Hideto; Yasaka, Yasuyoshi

    This paper deals with the introduction effects on the basis of the comparative study of residential PEFC (polymer electrolyte fuel cell) co-generation systems and conventional systems that consist of a conventional gas boiler or a condensing gas boiler or a CO2 heat pump and the thermal power plant, by using the computer simulation. The target systems for estimation conform to real systems in the market and the energy demand data acquired from the past field tests was applied. As a result, it becomes clear that the residential PEFC co-generation systems have high performance in the energy saving and the CO2 reduction, from a comparison study with conventional systems and CO2 heat pump system. Concretely to say, the average energy saving rate that the residential PEFC co-generation system provides is 13.9% and the average CO2 reduction rate is 16.5% using quantity of reduction of CO2 as estimate function. Otherwise, the average energy saving rate that the CO2 heat pump system provides is 13.7% and the average CO2 reduction rate is 10.0%. Furthermore, we have proved the effectiveness a radiator in the residential PEFC co-generation system.

  9. Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-01

    This guidebook is intended as a road map for project planners and solar advocates who want to convert 'interest' into 'action,' to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

  10. Residential Segregation of Socioeconomic Variables and Health Indices in Iran

    OpenAIRE

    Seyed Saeed Hashemi Nazari; Mahmood Mahmoodi; Kourosh Holakouie Naieni

    2013-01-01

    Background: Measures of segregation are essential tools for evaluation of social equality. They describe complex structural patterns by single quantities and allow the comparison of inequalities over time or between residential places. In many countries, patterns of residential segregation are well described (e.g., South Africa, Great Britain, United States of America). In this study, for the first time in Iran, we measured residential segregation for some socioeconomic and health variables a...

  11. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  12. Geographic Information System in Bolivia: a Case Study for Latin America

    Science.gov (United States)

    Adrien, P. M.

    1982-01-01

    Bolivia's Geological Service is concluding a successful project designed to give the Department of Oruro the capability to evaluate its natural resources using data generated by three United States satellites. A permanent integrated geographic information system was created for preparing base maps of soil characteristics, land use, geomorphology, geology, water resources and hydrology. The information compiled through the project was stored on magnetic disks and tapes to permit periodic updating, retrieval of data on specific aspects of development projects, and obtaining various data mixes to analyze aspects of prospective development projects. This is the first digital information system developed in Latin America.

  13. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of

  14. A dynamic landslide hazard assessment system for Central America and Hispaniola

    Directory of Open Access Journals (Sweden)

    D. B. Kirschbaum

    2015-04-01

    Full Text Available Landslides pose a serious threat to life and property in Central America and the Caribbean Islands. In order to allow regionally coordinated situational awareness and disaster response, an online decision support system was created. At its core is a new flexible framework for evaluating potential landslide activity in near real-time: Landslide Hazard Assessment for Situational Awareness. This framework was implemented in Central America and the Caribbean by integrating a regional susceptibility map and satellite-based rainfall estimates into a binary decision tree, considering both daily and antecedent rainfall. Using a regionally distributed, percentile-based threshold approach, the model outputs a pixel-by-pixel nowcast in near real-time at a resolution of 30 arcsec to identify areas of moderate and high landslide hazard. The daily and antecedent rainfall thresholds in the model are calibrated using a subset of the Global Landslide Catalog in Central America available for 2007–2013. The model was then evaluated with data for 2014. Results suggest reasonable model skill over Central America and poorer performance over Hispaniola, due primarily to the limited availability of calibration and validation data. The landslide model framework presented here demonstrates the capability to utilize globally available satellite products for regional landslide hazard assessment. It also provides a flexible framework to interchange the indiviual model components and adjust or calibrate thresholds based on access to new data and calibration sources. The availability of free, satellite-based near real-time rainfall data allows the creation of similar models for any study area with a spatiotemporal record of landslide events. This method may also incorporate other hydrological or atmospheric variables such as numerical weather forecasts or satellite-based soil moisture estimates within this decision tree approach for improved hazard analysis.

  15. A dynamic landslide hazard assessment system for Central America and Hispaniola

    Science.gov (United States)

    Kirschbaum, D. B.; Stanley, T.; Simmons, J.

    2015-10-01

    Landslides pose a serious threat to life and property in Central America and the Caribbean Islands. In order to allow regionally coordinated situational awareness and disaster response, an online decision support system was created. At its core is a new flexible framework for evaluating potential landslide activity in near real time: Landslide Hazard Assessment for Situational Awareness. This framework was implemented in Central America and the Caribbean by integrating a regional susceptibility map and satellite-based rainfall estimates into a binary decision tree, considering both daily and antecedent rainfall. Using a regionally distributed, percentile-based threshold approach, the model outputs a pixel-by-pixel nowcast in near real time at a resolution of 30 arcsec to identify areas of moderate and high landslide hazard. The daily and antecedent rainfall thresholds in the model are calibrated using a subset of the Global Landslide Catalog in Central America available for 2007-2013. The model was then evaluated with data for 2014. Results suggest reasonable model skill over Central America and poorer performance over Hispaniola due primarily to the limited availability of calibration and validation data. The landslide model framework presented here demonstrates the capability to utilize globally available satellite products for regional landslide hazard assessment. It also provides a flexible framework to interchange the individual model components and adjust or calibrate thresholds based on access to new data and calibration sources. The availability of free satellite-based near real-time rainfall data allows the creation of similar models for any study area with a spatiotemporal record of landslide events. This method may also incorporate other hydrological or atmospheric variables such as numerical weather forecasts or satellite-based soil moisture estimates within this decision tree approach for improved hazard analysis.

  16. Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems

    International Nuclear Information System (INIS)

    Highlights: • Canadian home energy system modeled with PV, ICE CHP, battery and power grid. • Battery function is modeled on fundamental electrochemical principles. • Techno-economics of control strategies assessed. • Impact of control strategies battery cycles is developed for wear analysis. • Non-monotonic nature of battery cycles with transient renewables is discussed. - Abstract: Energy storage units have become important components in residential micro-cogeneration (MCG) systems. As MCG systems are often connected to single residences or buildings in a wide variety of settings, they are frequently unique and highly customized. Lithium-ion batteries have recently gained some profile as energy storage units of choice, because of their good capacity, high efficiency, robustness and ability to meet the demands of typical residential electrical loads. In the present work, modeled scenarios are explored which examine the performance of a MCG system with an internal combustion engine, photovoltaic input and a Li-ion storage battery. An electricity demand profile from new data collected in Ottawa, Canada is used to provide a full year energy use context for the analyses. The demands placed on the battery are examined to assess the suitability of the battery size and performance, as well as control related functionalities which reveal significantly varying battery use, and led to a quantitative expression for equivalent cycles. The energy use simulations are derived from electrochemical fundamentals adapted for a larger battery pack. Simulation output provides the basis for techno-economic commentary on how to assess large-scale Li-ion batteries for effective electrical storage purposes in MCG systems, and the impact of the nature of the control strategy on the battery service life

  17. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    Science.gov (United States)

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)

  18. School Desegregation and Residential Segregation.

    Science.gov (United States)

    Billingsley, Andrew; And Others

    1979-01-01

    This statement on school and residential segregation, signed by 38 educators and social scientists, was prepared for attorneys connected with litigation concerning the Dayton and Columbus school systems. (RLV)

  19. Biomass enables the transition to a carbon-negative power system across western North America

    Science.gov (United States)

    Sanchez, Daniel L.; Nelson, James H.; Johnston, Josiah; Mileva, Ana; Kammen, Daniel M.

    2015-03-01

    Sustainable biomass can play a transformative role in the transition to a decarbonized economy, with potential applications in electricity, heat, chemicals and transportation fuels. Deploying bioenergy with carbon capture and sequestration (BECCS) results in a net reduction in atmospheric carbon. BECCS may be one of the few cost-effective carbon-negative opportunities available should anthropogenic climate change be worse than anticipated or emissions reductions in other sectors prove particularly difficult. Previous work, primarily using integrated assessment models, has identified the critical role of BECCS in long-term (pre- or post-2100 time frames) climate change mitigation, but has not investigated the role of BECCS in power systems in detail, or in aggressive time frames, even though commercial-scale facilities are starting to be deployed in the transportation sector. Here, we explore the economic and deployment implications for BECCS in the electricity system of western North America under aggressive (pre-2050) time frames and carbon emissions limitations, with rich technology representation and physical constraints. We show that BECCS, combined with aggressive renewable deployment and fossil-fuel emission reductions, can enable a carbon-negative power system in western North America by 2050 with up to 145% emissions reduction from 1990 levels. In most scenarios, the offsets produced by BECCS are found to be more valuable to the power system than the electricity it provides. Advanced biomass power generation employs similar system design to advanced coal technology, enabling a transition strategy to low-carbon energy.

  20. Assesment of Emerging Renewable Energy-based Cogeneration Systems for nZEB Residential Buildings

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh;

    2016-01-01

    entail production of electricity and usable thermal energy (heat and/or cooling) to cover the energy demands of residential buildings, high energy efficiency levels and proximity of the energy source to the building. The concept of cogeneration is not new but the interest in small scale cogeneration...... technologies based on renewable energy sources has increased tremendously in the last decade. A significant amount of experimental and modelling research has recently been presented on emerging technologies. In this paper, four main technologies are assessed: Fuel Cells (FC), Photovoltaic thermal (PV/T), solar...... thermal reversible heat pump /organic Rankine cycle (HP/ORC) and cogeneration solar Thermoelectric generators (TEG). This paper aims to give an overview of the state-of-the-art developments, discuss the fundamental and technical challenges facing commercial adoption and prospects of these technologies for...

  1. Energy and CO2 emissions performance assessment of residential micro-cogeneration systems with dynamic whole-building simulation programs

    International Nuclear Information System (INIS)

    Micro-cogeneration, also termed micro combined heat and power (MCHP) or residential cogeneration, is an emerging technology with the potential to provide energy efficiency and environmental benefits by reducing primary energy consumption and associated greenhouse gas emissions. The distributed generation nature of the technology also has the potential to reduce losses due to electrical transmission and distribution inefficiencies and to alleviate utility peak demand problems. Detailed MCHP models for whole-building simulation tools, developed in Annex 42 of the International Energy Agency (IEA) Energy Conservation in Buildings and Community Systems Programme, have been used to conduct a performance assessment study for a number of micro-cogeneration systems and residential buildings. Annual non-renewable primary energy (NRPE) demand and CO2-equivalent (CO2-eq) emissions were determined by simulation for different cogeneration technologies, namely natural gas-fuelled solid oxide (SOFC) and polymer electrolyte membrane fuel cells, Stirling and internal combustion engines. These were compared to the reference system with a gas boiler and electricity supply from the grid. A ground-coupled heat pump system was also analysed for comparison. The cogeneration units were integrated in single and multi-family houses of different energy standard levels. Two different electricity generation mixes were considered: European mix and combined cycle power plant (CCPP). For the MCHP devices, detailed dynamic component models as well as simplified performance map models were used, developed and calibrated with either results from laboratory experiments or with manufacturer data. The simulations were performed using the whole-building simulation programme TRNSYS, using domestic hot water and electric demand profiles specified in IEA Annex 42. Combinations of three demand levels were analyzed. In NRPE demand, for the European electricity mix, most MCHP systems offered reductions (up to

  2. On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach

    International Nuclear Information System (INIS)

    Against the background of the ambitious German targets for renewable energy and energy efficiency, this paper investigates the economic potential for thermal load management with virtual power plants consisting of micro-cogeneration plants, heat pumps and thermal storage within the residential sector. An optimising energy system model of the electricity and residential heat supply in Germany is developed in the TIMES (The Integrated MARKAL EFOM System) modelling framework and used to determine capacity developments and dispatch of electricity and residential heat generation technologies until 2050. The analysed scenarios differ with respect to the rate of technological development of heat and power devices, fuel and CO2 prices as well as renewable electricity expansion. Results show that high fuel prices and a high renewable electricity expansion favour heat pumps and insulation measures over micro-cogeneration, whereas lower fuel prices and lower renewable electricity expansion relatively favour the expansion of micro-cogeneration. In the former case heat pump capacities increase to around 67 GWel, whereas in the latter case the total capacity of micro-cogeneration reaches 8 GWel. With the aid of thermal storage, this provides considerable flexibility for electrical load shifting through heat pumps and electricity generation from micro-cogeneration in residential applications, needed for the integration of fluctuating renewable electricity technologies. - Highlights: • Potential of load management with residential mCHP and heat pumps. • Optimising system model of the residential energy supply in Germany. • Discussion of the role of the temporal resolution as well as thermal storage. • In function of scenarios, a considerable potential for load management is found

  3. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    Energy consumption in residential sector can be considerably reduced by enhancing the efficiency of energy supply. Fuel cell-based residential micro-CHP systems are expected to be one of the most promising technologies because of their high efficiency and low environmental impact. Since the design...... of a 70m2 single-family household with an average number of occupants of 3 is evaluated. Detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. A transient model of the hot water storage tank is used to take into account the effect of peak...

  4. End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors

    International Nuclear Information System (INIS)

    The National Energy Modeling System (NEMS) is arguably the most influential energy model in the United States. The U.S. Energy Information Administration uses NEMS to generate the federal government's annual long-term forecast of national energy consumption and to evaluate prospective federal energy policies. NEMS is considered such a standard tool that other models are calibrated to its forecasts, in both government and academic practice. As a result, NEMS has a significant influence over expert opinions of plausible energy futures. NEMS is a massively detailed model whose inner workings, despite its prominence, receive relatively scant critical attention. This paper analyzes how NEMS projects energy demand in the residential and commercial sectors. In particular, we focus on the role of consumers' preferences and financial constraints, investigating how consumers choose appliances and other end-use technologies. We identify conceptual issues in the approach the model takes to the same question across both sectors. Running the model with a range of consumer preferences, we estimate the extent to which this issue impacts projected consumption relative to the baseline model forecast for final energy demand in the year 2035. In the residential sector, the impact ranges from a decrease of 0.73 quads (− 6.0%) to an increase of 0.24 quads (+ 2.0%). In the commercial sector, the impact ranges from a decrease of 1.0 quads (− 9.0%) to an increase of 0.99 quads (+ 9.0%). - Highlights: • This paper examines the impact of consumer preferences on final energy in the Commercial and Residential sectors of the National Energy Modeling System (NEMS). • We describe the conceptual and empirical basis for modeling consumer technology choice in NEMS. • We offer a range of alternative parameters to show the energy demand sensitivity to technology choice. • We show there are significant potential savings available in both building sectors. • Because the model uses its own

  5. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M. [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, University of Vigo, Campus Lagoas-Marcosende No. 9, 36310 Vigo (Spain)

    2011-01-15

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper. (author)

  6. Decentralized/stand-alone hybrid Wind-Diesel power systems to meet residential loads of hot coastal regions

    International Nuclear Information System (INIS)

    In view of rising costs, pollution and fears of exhaustion of oil and coal, governments around the world are encouraging to seek energy from renewable/sustainable energy sources such as wind. The utilization of energy from wind (since the oil embargo of the 1970s) is being widely disseminated for displacement of fossil fuel produced energy and to reduce atmospheric degradation. A system that consists of a wind turbine and Diesel genset is called a Wind-Diesel power system.The literature indicates that the commercial/residential buildings in Saudi Arabia consume an estimated 10-40% of the total electric energy generated. In the present study, the hourly mean wind-speed data of the period 1986-1997 recorded at the solar radiation and meteorological station, Dhahran (26 deg. 32'N, 50 deg. 13'E in the Eastern Coastal Region of Saudi Arabia), has been analyzed to investigate the potential of utilizing hybrid (Wind-Diesel) energy conversion systems to meet the load requirements of a hundred typical two bedroom residential buildings (with annual electrical energy demand of 3512 MWh). The long term monthly average wind speeds for Dhahran range from 4.2 to 6.4 m/s. The hybrid systems considered in the present case study consist of different combinations/clusters of 150 kW commercial wind machines supplemented with battery storage and Diesel back-up. The deficit energy generated by the Diesel generator (for different battery capacities) and the number of operational hours of the Diesel system to meet a specific annual electrical energy demand of 3512 MWh have also been presented. The evaluation of the hybrid system shows that with seven 150 kW wind energy conversion system (WECS) and one day of battery storage, the Diesel back-up system has to provide 21.6% of the load demand. Furthermore, with three days of battery storage, the Diesel back-up system has to provide 17.5% of the load demand. However, in the absence of battery storage, about 37% of the load needs to be

  7. The role of cooperation for improved stewardship of marine social-ecological systems in Latin America

    Directory of Open Access Journals (Sweden)

    2015-03-01

    Full Text Available Latin American and Caribbean (LAC countries are among the worlds' richest in marine biodiversity. Fish stocks in these regions are important for fishing communities, and fishing activities engage several million people. These fisheries depend on the natural services provided by a diverse range of marine social-ecological systems, but many LAC fisheries are in a degraded state, and concerns about overexploitation are widespread. With most fishery resources fully exploited or overexploited, opportunities for development lie primarily in restoring depleted stocks and using stocks more efficiently. The papers published in the Special Feature "Cooperation, Local Communities, and Marine Social-Ecological Systems: New Findings from Latin America" present a range of experiences with ecosystem stewardship in the region and highlight promising perspectives for the future. The Special Feature consists of papers that deal with new findings from case studies which show how cooperation is key for building resilience in LAC fisheries. These case studies illustrate the effects of different types of cooperation and the roles of diverse stakeholders (fishers, scientists, environmental nongovernmental organizations, and national administrations, among others in different countries of the region. Combined, these papers describe social processes, leadership, and institutional and organizational changes of relevance for stewardship of marine social-ecological systems in Latin America. The field of resilience research is still in an explorative phase in the region, and our ambition with this Special Feature is that the new discoveries presented may stimulate additional research in this field, including increased international cooperation with LAC scientists.

  8. Ventilation systems with decentralized supply and exhaust and heat recovery in houses and residential buildings; Ventilatiesystemen met decentrale toe- en afvoer en warmteterugwinning in woningen en woongebouwen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This publications offers a univocal package of design-technical quality demands for well-functioning decentralized mechanical ventilation systems with heat recovery in dwellings and residential buildings. [Dutch] Deze publikatie biedt een eenduidig pakket van ontwerptechnische kwaliteitseisen voor goed functionerende decentrale, mechanische ventilatiesystemen met warmteterugwinning in woningen en woongebouwen.

  9. 浅谈建筑住宅智能化布线系统%Discussion on the Residential Intelligent Wiring System

    Institute of Scientific and Technical Information of China (English)

    齐铭安; 齐俊彬

    2012-01-01

    In order to meet the demands of residential intelligent service for the present and in the future, In the light of multimedia, communication, house automation management, environmental management, security, television, probe, alarm ,intercom system and so on, so forth, residential smart wiring system should be reserved from the perspeetive of development, especially for the advanced smart homes. This paper, mainly through the requirements of building residential smart system, puts forward the concept and the design scheme of residential smart wiring from the perspective of wiring installation, and narrated a detailed account of wiring system.%为满足现代及将来的住宅智能服务的需要,针对多媒体、通信、家居自动化管理、环境管理、保安、电视、探头、警报及对讲等系统,特别对于高级的智能住宅,从发展的角度预留住宅智能布线系统。本文通过对建筑住宅智能系统的要求,从布线安装的角度,提出建筑住宅智能化布线的概念以及设计方案,并对其布线系统作具体的描述。

  10. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study

    International Nuclear Information System (INIS)

    The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids

  11. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  12. Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering

    International Nuclear Information System (INIS)

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. Given the uncertainty in future retail rates and the inherent links between rates and the customer–economics of behind-the-meter PV, there is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. In this article, we first use a production cost and capacity expansion model to project California hourly wholesale electricity market prices under two potential electricity market scenarios, including a reference and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, we develop retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV is estimated for 226 California residential customers under two types of net metering, for each scenario. We find that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV. - Highlights: • We investigate the impact of high renewables on customer economics of solar. • We model three types of residential retail electricity rates. • Based on the rates, we calculate the bill savings from photovoltaic (PV) generation. • High renewables penetration can lead to lower bill savings with time-varying rates. • There is substantial uncertainty in the future bill savings from residential PV

  13. The Effect of Electric Load Profiles on the Performance of Off-Grid Residential Hybrid Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Stephen Treado

    2015-10-01

    Full Text Available This paper investigates the energy performance of off-grid residential hybrid renewable electric power systems, particularly the effect of electric load profiles on the ability to harvest available solar energy and avoid the consumption of auxiliary energy in the form of propane. The concepts are illustrated by an analysis of the energy performance of electric and propane-fired refrigerators. Off-grid electric power systems frequently incorporate a renewable source, such as wind or solar photovoltaic (PV, with a back-up power provided by a propane fueled motor/generator. Among other design decisions, residential consumers face the choice of employing an electric refrigerator with a conventional vapor compression refrigeration system, or a fuel-fired refrigerator operating as an absorption refrigeration system. One interesting question is whether it is more advantageous from an energy perspective to use electricity to run the refrigerator, which might be provided by some combination of the PV and propane motor/generator, thereby taking advantage of the relatively higher electric refrigerator Coefficient of Performance (COP and free solar energy but having to accept a low electrical conversion efficiency of the motor/generator, or use thermal energy from the combustion of propane to produce the refrigeration effect via an absorption system, albeit with a much lower COP. The analysis is complicated by the fact that most off-grid renewable electrical power systems utilize a battery bank to provide electrical power when it is not available from the wind turbine or PV system, so the state of charge of the battery bank will have a noticeable impact on what energy source is available at any moment in time. Daily electric load profiles combined with variable solar energy input determine the state of charge of the battery bank, with the degree of synchronization between the two being a critical factor in determining performance. The annual energy usage

  14. First experience concerning the seismic behavior of an electric power system in eastern North America

    International Nuclear Information System (INIS)

    The November 25, 1988, Saguenay earthquake of magnitude MbLg = 6.5 occurred in the province of Quebec, Canada. It represents the first strong event in eastern North America for which the seismic behavior of a power system is documented. The paper describes the seismic performance of the main components of the power system with emphasis on damages to the substation's equipment and on the triggering of control and protection devices by the seismic waves. Performance of the network is analyzed taking in account the seismological and strong ground motion features. Attention is drawn to general observations related to soil conditions and topographical relief. These data, when extrapolated to the eastern North American context, indicate that caution must be exercised concerning the seismic resistance of lifelines in eastern Canada and United States

  15. Social Policies in Contemporary Latin America: Families and Poverty in the Social Protection Systems

    Directory of Open Access Journals (Sweden)

    Cristina González

    2015-02-01

    Full Text Available This article examines the impact of social policies on the living conditions of poor families—particularly women—in Latin America from the late 1980s to the present. It identifies three distinct trends of familialism in the region’s social protection systems. The first social policy trend is characterized by poverty alleviation policies addressing the family in an “elliptical” way, taking for granted the idea of a nuclear family. The distinguishing trait of the second trend is the appearance of social programs aimed at families and stressing the role of women as chief caregivers and administrators. And finally, the third policy trend is defined by an expansion of more universal social programs targeting children and the elderly. Despite the recent emergence of programs with gender specific goals, social policies continue to put a great burden on female workers. For example, many subsidies to poor families deliver money directly to women, improving their intra-family bargaining power, but this translates also into an increase of responsibilities and the ensuing overload of work. Consequently, social policies in Latin America need to aim at encouraging a more egalitarian distribution of housework and care work within the family, especially given how well-established androcentrism is in the region.

  16. Residential environmental evaluation of local cities considering regional characteristic and personal residential preference-a case study of Saga City,Japan

    Institute of Scientific and Technical Information of China (English)

    GE Jian; HOKAO Kazunori

    2004-01-01

    Questionnaire surveys and subjective evaluations on residential environment were performed in order to grasp the main factors of residential environment of small local cities. The suitable evaluation index system was established, and the regional residential environment characteristics and personal residential preference types were analyzed, so that their influence on residential environment evaluation could be grasped. The results can be applied to the residential environment planning, construction and monitoring of local cities.

  17. Uncertainty analysis of daily potable water demand on the performance evaluation of rainwater harvesting systems in residential buildings.

    Science.gov (United States)

    Silva, Arthur Santos; Ghisi, Enedir

    2016-09-15

    The objective of this paper is to perform a sensitivity analysis of design variables and an uncertainty analysis of daily potable water demand to evaluate the performance of rainwater harvesting systems in residential buildings. Eight cities in Brazil with different rainfall patterns were analysed. A numeric experiment was performed by means of computer simulation of rainwater harvesting. A sensitivity analysis was performed using variance-based indices for identifying the most important design parameters for rainwater harvesting systems when assessing the potential for potable water savings and underground tank capacity sizing. The uncertainty analysis was performed for different scenarios of potable water demand with stochastic variations in a normal distribution with different coefficients of variation throughout the simulated period. The results have shown that different design variables, such as potable water demand, number of occupants, rainwater demand, and roof area are important for obtaining the ideal underground tank capacity and estimating the potential for potable water savings. The stochastic variations on the potable water demand caused amplitudes of up to 4.8% on the potential for potable water savings and 9.4% on the ideal underground tank capacity. Average amplitudes were quite low for all cities. However, some combinations of parameters resulted in large amplitude of uncertainty and difference from uniform distribution for tank capacities and potential for potable water savings. Stochastic potable water demand generated low uncertainties in the performance evaluation of rainwater harvesting systems; therefore, uniform distribution could be used in computer simulation. PMID:27208997

  18. Preliminary investigation into the use of solar PV systems for residential application in Bandar Sri Iskandar, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Dimas, F.A.; Gillani, S.I.; Ans, M.S. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering

    2011-07-01

    In the near future, Malaysia is expected to be a net importer of oil, and the nation will have to face issues related to the security of supply and economic consequences. It is also anticipated that the energy demand for the country will increase with the increase in population and GDP. Realizing the situation, it is important that further emphasis is given into the diversification of energy resources. One method is the exploitation of renewable energy to minimize the effects of global warming. Photovoltaic technology is widely used around the world in locations with scarce power generation options. It is used for various applications and Building Integrated Photovoltaic (BIPV) system is one of them. However, photovoltaic is still expensive compared to conventional methods of generating electricity. So a careful design of the system is required to ensure economic viability. This study describes a preliminary investigation of a solar PV system for residential applications in Bandar Sri Iskandar. Sizing procedures based on the peak sun hour concept is described for a Malaysian typical terraced house. Current and voltage measurements of the solar panel were carried out to predict the output under actual conditions at the site.

  19. The Impact of Electronic Health Records on Risk Management of Information Systems in Australian Residential Aged Care Homes.

    Science.gov (United States)

    Jiang, Tao; Yu, Ping; Hailey, David; Ma, Jun; Yang, Jie

    2016-09-01

    To obtain indications of the influence of electronic health records (EHR) in managing risks and meeting information system accreditation standard in Australian residential aged care (RAC) homes. The hypothesis to be tested is that the RAC homes using EHR have better performance in meeting information system standards in aged care accreditation than their counterparts only using paper records for information management. Content analysis of aged care accreditation reports from the Aged Care Standards and Accreditation Agency produced between April 2011 and December 2013. Items identified included types of information systems, compliance with accreditation standards, and indicators of failure to meet an expected outcome for information systems. The Chi-square test was used to identify difference between the RAC homes that used EHR systems and those that used paper records in not meeting aged care accreditation standards. 1,031 (37.4%) of 2,754 RAC homes had adopted EHR systems. Although the proportion of homes that met all accreditation standards was significantly higher for those with EHR than for homes with paper records, only 13 RAC homes did not meet one or more expected outcomes. 12 used paper records and nine of these failed the expected outcome for information systems. The overall contribution of EHR to meeting aged care accreditation standard in Australia was very small. Risk indicators for not meeting information system standard were no access to accurate and appropriate information, failure in monitoring mechanisms, not reporting clinical incidents, insufficient recording of residents' clinical changes, not providing accurate care plans, and communication processes failure. The study has provided indications that use of EHR provides small, yet significant advantages for RAC homes in Australia in managing risks for information management and in meeting accreditation requirements. The implication of the study for introducing technology innovation in RAC in

  20. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  1. Comparative Study of Heat Sources of Heat Pump System for Residential Building%住宅建筑热泵的热源选择

    Institute of Scientific and Technical Information of China (English)

    彭丽; 胡林龙

    2011-01-01

    Statistics show that residential building HVAC energy consumption accounts for a great proportion in building energy consumption. Heat pump has better energy conservation performance compared with coal--fired heating. The characteristics of residential building HVAC energy consumption are relative concentration of space and time, a smaller amount of heat demand, stable and high security requirements, easy maintenance and management. The selection of heat sources of the pump should meet the heating and cooling requirements of residential building and pump system. This paper investigates the heat sources of air, ground/underground water, soil, sunlight, sewage from the aspects of characteristics, applicability, limitation, engineering and equipments, and management. Finally, it concludes the general principles in selecting the heat sources of heat pump for residential building.%指出了住宅建筑的暖通空调能耗占建筑能耗的比重大,较燃煤取暖而言,热泵技术的节能效果显著。从原理特点、适用性、限制条件、土建和设备建设难度和周期、后期管理维护等方面分析了空气、地表(下)水、土壤、太阳能和污水等热泵热源,探讨了住宅建筑热泵热源选择的总的原则。

  2. System integration of marketable subsystems. [for residential solar heating and cooling

    Science.gov (United States)

    1979-01-01

    Progress is reported in the following areas: systems integration of marketable subsystems; development, design, and building of site data acquisition subsystems; development and operation of the central data processing system; operation of the MSFC Solar Test Facility; and systems analysis.

  3. Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    for fuel cell-based residential micro-CHP systems, since it can operate at higher temperature than Nafion-based fuel cells, and therefore can reach higher cogeneration efficiencies. The proposed system can provide electric power, hot water, and space heating for a typical Danish single......A detailed thermodynamic, kinetic and geometric model of a micro-CHP (Combined-Heatand-Power) residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC) technology is developed, implemented and validated. HT-PEMFC technology is investigated as a possible candidate......-family household. A complete fuel processing subsystem, with all necessary balance-of-plant components, is modeled and coupled to the fuel cell stack subsystem. The micro-CHP system’s synthesis/ design and operational pattern is analyzed by means of a parametric study. The parametric study is conducted to...

  4. An optimization methodology for the design of renewable energy systems for residential net zero energy buildings with on-site heat production

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2011-01-01

    The concept of net zero energy buildings (NZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of such buildings. This paper aims at developing a method for the optimal sizing of renewable...... energy supply systems for residential NZEB involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system...... costs. It has been successfully applied in a sample case study. The approach can easily be extended to all kind of RES technologies and also allows for implementing further constraints and requirements proprietary to residential NZEBs such as e.g. reliabilities, noise levels or space requirements of...

  5. SIZING AND COSTING OPTIMISATION OF A TYPICAL WIND/PV HYBRID ELECTRICITY GENERATION SYSTEM FOR A TYPICAL RESIDENTIAL BUILDING IN URBAN ARMIDALE NSW, AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Yasser Maklad

    2014-04-01

    Full Text Available This study investigates the wind and solar electricity generation availability and potentiality for residential buildings in Armidale NSW, Australia. The main purpose of this study is to design an appropriate wind-PV hybrid system to cover the electricity consumption of typical residential buildings of various occupancy rates and relevant various average electrical daily consumption. In order to do achieve that, monthly average solar irradiance monthly average wind speed historical data observed at weather station belongs to the Australian bureau of meteorology in Armidale town over a fourteen years period from 1997–2010. Simulation of solar photovoltaic panels and wind turbines were conducted to obtain the optimal hybrid system sizing and best efficient with lowest cost. Correlations between the solar and wind power data were carried out on an hourly, daily, and monthly basis. It is shown that the hybrid system can be applied for the efficient and economic utilization of wind and solar renewable energy sources.

  6. Heat supply systems using natural gas in the residential sector. The case of the agglomeration of Seoul

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hi-Chun [Department of Economics, Inha University, Yonghyun-Dong, Incheon 402-751 (Korea); Kim, Hoseok [Korea Environment Institute, 613-2, Bulkwang-Dong, Seoul 122-040 (Korea)

    2008-10-15

    Combined heat and power (CHP) and district heating (DH) promotion policies are based on the assumption of high energy efficiencies. In the last two decades, however, there has been a big increase in energy efficiencies of combined-cycle gas power plants (CCs) including CHPs and gas-condensing boilers. This study tries to verify the validity of the assumption of high energy efficiency of DH. The experience in the agglomeration of Seoul shows that DH in combination with large modern CHPs is not more energy efficient but substantially more expensive compared to individual gas heating by efficient condensing boilers in combination with CCs. We argue that the Korean government should review its CHP/DH support programs and abandon the so-called heat supply monopoly for DH operators in newly developed residential areas. Such a policy intervention only distorts the space heating market and wastes valuable financial resources. Furthermore, the public should be properly informed on energy efficiency as well as energy- and system-related costs of various heat supply systems. In the light of the present improvements in the performance of gas-condensing boilers and CCs, the validity of the assumption of high energy efficiency of CHP/DH in other countries has to be reviewed. (author)

  7. Effect of radiant barriers and attic ventilation on residential attics and attic duct systems: New tools for measuring and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, T.W.; Childs, P.W.; Christian, J.E.; Wilkes, K.E.

    1998-07-01

    A simple duct system was installed in an attic test module for a large scale climate simulator at a US national laboratory. The goal of the tests and subsequent modeling was to develop an accurate method of assessing duct system performance in the laboratory, enabling limiting conditions to be imposed at will and results to be applied to residential attics with attic duct systems. Steady-state tests were done at a severe summer and a mild winter condition. In all tests the roof surface was heated above ambient air temperatures by infrared lights. The attic test module first included then did not include the duct system. Attic ventilation from eave vents to a ridge vent was varied from none to values achievable by a high level of power ventilation. A radiant barrier was attached to the underside of the roof deck, both with and without the duct system in place. Tests were also done without the radiant barrier, both with and without the duct system. When installed, the insulated ducts ran along the floor of the attic, just above the attic insulation and along the edge of the attic near the eaves and one gable. These tests in a climate simulator achieved careful control and reproducibility of conditions. This elucidated dependencies that would otherwise be hidden by variations in uncontrolled variables. Based on the comparisons with the results of the tests at the mild winter condition and the severe summer condition, model predictions for attic air and insulation temperatures should be accurate within {+-} 10 F ({+-} 6 C). This is judged adequate for design purposes and could be better when exploring the effect of changes in attic and duct parameters at fixed climatic conditions.

  8. Market Reform, Programmatic (DeAlignment and Party System Stability in Latin America

    Directory of Open Access Journals (Sweden)

    Kenneth M. ROBERTS

    2013-07-01

    Full Text Available Although democratic regimes in Latin America since the early 1980s have been surprisingly durable, party systems in much of the region continue to experience very high levels of electoral instability. A critical juncture approach to institutional change suggests that variation in party system stability is related to the impact of market liberalization in the 1980s and 90s on the programmatic alignment –or (dealignment– of partisan competition. Market reforms that were adopted by conservative leaders and opposed by a major leftist rival aligned party systems programmatically, allowing societal opposition to be channeled into institutionalized forms of competition that were highly stable in the post-adjustment era. By contrast, «bait-and-switch» reforms adopted by populist or leftist leaders were programmatically de-aligning for party systems, leaving them vulnerable to highly destabilizing reactive sequences in the aftermath to the reform process-including mass social protests, the demise of historic conservative parties, and the outflanking of traditional populist or leftist parties by more radical, anti-neoliberal outsiders. The political dynamics of market-based economic adjustment thus heavily conditioned the ways in which party systems would process the post-adjustment revival of populist and leftist alternatives in the region.

  9. Comparative performance of two types of evacuated tubular solar collectors in a residential heating and cooling system. Final report, October 1, 1977-September 30, 1978. [CSU Solar House 1

    Energy Technology Data Exchange (ETDEWEB)

    Loef, G.O.G.; Duff, W.S.

    1979-09-01

    Solar House I, the first residential solar system test facility at the Colorado State University, is described. Provision was made for the removal and replacement of the various subsystems so that the facility could be utilized to evaluate other residential size solar components and systems. Two evacuated tube collectors and one flat plate collector were evaluated. The operations history, system performance, performance assessment, and comparison with model are included. (MHR)

  10. Preliminary experimental investigation of a natural gas-fired ORC-based micro-CHP system for residential buildings

    International Nuclear Information System (INIS)

    The continual increases in energy demand and greenhouse gas emissions, call for efficient use of energy resources. Decentralized combined heat and power (CHP) technology provides an alternative for the world to meet and solve energy-related problems including energy shortages, energy supply security, emission control and conservation of energy. This paper presents the preliminary results of an experimental investigation of a natural gas-fired micro-CHP system for residential buildings based on an organic Rankine cycle (ORC). Isopentane was used as the ORC working fluid in consideration of several criteria including its environmentally-friendly characteristics. Experiments were conducted to evaluate the performance of the developed system at different heat source temperatures of nominally 85, 80, 75, 70, and 65 °C. The maximum electrical power output of 77.4 W was generated at heating water entry temperature of 84.1 °C, corresponding to net cycle electrical efficiency of 1.66%. Further work will be done with a view to increasing the cycle electrical efficiency by using more efficient components, in particular the expander and generator. - Highlights: •A natural gas-fired ORC-based micro-scale CHP system has been developed and tested. •The good agreement between the mechanical and gross power validates the assumptions. •A vane expander suits a micro-CHP system based on an organic Rankine cycle. •A vane expander does not suit power generation by a Trilateral Flash Cycle (TFC). •Domestic gas-fired ORC systems may reduce reliance on central power stations

  11. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  12. Dynamic performance assessment of a residential building-integrated cogeneration system under different boundary conditions. Part I: Energy analysis

    International Nuclear Information System (INIS)

    Highlights: • A building-integrated micro-cogeneration system was dynamically simulated. • Simulation data were analyzed from an energy point of view. • The proposed system was compared with a conventional supply system. • The proposed system allows to save energy under heat-led operation. • Electric vehicle charging enhances the energy saving under electric load-led logic. - Abstract: This work examines the energy performance of a residential building-integrated micro-cogeneration system during the winter season by means of a whole building simulation software; a 6.0 kWel natural gas-fuelled internal combustion engine-based cogeneration unit was coupled with a multi-family house composed of three floors, compliant with the thermal transmittances of both walls and windows equated to the threshold values suggested by the Italian Law. The main purpose of the paper is to compare the proposed system with a conventional system composed of a natural gas-fired boiler (for thermal energy production) and a power plant mix connected to the Italian central grid (for electric energy production) in order to assess the potential energy saving under various operating scenarios. The simulations were performed by considering the multi-family house located into four different Italian cities (Palermo, Napoli, Roma and Milano) representative of different climatic regions of Italy in order to estimate the influence of climatic conditions; a parametric analysis was also performed with the aim to evaluate the sensitivity of the energy flows when varying the volume of the combined storage tank; taking into consideration that the economic viability of the cogeneration unit strongly depends also on the value of the co-produced electricity, the system performance was also evaluated by considering two different electric demand profiles (with and without the electric consumption associated to the overnight charging of an electric vehicle); the operation of the micro

  13. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jayne [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Brand, Larry [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States)

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing.

  14. The development of a solar powered residential heating and cooling system

    Science.gov (United States)

    Oneill, M. J.; Mccormick, P. O.; Kruse, W. R.

    1974-01-01

    A solar energy collector design is disclosed that would be efficient for both energy transfer and fluid flow, based upon extensive parametric analyses. Thermal design requirements are generated for the energy storage systems which utilizes sensible heat storage in water. Properly size system components (including the collector and storage) and a practical, efficient total system configuration are determined by means of computer simulation of system performance.

  15. Investigation of solar assisted heat pump system integrated with high-rise residential buildings

    OpenAIRE

    Yu FU

    2014-01-01

    The wide uses of solar energy technology (solar thermal collector, photovoltaic and heat pump systems) have been known for centuries. These technologies are intended to supply domestic hot water and electricity. However, these technologies still face some barriers along with fast development. In this regards, the hybrid energy system combines two or more alternative technologies to help to increase the total efficiency of the system. Solar assisted heat pump systems (SAHP) and photovoltaic/th...

  16. The activity of mass media companies from United States of America. The impact generated in economic, social and politic systems

    OpenAIRE

    Sorin TERCHILĂ

    2014-01-01

    In the present research I will analyze the reactions and opinions of the interviewed persons regarding the efficiency of mass media in United States of America and also it will be analyzed the impact of media on the economic, social and politic systems in United States of America. At the same time, it is followed the presentation of some comparisons between the public media companies and the private ones, in which concerns the generated impact. Thereby, I will use the interview as a quali...

  17. Health-system reform and universal health coverage in Latin America.

    Science.gov (United States)

    Atun, Rifat; de Andrade, Luiz Odorico Monteiro; Almeida, Gisele; Cotlear, Daniel; Dmytraczenko, T; Frenz, Patricia; Garcia, Patrícia; Gómez-Dantés, Octavio; Knaul, Felicia M; Muntaner, Carles; de Paula, Juliana Braga; Rígoli, Felix; Serrate, Pastor Castell-Florit; Wagstaff, Adam

    2015-03-28

    Starting in the late 1980s, many Latin American countries began social sector reforms to alleviate poverty, reduce socioeconomic inequalities, improve health outcomes, and provide financial risk protection. In particular, starting in the 1990s, reforms aimed at strengthening health systems to reduce inequalities in health access and outcomes focused on expansion of universal health coverage, especially for poor citizens. In Latin America, health-system reforms have produced a distinct approach to universal health coverage, underpinned by the principles of equity, solidarity, and collective action to overcome social inequalities. In most of the countries studied, government financing enabled the introduction of supply-side interventions to expand insurance coverage for uninsured citizens--with defined and enlarged benefits packages--and to scale up delivery of health services. Countries such as Brazil and Cuba introduced tax-financed universal health systems. These changes were combined with demand-side interventions aimed at alleviating poverty (targeting many social determinants of health) and improving access of the most disadvantaged populations. Hence, the distinguishing features of health-system strengthening for universal health coverage and lessons from the Latin American experience are relevant for countries advancing universal health coverage. PMID:25458725

  18. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems.

    Science.gov (United States)

    Barletta, M; Jaureguizar, A J; Baigun, C; Fontoura, N F; Agostinho, A A; Almeida-Val, V M F; Val, A L; Torres, R A; Jimenes-Segura, L F; Giarrizzo, T; Fabré, N N; Batista, V S; Lasso, C; Taphorn, D C; Costa, M F; Chaves, P T; Vieira, J P; Corrêa, M F M

    2010-06-01

    Fish conservation in South America is a pressing issue. The biodiversity of fishes, just as with all other groups of plants and animals, is far from fully known. Continuing habitat loss may result in biodiversity losses before full species diversity is known. In this review, the main river basins of South America (Magdalena, Orinoco, Amazon and Paraná-La Plata system), together with key aquatic habitats (mangrove-fringed estuaries of the tropical humid, tropical semi-arid and subtropical regions) are analysed in terms of their characteristics and main concerns. Habitat loss was the main concern identified for all South American ecosystems. It may be caused by damming of rivers, deforestation, water pollution, mining, poor agricultural practice or inadequate management practice. Habitat loss has a direct consequence, which is a decrease in the availability of living resources, a serious social and economic issue, especially for South American nations which are all developing countries. The introduction of exotic species and overfishing were also identified as widespread across the continent and its main freshwater, coastal and marine ecosystems. Finally, suggestions are made to find ways to overcome these problems. The main suggestion is a change of paradigm and a new design for conservation actions, starting with integrated research and aiming at the co-ordinated and harmonized management of the main transboundary waters of the continent. The actions would be focused on habitat conservation and social rescue of the less well-off populations of indigenous and non-indigenous peoples. Energy and freshwater demands will also have to be rescaled in order to control habitat loss. PMID:20557657

  19. 农村宅基地取得制度改革探讨%Reforming the Rural Residential Land Allocation System

    Institute of Scientific and Technical Information of China (English)

    谭峻; 涂宁静

    2013-01-01

    The purpose of this study is to probe and reestablish the allocation system of the rural residential land in order to promote the reform of the rural residential land system. Study methods include documentation, and normative plus empirical analysis. Results show that many defects were found in the current system of the rural residential land allocation, and also the problems that the current management work faced with were detected. The proposed reform of the allocation system of rural residential land includes three parts, such as the original allocation system, the inheriting system and the supplement system. The paper concludes that the reform of the rural residential land system should focus on the initial allocation system, aiming to coherently protect farmers’property rights, promote the social justice and economic development, and realize of effective resource utilization.%  研究目的:探讨与重构农村宅基地取得制度,推动中国农村宅基地制度改革。研究方法:文献研究方法,规范—实证分析法。研究结果:通过问卷调查和实地访谈,探讨了当前宅基地取得制度存在的缺陷以及管理工作中的难题。从原始取得制度、继受取得制度和相关配套制度三大方面重构了农村宅基地取得制度。研究结论:宅基地制度改革应以宅基地取得制度的重构为切入点,有利于保护农民财产权益、促进社会公平与实现资源合理利用。

  20. Innovation Support in Latin America and Europe: Theory, Practice and Policy in Innovation and Innovation Systems [RECENSIONES

    OpenAIRE

    Martínez, M. E.

    2015-01-01

    Recensión de: ANDERSON, Mark; EDGAR, David; GRANT, Kevin; HALCRO, Keith; RODRÍGUEZ, Julio Mario y GUERA GENSKOWSKY, Lautaro (2014) Innovation Support in Latin America and Europe: Theory, Practice and Policy in Innovation and Innovation Systems Gower, Burlington

  1. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  2. The impact of city-level permitting processes on residential photovoltaic installation prices and development times: An empirical analysis of solar systems in California cities

    International Nuclear Information System (INIS)

    With “soft” costs accounting for well over 50% of the installed price of residential photovoltaic (PV) systems in the United States, this study evaluates the effect of city-level permitting processes on the installed price of residential PV systems and on the time required to develop those systems. The study uses a unique dataset from the U.S. Department of Energy's Rooftop Solar Challenge Program, which includes city-level permitting process “scores,” plus data from the California Solar Initiative and the U.S. Census. Econometric methods are used to quantify the price and development-time effects of city-level permitting processes on more than 3000 PV installations across 44 California cities in 2011. Results suggest that cities with the most favorable permitting practices can reduce average residential PV prices by $0.27–$0.77/W (4–12% of median PV prices in California) compared with cities with the most onerous permitting practices, depending on the regression model used. Though the empirical models for development times are less robust, results suggest that the most streamlined permitting practices may shorten development times by around 24 days on average (25% of the median development time). These findings illustrate the potential price and development-time benefits of streamlining local permitting procedures for PV systems. - Highlights: • The study uses a unique dataset from the U.S. DOE's Rooftop Solar Challenge Program. • We quantify the price and development-time effects of city-level permitting processes. • Most favorable permitting practices can reduce average residential PV prices by $0.27–$0.77/W

  3. Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors

    International Nuclear Information System (INIS)

    This paper examines the economic viability of small-scale, grid-connected photovoltaics in the Brazilian residential and commercial sectors after the introduction of the net metering regulation in April 2012. This study uses the discounted cash flow method to calculate the specific investment costs that are necessary for photovoltaic systems to be economically viable for each of the 63 distribution networks in Brazil. We compare these values to the system costs that are estimated in the comprehensive study on photovoltaics that was developed by the Brazilian Association of Electric and Electronic Industries (ABINEE). In our calculation, we utilize the current electricity tariffs, including fees and taxes, which we obtained through telephone interviews and publicly available information. We obtained a second important parameter by simulating PV-systems with the program PV⁎Sol at the distribution company headquarters' locations. In our base case scenario that reflects the current situation, in none of the distribution networks photovoltaics is economically viable in either the commercial or residential sectors. We improved the environment for grid-connected photovoltaics in our scenarios by assuming both lower PV-system costs and a lower discount rate to determine the effect on photovoltaics viability. - Highlights: • We calculate the economic viability of photovoltaics in the residential and commercial sectors in Brazil. • The PV⁎Sol simulations are carried out at the headquarter locations for the 63 distribution companies. • Currently in none of the distribution networks, photovoltaics is economically viable in either the commercial or residential sectors. • We analyze how the variation of the specific investment costs and of the discount rate affects the economic viability

  4. Evaluation of the backtime of the water heating systems at the residential sector; Avaliacao do tempo de retorno dos sistemas de aquecimento solar de agua no setor residencial

    Energy Technology Data Exchange (ETDEWEB)

    Raimo, Patricia Abdala; Faga, Murilo Tadeu Werneck [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia]. E-mail: patriciaar@iee.usp.br; murfaga@iee.usp.br

    2006-07-01

    This work presents an evaluation of the investment return for the residential consumer when exclusive using the water heating system. The investment backtime will be evaluated as function of the collector efficiency converting solar radiation to heat and the consumption avoided of final energy, electricity or natural gas. The comparison result is shown for three irradiation levels and for any water volume whatsoever to be heated.

  5. Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-04-01

    This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

  6. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jayne [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Brand, Larry [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States)

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  7. Refrigerant and Lubricant Mass Distribution in a Convertible Split System Residential Air-Conditioner

    OpenAIRE

    Wujek, Scott S.; Bowers, Chad D.; Powell, Joshua W.; Urrego, Roberto A.; Hessell, Edward T.; Benanti, Travis L.

    2014-01-01

    Lubricants are utilized in air-conditioning systems for the purpose of decreasing friction and wear within the compressor. While ideally the lubricant remains in the compressor, some lubricant is entrained and transported by the refrigerant to the other system components. During operational transients, the lubricant is redistributed throughout the various system components. The equilibrium distribution of lubricant depends among other things on fluid properties, phase change processes, flow r...

  8. Electricity demand response in Japan:Experimental evidence from a residential photovoltaic generation system

    OpenAIRE

    Takanori Ida; Kayo Murakami; Makoto Tanaka

    2015-01-01

    We report on a randomized controlled trial used to examine the effect of dynamic pricing when applied to households with rooftop photovoltaic (PV) power-generation systems. Using high-frequency data on household-level electricity use, PV generation, purchases, and sales, we find that critical peak pricing induced significant usage reductions of 3-4% among households with PV systems, a quarter of the effect size seen among average households without solar PV systems. In addition, we investigat...

  9. A PV/T and Heat Pump based trigeneration system model for residential applications

    OpenAIRE

    Joyce, António; Coelho, Luis; Martins, João F.; Tavares, Nelson; R Pereira; Magalhães, Pedro

    2011-01-01

    A solar trigeneration system, based on photovoltaic-thermal (PV/T) collectors, photovoltaic (PV) modules and a heat pump unit for heating and cooling, is modelled to forecast the thermal and electric yields of the system. The aim of the trigeneration system is to provide enough electricity, domestic hot water (DHW), heating and cooling power to meet the typical demand of an urban single family dwelling with limited roof area and allow the household to achieve a positive net energy status. The...

  10. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    Science.gov (United States)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing

  11. Current status of fuel cell based combined heat and power systems for residential sector

    Science.gov (United States)

    Ellamla, Harikishan R.; Staffell, Iain; Bujlo, Piotr; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-10-01

    Combined Heat and Power (CHP) is the sequential or simultaneous generation of multiple forms of useful energy, usually electrical and thermal, in a single and integrated system. Implementing CHP systems in the current energy sector may solve energy shortages, climate change and energy conservation issues. This review paper is divided into six sections: the first part defines and classifies the types of fuel cell used in CHP systems; the second part discusses the current status of fuel cell CHP (FC-CHP) around the world and highlights the benefits and drawbacks of CHP systems; the third part focuses on techniques for modelling CHP systems. The fourth section gives a thorough comparison and discussion of the two main fuel cell technologies used in FC-CHP (PEMFC and SOFC), characterising their technical performance and recent developments from the major manufacturers. The fifth section describes all the main components of FC-CHP systems and explains the issues connected with their practical application. The last part summarises the above, and reflects on micro FC-CHP system technology and its future prospects.

  12. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter; Wiser, Ryan; Thayer, Mark; Hoen, Ben

    2011-04-12

    An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.

  13. Field survey of a sustainable sanitation system in a residential house.

    Science.gov (United States)

    Nakagawa, Naoko; Otaki, Masahiro; Miura, Shinji; Hamasuna, Hironobu; Ishizaki, Katsuyoshi

    2006-01-01

    Sustainable sanitation is an approach for more ecological and sustainable water resources management. In this paper, we proposed one of the new integrated waste treatment systems: an "sustainable sanitation system" that includes separation of the black water from water system by a non-flushing toilet (bio-toilet), and a gray water treatment based on a biological and ecological concept. Sustainable sanitation system also converts the domestic waste to soil conditioners and fertilizers, for farmland use. As one of the case studies, Environmentally Symbiotic Housing in which people actually live using the bio-toilet for the black water treatment and the household wastewater treatment facility for the gray water was introduced. The availability of this system was investigated by analyzing the sawdust used in the bio-toilet and the quality of the effluent in the household wastewater treatment facility. As the result, the water content of the sawdust did not exceed 60% in any of the sampling points and the BOD and COD of the effluent of the household wastewater treatment facility were below 10 and 20 mg/L respectively, due to the low loading. Compared to the pollution load on the water environment created by the conventional system, it was found that the effluent of the house has a lower load than the tertiary treatment and the volume of the water consumption is 75% of the conventional system. PMID:17294947

  14. Field survey of a sustainable sanitation system in a residential house

    Institute of Scientific and Technical Information of China (English)

    Naoko NAKAGAWA; Masahiro OTAKI; Shinji MIURA; Hironobu HAMASUNA; Katsuyoshi ISHIZAKI

    2006-01-01

    Sustainable sanitation is an approach for more ecological and sustainable water resources management. In this paper, we proposed one of the new integrated waste treatment systems: an "sustainable sanitation system" that includes separation of the black water from water system by a non-flushing toilet (bio-toilet), and a gray water treatment based on a biological and ecological concept.Sustainable sanitation system also converts the domestic waste to soil conditioners and fertilizers, for farmland use. As one of the case studies, Environmentally Symbiotic Housing in which people actually live using the bio-toilet for the black water treatment and the household wastewater treatment facility for the gray water was introduced. The availability of this system was investigated by analyzing the sawdust used in the bio-toilet and the quality of the effluent in the household wastewater treatment facility. As the result,the water content of the sawdust did not exceed 60% in any of the sampling points and the BOD and COD of the effluent of the household wastewater treatment facility were below 10 and 20 mg/L respectively, due to the low loading. Compared to the pollution load on the water environment created by the conventional system, it was found that the effluent of the house has a lower load than the tertiary treatment and the volume of the water consumption is 75% of the conventional system.

  15. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, Ben; Wiser, Ryan; Thayer, Mark; Cappers, Peter

    2012-04-15

    Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy systems on home sale prices. Using a large dataset of California homes that sold from 2000 through mid-2009, we find strong evidence, despite a variety of robustness checks, that existing homes with PV systems sold for a premium over comparable homes without PV systems, implying a near full return on investment. Premiums for new homes are found to be considerably lower than those for existing homes, implying, potentially, a tradeoff between price and sales velocity. The results have significant implications for homeowners, builders, appraisers, lenders, and policymakers.

  16. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    Science.gov (United States)

    Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. P.

    2016-07-01

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  17. Life cycle cost analysis of solar heating and DHW systems in residential buildings

    International Nuclear Information System (INIS)

    Economic Life Cycle Cost Analysis (ELCCA) is an easy and friendly computer program, IBM compatible for economic evaluation of solar energy system which involves comparison of the capital and operating costs of a conventional system. In this section we would like to suggest the ELCCA-PC program as a new tools using life cycle cost analysis for annual and cumulative cash flow methodology that take into account all future expenses. ELCCA-PC program considers fixed and changeable items that are involved in installing the equipment such as interest of money borrowed, property and income taxes, current energy cost for electricity operating system, maintenance, insurance and fuel costs and other economic operating expenses. Moreover fraction of annual heating load supplied from solar system is considered in this analysis. ECC-PC program determines the yearly outflow of money over the period of an economic analysis that can be converted to a series of equal payments in today's money

  18. STANDALONE PHOTOVOLTAIC SYSTEMS SIZING OPTIMIZATION USING DESIGN SPACE APPROACH: CASE STUDY FOR RESIDENTIAL LIGHTING LOAD

    Directory of Open Access Journals (Sweden)

    D. F. AL RIZA

    2015-07-01

    Full Text Available This paper presents a sizing optimization methodology of panel and battery capacity in a standalone photovoltaic system with lighting load. Performance of the system is identified by performing Loss of Power Supply Probability (LPSP calculation. Input data used for the calculation is the daily weather data and system components parameters. Capital Cost and Life Cycle Cost (LCC is calculated as optimization parameters. Design space for optimum system configuration is identified based on a given LPSP value, Capital Cost and Life Cycle Cost. Excess energy value is used as an over-design indicator in the design space. An economic analysis, including cost of the energy and payback period, for selected configurations are also studied.

  19. Marketing residential grid-connected PV systems using a balanced scorecard as a marketing tool

    International Nuclear Information System (INIS)

    A strategic analysis of the electricity market in Western Australia yields a market potential for renewable energy in Western Australia. However, from a purely financial viewpoint the installation of grid-connected pv-systems still is not economically viable. In this paper a balanced scorecard (BSC) is developed to capture and visualize other than financial benefits. Therefore, the BSC can be used as a marketing tool to communicate the benefits of a privately owned GCPV system to potential customers. (author)

  20. Hybrid renewable energy system application for electricity and heat supply of a residential building

    OpenAIRE

    Nakomčić-Smaragdakis Branka B.; Dragutinović Nataša G.

    2016-01-01

    Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES) for electricity and heat supply of a typical household i...

  1. Control analysis of renewable energy system with hydrogen storage for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Bilodeau, A.; Agbossou, K. [Hydrogen Research Institute, Universite du Quebec a Trois-Rivieres, 3351 boul. Des Forges, C.P. 500, Trois-Rivieres, Que. (Canada G9A 5H7)

    2006-11-22

    The combination of an electrolyzer and a fuel cell can provide peak power control in a decentralized/distributed power system. The electrolyzer produces hydrogen and oxygen from off-peak electricity generated by the renewable energy sources (wind turbine and photovoltaic array), for later use in the fuel cell to produce on-peak electricity. An issue related to this system is the control of the hydrogen loop (electrolyzer, tank, fuel cell). A number of control algorithms were developed to decide when to produce hydrogen and when to convert it back to electricity, most of them assuming that the electrolyzer and the fuel cell run alternatively to provide nominal power (full power). This paper presents a complete model of a stand-alone renewable energy system with hydrogen storage controlled by a dynamic fuzzy logic controller (FLC). In this system, batteries are used as energy buffers and for short time storage. To study the behavior of such a system, a complete model is developed by integrating the individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries. An analysis of the performances of the dynamic fuzzy logic controller is then presented. This model is useful for building efficient peak power control. (author)

  2. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  3. Life cycle analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation

    International Nuclear Information System (INIS)

    Photovoltaic installations (PV-systems) are heavily promoted in Europe. In this paper, the Life Cycle Analysis (LCA) method is used to find out whether the high subsidy cost can be justified by the environmental benefits. Most existing LCAs of PV only use one-dimensional indicators and are only valid for regions with a high solar irradiation. This paper, however, presents a broad environmental evaluation of residential PV-systems for regions with a rather low solar irradiation of 900-1000 kWh/m2/year, a value typical for Northern Europe and Canada. Based on the Ecoinvent LCA database, six Life Cycle Impact Assessment (LCIA) methods were considered for six different PV-technologies; the comprehensive Eco-Indicator 99 (EI 99) with its three perspectives (Hierarchist, Egalitarian and Individualistic) next to three one-dimensional indicators, namely Cumulative Energy Demand (CED), Global Warming Potential (GWP) and the Energy Payback Time (EPT). For regions with low solar irradiation, we found that the EPT is less than 5 years. The Global Warming Potential of PV-electricity is about 10 times lower than that of electricity from a coal fired plant, but 4 times higher when compared to a nuclear power plant or a wind farm. Surprisingly, our results from the more comprehensive EI 99 assessment method do not correlate at all with our findings based on EPT and GWP. The results from the Individualist perspective are strongly influenced by the weighting of the different environmental aspects, which can be misleading. Therefore, to obtain a well-balanced environmental assessment of energy technologies, we recommend a carefully evaluated combination of various impact assessment methods. (author)

  4. Life cycle analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Laleman, Ruben; Albrecht, Johan [Ghent University, Faculty of Economics and Business Administration, Tweekerkenstraat 2, B9000 Ghent (Belgium); Dewulf, Jo [Research Group ENVOC, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)

    2011-01-15

    Photovoltaic installations (PV-systems) are heavily promoted in Europe. In this paper, the Life Cycle Analysis (LCA) method is used to find out whether the high subsidy cost can be justified by the environmental benefits. Most existing LCAs of PV only use one-dimensional indicators and are only valid for regions with a high solar irradiation. This paper, however, presents a broad environmental evaluation of residential PV-systems for regions with a rather low solar irradiation of 900-1000 kWh/m{sup 2}/year, a value typical for Northern Europe and Canada. Based on the Ecoinvent LCA database, six Life Cycle Impact Assessment (LCIA) methods were considered for six different PV-technologies; the comprehensive Eco-Indicator 99 (EI 99) with its three perspectives (Hierarchist, Egalitarian and Individualistic) next to three one-dimensional indicators, namely Cumulative Energy Demand (CED), Global Warming Potential (GWP) and the Energy Payback Time (EPT). For regions with low solar irradiation, we found that the EPT is less than 5 years. The Global Warming Potential of PV-electricity is about 10 times lower than that of electricity from a coal fired plant, but 4 times higher when compared to a nuclear power plant or a wind farm. Surprisingly, our results from the more comprehensive EI 99 assessment method do not correlate at all with our findings based on EPT and GWP. The results from the Individualist perspective are strongly influenced by the weighting of the different environmental aspects, which can be misleading. Therefore, to obtain a well-balanced environmental assessment of energy technologies, we recommend a carefully evaluated combination of various impact assessment methods. (author)

  5. Factors controlling phosphorus export from agricultural/forest and residential systems to rivers in eastern China, 1980-2011

    Science.gov (United States)

    Chen, Dingjiang; Hu, Minpeng; Wang, Jiahui; Guo, Yi; Dahlgren, Randy A.

    2016-02-01

    This study quantified long-term response of riverine total phosphorus (TP) export to changes in land-use, climate, and net anthropogenic phosphorus inputs to agricultural/forest (NAPIAF) and residential (NAPIR) systems for the upper Jiaojiang watershed in eastern China. Annual NAPIAF rose by 73% in 1980-1999 followed by a 41% decline in 2000-2011, while NAPIR continuously increased by 122% over the 1980-2011 period. Land-use showed a 63% increase in developed land area (D%) and a 91% increase in use of efficient drainage systems on agricultural land area (AD%) over the study period. Although no significant trends were observed in annual river discharge or precipitation, the annual number of storm events rose by 90% along with a 34% increase in the coefficient of variation of daily rainfall. In response to changes of NAPIAF, NAPIR, land-use and precipitation patterns, riverine TP flux increased 16.0-fold over the 32-year record. Phosphorus export via erosion and leaching was the dominant pathway for P delivery to rivers. An empirical model incorporating annual NAPIAF, NAPIR, precipitation, D%, and AD% was developed (R2 = 0.96) for apportioning riverine TP sources and predicting annual riverine TP fluxes. The model estimated that NAPIAF, NAPIR and legacy P sources contributed 19-56%, 16-67% and 13-32% of annual riverine TP flux in 1980-2011, respectively. Compared to reduction of NAPIAF, reduction of NAPIR was predicted to have a greater immediate impact on decreasing riverine TP fluxes. Changes in anthropogenic P input sources (NAPIAF vs. NAPIR), land-use, and precipitation patterns as well as the legacy P source can amplify P export from landscapes to rivers and should be considered in developing P management strategies to reduce riverine P fluxes.

  6. Hybrid renewable energy system application for electricity and heat supply of a residential building

    Directory of Open Access Journals (Sweden)

    Nakomčić-Smaragdakis Branka B.

    2016-01-01

    Full Text Available Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES for electricity and heat supply of a typical household in Serbia, as well as the cost-effectiveness of the proposed system. The influence of feed-in tariff change on the value of the investment is analyzed. Small, grid-connected hybrid system (for energy supply of a standard household, consisting of geothermal heat pump for heating/cooling, solar photovoltaic panels and small wind turbine for power supply is analyzed as a case study. System analysis was conducted with the help of RETScreen software. Results of techno-economics analysis have shown that investing in geothermal heat pump and photovoltaic panels is cost-effective, while that is not the case with small wind turbine.

  7. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

    2011-04-19

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

  8. 小区内部管理系统的设计与实现%Design and Implementation of the Internal Management System of Residential Quarters

    Institute of Scientific and Technical Information of China (English)

    娄月新

    2014-01-01

    With the development of market economy and the improvement of people's living standard, residential quarters has become the mainstream of living,the internal management system of residential quarters is the require of the contemporary scoial market In order to improve the community service and management level and create a comfortable living environment,in this paper, after the description of functional requirements, functional structure, database design,introducing the design process and the functional of he internal management system of residential quarters detailedly, to achieve the internal information management of residential quarters.It has good practicability and scalability.%随着市场经济的发展和人们生活水平的提高,住宅小区成为居住的主流,小区内部管理正是针对当代社会这一市场需要应运而生的。为了提高小区内部的服务和管理水平,创造一个舒适的生活环境,本文在说明了功能需求、功能结构、数据库设计等部分之后,详细地介绍了小区内部管理系统的设计过程及功能实现,实现了对小区内部信息的管理,具有良好的实用性、扩展性。

  9. A New Cogeneration Residential System Based on Solid Oxide Fuel Cells for a Northern European Climate

    DEFF Research Database (Denmark)

    Vialetto, Giulio; Rokni, Masoud

    2015-01-01

    Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence and to increase the use of renewable energies. In the last several years, new technologies have been developed, and some of...... them received subsidies to increase installation and reduce cost. This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) system and heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...

  10. Residential Systems Based on Solid Oxide Fuel Cells for Scandinavian Climate

    DEFF Research Database (Denmark)

    Rokni, Masoud; Vialetto, Giulio

    2015-01-01

    Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence and to increase the use of renewable energies. In the last several years, new technologies have been developed, and some of...... them received subsidies to increase installation and reduce cost. This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) system and heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...

  11. Technoeconomic assessment of a building-integrated PV system for electrical energy saving in residential sector

    International Nuclear Information System (INIS)

    This paper describes the installation, technical characteristics, operation and economic evaluation of a grid-connected building-integrated photovoltaic system (BIPV) installed in Northern Greece, and in particular in the city of Kastoria. The technical and economical factors are examined using a computerized renewable energy technologies (RETs) assessment tool. A number of different economic and financial feasibility indices are calculated for different financing scenarios in order to assess the gross return of the investment. Useful conclusions were drawn regarding the feasibility of BIPV systems and their potential for increased energy market penetration. (Author)

  12. Exploring the market for third-party-owned residential photovoltaic systems: insights from lease and power-purchase agreement contract structures and costs in California

    Science.gov (United States)

    Davidson, Carolyn; Steinberg, Daniel; Margolis, Robert

    2015-02-01

    Over the past several years, third-party-ownership (TPO) structures for residential photovoltaic (PV) systems have become the predominant ownership model in the US residential market. Under a TPO contract, the PV system host typically makes payments to the third-party owner of the system. Anecdotal evidence suggests that the total TPO contract payments made by the customer can differ significantly from payments in which the system host directly purchases the system. Furthermore, payments can vary depending on TPO contract structure. To date, a paucity of data on TPO contracts has precluded studies evaluating trends in TPO contract cost. This study relies on a sample of 1113 contracts for residential PV systems installed in 2010-2012 under the California Solar Initiative to evaluate how the timing of payments under a TPO contract impacts the ultimate cost of the system to the customer. Furthermore, we evaluate how the total cost of TPO systems to customers has changed through time, and the degree to which contract costs have tracked trends in the installed costs of a PV system. We find that the structure of the contract and the timing of the payments have financial implications for the customer: (1) power-purchase contracts, on average, cost more than leases, (2) no-money-down contracts are more costly than prepaid contracts, assuming a customer’s discount rate is lower than 17% and (3) contracts that include escalator clauses cost more, for both power-purchase agreements and leases, at most plausible discount rates. In addition, all contract costs exhibit a wide range, and do not parallel trends in installed costs over time.

  13. Exploring the market for third-party-owned residential photovoltaic systems: insights from lease and power-purchase agreement contract structures and costs in California

    International Nuclear Information System (INIS)

    Over the past several years, third-party-ownership (TPO) structures for residential photovoltaic (PV) systems have become the predominant ownership model in the US residential market. Under a TPO contract, the PV system host typically makes payments to the third-party owner of the system. Anecdotal evidence suggests that the total TPO contract payments made by the customer can differ significantly from payments in which the system host directly purchases the system. Furthermore, payments can vary depending on TPO contract structure. To date, a paucity of data on TPO contracts has precluded studies evaluating trends in TPO contract cost. This study relies on a sample of 1113 contracts for residential PV systems installed in 2010–2012 under the California Solar Initiative to evaluate how the timing of payments under a TPO contract impacts the ultimate cost of the system to the customer. Furthermore, we evaluate how the total cost of TPO systems to customers has changed through time, and the degree to which contract costs have tracked trends in the installed costs of a PV system. We find that the structure of the contract and the timing of the payments have financial implications for the customer: (1) power-purchase contracts, on average, cost more than leases, (2) no-money-down contracts are more costly than prepaid contracts, assuming a customer’s discount rate is lower than 17% and (3) contracts that include escalator clauses cost more, for both power-purchase agreements and leases, at most plausible discount rates. In addition, all contract costs exhibit a wide range, and do not parallel trends in installed costs over time. (letter)

  14. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  15. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  16. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  17. Here Comes the Sun! Residential Solar Systems Add up to Savings

    Science.gov (United States)

    Roman, Harry T.

    2007-01-01

    Every day, the sun showers the planet with millions of times more energy that its people use. The only problem is that the energy is spread out over the entire earth's surface and thus must be harvested. Engineers are learning to capture and use some of this energy to make electricity for homes. A well-designed solar system can last for 20 years…

  18. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A. [ABT Systems, LLC, Annville, PA (United States); Prahl, D. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  19. A computer simulation appraisal of non-residential low energy cooling systems in California

    International Nuclear Information System (INIS)

    An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit

  20. Geomorphological impact on agroforestry systems in the interior highlands of Nicaragua, Central America

    Science.gov (United States)

    Mentler, Axel; Wriessnig, Karin; Ottner, Franz; Schomakers, Jasmin; Benavides González, Álvaro; Cisne Contreras, José Dolores; Querol Lipcovich, Daniel

    2013-04-01

    Cerro el Castillo is located in the NW of Nicaragua, Central America, close to the border of Honduras (Provincia Central de las Cordilleras) at 1000-1200m above sea level. In this region, small and medium-sized farms are agroforestry systems with mangos, avocados, coffee, papayas, bananas, strawberries, maize, pumpkins, beans and other vegetables. The production systems are strongly linked to facilities for raising small domestic animals and cows. Main regional agricultural production problems are steep slopes, soil erosion, varying precipitation and distribution, water management and the unstable family income. An investigation of topsoil properties with comparable management systems showed on small scales significant differences in key values of soil chemistry and mineralogy. The outline of the analytical parameters included determination of pH, electrical conductivity (EC), cation exchange capacity (CEC), organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN) and dissolved nitrogen (DN) in soil solution, and plant available nutrients (P and K). The soil's mineralogical composition was determined by X-ray diffraction analysis. The area is a highly weathered karst landscape within a tropical limestone region displaying different amounts of volcanic pyroclastic parent material. The dominant Nitisoils and Andosols show degraded argic and andic horizons along the upper half of the mountainside. The pH values in the topsoil are moderate from pH 5.0 to 5.6. The upland topsoil is decalcified and the amount of plant available phosphorous is very low with significant low Ca concentration at the sorption complex. The mineralogical composition points to the high weathering intensity of this area (high content of kaolinite and a lower concentration of potassium and plagioclase feldspars and andesite). Along the upper half of the mountain, the soil profiles show wider C:N ratios and lower amounts of organic matter. Topsoil at lower altitude and with a lower

  1. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  2. Performance of evacuated tubular solar collectors in a residential heating and cooling system

    Science.gov (United States)

    Duff, W. S.; Loef, G. O. G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season is discussed. The systems comprised an experimental evacuated tubular solar collector, a nonfreezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. The system is compared with CSU Solar Houses I, II and III. The experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well insulated heat storage tank. Day time electric auxiliary heating is avoided by use of off peak electric heat storage.

  3. Ultrafine Particles in Residential Indoors and Doses Deposited in the Human Respiratory System

    Directory of Open Access Journals (Sweden)

    Maurizio Manigrasso

    2015-09-01

    Full Text Available Indoor aerosol sources may significantly contribute to the daily dose of particles deposited into the human respiratory system. Therefore, it is important to characterize the aerosols deriving from the operations currently performed in an indoor environment and also to estimate the relevant particle respiratory doses. For this aim, aerosols from indoor combustive and non-combustive sources were characterized in terms of aerosol size distributions, and the relevant deposition doses were estimated as a function of time, particle diameter and deposition site in the respiratory system. Ultrafine particles almost entirely made up the doses estimated. The maximum contribution was due to particles deposited in the alveolar region between the 18th and the 21st airway generation. When cooking operations were performed, respiratory doses per unit time were about ten-fold higher than the relevant indoor background dose. Such doses were even higher than those associated with outdoor traffic aerosol.

  4. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    OpenAIRE

    Silvia Cocchi; Sonia Castellucci; Andrea Tucci

    2013-01-01

    The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling), through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP) uses the shallow ground a...

  5. Optimising Residential Water Heating System Performance to Minimise Water-energy Penalties

    OpenAIRE

    Vieira, Abel Silva; Humphrys, Sarah; Beal, Cara D.; Stewart, Rodney A.

    2016-01-01

    The energy consumption associated with domestic hot water supply services correspond to a significant portion of the total energy consumption of the urban water cycle. The objective of this study is to analyse the performance of domestic water heaters in the three largest cities of Australia (i.e. Sydney, Melbourne and Brisbane). The performance of systems was investigated undertaking a multi-parametric analysis, in which energy efficiency indicators (i.e. energy intensity and power peaks) we...

  6. Optimising Residential Water Heating System Performance to Minimise Water-Energy Penalties

    OpenAIRE

    Abel Silva Vieira; Sarah Humphrys; Rodney Stewart; Cara Beal

    2016-01-01

    The energy consumption associated with domestic hot water supply services correspond to a significant portion of the total energy consumption of the urban water cycle. The objective of this study is to analyse the performance of domestic water heaters in the three largest cities of Australia (i.e. Sydney, Melbourne and Brisbane). The performance of systems was investigated undertaking a multi-parametric analysis, in which energy efficiency indicators (i.e. energy intensity and power peaks) we...

  7. Ultrafine Particles in Residential Indoors and Doses Deposited in the Human Respiratory System

    OpenAIRE

    Maurizio Manigrasso; Ettore Guerriero; Pasquale Avino

    2015-01-01

    Indoor aerosol sources may significantly contribute to the daily dose of particles deposited into the human respiratory system. Therefore, it is important to characterize the aerosols deriving from the operations currently performed in an indoor environment and also to estimate the relevant particle respiratory doses. For this aim, aerosols from indoor combustive and non-combustive sources were characterized in terms of aerosol size distributions, and the relevant deposition doses were estima...

  8. Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barley, C. D.; Anderson, R.; Hendron, B.; Hancock, E.

    2007-12-01

    This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.

  9. Refrigerant Control Strategies for Residential Air-Conditioning and Heat-Pump System

    Institute of Scientific and Technical Information of China (English)

    SU Shun-yu; ZHANG Chun-zhi; CHEN Jian

    2009-01-01

    This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-con-ditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of dif-ferent refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-eonditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump-The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.

  10. America's Next Great Ship: Space Launch System Core Stage Transitioning from Design to Manufacturing

    Science.gov (United States)

    Birkenstock, Benjamin; Kauer, Roy

    2014-01-01

    The Space Launch System (SLS) Program is essential to achieving the Nation's and NASA's goal of human exploration and scientific investigation of the solar system. As a multi-element program with emphasis on safety, affordability, and sustainability, SLS is becoming America's next great ship of exploration. The SLS Core Stage includes avionics, main propulsion system, pressure vessels, thrust vector control, and structures. Boeing manufactures and assembles the SLS core stage at the Michoud Assembly Facility (MAF) in New Orleans, LA, a historical production center for Saturn V and Space Shuttle programs. As the transition from design to manufacturing progresses, the importance of a well-executed manufacturing, assembly, and operation (MA&O) plan is crucial to meeting performance objectives. Boeing employs classic techniques such as critical path analysis and facility requirements definition as well as innovative approaches such as Constraint Based Scheduling (CBS) and Cirtical Chain Project Management (CCPM) theory to provide a comprehensive suite of project management tools to manage the health of the baseline plan on both a macro (overall project) and micro level (factory areas). These tools coordinate data from multiple business systems and provide a robust network to support Material & Capacity Requirements Planning (MRP/CRP) and priorities. Coupled with these tools and a highly skilled workforce, Boeing is orchestrating the parallel buildup of five major sub assemblies throughout the factory. Boeing and NASA are transforming MAF to host state of the art processes, equipment and tooling, the most prominent of which is the Vertical Assembly Center (VAC), the largest weld tool in the world. In concert, a global supply chain is delivering a range of structural elements and component parts necessary to enable an on-time delivery of the integrated Core Stage. SLS is on plan to launch humanity into the next phase of space exploration.

  11. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-06-01

    The sixth volume of the Building America Best Practices Series presents information that is useful throughout the U.S. for enhancing the energy efficiency practices in the specific climate zones that are presented in each of the volumes.

  12. Proper use of sludge-control additives in residential heating oil systems

    Energy Technology Data Exchange (ETDEWEB)

    Tatnall, R.E. [MIC Associates, Inc., Chadds Ford, PA (United States)

    1995-04-01

    Discussed are various aspects of heating oil `sludge`: How it forms, typical problems it causes, how sludge-control additives work, what should be expected of them, and what happens in a contaminated system when such additives are used. Test results from laboratory and field experiments demonstrate that performance of commercially available additives varies greatly. The concept of `end-of-the-line` treatment is described and compared with bulk fuel treatment. A procedure is described whereby a retailer can test additives himself, and thus determine just what those additives will or will not do for his business. Finally, the economics of an effective treatment program are outlined.

  13. Layer-component-based communication stack framework for wireless residential control systems

    DEFF Research Database (Denmark)

    Torbensen, Rune Sonnich; Hjorth, Theis

    2010-01-01

    nodes such as bridges, controllers, sensor/actuators - as well as secure communication between them. A special messaging system facilitates inter-component communication, and a Virtual Port Service protocol enables resource addressing. The end-devices in the heterogeneous network are made accessible on...... a common IP infrastructure, regardless of individual wireless technology. Legacy home automation devices are also supported. A prototype has been implemented on multiple resource-constrained hardware platforms, to demonstrate that the solution is both feasible for low-cost devices and portable. It...

  14. Layer-component-based communication stack framework for wireless residential control systems

    DEFF Research Database (Denmark)

    Torbensen, R.; Hjorth, Theis S.

    2011-01-01

    nodes such as bridges, controllers, sensor/actuators – as well as secure communication between them. A special messaging system facilitates inter-component communication, and a Virtual Port Service protocol enables resource addressing. The end-devices in the heterogeneous network are made accessible on...... a common IP infrastructure, regardless of individual wireless technology. Legacy home automation devices are also supported. A prototype has been implemented on multiple resource-constrained hardware platforms, to demonstrate that the solution is both feasible for low-cost devices and portable. It...

  15. Efficiency Analyses of a DC Residential Power Distribution System for the Modern Home

    OpenAIRE

    GELANI, H. E.; DASTGEER, F.

    2015-01-01

    The electric power system started as DC back in the nineteenth century. However, the DC paradigm was soon ousted by AC due to inability of DC to change its voltage level. Now, after many years, with the development of power electronic converters capable of stepping-up and down DC voltage and converting it to-and-from AC, DC appears to be challenging AC and attempting a comeback. We now have DC power generation by solar cells, fuel cells and wind farms, DC power transmission in the...

  16. System Design of Internet-of-Things for Residential Smart Grid

    OpenAIRE

    Viswanath, Sanjana Kadaba; Yuen, Chau; Tushar, Wayes; Li, Wen-Tai; Wen, Chao-Kai; Hu, Kun; Chen, Cheng; Liu, Xiang

    2016-01-01

    Internet-of-Things (IoTs) envisions to integrate, coordinate, communicate, and collaborate real-world objects in order to perform daily tasks in a more intelligent and efficient manner. To comprehend this vision, this paper studies the design of a large scale IoT system for smart grid application, which constitutes a large number of home users and has the requirement of fast response time. In particular, we focus on the messaging protocol of a universal IoT home gateway, where our cloud enabl...

  17. [The pharmaceutical industry and the sustainability of healthcare systems in developed countries and in Latin America].

    Science.gov (United States)

    Iñesta, Antonio; Oteo, Luis Angel

    2011-06-01

    The global economic crisis and its impact on public finances in most developed countries are giving rise to cost-containment policies in healthcare systems. Prevailing legislation on medication requires the safety, quality, and efficacy of these products. A few countries include efficiency criteria, primarily for new medication that they wish to include in public financing. The appropriate use of generic and "biosimilar medication" is very important for maintaining the financial equilibrium of the Health Services. The problem in Latin America is that not all multisource products are bioequivalent and not all countries have the resources to conduct bioequivalence studies in vivo. The European Medicines Agency in 2005 adopted guidelines on "biosimilar medicines" and thirteen of them were subsequently approved for general release. Benchmarking of this model by other countries would be important. The influence of the pharmaceutical industry on political and administrative areas is enormous and control is necessary. The pharmaceutical companies claim that they act with corporate social responsibility, therefore, they must ensure this responsibility toward society. PMID:21709969

  18. Nutrition and the commoditization of food systems in Latin America and the Caribbean.

    Science.gov (United States)

    Dewey, K G

    1989-01-01

    Commoditization of food systems, defined as the use of agricultural goods for sale rather than for home consumption, affects nutrition of rural families via economic, social and ecological mechanisms in addition to direct dietary effects. Broad-scale mechanisms include alterations in land tenure, increased stratification of wealth, widespread labor migration, urban bias, food price changes, disruption of traditional reciprocal social relations, and ecological changes accompanying commercial agriculture that may limit long-term food production. At the family level, the replacement of food with cash is often problematic as regards nutrition, due to low prices to producers, increased cash needs, the 'lumpiness' of earnings during the year, reduced decision-making power of women, and often decreased dietary diversity. Three case studies in Latin America and the Caribbean, from Peru, Jamaica, and Mexico, illustrate that commoditization tends to have a negative impact on nutrition in poor rural households. Although commoditization is theoretically advantageous on a national level by allowing the use of 'comparative advantage', in actuality its potential benefits are eroded by inequitable uses of foreign exchange. Commoditization is in essence a more efficient means by which to extract surplus value from small agricultural producers. While commoditization is a necessary component of economic growth, policies to safeguard health and nutrition and improve the status of women in development programs must be implemented within an overall strategy to meet basic needs of the population. PMID:2648596

  19. Environmental and Economic Impacts of Integrating Photovoltaic and Wind-Turbine Energy Systems in the Canadian Residential Sector

    Science.gov (United States)

    Syed, Ali M.; Fung, Alan S.; Ugursal, V. Ismet

    2008-01-01

    The Canadian residential sector contributes approximately 80 megatons of GHGs to the environment yearly. With the ratification of Kyoto Protocol, Canada has committed to reduce its 1990 GHG emission levels by at least 5% between 2008 and 2012. To meet this target, Canada must evaluate and exploit all feasible means to reduce fossil fuel energy…

  20. Policy schemes, operational strategies and system integration of residential co-generation fuel cells

    DEFF Research Database (Denmark)

    Hansen, Lise-Lotte Pade; Schröder, Sascha Thorsten; Münster, Marie;

    2013-01-01

    This study presents a holistic approach for the commercialisation of fuel cells for stationary applications. We focus our analyses on microCHP based on SOFC units fired with natural gas. We analyse the interaction of operational strategies under different ownership arrangements, required support...... levels and system integration aspects. The operational strategies, support mechanisms and ownership arrangements have been identified through actor analysis involving experts from Denmark, France and Portugal. With regard to operational strategies, the actor analyses led us to distinguishing between a...... heat-driven strategy, with and without time-differentiated tariffs, and an electricity price driven strategy for the operation as a virtual power plant. The corresponding support schemes identified cover feed-in tariffs, net metering and feed-in premiums. Additionally, the interplay of the micro...

  1. Strategic Energy Planning of Residential Buildings in a Smart City: A System Dynamics Approach

    Directory of Open Access Journals (Sweden)

    Giancarlo Caponio

    2015-12-01

    Full Text Available Buildings are the largest urban energy consumers, but their impact can be largely cut back by improving efficiency. Policy-making plays a crucial role in harmonizing national and local incentive schemes. The authors analyse variables related to energy consumption, then propose a simulation model based on System Dynamics applied to a medium-sized Italian city. The model allows the testing of “what-if” scenarios and analysis of the results of implementing energy efficiency policies. Results stress the importance of a holistic view of urban energy processes. Simulation trends provide essential information for the city’s future energy and carbon emission profiles, helping policy-makers to achieve their goal.

  2. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  3. Impact analysis of residential photovoltaic system using hourly greenhouse gas emission data from electricity generation

    International Nuclear Information System (INIS)

    Seasonal greenhouse gas (GHG) emission factors were evaluated in order to determine the actual carbon dioxide (CO2) reduction potential of a small-scale renewable energy technology. The GHG emission factors were based on the hour-by-hour demand of electricity in Ontario as well as the GHG intensity factor from Ontario Power Generation (OPG) and data from a 5 kW photovoltaic (PV) system. Results from the analysis were used to determine summer and winter GHG intensity factors as well as to determine the CO2 reduction potential of the PV system within Ontario's energy mix. A secondary analysis was used to determine hourly CO2 reductions made possible through direct fossil fuel to PV substitution. Regionally specific climate-modelled factors were used to represent the benefits associated with GHG-reducing technologies. A neural network (NN) model was also developed to predict the hour-by-hour electricity demand for Ontario as well as to calculate future GHG emissions. The model was developed using learning algorithms and activation functions in order to increased the prediction performance of the model. Prediction performance of the NN model was then evaluated by comparing its predictions with actual data from the IESO database. The effects of wind speed, temperature, visibility, humidity, and dew point temperature were also considered. Results of the study showed that the NN model accurately predicted hour-by-hour electricity demand for the province of Ontario. It was concluded that the method provided a more accurate representation of the potential reduction of GHGs through the use of renewable technologies. 11 refs., 2 tabs., 7 figs

  4. Residential Energy Performance Metrics

    Directory of Open Access Journals (Sweden)

    Christopher Wright

    2010-06-01

    Full Text Available Techniques for residential energy monitoring are an emerging field that is currently drawing significant attention. This paper is a description of the current efforts to monitor and compare the performance of three solar powered homes built at Missouri University of Science and Technology. The homes are outfitted with an array of sensors and a data logger system to measure and record electricity production, system energy use, internal home temperature and humidity, hot water production, and exterior ambient conditions the houses are experiencing. Data is being collected to measure the performance of the houses, compare to energy modeling programs, design and develop cost effective sensor systems for energy monitoring, and produce a cost effective home control system.

  5. A passive cooling system of residential and commercial buildings in summer or hot season

    Science.gov (United States)

    Rahman, M. M.; Mashud, M.; Chu, C. M.; Misaran, M. S. bin; Sarker, M.; Kumaresen, S.

    2015-12-01

    The increasing number of high rise buildings may contribute to lack of natural ventilation in modern buildings. Generally, fans and air conditioning are used in the modern building for cooling and air ventilation. Most of the energy in tropical regions are consumed by heating, cooling and ventilation appliances. Therefore, solar power appliances for cooling, heating and ventilation will be a suitable option for saving energy from the household sector. A modified-structure building is designed and constructed with solar chimney to enhance ventilation rate that increases cooling performance and ensure thermal comfort. An evaporative cooler is introduced with a newly designed room to enhance the temperature reduction capacity. The room temperature is compared with a non-modified room as well as with ambient temperature. The results show that passive cooling system with evaporative cooler was able to reduce temperature by 5°C compared to the ambient temperature and about 2°C to 3°C below the reference room temperature.

  6. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  7. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    OpenAIRE

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo; BRANDON, Nigel

    2014-01-01

    Fuel cell based micro-CHP systems are expected to be one of the most promising technologies for implementation in the residential sector. Since the design and operation of such CHP systems are greatly dependent upon the seasonal atmospheric conditions, it is important to evaluate their performance under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled...

  8. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    Science.gov (United States)

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  9. Residential fuel quality

    Energy Technology Data Exchange (ETDEWEB)

    Santa, T. [Santa Fuel, Inc., Bridgeport, CT (United States)

    1997-09-01

    This report details progress made in improving the performance of No. 2 heating oil in residential applications. Previous research in this area is documented in papers published in the Brookhaven Oil Heat Technology Conference Proceedings in 1993, 1994 and 1996. By way of review we have investigated a number of variables in the search for improved fuel system performance. These include the effect of various additives designed to address stability, dispersion, biotics, corrosion and reaction with metals. We have also investigated delivery methods, filtration, piping arrangements and the influence of storage tank size and location. As a result of this work Santa Fuel Inc. in conjunction with Mobile Oil Corporation have identified an additive package which shows strong evidence of dramatically reducing the occurrence of fuel system failures in residential oil burners. In a broad market roll-out of the additized product we have experienced a 29% reduction in fuel related service calls when comparing the 5 months ending January 1997 to the same period ending January 1996.

  10. Development and Demonstration of a Performance Test Protocol For Radiant Floor Heating Systems.

    OpenAIRE

    Khanna, Amit

    2006-01-01

    The Radiant Heating markets - especially, the hydronic segment - are growing rapidly in North America due to homeownersâ increasing demand for comfort and the steady rise in residential construction. Radiant systems are promising technologies for energy saving in commercial and residential building sectors together with improving occupant thermal comfort. Such a technology is different from the more standard all-air systems and thus can be termed Space Conditioning. However, the thermal per...

  11. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice

    OpenAIRE

    Wüthrich, Marcel; Gern, Benjamin; Hung, Chiung Yu; Ersland, Karen; Rocco, Nicole; Pick-Jacobs, John; Galles, Kevin; Filutowicz, Hanna; Warner, Thomas; Evans, Michael; Cole, Garry; Klein, Bruce

    2016-01-01

    Worldwide rates of systemic fungal infections, including three of the major pathogens responsible for such infections in North America (Coccidioides posadasii, Histoplasma capsulatum, and Blastomyces dermatitidis), have soared recently, spurring interest in developing vaccines. The development of Th1 cells is believed to be crucial for protective immunity against pathogenic fungi, whereas the role of Th17 cells is vigorously debated. In models of primary fungal infection, some studies have sh...

  12. Simplified Floor-Area-Based Energy-Moisture-Economic Model for Residential Buildings

    Science.gov (United States)

    Martinez, Luis A.

    2009-01-01

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building…

  13. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  14. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  15. Building America Research Benchmark Definition, Updated December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht, Cheryn [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-01-01

    To track progress toward aggressive multi-year, whole-house energy savings goals of 40%–70% and on-site power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America (BA) Research Benchmark in consultation with the Building America industry teams.

  16. Building America Research Benchmark Definition: Updated December 19, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2008-12-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams.

  17. Arctic and boreal ecosystems of western North America as components of the climate system

    Science.gov (United States)

    Chapin, F. S., III; McGuire, A.D.; Randerson, J.; Pielke, R., Sr.; Baldocchi, D.; Hobbie, S.E.; Roulet, Nigel; Eugster, W.; Kasischke, E.; Rastetter, E.B.; Zimov, S.A.; Running, S.W.

    2000-01-01

    Synthesis of results from several Arctic and boreal research programmes provides evidence for the strong role of high-latitude ecosystems in the climate system. Average surface air temperature has increased 0.3??C per decade during the twentieth century in the western North American Arctic and boreal forest zones. Precipitation has also increased, but changes in soil moisture are uncertain. Disturbance rates have increased in the boreal forest; for example, there has been a doubling of the area burned in North America in the past 20 years. The disturbance regime in tundra may not have changed. Tundra has a 3-6-fold higher winter albedo than boreal forest, but summer albedo and energy partitioning differ more strongly among ecosystems within either tundra or boreal forest than between these two biomes. This indicates a need to improve our understanding of vegetation dynamics within, as well as between, biomes. If regional surface warming were to continue, changes in albedo and energy absorption would likely act as a positive feedback to regional warming due to earlier melting of snow and, over the long term, the northward movement of treeline. Surface drying and a change in dominance from mosses to vascular plants would also enhance sensible heat flux and regional warming in tundra. In the boreal forest of western North America, deciduous forests have twice the albedo of conifer forests in both winter and summer, 50-80% higher evapotranspiration, and therefore only 30-50% of the sensible heat flux of conifers in summer. Therefore, a warming-induced increase in fire frequency that increased the proportion of deciduous forests in the landscape, would act as a negative feedback to regional warming. Changes in thermokarst and the aerial extent of wetlands, lakes, and ponds would alter high-latitude methane flux. There is currently a wide discrepancy among estimates of the size and direction of CO2 flux between high-latitude ecosystems and the atmosphere. These

  18. Impact of the Desert dust on the summer monsoon system over Southwestern North America

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2012-04-01

    Full Text Available The radiative forcing of dust emitted from the Southwest United States (US deserts and its impact on monsoon circulation and precipitation over the North America monsoon (NAM region are simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem for 15 years (1995–2009. During the monsoon season, dust has a cooling effect (−0.90 W m−2 at the surface, a warming effect (0.40 W m−2 in the atmosphere, and a negative top-of-the-atmosphere (TOA forcing (−0.50 W m−2 over the deserts on 24-h average. Most of the dust emitted from the deserts concentrates below 800 hPa and accumulates over the western slope of the Rocky Mountains and Mexican Plateau. The absorption of shortwave radiation by dust heats the lower atmosphere by up to 0.5 K day−1 over the western slope of the Mountains. Model sensitivity simulations with and without dust for 15 summers (June-July-August show that dust heating of the lower atmosphere over the deserts strengthens the low-level southerly moisture fluxes on both sides of the Sierra Madre Occidental. It also results in an eastward migration of NAM-driven moisture convergence over the western slope of the Mountains. These monsoonal circulation changes lead to a statistically significant increase of precipitation by up to ~40 % over the eastern slope of the Mountains (Arizona-New~Mexico-Texas regions. This study highlights the interaction between dust and the NAM system and motivates further investigation of possible dust feedback on monsoon precipitation under climate change and the mega-drought conditions projected for the future.

  19. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2015-01-01

    In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive....... The micro-CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of...... the system. The variational loads are considered from full to quarter load, and the micro-CHP system is optimized in terms of operating thermophysical parameters for every different load. The results clearly indicate the capability of the proposed system to perform efficiently throughout all necessary...

  20. Theoretical Analysis on the Economic Performance of Micro Gas Turbine-Trigeneration System with Different Operation Strategies for Residential Building in a Tropical Region

    OpenAIRE

    Basrawi Firdaus; Chand MRR; Koo KH; Ibrahim Thamir K

    2016-01-01

    This study investigates how operation strategies of micro gas turbine trigeneration system (MGTTGS) affect its economic performance. MGT-TGS was required to sustain power, heating and cooling load of 148 residential terrace houses located in Kuala Lumpur. Based on the load requirement, there were two sizes of MGTs adopted in the research scope, a 30kW and 60kW respectively. Four typical operation strategies; powermatch, heat-match, mix-match, and base-load were investigated. Life cycle cost a...

  1. Toward an integrated quasi-operational air quality analysis and prediction system for South America

    Science.gov (United States)

    Hoshyaripour, Gholam Ali; Brasseur, Guy; Petersen, Katinka; Bouarar, Idiir; Andrade, Maria de Fatima

    2015-04-01

    Recent industrialization and urbanization in South America (SA) have notably exacerbated the air pollution with adverse impacts on human health and socio-economic systems. Consequently, there is a strong demand for developing ever-better assessment mechanisms to monitor the air quality at different temporal and spatial scales and minimize its damages. Based on previous achievements (e.g., MACC project in Europe and PANDA project in East Asia) we aim to design and implement an integrated system to monitor, analyze and forecast the air quality in SA along with its impacts upon public health and agriculture. An initiative will be established to combine observations (both satellite and in-situ) with advanced numerical models in order to provide a robust scientific basis for short- and long-term decision-making concerning air quality issues in SA countries. The main objectives of the project are defined as 3E: Enhancement of the air quality monitoring system through coupling models and observations, Elaboration of comprehensive indicators and assessment tools to support policy-making, Establishment of efficient information-exchange platforms to facilitate communication among scientists, authorities, stockholders and the public. Here we present the results of the initial stage, where a coarse resolution (50×50 km) set up of Weather Research and Forecast model with Chemistry (WRF-Chem) is used to simulate the air quality in SA considering anthropogenic, biomass-burning (based on MACCity, FINN inventories, respectively) and biogenic emissions (using MEGAN model). According to the availability of the observation data for Metropolitan Area of São Paulo, August 2012 is selected as the simulation period. Nested domains with higher resolution (15×15 km) are also embedded within the parent domain over the megacities (Sao Paolo and Rio de Janeiro in Brazil and Buenos Aires in Argentina), which account for the major anthropogenic emission sources located along coastal regions

  2. The Ecological Impacts of Large-Scale Agrofuel Monoculture Production Systems in the Americas

    Science.gov (United States)

    Altieri, Miguel A.

    2009-01-01

    This article examines the expansion of agrofuels in the Americas and the ecological impacts associated with the technologies used in the production of large-scale monocultures of corn and soybeans. In addition to deforestation and displacement of lands devoted to food crops due to expansion of agrofuels, the massive use of transgenic crops and…

  3. GEOLOGICAL SOCIETY OF AMERICA MEETING: Geologists Pursue Solar System's Oldest Relics.

    Science.gov (United States)

    Kerr, R A

    2000-12-22

    Last month, the Geological Society of America held their annual meeting here. Offerings included claims for the oldest known examples in a class: the oldest scrap of ocean crust, the oldest sample of Earth, and the oldest trace of life--which happens to come from Mars. PMID:17774593

  4. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  5. Improving Governance and Management of Health Systems : Partnerships and Observatories in Latin America and the Caribbean

    OpenAIRE

    Cortez, Rafael; Ferl, Katharina

    2012-01-01

    Public health observatories proactively investigate health issues to provide robust analytical evidence to policy makers. This type of organization has different characteristics from other public health institutions, such as information-gathering bodies, academic public health departments, or state employed public health practitioners. Governments in Latin America have also begun establish...

  6. Evolution of Chinese Urban Residential District under the Changing Housing System%住房制度变迁驱动下的中国城市住区空间演化

    Institute of Scientific and Technical Information of China (English)

    张京祥; 胡毅; 赵晨

    2013-01-01

    Since the reform and opening up, urban residential district has been incorporated into the reform environment in China. Each housing policy has undergone significant restructuring and change. Influenced by the social system background and housing policies, the space development of residential district has experienced different stages, from the ‘work units’ homogeneous welfare-type space, to the market-oriented residential segregation, then to the residential space under affordable housing system. While effected by affordable housing system, the current residential development is facing new problems and contradictions. By reviewing the residential space at al periods of social background and policy system, analyzing of the current problems, the paper aims to discuss the solution to present Chinese residential district development.%自改革开放以来,中国的城市住区建设被纳入到改革发展的宏观制度环境当中,住房政策经历了一系列重要的调整和变革。受社会制度背景和住房政策影响,中国的住区空间发展也经历了福利制均质单位空间、市场化住区分异和保障制度影响下住区空间等不同阶段。而当前住房保障制度影响下的住区空间发展也面临着新的问题和矛盾。旨在通过对各个时期社会背景和政策制度作用下的城市住区空间回顾及对当前住区问题分析,探讨现阶段中国住区空间发展问题的解决思路。

  7. Look-Ahead Energy Management of a Grid-Connected Residential PV System with Energy Storage under Time-Based Rate Programs

    Directory of Open Access Journals (Sweden)

    Kyeon Hur

    2012-04-01

    Full Text Available This paper presents look-ahead energy management system for a grid-connected residential photovoltaic (PV system with battery under critical peak pricing for electricity, enabling effective and proactive participation of consumers in the Smart Grid’s demand response. In the proposed system, the PV is the primary energy source with the battery for storing (or retrieving excessive (or stored energy to pursue the lowest possible electricity bill but it is grid-tied to secure electric power delivery. Premise energy management scheme with an accurate yet practical load forecasting capability based on a Kalman filter is designed to increase the predictability in controlling the power flows among these power system components and the controllable electric appliances in the premise. The case studies with various operating scenarios demonstrate the validity of the proposed system and significant cost savings through operating the energy management scheme.

  8. Energy-saving effect of a residential polymer electrolyte fuel cell cogeneration system combined with a plug-in hybrid electric vehicle

    International Nuclear Information System (INIS)

    Highlights: • Combined use of PEFC-CGS and PHEV is focused on for energy savings. • Optimal operational planning considering daily start–stop operation is modeled. • Charging PHEV with PEFC-CGS increases electric capacity factor of PEFC-CGS. • Combined use has higher energy-saving effect than their separate use. • Combined use synergistically saves energies in residential and transport sectors. - Abstract: The energy-saving effect of a residential polymer electrolyte fuel cell cogeneration system (PEFC-CGS) that adopts a daily start–stop operation with no reverse power flow, combined with a plug-in hybrid electric vehicle (PHEV) is analyzed by optimal operational planning model based on mixed-integer linear programming. This combined use aims to increase the electric capacity factor of the PEFC-CGS by charging the PHEV using the PEFC-CGS output late at night, and targets the application in regions where the reverse power flow from residential cogeneration systems to commercial electric power systems is not permitted, like in Japan. First, the optimal operational planning model that incorporates the daily start–stop operation of the PEFC-CGS is developed. The energy-saving effect of the combined use of the PEFC-CGS and PHEV is then analyzed on the basis of observations of the optimal operation patterns for a 0.75-kWe PEFC-CGS, a simulated energy demand with a sampling time of 5 min, and various daily running distances of the PHEV. The results show that the combined use of the PEFC-CGS and PHEV increases the electric capacity factor and hot water supply rate of the PEFC-CGS and saves more energy in comparison with their separate use in which the PEFC-CGS is used but the PHEV is charged only using purchased electric power. Consequently, this feasibility study reveals that the combined use of the PEFC-CGS and PHEV provides the synergistic effect on energy savings in the residential and transport sectors

  9. Feasibility study on combined use of residential SOFC cogeneration system and plug-in hybrid electric vehicle from energy-saving viewpoint

    International Nuclear Information System (INIS)

    Highlights: ► Optimal operational planning for combined use of SOFC-CGS and PHEV is conducted. ► Charging PHEV with SOFC-CGS increases electric capacity factor of SOFC-CGS. ► Energy-saving effect of combined use is higher than that of their separate use. ► Combined use provides energy savings in both residential and transport sectors. - Abstract: The energy-saving effect of a combined use of a residential solid oxide fuel cell cogeneration system (SOFC-CGS) that adopts a continuous operation, and a plug-in hybrid electric vehicle (PHEV) is discussed by optimal operational planning based on mixed-integer linear programming. This combined use aims to increase the electric capacity factor of the SOFC-CGS by charging the PHEV using the SOFC-CGS electric power output late at night, and targets the application in regions where the reverse power flow from residential cogeneration systems to commercial electric power systems is not permitted, like in Japan. The optimal operation patterns of the combined use of 0.7-kWe SOFC-CGS and PHEV for a simulated energy demand with a sampling time of 1 h and various daily running distances of the PHEV show that this combined use increases the electric capacity factor of the SOFC-CGS and saves more energy in comparison with their separate use in which the SOFC-CGS is used but the PHEV is charged only with purchased electric power. Furthermore, it is found that at the PHEV daily running distance of 12 km/d, the reduction rate of the annual primary energy consumption for this combined use increases by up to 3.7 percentage points relative to their separate use. Consequently, this feasibility study reveals that the combined use of the SOFC-CGS and PHEV provides the synergistic effect on energy savings in the residential and transport sectors. For the practical use, simulation scenarios considering the energy demand fluctuations with short periods and real-time pricing of the purchased electric power must be considered as future

  10. Research on the evaluation system for heat metering and existing residential building retrofits in northern regions of China for the 12th five-year period

    International Nuclear Information System (INIS)

    On the basis of ERBR (existing residential building retrofit) work in the 11th five-year period, energy efficiency retrofits for old residential buildings have been further promoted in northern regions of China during the 12th five-year period. ERBR projects are capable of not only achieving energy conservation and emissions reductions but also providing warmer rooms for residents during cold winters. Therefore, this project should be continued in northern regions of China following a long-term management mode. With the aim of exploring methods and mechanisms for the evaluation of the retrofit effect, an evaluation method was established with the application of the multi-level expert evaluation method. The evaluation indexes cover the aspects of policy mechanisms, financing modes and technical measures. A rewards and punishment mechanism according to the evaluation system was also suggested. Such an evaluation system can be used as a valuable reference for future implementation of energy efficiency retrofit work. - Highlights: • With the AHPD method, the evaluation system of the ERBR was set up to complete. • There are 29 indicators, including policies, financings and technologies. • Rewards and punishment mechanisms are offered to the ERBR. • For weight value more than 0.06, long-term practice and accumulation are needed

  11. Combined heat and power generation with fuel cells in residential buildings in the future energy system; Kraft-Waerme-Kopplung mit Brennstoffzellen in Wohngebaeuden im zukuenftigen Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, C.H.

    2007-04-27

    Combined heat and power generation (CHP) is regarded as one of the cornerstones of a future sustainable energy system. The application of this approach can be substantially extended by employing fuel cell technologies in small units for supplying heat to residential buildings. This could create an additional market for combined heat and power generation corresponding to approx. 25% of the final energy demand in Germany today. In parallel, the extensive application of distributed fuel cell systems in residential buildings would have substantial effects on energy infrastructures, primary energy demand, the energy mix and greenhouse gas emissions. It is the aim of the present study to quantify these effects via scenario modelling of energy demand and supply for Germany up to the year 2050. Two scenarios, reference and ecological commitment, are set up, and the application and operation of fuel cell plants in the future stock of residential buildings is simulated by a bottom-up approach. A model of the building stock was developed for this purpose, consisting of 213 types of reference buildings, as well as detailed simulation models of the plant operation modes. The aim was, furthermore, to identify economically and ecologically optimised plant designs and operation modes for fuel cells in residential buildings. Under the assumed conditions of the energy economy, economically optimised plant sizes for typical one- or two-family homes are in the range of a generating capacity of a few hundred watts of electrical power. Plant sizes of 2 to 4.7 kW{sub el} as discussed today are only economically feasible in multifamily dwellings. The abolition of the CHP bonus reduces profitability, especially for larger plants operated by contractors. In future, special strategies for power generation and supply can be an economically useful addition for the heat-oriented operation mode of fuel cells. On the basis of the assumed conditions of the energy economy, a technical potential for

  12. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  13. A Market Analysis for PVD Coating System of Aurora North America

    OpenAIRE

    Chen, Wen-Hao Arthur

    2012-01-01

    Aurora North America, a venture founded by Dr. Da-Yung Wang, endeavours to offer its coating products while providing low-cost, quality solutions to North American manufacturers who apply thin-films to their goods. The objective of this proposed research is to provide a comprehensive analysis of the market opportunities for Aurora. This paper seeks to identify markets that have yet to fully adopt Physical Vapor Deposition (PVD) technology, as well as their potential customers. Market trend of...

  14. Air quality and residential wood combustion - application of the model system SIMAIRrwc for some Swedish municipalities; Luftkvalitet och smaaskalig biobraensleeldning. Tillaempningar av SIMAIRved foer naagra kommuner

    Energy Technology Data Exchange (ETDEWEB)

    Omstedt, Gunnar; Andersson, Stefan; Johansson, Christer; Loefgren, Bengt-Erik

    2008-11-15

    SIMAIRrwc is a Web based evaluation tool for meeting the EU directive on air pollution limits in residential areas using wood combustion. The background is a four-year research program (2001-2004) called Biomass Combustion Health and Environment. Some conclusions from this program were that emissions from small scale wood combustion can influence human health mainly due to high emitting old wood stoves during cold weather conditions and that the air quality in such areas can improve significantly if old wood stoves were replaced by modern wood boilers attached to a storage tank or with a pellet boiler. SIMAIRrwc is based on the same principles as SIMAIRroad, which is a Web based evaluation tool for road traffic i.e. coupled model system using different models on local, urban and regional geographical scales, best available emission data, but at the same time presented in a very simplified way. In this project SIMAIRrwc has been applied in five different Swedish municipalities. The aim has been to apply and improve the model in cooperation with the municipalities. The conclusions from the project are: Small scale wood combustions in residential areas are local problems which sometimes include only a few houses and/or wood-burners. Air quality problems related to the EU directive are mainly due to particles. Combinations of residential areas with wood combustion and emissions from nearby dense traffic roads might give rise to bad air quality. Actions require knowledge about individual equipment which needs information from the local chimney sweeps. The best way to identify problem areas is to use model calculations. If model calculations indicate risks of exceeding air quality limits, then new calculations should be made with improved input data taking into account for example information of district heating or other installations that can effect the emissions. Before actions are taken it may also be useful to make measurements. The measurement site can then be

  15. Planning for a Low Carbon Future? Comparing Heat Pumps and Cogeneration as the Energy System Options for a New Residential Area

    Directory of Open Access Journals (Sweden)

    Jukka Heinonen

    2015-08-01

    Full Text Available The purpose of this paper is to compare, from an urban planning perspective, the choice between combined heat and power (CHP and a ground-source heat pump (HP as the energy systems of a new residential area in the light of the uncertainty related to the assessments. There has been a strong push globally for CHP due to its climate mitigation potential compared to separate production, and consequently it is often prioritized in planning without questioning. However, the uncertainties in assessing the emissions from CHP and alternative options in a certain planning situation make it very difficult to give robust decision guidelines. In addition, even the order of magnitude of the climate impact of a certain plan is actually difficult to assess robustly. With a case study of the new residential development of Härmälänranta in Tampere, Finland, we show how strongly the uncertainties related to (1 utilizing average or marginal electricity as the reference; (2 assigning emissions intensities for the production; and (3 allocating the emissions from CHP to heat and electricity affect the results and lead to varying decision guidelines. We also depict how a rather rarely utilized method in assigning the emissions from CHP is the most robust for planning support.

  16. New Whole-House Solutions Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-10

    A zero energy ready home was recently completed that features an innovative wall system. This highly insulated (high-R) light-frame wall system, called the extended plate and beam, is for use above grade in residential buildings. The Building America research team Home Innovation Research Labs featured this system in a new construction test house.

  17. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    International Nuclear Information System (INIS)

    Highlights: • We model a heat pump-assisted PEMFC micro-CHP system for single-family households. • We optimize the system net electrical efficiency at a range of varying loads. • The proposed system performs at an average net electrical efficiency of 0.38. • The proposed system performs at an average total system efficiency of 0.815. • Cost analysis shows the potential of the proposed system for different unit costs. - Abstract: In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro-CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of the system. The variational loads are considered from full to quarter load, and the micro-CHP system is optimized in terms of operating thermophysical parameters for every different load. The results clearly indicate the capability of the proposed system to perform efficiently throughout all necessary load changes to fulfill the residential load profile. The average net electrical efficiency and average total system efficiency are 0.380 and 0.815, respectively. However cost analysis shows that certain synergies are necessary to allow the proposed system to make an entry to the energy market as a possible candidate to replace heat pump

  18. Residential Energy Efficiency Research Planning Meeting Summary Report: Washington, D.C. - October 27-28, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  19. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  20. Integrated Green Roofs System and its Role of Achieving Sustainability in Residential Buildings in Urban Area in Athens, Greece and Famagusta, North Cyprus

    OpenAIRE

    Seyed Mehran shahidipour

    2014-01-01

    In this paper, the characteristics and importance of the green roof in urban area would investigate in some residential buildings in Athens, Greece and then, some strategies give to integrate green roof in residential buildings in Famagusta, north Cyprus due to the importance of energy saving and thermal comfort in residential buildings. These days, sustainable architecture is spreading around the world. Therefore, Sustainable architecture has important role in design build...

  1. AmericaPlex26: a SNaPshot multiplex system for genotyping the main human mitochondrial founder lineages of the Americas.

    Directory of Open Access Journals (Sweden)

    Alexandra Coutinho

    Full Text Available Phylogeographic studies have described a reduced genetic diversity in Native American populations, indicative of one or more bottleneck events during the peopling and prehistory of the Americas. Classical sequencing approaches targeting the mitochondrial diversity have reported the presence of five major haplogroups, namely A, B, C, D and X, whereas the advent of complete mitochondrial genome sequencing has recently refined the number of founder lineages within the given diversity to 15 sub-haplogroups. We developed and optimized a SNaPshot assay to study the mitochondrial diversity in pre-Columbian Native American populations by simultaneous typing of 26 single nucleotide polymorphisms (SNPs characterising Native American sub-haplogroups. Our assay proved to be highly sensitive with respect to starting concentrations of target DNA and could be applied successfully to a range of ancient human skeletal material from South America from various time periods. The AmericaPlex26 is a powerful assay with enhanced phylogenetic resolution that allows time- and cost-efficient mitochondrial DNA sub-typing from valuable ancient specimens. It can be applied in addition or alternative to standard sequencing of the D-loop region in forensics, ancestry testing, and population studies, or where full-resolution mitochondrial genome sequencing is not feasible.

  2. Draft, development and optimization of a fuel cell system for residential power generation with steam reformer; Entwurf, Aufbau und Optimierung eines PEM-Brennstoffzellensystems zur Hausenergieversorgung mit Dampfreformer

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.

    2006-05-17

    The first development cycle of a residential power generation system is described. A steam reformer was chosen to produce hydrogen out of natural gas. After carbon monoxide purification with a preferential oxidation (PrOx) unit the hydrogen rich reformat gas is feed to the anode of the PEM-fuel cell, where due to the internal reaction with air oxygen form the cathode side water, heat and electricity is produced. Due to an incomplete conversion the anode off gas contains hydrogen and residual methane, which is feed to the burner of the steam reformer to reduce the needed amount of external fuel to heat the steam reformer. To develop the system the components are separately investigated and optimized in their construction or operation to meet the system requirements. After steady state and dynamic characterization of the components they were coupled one after another to build the system. To operate the system a system control was developed to operate and characterize this complex system. After characterization the system was analyzed for further optimization. During the development of the system inventions like a water cooled PrOx, an independent fuel cell controller or a burner for anodic off gas recirculation were made. The work gives a look into the interactions between the components and allows to understand the problems by coupling such components. (orig.)

  3. A hybrid society model for simulating residential electricity consumption

    International Nuclear Information System (INIS)

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  4. Topographic, bioclimatic, and vegetation characteristics of three ecoregion classification systems in North America: Comparisons along continent-wide transects

    Science.gov (United States)

    Thompson, R.S.; Shafer, S.L.; Anderson, K.H.; Strickland, L.E.; Pelltier, R.T.; Bartlein, P.J.; Kerwin, M.W.

    2005-01-01

    Ecoregion classification systems are increasingly used for policy and management decisions, particularly among conservation and natural resource managers. A number of ecoregion classification systems are currently available, with each system defining ecoregions using different classification methods and different types of data. As a result, each classification system describes a unique set of ecoregions. To help potential users choose the most appropriate ecoregion system for their particular application, we used three latitudinal transects across North America to compare the boundaries and environmental characteristics of three ecoregion classification systems [Ku??chler, World Wildlife Fund (WWF), and Bailey]. A variety of variables were used to evaluate the three systems, including woody plant species richness, normalized difference in vegetation index (NDVI), and bioclimatic variables (e.g., mean temperature of the coldest month) along each transect. Our results are dominated by geographic patterns in temperature, which are generally aligned north-south, and in moisture, which are generally aligned east-west. In the west, the dramatic changes in physiography, climate, and vegetation impose stronger controls on ecoregion boundaries than in the east. The Ku??chler system has the greatest number of ecoregions on all three transects, but does not necessarily have the highest degree of internal consistency within its ecoregions with regard to the bioclimatic and species richness data. In general, the WWF system appears to track climatic and floristic variables the best of the three systems, but not in all regions on all transects. ?? 2005 Springer Science+Business Media, Inc.

  5. Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions - A step to clean future

    International Nuclear Information System (INIS)

    The growing concerns of global warming and depleting oil/gas reserves have made it inevitable to seek energy from renewable energy resources. Many nations are embarking on introduction of clean/renewable solar energy for displacement of oil-produced energy. Moreover, solar photovoltaic (PV)-diesel hybrid power generation system technology is an emerging energy option since it promises great deal of challenges and opportunities for developed and developing countries. The Kingdom of Saudi Arabia (K.S.A) being enriched with higher level of solar radiation, is a prospective candidate for deployment of solar PV systems. Literature indicates that commercial/residential buildings in K.S.A. consume about 10-45% of the total electric energy generated. The aim of this study is to analyze long-term solar radiation data of Dhahran (East-Coast, K.S.A.) to assess the techno-economic feasibility of utilizing hybrid PV-diesel-battery power systems to meet the load of a typical residential building (with annual electrical energy demand of 35,120 kWh). The monthly average daily solar global radiation ranges from 3.61 to 7.96 kwh/m2. National Renewable Energy Laboratory's (NREL) Hybrid Optimization Model for Electric Renewable (HOMER) software has been employed to carry out the present study. The simulation results indicate that for a hybrid system composed of 4 kWp PV system together with 10 kW diesel system and a battery storage of 3 h of autonomy (equivalent to 3 h of average load), the PV penetration is 22%. The cost of generating energy (COE, US$/kWh) from the above hybrid system has been found to be 0.179 $/kWh (assuming diesel fuel price of 0.1$/l). The study exhibits that for a given hybrid configuration, the operational hours of diesel generators decrease with increase in PV capacity. The investigation also examines the effect of PV/battery penetration on COE, operational hours of diesel gensets for a given hybrid system. Concurrently, attention is focussed on un-met load

  6. Analysis of Micro Thermal Environment for Residential District Planning

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-jie; QI Jing; JIN Wen

    2009-01-01

    This paper focused on residential district planning process. Using GIS and SketehUp software, a common digital relief map model of a residential district was created, and the air distribution (both velocity and temperature) within this residential district was established by CFD simulation. So, the velocity and tempera-ture of the air at any location within the residential district, as well as the worse flow area and overheat area can be clearly presented. An index of micro thermal environment for the air distribution evaluation was established.Depending on a certain residential district planning model, from the air parameters of the micro environment at any location within the residential district, such as air velocity and air temperature, the index of micro thermal environment was obtained by certain principles and data processing process. By this index, the residential dis-trict planning scheme was evaluated corresponding to the thermal characteristics of the residential district. If this index is not good enough or unsatisfied, the residential district planning idea and process can be changed or im-proved accordingly in order to get a better thermal characteristics of the residential district judged by the estab-lished evaluation index system.

  7. Simulating Climate Change in Central America Using PRECIS Regional Modeling System

    Science.gov (United States)

    Karmalkar, A. V.; Bradley, R. S.; Diaz, H. F.

    2006-12-01

    Highland tropical forests are rich in endemic species and crucial in maintaining freshwater resources in many regions. Much of their remarkable biodiversity is due to the steep climate gradients found on tropical mountains. These gradients are significantly altered due to warming, affecting many species living on the mountain slopes. Costa Rica's Monteverde Cloud Forest shows biological changes associated with changes in climatic patterns. Our goal is to understand climate change at areas of high relief in the tropics and its potential impacts on ecosystem dynamics. We address this question by focusing on Central America, which is considered to be a biodiversity hotspot. The model used is the UK Hadley Center PRECIS(Providing REgional Climates for Impact Studies) model. The model is based on HadAM3H, an improved version of the atmospheric component of the latest Hadley Center coupled AOGCM, HadCM3 and is forced at the lateral boundaries by HadAM3P GCM. The surface boundary conditions include observed SSTs and sea-ice. We carried out a baseline run (1961-1990) and a doubled CO2 run (SRES A2 2071-2100) at a resolution of 25 km (0.22°) over the region of Central America that includes several biodiversity hotspots. Model verification is performed by comparing control run results with observations and reanalysis data. Preliminary analysis shows that PRECIS has successfully captured present-day spatial and temporal climate variability that has been observed in Central America. Elevation dependency of temperature is one of the important results of this study and will be investigated in great detail. The SRES A2 run shows average warming of about 3K, with more warming at higher altitudes in general. Precipitation and relative humidity analysis shows drier conditions in the region in 2 × CO2 world. Additional techniques are being developed to better quantify model performance in areas of high relief. We plan to expand this project to other models, and to additional

  8. The activity of mass media companies from United States of America. The impact generated in economic, social and politic systems

    Directory of Open Access Journals (Sweden)

    Sorin TERCHILĂ

    2014-04-01

    Full Text Available In the present research I will analyze the reactions and opinions of the interviewed persons regarding the efficiency of mass media in United States of America and also it will be analyzed the impact of media on the economic, social and politic systems in United States of America. At the same time, it is followed the presentation of some comparisons between the public media companies and the private ones, in which concerns the generated impact. Thereby, I will use the interview as a qualitative research method, to confirm or infirm the hypothesis of the present research. aMass media has a strong impact on the american economy, due to the very high budgets allocated for this field bMass media has an increased influence on the american society, having the role to initiate and promote a series of social campaigns addressed to american citizens cThe political parties generate a negative influence on media organizations from U.S.A.

  9. In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies

    Science.gov (United States)

    Jalava, Pasi I.; Happo, Mikko S.; Kelz, Joachim; Brunner, Thomas; Hakulinen, Pasi; Mäki-Paakkanen, Jorma; Hukkanen, Annika; Jokiniemi, Jorma; Obernberger, Ingwald; Hirvonen, Maija-Riitta

    2012-04-01

    Residential wood combustion causes major effects on the air quality on a global scale. The ambient particulate levels are known to be responsible for severe adverse health effects that include e.g. cardio-respiratory illnesses and cancer related effects, even mortality. It is known that biomass combustion derived emissions are affected by combustion technology, fuel being used and user-related practices. There are also indications that the health related toxicological effects are influenced by these parameters. This study we evaluated toxicological effects of particulate emissions (PM1) from seven different residential wood combusting furnaces. Two appliances i.e. log wood boiler and stove represented old batch combustion technology, whereas stove and tiled stove were designated as new batch combustion as three modern automated boilers were a log wood boiler, a woodchip boiler and a pellet boiler. The PM1 samples from the furnaces were collected in an experimental setup with a Dekati® gravimetric impactor on PTFE filters with the samples being weighed and extracted from the substrates and prior to toxicological analyses. The toxicological analyses were conducted after a 24-hour exposure of the mouse RAW 264.7 macrophage cell line to four doses of emission particle samples and analysis of levels of the proinflammatory cytokine TNFα, chemokine MIP-2, cytotoxicity with three different methods (MTT, PI, cell cycle analysis) and genotoxicity with the comet assay. In the correlation analysis all the toxicological results were compared with the chemical composition of the samples. All the samples induced dose-dependent increases in the studied parameters. Combustion technology greatly affected the emissions and the concomitant toxicological responses. The modern automated boilers were usually the least potent inducers of most of the parameters while emissions from the old technology log wood boiler were the most potent. In correlation analysis, the PAH and other organic

  10. System design and performance prediction of a free-piston Stirling engine/magnetic coupling/compressor assembly in a gas residential heat pump

    Science.gov (United States)

    Chen, G.; Beale, W. T.

    Based on the previous evaluation of a magnetic coupling and the described system-design targets, a gas fired free piston Stirling engine/magnetic coupling/compressor (FPSE/MC/C) assembly as a power module for a residential heat pump application was designed and analyzed. A porous combustor/FPSE/magnetic coupling/variable gas control spring/reciprocating compressor assembly was the design selected. Based on the system characteristics, design efforts are described on the following issues: (1) design of a combustor allowing low pressure of natural gas supply; (2) the means to achieve engine power-load matching; (3) the method to maintain the assembly as a resonant system tuning over a wide range of operating conditions; (4) the design of an engine/coupling structure to minimize the magnet mass without sacrificing its mechanical properties; and (5) compressor load capacity modulation. The system analysis and the system performance, which is analytically predicted and described, indicate all the system design goals can be met leading to a strong recommendation for further development.

  11. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua;

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  12. PERFORMANCE ANALYSIS OF l kW RESIDENTIAL SOFC-CHP SYSTEM%1kW家用SOFC-CHP系统建模及性能分析

    Institute of Scientific and Technical Information of China (English)

    徐晗; 党政; 白博峰

    2011-01-01

    A combined heating and power system (CHP) driven by natrual gas was established based on solid oxide fuel cell (SOFC), relevant SOFC heat and mass transfer equations as well as electrochemical equations were deduced, and component models were built and solved by FORTRAN as a tool to predict the system performance of a 1 kW residential SOFC-CHP system. The results indicate that the system efficiency is much higher than the generating efficiency of SOFC under the design-point condition. A maximum value of electric power appears with the increase of the inlet fuel flow, fuel utilization and electric efficiency decrease, system cogeneration efficiency experiences a rising trend, and the cell temperature gradient distribution becomes growingly even. Reducing the excess air ratio could enhance the system performance.The above conclusions are very useful for the design and optimization of the residential SOFC-CHP system.%构建一个以天然气为燃料的SOFC-CHP系统,推导SOFC传热传质及电化学方程,建立各个组件的数学模型,编写计算程序,对发电功率为1kW的家用SOFC-CHP系统在设计工况下进行性能模拟并探讨不同系统参数对性能的影响.计算结果表明:在设计工况下,系统热电联供效率远高于电池单独发电的效率;此外,随着燃料入口流量的增大,系统发电功率存在一个最大值,燃料利用率与发电效率不断减小,系统热电联供效率不断增大,SOFC的温度梯度分布则越来越平缓;同时发现降低过量空气系数可以提高该CHP系统的性能.

  13. Real-Time Recognition Non-Intrusive Electrical Appliance Monitoring Algorithm for a Residential Building Energy Management System

    Directory of Open Access Journals (Sweden)

    Kofi Afrifa Agyeman

    2015-08-01

    Full Text Available The concern of energy price hikes and the impact of climate change because of energy generation and usage forms the basis for residential building energy conservation. Existing energy meters do not provide much information about the energy usage of the individual appliance apart from its power rating. The detection of the appliance energy usage will not only help in energy conservation, but also facilitate the demand response (DR market participation as well as being one way of building energy conservation. However, energy usage by individual appliance is quite difficult to estimate. This paper proposes a novel approach: an unsupervised disaggregation method, which is a variant of the hidden Markov model (HMM, to detect an appliance and its operation state based on practicable measurable parameters from the household energy meter. Performing experiments in a practical environment validates our proposed method. Our results show that our model can provide appliance detection and power usage information in a non-intrusive manner, which is ideal for enabling power conservation efforts and participation in the demand response market.

  14. Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    West, R.; Mackamul, K.; Duran, G.

    2000-03-06

    This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

  15. A Comparison of Optimal Operation of a Residential Fuel Cell Co-Generation System Using Clustered Demand Patterns Based on Kullback-Leibler Divergence

    Directory of Open Access Journals (Sweden)

    Takumi Hasizume

    2013-01-01

    Full Text Available When evaluating residential energy systems like co-generation systems, hot water and electricity demand profiles are critical. In this paper, the authors aim to extract basic time-series demand patterns from two kinds of measured demand (electricity and domestic hot water, and also aim to reveal effective demand patterns for primary energy saving. Time-series demand data are categorized with a hierarchical clustering method using a statistical pseudo-distance, which is represented by the generalized Kullback-Leibler divergence of two Gaussian mixture distributions. The classified demand patterns are built using hierarchical clustering and then a comparison is made between the optimal operation of a polymer electrolyte membrane fuel cell co-generation system and the operation of a reference system (a conventional combination of a condensing gas boiler and electricity purchased from the grid using the appropriately built demand profiles. Our results show that basic demand patterns are extracted by the proposed method, and the heat-to-power ratio of demand, the amount of daily demand, and demand patterns affect the primary energy saving of the co-generation system.

  16. Illiterate America.

    Science.gov (United States)

    Kozol, Jonathan

    Intended for those involved in American social service and educational communities, this book addresses the widespread problem of illiteracy in the United States and the social consequences of this problem. Following an introduction, the chapters in the first section of the book discuss the growing crisis of illiterate America, specifically, the…

  17. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-12-01

    This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  18. Steam System Balancing and Tuning for Multifamily Residential Buildings: Chicago, Illinois. Building America Case Study: Technology Solutions for New and Existing Homes (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-10-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

  19. Development of cost innovative BPs for a PEMFC stack for a 1 kW-class residential power generator (RPG) system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gil-yong; Jung, Min-kyung; Ryoo, Sung-nam; Ha, Sam-chul [Digital Appliance R and D, LG Electronics, Seoul 153-801 (Korea, Republic of); Park, Myung-seok [LG Solar Energy, Seoul 150-721 (Korea, Republic of); Kim, Sunhoe [Department of New Energy and Resource Engineering, Sangji University, Wonju, Gangwon 220-702 (Korea, Republic of)

    2010-12-15

    In order to satisfy the demands of customers, cost innovation of fuel cell systems is required for the commercialization of the fuel cell. Since the stack is one of the most expensive parts in a fuel cell system, cost reduction of stack is required for fuel cell commercialization. For this effort stainless steel 304 sheets were etched for the flow field and then coated for corrosion resistance. This enables the development of highly cost-effective bipolar plates (BPs) for a Proton Exchange Membrane Fuel Cell (PEMFC) stack of a 1 kW-class for Residential Power Generator (RPG). LG Electronics (LGE) developed a metal stack of 64 cells with the developed BPs and achieved a performance rating of 0.75 V/cell at 200 mA/cm{sup 2}. LGE also achieved a stack volume reduction of 20% compared to a stack of the same specifications consisting of graphite material BPs. The volume decrease can be represented as a cost reduction. LGE achieved the very low cost innovation to 1 USD per cell with cells developed from etched metal BPs. LGE also achieved 500 h of operation with LGE's RPG system; this test is still ongoing. The degradation rate of the stack was 27 {mu}V/hr. The end of life of the stack was estimated at approximately 17,000 h. (author)

  20. Neural Network-Based Modeling of PEM fuel cell and Controller Synthesis of a stand-alone system for residential application

    Directory of Open Access Journals (Sweden)

    Khaled Mammar

    2012-11-01

    Full Text Available The paper is focused especially on presenting possibilities of applying artificial neural networks at creating the optimal model PEM fuel cell. Various ANN approaches have been tested; the back-propagation feed-forward networks show satisfactory performance with regard to cell voltage prediction. The model is then used in a power system for residential application. This models include an ANN fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a neural network (NNTC and fuzzy logic (FLC controllers are used to control active power of PEM fuel cell system. The controllers modifies the hydrogen flow feedback from the terminal load. The validity of the controller is verified when the fuel cell system model is used in conjunction with the NNT controller to predict the response of the active power to: (a computer-simulated step changes in the load active and reactive power demand, and (b actual active and reactive load demand of a single family residence. Simulation results confirmed the high performance capability of the neural network (NNTC to control power generation.

  1. Financial analysis on the proposed renewable heat incentive for residential houses in the United Kingdom: A case study on the solar thermal system

    International Nuclear Information System (INIS)

    This short communication paper focuses on the renewable heat incentive (RHI) scheme in the United Kingdom (UK); and in particular, on its implication on domestic installations of solar thermal systems (STSs). First, a short review on the STS in the UK is provided. Then, a detailed description of the RHI is discussed. A financial analysis is presented afterwards, analysing the impact of the RHI scheme on the applicants, in terms of the net present value and the internal rate of return. From the financial analysis it has been found that the RHI scheme for domestic installations is only attractive if a longer period of RHI payment, i.e. 17 years, or a higher RHI rate i.e. £0.32 per kW h is implemented. The current proposal from the UK government is not financially viable, and as a result, it may hinder the penetration of domestic solar thermal systems in the residential sector in the UK. - Highlights: • A short review on solar thermal system (STS) is presented. • The renewable heat incentive (RHI) scheme is discussed. • A financial analysis is evaluated under the RHI scheme in the UK. • The analysis indicates the current proposal is not desirable to consumers

  2. 76 FR 18212 - E.ON Climate & RenewablesNorth America, LLC, et al. v. Midwest Independent Transmission System...

    Science.gov (United States)

    2011-04-01

    ... Energy Regulatory Commission E.ON Climate & RenewablesNorth America, LLC, et al. v. Midwest Independent... Climate & Renewables North America, LLC, Horizon Wind Energy LLC, Iberdrola Renewables, Inc. and Invenergy... Corporate Officials. Any person desiring to intervene or to protest this filing must file in accordance...

  3. 国际低碳可持续住宅评估体系比较研究%THE COMPARATIVE RESEARCH ON INTERNATIONAL LOW CARBON SUSTAINABLE RESIDENTIAL ASSESSMENT SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    张春子; Paolo Vincenzo Genovese

    2012-01-01

    The low carbon sustainable residential evaluation system devotes to saving energy, reducing emission, and optimizing the living environment, which plays a key role in coping with global warming and the sustainable development of human. It was introduced and analyzed comprehensively the most representative international residential appraisal systems--British Code for Sustainable House, American LEED, Japanese CASBEE, Chinese Evaluation Standard for Green Building and Chinese Ecological Residential Assessment Manual from the aspects of development process, evaluation content, evaluation software, evaluation system marketization, public education and so forth. It was also analyze the advantages and limitations of those residential evaluation systems, and put forward the problems of the present Chinese low carbon sustainable residential assessment system and the measures to improve the future low carbon sustainable residential evaluation systems.%发展低碳可持续住宅评估体系以促进节能减排、优化生活环境,是应对全球气候变暖和实现人类可持续发展的重要手段。通过对目前国际上最具有代表性的几个住宅评估体系:英国的《可持续住宅规范》、美国的LEED和日本的CASBEE与中国《绿色建筑评价标准》以及《中国生态住区技术评估手册》,从发展历程、评估内容、评估软件、评估体系的市场化、公众教育等几方面进行综合分析,剖析各国住宅评估体系的优点以及不足,提出中国现阶段低碳可持续住宅评估体系制定所存在的问题和相关改进措施,为今后低碳可持续住宅评估体系的发展提出有力建议。

  4. Procedures for Calculating Residential Dehumidification Loads

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.

  5. Best practices guide for residential HVAC Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.

    2003-08-11

    This best practices guide for residential HVAC system retrofits is aimed at contractors who want guidance on delivering energy efficient, cost effective and innovative products. It has been developed around the idea of having packages of changes to the building HVAC system and building envelope that are climate and house construction dependent. These packages include materials, procedures and equipment and are designed to remove some of the guesswork from a builder, contractor, installer or homeowner decisions about how best to carry out HVAC changes. The packages are not meant to be taken as rigid requirements--instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction to develop extremely energy efficient homes that are comfortable safe and durable, and often cost less than standard construction. This is best epitomized by the Building America program whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of diagnostic tools that combine physical measurements and checklists/questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HVAC system, the local climate, the construction methods used for the house, and the presence of various

  6. Theoretical Analysis on the Economic Performance of Micro Gas Turbine-Trigeneration System with Different Operation Strategies for Residential Building in a Tropical Region

    Directory of Open Access Journals (Sweden)

    Basrawi Firdaus

    2016-01-01

    Full Text Available This study investigates how operation strategies of micro gas turbine trigeneration system (MGTTGS affect its economic performance. MGT-TGS was required to sustain power, heating and cooling load of 148 residential terrace houses located in Kuala Lumpur. Based on the load requirement, there were two sizes of MGTs adopted in the research scope, a 30kW and 60kW respectively. Four typical operation strategies; powermatch, heat-match, mix-match, and base-load were investigated. Life cycle cost analyses with Net Present Value as the indicator were carried out. It was found that MGT-TGS can only generate positive NPV within 25 years of life time under unsubsidized electricity price. In addition, only mix-match and power-match operation strategies offered positive NPV. Under the scheme of the latter operation strategies, the MGT achieved power generation efficiency ranging from 27% to 28% respectively due to higher partial load ratio. Furthermore, these operation strategies generated excess electricity that consequently increased the profit from electricity saving. Economically, there were less capital cost, operation and maintenances (O&M cost and replacement cost on operating the system under the mixed match scheme and power match scheme. However Net Present Value analysis indicated that the mixed match strategies offer better economic performances than power match strategies and other operation strategies for the MGT-TGS.

  7. Measuring residential segregation in urban Mexico: Levels and patterns

    OpenAIRE

    Monkkonen, Paavo

    2010-01-01

    Changing patterns of urban development in Latin America have drawn increasing attention to residential segregation, yet systematic quantitative analysis remains limited. Using data from the Mexican census of 2000, this paper describes spatial patterns and levels of segregation by ethnicity and socioeconomic status in over 100 cities. Findings confirm many recognized patterns; low-income and informally employed households tend to live in peripheral areas of the city, while high-income and form...

  8. Integrated hydrometeorological predictions with the fully-coupled WRF-Hydro modeling system in western North America

    Science.gov (United States)

    Gochis, D. J.; Yu, W.

    2013-12-01

    Prediction of heavy rainfall and associated streamflow responses remain as critical hydrometeorological challenges and require improved understanding of the linkages between atmospheric and land surface processes. Streamflow prediction skill is intrinsically liked to quantitative precipitation forecast skill, which emphasizes the need to produce mesoscale predictions of rainfall of high fidelity. However, in many cases land surface parameters can also exert significant control on the runoff response to heavy rainfall and on the formation or localization of heavy rainfall as well. A new generation of integrated atmospheric-hydrologic modeling systems is emerging from different groups around the world to meet the challenge of integrated water cycle predictions. In this talk the community WRF-Hydro modeling system will be presented. After a brief reviewing the architectural features of the WRF-Hydro system short-term forecasting and regional hydroclimate prediction applications of the model from western North America will be presented. In these applications, analyses will present results from observation-validated prediction experiments where atmospheric and terrestrial hydrologic model components are run in both a fully coupled mode and separately without two-way interactions. Emphasis is placed on illustrating an assessment framework using an initial state perturbation methodology to quantify the role of land-atmosphere energy and moisture flux partitioning in controlling precipitation and runoff forecast skill. Issues related to experimental design of fully-coupled model prediction experiments will also be discussed as will issues related to computational performance.

  9. Research on the Female Prisoners Correction System of America%美国女犯矫正制度研究

    Institute of Scientific and Technical Information of China (English)

    杨木高

    2012-01-01

    The number of the prisoners of America is at the first place of the whole world;the same is as the number of the female prisoners.The female correction system has become the important of the American correction system.As a result of the specific of the female,there are some differences between the male prisoners,and some methods are worth to be studied.However,there are many problems exists in such system,which results in the high rates of recidivism after their release,so the effect is not ideal.%美国监狱中关押罪犯的数量位居全球之首,监狱中女犯的数量同样庞大。女犯矫正制度成为美国矫正制度的重要组成部分。由于女犯的特殊性,在矫正制度上与男性罪犯有一定的差别,有一定的女性特色,有些做法值得我们借鉴。但是美国女犯矫正制度存在很多问题,结果导致女性罪犯释放后重新犯罪率较高,矫正效果很不理想。

  10. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  11. Comparison between predicted duct effectiveness from proposed ASHRAE Standard 152P and measured field data for residential forced air cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Jeffrey A.; McWilliams, Jennifer A.; Walker, Iain S.

    2002-04-01

    The proposed ASHRAE Standard 152P ''Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems'' (ASHRAE 2002) has recently completed its second public review. As part of the standard development process, this study compares the forced air distribution system ratings provided by the public review draft of Standard 152P to measured field results. 58 field tests were performed on cooling systems in 11 homes in the summers of 1998 and 1999. Seven of these houses had standard attics with insulation on the attic floor and a well-vented attic space. The other four houses had unvented attics where the insulation is placed directly under the roof deck and the attic space is not deliberately vented. Each house was tested under a range of summer weather conditions at each particular site, and in some cases the amount of duct leakage was intentionally varied. The comparison between 152P predicted efficiencies and the measured results includes evaluation of the effects of weather, duct location, thermal conditions, duct leakage, and system capacity. The results showed that the difference between measured delivery effectiveness and that calculated using proposed Standard 152P is about 5 percentage points if weather data, duct leakage and air handler flow are well known. However, the accuracy of the standard is strongly dependent on having good measurements of duct leakage and system airflow. Given that the uncertainty in the measured delivery effectiveness is typically also about 5 percentage points, the Standard 152P results are acceptably close to the measured data.

  12. Nonmetropolitan Residential Segregation Revisited.

    Science.gov (United States)

    Murdock, Steve H.; And Others

    1994-01-01

    Analysis of 1980 and 1990 Censuses of Population and Housing for Texas found overall black-white and Anglo-Hispanic residential segregation declined substantially. Nonmetropolitan counties were more segregated than metropolitan counties in both years, but growing nonmetro places showed the greatest segregation declines. Analyses controlling for…

  13. Solar Photovoltaic Financing: Residential Sector Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  14. Sizing a solar dish Stirling micro-CHP system for residential application in diverse climatic conditions based on 3E analysis

    International Nuclear Information System (INIS)

    Highlights: • 3E analysis was performed on solar CHP systems. • Significant primary energy saving and greenhouse gas reduction were obtained. • The engine was sized so that it had the best economic sound. • Various criteria at different weathers were used for sizing the engine. - Abstract: A solar dish Stirling cogeneration system is considered to provide energy demands of a residential building. As energy demands of the building and output power of the engine are functions of weather condition and solar irradiation flux, the benchmark building was considered to be located in five different cities in Iran with diverse climatic and solar irradiation conditions. The proposed solar dish Stirling micro-CHP system was analyzed based on 3E analysis. The 3E analysis evaluated primary energy saving analysis (energy analysis), carbon dioxide emission reduction (environmental analysis) and payback period for return of investment (economic analysis) and was compared to a reference building that utilized primary energy carriers for its demands. Three scenarios were considered for assessment and sizing the solar dish Stirling engine. In the first scenario, size of the solar dish Stirling engine was selected based on the lowest annual electric power demand while, in second, the highest annual electric power consumption was considered to specify size of the engine. In the third scenario, a solar dish Stirling engine with constant output capacity was considered for the five locations. It was shown that implementing the solar dish Stirling micro-CHP system had good potential in primary energy saving and carbon dioxide emission reduction in all scenarios and acceptable payback period for return of the investment in some scenarios. Finally, the best scenario for selecting size of the engine in each city was introduced using the TOPSIS decision making method. It was demonstrated that, for dry weather, the first scenario was the best while, for hot and humid cities and

  15. 低GWP制冷剂在住宅热泵系统中的性能%The Performance of Low GWP Refrigerants in a Residential Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    周子成

    2015-01-01

    R410A是当前住宅热泵系统中的主要制冷剂之一。它的臭氧消耗潜能值为零,但是其全球气候变暖潜能值高达2088.找寻替代R410A的低GWP制冷剂已成为制冷空调业的一个重要任务。本文综述直接充灌试验方法和已取得的部分成果,%R410A is one of the main refrigerants used today for residential air conditioning and heat pump systems. It has zero ozone depletion potential but its global warming potential is high to 2088. Looking for new low GWP refriger-ants alternatives to replace R410A has become one of the most important goals of refrigeration and air conditioning in-dustry. In this paper,the drop-in test method and some results that have been achieved so far are summarized.

  16. Kansei Analysis of the Japanese Residential Garden and Development of a Low-Cost Virtual Reality Kansei Engineering System for Gardens

    Directory of Open Access Journals (Sweden)

    Tatsuro Matsubara

    2011-01-01

    Full Text Available Residential garden design using Kansei engineering is a challenging problem. Landscaping components, such as rocks, trees, and ponds, are widely diversified and have a large number of possible arrangements. This large number of design alternatives makes conventional analyses, such as linear regression and its variations like Quantification Theory Type I (QT1, inapplicable for analyzing the relationships between design elements and the Kansei evaluation. We applied a partial least squares (PLS model that effectively deals with a large number of predictor variables. The multiple correlation coefficient of the PLS analysis was much higher than that of the QT1 analysis. The results of the analyses were used to create a low-cost virtual reality Kansei engineering system that permits visualization of garden designs corresponding to selected Kansei words. To render complex garden scenes, we developed an original 3D computation and rendering library built on Java. The garden is shown in public-view style with stereo 3D graphic projection. The rendering is scalable from low to high resolution and enables drop object shadowing, which is indispensable for considering the effect of daytime changes in insolation. Visualizing the garden design based on Kansei analysis could facilitate collaboration between the designer and customer in the design process.

  17. Dynamic performance assessment of a residential building-integrated cogeneration system under different boundary conditions. Part II: Environmental and economic analyses

    International Nuclear Information System (INIS)

    Highlights: • A building-integrated micro-cogeneration system was dynamically simulated. • Simulation data were analyzed from both environmental and economic point of views. • The proposed system was compared with a conventional supply system. • The proposed system reduces the environmental impact under heat-led operation. • The proposed system reduces the operating costs whatever the control logic is. - Abstract: This work examines the performance of a residential building-integrated micro-cogeneration system during the winter by means of a whole building simulation software. The cogeneration unit was coupled with a multi-family house composed of three floors, compliant with the transmittance values of both walls and windows suggested by the Italian Law; a stratified combined tank for both heating purposes and domestic hot water production was also used for storing heat. Simulations were performed considering the transient nature of the building and occupant driven loads as well as the part-load characteristics of the cogeneration unit. This system was described in detail and analyzed from an energy point of view in the companion paper. In this paper the simulation results were evaluated in terms of both carbon dioxide equivalent emissions and operating costs; detailed analyses were performed in order to estimate the influence of the most significant boundary conditions on both environmental and economic performance of the proposed system: in particular, three volumes of the hot water storage, four climatic zones corresponding to four Italian cities, two electric demand profiles, as well as two control strategies micro-cogeneration unit were considered. The assessment of environmental impact was performed by using the standard emission factors approach, neglecting the effects of local pollutants. The operating costs due to both natural gas and electric energy consumption were evaluated in detail, whereas both the capital and maintenance costs were

  18. Building America Research Benchmark Definition, Updated December 19, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2008-12-19

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Bui

  19. 住宅空调系统安装常见问题的分析与对策%Analysis and Countermeasures of common problems on installing residential air conditioning system

    Institute of Scientific and Technical Information of China (English)

    周丽

    2014-01-01

    The use of residential air conditioning system becomes more and more popular,then HVAC engineer have to pay more attention on problems on installing residential air conditioning system and spend more time studying it. This paper analyzes the common problems in residential air conditioning system installation,and works out four kinds of solutions,and tnen analyzes the advantages of each approach, finally introduces four successful cases.%住宅空调系统使用的日益普及,使得空调系统安装中的问题已经成为暖通工程师必须加以重视并认真研究的课题。本文就暖通空调工程住宅空调系统安装中常见问题进行分析,制定了四种解决途径,并分析了每种途径的优点,最后介绍了国内四个成功的案例。

  20. Natural gas in Latin America

    International Nuclear Information System (INIS)

    Despite having proven reserves equal to that of North America, natural gas has traditionally played a minor role in the energy policies of Latin American countries, being considered secondary to oil. There has, therefore, been a neglect of the sector with a resultant lack of an adequate infrastructure throughout the region, perhaps with the exception of Argentina. However, with a massive increase in energy demand, growing concerns with environmental matters and a need to reduce the massive pollution levels in major cities in the region, natural gas is forecast to play a much greater role in Latin America's energy profile, with final consumption forecast to rise at 5.4% per annum for the next 15 years. This book assesses both the development of the use of natural gas in the power industrial sector and proposals for its growth into the residential, commercial and transport sectors. It analyses the significant investment required and the governments' need to turn to the private sector for investment and innovation. Natural Gas in Latin America analyses the possibilities and pitfalls of investing in the sector and describes the key trends and issues. It analyses all aspects of the gas industry from exploration and production to transportation and distribution to end users. (Author)

  1. Natural gas integration in South America

    International Nuclear Information System (INIS)

    The South America Gas Trade study, a project of the Canadian Energy Research Institute, was discussed. The ongoing study involves an examination of natural gas reserves, exploration, and development in the onshore and offshore basins in South America. An analysis of various pipeline options is also part of the project, using the South America Natural Gas (SANG) model. The forces driving natural gas development, (distribution of gas reserves, fuel substitution in the residential sector, focus on energy efficiency and cost control, potential export revenue growth, fuel substitution in electric power generation, development of co-generation capacity, and the impact of natural gas utilization on crude oil demand) and the legal, fiscal and regulatory regimes which govern the development of natural gas in each South American country were reviewed. figs

  2. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden

    International Nuclear Information System (INIS)

    Innovation and diffusion of renewable energy technologies play a major role in mitigation of climate change. In Sweden replacing electric and oil heating systems with innovative heating systems such as district heating, heat pumps and wood pellet boilers in detached homes is a significant mitigation option. Using an adopter-centric approach, we analyzed the influence of investment subsidy on conversion of resistance heaters and oil boilers, and the variation in diffusion pattern of district heating, heat pumps and pellet boilers in Swedish detached homes. Results from questionnaire surveys of 1500 randomly selected homeowners in September 2004 and January 2007 showed that more than 80% of the respondents did not intend to install a new heating system. Hence, about 37% of the homeowners still have electric and oil heating systems. The government investment subsidy was important for conversion from a resistance heater, but not from an oil boiler. This is because homeowners currently replacing their oil boilers are the laggards, while those replacing resistance heaters are the 'early adopters'. Economic aspects and functional reliability were the most important factors for the homeowners when considering a new heating system. There is a variation in the perceived advantages associated with each of the innovative heating systems and therefore, the diffusion patterns of such systems vary. Installers and interpersonal sources were the most important communication channels for information on heating systems

  3. Building America Best Practices Series: Volume 7.1: Guide to Determining Climate Regions by County

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Williamson, Jennifer L.; Gilbride, Theresa L.; Cole, Pamala C.; Hefty, Marye G.; Love, Pat M.

    2010-08-30

    This report for DOE's Building America program helps builders identify which Building America climate region they are building in. The guide includes maps comparing the Building America regions with climate designations used in the International Energy Conservation Code for Residential Buildings and lists all U.S. counties by climate zone. A very brief history of the development of the Building America climate map and descriptions of each climate zone are provided. This report is available on the Building America website www.buildingamerica.gov.

  4. Closing the gap between socioeconomic and financial implications of residential and community level hydrogen-based energy systems: Incentives needed for a bridge to the future

    Science.gov (United States)

    Verduzco, Laura E.

    The use of hydrogen as an energy carrier has the potential to decrease the amount of pollutants emitted to the atmosphere, significantly reduce our dependence on imported oil and resolve geopolitical issues related to energy consumption. The current status of hydrogen technology makes it prohibitive and financially risky for most investors to commit the money required for large-scale hydrogen production. Therefore, alternative strategies such as small and medium-scale hydrogen applications should be implemented during the early stages of the transition to the hydrogen economy in order to test potential markets and technology readiness. While many analysis tools have been built to estimate the requirements of the transition to a hydrogen economy, few have focused on small and medium-scale hydrogen production and none has paired financial with socioeconomic costs at the residential level. The computer-based tool (H2POWER) presented in this study calculates the capacity, cost and socioeconomic impact of the systems needed to meet the energy demands of a home or a community using home and neighborhood refueling units, which are systems that can provide electricity and heat to meet the energy demands of either (1) a home and automobile or (2) a cluster of homes and a number of automobiles. The financial costs of the production, processing and delivery sub-systems that conform the refueling units are calculated using cost data of existing technology and normalizing them to calculate capital and net present cost. The monetary value of the externalities (socioeconomic analysis) caused by each system is calculated by H2POWER through a statistical analysis of the cost associated to various externalities. Additionally, H2POWER calculates the financial impact of different penalties and incentives (such as net metering, low interest loans, fuel taxes, and emission penalties) on the cost of the system from the point of view of a developer and a homeowner. In order to assess the

  5. Decentralization and the development of nationalized party systems in new democracies: evidence from Latin America

    NARCIS (Netherlands)

    I. Harbers

    2010-01-01

    The extent to which a party system is nationalized—with nationalization being defined as the degree to which major political parties obtain similar vote shares throughout the national territory—has considerable consequences for political representation, public policy making, and even the survival of

  6. Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.

    2011-10-01

    The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

  7. Comparison of a Constant Air Volume (CAV) and a Demand Controlled Ventilation (DCV) System in a Residential Building

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Topp, Claus

    The aim of this paper was to compare the indoor climate and the energy performance of a Constant Air Volume (CAV) system of 0.5h-1 with a Demand Controlled Ventilation (DCV) system controlled by occupancy and relative humidity for a studio apartment. Furthermore the impact of building materials...... hygroscopic properties on indoor climate and energy consumption was investigated for the two systems. Dynamic simulations of the studio apartment were carried out in the program WUFI+ with weather data from Copenhagen including outside temperature end relative humidity. For the non-hygroscopic case it was...

  8. High-Performance Control of Paralleled Three-Phase Inverters for Residential Microgrid Architectures Based on Online Uninterruptable Power Systems

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Vasquez, Juan Carlos;

    2015-01-01

    synchronization with an external real/fictitious utility, and critical bus voltage restoration. Constant transient and steady-state frequency, active, reactive and harmonic power sharing, and global phase-locked loop resynchronization capability are achieved. Detailed system topology and control architecture are......In this paper, a control strategy for the parallel operation of three-phase inverters forming an online uninterruptible power system (UPS) is presented. The UPS system consists of a cluster of paralleled inverters with LC filters directly connected to an AC critical bus and an AC/DC forming a DC...... presented in this paper. Also a mathematical model was derived in order to analyze critical parameters effect on system stability. An experimental setup was built in order to validate the proposed control approach under several case-study scenarios. Finally, a conclusion is presented....

  9. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  10. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  11. Education Management Information Systems (EMIS) in Latin America and the Caribbean: Lessons and Challenges

    OpenAIRE

    Thomas Cassidy

    2006-01-01

    This paper provides a review of the status of Education Management Information Systems (EMIS) in Latin American and the Caribbean. It includes a history of EMIS development efforts in the region; an outline of practical lessons learned from earlier EMIS development efforts; the identification of current and emerging challenges for developing EMIS; and the identification of promising examples of the use of better data and information to inform education policy and planning. The study was prepa...

  12. Long-Term Resilience of Late Holocene Coastal Subsistence System in Southeastern South America

    OpenAIRE

    Colonese, André Carlo; Collins, Matthew; Lucquin, Alexandre; Eustace, Michael; Hancock, Y; De Almeida Rocha Ponzoni, Raquel; Mora, Alice; Smith, Colin; DeBlasis, Paulo; Figuti, Levy; Wesolowski, Veronica; Plens, Claudia Regina; Eggers, Sabine; de Farias, Deisi Scunderlick Eloy; Gledhill, Andy

    2014-01-01

    Isotopic and molecular analysis on human, fauna and pottery remains can provide valuable new insights into the diets and subsistence practices of prehistoric populations. These are crucial to elucidate the resilience of social-ecological systems to cultural and environmental change. Bulk collagen carbon and nitrogen isotopic analysis of 82 human individuals from mid to late Holocene Brazilian archaeological sites (∼6,700 to ∼1,000 cal BP) reveal an adequate protein incorporation and, on the c...

  13. Palaeogeographic reconstruction of Minchin palaeolake system, South America:The influence of astronomical forcing

    Institute of Scientific and Technical Information of China (English)

    Andrea Sánchez-Saldías; Richard A. Fariña

    2014-01-01

    Current palaeoclimatic reconstructions for the Río de la Plata region during the latest Pleistocene (30,000 e10,000 yr BP) propose dry conditions, with rainfall at the Last Glacial Maximum amounting to one-third of today’s precipitation. Despite the consequential low primary productivity inferred, an impressive megafauna existed in the area at that time. Here we explore the influence of the flooding from a huge extinct system of water bodies in the Andean Altiplano as a likely source for wet regimes that might have increased the primary productivity and, hence, the vast number of megaherbivores. The system was reconstructed using specifically combined software resources, including Insola, Global Mapper v13, Surfer and Matlab. Changes in water volume and area covered were related to climatic change, assessed through a model of astronomical forcing that describes the changes in insolation at the top of the at-mosphere in the last 50,000 yr BP. The model was validated by comparing its results with several proxies (CH4, CO2, D, 18O) from dated cores taken from the ice covering Antarctic lakes Vostok and EPICA Dome C. It is concluded that the Altiplano Lake system drained towards the southeast in the rainy seasons and that it must have been a major source of water for the Paraná-Plata Basin, consequently enhancing primary productivity within it.

  14. The Small Aircraft Transportation System for America: A Case in Public Infrastructure Change

    Science.gov (United States)

    Bowen, Brent D.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public-use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  15. Guidelines for residential commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to

  16. The collection system for residential recyclables in communities in Haidian District, Beijing: a possible approach for China recycling.

    Science.gov (United States)

    Wang, Jia; Han, Ling; Li, Shushu

    2008-01-01

    Recycling and reusing recyclables is an important way to solve the municipal solid waste (MSW) problem. As the collection of solid waste takes up the largest percentage of MSW management budgets, improving the collection of recyclables is important. Since the decline of government-run waste buying depots in the late 1980s, the collection of recyclables from households and waste deposit sites in China is done by buyers with small informal bases and waste pickers, who are usually unskilled rural people who have come to the cities. Because of this, the current system is seen to have social problems. So, the recyclable collection system has both social as well as economic significance. China is in the process of rapid industrialization and urbanization, and a new mode of community collection system is emerging. It operates by market mechanisms, with waste collection companies that are supported by the municipal government, establishing recycle service sites, and employing workers to buy recyclables door-to-door. This paper is a case study of the new system in the Haidian District, Beijing. It summarizes the system, compares it to experiences in other countries and discusses whether the new approach contributes to resources recycling in China. PMID:17967528

  17. Demand response-enabled residential thermostat controls.

    OpenAIRE

    Chen, Xue; Jang, Jaehwi; David M. Auslander; Peffer, Therese; Arens, Edward A.

    2008-01-01

    A number of Demand Response (DR) technologies work by responding to variable electricity pricing, but have not yet been applied to control residential HVAC systems. An autonomous thermostat system, the Demand Response Electrical Appliance Manager (DREAM), provides possibilities to improve price-based demand responsiveness in residences. Built on low-cost, low-power wireless technology, the system uses a disaggregated set of energy- and environmental sensors. Control strategies are im...

  18. Housing Tenure and Residential Segregation in Metropolitan America

    OpenAIRE

    Friedman, Samantha; Tsao, Hui-shien; Chen, Cheng

    2013-01-01

    Homeownership, a symbol of the American dream, is one of the primary ways through which families accumulate wealth, particularly for blacks and Hispanics. Surprisingly, no study has explicitly documented the segregation of minority owners and renters from whites. Using data from Census 2000, this study aims to fill this gap. Analyses here reveal that the segregation of black renters relative to whites is significantly lower than the segregation of black owners from whites, controlling for rel...

  19. Little People of America

    Science.gov (United States)

    ... information. Our Sponsors Welcome to Little People of America Little People of America (LPA) is a nonprofit organization that provides support ... survey can be seen here. © Little People of America 250 El Camino Real Suite 218, Tustin, CA ...

  20. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  1. Building America Case Study: Mockup Small-Diameter Air Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  2. NEGOTIATION AND INCORPORATION ON THE MARGINS OF WORLD-SYSTEMS:EXAMPLES FROM CYPRUS AND NORTH AMERICA

    Directory of Open Access Journals (Sweden)

    P. Nick Kardulias

    2015-08-01

    Full Text Available As originally formulated, the world-systems model postulated a relationship in which core states exploited peripheries for raw materials and made the latter into dependent satellites. This approach views indigenous people in peripheries as passive recipients at the mercy of political and economic forces beyond their control. While in many cases the impetus for change was from cores to peripheries, there were certainly instances in which the margins actively (and occasionally successfully resisted incorporation. At times, they also had the ability to select the precise form of their incorporation. While in many cases this did not alter the consequences for indigenous people, there were occasions when natives not only reacted successfully, but also outlined the terms of the encounter. This is a process that I call negotiated peripherality. Underlying this perspective is a biological analogy: just as biological populations experience the greatest change at the borders of their territories where the effects of gene flow are felt first and most dramatically, so too do cultural changes occur at an accelerated rate in contact zones. This paper explores the nature of negotiated change through two case studies. The archaeological example examines how ancient inhabitants of Cyprus selectively adopted features from the Near Eastern and Greek cultures for whose worldsystems the island served as a marginal periphery. The second example is anethnohistoric study of how Native Americans managed the terms of their involvement in the fur trade with Europeans. Both cases demonstrate the active role of peripheral people as decision-makers.

  3. [National health research systems in Latin America: a 14-country review].

    Science.gov (United States)

    Alger, Jackeline; Becerra-Posada, Francisco; Kennedy, Andrew; Martinelli, Elena; Cuervo, Luis Gabriel

    2009-11-01

    This article discusses the main features of the national health research systems (NHRS) of Argentina, Bolivia, Brazil, Chile, Costa Rica, Cuba, Ecuador, El Salvador, Honduras, Panama, Paraguay, Peru, Uruguay, and Venezuela, based on documents prepared by their country experts who participated in the First Latin American Conference on Research and Innovation for Health held in April 2008, in Rio de Janeiro, Brazil. The review also includes sources cited in the reports, published scientific papers, and expert opinion, as well as regional secondary sources. Six countries reported having formal entities for health research governance and management: Brazil and Costa Rica's entities are led by their ministries of health; while Argentina, Cuba, Ecuador, and Venezuela have entities shared by their ministries of health and ministries of science and technology. Brazil and Ecuador each reported having a comprehensive national policy devoted specifically to health science, technology, and innovation. Argentina, Brazil, Costa Rica, Cuba, Ecuador, Panama, Paraguay, Peru, and Venezuela reported having established health research priorities. In conclusion, encouraging progress has been made, despite the structural and functional heterogeneity of the study countries' NHRS and their disparate levels of development. Instituting good NHRS governance/management is of utmost importance to how efficiently ministries of health, other government players, and society-at-large can tackle health research. PMID:20107697

  4. Long-term resilience of late holocene coastal subsistence system in Southeastern South america.

    Directory of Open Access Journals (Sweden)

    André Carlo Colonese

    Full Text Available Isotopic and molecular analysis on human, fauna and pottery remains can provide valuable new insights into the diets and subsistence practices of prehistoric populations. These are crucial to elucidate the resilience of social-ecological systems to cultural and environmental change. Bulk collagen carbon and nitrogen isotopic analysis of 82 human individuals from mid to late Holocene Brazilian archaeological sites (∼6,700 to ∼1,000 cal BP reveal an adequate protein incorporation and, on the coast, the continuation in subsistence strategies based on the exploitation of aquatic resources despite the introduction of pottery and domesticated plant foods. These results are supported by carbon isotope analysis of single amino acid extracted from bone collagen. Chemical and isotopic analysis also shows that pottery technology was used to process marine foods and therefore assimilated into the existing subsistence strategy. Our multidisciplinary results demonstrate the resilient character of the coastal economy to cultural change during the late Holocene in southern Brazil.

  5. Assessment of nitrogen dynamics and cropping system sustainability in the Andean segion of South America with a new tool available for computers and smartphones

    OpenAIRE

    Jorge A. Delgado; Alwang, Jeffrey; Escudero, Luis; Saavedra, Ana Karina; Monar, Carlos; Barrera, Victor H.; Botello, Rubén

    2013-01-01

    Implementation of best soil and water conservation practices will be key to addressing challenges we will confront in the 21st century. With challenges such as climate change and continued population growth, there is a need for tools that can help us quickly assess how to maintain sustainability of cropping systems, which will be essential for maximizing agricultural production, especially in fragile soils of the Andean region of South America. Nitrogen (N) inputs are key for agricultural pro...

  6. Congestion and Residential Moving Behaviour

    OpenAIRE

    Larsen, Morten Marott; Pilegaard, Ninette; van Ommeren, Jos

    2004-01-01

    In this paper we study how congestion and residential movingbehaviour are interrelated using a two-region job search model. Workerschoose optimally between interregional commuting and residential movingto live closer to the place of work. This choice affects the external costs ofcommuting due to congestion. The welfare maximizing road tax is derived.We demonstrate that road pricing may not only reduce congestion but alsoincrease total residential moving costs in the economy. One of the mainco...

  7. Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data

    Science.gov (United States)

    Baxter, Lisa K.; Clougherty, Jane E.; Paciorek, Christopher J.; Wright, Rosalind J.; Levy, Jonathan I.

    Previous studies have identified associations between traffic-related air pollution and adverse health effects. Most have used measurements from a few central ambient monitors and/or some measure of traffic as indicators of exposure, disregarding spatial variability and factors influencing personal exposure-ambient concentration relationships. This study seeks to utilize publicly available data (i.e., central site monitors, geographic information system, and property assessment data) and questionnaire responses to predict residential indoor concentrations of traffic-related air pollutants for lower socioeconomic status (SES) urban households. As part of a prospective birth cohort study in urban Boston, we collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO 2) and fine particulate matter (PM 2.5) in 43 low SES residences across multiple seasons from 2003 to 2005. Elemental carbon (EC) concentrations were determined via reflectance analysis. Multiple traffic indicators were derived using Massachusetts Highway Department data and traffic counts collected outside sampling homes. Home characteristics and occupant behaviors were collected via a standardized questionnaire. Additional housing information was collected through property tax records, and ambient concentrations were collected from a centrally located ambient monitor. The contributions of ambient concentrations, local traffic and indoor sources to indoor concentrations were quantified with regression analyses. PM 2.5 was influenced less by local traffic but had significant indoor sources, while EC was associated with traffic and NO 2 with both traffic and indoor sources. Comparing models based on covariate selection using p-values or a Bayesian approach yielded similar results, with traffic density within a 50 m buffer of a home and distance from a truck route as important contributors to indoor levels of NO 2 and EC, respectively. The Bayesian approach also highlighted the uncertanity in the

  8. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  9. Canada's first residential green power program

    International Nuclear Information System (INIS)

    A corporate review of ENMAX, Calgary's electric system was presented as one of the business case studies. This distribution utility provides service to more than 300,000 residential and commercial customers. The company also has contracts with Natural Resources Canada and Environment Canada to supply them with 'greenpower' for use in their own facilities. In an effort to meet the customer and global demand for environmental protection, and to sharpen the company's corporate image, ENMAX decided to become fully 'EcoLogo' certified. The company conducted a survey among residential consumers and found that nearly 40 per cent of the respondents were willing to pay a premium of up to $ 15 per month for green energy, if it leads to emissions reduction. Encouraged by these results, ENMAX launched a residential customer program with Vision Quest Wind Electric. Details of the promotion campaign to popularize wind energy among prospective customers is described. Success of the residential program has led to current plans to also develop a commercial program

  10. EMDEX Project Residential Study: Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, T.D.; Rankin, R.F.; Alldredge, J.R.; Senior, R.S. (Bracken (T. Dan), Inc., Portland, OR (United States))

    1993-02-01

    The Electric and Magnetic Field Project for Utilities - The EMDEX Project Residential Study described in this report was designed to examine residential magnetic field measurements by collecting magnetic field measurements and other data at utility employee residences over a 25 month period. The specific objectives of this study were: to investigate relationships between residential wire code category and magnetic field measurements; to investigate relationships between various types of magnetic field measurements; and to study residential magnetic field measurements over time. This report presents the results of the first 17 months of data collection. The residences of up to 12 employees were selected at each of 39 EPRI member utilities. Information about the house and nearby electric power system were collected along with a variety of magnetic field measurement data. A universal wire code scheme for electric power system wiring was used to classify houses in five wire code categories: very high current configuration (VHCC); ordinary high current configuration (OHCC); ordinary low current configuration (OLCC); very low current configuration (VLCC), and underground (UG). Measurements were made up to 5 times at each of 380 houses. For each measurement period the site coordinator used an EMDEX magnetic field meter to obtain measurements at specific locations in and around the house. This was followed by three days of measurements during which both long-term data at a fixed location and personal exposure data were collected. Analysis indicated that: VHCC category houses generally had higher magnetic field levels than the other categories; the overlap in distributions of summary measures was considerable for all wire code categories; this overlap made wire code category a poor predictor of residential magnetic field levels at residences as vice versa.

  11. Assessing the effects of customer innovativeness, environmental value and ecological lifestyles on residential solar power systems install intention

    International Nuclear Information System (INIS)

    To understand the impact of environmental value, ecological lifestyle, customer innovativeness on customer intention to install solar power system (SPS) in their private houses, an empirical model was proposed. Customer innovativeness was treated as a second-order construct with two first-order dimensions, with each of the latter being measured by means of reflective indicators. Using structural equation modeling, data collected from 203 college students and faculties at a University of Taiwan were tested against the model. We found that environmental value has a positive impact on ecological lifestyle and SPS install intention. Although ecological lifestyle associates positively with SPS install intention, the effect disappears when environmental value is included in the model. The effect of customer innovativeness on SPS install intention results from the tendency of customer novelty seeking, while the impact of customer independent judgment-making on SPS install intention is insignificant. The model explained 76% of the total variations within SPS install intention. Managerial implications for promoting of SPS are considered, and suggestions for further research provided. - Highlights: • We integrate customer innovativeness into an environmental behavior model. • The impact of customer innovativeness on SPS install intention was confirmed. • The impact of novelty seeking on SPS install intention has been found. • Environmental value is the most important factor for SPS install intention. • The model explained 76% of the total variations within SPS install intention

  12. Residential Ventilation: A Review of Established Systems and a Laboratory Investigation of the Fine Wire Heat Recovery Ventilator

    Science.gov (United States)

    von Hippel, Matthew Hans Benjamin

    A novel vehicle concept is introduced and its feasibility as an autonomous, self-propelled weather buoy for use in violent storm systems is analyzed. The vehicle concept is a spar sailboat -- consisting of only a deep keel and a sailing rig; no hull -- a design which is intended to improve longevity in rough seas as well as provide ideal placement opportunities for meteorological sensors. To evaluate the hypothetical locomotive and meteorological observation capabilities of the concept sailing spar in hurricane-like conditions, several relevant oceanographic phenomena are analyzed with the performance of the concept vehicle in mind. Enthalpy transfer from the ocean to the air is noted as the primary driving force of tropical storms and therefore becomes the measuring objective of the sailing spar. A discrete, iterative process for optimizing driving force while achieving equilibrium between the four airfoil surfaces is used to steer the sailing spar towards any objective despite variable and opposing simulated winds. Based on the limitations of sailing theory, logic is developed to autonomously navigate the sailing spar between human-selected waypoints on a digitized geographic map. Due the perceived inability to measure air-sea enthalpy exchange because the nature of tropical storms and due to its small scale, the sailing spar is deemed infeasible as a hurricane-capable meteorological observation platform.

  13. Numerical Simulation on Variable Pressure Exhaust System of Residential Kitchens%住宅厨房变压式排气系统的数值模拟

    Institute of Scientific and Technical Information of China (English)

    樊越胜; 邵治民

    2011-01-01

    In this paper,according to the smoke problem in the centralized exhaust system of residential kitchen in high-rise buildings, the CFD technology was applied to simulate the velocity and pressure fields of three type exhaust passages, and the simulation results were compared, analyzed and theoretically verified.The results shown that the service effect of the system that only equipped with the guidance device was good, the averaged exhaust volume was 371.7 m3/h, and the difference between the maximum and the minimum exhaust volumes of the user was 176.3 m3/h.If the exhaust volume of the range hood with the oil and smoke collection efficiency of 90% was taken as the design value, for the aforesaid system with good exhaust effect, when the simultaneous service coefficient was 0.66,60% of the users would not reach the design exhaust volume, the static pressure value of the power-off branch was 116.2 ~ 197.3 Pa,and the possibility of smoke stream back flow was large.%本文针对高层住宅厨房集中式排气系统串烟的问题,运用CFD技术对3种形式的排气道进行了速度场和压力场的模拟计算,并对模拟结果进行了对比分析和理论验证.结果表明:只设导流装置的系统使用效果较好,系统的平均排气量为371.7 m3/h,用户最大与最小排气量的差值为176.3 m3/h;若以吸油烟机油烟捕集效率为90%的排气量作为设计值,即使对于排气效果较好的上述系统,当同时使用系数为0.66时,约有60%的用户达不到设计排气量;未开机用户支管的静压值在116.2~197.3 Pa之间,出现串烟的可能性较大.

  14. Effects on annual cost of solar/air-heat utilization system of carbon tax and interest rate for a residential house; Jutakuyo taiyo/taikinetsu riyo system no nenkan keihi ni oyobosu tansozei kinri no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Q.; Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1996-10-27

    In recent years, a system has been proposed that utilizes river heat, air-heat, exhaust heat from a cooler, etc., in addition to natural energy for the heat pump. With the introduction of such system, the amount of energy used and that of CO2 exhaust will be greatly reduced, but annual expenses will be increased as it stands. In order to improve the cost efficiency of the system, a proposal has been made for the introduction of an economic policy such as the carbon tax and a low interest financing system. With these matters in the background, the subject study predicts the production of solar cells in the future and, on the basis of this production, determines the price, conversion efficiency and equipment energy of solar cells in the future. Using these values and taking into consideration the introduction of the carbon tax and the low interest financing system, the optimum area was determined for solar cells and heat concentrators in a future residential solar/air-heat energy system. The carbon tax, being imposed on all CO2 discharges, had a large effect. Moreover, as the tax increased, annual expenses decreased for the solar/air-heat system. 3 refs., 6 figs.

  15. ASHRAE and residential ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  16. Spatial access to residential care resources in Beijing, China

    Directory of Open Access Journals (Sweden)

    Cheng Yang

    2012-08-01

    Full Text Available Abstract Background As the population is ageing rapidly in Beijing, the residential care sector is in a fast expansion process with the support of the municipal government. Understanding spatial accessibility to residential care resources by older people supports the need for rational allocation of care resources in future planning. Methods Based on population data and data on residential care resources, this study uses two Geographic Information System (GIS based methods – shortest path analysis and a two-step floating catchment area (2SFCA method to analyse spatial accessibility to residential care resources. Results Spatial accessibility varies as the methods and considered factors change. When only time distance is considered, residential care resources are more accessible in the central city than in suburban and exurban areas. If care resources are considered in addition to time distance, spatial accessibility is relatively poor in the central city compared to the northeast to southeast side of the suburban and exurban areas. The resources in the northwest to southwest side of the city are the least accessible, even though several hotspots of residential care resources are located in these areas. Conclusions For policy making, it may require combining various methods for a comprehensive analysis. The methods used in this study provide tools for identifying underserved areas in order to improve equity in access to and efficiency in allocation of residential care resources in future planning.

  17. Congestion and residential moving behaviour

    DEFF Research Database (Denmark)

    Larsen, Morten Marott; Pilegaard, Ninette; Van Ommeren, Jos

    2008-01-01

    we study how congestion and residential moving behaviour are interrelated, using a two-region job search model. Workers choose between interregional commuting and residential moving, in order to live closer to their place of work. This choice affects the external costs of commuting, due to...

  18. The Dimensions of Residential Segregation.

    Science.gov (United States)

    Massey, Douglas S.; Denton, Nancy A.

    1988-01-01

    Evaluates 20 potential indicators of residential segregation using census data on Hispanics, Blacks, Asians, and non-Hispanic Whites in 60 U.S. metropolitan areas. Factor-analyzes the results to select a single best indicator for each of five dimensions of residential segregation. Contains 69 references and 22 statistical formulas. (SV)

  19. Linking integration and residential segregation

    NARCIS (Netherlands)

    Bolt, G.S.; Özüekren, A.S.; Phillips, Deborah

    2010-01-01

    In the introduction to this special issue of JEMS, we question the strong link which is often made between the integration of minority ethnic groups and their residential segregation. In the literature on neighbourhood effects, the residential concentration of minorities is seen as a major obstacle

  20. Residential Segregation and School Integration.

    Science.gov (United States)

    Rivkin, Steven G.

    1994-01-01

    Asserts that school districts' efforts to integrate schools have failed to ameliorate the racial isolation of black students. Finds that schools remain segregated primarily because of continued residential segregation and that school integration efforts have had little long-term effect on residential segregation. (CFR)

  1. Demand-side management of residential water use in Vancouver

    OpenAIRE

    Doberstein, Carey Dylan

    2008-01-01

    This study considers policy alternatives that the City of Vancouver could explore to encourage water conservation among residential water users. Using both quantitative and qualitative data, the study identifies the factors that influence per capita residential water demands in Canadian cities and the relevant policy instruments applied to encourage water conservation. Primary data sources are Environment Canada surveys of municipal water systems and case studies from the United States of bes...

  2. Development of energy labels for residential buildings in Hong Kong

    OpenAIRE

    Lee, RKH; Hui, SCM

    2009-01-01

    To promote energy efficiency for residential buildings in Hong Kong, a research has been conducted to investigate the characteristics of energy consumption in the residential buildings and develop a suitable energy labelling system for assessing the building energy performance. The aims of the research are to review worldwide experience, study the feasibility of establishing building energy labels in Hong Kong, and evaluate the key factors for design and implementation of the building energy ...

  3. Integrated Green Roofs System and its Role of Achieving Sustainability in Residential Buildings in Urban Area in Athens, Greece and Famagusta, North Cyprus

    Directory of Open Access Journals (Sweden)

    Seyed Mehran shahidipour

    2014-06-01

    Full Text Available In this paper, the characteristics and importance of the green roof in urban area would investigate in some residential buildings in Athens, Greece and then, some strategies give to integrate green roof in residential buildings in Famagusta, north Cyprus due to the importance of energy saving and thermal comfort in residential buildings. These days, sustainable architecture is spreading around the world. Therefore, Sustainable architecture has important role in design buildings and urban design due to high amount of energy use and global warming around the world. There are different methods in sustainable design and one of them that has significant role is design green roof. Green roof integrated to the roof of the buildings to provide the suitable indoor temperature without spending high amount of budget. The methodology is qualitative type that trough the literature review and survey would be understood the importance and role of the green roof in both architecture and urban area. There are many significant architects like Wright that they understood how greenery would improve the function of the building in terms of provide thermal comfort and indoor temperature for the residences, and green roof as well. In Famagusta, there is not any green roof however, the design and integrating of green roof is inexpensive. Green roof should design properly depend on the characteristic of the climate of every place so, the location, temperature, and humidity, location, and wind have influence on the design of the green roof.

  4. Comprehensive areal model of residential heating demands

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, R.G. Jr.

    1978-01-01

    Data sources and methodology for modeling annual residential heating demands are described. A small areal basis is chosen, census tract or minor civil division, to permit estimation of demand densities and economic evaluation of community district heating systems. The demand model is specified for the entire nation in order to provide general applicability and to permit validation with other published fuel consumption estimates for 1970.

  5. Evaluation of evolving residential electricity tariffs

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-03-22

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. A relatively simple two-tiered pricing system (charges by usage under/over baseline for the home's climate zone) was replaced in the summer of 2001 by a more complicated five-tiered system (usage below baseline and up to 30percent, 100percent, 200percent, and 300percent+ over baseline). In 2009, PG&E began the process of upgrading its residential customers to Smart Meters and laying the groundwork for time of use pricing, due to start in 2011. This paper examines the history of the tiered pricing system, discusses the problems the utility encountered with its Smart Meter roll out, and evaluates the proposed dynamic pricing incentive structures. Scenario analyses of example PG&E customer bills will also be presented. What would these residential customers pay if they were still operating under a tiered structure, and/or if they participated in peak hour reductions?

  6. Building America Case Study: Solar Water Heating in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    R. Aldrich and J. Williamson

    2016-05-01

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2.) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support form the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  7. Estimated United States Residential Energy Use in 2005

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  8. The American Indian Summer Institute in Earth System Science (AISESS) at UC Irvine: A Two-Week Residential Summer Program for High School Students

    Science.gov (United States)

    Johnson, K. R.; Polequaptewa, N.; Leon, Y.

    2012-12-01

    Native Americans remain severely underrepresented in the geosciences, despite a clear need for qualified geoscience professionals within Tribal communities to address critical issues such as natural resource and land management, water and air pollution, and climate change. In addition to the need for geoscience professionals within Tribal communities, increased participation of Native Americans in the geosciences would enhance the overall diversity of perspectives represented within the Earth science community and lead to improved Earth science literacy within Native communities. To address this need, the Department of Earth System Science and the American Indian Resource Program at the University California have organized a two-week residential American Indian Summer Institute in Earth System Science (AISESS) for high-school students (grades 9-12) from throughout the nation. The format of the AISESS program is based on the highly-successful framework of a previous NSF Funded American Indian Summer Institute in Computer Science (AISICS) at UC Irvine and involves key senior personnel from the AISICS program. The AISESS program, however, incorporates a week of camping on the La Jolla Band of Luiseño Indians reservation in Northern San Diego County, California. Following the week of camping and field projects, the students spend a week on the campus of UC Irvine participating in Earth System Science lectures, laboratory activities, and tours. The science curriculum is closely woven together with cultural activities, native studies, and communication skills programs The program culminates with a closing ceremony during which students present poster projects on environmental issues relevant to their tribal communities. The inaugural AISESS program took place from July 15th-28th, 2012. We received over 100 applications from Native American high school students from across the nation. We accepted 40 students for the first year, of which 34 attended the program. The

  9. Financing Non-Residential Photovoltaic Projects: Options and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark

    2009-01-09

    Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years

  10. National residential radon survey

    International Nuclear Information System (INIS)

    This paper reports on the Superfund Amendments and reauthorization Act (SARA) which requires the EPA Administrator to conduct a national assessment of radon levels where people normally live and work, including educational institutions. The National Residential Radon Survey (NRRS) is the first comprehensive effort to estimate the frequency distribution of average annual radon concentrations nationwide. Also, the survey will provide data to correlate radon concentrations with construction characteristics. A stratified three stage area probability sample was used to randomly select approximately 12,000 homes. A questionnaire will provide information on living patterns, house construction, and heating, ventilation, and air conditioning (HVAC) characteristics. Two to four alpha-track detectors were placed in each home. It is expected that approximately 5,000 residents will return detectors with readable radon concentrations. With this data, EPA will be able to accurately estimate the frequency distribution of annual average radon concentrations nationwide

  11. Timekeeping in the Americas

    Science.gov (United States)

    López, J. M.; Lombardi, M. A.

    2015-10-01

    Time and its measurement belong to the most fundamental core of physics, and many scientific and technological advances are directly or indirectly related to time measurements. Timekeeping is essential to everyday life, and thus is the most measured physical quantity in modern societies. Time can also be measured with less uncertainty and more resolution than any other physical quantity. The measurement of time is of the utmost importance for many applications, including: global navigation satellite systems, communications networks, electric power generation, astronomy, electronic commerce, and national defense and security. This paper discusses how time is kept, coordinated, and disseminated in the Americas.

  12. 家用熔融碳酸盐燃料电池发电系统日常运行的遗传算法优化%Daily Operation Optimization of a Residential Molten Carbonate Fuel Cell Power System Using Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    李勇; 曹广益; 余晴春

    2006-01-01

    To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.

  13. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

  14. Price Responsiveness of Residential, Industrial and Commercial Water Demand in Sri Lanka

    OpenAIRE

    Dinusha Dharmaratna; Jaai Parasnis

    2010-01-01

    Appropriate pricing of water is critical for improving the efficiency of pipe-borne water supply systems in many developing countries. However, existing literature on residential, industrial and commercial water demand has primarily focused on developed countries. This paper estimates the demand for pipe-borne water from residential, industrial and commercial sectors in Sri Lanka. Price elasticity for residential consumers ranges from -0.06 to -0.58 and the income elasticity varies from 0.04 ...

  15. Medication administration errors for older people in long-term residential care

    OpenAIRE

    Szczepura Ala; Wild Deidre; Nelson Sara

    2011-01-01

    Abstract Background Older people in long-term residential care are at increased risk of medication prescribing and administration errors. The main aim of this study was to measure the incidence of medication administration errors in nursing and residential homes using a barcode medication administration (BCMA) system. Methods A prospective study was conducted in 13 care homes (9 residential and 4 nursing). Data on all medication administrations for a cohort of 345 older residents were recorde...

  16. Utility competition and residential customers

    Energy Technology Data Exchange (ETDEWEB)

    Studness, C.M.

    1994-11-01

    Residential customers have found themselves either ignored or ill-used by the major participants in the struggle over utility competition. No group is seeking to secure them the benefits of competition, and those who oppose competition have curried their favor by conjuring up misleading horror stories about how competition would harm them. Yet residential customers ultimately stand to gain as much from competition as larger customers.

  17. Lupus Foundation of America

    Science.gov (United States)

    ... You. Learn More About the Lupus Foundation of America We are devoted to solving the mystery of ... Support for Lupus Research The Lupus Foundation of America applauds the U.S. Senate Appropriations Committee for voting ...

  18. Sarcoma Foundation of America

    Science.gov (United States)

    ... Mission The mission of the Sarcoma Foundation of America (SFA) is to advocate for sarcoma patients by ... behalf of everyone at the Sarcoma Foundation of America (SFA),THANK YOU! The Celebration of Life drew ...

  19. America's Young Adults

    Science.gov (United States)

    ... About the Forum | Publications | Data Sources | Help Search America's Children: Key National Indicators of Well-Being, 2015 ... Care Quality List of Tables List of Figures America's Children at a Glance Forum Agencies Data Source ...

  20. America's Blood Centers

    Science.gov (United States)

    ... or less. Please donate now! Full Stoplight Report America's Blood Centers is... FEATURED TODAY Support the Foundation ... purchase will be donated to the Foundation for America's Blood Centers! Simply Click Here! "We Are" This ...

  1. Discussion on existing problems and transformation of solar water heating system of residential buildings%谈住宅建筑太阳能热水系统现存问题和改造

    Institute of Scientific and Technical Information of China (English)

    翁学文

    2012-01-01

    This paper analyzes a series problems existing in original solar water heating system of urban residential buildings, and puts forward the transformation measures and transformation principles of solar water heating system by combining with the characteristics of various solar water heating systems, with a view to guide practice.%针对当前城市住宅建筑中原有太阳能热水系统存在的一系列问题进行了分析,结合不同形式太阳能热水系统的特点,提出了建筑太阳能热水系统改造措施和改造原则,以指导实践。

  2. Building America Performance Analysis Procedures for Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2006-05-01

    Because there are more than 101 million residential households in the United States today, it is not surprising that existing residential buildings represent an extremely large source of potential energy savings. Because thousands of these homes are renovated each year, Building America is investigating the best ways to make existing homes more energy-efficient, based on lessons learned from research in new homes. The Building America program is aiming for a 20%-30% reduction in energy use in existing homes by 2020. The strategy for the existing homes project of Building America is to establish technology pathways that reduce energy consumption cost-effectively in American homes. The existing buildings project focuses on finding ways to adapt the results from the new homes research to retrofit applications in existing homes. Research activities include a combination of computer modeling, field demonstrations, and long-term monitoring to support the development of integrated approaches to reduce energy use in existing residential buildings. Analytical tools are being developed to guide designers and builders in selecting the best approaches for each application. Also, DOE partners with the U.S. Environmental Protection Agency (EPA) to increase energy efficiency in existing homes through the Home Performance with ENERGY STAR program.

  3. Building ESD in Latin America

    Science.gov (United States)

    Journal of Education for Sustainable Development, 2007

    2007-01-01

    To encourage efforts for furthering the UN DESD agenda in Latin America, a meeting titled "Building Education for Sustainable Development" was held in Costa Rica from 31 October to 2 November 2006. Plenary sessions were interspersed with working groups to look at how ESD can be integrated in formal and non-formal education systems, and to make…

  4. Spina Bifida Association of America

    Science.gov (United States)

    Exceptional Parent, 1974

    1974-01-01

    The Statement of the Spina Bifida Association of America (SBAA) explains SB as a malformation of the central nervous system, reports the formation of SBAA in 1974, explains SBAA's emphasis on local chapter organization, and describes SBAA services, including a bimonthly publication, public education efforts, and research validation projects. (GW)

  5. A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications

    International Nuclear Information System (INIS)

    A global supervisory strategy for a micro-grid power generation system that comprises wind and photovoltaic generation subsystems, a flywheel storage system, and domestic loads connected both to the hybrid power generators and to the grid, is developed in this paper. The objectives of the supervisor control are, firstly, to satisfy in most cases the load power demand and, secondly, to check storage and grid constraints to prevent blackout, to reduce energy costs and greenhouse gas emissions, and to extend the life of the flywheel. For these purposes, the supervisor determines online the operation mode of the different generation subsystems, switching from maximum power conversion to power regulation. Decision criteria for the supervisor based on actual variables are presented. Finally, the performance of the supervisor is extensively assessed through computer simulation using a comprehensive nonlinear model of the studied system. - Highlights: • We supervise a micro-grid power generation system with an objective to produce clipping grid consumption. • The supervisor switch online from maximum power conversion to power regulation. • We provide services both for domestic users and for the distribution network manager. • The developed algorithm is tested and validated for different scenarios

  6. 基于三层架构的小区物业信息管理系统的设计%Design of the information management system of small residential district property using three-tier architecture

    Institute of Scientific and Technical Information of China (English)

    赵美琪; 胡政

    2013-01-01

    主要阐述了采用先进的三层架构编程理念,使用java程序设计语言与数据库进行结合,以软件工程的研究方法,从系统需求分析、总体设计、详细设计等几个方面完成了适合小区物业的信息管理系统.%This article mainly elaborates the programming concept using advanced three-tier architecture.It designs the information management system of small residential district property using Java programming language with database,under the software engineering method,from the aspect of analyzing system demands,overall designing,and detailed design.

  7. 美国公立学校的教师终身聘用制改革%Reform of Tenure System for Public School Teachers in America

    Institute of Scientific and Technical Information of China (English)

    曾晓洁

    2012-01-01

    奥巴马政府将公立学校教师终身聘用制改革作为其教育政策的一个核心,积极推动相关改革。本文对美国公立学校教师终身聘用制改革的背景、联邦政府的举措、地方政府的改革方案及相关争议等进行了厘清与分析。%The present American government takes reform of tenure system for public school teachers as a core of its educational policies, and actively promotes the related reform. This article clarifies and analyzes the background, measures of the federal government ,reform program of the local government and related debates of the reform of tenure system for public school teachers in America.

  8. Deep Residential Retrofits in East Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Philip R [ORNL; Hendrick, Timothy P [ORNL; Christian, Jeffrey E [ORNL; Jackson, Roderick K [ORNL

    2012-04-01

    Executive Summary Oak Ridge National Laboratory (ORNL) is furthering residential energy retrofit research in the mixed-humid climate of East Tennessee by selecting 10 homes and guiding the homeowners in the energy retrofit process. The homeowners pay for the retrofits, and ORNL advises which retrofits to complete and collects post-retrofit data. This effort is in accordance with the Department of Energy s Building America program research goal of demonstrating market-ready energy retrofit packages that reduce home energy use by 30 50%. Through this research, ORNL researchers hope to understand why homeowners decide to partake in energy retrofits, the payback of home energy retrofits, and which retrofit packages most economically reduce energy use. Homeowner interviews help the researchers understand the homeowners experience. Information gathered during the interviews will aid in extending market penetration of home energy retrofits by helping researchers and the retrofit industry understand what drives homeowners in making positive decisions regarding these retrofits. This report summarizes the selection process, the pre-retrofit condition, the recommended retrofits, the actual cost of the retrofits (when available), and an estimated energy savings of the retrofit package using EnergyGauge . Of the 10 households selected to participate in the study, only five completed the recommended retrofits, three completed at least one but no more than three of the recommended retrofits, and two households did not complete any of the recommended retrofits. In the case of the two homes that did none of the recommended work, the pre-retrofit condition of the homes and the recommended retrofits are reported. The five homes that completed the recommended retrofits are monitored for energy consumption of the whole house, appliances, space conditioning equipment, water heater, and most of the other circuits with miscellaneous electric loads (MELs) and lighting. Thermal comfort is

  9. 77 FR 75988 - Notice of Final Determination of Sales at Less Than Fair Value: Large Residential Washers From...

    Science.gov (United States)

    2012-12-26

    ... August 1, 2012, we issued a supplemental questionnaire to Samsung Electronics Co., Ltd. (Samsung... ``Final Determination Margin Calculation for Samsung Electronics Co., Ltd. and Samsung Electronics America... Electronics Co., Ltd. in the Less-Than-Fair-Value Investigation of Large Residential......

  10. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  11. Energy-Use Feedback Engineering - Technology and Information Design for Residential Users

    OpenAIRE

    Dalen, Anders

    2015-01-01

    The research presented in this study covers a first design iteration of energy feedback for residential users. This research contributes with a framework and new insights into the study of energy-use information for residential users, which exemplifies the challenges and potential of integrating information technology in this part of the energy system.

  12. 12 CFR 32.7 - Residential real estate loans, small business loans, and small farm loans.

    Science.gov (United States)

    2010-01-01

    ..., small business, or small farm loans, or concerns about the bank's overall credit risk management systems... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Residential real estate loans, small business... OF THE TREASURY LENDING LIMITS § 32.7 Residential real estate loans, small business loans, and...

  13. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    Science.gov (United States)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  14. White Residential Segregation in U.S. Metropolitan Areas: Conceptual Issues, Patterns, and Trends from the US Census, 1980 to 2010

    OpenAIRE

    Iceland, John; Sharp, Gregory,

    2013-01-01

    Racial and ethnic diversity continues to spread to communities across the United States. Rather than focus on the residential patterns of specific minority or immigrant groups, this study examines changing patterns of white residential segregation in metropolitan America. Using data from the 1980 to 2010 decennial censuses, we calculate levels of white segregation using two common measures, analyze the effect of defining the white population in different ways, and, drawing upon the group thre...

  15. Tree species composition in areas of Atlantic Forest in southeastern Brazil is consistent with a new system for classifying the vegetation of South America

    Directory of Open Access Journals (Sweden)

    Pedro Vasconcellos Eisenlohr

    2014-06-01

    Full Text Available Rigorous and well-defined criteria for the classification of vegetation constitute a prerequisite for effective biodiversity conservation strategies. In 2009, a new classification system was proposed for vegetation types in extra-Andean tropical and subtropical South America. The new system expanded upon the criteria established in the existing Brazilian Institute of Geography and Statistics classification system. Here, we attempted to determine whether the tree species composition of the formations within the Atlantic Forest Biome of Brazil is consistent with this new classification system. We compiled floristic surveys of 394 sites in southeastern Brazil (between 15º and 25ºS; and between the Atlantic coast and 55ºW. To assess the floristic consistency of the vegetation types, we performed non-metric multidimensional scaling (NMDS ordination analysis, followed by multifactorial ANOVA. The vegetation types, especially in terms of their thermal regimes, elevational belts and top-tier vegetation categories, were consistently discriminated in the first NMDS axis, and all assessed attributes showed at least one significant difference in the second axis. As was expected on the basis of the theoretical background, we found that tree species composition, in the areas of Atlantic Forest studied, was highly consistent with the new system of classification. Our findings not only help solidify the position of this new classification system but also contribute to expanding the knowledge of the patterns and underlying driving forces of the distribution of vegetation in the region.

  16. America`s energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, C.P.

    1998-04-01

    The gist of the paper is to demonstrate that the economical utilization of the country`s energy supply requires generating electric power wherever hydraulic or fuel energy is available, and collecting the power electrically, just as it is distributed electrically. In the first section a short review of the country`s energy supply in fuel and water power is given, and it is shown that the total potential hydraulic energy of the country is about equal to the total utilized fuel energy. In the second section it is shown that the modern synchronous station is necessary for large hydraulic powers, but the solution of the problem of the economic development of the far more numerous smaller water powers is the adoption of the induction generator. However, the simplicity of the induction generator station results from the relegation of all the functions of excitation, regulation, and control to the main synchronous station. The economic advantage of the induction generator station is that its simplicity permits elimination of most of the hydraulic development by using, instead of one large synchronous station, a number of induction generator stations and collecting their power electrically. The third section considers the characteristics of the induction generator and the induction-generator station, and its method of operation, and discusses the condition of ``dropping out of step of the induction generator`` and its avoidance. In the appendix the corresponding problem is pointed out with reference to fuel power, showing that many millions of kilowatts of potential power are wasted by burning fuel and thereby degrading its energy, that could be recovered by interposing simple steam turbine induction generators between the boiler and the steam heating systems, and collecting their power electrically.

  17. Analysis of Noise Pollution Source and Control Measures in Residential Drainage System%基于住宅排水系统噪声污染源分析及防控措施*

    Institute of Scientific and Technical Information of China (English)

    王凤莲; 常鹏

    2014-01-01

    噪声污染是环境公害之一,而住宅内的噪声污染大部分来源于建筑排水系统,这种污染直接影响人们的舒适度,甚至有碍人体健康。随着人们生活水平的提高,愈来愈迫切地追求舒适、安静的居住环境,消除噪声污染问题也就日益受到人们的重视。主要针对室内排水系统噪声的形成原因进行研究与分析,旨在找到相应减轻或防治办法,努力为住户创造一个安静、舒适的居住氛围。%Noise pollution is one of the environmental pollution,and the residential noise pollution is mainly from the building water supply and drainage system,which directly affects people's comfort,and even hin-ders human health.With the improvement of people's living standard,the pursuit of a comfortable,quiet residential environment becomes more and more urgent,so to eliminate the noise pollution is increasingly valued by people.The cause of the noise of indoor drainage system is researched and analyzed to find the corresponding control measures and to create a quiet,comfortable living environment for residents.

  18. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24

  19. Trends of Sustainable Residential Architecture

    OpenAIRE

    Narvydas, A

    2015-01-01

    The article is based on Master’s research conducted during Scottish Housing Expo 2010. The aim of the research was to determine the prevailing trends in sustainable residential architecture. Each trend can be described by features detected during visual and technical observation of project data. Based on that architects may predict possible problems related to a specific trend.

  20. Convergence of Residential Gateway Technology

    NARCIS (Netherlands)

    Hartog, F.T.H. den; Balm, M.; Jong, C.M. de; Kwaaitaal, J.J.B.

    2004-01-01

    A new OSI-based model is described that can be used for the classification of residential gateways. It is applied to analyze current gateway solutions and draw evolutionary paths for the medium to long term. From this it is concluded that particularly set-top boxes and broadband modems, as opposed t