WorldWideScience

Sample records for america residential radon

  1. Working towards residential radon survey in South America

    International Nuclear Information System (INIS)

    Information about residential radon levels in low and middle income countries is very sparse. In response to the World Health Organization initiative in the International Radon Project, we propose a research project that will address this knowledge gap in South America by conducting a residential radon survey. Following initial in vitro and in vivo studies of radon and studies of uranium miners exposed to radon, over twenty large case-control studies of lung cancer risk from exposure to residential radon have been completed worldwide by year 2004. Recently pooled data from these individual studies have been analyzed. These collaborative analyses of the indoor studies in Europe, North America, and China provide strong direct evidence that radon is causing a substantial number of lung cancers in the general population. To reduce radon lung cancer risk, national authorities must have methods and tools based on solid scientific evidence to develop sound public health policies. We propose to conduct a survey in ten South American countries using the distribution and analysis of passive alpha tracking detectors in houses selected at random in pre-selected cities in each participating country. We also present an approach to estimate the cost of carrying out such a survey and the radon laboratory infrastructure needed. The results of the proposed survey will allow to conduct assessment of the exposure to residential radon in the populations of South American countries and to assess the health impact of this exposure. The results of the project will also help national health authorities in developing national residential radon action levels and regulations, as well as provide public health guidance for radon awareness and mitigation. (author)

  2. Working towards residential Radon survey in South America

    International Nuclear Information System (INIS)

    Information about residential radon levels in low and middle income countries is very sparse. In response to the World Health Organization initiative in the International Radon Project, we propose a research project that will address this knowledge gap in South America by conducting a residential radon survey. Following initial in vitro and in vivo studies of radon and studies of uranium miners exposed to radon, over twenty large case-control studies of lung cancer risk from exposure to residential radon have been completed worldwide by year 2004. Recently pooled data from these individual studies have been analyzed. These collaborative analyses of the indoor studies in Europe, North America, and China provide strong direct evidence that radon is causing a substantial number of lung cancers in the general population. To reduce radon lung cancer risk, national authorities must have methods and tools based on solid scientific evidence to develop sound public health policies. We propose to conduct a survey in ten South American countries using the distribution and analysis of passive alpha tracking detectors in houses selected at random in pre-selected cities in each participating country. We also present an approach to estimate the cost of carrying out such a survey and the radon laboratory infrastructure needed. The results of the proposed survey will allow to conduct assessment of the exposure to residential radon in the populations of South American countries and to assess the health impact of this exposure. The results of the project will also help national health authorities in developing national residential radon action levels and regulations, as well as provide public health guidance for radon awareness and mitigation. (author)

  3. Planning meeting combined analysis, North America residential radon studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report describes the Third International Department of Energy/ Commission of European Communities Workshop on Residential Radon Epidemiology held in February 1995 in Baltimore, MD. This culminates a major effort begun 1988, co-sponsored by the DOE and the CEC Radiation Protection Programme to identify and bring together all those scientists worldwide performing epidemiological case control studies of residential radon and lung cancer. Two prior meetings were held in 1989 and 1991. The goal of this effort is to work with the investigators and to pool these studies to increase their limited statistical power and to maximize any information that could be gained from them. That goal has now been met. At this Workshop the task moved from planning and agreement to implementation, as many of the studies were finally being completed and published. This report provides a summary of the Workshop as well as that of the first implementation workgroup meeting hosted by Health Canada. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  4. National residential radon survey

    International Nuclear Information System (INIS)

    This paper reports on the Superfund Amendments and reauthorization Act (SARA) which requires the EPA Administrator to conduct a national assessment of radon levels where people normally live and work, including educational institutions. The National Residential Radon Survey (NRRS) is the first comprehensive effort to estimate the frequency distribution of average annual radon concentrations nationwide. Also, the survey will provide data to correlate radon concentrations with construction characteristics. A stratified three stage area probability sample was used to randomly select approximately 12,000 homes. A questionnaire will provide information on living patterns, house construction, and heating, ventilation, and air conditioning (HVAC) characteristics. Two to four alpha-track detectors were placed in each home. It is expected that approximately 5,000 residents will return detectors with readable radon concentrations. With this data, EPA will be able to accurately estimate the frequency distribution of annual average radon concentrations nationwide

  5. Radon in residential buildings

    International Nuclear Information System (INIS)

    For the investigation, a passive integrating radon dose meter developed at the KfK Karlsruhe was used. This institute also carried out the evaluation of all dose meters. The inquiry data were collected and statistically evaluated centrally by the Radiation Hygiene Institute of the German Health Authorities. Results obtained from almost 6.000 appartments show a distinct regional distribution of the measured values closely related to the geological conditions of the respected area. Surprisingly, there was little dependency on the building materials, with the exception of natural stone houses. The analysis showed that the structural characteristics of a building likely to influence the penetration of radon from the soil have a great effect on the Rn level. Generally, the frequency distribution of the measured values follows a logarithmic Gaussian distribution. Based on a median of 40 Bg/m3, the annual effective dose equivalent is about 1 mSv. (orig./HP)

  6. Effects of residential radon on cancer incidence

    International Nuclear Information System (INIS)

    Radon activity concentrations of 1077 homes were surveyed in two villages of Northern Hungary to obtain the yearly averages. The distribution of indoor radon activity concentrations covered a wide range. Cancer incidences of all the 2680 inhabitants for the last 30 years were also studied in these villages in order to establish a possible correlation with radon exposure. The methods applied in the analysis allow to draw up statistically supported statements concerning the relative cancer risks of different radon level groups. The results show that among non-smoking middle-aged women the frequency of cancer, regardless to tumor types, is lower for those who live in residential radon activity concentrations of a level between 110 and 185 Bq x m-3 compared to those living in radon levels outside this range. A minimum value in the cancer frequency exists at a level of significance p<0.008 (determined with the help of Fisher's test). In general, the present study corroborates the outcome of other studies demonstrating the existence of a biopositive effect, and suggests a wider concept of radon health effects. (author)

  7. Mapping of residential radon in the world

    International Nuclear Information System (INIS)

    European countries (out of 46) with data. Using data from the database, we have created a map of national levels of residential radon around the world. In addition to static map, we have also implemented a preliminary web version and Google Earth version of the map. (author)

  8. Mapping of residential radon in the world

    International Nuclear Information System (INIS)

    European countries (out of 46) with data. Using data from the database, we have created a map of national levels of residential radon around the world. In addition to static map, we have also implemented a preliminary web version and Google Earth version of the map. (author)

  9. Residential radon in Finland: sources, variation, modelling and dose comparisons

    International Nuclear Information System (INIS)

    The study deals with sources of indoor radon in Finland, seasonal variations in radon concentration, the effect of house construction and ventilation and also with the radiation dose from indoor radon and terrestrial gamma radiation. The results are based on radon measurements in approximately 4000 dwellings and on air exchange measurements in 250 dwellings as well as on model calculations. The results confirm that convective soil air flow is by far the most important source of indoor radon in Finnish low-rise residential housing. (97 refs., 61 figs., 30 tabs.)

  10. Residential radon in Finland: sources, variation, modelling and dose comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.

    1995-09-01

    The study deals with sources of indoor radon in Finland, seasonal variations in radon concentration, the effect of house construction and ventilation and also with the radiation dose from indoor radon and terrestrial gamma radiation. The results are based on radon measurements in approximately 4000 dwellings and on air exchange measurements in 250 dwellings as well as on model calculations. The results confirm that convective soil air flow is by far the most important source of indoor radon in Finnish low-rise residential housing. (97 refs., 61 figs., 30 tabs.).

  11. Residential Radon Exposure and Risk of Lung Cancer in Missouri

    Science.gov (United States)

    A case-control study of lung cancer and residential radon exposure in which investigators carried out both standard year-long air measurements and CR-39 alpha detector measurements (call surface monitors)

  12. Residential radon and lung cancer incidence in a Danish cohort

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Andersen, Claus Erik; Sørensen, Mette;

    2012-01-01

    High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993–1997. We followed each cohort member for cancer...... occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used...... to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and...

  13. Radon: radiation aspects of residential hygiene

    International Nuclear Information System (INIS)

    The article attempts to outline the role that radon plays in the radiation hygiene of the living environment. The natural occurrence of 222Rn and the internal irradiation doses caused by the daughter products are discussed. The induction of lung cancer in various groups of mine workers exposed to radon and radon daughter products is considered and the factors affecting the concentration of radon in buildings, particularly houses, are presented. A number of case studies concerning the occurrence of radon in dwellings in different countries, are outlined. (C.F.)

  14. Residential Radon and Brain Tumour Incidence in a Danish Cohort

    DEFF Research Database (Denmark)

    Bräuner, Elvira V.; Andersen, Zorana J.; Andersen, Claus Erik; Pedersen, Camilla; Gravesen, Peter; Ulbak, Kaare; Hertel, Ole; Loft, Steffen; Raaschou-Nielsen, Ole

    2013-01-01

    exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. Methods: During 1993–1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced......Background: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. Objective: To investigate the long-term effect of...... (CI) for the risk of primary brain tumours associated with residential radon exposure with adjustment for age, sex, occupation, fruit and vegetable consumption and traffic-related air pollution. Effect modification by air pollution was assessed. Results: Median estimated radon was 40.5 Bq/m3. The...

  15. Factors underlying residential radon concentration: Results from Galicia, Spain

    International Nuclear Information System (INIS)

    Radon causes lung cancer when inhaled for prolonged periods of time. A range of factors influence residential radon concentration and this study therefore sought to ascertain which dwelling-related factors exert an influence on radon levels. A cross-sectional study was conducted from 2001 to 2003 which analyzed 983 homes of as many subjects randomly selected from the 1991 census. Sampling was carried out by district and stratified by population density to ensure that more detectors were placed in the most heavily populated areas. Radon concentration and different dwelling characteristics were measured in each of the homes selected. Bivariate and multivariate analyses were performed to ascertain which factors influenced radon concentration. The geometric mean of radon concentration was 69.5 Bq/m3, and 21.3% of homes had concentrations above 148 Bq/m3. Factors shown to influence radon concentration in the bivariate analysis were: age of dwelling; interior building material; exterior building material; and storey on which the detector was placed. Explanatory variables in the multivariate analysis were: age of dwelling; number of storeys; distance off floor; and interior building material. The model was significant, but the variability explained was around 10%. These results highlight the fact that the study area is an area of high radon emission and that factors other than those directly related with the characteristics of the dwelling also influence radon concentration

  16. Investigation on residential radon concentration in Jingchuan county

    International Nuclear Information System (INIS)

    This paper reports an investigated result of residential radon concentration in Jingchuan County, Gansu Province, during May 2004 to November 2006. Alpha track detectors were used to measure radon level. Construction types of house and percentages of residents living in the county were also investigated through questionnaires. The result showed that the mean radon concentration in 62 investigated houses was 96.2 Bq·m-3. The radon concentration in cave dwelling was the highest among all type of dwellings. The average level in cave dwelling is 110.2 Bq·m-3, which was significantly higher than the national mean value published in literatures, and exceed the WHO recommended value of 100 Bq·m-3. A considerable number of rural residents are living in cave dwellings in Jingchuan County. Attention should be paid to the radon problem and some proper protection measures taken. (authors)

  17. Long-term assessment of residential radon-mitigation systems

    International Nuclear Information System (INIS)

    In New York State a survey in 1982-83 discovered fourteen houses with moderately high natural radon levels, and in early 1984 low-cost radon mitigation systems were installed in these houses. The radon reduction techniques included sealing cracks, sealing and sub-slab depressurization, isolating and venting unpaved crawl-spaces, and installing heat-recovery ventilators. These mitigation systems represent some of the earliest systems installed in the United States using low-cost common residential construction materials and methods. In this report, the authors discuss how they returned to these installations, inspected the longevity of the various components of the systems and assessed their long-term effectiveness

  18. Residential radon and lung cancer incidence in a Danish cohort

    International Nuclear Information System (INIS)

    High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993–1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m3. The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69–1.56) in association with a 100 Bq/m3 higher radon concentration and 1.67 (95% CI: 0.69–4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.

  19. Residential radon and lung cancer incidence in a Danish cohort

    Energy Technology Data Exchange (ETDEWEB)

    Braeuner, Elvira V., E-mail: ole@cancer.dk [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Danish Building Research Institute, Aalborg University (Denmark); Andersen, Claus E. [Center for Nuclear Technologies, Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde (Denmark); Sorensen, Mette [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Jovanovic Andersen, Zorana [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Center for Epidemiology Screening, Department of Public Health, University of Copenhagen (Denmark); Gravesen, Peter [Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Ulbak, Kaare [National Institute of Radiation Protection, Herlev (Denmark); Hertel, Ole [Department of Environmental Science, Aarhus University, Aarhus (Denmark); Pedersen, Camilla [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Overvad, Kim [Department of Epidemiology, School of Public Health, Aarhus University, Aarhus (Denmark); Tjonneland, Anne; Raaschou-Nielsen, Ole [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark)

    2012-10-15

    High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993-1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m{sup 3}. The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69-1.56) in association with a 100 Bq/m{sup 3} higher radon concentration and 1.67 (95% CI: 0.69-4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.

  20. Residential radon exposure in some areas of Bangalore city, India

    International Nuclear Information System (INIS)

    Exposure to natural airborne radon, indoors, has been identified as the primary mode of radiation exposure. Hence, numerous measurements at various parts of the world along with epidemiological studies regarding the indoor radon and risk o flung cancer have been published in recent years. In India, many researchers have measured the indoor radon levels in dwellings at different regions for health risk assessment and its control. Though, Bangalore (12°152 and 13°132 N latitude and 77°32 and 77°562 E longitude) is one of the major cities of India with a population of about 8 million, only a few radon measurements were reported till date. As a result of ever increasing demand for living places, closely packed high rise residential buildings and apartments are found everywhere and seems to prevent the normal dispersion of radon due to poor ventilation. In view of the above, indoor radon and thoron measurements were carried out using Solid State Nuclear Track Detectors (SSNTD) in about 50 dwellings of residential areas of Bangalore city namely, K.S. Town, Kengeri, RR Nagar, Nayandanahalli, RPC Layout, Nagarabhavi, Mudalapalya, Malagala, Sunkadakatte, etc. The results obtained were systematically analyzed and discussed

  1. Residential Radon and Brain Tumour Incidence in a Danish Cohort

    DEFF Research Database (Denmark)

    Bräuner, Elvira V.; Andersen, Zorana J.; Andersen, Claus Erik;

    2013-01-01

    Background: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. Objective: To investigate the long-term effect of...... exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. Methods: During 1993–1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced...... residential addresses from 1 January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and 95% confidence intervals...

  2. Measuring radon source magnitude in residential buildings

    International Nuclear Information System (INIS)

    A description is given of procedures used in residences for rapid grab-sample and time-dependent measurements of the air-exchange rate and radon concentration. The radon source magnitude is calculated from the results of simultaneous measurements of these parameters. Grab-sample measurements in three survey groups comprising 101 US houses showed the radon source magnitude to vary approximately log-normally with a geometric mean of 0.37 and a range of 0.01 to 6.0 pCi 1-1 h-1. Successive measurements in six houses in the northeastern United States showed considerable variability in source magnitude within a given house. In two of these houses the source magnitude showed a strong correlation with the air-exchange rate, suggesting that soil gas influx can be an important transport process for indoor radon

  3. Residential radon exposure and lung cancer in Sweden

    International Nuclear Information System (INIS)

    BACKGROUND. Residential radon is the principal source of exposure to ionizing radiation in most countries. To determine the implications for the risk of lung cancer, we performed a nationwide case-control study in Sweden. METHODS. The study included 586 women and 774 men 35 to 74 years of age with lung cancer that was diagnosed between 1980 and 1984. For comparison, 1380 female and 1467 male controls were studied. Radon was measured in 8992 dwellings occupied by the study subjects at some time since 1947. Information on smoking habits and other risk factors for lung cancer was obtained from questionnaires. RESULTS. Radon levels followed a log-normal distribution, with geometric and arithmetic means of 1.6 and 2.9 pCi per liter (60.5 and 106.5 Bq per cubic meter), respectively. The risk of lung cancer increased in relation to both estimated cumulative and time-weighted exposure to radon. In comparison with time-weighted average radon concentrations up to 1.4 pCi per liter (50 Bq per cubic meter), the relative risk was 1.3 (95 percent confidence interval, 1.1 to 1.6) for average radon concentrations of 3.8 to 10.8 pCi per liter (140 to 400 Bq per cubic meter), and it was 1.8 (95 percent confidence interval, 1.1 to 2.9) at concentrations exceeding 10.8 pCi per liter. The estimates of risk were in the same range as those projected from data in miners. The interaction between radon exposure and smoking with regard to lung cancer exceeded additivity and was closer to a multiplicative effect. CONCLUSIONS. Residential exposure to radon is an important cause of lung cancer in the general population. The risks appear consistent with earlier estimates based on data in miners

  4. Dosimetric challenges for residential radon epidemiology.

    OpenAIRE

    Steck, Daniel J.; Field, R. William

    2006-01-01

    KEYWORDS CLASSIFICATION: adverse effects;analysis;Air Pollutants;Air Pollutants,Radioactive;Air Pollution,Indoor;biomarkers of exposure & effect: validation;Biological Markers;cancer epidemiology;Carcinogens;Carcinogens,Environmental;Dose-Response Relationship,Radiation;epidemiology;etiology;Environmental Exposure;Housing;Humans;Lung Neoplasms;Minnesota;Neoplasms,Radiation-Induced;Radon;Research;Risk Assessment;

  5. A preliminary radon map for Canada according to health region

    International Nuclear Information System (INIS)

    The recent publications of the combined analyses of residential radon studies in Europe and North America have shown that there is a significant risk of lung cancer at residential radon levels. In order to assess the population risk due to radon, the knowledge of the spatial distribution of indoor radon levels is essential. Here a preliminary radon map for Canada is presented, based on historical radon measurements collected in 6016 locations across Canada with the health region as the basic geographic units. (authors)

  6. Air Change Rates and Radon Concentrations in Residential Protected Rooms

    International Nuclear Information System (INIS)

    According to national regulations, every Israeli dwelling must include a Residential Protected Room (RPR), which is intended for shelter against artillery threats and protection from chemical or biological gases. These rooms are multi-purpose, but must be equipped with only one window of limited size and one entrance door, both extremely airtight. The door is required to open out of the room. Another regular (inward opening and less tight) door may be added on the same frame and serve the everyday functions. The tight window cannot be replaced nor can a less tight window be added. The entire envelope (walls and slabs) of the RPR must be made of 20-25 cm thick reinforced concrete. Due to economic and environmental reasons there is an increased tendency to use recycled industrial by-products containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) in the building material industry. Fly ash (FA), produced as a by-product in the combustion of coal, is extensively used in Israel since the early 1990's in concrete and as an additive to cement. The increase of 226Ra activity concentration, the mineralogical characteristics of the FA and of the concrete may affect the radon exhalation rate and consequently the radon exposure in RPRs. In addition, due to its special features, the RPR is expected to experience, under regular use conditions, a lower air change rate than any of the other rooms in the dwelling. Consequently, concern was raised with regard to long term radon exposure in RPRs. The paper presents results derived in a research project that studied in-situ air change rates and radon concentration evolution under various ventilation scenarios in 6 RPRs in a high-rise building, and compared evaluated free radon exhalation rates from the walls with values derived from laboratory samples of the same concretes

  7. Comparative survey of outdoor, residential and workplace radon concentrations

    International Nuclear Information System (INIS)

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m-3. Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. (authors)

  8. Comparative survey of outdoor, residential and workplace radon concentrations

    OpenAIRE

    Barros, Nirmalla; Field, Dan W.; Steck, Daniel J.; Field, R. William

    2014-01-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the ...

  9. POSSIBLE ROLE OF INDOOR RADON REDUCTION SYSTEMS IN BACK-DRAFTING RESIDENTIAL COMBUSTION APPLIANCES

    Science.gov (United States)

    The article gives results of a computational sensitivity analysis conducted to identify conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might contribute to or create back-drafting of natural draft combustion appliances. Par...

  10. An innovative radon mitigation-energy conservation retrofit system for residential buildings

    International Nuclear Information System (INIS)

    Field tests were performed on an innovative radon mitigation system that provides basement pressurization and dilution while conserving heating fuel, improving indoor air quality and human comfort. This year-round radon reduction retrofit device has been successfully installed and monitored in a Wisconsin home that exhibited elevated radon levels. In the design, a secondary heat exchanger for a conventional-type residential furnace is modified to provide heated fresh air exchange and intermittent pressure regulation. Experiments have shown that the average indoor radon level can be reduced by 97 percent and that employment of this system during the heating months exhibits a zero operational cost. Measurements of radon reduction levels, fuel usage and environmental factors that affect radon migration are documented. A state-of-the-art PC-data acquisition system with accompanying instrumentation for radon measurements is also described. 13 refs., 4 figs., 1 tab

  11. Residential Radon Exposure and Incidence of Childhood Lymphoma in Texas, 1995–2011

    Directory of Open Access Journals (Sweden)

    Erin C. Peckham

    2015-09-01

    Full Text Available There is warranted interest in assessing the association between residential radon exposure and the risk of childhood cancer. We sought to evaluate the association between residential radon exposure and the incidence of childhood lymphoma in Texas. The Texas Cancer Registry (n = 2147 provided case information for the period 1995–2011. Denominator data were obtained from the United States Census. Regional arithmetic mean radon concentrations were obtained from the Texas Indoor Radon Survey and linked to residence at diagnosis. Exposure was assessed categorically: ≤25th percentile (reference, >25th to ≤50th percentile, >50th to ≤75th percentile, and >75th percentile. Negative binomial regression generated adjusted incidence rate ratios (aIRR and 95% confidence intervals (CI. We evaluated lymphoma overall and by subtype: Hodgkin (HL; n = 1248, Non-Hodgkin excluding Burkitt (non-BL NHL; n = 658, Burkitt (BL; n = 241, and Diffuse Large B-cell (DLBCL; n = 315. There was no evidence that residential radon exposure was positively associated with lymphoma overall, HL, or BL. Areas with radon concentrations >75th percentile had a marginal increase in DLBCL incidence (aIRR = 1.73, 95% CI: 1.03–2.91. In one of the largest studies of residential radon exposure and the incidence of childhood lymphoma, we found little evidence to suggest a positive or negative association; an observation consistent with previous studies.

  12. Residential Radon Exposure and Incidence of Childhood Lymphoma in Texas, 1995-2011.

    Science.gov (United States)

    Peckham, Erin C; Scheurer, Michael E; Danysh, Heather E; Lubega, Joseph; Langlois, Peter H; Lupo, Philip J

    2015-10-01

    There is warranted interest in assessing the association between residential radon exposure and the risk of childhood cancer. We sought to evaluate the association between residential radon exposure and the incidence of childhood lymphoma in Texas. The Texas Cancer Registry (n = 2147) provided case information for the period 1995-2011. Denominator data were obtained from the United States Census. Regional arithmetic mean radon concentrations were obtained from the Texas Indoor Radon Survey and linked to residence at diagnosis. Exposure was assessed categorically: ≤25th percentile (reference), >25th to ≤50th percentile, >50th to ≤75th percentile, and >75th percentile. Negative binomial regression generated adjusted incidence rate ratios (aIRR) and 95% confidence intervals (CI). We evaluated lymphoma overall and by subtype: Hodgkin (HL; n = 1248), Non-Hodgkin excluding Burkitt (non-BL NHL; n = 658), Burkitt (BL; n = 241), and Diffuse Large B-cell (DLBCL; n = 315). There was no evidence that residential radon exposure was positively associated with lymphoma overall, HL, or BL. Areas with radon concentrations >75th percentile had a marginal increase in DLBCL incidence (aIRR = 1.73, 95% CI: 1.03-2.91). In one of the largest studies of residential radon exposure and the incidence of childhood lymphoma, we found little evidence to suggest a positive or negative association; an observation consistent with previous studies. PMID:26404336

  13. Risk of lung cancer and residential radon: pooled results of two studies in China

    International Nuclear Information System (INIS)

    Objective: To verify the prognosis that miners' exposure to radon is the second leading cause of lung cancer. Methods: The authors collected data from two case-control studies of residential radon representing two large radon studies conducted in China. The studies included 1050 lung cancer cases and 1996 controls. Results: Based on a linear model, the excess odds ratio (EOR) with 95% confidence intervals (CI) at 100 Bq/m3 was 0.133 (0.01, 0.36). For subjects living in the current home for 30 years or more, the EOR was 0.315 (0.07, 0.91). EOR estimates were similar to those in the extrapolations from miner data and consistent with residential radon studies in North American and Europe. Conclusion: Long-term radon exposure at concentrations found in many houses increases lung cancer risk

  14. Radon exposure in abandoned metalliferous mines of South America

    International Nuclear Information System (INIS)

    Since the days of the Spanish and Portuguese conquerors, South America has been closely associated with the metalliferous ore mining. Gold, silver, tin, lead, tungsten, nickel, copper, and palladium ores have been explored over the last centuries. In addition, there has also been the development and promotion of other economic activities related to mining, as the underground mine tourism. A few works have been published on radon levels in the South American mining. In this study, we investigated the radon transport process and its health hazard in two exhausted and abandoned mines in San Luis Province, Argentina. These mines were chosen because they have different physical configurations in their cavities, features which can affect the air flow patterns and radon concentrations. La Carolina gold mine (32 deg 48' 0'' S, 66 deg 60' 0'' W) is currently a blind end system, corresponding to a horizontal excavation into the side of a mountain, with only a main adit. Los Condores wolfram mine (32 deg 33' 25'' S, 65 deg 15' 20'' W) is also a horizontal excavation into the side of a mountain, but has a vertical output (a shaft) at the end of the main gallery. Three different experimental methodologies were used. Radon concentration measurements were performed by CR-39 nuclear track detectors. The distribution of natural radionuclide activities (40K, 232Th and 238U) was determined from rock samples collected along their main adits, using in laboratory gamma-ray spectrometry. The external gamma dose rate was evaluated using thermoluminescent dosimeters and a portable survey meter. The values for the 222Rn concentration ranged from 0.43 ± 0.04 to 1.48 ± 0.12 kBq/m3 in the Los Condores wolfram mine and from 1.8 ± 0.1 to 6.0±0.5 kBq/m3 in the La Carolina gold mine, indicating that, in this mine, the radon levels exceed up to four times the action level of 1.5 kBq/m3 recommended by the ICRP. The patterns of the radon transport process revealed that the La Carolina gold mine

  15. Annual variations of radon and thoron in residential houses at a high soil radon risk site

    International Nuclear Information System (INIS)

    Radon and thoron in air were measured during 1 year in 30 houses at a high soil radon risk site. Unlike thoron, radon concentrations exhibited seasonal variations – they were lowest in summer and highest in winter. The mean radon-to-thoron volume activity ratio was approximately 2.8. Although the majority of the homes were built on high-radon subsoil, mean annual radon activity levels higher than the indicative 400 Bq/m3 were observed in one house only. The effect of the subsoil on the radon concentration in the houses was highest in older built before 2000. (orig.)

  16. Residential Radon Exposure and Skin Cancer Incidence in a Prospective Danish Cohort

    DEFF Research Database (Denmark)

    Brauner, Elvira Vaclavik; Loft, Steffen; Sørensen, Mette;

    2015-01-01

    Background Although exposure to UV radiation is the major risk factor for skin cancer, theoretical models suggest that radon exposure can contribute to risk, and this is supported by ecological studies. We sought to confirm or refute an association between long-term exposure to residential radon...... and the risk for malignant melanoma (MM) and non-melanoma skin cancer (NMSC) using a prospective cohort design and long-term residential radon exposure. Methods During 1993-1997, we recruited 57,053 Danish persons and collected baseline information. We traced and geocoded all residential addresses of...... exposure may contribute to development of basal cell carcinoma of the skin. We cannot exclude confounding from sunlight and cannot conclude on causality, as the relationship was stronger amongst persons living in apartments and nonexistent amongst those living in single detached homes....

  17. Residential Segregation: Challenge to White America.

    Science.gov (United States)

    Denton, Nancy A.

    1994-01-01

    Examines the problem of residential segregation and demonstrates that it is a problem of social structure. The author contends that residential segregation has affirmed the continued subordination of blacks in American society over the past 50 years. New leadership in the Department of Housing and Urban Development is viewed as a positive…

  18. Residential radon exposure and lung cancer risk in Misasa, Japan. A case-control study

    International Nuclear Information System (INIS)

    In order to investigate an association between residential radon exposure and risk of lung cancer, a case-control study was conducted in Misasa Town, Tottori Prefecture, Japan. The case series consisted of 28 people who had died of lung cancer in the years 1976-96 and 36 controls chosen randomly from the residents in 1976, matched by sex and year of birth. Individual residential radon concentrations were measured for 1 year with alpha track detectors. The average radon concentration was 46 Bq/m3 for cases and 51 Bq/m3 for controls. Compared to the level of 24 or less Bq/m3, the adjusted odds ratios of lung cancer associated with radon levels of 25-49, 50-99 and 100 or more Bq/m3, were 1.13 (95% confidence interval; 0.29-4.40), 1.23 (0.16-9.39) and 0.25 (0.03-2.33), respectively. None of the estimates showed statistical significance, due to small sample size. When the subjects were limited to only include residents of more than 30 years, the estimates did not change substantially. This study did not find that the risk pattern of lung cancer, possibly associated with residential radon exposure, in Misasa Town differed from patterns observed in other countries. (author)

  19. Exposure to radon and its decay products in residential buildings in Germany. An evaluation

    International Nuclear Information System (INIS)

    Exposure to radon in residential buildings is a topical issue which is discussed in this book on the basis of scientific facts and comprehensible to the general reader. All aspects are covered, starting with the radionuclide itself, its occurrence and properties and the decay into daughter products. The ways and means of measuring and evaluating radon concentrations in homes and the health hazards resulting from inhalation of radon and its decay products are ecplained, together with the basic principles and mechanisms. The possibilities of reducing radon concentrations in homes are shown and experience obtained from practical applications in the USA and Sweden and, for some part, in Germany is summarized. The data compiled by the Strahlenschutzkommission are presented along with recommended maximum concentrations indicating the need for structural improvement of the buildings. A look across the border gathers information on data and practice adopted in other countries, and there is an annex listing the basic terminology used in this context. (orig./HP)

  20. Residential radon and lung cancer in a high exposure area in Gansu province, China

    International Nuclear Information System (INIS)

    Low exposures to residential radon and dosimetric uncertainties due to mobility have hampered the evaluation of lung cancer risk and comparison to radon-exposed miners. To address these limitations, the authors conducted a case-control study in a predominantly rural area of China with low mobility and high radon levels. Cases included all lung cancers diagnosed between January 1994 and April 1998, aged 30 to 75 years, and resident in two prefectures. Controls were randomly selected from census lists and matched on age, sex and prefecture. Radon detectors were placed in all houses occupied two or more years in the 5-30 years prior to enrollment. Measurements covered 77% of the possible exposure time. Mean radon concentrations were 230.4 Bq/m 3 for cases (n=768) and 222.2 Bq/m 3 for controls (n=1,659). Lung cancer risk increased with radon level (p<0.001). Based on a linear model, the excess odds ratio (EOR) at 100 Bq/m 3 was 0.19 (95% CI: 0.05, 0.47) for all subjects, and 0.31 (95% CI: 0.10,0.81) for subjects with 100% coverage of the exposure interval. Adjusting for exposure uncertainties increased estimates about 70 percent. Results support increased lung cancer risks with indoor radon exposures which may equal or exceed extrapolations based on miner data

  1. Report on the second international workshop on residential radon: Workshop proceedings

    International Nuclear Information System (INIS)

    As a follow-on to the first International Workshop on Residential Radon Epidemiology held in Alexandria VA, on July 24-26, 1989, a Second Workshop was convened, in Alexandria, VA, July 22-23 1991, also under the auspices of the US Department of Energy and the Commission of European Communities. The Workshop, co-chaired by Jonathan Samet and Jan Stolwijk, was attended by 20 active participants from seven countries representing epidemiologic studies recently completed, currently in progress, or in the last stages of preparation. The studies reported on are being conducted in the United States, Canada, Sweden, the United Kingdom, France, Belgium, Germany and the Peoples' Republic of China. The invited presentations that initiated the Workshop focused on a number of methodological problems that have surfaced in the last few years. Among these were: (1) the difficulties in predicting indoor radon concentrations, based on geologic information, (discussed by Alan Tanner, formerly of the US Geologic Survey); (2) the relationships between indoor radon concentrations and building characteristics (discussed by Richard Sextro, Lawrence Berkeley Laboratory, USA); (3) the approaches to analysis of case-control studies in radon epidemiology (discussed by Sarah Darby, Imperial Cancer Research Fund, UK); (4) statistical approaches to error in measurements and missing data (discussed by Donna Spiegelman, Tufts University, USA); (5) preliminary results of a data pooling effort dealing with several different studies of residential radon epidemiology and the lessons to be drawn from this effort (discussed by Jay Lubin, US National Cancer Institute)

  2. Radon concentrations in residential housing in hiroshima and nagasaki

    International Nuclear Information System (INIS)

    A survey of indoor radon (222Rn) concentrations in Hiroshima and Nagasaki was carried out to assess the range of exposures expected among atomic-bomb survivors. Two hundred dwellings (100 from each city), chiefly of members of the Radiation Effects Research Foundation Life Span Study, were selected for this survey. We used two types of etched-track alpha-particle detectors: a Terradex detector (type SF) and an improved bare-track detector. Comparative measurements showed that although there was an adequate correlation between the values obtained using the two detectors, the geometric mean value for the bare-track detector was 45% lower than that for the Terradex detector. This difference was considered to be due to differences in the calibration methods and in the sensitivities of the detectors to thoron (220Rn). The geometric mean values of the radon concentrations for 193 locations in Hiroshima and 192 locations in Nagasaki measured by Terradex SF detectors were 51.8 Bq/m3 and 26.5 Bq/m3, respectively. The large difference is attributable to the different geological environments of the two cities. Factors correlating with the indoor radon concentrations were also studied. The geometric mean concentration was significantly higher in wooden houses with clay walls than in other types of house. This tendency was especially strong in Hiroshima. The difference between the estimated dose equivalents for exposure to radon decay products in dwellings in Hiroshima and Nagasaki during the last 30 years might amount to 0.8 Sv; however, no statistically significant difference was observed in lung-cancer mortality in the low-dose range in either city. Nevertheless, the indoor radon concentrations estimated in this survey could have a significant influence on the dose-response relationship for atomic-bomb exposure. (author)

  3. Residential radon daughter monitor based on alpha spectroscopy

    International Nuclear Information System (INIS)

    The radioactive daughters of radon-222 pose a serious indoor air quality problem in some circumstances. A technique for measuring the concentrations of these radioisotopes in air is presented. The method involves drawing air through a filter; then, for two time intervals after sampling, counting the alpha decays from polonium-218 and polonium-214 on the filter. The time intervals are optimized to yield the maximum resolution between the individual daughter concentrations. For a total measurement time of 50 minutes, individual daughter concentrations of 1.0 nanocuries per cubic meter are measured with an uncertainty of 20%. A prototype of a field monitor based on this technique is described, as is a field test in which the prototype was used to measure radon daughter concentrations as a function of ventilation conditions in an energy-efficient house

  4. Radon concentrations in residential housing in Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    A measurement of indoor radon (222Rn) concentrations in Hiroshima and Nagasaki was carried out to examine an effect of the exposure on atomic bomb (A-bomb) survivors. Two hundred dwellings (100 from each city), chiefly of members of the Life Span Study population which is a fixed cohort studied by Radiation Effects Research Foundation (RERF), were selected for this survey. We used two types of alpha-track detector: a Terradex detector type SF and a bare-track detector improved by Yonehara et al. Comparative measurements showed that although there was an adequate correlation between the values obtained using the two detectors, the geometric mean value for the bare-track detector was 45% of that for the Terradex detector. This difference was considered to be due to differences in the calibration methods and sensitivities of the detectors to thoron (220Rn). The arithmetic mean values of the radon concentrations for 193 locations in Hiroshima and 192 locations in Nagasaki measured by Terradex SF detector were 103 Bq m-3 and 40.6 Bq m-3, respectively. The values at 100 locations in Hiroshima and at 93 locations in Nagasaki measured by the bare detector were 43.1. Bq m-3 and 13.6 Bq m-3, respectively. The significant difference between the geometric mean values of the concentration in Hiroshima and Nagasaki measured by both methods was observed. The difference might be attributable to the different geological environments of the two cities. The difference between the estimated dose equivalents for exposure to radon daughters in dwellings in Hiroshima and Nagasaki over the last 30 years might amount to 0.4 or 0.8 Sv; however, no statistically significant difference was observed in lung cancer mortality in the low-dose range in either city. Nevertheless, the indoor-radon concentrations estimated in this survey could significantly influence the dose-response relationships for A-bomb exposure. (author)

  5. Residential radon exposure and lung cancer: an overview of published studies

    International Nuclear Information System (INIS)

    A possible link between presumed or measured household radon exposure and lung cancer is reviewed on the basis of published epidemiologic studies. Evidence of a link is reported as a result of studies in Sweden; findings are inconsistent elsewhere. A number of methodological problems were found. Many of the studies are ecological in design and are, therefore, primarily hypothesis generating. A number of studies lack any data on the number of lung cancers and are, therefore, difficult to evaluate. Some other studies provide results that are internally inconsistent. Of the case/control studies, there are many with minimal or no information on active and passive smoking, occupation, family history of cancer, and diet. The case/control studies are generally small in size and of low statistical power. Exposure classifications are nonstandardized, inconsistent in their findings, and often gross in their characterization of radon concentrations. Relatively few of the studies actually measured radon exposure. Some of the studies showed significant positive associations either with geological characteristics, water supply contamination, or house type. No significant associations were found with residence near uranium or radium processing waste. Where radon levels were measured, a relatively small percentage of studies found a statistically significant positive association with lung cancer. Overall, the evidence for an association between residential radon exposure and lung cancer is weak. There is a need for a more decisive case/control epidemiologic study of this problem.55 references

  6. New Jersey's residential radon remediation program - methods and experience

    International Nuclear Information System (INIS)

    As part of a remedial action program to decontaminate over 200 residential properties, 12 typical properties were selected and a demonstration program was initiated in the spring of 1985. The residences selected represented a range of contamination levels and configurations and differing architectural styles representative of the age of construction. The physical limitations of the sites and the overall nature of a decontamination project in active residential communities imposed a number of severe restrictions on work methods and equipment. Regulations governing transportation and disposal set virtually zero defect standards for the condition of containers. The intrusive nature of the work in residential neighborhoods required continual interaction with local residents, public officials and citizen task forces. Media coverage was very high. Numerous briefings were held to allay fears and promote public understanding. Numerous issues ranging in content from public health and safety to engineering and construction methods arose during the remedial action program. These issues were resolved by a multi-disciplined management team which was knowledgeable in public administration, radiation physics, and engineering design and construction. This paper discusses the nature of the problem, the methods applied to resolve the problem and the experience gained as a result of a remedial action program

  7. Radon

    Science.gov (United States)

    ... with elevated radon underwent changes to reduce radon pollution. 1 How Can Radon Be Detected? The only ... of Americans Live with Unhealthful Levels of Air Pollution News: 'State of the Air 2016' – Health of ...

  8. Intercomparison of active and passive instruments for radon and radon progeny in North America

    International Nuclear Information System (INIS)

    An intercomparison exercise for radon and radon progeny instruments and methods was held at the Environmental Measurements Laboratory (EML) from April 22--May 2, 1994. The exercise was conducted in the new EML radon test and calibration facility in which conditions of exposure are very well controlled. The detection systems of the intercompared instruments consisted of. (1) pulse ionization chambers, (2) electret ionization chambers, (3) scintillation detectors, (4) alpha particle spectrometers with silicon diodes, surface barrier or diffused junction detectors, (5) registration of nuclear tracks in solid-state materials, and (6) activated carbon collectors counted by gamma-ray spectrometry or by alpha- and beta-liquid scintillation counting. 23 private firms, government laboratories and universities participated with a 165 passive integrating devices consisting of: Activated carbon collectors, nuclear alpha track detectors and electret ionization chambers, and 11 active and passive continuous radon monitors. Five portable integrating and continuous instruments were intercompared for radon progeny. Forty grab samples for radon progeny were taken by five groups that participated in person to test and evaluate their primary instruments and methods that measure individual radon progeny and the potential alpha energy concentration (PAEC) in indoor air. Results indicate that more than 80% of the measurements for radon performed with a variety of instruments, are within ±10% of actual value. The majority of the instruments that measure individual radon progeny and the PAEC gave results that are in good agreement with the EML reference value. Radon progeny measurements made with continuous and integrating instruments are satisfactory with room for improvement

  9. RELATED GENES IN LUNG CANCER TISSUES ASSOCIATED WITH RESIDENTIAL HIGH RADON EXPOSURE

    Institute of Scientific and Technical Information of China (English)

    夏英; 杨梅英; 张守志; 叶常青

    2002-01-01

    Objective: To investigate the related genes in lung cancer tissues associated with residential high radon exposure. Methods: Differentially expressed gene fragments in lung cancer and normal lung tissues were discovered by differential display and reverse Northern blot hybridization method. The fragments positive in lung cancer and negative in normal lung tissue were determined. Results: Seven differential displayed fragments were sequenced. One of them named NA7 is 95% homologous with AI208667 in EAT of Genbank. Another fragment named NG2 is up to 98% homologous with five fragments. The remained one CA1 may be a new gene fragment. Conclusion: 3 gene fragments were discovered from lung cancer and normal lung tissues of high radon exposure resident.

  10. Residential radon exposure and risk of incident hematologic malignancies in the Cancer Prevention Study-II Nutrition Cohort.

    Science.gov (United States)

    Teras, Lauren R; Diver, W Ryan; Turner, Michelle C; Krewski, Daniel; Sahar, Liora; Ward, Elizabeth; Gapstur, Susan M

    2016-07-01

    Dosimetric models show that radon, an established cause of lung cancer, delivers a non-negligible dose of alpha radiation to the bone marrow, as well as to lymphocytes in the tracheobronchial epithelium, and therefore could be related to risk of hematologic cancers. Studies of radon and hematologic cancer risk, however, have produced inconsistent results. To date there is no published prospective, population-based study of residential radon exposure and hematologic malignancy incidence. We used data from the American Cancer Society Cancer Prevention Study-II Nutrition Cohort established in 1992, to examine the association between county-level residential radon exposure and risk of hematologic cancer. The analytic cohort included 140,652 participants (66,572 men, 74,080 women) among which 3019 incident hematologic cancer cases (1711 men, 1308 women) were identified during 19 years of follow-up. Cox proportional hazard regression was used to calculate multivariable-adjusted hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) for radon exposure and hematologic cancer risk. Women living in counties with the highest mean radon concentrations (>148Bq/m(3)) had a statistically significant higher risk of hematologic cancer compared to those living in counties with the lowest (<74Bq/m(3)) radon levels (HR=1.63, 95% CI:1.23-2.18), and there was evidence of a dose-response relationship (HRcontinuous=1.38, 95% CI:1.15-1.65 per 100Bq/m(3); p-trend=0.001). There was no association between county-level radon and hematologic cancer risk among men. The findings of this large, prospective study suggest residential radon may be a risk factor for lymphoid malignancies among women. Further study is needed to confirm these findings. PMID:27015563

  11. The cost-effectiveness of residential radon remediation programmes: assumptions about benefits stream profiles over time

    International Nuclear Information System (INIS)

    A recent cost-effectiveness analysis of a residential radon remediation programme considered and highlighted many areas of uncertainty in the parameters chosen for the analysis. One assumption not challenged in the study was the benefits stream profile adopted. There are several different ways of loading the benefits in terms of life years into the cost-effectiveness model and several of these are explored and the results are reported in this study. The benefits profile depends upon the lead-time to cancer manifestation post environmental carcinogen (radon) exposure. The literature reviewed suggests that there are many options for loading benefits to radon-induced lung cancer prevention programmes. In this study, the alternative benefits stream profiles are explored and their implications for the cost-effectiveness ratio are examined. Adopting different benefits stream profiles to the model results in a range of cost-effectiveness ratios from pound 14 912.90 per life year gained to pound 52 416.27 per life year gained. The preferred model is reported where the life years gained are assumed to be equally distributed over the last 15 years of the 40-year time horizon of the analysis (Y25-40) and the corresponding cost-effectiveness ratio is pound 37 943 per life year gained

  12. Exposure of population from residential radon: A case study for district Hattian, Azad Kashmir, sub-Himalayas, Pakistan

    International Nuclear Information System (INIS)

    Indoor air quality has acquired considerable importance in recent years. Tighter buildings with poorer ventilation systems have led towards higher levels of indoor air pollution. Radon is considered to be most significant perilous gas among the various air contaminants found in the residential environment. To determine the risk posed by residential radon exposure, a survey was carried out in the Hattian district of the state of Azad Jammu and Kashmir (Pakistan)). In this context, 160 houses were carefully selected for the installation of CR-39-based National Radiological Protection Board-type detectors installation. After exposing the CR-39 detectors for a period of 90 d, they were etched in 6 M chemical solution of sodium hydroxide at a temperature of 80 deg. C for a period of 16 h. The detectors were read under an optical microscope and observed track densities were converted into the indoor radon concentration using a calibration factor of 2.7 tracks cm-2 h-1 per kBqm-3. For the current study, observed radon concentrations ranged from 35 to 175 Bqm-3, whereas the mean annual effective radon doses received by the inhabitants of the area ranged from 0.88±0.12 to 4.41±0.20 mSv with an average value of 2.62±0.12 mSv. These reported values are less than the limits (standards) recommended by the different world organisations. (authors)

  13. A creeping suspicion about radon

    International Nuclear Information System (INIS)

    Who would expect an odorless, invisible gas that occurs nearly everywhere on earth to cause such trouble? Yet radon, the gas emitted by decay of uranium in the earth's crust, is one of America's most significant environmental risks, according to the EPA, which estimates that residential radon levels lead to approximately 13,600 lung cancer deaths each year. A new National Cancer Institute analysis of multiple studies of miners confirms early estimates, putting the number at 15,000. No other risk comes close, not even environmental tobacco smoke, which is estimates to cause some 3,000 deaths each year. Hot debate surrounds the assessment of risk from radon exposure to Americans via indoor air and water supplies. The primary culprit is not radon gas itself, but its decay products, including polonium-214 and polonium-218, which have long half-lives and emit alpha particles - positively charged particles - and lung cancer when inhaled. Radon seeps into homes from the ground or is present in water supplies. Waterborne radon may be inhaled as radon or its progeny during household use - cooking or showering - or it may be ingested. But the EPA estimates that water sources contribute only about 5% of total airborne radon exposure, leaving indoor air as the worst offender. While the EPA estimates that approximately 200 cancer cases per year result from exposure to radon from public groundwater systems, estimates of annual lung cancer deaths from indoor air radon range from 7,000 to 30,000

  14. Comparative risk assessment of residential radon exposures in two radon-prone areas, Stei (Romania) and Torrelodones (Spain)

    International Nuclear Information System (INIS)

    Radon and radon progeny are present indoors, in houses and others dwellings, representing the most important contribution to dose from natural sources of radiation. Most studies have demonstrated an increased risk of lung cancer at high concentration of radon for both smokers and nonsmokers. The work presents a comparative analysis of the radon exposure data in the two radon-prone areas, Stei, Transylvania, (Romania), in the near of old Romanian uranium mines and in the granitic area of Torrelodones town, Sierra de Guadarrama (Spain). Measurements of indoor radon were performed in 280 dwellings (Romania) and 91 dwellings (Spain) by using nuclear track detectors, CR 39. The highest value measured in Stei area was 2650 Bq m-3 and 366 Bq m-3 in the Spanish region. The results are computed with the BEIR VI report estimates using the age-duration model at an exposure rate below 2650 Bq m-3. We used the EC Radon Software to calculate the lifetime lung cancer death risks for individuals groups in function of attained age, radon exposures and tobacco consumption. A total of 233 lung cancer deaths were observed in the Stei area for a period of 13 years (1994-2006), which is 116.82% higher than expected from the national statistics. In addition, the number of deaths estimated for the year 2005 is 28, which is worth more than 2.21 times the amount expected by authorities. In comparison, for Torrelodones was rated a number of 276 deaths caused by lung cancer for a period of 13 years, which is 2.09 times higher than the number expected by authorities. For the year 2005 in the Spanish region were reported 32 deaths caused by pulmonary cancer, the number of deaths exceeding seen again with a factor of 2.10 statistical expectations. This represents a significantly evidence that elevated risk can strongly be associated with cumulated radon exposure.

  15. Measurement of indoor radon, thoron and their progeny concentration in residential houses of Shahjahanpur and Hardoi districts of Uttar Pradesh

    International Nuclear Information System (INIS)

    Radon is a ubiquitous naturally occurring radioactive gas present in our environment both indoor and outdoor. It emanates from rocks and soil and tends to concentrate in enclosed spaces like underground mines or homes. Soil gas infiltration is recognized as the most important source of residential radon. Other sources, including building materials and water extracted from wells, are also important in some circumstances. Radon is the major contributor to the ionizing radiation dose received by the general population. The inhalation dose due to radon and thoron are contributed predominated by their decay products. Hence the cumulative decay product concentrations are the actual measures of exposure. In the present study the value of radon varied from 15 Bq/m3 to 92 Bq/m3 with an average of 50 Bq/m3 while thoron varied from 11 Bq/m3 to 31 Bq/m3 with an average of 19 Bq/m3. The value of radon progeny varies from 8 Bq/m3 to 25 Bq/m3 with an average of 15 Bq/m3 while thoron progeny 0.13 Bq/m3 to 2.02 Bq/m3 with an average of 1.01 Bq/m3. The value of equilibrium factor for radon varies from 0.13 to 0.76 with an average of 0.36 while for thoron varied from 0.01 to 0.12 with an average of 0.06. (author)

  16. Radon

    International Nuclear Information System (INIS)

    Three slide sets which can be used in lectures about radiation protection have been published by NRPB. The slide sets are based on publications in the NRPB's ''At-a-Glance'' series of broadsheets, which use illustrations as the main source of information, supported by captions; the series generally avoids the jargon of radiation protection, although each leaflet is based on scientific studies. Slide Set Number 2, ''Radon'', describes the characteristics of the gas, the means by which it builds up in homes, the nature and level of the risks and the remedies and preventative measures. It also summarises the problems posed by, and solutions to, radon in the workplace. (Author)

  17. Quantitative evaluation of the lung cancer deaths attributable to residential radon: A simple method and results for all the 21 Italian Regions

    International Nuclear Information System (INIS)

    Pooled analyses of epidemiological case-control studies on lung cancer and residential radon have shown that radon exposure in dwellings increases lung cancer risk, and that the increase is statistically significant also for prolonged exposures to low-medium level of radon concentration, i.e. levels commonly found in many dwellings. In this paper, a simple method to evaluate the health burden due to the presence of radon in homes (i.e. the number of lung cancer deaths attributable to radon exposure in dwellings) was presented. This method is based on the following parameters: i) the excess relative risk per unit of exposure evaluated in case-control studies; ii) the average radon concentration that can be considered representative of population exposure in dwellings; iii) the total number of lung cancer deaths occurring each year. Moreover, the interaction between radon and cigarette smoking is needed to be taken into account: in fact, although most of the persons are non-smokers, most of the lung cancer deaths attributed to radon are actually due to the multiplicative effect of radon and cigarette smoking. To show this effect, the number of radon related lung cancer deaths estimated to occur among current, former and never smokers was calculated separately for males and females, taking into account the relative risk of lung cancer for the different smoking categories and the prevalence of smoking habits. The methodology described in this work was applied to all the 21 Italian Regions in order to illustrate it. The overall fraction of lung cancer deaths attributable to radon in Italy is about 10%, with values in individual Regions ranging from 4% to 16%. The greater part of the lung cancers attributable to radon is estimated to occur among current smokers for both males and females (72% and 60%, respectively, at national level). This is due to the synergistic effects of radon and cigarette smoking, which should therefore be taken into account in policies aimed to

  18. Implementation of the new international standards for radon protection in residential areas in Switzerland

    International Nuclear Information System (INIS)

    In the scope of the current revision of the ordinance on radiation protection it is intended to adapt the Swiss legislation to the new recommendations of the International Commission on Radiation Protection and the European Union. The exposition to radon has to be regarded as 'existing situation' and should therefore be regulated adopting an upper reference level of 300 Becquerel per cubic meter (Bq/m3) in dwellings respecting the principle of optimization. The implementation of the new international recommendations gives rise to new challenges for Switzerland, since a radon concentration of 300 Bq/m3 is exceeded in more than 10% of already measured dwellings all over the country. The new strategy requires the development of efficient measures to reduce the health hazard of radon to socially acceptable costs. The optimization of the radon concentrations in new dwellings and radon mitigations in existing dwellings where it is appropriate and reasonable are therefore of great importance. (orig.)

  19. Multi-Scale Residential Segregation: Black Exceptionalism and America's Changing Color Line

    Science.gov (United States)

    Parisi, Domenico; Lichter, Daniel T.; Taquino, Michael C.

    2011-01-01

    America's changing color line is perhaps best expressed in shifting patterns of neighborhood residential segregation--the geographic separation of races. This research evaluates black exceptionalism by using the universe of U.S. blocks from the 1990 and 2000 decennial censuses to provide a "single" geographically inclusive national estimate…

  20. Reply to Cohen's letter on 'The potential for bias in Cohen's ecological analysis of lung cancer and residential radon'

    International Nuclear Information System (INIS)

    the county. Thus, even if errors in smoking status and residential radon concentration were independent at the individual level, the proportion of smokers and w are correlated. Thus, county-level correlations between smoking and radon are further distorted by the joint misclassification of two factors. Finally, as a practical matter, it is worth noting that Puskin has recently offered a plausible explanation for Cohen's negative correlation that agrees with the possible role of correlated errors. Puskin conducted ecological regressions of radon and smoking for several strongly smoking-related cancers (cancers of the lung, oesophagus, larynx, nasopharynx and oral cavity), weakly smoking-related cancers (cancers of the bladder and pancreas) and cancers unrelated to smoking (cancers of the colon, breast and prostate). He found strong negative correlations between county radon concentrations and cancers strongly linked to cigarette smoking, weaker correlations between radon and cancers weakly associated with smoking, and essentially no correlation between radon and cancers not linked to smoking. Puskin concludes that the negative trend reported by Cohen for lung cancer is very likely explained by a negative correlation between smoking and radon levels across counties

  1. Radon-222 content in the internal atmosphere of Hungarian residential buildings

    International Nuclear Information System (INIS)

    The use in home buildings in Hungary of some substitute materials, e.g., coal-ash, fly-ash, etc., caused greater background radiation than the traditional building materials because of their higher content of natural radioactivity. The radon-222 concentration was measured in 1182 flats (apartments) along with the concentrations of its short-lived daughter elements and radon-220 in room air and the radiation dose to the epithelium of the bronchial tubes of the lung was estimated. The average annual radon-222 concentration in open air was estimated as being 0.2 pCi/l. To confirm this estimate the radon-222 concentration in the atmosphere near the surface of the earth and its annual fluctuation was measured. (U.S.)

  2. Mortality of a residential cohort exposed to radon from industrially contaminated soil

    International Nuclear Information System (INIS)

    A historical cohort mortality study was conducted in three neighborhoods of Essex County, New Jersey, to investigate the mortality patterns of persons who had inhabited 45 homes documented to be contaminated by radon gas emanating from radium processing waste. Residency history and vital status were collected for 752 persons, comprising 91% of the subjects enumerated who had resided in the index homes for at least one year during the years 1923-1983. Standardized mortality ratios (SMR) were used to compare the death rates of the study group with the death rates of the United States and New Jersey. While there were no statistically significant excesses of lung cancer for the cohort or its subgroups, an elevated mortality rate for lung cancer was found for white males in the comparison of lung cancer mortality rates in the United States (SMR = 1.5, 95% confidence interval (CI) 0.7-2.7) and New Jersey (SMR = 1.7, 95% CI 0.8-3.2). No excess of lung cancer was observed in females or nonwhites. The small size of the cohort and the inability to collect smoking histories or complete occupational data limited the study. Nevertheless, the degree of excess lung cancer among white males was in agreement with both the attributable and relative risk estimates per unit of exposure derived for radon from mining studies

  3. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  4. The radon manual. 2. ed.

    International Nuclear Information System (INIS)

    This second edition of the Radon Manual provides an overview of the problem of radon contamination of buildings and remedial measures which are recommended for overcoming this problem. The Council's Code of Practice for those engaged in the detection of radon or remedial work to reduce natural radon levels in industry and residential buildings is included as an Appendix. The Council aims to promote a self-regulatory role for the radon industry based on the recommendations produced here. (UK)

  5. About the use of radon in the surveillance of volcanoes from Central America

    International Nuclear Information System (INIS)

    Anomalous fluctuations of radon content in soil gases, fumaroles or thermal sources associated with volcanic systems are considered as precursors of deep degassing phenomena. Radon measurements in soil gases were performed for several years on three active volcanoes of Costa-Rica (Arenal, Irazu, Poas), also on El Chichon and Colima volcanoes in Mexico and more recently on the Popocatepetl since its reactivation in December 1994. Data acquisition was initially performed using plastic detectors with a 15 days integration. Since 1993, autonomous automatic probes are used and give hourly measurements. A nine stations network for ground measurements is installed on the Poas since 1982. Radon and Cl-, F- and SO42- variations of the main crater lake are examined and correlated with the volcanic activity which led to the decay and disappearing of the lake in April 1989. On the Irazu, five stations were installed in 1982 and 3 automatic ones were added in November 1993. Results obtained so far are discussed according to the phreatic eruption of December 1994. The Popocatepetl measurements obtained since December 1994 are presented too. Abstract only. (J.S.)

  6. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  7. Intercomparison of retrospective radon detectors.

    OpenAIRE

    Field, R. W.; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-01-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. Th...

  8. Childhood cancer and residential radon exposure - results of a population-based case-control study in Lower Saxony (Germany)

    International Nuclear Information System (INIS)

    A population-based case-control study on risk factors for childhood malignancies was used to investigate a previously reported association between elevated indoor radon concentrations and childhood cancer, with special regard to leukaemia. The patients were all children suffering from leukaemia and common solid tumours (nephroblastoma, neuroblastoma, rhabdomyosarcoma, central nervous system (CNS) tumours) diagnosed between July 1988 and June 1993 in Lower Saxony (Germany) and aged less than 15 years. Two population-based control groups were matched by age and gender to the leukaemia patients. Long-term (1 year) radon measurements were performed in those homes where the children had been living for at least 1 year, with particular attention being paid to those rooms where they had stayed most of the time. Due to the sequential study design, radon measurements in these rooms could only be done for 36% (82 leukaemias, 82 solid tumours and 209 controls) of the 1038 families initially contacted. Overall mean indoor radon concentrations (27 Bq m-3) were low compared with the measured levels in other studies. Using a prespecified cutpoint of 70 Bq m-3, no association with indoor radon concentrations was seen for the leukaemias (odds ratio (OR): 1.30; 95% confidence interval (95% CI): 0.32-5.33); however, the risk estimates were elevated for the solid tumours (OR: 2.61; 95% CI: 0.96-7.13), mainly based on 6 CNS tumours. We did not find any evidence for an association between indoor radon and childhood leukaemia, which is in line with a recently published American case-control study. There is little support for an association with CNS tumours in the literature. (orig.)

  9. Childhood cancer and residential radon exposure - results of a population-based case-control study in Lower Saxony (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Kaletsch, U.; Kaatsch, P.; Meinert, R.; Schuez, J.; Michaelis, J. [Institut fuer Medizinische Statistik und Dokumentation, Johannes-Gutenberg-Universitaet, D-55101 Mainz (Germany); Czarwinski, R. [Bundesamt fuer Strahlenschutz, Fachbereich ST, D-10318 Berlin (Germany)

    1999-09-01

    A population-based case-control study on risk factors for childhood malignancies was used to investigate a previously reported association between elevated indoor radon concentrations and childhood cancer, with special regard to leukaemia. The patients were all children suffering from leukaemia and common solid tumours (nephroblastoma, neuroblastoma, rhabdomyosarcoma, central nervous system (CNS) tumours) diagnosed between July 1988 and June 1993 in Lower Saxony (Germany) and aged less than 15 years. Two population-based control groups were matched by age and gender to the leukaemia patients. Long-term (1 year) radon measurements were performed in those homes where the children had been living for at least 1 year, with particular attention being paid to those rooms where they had stayed most of the time. Due to the sequential study design, radon measurements in these rooms could only be done for 36% (82 leukaemias, 82 solid tumours and 209 controls) of the 1038 families initially contacted. Overall mean indoor radon concentrations (27 Bq m{sup -3}) were low compared with the measured levels in other studies. Using a prespecified cutpoint of 70 Bq m{sup -3}, no association with indoor radon concentrations was seen for the leukaemias (odds ratio (OR): 1.30; 95% confidence interval (95% CI): 0.32-5.33); however, the risk estimates were elevated for the solid tumours (OR: 2.61; 95% CI: 0.96-7.13), mainly based on 6 CNS tumours. We did not find any evidence for an association between indoor radon and childhood leukaemia, which is in line with a recently published American case-control study. There is little support for an association with CNS tumours in the literature. (orig.)

  10. The history, development and the present status of the radon measurement programme in the United States of America

    International Nuclear Information System (INIS)

    The US radon measurement programme began in the late 1950's by the US Public Health Service in Colorado, New Mexico and Utah during the uranium frenzy. After the 1967 Congressional Hearings on the working conditions in uranium mines, the US Atomic Energy Commission (AEC) was asked to conduct studies in active uranium mines to assess the exposure of the miners on the Colorado Plateau and in New Mexico. From 1967 to 1972, the Health and Safety Laboratory of the US AEC in New York investigated more than 20 uranium mines for radon and radon decay product concentrations and particle size in 4 large uranium mines in New Mexico. In 1970, the US Environmental Protection Agency (EPA) was established and took over some of the AEC radon measurement activities. Between 1975 and 1978, the Environmental Measurements Laboratory of the US Department of Energy conducted the first detailed indoor radon survey in the USA. Later in 1984, the very high concentrations of radon found in Pennsylvania homes set the wheels in motion and gave birth to the US Radon Industry. The US EPA expanded its involvement in radon issues and assumed an active role by establishing the National Radon Proficiency Program to evaluate the effectiveness of radon measurement and mitigation methods. In 1998, due to limited resources EPA privatised the radon programme. This paper presents a personal perspective of past events and current status of the US radon programme. It will present an update on radon health effects, the incidence rate of lung cancer in the USA and the number of radon measurements made from 1988 to 2013 using short-term test methods. More than 23 million measurements were made in the last 25 y and as a result more than 1.24 million homes were mitigated successfully. It is estimated that <2 % of the radon measurements performed in the USA are made using long-term testing devices. The number of homes above the US action level of 148 Bq m-3 (4 pCi l-1) may be ∼8.5 million because ∼50

  11. The history, development and the present status of the radon measurement programme in the United States of America.

    Science.gov (United States)

    George, A C

    2015-11-01

    The US radon measurement programme began in the late 1950s by the US Public Health Service in Colorado, New Mexico and Utah during the uranium frenzy. After the 1967 Congressional Hearings on the working conditions in uranium mines, the US Atomic Energy Commission (AEC) was asked to conduct studies in active uranium mines to assess the exposure of the miners on the Colorado Plateau and in New Mexico. From 1967 to 1972, the Health and Safety Laboratory of the US AEC in New York investigated more than 20 uranium mines for radon and radon decay product concentrations and particle size in 4 large uranium mines in New Mexico. In 1970, the US Environmental Protection Agency (EPA) was established and took over some of the AEC radon measurement activities. Between 1975 and 1978, the Environmental Measurements Laboratory of the US Department of Energy conducted the first detailed indoor radon survey in the USA. Later in 1984, the very high concentrations of radon found in Pennsylvania homes set the wheels in motion and gave birth to the US Radon Industry. The US EPA expanded its involvement in radon issues and assumed an active role by establishing the National Radon Proficiency Program to evaluate the effectiveness of radon measurement and mitigation methods. In 1998, due to limited resources EPA privatised the radon programme. This paper presents a personal perspective of past events and current status of the US radon programme. It will present an update on radon health effects, the incidence rate of lung cancer in the USA and the number of radon measurements made from 1988 to 2013 using short-term test methods. More than 23 million measurements were made in the last 25 y and as a result more than 1.24 million homes were mitigated successfully. It is estimated that <2 % of the radon measurements performed in the USA are made using long-term testing devices. The number of homes above the US action level of 148 Bq m(-3) (4 pCi l(-1)) may be ∼8.5 million because ∼50

  12. Increased risk for small cell lung cancer following residential exposure to low-dose radon: A pilot study

    International Nuclear Information System (INIS)

    Alpha track radon detectors were placed in the homes of 35 lung cancer patients and 35 matched controls for a period of 8 to 10 mo. Twenty lung cancer patients had small cell lung carcinoma; 11 had adenocarcinoma, 2 had squamous cell carcinoma, and 2 had unclassified carcinoma among 15 nonsmokers. Mean overall living on ground level was significantly higher in the group with small cell lung carcinoma (50 y ± 15) than among controls (33 y ± 19); the adjusted odds ratio for lung cancer was 5.2 (90% confidence interval [90% CI] = 1.1--24.9) per decade of living on the ground floor for the group with small cell lung carcinoma. Radon exposure of more than 1.0 pci/l in the group with small cell lung carcinoma was associated with increased risk of lung cancer, although it did not reach statistical significance [odds ratio = 1.5 (90% CI = 0.4--5.4)], adjusting for differences in smoking habits. The study supports the presence of a differentially increased risk for small cell lung carcinoma following long-term radon exposure. 12 refs., 2 tabs

  13. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  14. Low-cost Radon Reduction Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rose, William B. [Univ. of Illinois, Urbana-Champaign, IL (United States); Francisco, Paul W. [Univ. of Illinois, Urbana-Champaign, IL (United States); Merrin, Zachary [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-09-01

    The U.S. Department of Energy's Building America research team Partnership for Advanced Residential Retrofits conducted a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation and living space floor assembly. Fifteen homes in the Champaign, Illinois, area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity measurements. Blower door and zone pressure diagnostics were conducted at each house. The treatments consisted of using air-sealing foams at the underside of the floor that separated the living space from the foundation and providing duct sealing on the ductwork that is situated in the foundation area. The hypothesis was that air sealing the floor system that separated the foundation from the living space should better isolate the living space from the foundation; this isolation should lead to less radon entering the living space from the foundation. If the hypothesis had been proven, retrofit energy-efficiency programs may have chosen to adopt these isolation methods for enhanced radon protection to the living space.

  15. About the use of radon in the surveillance of volcanoes from Central America; De l`utilisation du radon dans la surveillance des volcans d`amerique centrale

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E. [Obviscori, Heridia (Costa Rica); Garcia Vindas, R.; Monnin, M.; Seidel, J.L. [Centre National de la Recherche Scientifique (CNRS), 34 -Montpellier (France). Centre d`Etudes Phytosociologiques et Ecologiques Louis-Emberger; Segovia, N. [ININ, Mexico (Mexico)

    1996-12-31

    Anomalous fluctuations of radon content in soil gases, fumaroles or thermal sources associated with volcanic systems are considered as precursors of deep degassing phenomena. Radon measurements in soil gases were performed for several years on three active volcanoes of Costa-Rica (Arenal, Irazu, Poas), also on El Chichon and Colima volcanoes in Mexico and more recently on the Popocatepetl since its reactivation in December 1994. Data acquisition was initially performed using plastic detectors with a 15 days integration. Since 1993, autonomous automatic probes are used and give hourly measurements. A nine stations network for ground measurements is installed on the Poas since 1982. Radon and Cl{sup -}, F{sup -} and SO{sub 4}{sup 2-} variations of the main crater lake are examined and correlated with the volcanic activity which led to the decay and disappearing of the lake in April 1989. On the Irazu, five stations were installed in 1982 and 3 automatic ones were added in November 1993. Results obtained so far are discussed according to the phreatic eruption of December 1994. The Popocatepetl measurements obtained since December 1994 are presented too. Abstract only. (J.S.).

  16. RADON GENERATION AND TRANSPORT THROUGH CONCRETE FOUNDATIONS

    Science.gov (United States)

    The report gives results of an examination of radon generation and transport through Florida residential concretes for their contribution to indoor radon concentrations. Radium concentrations in the 11 concretes tested were all <2.5 pCi/g and radon emanation coefficients were all...

  17. Radon activities in natural gases

    International Nuclear Information System (INIS)

    Radon activities have been measured in gas samples used for residential heading, in Venezuela and in Hungary. Gas bottles were selected randomly in different regions, and radon activities were monitored with ionization clambers and solid stoke track detections. Radon concentrations in household natural gas are presented for regions in Venezuela and in Budapest, Hungary. The latter was found to be in the range of 88-135 Bq/m3. (R.P.)

  18. Organization of the radon associated risk management

    International Nuclear Information System (INIS)

    This circular from the French state secretariats of public health, social action and lodging defines the limit acceptable values of radon concentration in buildings and gives some recommendations for the identification of areas exposed to radon and for the actions to be carried out in such identified areas (organization of a measurement campaign, mobilization of the government services for optimum information of the public concerned). Some general considerations about the risks linked with radon, the epidemiological studies about radon in residential and public buildings, the mapping of radon levels on the French territory and the techniques for radon measurement are described in appendixes. (J.S.)

  19. The radon; Le radon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This booklet is intended to answer briefly the most important questions about the nature and sources of radon, its pathways from environment to organism, as well as the ways to minimize its concentration in the habitat's atmosphere. The radon is a naturally appearing radioactive gas, produced through the decay of uranium and radium present in the terrestrial crust. It can be found everywhere on the planet's surface and it is emitted particularly from the granite and volcanic underground rocks as well as from certain construction materials. It is one of the agents producing pulmonary cancer, although not so dangerous as the tobacco is. The following items are elaborated in this booklet: - the place of radon in the average exposure to ionizing radiations of the French population; - the risk; - the radon in the environment (the meteorological conditions, the nature of the rocks); - radon in dwellings (radon measurements in the French dwellings, the entrance pathways of radon, the dependence of radon concentration on the profession and way of life of the inhabitants); - radon measurements; - how to reduce the radon concentration in dwellings.

  20. Emerging Themes in Residential Child and Youth Care Practice in North America

    OpenAIRE

    Garfat, Thom

    2003-01-01

    Child and Youth Care practice in North America is, as it should be, in constant evolution. A review of the literature, conversations about practice and participation in the activities of the field reveal certain treads or themes which reft.ect the state of the field at this particular point in time. This paper identifies and reft.ects on some of those that seem most relevant to contemporary Child and Youth Care practice in North America.

  1. Radon measurement and mitigation activity in Finland

    International Nuclear Information System (INIS)

    Radon prevention, measurement and mitigation activities have been increasing in Finland during the 2000's. Nowadays, many municipal authorities, especially those located in high-radon areas, require radon prevention measures. This has activated radon measurements. Owners of new houses having radon piping installed under the floor slab are the most active group to measure and reduce the found high-radon values. Their radon awareness is apparently better than on the average, and the existing piping makes it easier and cheaper to reduce the radon levels. Local campaigns involving invitation flyers mailed to the residents have been a cost-effective means to activate measurements of older houses. So far 116 611 dwellings in low-rise residential buildings have been measured. At least 15 % of the 16 860 dwellings found to exceed the reference level of 400 Bq m-3 had their indoor radon level reduced below that. (authors)

  2. Residential Treatment and the Invention of the Emotionally Disturbed Child in Twentieth-Century America.

    Science.gov (United States)

    Doroshow, Deborah Blythe

    2016-01-01

    In the 1930s, children who were violent, depressed, psychotic, or suicidal would likely have been labeled delinquent and sent to a custodial training school for punitive treatment. But starting in the 1940s, a new group of institutions embarked on a new experiment to salvage and treat severely deviant children. In the process, psychiatrists, psychologists, and social workers at these residential treatment centers (RTCs) made visible, and indeed invented, a new patient population. This article uses medical literature, popular media, and archival sources from several RTCs to argue that staff members created what they called the "emotionally disturbed" child. While historians have described the identification of the mildly "troublesome" child in child guidance clinics, I demonstrate how a much more severely ill child was identified and defined in the process of creating residential treatment and child mental health as a professional enterprise. PMID:27040027

  3. Radon in residences

    International Nuclear Information System (INIS)

    This paper addresses the geographic variation in the presence of radon at relatively high levels. Its focus is the Commonwealth of Pennsylvania but it considers the incidence of residential radon in adjoining counties in contiguous states, and by state throughout the nation. Cartographic analysis provides a robust assessment of the broad impact of physiography, the local effects of housing and lifestyle, and the quality of the best available spatial data. By promoting a fuller understanding of the pattern and magnitude of the risk, radon maps constitute a basis for a more effective and efficient prophylaxis. Further, county-unit maps of age-adjusted mortality rates for successive decades demonstrate inconsistent and puzzling linkages between the geographics of radon and cancer

  4. Radon epidemiology: A guide to the literature

    International Nuclear Information System (INIS)

    This document was written as a comprehensive overview of the voluminous literature on both uranium miner and residential radon epidemiology studies. This document provides the reader with a fairly complete list of radon epidemiology publications and key features of each, so that readers may further pursue only those publications of interest in the vast body of radon literature. A companion document, exploring all on-going residential radon epidemiology studies will be published by the Office of Health and Environmental Research (OHER), the Department of Energy (DOE) in the spring of 1989

  5. Indoor radon measurements in Turkey dwellings

    International Nuclear Information System (INIS)

    In this work, indoor radon radioactivity concentration levels have been measured in dwellings of Turkey within the frame of the National Radon Monitoring Programme. The 222Rn concentrations were measured with time-integrating passive nuclear etched track detectors in 7293 dwellings in 153 residential units of 81 provinces, and the radon map of Turkey was prepared. Indoor radon concentrations were distributed in the range of 1-1400 Bq m-3. The arithmetic mean of the radon gas concentration was found to be 81 Bq m-3; the geometric mean was 57 Bq m-3 with a geometric standard deviation of 2.3. (authors)

  6. Results of simultaneous radon and thoron measurements in 33 metropolitan areas of Canada

    OpenAIRE

    Chen, Jing; Bergman, Lauren; Falcomer, Renato; Whyte, Jeff

    2014-01-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. 222Rn (radon gas) and 220Rn (thoron gas) are the most common isotopes of radon. In order to assess thoron contribution to indoor radon and thoron exposure, a survey of residential radon and thoron concentrations was initiated in 2012 with ∼4000 homes in the 33 census metropolitan areas of Canada. The survey confirmed that indoor radon and thoron concentrations are not correlated and that thoron concent...

  7. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  8. The health risk of radon

    International Nuclear Information System (INIS)

    Although radon is the second leading cause of lung cancer in the United States, second only to cigarette smoking, many members of the public are not aware that radon is one of the most serious environmental cancer risks in the US. Based on extensive data from epidemiological studies of underground miners, radon has been classified as a known human carcinogen. In contrast to most pollutants, the assessment of human risk from radon is based on human occupational exposure data rather than animal data. That radon causes lung cancer has been well established by the scientific community. More is known about radon than most other cancer causing environmental carcinogens. While there are some uncertainties involved when estimating radon risk to the public, it is important to recognize that the risk information is based on human data and that the uncertainties have been addressed in the risk assessment. The US Environmental Protection Agency (EPA) estimates that the number of annual US lung cancer deaths due to residential radon exposures is approximately 14,000 with an uncertainty range of 7,000 to 30,000. The abundant information on radon health risks that supports EPA's risk assessment indicates that recommendations for public action by the federal government and other public health organizations constitute prudent public policy

  9. Fluid-based radon mitigation technology development for industrial applications

    International Nuclear Information System (INIS)

    The objective of the radon mitigation technology development effort is to develop an efficient and economical radon gas removal technology based on a fluid absorption process. The technology must be capable of cleaning up a wide range of radon gas stream concentrations to a level that meets EPA gas emission standards for residential and industrial applications. Argonne has recently identified a phenomenon that offers the possibility of radon recovery from the atmosphere with high efficiency at room temperature, and radon release at slightly elevated temperatures (50-60 degrees C.) such a device would offer numerous substantial advantages over conventional cryogenic charcoal systems for the removal of radon. Controlled sources of radon in Argonne's radon research facility are being used to quantitatively assess the performance of a selected class of absorbing fluids over a range of radon concentrations. This paper will discuss the design of laboratory- and engineering-scale radon absorption units and present some preliminary experimental test results

  10. Radon campaigns. Status report 2008

    International Nuclear Information System (INIS)

    Radon campaigns aim at activating citizens to make indoor radon measurements and remediation as well as increasing the common awareness of indoor radon questions. Indoor radon increases the risk of lung cancer. Through radon campaigns Radiation and Nuclear Safety Authority (STUK) also promotes the attainment of those goals that the Ministry of Social Affairs and Health has set for municipal authorities in Finland for prevention of the harmful effects of radon. The Ministry of Social Affairs and Health supports this campaign. Radon campaigns were started in autumn 2003. By autumn 2008 the campaigns have been organised already in 64 regions altogether in 160 municipalities. In some municipalities they have already arranged two campaigns. Altogether 14 100 houses have been measured and in 2 100 of these the action limit of radon remediation 400 Bq / m3 has been exceeded. When participating in radon campaigns the house owners receive a special offer on radon detectors with a reduced price. In 2008 a new practice was introduced where the campaign advertisements were distributed by mail to low-rise residential houses in a certain region. The advertisement includes an order / deposit slip with postage paid that the house owner can send directly to STUK to easily make an order for radon measurement. In the previous radon campaigns in 2003 - 2007 the municipal authorities collected the orders from house owners and distributed later the radon detectors. The radon concentrations measured in the campaign regions have exceeded the action limit of 400 Bq / m3 in 0 - 39% of houses, depending on the region. The total of 15% of all measurements made exceeded this limit. The remediation activities have been followed by sending a special questionnaire on remedies performed to the house owners. In 2006 - 2007 a questionnaire was sent to those households where the radon concentration of 400 Bq / m3 was exceeded during the two first campaign seasons. Among the households that replied

  11. Radon in Finland: Building regulations and raising public awareness

    International Nuclear Information System (INIS)

    New regulations of the National Finnish Building Code require consideration of radon risks and as a main rule radon technical design in the building permission documents. Slab-on-grade is the prevalent substructure in Finnish low-rise residential buildings. Without prevention the normal practices would result in high indoor radon concentrations in Finland. Guidance requires installation of protective sheet in the slab-on-ground foundation and a preparatory radon piping. Municipalities and STUK have launched a new campaign 'Radon bee' (Radontalkoot) in order to increase the measurement and mitigation activity. In 2003-2004 40 municipalities have started the campaign. The campaigns have already resulted in 6000 new radon measurements

  12. Parametric analysis of the installation and operating costs of active soil-depressurization systems for residential radon mitigation. Final report, Dec 90-May 91

    International Nuclear Information System (INIS)

    The report gives results of a recent analysis showing that cost-effective indoor radon reduction technology is required for houses with initial radon concentrations < 4 pCi/L, because 78-86% of the national lung cancer risk due to radon is associated with those houses. Active soil depressurization (ASD) is an effective and widely applicable radon reduction technology, but commercial use has been limited in part by installation and operating costs. A parametric cost analysis was conducted to determine if ASD installation and operating costs might be reduced enough to increase voluntary use of the technology, especially in houses < 4 pCi/L. The analysis showed that various modifications to ASD system designs offer potential for reducing installation costs by up to several hundred dollars, but would not reduce total installed costs much below $800-$1000. Such reductions would probably not be enough to dramatically increase voluntary use of ASD technology. Thus, some innovative, inexpensive mitigation approach(es) that would be widely used, in addition to ASD, would appear to be necessary to reduce the risk associated with low-radon houses. Decreased ASD fan capacity and increased sealing might reduce ASD operating costs (for fan electricity and house heating/cooling) by roughly $7.50/mo. This amount would not likely be a deciding factor for most homeowners

  13. Radon overview

    International Nuclear Information System (INIS)

    This tutorial presents the history of the radon industry, currently-used testing and mitigation techniques and future private industry and governmental plans. The significance of radon for homeowners, realtors and the construction industry is discussed. As a result of this tutorial, participants will: (1) Know how we became aware of the radon problem; (2) Learn what private industry and government officials are doing about it; (3) Understand the implications of radon for homeowners, realtors, builders and weatherization professionals

  14. Indoor radon dose assessment for Osijek

    International Nuclear Information System (INIS)

    After ten years' investigation of radon's seasonal variation at three very different locations, as well as radon concentration measurements in kindergartens, schools, air-raid shelters and cellars, systematic indoor radon measurements were undertaken in dwellings (residential buildings) of Osijek (East Croatia, 130andpuncsp; omitted000 citizens). Indoor radon was measured by means of the LR-115 SSNT detector at 48 town locations that gave an arithmetic mean of 71.6 Bq/m3, standard deviation of 44.0 Bq/m3 and geometric mean of 60.1 Bq/m3, for the radon concentration range from 22.7 to 185.6 Bq/m3. Radon measurements, performed by the silicon Radhome detector, did not differ significantly. The empirical frequency distribution of radon concentrations, with the class width of 20 Bq/m3, was in accordance with the theoretical log-normal distribution which was shown with the χ2-test. The radon map pointed out a region of higher radon concentrations (central part of the town) that was ascribed to the geological soil structure. The average equilibrium factor for radon and its progeny in the mentioned dwellings was 0.44. The effective dose equivalent assessment for a few radon models was near 2 mSv/year. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. [Radon 222Rn in residential buildings of Swieradów Zdrój and Czerniawa Zdrój].

    Science.gov (United States)

    Pachocki, K A; Gorzkowski, B; Rózycki, Z; Wilejczyk, E; Smoter, J

    2000-01-01

    Swieradrów Zdrój and Czerniawa Zdrój are located in Region Izera Block. A total of 789 radon passive dosimeters were distributed in 183 dwellings in these town Swieradów Zdrój and Czerniawa Zdrój to measure the indoor radon concentration in 1999. Three-five measurements were performed in each dwelling, one in the basement, and the others in the main bedroom, in the kitchen, in the bathroom, since these rooms are the most frequently occupied. In addition, the occupants of each dwelling were requested to answer a questionnaire in which a number of questions about the building, ventilation habits and other related aspects were formulated. A charcoal detectors (Pico-Rad system) were used in experiment. It is a passive short-term screening method of radon gas concentration measurements. The indoor radon level was found to range from 14.8 Bq/m3 to 5,723.9 Bq/m3. The arithmetic mean overall indoor concentration was 420.4 Bq/m3 and the geometric mean was 159.7 Bq/m3. The average concentration of indoor radon, which reflects the real risk for inhabitants, is 193.5 Bq/m3. The results hand a log-normal distribution. In Poland, an action level of 400 Bq/m3 was recommended for existing buildings and 200 Bq/m3 for newly built (after 1.01.1998) buildings. In about 23% rooms the level of Rn-222 were above the top limit of 400 Bq/m3. The highest average concentrations were present in a basement (mean 919.9 Bq/m3). A decrease of average activity were observed at the upper levels: at the ground floor (225.2 Bq/m3), at the first floor and at the higher floors (137.6 Bq/m3). The above results indicate that radon emission from the ground provides the main contribution to the radon concentration measured in dwellings indoors in Swieradów Zdrój and Czerniawa Zdrój. The effective dose to the population of the Swieradów Zdrój and Czerniawa Zdrój from indoor radon and its progeny can be derived from this data if we use an equilibrium factor of 0.4 between radon and its progeny

  16. The radon

    International Nuclear Information System (INIS)

    This booklet is intended to answer briefly the most important questions about the nature and sources of radon, its pathways from environment to organism, as well as the ways to minimize its concentration in the habitat's atmosphere. The radon is a naturally appearing radioactive gas, produced through the decay of uranium and radium present in the terrestrial crust. It can be found everywhere on the planet's surface and it is emitted particularly from the granite and volcanic underground rocks as well as from certain construction materials. It is one of the agents producing pulmonary cancer, although not so dangerous as the tobacco is. The following items are elaborated in this booklet: - the place of radon in the average exposure to ionizing radiations of the French population; - the risk; - the radon in the environment (the meteorological conditions, the nature of the rocks); - radon in dwellings (radon measurements in the French dwellings, the entrance pathways of radon, the dependence of radon concentration on the profession and way of life of the inhabitants); - radon measurements; - how to reduce the radon concentration in dwellings

  17. Indoor radon

    International Nuclear Information System (INIS)

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies

  18. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de inho

  19. Project Radon

    International Nuclear Information System (INIS)

    The project started in March 1987. The objective is to perform radon monitoring in 2000 dwellings occupied by people employed by State Power Board and to continue to contribute to the development of radon filters. The project participates in developing methods for radon measurement and decontamination and in adapting the methods to large scale application. About 400 so called radon trace measurements (coarse measurement) and about 10 action measurements (decontamination measurement) have been made so far. Experience shows that methods are fully applicable and that the decontamination measures recommended give perfectly satisfactory results. It is also established that most of the houses with high radon levels have poor ventilation Many of them suffer from moisture and mould problems. The work planned for 1988 and 1989 will in addition to measurements be directed towards improvement of the measuring methods. An activity catalogue will be prepared in cooperation with ventilation enterprises. (O.S.)

  20. Radon exposure and oropharyngeal cancer risk.

    Science.gov (United States)

    Salgado-Espinosa, Tania; Barros-Dios, Juan Miguel; Ruano-Ravina, Alberto

    2015-12-01

    Oropharyngeal cancer is a multifactorial disease. Alcohol and tobacco are the main risk factors. Radon is a human carcinogen linked to lung cancer risk, but its influence in other cancers is not well known. We aim to assess the effect of radon exposure on the risk of oral and pharyngeal cancer through a systematic review of the scientific literature. This review performs a qualitative analysis of the available studies. 13 cohort studies were included, most of them mortality studies, which analysed the relationship between occupational or residential radon exposure with oropharyngeal cancer mortality or incidence. Most of the included studies found no association between radon exposure and oral and pharyngeal cancer. This lack of effect was observed in miners studies and in general population studies. Further research is necessary to quantify if this association really exists and its magnitude, specially performing studies in general population, preferably living in areas with high radon levels. PMID:26335172

  1. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 2. APPENDICES

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  2. A comparison of contemporary and retrospective radon gas measurements in high radon dwellings in Ireland

    International Nuclear Information System (INIS)

    Little correlations has been found between contemporary radon gas measurements made in the past and retrospective radon gas measurements in Irish dwellings. This would suggest that these two techniques would result in two significantly different cumulative radon exposure estimates. Contemporary radon gas measurements made a few years apart in the same room of a dwelling were found to be significantly different. None of these differences could be explained by known changes to the rooms themselves., such ventilation or structural alterations to the room. This highlights the limitations of the contemporary radon gas measurements as a surrogate measurement for use in residential radon epidemiology. The contemporary radon gas measurements made by the Radiological Protection Institute of Ireland (R.P.I.I.) and University College of Dublin (U.C.D.) do not cover the same exposure period as the retrospective estimates and so the accuracy of the retrospective measurements cannot be demonstrated. A weak correlation can be seen between the retrospective radon gas estimates and a combination of the two contemporary radon gas estimates. It is not unreasonable to expect improvement in the correlation if further contemporary radon gas measurements were made in these rooms. (N.C.)

  3. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  4. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  5. Radon reduction

    International Nuclear Information System (INIS)

    During a radon gas screening program, elevated levels of radon gas were detected in homes on Mackinac Island, Mich. Six homes on foundations with crawl spaces were selected for a research project aimed at reducing radon gas concentrations, which ranged from 12.9 to 82.3 pCi/l. Using isolation and ventilation techniques, and variations thereof, radon concentrations were reduced to less than 1 pCi/l. This paper reports that these reductions were achieved using 3.5 mil cross laminated or 10 mil high density polyethylene plastic as a barrier without sealing to the foundation or support piers, solid and/or perforated plastic pipe and mechanical fans. Wind turbines were found to be ineffective at reducing concentrations to acceptable levels. Homeowners themselves installed all materials

  6. Risk of lung cancer and residental radon in China: pooled results of two studies

    International Nuclear Information System (INIS)

    Studies of radon-exposed underground miners predict that residential radon is the second leading cause of lung cancer mortality; however, case-control studies of residential radon have not provided unambiguous evidence of an association. Owing to small expected risks from residential radon and uncertainties in dosimetry, large studies or pooling of multiple studies are needed to fully evaluate effects. We pooled data from 2 case-control studies of residential radon representing 2 large radon studies conducted in China. The studies included 1,050 lung cancer cases and 1,996 controls. In the pooled data, odds ratios (OR) increased significantly with greater radon concentration. Based on a linear model, the OR with 95% confidence intervals (CI) at 100 Becquerel/cubic-meter (Bq/m3) was 1.13 (1.01, 1.36). For subjects resident in the current home for 30 years or more, the OR at 100 Bq/m3 was 1.32 (1.07, 1.91). Results across studies were consistent with homogeneity. Estimates of ORs were similar to extrapolations from miner data and consistent with published residential radon studies in North American and Europe, suggesting long-term radon exposure at concentrations found in many homes increases lung cancer risk. (orig.)

  7. Radon detection in homes and buildings. January 1970-December 1988 (Citations from the NTIS data base). Report for January 1970-December 1988

    International Nuclear Information System (INIS)

    This bibliography contains citations concerning the detection of radon and radon-daughter gases in homes and buildings. Measurement techniques and equipment, the effect of local geology on radon in a building, the effect of home-weatherization measures on radon levels, and sources of radon entering buildings are among the topics discussed. Residential and non-residential buildings are examined. Risk assessment and ways to control the amount of radon in a building are briefly considered. (This updated bibliography contains 232 citations, 46 of which are new entries to the previous edition.)

  8. Radon detection in homes and buildings. January 1970-December 1987 (citations from the NTIS data base). Report for January 1970-December 1987

    International Nuclear Information System (INIS)

    This bibliography contains citations concerning the detection of radon and radon daughter gases in homes and buildings. Measurement techniques and equipment, the effect of local geology on radon in a building, the effect of home-weatherization measures on radon levels, and sources of radon entering buildings are among the topics discussed. Residential and non-residential buildings are examined. Risk assessment and ways to control the amount of radon in a building are briefly considered. (This updated bibliography contains 123 citations, 37 of which are new entries to the previous edition.)

  9. Radon resistant new construction

    International Nuclear Information System (INIS)

    This paper consist of the awareness about the ill effects of radon gas and the methods adopted to detect the presence of radon gas and to remove the radon gas. It explains the installation of radon resistant structures during home construction. Radon is commonly found in the air and water, where it poses little risk. But radon that creeps into your home from the soil can be a much greater risk. Radon-resistant construction combines common building techniques and materials to seal entry points and route the gases outdoors, helping to prevent radon from entering the home. The benefits due to radon resistant construction is also explained in this paper. (author)

  10. Scopingreport radon

    International Nuclear Information System (INIS)

    This report contains general information on radon concerning the existing standards, sources and emissions, the exposure levels and effect levels. lt serves as a basis for the discussion during the exploratory melting to be held in November/December 1989, aimed at determining the contents of the Integrated Criteria Document Radon. Attention is focussd on Rn-222 (radon) and Rn-220 (thoron), presently of public interest because of radon gas pollution in private homes. In the Netherlands air quality standards nor product standards for the exhalation rate of building materials have been recommended. The major source of radon in the Netherlands is the soil gas (> 97%), minor sources are phosphate residues and building materials (> 2% in total). Hence, the major concern is the transfer through the inhalation of air, the lung being the most critical organ at risk to develop cancer. Compared to risks for humans, the risks of radon and its daughters for aquatic and terrestric organisms, as well as for agricultural crops and livestock, are assumed to be limited. In the Netherlands the average dose for man due to radon and thoron progeny is appr. 1.2 mSv per year, the estimated dose range being 0.1-3.5 mSv per year. This dose contributes for about 50% to rhe total exposure due to all sources of ionizing radiation. Of this dose respectively 80% is caused by radon and about 90% is received indoor. The estimated dose for the general population corresponds to a risk for inducing fatal cancers of about 15 x 10-6 per year, ranging from 1.2 x 10-6 to 44 x 10-6 which exceeds the risk limit of 1 x 10-6 per year -as defined in the standardization policy in the Netherlands for a single source of ionizing radiation-with a factor 15 (1- 44). Reduction of exposure is only possible in the indoor environment. Several techniques have been described to reduce the indoor dose, resulting from exhalation of the soil and building materials. )aut- hor). 37 refs.; 3 figs.; 8 tabs

  11. Relation between indoor radon and lung cancer

    International Nuclear Information System (INIS)

    Objective: Low level of exposures to residential radon and dosimetric uncertainties due to mobility have hampered the evaluation of lung cancer risk and the comparison to radon-exposed miners. To address these limitations, the authors conducted a case-control study in a predominantly rural area of China with low mobility and high radon levels. Methods: Cases studied including all lung cancer patients diagnosed between January 1994 and April 1998, aged 30-75 years, and resided in two prefectures of Gansu Province. Controls were randomly selected from census lists and matched on age sex and prefecture. Radon detectors were placed in all houses having been occupied two or more years in the past 5-30 years prior to enrollment. Measurements covered 77% of the possible exposure time. Results: Mean radon concentration were 230.4 Bq/m3 for the cases (n = 768) and 222.2 Bq/m3 for the controls (n = 1659). Lung cancer risk increased along with increasing of the radon level (P 3 was 0.19 (95% CI:0.05, 0.47) for all subjects, and 0.31(95% CI:0.10, 0.81) for subjects with 100% coverage of the exposure interval. Adjusting for exposure uncertainties increased estimates about 70%. Conclusion: The results support increased lung cancer risks with indoor radon exposures, which may equal to or exceed extrapolation-based risks from miner data

  12. Radon and Cancer

    Science.gov (United States)

    ... low levels outdoors. However, in areas without adequate ventilation, such as underground mines, radon can accumulate to ... radon levels. What have scientists learned about the relationship between radon and lung cancer? Scientists agree that ...

  13. Mechanisms of radon injury

    International Nuclear Information System (INIS)

    In this new project, they conduct molecular, cellular and whole-animal research relevant to understanding the inhalation toxicology of radon and radon-daughter exposures. The work specifically addresses the exposure-rate effect in radon-daughter carcinogenesis; the induction-promotion relationships associated with exposure to radon and cigarette-smoke mixtures; the role of oncogenes in radon-induced cancers; the effects of radon on DNA as well as on DNA repair processes; and the involvement of growth factors and their receptors in radon-induced carcinogenesis. Preliminary experiments showed that oncogenes are activated in radon-induced lung tumors. They have therefore begun further exposures pertinent to the oncogene and growth-factor studies. An in vitro radon cellular-exposure system was designed, and cell exposures were initiated. Initiation-promotion-initiation studies with radon and cigarette-smoke mixtures have also begun; and they are compiling a radon health-effects bibliography

  14. BGS Radon Protective Measures GIS

    International Nuclear Information System (INIS)

    The British Geological Survey Radon Protective Measures Geographical Information System is described. The following issues are highlighted: Identification of development sites where radon protection is required in new dwellings; Mapping radon potential on the basis of house radon and geology; Radon Protective Measures GIS; Radon site reports; and Follow-up radon protective measures sire reports

  15. Radon, radiation effects and radiation protection

    International Nuclear Information System (INIS)

    Epidemiological studies among Rn-exposed miners revealed a significant increase in lung tumour occurrence with increased exposure to radon daughters. Radiation exposure of the lungs also is given through inhalation of Rn-decay products released from the building material of residential houses. The resulting lung cancer risk is one of the major issues of radiation protection of the population. Extensive data collections are available on Rn-concentrations in room air. Building planning and design should make better use of these data, particularly for selection of materials and design of the basement and foundation of buildings, as radon daughters are the major source of radiation exposure of the population. (DG)

  16. Canadian population risk of radon induced lung cancer: A re-assessment based on the recent cross-Canada radon survey

    International Nuclear Information System (INIS)

    Exposure to indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. Canadian population risk of radon induced lung cancer was assessed in 2005 with the radon distribution characteristics determined from a radon survey carried out in the late 1970's in 19 cities. In that survey, a grab sampling method was used to measure radon levels. The observed radon concentration in 14 000 Canadian homes surveyed followed a log-normal distribution with a geometric mean (GM) of 11.2 Bq m-3 and a geometric standard deviation (GSD) of 3.9. Based on the information from that survey, it was estimated that ∼10 % of lung cancers in Canada resulted from indoor radon exposure. To gain a better understanding of radon concentrations in homes across the country, a national residential radon survey was launched in April 2009. In the recent survey, long-term (3 month or longer) indoor radon measurements were made in roughly 14 000 homes in 121 health regions across Canada. The observed radon concentrations follow, as expected, a log-normal distribution with a GM of 41.9 Bq m-3 and a GSD of 2.8. Based on the more accurate radon distribution characteristics obtained from the recent cross-Canada radon survey, a re-assessment of Canadian population risk for radon induced lung cancer was undertaken. The theoretical estimates show that 16 % of lung cancer deaths among Canadians are attributable to indoor radon exposure. These results strongly suggest the ongoing need for the Canadian National Radon Program. In particular, there is a need for a focus on education and awareness by all levels of government, and in partnership with key stakeholders, to encourage Canadians to take action to reduce the risk from indoor radon exposure. (authors)

  17. Assessment of health impacts of radon exposures in Florida

    International Nuclear Information System (INIS)

    This paper reports on residential radon levels, from a statewide Florida survey, that were used in an analysis of over 150,000 medically treated episodes of malignancies and other serious illnesses and conditions in whites, blacks and Hispanics from all counties in the state. No evidence of an increased percentage of cancer was found in any sex or ethnic group from the areas with the highest radon exposure levels. Age adjustment of data did not affect the results. The highest radon exposures were associated with some of the lowest cancer rates and contradict the risk assessment hypothesis based on extrapolation from exposures in mining. Points for DOE and EPA errors in risk assessment methods are reviewed; predictions from risk assessment should be empirically tested as in the case of any other scientific hypothesis before being used as a basis for public policy. Thus, the authors find that cancer risks of residential radon have been vastly overstated

  18. Systematic effects in radon mitigation by sump/pump remediation

    International Nuclear Information System (INIS)

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump technology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  19. Systematic effects in radon mitigation by sump/pump remediation

    Energy Technology Data Exchange (ETDEWEB)

    Groves-Kirkby, C.J.; Denman, A.R. [Northampton General Hospital, Medical Physics Dept. (United Kingdom); Groves-Kirkby, C.J.; Woolridge, A.C. [Northampton Univ., School of Health (United Kingdom); Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M. [Northampton Univ., School of Applied Sciences (United Kingdom); Tornberg, R. [Radon Centres Ltd., Grove Farm, Moulton, Northampton (United Kingdom)

    2006-07-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump tology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  20. Sampling strategies for indoor radon investigations

    International Nuclear Information System (INIS)

    Recent investigations prompted by concern about the environmental effects of residential energy conservation have produced many accounts of indoor radon concentrations far above background levels. In many instances time-normalized annual exposures exceeded the 4 WLM per year standard currently used for uranium mining. Further investigations of indoor radon exposures are necessary to judge the extent of the problem and to estimate the practicality of health effects studies. A number of trends can be discerned as more indoor surveys are reported. It is becoming increasingly clear that local geological factors play a major, if not dominant role in determining the distribution of indoor radon concentrations in a given area. Within a giving locale, indoor radon concentrations tend to be log-normally distributed, and sample means differ markedly from one region to another. The appreciation of geological factors and the general log-normality of radon distributions will improve the accuracy of population dose estimates and facilitate the design of preliminary health effects studies. The relative merits of grab samples, short and long term integrated samples, and more complicated dose assessment strategies are discussed in the context of several types of epidemiological investigations. A new passive radon sampler with a 24 hour integration time is described and evaluated as a tool for pilot investigations

  1. New reasons for concern about indoor radon exposure?

    International Nuclear Information System (INIS)

    The author gives critical comments on a publication by Steindorf et al. (Lung cancer deaths attributable to indoor radon exposure in West Germany, Intern. J. Epidemiol. 24 (1995)), and compares the results published there with other, primarily international publications. Other than Steindorf, the author's conclusion is that there are no signs of an indoor radon effect on lung cancer incidence in the residential population. The author raises doubts about the seriosity of the publication of Steindorf et al. (VHE)

  2. Radon dynamics in underwater thermal radon therapy

    International Nuclear Information System (INIS)

    At a facility for underwater thermal radon therapy in Bad Hofgastein, experiments were carried out with the aim of establishing radon in the air exhaled by the treated patients and of radon decay products on the skin of the patients. The time course of radon concentration in the exhaled air shows a maximum a few minutes after entering the bath, then the Rn concentration remains constant over the remaining time spent in the bath. Taking into account several simplifying assumptions, the average dose to the epidermis from radon daughters is about 50 μGy. (A.K.)

  3. Radon: risk to health? El radón: ¿riesgo para la salud?

    OpenAIRE

    Juan Miguel Barros Dios

    2011-01-01

    Radon (Rn222) is a radioactive noble gas whose origin is Radium (Ra226) when it emits an alpha particle (two protons and two neutrons) or a helium nucleus. Rn222 transforms in another radioactive element (Po218) when an alpha particle is emitted. Its carcinogenic effect on the lung was discovered various decades ago, first on uranium miners and later on general population exposed at home to residential radon. The main factor influencing radon concentration in dwellings is the uranium content ...

  4. Radon concentrations in some Egyptian dwellings using LR 115 detectors

    International Nuclear Information System (INIS)

    Radon, a well-established risk factor for human lung cancer, is present at low concentrations in most homes. Consequently, many countries have established national guidelines for residential radon concentrations. This survey provides additional information about indoor radon concentrations in Egypt. Indoor radon survey of a total of 15 randomly selected houses in Qena city, Upper Egypt was carried out. LR 115 detectors were exposed for one year, covering all the seasons. The estimated indoor radon levels varied from 19 to 59 Bq m3 with an average of 40 Bq m3. Using the bare and filtered LR 115 detectors, the average equilibrium factor F was assessed as 0.30 indoors. An average annual effective dose of 0.40 mSv has been estimated and was found to be lower than the ICRP-65

  5. The assessment of radon risk by dosimetric approach

    International Nuclear Information System (INIS)

    Exposure to radon and radon decay products in some residential areas and at workplaces constitutes one of the greatest risk from natural sources of ionizing radiation. The compartmental model published in ICRP Publication 66 (HRTM) has been used for modeling of the clearance, absorption into the blood, radon products decays and particle deposition. Energy deposition in the tissue and in the air gap was calculated by the Bethe-Bloch equation. In this work different thicknesses of mucus in case of non-smokers and smokers has been considered, and doses, factor quality and effective doses has been calculated. (authors)

  6. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  7. Radon prevention in new construction. Sample survey 2009

    International Nuclear Information System (INIS)

    The building code for radon prevention and the associated practical guidelines were revised in Finland in 2003 to 2004. Thereafter, preventive measures have become more common and prevention practices more effective. Consequently, indoor radon concentrations in new construction have been markedly reduced. In this study, the indoor radon concentration was measured in 1 500 new lowrise residential houses. The houses were randomly selected and represented 7 % of houses that received building permission in 2006. The average radon concentration of all houses measured, which were completed in 2006 to 2008, was 95 Bq/m3, the median being 58 Bq/m3. The average was 30 % lower than in houses completed in 2000 to 2005. The decrease was 50 % in provinces with the highest indoor radon concentration and 20 % elsewhere in the country. In houses with a slab-on-ground foundation that had both passive radon piping and sealing measures carried out using a strip of bitumen felt in the joint between the foundation wall and floor slab, the radon concentration was on average reduced by 55 % compared to houses with no preventive measures. Preventive measures were taken in 50 % of single family houses, and in provinces with the highest radon concentration in 90 % of houses. Active prevention in areas with high indoor radon concentrations has reduced the regional differences in the radon concentration. Slab on ground is the prevailing type of foundation and necessitates careful radon prevention measures throughout the country. The most serious defects were observed in prevention practices in houses with walls made of lightweight concrete blocks that were in contact with soil. The foundation types with the lowest radon concentrations were those with a crawl space and a monolithic slab. (orig.)

  8. Diurnal variation of radon measured indoors and outdoors in Grand Junction, Colorado, and Teaneck, New Jersey, and the influence that ventilation has on the buildup of radon indoors

    International Nuclear Information System (INIS)

    Continuous measurements of 222Rn were performed indoors and outdoors in two localities that differ primarily in the amount of radon source material within, under, and around building foundations. Grand Junction, Colorado, represents an area where uranium mill tailings have been incorporated into several residential and commercial structures. The radon concentration measured in the basement of a residential structure in Grand Junction known to have no uranium mill tailings within or around the foundation was 0.9 +- 0.2 pCi/liter. The presence of uranium mill tailings increased the average indoor radon concentration by at least a factor of 10 compared to the structure without tailings. Continuous radon measurements were made in a residential structure in Teaneck, NJ, which represents a locality where the 226Ra content of soil and building materials is not artificially enhanced. The daily average radon content of the basement was 0.9 +- 0.2 pCi/liter. Diurnal-like fluctuations were observed in the radon concentration in Grand Junction and Teaneck. These fluctuations were primarily a result of ventilation changes made by the occupants of the home. An algebraic equation was developed relating the equilibrium indoor and outdoor radon concentrations, the ventilation rate, and the radon flux from the 226Ra in the soil beneath the structure and in the fabrication materials of the foundation floor and walls. This relationship was used to calculate the basement ventilation rate of the house in New Jersey

  9. Evaluation of indoor radon

    International Nuclear Information System (INIS)

    In the indoor radon environment, building ventilation and indoor air quality problems are discussed. They take their origin from the building materials, and the ventilation rate, plate-out and recoil rate of radon daughters are effective in evaluating the concentration of indoor radon. The deposition processes depend on the physical properties of the free atoms and activity size distributions of the aerosols. The equilibrium factor, the radon daughter concentrations relative to the radon concentration, are influenced by the room specific parameters. This paper summarizes available information on indoor radon concentrations and on the physical characteristics of radon daughters. For evaluation fo the risk of radon, the measuring results of the degree of radioactive equilibrium, and its time variations, mean size of individual radon daughters are reported. (author)

  10. Radon monitoring and Dosimetry in Uganda

    International Nuclear Information System (INIS)

    This study reports the concentrations and radiation exposures to the inert and naturally occurring radioactive gas radon (222Rn) in Kilembe copper - cobalt mines and some selected residences around Kampala. The Kilembe copper-cobalt mines are generally deep underground mines situated on the South-Eastern slopes of Mt. Rwenzori in the midst of the western arm of the East African rift system. Kampala is the Capital city of Uganda. Radon gas is produced from the uranium and thorium decay series. Radon concentrations in the mines and residences were investigated using activity concentrations of uranium and thorium, and the radon exhalation rates of ore samples. Concentrations of uranium and thorium in rock samples were determined using the high purity germanium (HPGe) spectrometer. Concentrations of radon gas were determined using the Atmos Radon Gas Monitor. Activity concentrations of uranium and thorium in the Kilembe copper - cobalt mines ranged from 50 to 300 Bqkg-1 and from 5 to 50 Bqkg-1 respectively. Radon gas concentration in Kilembe copper-cobalt mines ranged from 330 to 6980 Bqm-3 and from 10 Bqm-3 to 420 Bqm-3 in residential houses in Kampala. Samples from Kilembe Copper Mines contained mainly pyrites and chalcopyrites. Some of these results are quite high and exceed action levels for concentrations of radon in mines or buildings set by the International Commission of Radiological Protection, International Atomic Energy Agency and several other countries. Radiation exposure to radon in Kilembe copper-cobalt mines and in some selected residences around Kampala ranges from 0.24 mSv/year to 34 mSv/year. Several results of radiation exposure to radon are above 1 mSv/year - the dose limit for the general public and 20 mSv/year - the dose limit for occupational radiation workers. The problem of radiological risk due to radiation exposure to radon affecting some miners and members of the public has been identified and remedies suggested. The concentrations of

  11. Annual effective dose due to residential radon progeny in Sweden: Evaluations based on current risk projections models and on risk estimates from a nation-wide Swedish epidemiological study

    International Nuclear Information System (INIS)

    Effective dose per unit radon progeny exposure to Swedish population in 1992 is estimated by the risk projection model based on the Swedish epidemiological study of radon and lung cancer. The resulting values range from 1.29 - 3.00 mSv/WLM and 2.58 - 5.99 mSv/WLM, respectively. Assuming a radon concentration of 100 Bq/m3, an equilibrium factor of 0.4 and an occupancy factor of 0.6 in Swedish houses, the annual effective dose for the Swedish population is estimated to be 0.43 - 1.98 mSv/year, which should be compared to the value of 1.9 mSv/year, according to the UNSCEAR 1993 report. 27 refs, tabs, figs

  12. Annual effective dose due to residential radon progeny in Sweden: Evaluations based on current risk projections models and on risk estimates from a nation-wide Swedish epidemiological study

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M. [National Inst. of Radiological Sciences, Chiba (Japan); Lagarde, F. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine; Falk, R.; Swedjemark, G.A. [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1996-12-01

    Effective dose per unit radon progeny exposure to Swedish population in 1992 is estimated by the risk projection model based on the Swedish epidemiological study of radon and lung cancer. The resulting values range from 1.29 - 3.00 mSv/WLM and 2.58 - 5.99 mSv/WLM, respectively. Assuming a radon concentration of 100 Bq/m{sup 3}, an equilibrium factor of 0.4 and an occupancy factor of 0.6 in Swedish houses, the annual effective dose for the Swedish population is estimated to be 0.43 - 1.98 mSv/year, which should be compared to the value of 1.9 mSv/year, according to the UNSCEAR 1993 report. 27 refs, tabs, figs.

  13. Using geographic information systems for radon exposure assessment in dwellings in the Oslo region, Norway

    Science.gov (United States)

    Kollerud, R.; Blaasaas, K.; Ganerød, G.; Daviknes, H. K.; Aune, E.; Claussen, B.

    2014-04-01

    Radon exposures were assigned to each residential address in the Oslo region using a geographic information system (GIS) that included indoor radon measurements. The results will be used in an epidemiologic study regarding leukemia and brain cancer. The model is based on 6% of measured residential buildings. High density of indoor radon measurements allowed us to develop a buffer model where indoor radon measurements found around each dwelling were used to assign a radon value for homes lacking radon measurement. Intraclass correlation coefficients (ICCs) were used to study the agreement between radon values from the buffer method, from indoor radon values of measured houses, and from a regression model constructed with radiometric data (eTh, eU) and bedrock geology. We obtained good agreement for both comparisons with ICC values between 0.54 and 0.68. GIS offers a useful variety of tools to study the indoor-radon exposure assessment. By using the buffer method it is more likely that geological conditions are similar within the buffer and this may take more into account the variation of radon over short distances. It is also probable that short-distance-scale correlation patterns express similarities in building styles and living habits. Although the method has certain limitations, we regard it as acceptable for use in epidemiological studies.

  14. Combined effect of radon exposure and smoking and their interaction in Czech studies of lung cancer

    International Nuclear Information System (INIS)

    The aim is to compare lung cancer risks from radon in smoking categories in Czech residential radon and uranium miners studies and to evaluate interactions between smoking and radon exposure. The residential and occupational studies are based on one hospital based case-control study and three case-control studies nested within cohort studies, two among uranium miners and one in the general population in a radon prone area. Controls in the nested studies are individually matched by sex, age and year of birth. Smoking data were collected in person or from relatives of deceased subjects. In the occupational studies, some smoking data were obtained from medical files. Radon exposures were based on measurements of radon in houses by open track detectors LR115 in the radon prone area and by closed detectors and electrets in the hospital based study. Exposures in uranium mines were based on extensive measurements and personal dosimetry. The analyses are based on conditional logistic regression with linear dependence of the risk on radon exposure adjusted for smoking. The study resulted in 300 cases and 1035 controls in the residential study and 672 cases and 1491 controls in the study of uranium miners. The dependence of lung cancer risk on radon exposure adjusted for smoking was not substantially different from analyses when smoking was ignored and reflected mainly the risk among smokers. However, the excess relative risk per unit exposure among non-smokers was 3-10 fold higher in comparison to that in smokers. The relative risk from radon among non-smokers was consistently higher in the occupational and residential studies, reflecting probably differences in lung morphometry, clearence and unattached fraction of radon progeny in houses of non-smokers. Risks from combined effects are substantially lower than the risk derived from the multiplicative model, but consistent with the additive model. (author)

  15. Radon in geological medium

    International Nuclear Information System (INIS)

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The av has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km2. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (av > 50 kBq/m3). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  16. Radon control systems in existing and new construction: A review

    International Nuclear Information System (INIS)

    In support of the implementation of the new Canadian radon guideline, a comprehensive review of radon mitigation techniques used in countries around the world was undertaken, with particular emphasis on North America and Europe that have climates and construction techniques similar to Canada. The results of this review are presented here as an aid to administrators of radon control programmes, companies offering radon testing and mitigation services and other concerned parties, both in Canada and elsewhere, who are facing issues of implementing a radon control strategy. A wide variety of radon mitigation strategies have been employed worldwide and all have achieved some success in reducing radon concentrations. Generally, active mitigation techniques involving physical alterations to a house (e.g. sub-slab de-pressurisation) are more effective in achieving a sustained and substantial radon reduction than passive techniques (e.g. improved ventilation or sealing of cracks). To a large extent, the choice of an optimal mitigation strategy will depend on the building type, soil conditions and climate. Radon levels should be measured at periodic intervals after remediation, perhaps once every 5 y, to ensure that concentrations continue to remain at acceptable levels. (authors)

  17. A geographic information systems (GIS) and spatial modeling approach to assessing indoor radon potential at local level

    Energy Technology Data Exchange (ETDEWEB)

    Lacan, Igor [California Department of Health Services, Environmental Health Laboratory Branch, 850 Marina Bay Pkwy, Mailstop G365/EHLB, Richmond, CA 94804 (United States)]. E-mail: ilacan@nature.Berkeley.edu; Zhou, Joey Y. [California Department of Health Services, Environmental Health Laboratory Branch, 850 Marina Bay Pkwy, Mailstop G365/EHLB, Richmond, CA 94804 (United States); Liu, Kai-Shen [California Department of Health Services, Environmental Health Laboratory Branch, 850 Marina Bay Pkwy, Mailstop G365/EHLB, Richmond, CA 94804 (United States); Waldman, Jed [California Department of Health Services, Environmental Health Laboratory Branch, 850 Marina Bay Pkwy, Mailstop G365/EHLB, Richmond, CA 94804 (United States)

    2006-04-15

    This study integrates residential radon data from previous studies in Southern California (USA), into a geographic information system (GIS) linked with statistical techniques. A difference (p<0.05) is found in the indoor radon in residences grouped by radon-potential zones. Using a novel Monte Carlo approach, we found that the mean distance from elevated-radon residences (concentration>74Bqm{sup -3}) to epicenters of large (> 4 Richter) earthquakes was smaller (p<0.0001) than the average residence-to-epicenter distance, suggesting an association between the elevated indoor-radon and seismic activities.

  18. Radon in dwellings

    International Nuclear Information System (INIS)

    An evaluation of methods for the radiation monitoring of radon in indoor air is given, together with guidelines for the investigation of building sites taking in consideration the radiation hazards from radon. 2 figs., 4 tabs

  19. Radon in dwellings

    International Nuclear Information System (INIS)

    Radon, a radioactive gas emitted from soils and construction materials, penetrates dwellings and is the principal source of natural background radiation. If they are inhaled continuously, radon and its daughter products may constitute a hazard for man

  20. Radon in Austria

    International Nuclear Information System (INIS)

    Several projects in Austria deal with the problem of enhanced radon exposure to the public. The Austrian Radon Project is the largest project within this task, with the aim of investigating the radon concentrations in Austrian homes. Another project concerns mitigation methods. According to the EU directive EURATOM 96/29 it is also necessary to check working places for possibly enhanced radon concentrations. These projects are and will be funded by the government. The federal government of Upper Austria sponsored a project to test the indoor air quality in kindergartens including radon measurements. Within an EU research project, the radon concentrations in Austrian springs and groundwater were systematically listed and analyzed. Additional investigations will focus on methods to improve the radon potential maps from the Austrian Radon Project by including geological and other information. (author)

  1. Radon in buildings

    International Nuclear Information System (INIS)

    This guide is intended to inform designers, householders and other building owners about the radon problem and to help in deciding if there is need to take any action to reduce radon levels in their homes or other buildings.It explains what radon is, how it enters buildings and what effect it may have on health. Reference is made to some of the usual ways of reducing the level of radon and guidance is given on some sources of assistance

  2. Radon in workplaces

    International Nuclear Information System (INIS)

    The naturally occurring radioactive gas radon has been found at excessive levels in many workplaces other than mines throughout the country. Prolonged exposure to radon and its decay products increases the risk of developing lung cancer, and controls to protect employees from excessive exposure are included in the Ionising Radiations Regulations 1985. The control of occupational exposure to radon is discussed here. (author)

  3. Influence of aerosol upon radon concentration of radon chamber

    International Nuclear Information System (INIS)

    On the basis of theoretical analysis, the influence on the radon concentration of radon chamber by the experiment of filling the radon chamber with aerosol, and the absorption of radon daughter on aerosol under the condition of different radon concentration and aerosol concentration was described. The results of experiment showed that: Aerosol did not affect the stability of the radon concentration of the radon chamber, but different aerosol concentration will change the combination state of radon daughter, thus it will affect the diffusion coefficient of radon daughter, so it will affect the results of the measure of the gross measuring instrument. (authors)

  4. Investigation of radon and thoron concentrations in a landmark skyscraper in Tokyo

    International Nuclear Information System (INIS)

    The temporal variation of the radon concentration, and the radon and thoron concentrations every 3 months for a year were measured using two types of devices in a landmark skyscraper, the Tokyo Metropolitan Government Daiichi Building. In the measurement of temporal variation of the radon concentration using a pulse type ionization chamber, the average radon concentration was 21 ± 13 Bq m-3 (2-68 Bq m-3). The measured indoor radon concentration had a strong relationship with the operation of the mechanical ventilation system and the activities of the office workers. The radon concentration also increased together with temperature. Other environmental parameters, such as air pressure and relative humidity, were not related to the radon concentration. In the long-term measurements using a passive radon and thoron discriminative monitor, no seasonal variation was observed. The annual average concentrations of radon and thoron were 16 ± 8 and 16 ± 7 Bq m-3, respectively. There was also no relationship between the two concentrations. The annual average effective dose for office workers in this skyscraper was estimated to be 0.08 mSv y-1 for 2000 working hours per year. When considering the indoor radon exposure received from their residential dwellings using the annual mean radon concentration indoors in Japan (15.5 Bq m-3), the annual average effective dose was estimated to be 0.37 mSv y-1. This value was 31 % of the worldwide average annual effective dose. (author)

  5. Sex and smoking sensitive model of radon induced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovsky, M.; Yarmoshenko, I. [Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Yekaterinburg (Russian Federation)

    2006-07-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  6. Sex and smoking sensitive model of radon induced lung cancer

    International Nuclear Information System (INIS)

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  7. Radon mitigation in soils

    International Nuclear Information System (INIS)

    Radon is produced in soil by radium decay, Ra-226 for radon (Rn-222) and Ra-224 for thoron (Rn-220). The radium content is about 40 Bq.kg-1 in crustal rocks and soils, 70 Bq.kg-1 in granite and only about 8 Bq.kg-1 in limestone. Being the heaviest gas in atmosphere, radon presents high concentration at surface and it is accumulating in closed or poorly ventilated places, both in underground cavities (caves or mines) and in dwelling. In comparison with the average radon concentration in atmospheric air of 8 Bq.m-3, the average indoor radon concentration reaches 10-100 Bq.m-3. International statistics indicate that radon contribution on natural irradiation is about 60%. The main sources of indoor radon are: radium content of the soil and of the concretes, water supply and natural gases

  8. Indoor radon: deadliest pollutant

    International Nuclear Information System (INIS)

    Radon in individual homes may be the greatest source of radiation that people are exposed to during a lifetime. In areas where radon concentrations in homes are high, people may be exposed to more radiation than were the Russian people living in the vicinity of Chernobyl Nuclear Power Plant. Studies indicate that the radon exposure contributes to 5000 to 20,000 deaths per year from lung cancer and that smoking may have a lethal interaction with the radon exposure. One study found an average annual concentration of radon in living spaces of 1.5 picocuries per liter. 7% of U.S. homes were found to have a radon concentration above the 4 picocuries per liter level set by the Environmental Protection Agency, and 1 - 3% of the homes have levels above 8 picocuries. Some ways are described for changing the air pressure in a house so that air is not constantly drawn from the permeable soil where the radon originates

  9. Where's the radon? The geographic information system in Washington State

    International Nuclear Information System (INIS)

    As Washington's lead agency for radon issues, the Department of Health (DOH) is developing the analytical basis for establishing a public health policy regarding radon. The Geographic Information System (GIS) is a fundamental step in this analytical process to develop a map of the potential for indoor radon occurrence. The GIS analysis will take into account geology, geography, topography, soil permeability, indoor test results, population density and distribution, and housing. In addition, DOH is working to aid policy makers and residents by comparing residential exposures to the lowest exposure range at which miners evidenced excess lung cancers. This approach is a departure from the commonly used risk assessments that extrapolate from high to low exposure, and will help determine how many Washington residents are at risk. In conclusion there is an examination of Washington's radon prescriptive construction standards for residences. (author)

  10. A geographic information systems (GIS) and spatial modeling approach to assessing indoor radon potential at local level

    International Nuclear Information System (INIS)

    This study integrates residential radon data from previous studies in Southern California (USA), into a geographic information system (GIS) linked with statistical techniques. A difference (p74Bqm-3) to epicenters of large (> 4 Richter) earthquakes was smaller (p<0.0001) than the average residence-to-epicenter distance, suggesting an association between the elevated indoor-radon and seismic activities

  11. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  12. Radon dosimetry and radon risks in perspective

    International Nuclear Information System (INIS)

    Some recollections are given regarding the introduction of alpha track etching detectors for integrating radon individual and environmental monitoring 25 years ago. The current status, and efforts to standardise these methods, are briefly described. However, more important than improving measurement techniques appears to be a balanced judgment of the potential health risks associated with radon, in particular in dwellings. New radio-epidemiological studies in former East Germany confirm earlier observations that there is little or no evidence of increased lung cancer risk for populations living in high-radon areas. Only among early uranium miners is there an increase in lung cancer, to be explained by synergistic effects of heavy smoking, ore dust, toxic fumes, etc., and extremely high radon exposures. The large scale and obviously effective worldwide application of radon for therapeutic reasons also indicates that lung cancer from early mining should not be used as a basis for risk estimates in buildings, and intervention levels (if required at all) should become substantially increased. Also, detectable differences in the genotoxic effects of radon and smoking in lung cancers deserve special attention in the discussion about potential radon health hazards. (author)

  13. Indoor radon; Le radon dans les batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies.

  14. Atmosphere purification of radon and radon daughter elements

    Science.gov (United States)

    Stein, L.

    1974-01-01

    A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)

  15. Interim indoor radon and radon decay-product measurement protocols

    International Nuclear Information System (INIS)

    The report provides EPA's procedures for measuring radon concentrations in houses with continuous radon monitors, charcoal canisters, alpha-track detectors, and grab radon techniques. It also provides procedures for measuring radon decay-product concentrations with a continuous-working-level monitor, a radon-progeny integrating sampling unit (RPISU), and grab radon decay-product methods. Specifications for the location of the measurement, the house conditions during the measurement, and minimum requirements for quality control are included in each procedure

  16. WHO Handbook on indoor radon: an international effort to reduce the risks from radon exposures

    International Nuclear Information System (INIS)

    The 'WHO Handbook of Indoor Radon - A Public Health Perspective' was published in September 2009. It was developed with the involvement of over 100 radon scientists and experts. Several subsequent working meetings were held between 2005 and 2007 with participants from 36 countries, along with representatives of IAEA, UNSCEAR, ICRP, and EC. The WHO handbook includes chapters on health effects, measurement, mitigation and prevention, cost-effectiveness and risk communication, as well as a chapter on recommendations for national radon programs. Reference levels and their importance in the context of national radon programs were also discussed in this chapter. Radon reference levels are intended to indicate a level of exposure beyond which remediation action should be taken. However, given the epidemiological associations, these levels cannot be interpreted as rigid boundaries between harm and non-harm. WHO has surveyed existing reference levels in different countries and reviewed international recommendations. WHO is proposing a reference level of 100 Bq/m3 for residential dwellings wherever this is possible and 300 Bq/m3 as an upper bound which is consistent with ICRP recommendation to establish a reference level at < 10mSv/year

  17. Consumer's Guide to Radon Reduction

    Science.gov (United States)

    ... to Radon Reduction: How to Fix Your Home Consumer's Guide to Radon Reduction: How to Fix Your ... EPA’s About PDF page to learn more. 2013 Consumers Guide to Radon Reduction (PDF) (20 pp, 424 ...

  18. Radon and cancer

    International Nuclear Information System (INIS)

    This publication proposes an overview on what is known about the carcinogenic effect of radon. It recalls the origin of radon, its presence in the environment, and its radioactivity. It comments data on the relationship between exposure to radon and lung cancer, and with other forms of cancer. It discusses the role of the exposure level, and the cases of professional and domestic exposure with respect to these risks. It indicates the hazardous areas in France which are well identified, outlines that smokers are more likely victims of risks related to radon, that this risk is still underrated and underestimated (notably by the public). It gives an overview of existing regulations regarding exposure to radon, of public health policies and national plans concerning radon, and recalls some WHO recommendations

  19. Conference on provisions against radon

    International Nuclear Information System (INIS)

    The Proceedings contain 20 contributions dealing with diverse aspects of the radon problem. Information is presented on the occurrence of radon on the territory of Czechoslovakia, and on natural radioactivity of rocks. The majority of contributions concentrate on ways of radon measurement, on determination of the radon content of building materials and on radon propagation through buildings. Various technologies for removing radon from homes and for preventing radon leaks are described and assessed. The effect of radon on human health is also dealt with. (M.D.). 16 tabs., 34 figs., 39 refs

  20. Intercomparison of passive radon dosimeters developed by NIRS (Japan) and SSI (Sweden)

    International Nuclear Information System (INIS)

    Solid state nuclear track detectors (SSNTD) are widely applied for the assessment of mean radon concentration over long periods in human environment, because of their simple, reliable specifications. In Japan, National Institute of Radiological Sciences (NIRS) developed the passive radon-thoron discriminative dosimeter for the nationwide indoor radon and thoron survey project since 1992. The dosimeter contains two polycarbonate disks as SSNTD, which is ready for the low level indoor radon concentration (-3). In Sweden, Swedish Radiation Protection Institute (Statens straalskyddsinstitut, SSI) developed the passive radon dosimeter for the nationwide survey, which showed the Swedish indoor radon level to be 100 Bq m-3 in 1982. As well, the SSI passive radon dosimeter is adopted for the Swedish epidemiological (case control) study on residential radon and lung cancer in 1993. To compare technical features of above two types of passive radon dosimeters, intercomparison was performed at 24 Swedish houses in Stockholm. Two types of dosimeters were placed side by side in both living room and bed room from March to May (about 90 days). Gradient of the linear regression may reflect systematic difference between radon standards in Japan and Sweden. Intercept might be caused by the background uncertainty in either or both dosimeters. This is a first trial for the future cooperative studies between NIRS and SSI. (J.P.N.)

  1. Japanese individual risks of radon induced lung cancer for different exposure profiles

    International Nuclear Information System (INIS)

    Indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. There is an increasing need among radiation practitioners to have numerical values of lung cancer risks for men and women, smokers and nonsmokers exposed to radon in homes. This study evaluates individual risks for the Japanese population exposed to indoor radon at different radon concentrations and for different periods of their lives. Based on the risk model recently developed by U.S. Environmental Protection Agency (EPA), individual risks of radon induced lung cancers are calculated with Japanese age-specific rates for overall and lung cancer mortalities (1996-2000) as well as the Japanese smoking prevalence data in 2002. Convenient tables of lifetime relative risks are constructed for lifetime exposures and short exposures between any two age intervals from 0 to 110, and for various radon concentrations found in homes from 25 to 600 Bq/m3. The risk of developing lung cancer from residential radon exposure increases with radon concentration and exposure duration. For short exposure periods, such as 10 or 20 years, risks are higher in middle age groups (30-50) compared especially to the later years. Individuals could lower their risks significantly by reducing their radon exposure levels earlier in life. The tables can help radiation protection practitioners to better communicate indoor radon risks to members of the public. (author)

  2. Radon in buildings

    International Nuclear Information System (INIS)

    This guide is intended to inform designers, contractors, householders and other building owners about radon in buildings and to provide guidance where it has been decided to take action to reduce radon levels. It gives some pointers to good practice insofar as it relates to non complex buildings of normal design and construction. Reference is made to the usual ways of reducing l;levels of radon and guidance is given on sources of further information. I

  3. Radon in Caves.

    OpenAIRE

    Cigna Arrigo A.

    2005-01-01

    The physical characteristics of radon are reported as well as its sources,the transport in rock and its behaviour in caves. Then,the instruments,both active and passive, used for the measurement of radon concentration are discussed by taking into accounttheir respective advantages and disadvantages for the use in the cave environment. Since in many countries radon is the objectof regulations that were adopted for radiation protection purposes, this aspect is examined and the recommendations i...

  4. Radon in dwellings

    International Nuclear Information System (INIS)

    The report presents the function of the ventilation by natural draught in three-storey houses. In some cases also the measurement of gamma radiation, radon and radon daughters was made. The investigation took place in Uppsala. The houses were built of light weight concrete made of alum-shale. The measurements showed that the contents of radon daughters were far below the provisional limits. (G.B.)

  5. Radon diffusion modelling.

    Science.gov (United States)

    Wilkinson, P; Dimbylow, P J

    1985-10-01

    A mathematical model has been developed that examines the ingress of radon into houses, through a vertical crack in an otherwise impervious concrete floor. Initially, the model considered the diffusive flow of radon from its soil source and this simulation has highlighted the dependency of the flux of radon into the house on the magnitude of various parameters, such as the diffusion coefficient of radon in soil. A preliminary investigation of the modelling of pressure-driven flow into a building is presented, and the potential of this type of analysis is discussed. PMID:4081719

  6. YAPILARDA RADON FENOMENY

    OpenAIRE

    OZAN, Sadik Sezgin; EKİNCİ, Cevdet Emin

    2011-01-01

    Bu çaly?mada, yapylarda Radon konusu irdelenmi?tir. Radon, günlük hayatta sürekli maruz kaldy?ymyz radyasyonun yakla?yk %50'sini olu?turan ve topraktaki Uranyum'un bozunma zincirinin bir halkasy olan renksiz, kokusuz ve duyu organlaryyla algylanamayan radyoaktif bir gazdyr. Kayaçlardaki Uranyumun bozunmasy sonucu ortaya çykan Radon gazy, difüzyon yoluyla topra?a, oradan da atmosfere veya ortama yayylmaktadyr. Gazyn birikmesiyle, Radon yo?unlu?u kapaly mekânlarda veya iyi havalandyrylmayan yer...

  7. Managing the radon risk

    International Nuclear Information System (INIS)

    Preliminary studies have shown a linear relationship between radon dose and lung cancer, first for miners and later for inhabitants. Lethal risk exists even at very low dose rates (nearing 200 Bq/m3) if the person has stayed in the building for a very long period (20 to 30 years). Studies on cohorts of uranium miners suggest a link between radon dose and leukemia. Other studies have shown the multiplier effect of smoking on the radon effect. The World Health Organisation proposes a maximal concentration of 100 Bq/m3 to minimize the radon risk in the habitat. In France and every year, between 1200 and 2900 deaths from lung cancer can be attributed to the exposure to radon. A new National Action Plan has been launched by French authorities, it concerns buildings that are open to the public in 31 departments where terrestrial radon concentration is important. Radon monitoring and ventilation measures will have to be implemented. The radon risk due to the presence of nearby tailings is considered through the 'Bessine case' in which a family has lived in a house that had been built on waste rocks and tailings from uranium mining activities. 20 European countries represented by people in charge of radioprotection, have taken part in a workshop to share their experience of the radon risk. (A.C.)

  8. Radon concentrations in different types of dwellings in Israel

    International Nuclear Information System (INIS)

    The average radon concentration in Israeli dwellings was assessed by combining the results of a 2006 radon survey in single family houses with the results of a 2011 radon survey in apartments of multi-storey buildings. Both surveys were based on long-term measurements using CR-39 detectors. The survey in multi-storey buildings was intended to assess the influence of recent practices in the local building industry on the radon concentrations. These practices include the use of building materials with higher concentrations of the natural radionuclides in the last 20 y than before, as well as the improvement in sealing techniques over that period. Another practice in place since the early 1990's is the building of a shielded area in every apartment that is known as an RSS (residential secure space). The RSS is a room built from massive concrete walls, floor and ceiling that can be hermetically sealed and is intended to protect its residents from a missile attack. The influence of the above-mentioned features on radon concentrations was estimated by dividing the participating apartments into two groups: apartments in buildings >20 y, built using building materials with low concentrations of the natural radionuclides, regular sealing and without an RSS and apartments in buildings newer than 10 y, built using building materials with higher concentrations of the natural radionuclides, improved sealing and including an RSS. It was found that the average radon concentration in apartments in new buildings was significantly higher than in old buildings and the average radon concentration in single-family houses was significantly higher than in apartments in multi-storey buildings. Doses due to indoor radon were estimated on the basis of the updated information included in the 2009 International Commission on Radiological Protection statement on radon. (authors)

  9. Public perceptions of radon risk

    International Nuclear Information System (INIS)

    Since 1984, a significant amount of media attention has focused on health threats from radon gas exposure. Using a probability telephone survey of adults (n = 685), we studied public perceptions of risk from radon exposure versus other environmental health risks. The results indicated that 92% of those individuals who had heard of radon believe radon to be a health risk, although only 4% believe they are currently exposed to high levels of radon gas. Perception of risk from radon was positively related to other perceptions of environmental risks. Younger and less educated individuals were more likely to perceive radon as a health risk. Women were three-and-one-half times as likely as men to perceive risk from radon. However, there was no significant relationship between perceived risk from radon and cigarette smoking. Media attention has apparently led to public awareness of radon hazards, but further attention is needed to improve smokers' awareness of their special risks from radon

  10. Radon in dwellings in Finland

    International Nuclear Information System (INIS)

    For over ten years STUK (The Radiation and Nuclear Safety Authority) has performed systematic indoor radon mapping in Finland with health authorities in municipalities. The most efficient means of reducing indoor radon exposure is to locate and mitigate dwellings with radon concentration exceeding the action level of 400 Bq/m3 and to build new houses so that radon concentrations do not exceed 200 Bq/m3. Therefore STUK has made radon measurement plans and radon risk maps to identify radon-prone areas. During 1986 - 1996 the municipalities have ordered 33 000 dosemeters for radon measurements. Private persons have ordered 24 000 dosemeters and STUK has used for its own investigations 34 000 dosemeters. Today the basic radon database of STUK consists information of about 52 000 Finnish dwellings. This report is a summary of the radon measurements made by STUK in low-rise dwellings. The radon situation by provinces is presented in tables

  11. Exposure due to radon in homes - an IAEA perspective

    International Nuclear Information System (INIS)

    The results of miner and residential epidemiology studies provide statistically strong evidence of harmful effects of exposure due to radon and its progeny. With the publication of the fifth edition of the International Basic Safety Standards, of the World Health Organizations Handbook on Indoor Radon and new ICRP statement on radon, there is increased interest from the public health and radiation protection authorities on controlling exposure due to radon and its progeny.The IAEA Safety Requirements publication 'Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards' sets out requirements on governments for control of existing exposure situations, which includes exposure due to radon. The types of situation that are included in the scope of existing exposure situations include exposure in workplaces for which the exposure due to radon is not required by or directly related to the work and for which annual average activity concentrations due to 222Rn must not exceed a maximum reference level of 1000 Bq/m3 annual activity concentration, as well as exposure in dwellings and in other buildings with high occupancy factors for members of the public for which the reference level must not exceed a maximum value of 300 Bq/m3. These requirements include: collecting data on the activity concentrations of radon in dwellings and other buildings with high occupancy by the public; providing information on exposure due to radon and the associated health risks; and if necessary, to develop an action plan for controlling public exposure to radon. The IAEA has developed a Safety Guide to provide guidance on developing the radon action plan: 'Protection of the Public against Exposure Indoors due to Radon and Other Natural Sources of Radiation'. This presentation will summarize the information on the assistance that the IAEA is currently providing to IAEA Member States to develop radon action plans. These activities include the

  12. Geologic influence on indoor radon concentrations and gamma radiation levels in Norwegian dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Sundal, Aud Venche

    2003-09-01

    Indoor radon levels in 1618 Norwegian dwellings located in different geological settings were compared with geological information in order to determine potential correlations between geological factors and indoor radon concentrations in Norway and to establish whether geological information is useful in radon risk analysis. In two geographically limited areas, Kinsarvik and Fen, detailed geological and geochemical investigations were carried out in order to explain their elevated natural radiation environment. Significant correlations between geology and indoor radon concentrations in Norway are found when the properties of both the bedrock and the overburden are taken into account. Areas of high radon risk in Norway include 1) exposed bedrock with elevated levels of radium (mainly alum shale and granites) and b) highly permeable unconsolidated sediments derived from all rock types (mainly glaciofluvial and fluvial deposits) and moderately permeable sediments containing radium rich rock fragments (mainly basal till). More than 20 % of Norwegian dwellings located in the high-risk areas can be expected to contain radon levels exceeding 200 Bq/m3. The elevated radon risk related to penneable building grounds is illustrated in Kinsarvik where the highly permeable sediments and the large vadose zone underlying the Huse residential area enable the transport of radon from large volumes into the dwellings resulting in enhanced indoor radon concentrations. Subterranean air flows caused by temperature/pressure differences between soil air and atmospheric air and elevations differences within the Huse area are shown to strongly affect the annual variations in indoor radon concentrations. The marked contrasts in radon risk potential between different types of building grounds are clearly illustrated in the Fen area where outcrops of the radium rich Fen carbonatites represent areas of high radon risk while only low levels of both indoor radon concentrations and indoor gamma

  13. Geologic influence on indoor radon concentrations and gamma radiation levels in Norwegian dwellings

    International Nuclear Information System (INIS)

    Indoor radon levels in 1618 Norwegian dwellings located in different geological settings were compared with geological information in order to determine potential correlations between geological factors and indoor radon concentrations in Norway and to establish whether geological information is useful in radon risk analysis. In two geographically limited areas, Kinsarvik and Fen, detailed geological and geochemical investigations were carried out in order to explain their elevated natural radiation environment. Significant correlations between geology and indoor radon concentrations in Norway are found when the properties of both the bedrock and the overburden are taken into account. Areas of high radon risk in Norway include 1) exposed bedrock with elevated levels of radium (mainly alum shale and granites) and b) highly permeable unconsolidated sediments derived from all rock types (mainly glaciofluvial and fluvial deposits) and moderately permeable sediments containing radium rich rock fragments (mainly basal till). More than 20 % of Norwegian dwellings located in the high-risk areas can be expected to contain radon levels exceeding 200 Bq/m3. The elevated radon risk related to penneable building grounds is illustrated in Kinsarvik where the highly permeable sediments and the large vadose zone underlying the Huse residential area enable the transport of radon from large volumes into the dwellings resulting in enhanced indoor radon concentrations. Subterranean air flows caused by temperature/pressure differences between soil air and atmospheric air and elevations differences within the Huse area are shown to strongly affect the annual variations in indoor radon concentrations. The marked contrasts in radon risk potential between different types of building grounds are clearly illustrated in the Fen area where outcrops of the radium rich Fen carbonatites represent areas of high radon risk while only low levels of both indoor radon concentrations and indoor gamma

  14. Determination of indoor and outdoor radon concentration using CSR detector

    International Nuclear Information System (INIS)

    This paper reports the measured results of radon concentration in different environments with CSR solid track detectors. The results show that the radon concentrations are 15.6 Bq m-3 for ordinary buildings, 28.5, 31.6 and 71.1 Bq m-3 for the houses made of A,B and C types of coal-cinder-brick buildings respectively, and 36.1, 43.6 and 85.6 Bq m-3 indoors in residential quarters around Chengxi coal mine and near two uranium mines. (Author)

  15. Modeling the potential impacts of different radon policies for the U.S. housing stock

    International Nuclear Information System (INIS)

    According to the Environmental Protection Agency (EPA) and other public health agencies in the United States, radon may be the leading cause (along with passive smoking) of lung cancer deaths among nonsmokers. Radon is estimated to be the second leading cause of lung cancer death in smokers behind smoking-related lung cancer. EPA estimates that 7,000 to 30,000 lung cancer deaths each year are due to radon exposure. (It is implied that radon-related lung cancer deaths can be prevented by reducing radon levels below EPA's guideline levels). Current EPA radon policy is based on a strategy of education, the transfer of testing and remediation technologies to the public and private sectors, and recently proposed radon-resistant construction standards for new homes. This paper models the effectiveness of current proposed, and alternative policies for reducing radon risks in U.S. residential construction. The results of our analysis suggest that EPS's projections of 2,200 'lives saved annually' as a result of its current action level of 4 pCi/l will not be achieved with its current policy in the near future. Overall, the response of radon-related mortality to most policy options is delayed and flat due in part to the large number of houses with low radon levels and the long latency period between radon exposure and the development of cancer. The modeling results suggest that more aggressive smoking reduction programs may yield greater benefits in overall lung cancer mortality (but not reduced radon exposure) than most radon-related policies. (au)

  16. Radon gas management policy in Quebec

    International Nuclear Information System (INIS)

    In the absence of a provincial policy on radon, the 'Direction generale de la sante publique du ministere de la Sante et des Services sociaux du Quebec' (M.S.S.S.) gave the mandate to the 'Institut national de sante publique du Quebec' (I.N.S.P.Q.) to carry out the evaluation of this issue on a provincial scale. The formed working group had the main task to assess health risks associated to residential radon through a risk analysis approach. This article presents the principal aspects treated in the scientific report published in 2004 by this working group. It starts with the description of radon concentrations measured in residences in Quebec. Then it carries out a risk analysis based on one of the models designed by the B.E.I.R. VI Committee. According to this analysis, radon would explain approximately 10% of the deaths by lung cancer, that is approximately 430 of the 4 101 deaths associated each year to this type of cancer in Quebec. Thereafter, it glances at the various intervention strategies implemented throughout the world. It follows the analysis of intervention strategies which are possible for Quebec and the recommendations that the working group drew from this analysis, in particular two of them which were considered to be most promising: the adoption of preventive measures in the Quebec Code of Construction and radon screening in public buildings (schools, day care centres, etc). Lastly, it presents the work carried out at the federal level on the revision of the Canadian guideline which was fixed at 800 Bq/m3 since 1988. The Federal Radioprotection Bureau made a proposal to the Canadian Minister of Health to set the guideline down to 200 Bq/m3. This modification should be announced in the spring 2007. (author)

  17. Radon in Schools

    Science.gov (United States)

    ... Radon Measurement in Schools Radon Prevention in the Design and Construction of Schools and Other Large Buildings (EPA 625- ... quality control and assurance to address complicated building designs and specialized airflow. What happens if your school fails the test? Every home should also take this ...

  18. Radon and its measurement

    International Nuclear Information System (INIS)

    The work reviews the topics concerning the problem of the indoor radon and its measurement. The initial stage deals with the general features of radon, from the historical remarks about its discovery to the formation mechanisms in the soil, then passing to describe the transport processes that lead the radon to enter into the buildings. The mean radon concentration distribution among the Italian regions is reported and compared with the situation in the other countries of the world. A particular importance is given to present the national law concerning the radioprotection from the natural sources of ionizing radiations; a paragraph is completely devoted to this argument and to discuss the differences between the Italian approach and the regulations applied in the Test of Europe for both workplaces and dwellings. Chapter 3 describes the different detectors and methods to measure the radon and its short mean live decay products concentrations, together with the operative procedures and guides provided by the Italian law and by the international bodies. As an example of typical radon passive measurement device. the new ENEA detector developed at the Institute of Radioprotection is presented and discussed. Appendix 1 is entirely devoted to discuss the main remedial actions for decreasing the radon indoor concentration both for old and new buildings; appendix 2 reports the main quantities related to radon and radioprotection

  19. Radon surveys and uncertainties

    International Nuclear Information System (INIS)

    Radon surveys are made primarily for estimating the radon risk for the population of an area but also for predicting the risk for inhabitants of future buildings. Therefore it is of essential importance to know the uncertainties of such predictions. The outcome of radon surveys is strongly influenced b y many factors with partly large uncertainties. In most cases passive radon detectors are exposed for some weeks or months (up to one-year measurements). In these cases, the contribution of uncertainties in the calibration of the detectors to the total uncertainty is most often of less importance. The main contribution to the uncertainties comes from the unknown treatment of the detectors by the inhabitants during the exposure and by the natural fluctuation of the indoor radon concentration in time. The latter is also true for one-year-measurements. Additional uncertainties are introduced when the measured data are normalized to some time period (e. g. one-year mean) or to some standardized measurement situation. Generally, it is of crucial importance to know the probability for a possible underestimation of the radon risk for an area. The main contributions to the final uncertainties, their sizes and the mathematical procedures which were used during the Austrian Radon Project (ARP) to estimate the uncertainties in the final categorization of areas in radon potential classes will be discussed. In addition, procedures which can be used to reduce some uncertainties will be presented. (author)

  20. Radon in caves: clinical aspects

    OpenAIRE

    Craven Stephen A.; Smit Berend J.

    2006-01-01

    Historical, experimental and clinical evidence is presented to suggest that radon constitutes a relatively small carcinogenic risk for casual visitors to caves. The risk is dependent on radon levels and the smoking of tobacco. Show cave guides, chronically exposed to radon, may be at increased risk for lung cancer due to the effects of radon, especially if they are smokers of tobacco.

  1. Indoor radon mitigation

    International Nuclear Information System (INIS)

    The action limit for indoor radon concentration in Finnish dwellings is 400 Bq/m3 which is exceeded in 50.000 dwellings. In these dwellings indoor radon mitigation is needed. The most important reason for high concentration is the soil air with high radon concentrations that flows into living spaces through openings and gaps in the building foundation. Slab on ground is the most prevalent type of foundation in Finnish single family houses. Without preventive measures, this type of foundation promotes the flow of radon-bearing soil air into living spaces. In the second popular foundation type, semi-basement houses, the flow of soil air through the walls in contact with soil still increases radon leakages. The key aim of indoor radon mitigation is to prevent or decrease the harmful flows of radon-bearing soil air into dwellings. This guide gives the basic information on Finnish regulations on indoor radon, leakage routes, effect of air exchange and under-pressure as well as pre-mitigation studies of houses. The results on the efficiency of various mitigation methods are based on a questionnaire study in 400 Finnish dwellings and on-site studies in numerous houses. In the case of sub slab suction, the Finnish guide published by the Ministry of Environment has also been utilized. Best mitigation efficiency has been achieved using sub slab suction and radon well. Typical indoor radon reduction factors for both methods are 70 - 90%, and the best results are above 95%. Sub slab suction can be implemented through both floor slab and foundation wall. An exhaust fan coupled to suction pit and exhaust piping creates underpressure and ventilation beneath the slab. In case of a radon well an exhaust fan sucks air from the soil and ventilates the soil air volume through a well construction placed outside the house. The depth of a radon well is 4 - 5 metres. A single radon well can reduce radon concentration in many dwellings at the distance up to 20 - 30 metres. Mitigation work

  2. Indoor radon mitigation

    International Nuclear Information System (INIS)

    The action limit for indoor radon concentration in Finnish dwellings is 400 Bq/m3 which is exceeded in 50.000 dwellings. In these dwellings indoor radon mitigation is needed. The most important reason for high concentration is the soil air with high radon concentrations that flows into living spaces through openings and gaps in the building foundation. Slab on-ground is the most prevalent type of foundation in Finnish single family houses. Without preventive measures, this type of foundation promotes the flow of radon-bearing soil air into living spaces. In the second popular foundation type, hill-side houses, the flow of soil air through the walls backing soil still increases radon leakages. The key aim of indoor radon mitigation is to prevent or decrease the harmful flows of radon-bearing soil air into dwellings. This guide gives the basic information on Finnish regulations on indoor radon, leakage routes, effect of air exchange and underpressure as well as pre-mitigation studies of houses. The results on the efficiency of various mitigation methods are based on a questionnaire study in 400 Finnish dwellings and on-site studies in numerous houses. In the case of sub-slab-suction the Finnish guide published by the Ministry of Environment has also been utilized. Best mitigation efficiency has been achieved using sub-slab-suction and radon well. Typical reduction factors for both methods are 70-90%, and the best results are above 95%. Sub-slab-suction can be implemented through both floor slab and foundation wall. An exhaust fan coupled to suction pit and exhaust piping creates underpressure and ventilation beneath the slab. In case of a radon well an exhaust fan sucks air from the soil and ventilates the soil air volume through a well construction placed outside the house. The depth of a radon well is 3-5 metres. A single radon well can reduce radon concentration in many dwellings at the distance up to 20-30 metres. Mitigation work based on ventilation aims at

  3. Radon in workplaces

    International Nuclear Information System (INIS)

    The EU Member States have to implement the new Basic Safety Standards Directive (BSS) by May 2000. The Title VII of the Directive applies in particular to radon in workplaces. The Member States are required to identify workplaces which may be of concern, to set up appropriate means for monitoring radon exposures in the identified workplaces and, as necessary, to apply all or part of the system of radiological protection for practices or interventions. The BSS provisions on natural radiation are based on the ICRP 1990 recommendations. These recommendations were considered in the Finnish radiation legislation already in 1992, which resulted in establishing controls on radon in all types of workplaces. In this paper issues are discussed on the practical implementation of the BSS concerning occupational exposures to radon basing on the Finnish experiences in monitoring radon in workplaces during the past seven years. (orig.)

  4. Radon and the environment

    International Nuclear Information System (INIS)

    This volume provides an interdisciplinary overview and analysis of radon and the environment, geared to both professional and lay perspectives. The radon issue spans many disciplines and has far-reaching implications for society. There are also many uncertainties stemming from a variety of sources. These include the often misleading and inconsistent media coverage of the topic, the newness of the issue, the lack of detailed scientific information and the way people perceive and respond to risk. While the effects of radon are still not fully understood as a public policy and health issue, there have been important new developments on the subject and this book brings together many of the key contributors our current knowledge. It attempts to clarify the policy issues, in a manner that will be of equal use to a radon professional, a government official, or a concerned citizen. Seven aspects of the radon issue are presented in the various sections of the book

  5. Temporal Patterns of Lung Cancer Risk from Radon, Smoking and their Interaction

    International Nuclear Information System (INIS)

    Studies of uranium miners conducted since the late 1960s demonstrated that the risk depends on cumulated exposure in terms of working level months (WLM) integrating both duration of exposure and concentration of radon. It has been also demonstrated that the risk from radon decreases with time since exposure. The objective of the work is to study temporal patterns of lung cancer risk from occupational and residential radon and from smoking. The present analysis of temporal changes of relative risk is based on a model, where the total individual exposure is partitioned into components in dependence on time. Exposure to radon is studied in a cohort of 9411 Czech uranium miners with 766 cases of lung cancer and in a residential study of 1 803 inhabitants exposed to radon in houses with 218 cases. Temporal patterns of smoking are analyzed in a case-control study of patients from a major Prague hospital including 566 cases. for both carcinogens, the relative risk decreases with time since exposure. In comparison to period with exposure before 5-19 years, the risk from exposures before 20-34 years is 36% and 34% for smoking and randon, respectively. The effect of exposures from more distant periods 35-49 is only 5% for smoking and 14% for radon in comparison to 5-19 years. Combined effect of smoking and radon is studied by a nested case-control approach including 434 cases and 962 controls. Analyses of the joint effects of smoking and radon, conducted in the occupational and the residential studies, suggest a sub-multiplicative interaction. The relative risk from radon among non-smokers is higher by a factor of 2-3 in comparison to smokers, suggesting different patterns of lung deposition and clearance among smokers and non-smokers. (Author) 13 refs

  6. Control of respirable particles and radon progeny with portable air cleaners

    International Nuclear Information System (INIS)

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr-1. Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr-1. The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables

  7. Assessment of Indoor Radon Concentrations and Dose Equivalent to Population in Cairo City

    International Nuclear Information System (INIS)

    Radon comes from the natural radioactive of radium and uranium found in the soil beneath the house and from the building materials used. The amount of radon in the soil depends on complex soil chemistry that varies from one area to the next. The amount of radon that escapes from the soil and from the building materials and enters the house depends on the weather, soil porosity, soil moisture, and the ventilation within the house. Cairo is an expanding city and includes territories with different characteristics. Thus, in this work radon concentrations were evaluated in different territorial locations within Great cairo. These locations have been selected to investigate any possible differences in radon concentration between old, new residential, agricultural and industrial regions. Measurements were carried out using CR-39 as solid state nuclear track detector. The range of 222Rn activity in this survey was found in the range 8.71-50.18 Bq.m-3 in different locations in cairo

  8. Case-control study on radon exposure and lung cancer in an Italian region. Preliminary results

    International Nuclear Information System (INIS)

    The present estimates of the lung cancer risk for the general population due to radon exposure in dwellings are generally obtained by extrapolating the risk estimates derived from epidemiologic studies on miner cohorts. However, due to uncertainties related to this extrapolation, numerous case-control studies in Europe and North America were planned to estimate directly the risk in dwellings. Most of these studies are still underway and, thanks to their similar design and compatible protocols, it will be possible to perform a pooled analysis in order to improve statistical power. One of these projects is being conducted in the Lazio region of Italy, which is one of the Italian regions with the highest levels of radon indoors. A total of 408 cases and 424 controls older than 34 years, who lived for 25 years or longer in the Lazio Region, were recruited in a hospital of Rome. Detailed information regarding smoking, and occupational exposure of the subjects were collected by interviews in hospital. Residential histories (periods and addresses) during the 35 years preceding the enrolment were ascertained for all study members from the local Register and from a short questionnaire to the subjects or to the next-of-kin, resulting in 2068 dwellings to be monitored within the Lazio region. The distribution of the number of dwellings among cases and controls was the following: 25.7% of the cases and 27.3% of the controls had lived all the preceding 35 years in a single dwelling, whereas only a minority (7.9%) changed five addresses or more. The mean number of dwellings was very similar among cases (2.47) and controls (2.50). In each dwelling, radon dosemeters were placed in both the main bedroom and living room for two consecutive six-month periods. In the second six-month period, two thermoluminescent dosemeters were also collocated in each monitored room to measure gamma radiation emitted by the building materials, in order to evaluate more comprehensively the exposure of

  9. Preliminary evaluation of the control of indoor radon daughter levels in new structures

    International Nuclear Information System (INIS)

    As part of its assessment of the radiological impact of the phosphate industry in Florida, the US Environmental Protection Agency has surveyed residences built atop uraniferous reclaimed phosphate mining land. These surveys have shown elevated radon daughter levels to exist in structures built on this land. In order to allow safer use of this land for residential construction, various state-of-the-art radon daughter control technologies were evaluated by the Agency. These included forced ventilation, polymeric sealants, excavation, crawl space construction, and improved slab quality. From a cost-effectiveness evaluation, improved slab quality and crawl space construction were determined to best satisfy the criteria for optimal radon daughter control

  10. Measurements of radon concentrations in a sample representative of housing in Franche-Comte

    International Nuclear Information System (INIS)

    Three departments on four ones in Franche-Comte are classified at risk for radon: measurements are so compulsory in establishments receiving public. For the residential sector, no obligation of measurement are compulsory when french people spend 70% of their time in it. The data concerning homes are fragmentary and deserve to be completed. This campaign of measurements has confirmed the existence of radon in relatively high concentrations in Franche-Comte, including the sedimentary areas, justifying the necessity to realize a precise evaluation of the sanitary impact. The model will allow to study different strategies to reduce radon in houses. (N.C.)

  11. Radon house doctor

    International Nuclear Information System (INIS)

    The term house doctor may be generalized to include persons skilled in the use of instruments and procedures necessary to identify, diagnose, and correct indoor air quality problems as well as energy, infiltration, and structural problems in houses. A radon house doctor would then be a specialist in radon house problems. Valuable experience in the skills necessary to be developed by radon house doctors has recently been gained in an extensive radon monitoring and mitigation program in upstate New York sponsored by Niagara Mohawk Power Corporation and the New York State Energy Research and Development Authority. These skills, to be described in detail in this paper, include: (i) the use of appropriate instruments, (ii) the evaluation of the symptoms of a radon-sick house, (iii) the diagnostic procedures required to characterize radon sources in houses, (iv) the prescription procedures needed to specify treatment of the problem, (v) the supervision of the implementation of the treatment program, (vi) the check-up procedures required to insure the house cured of radon problems. 31 references, 3 tables

  12. Radon in dwellings

    International Nuclear Information System (INIS)

    The investigations deals with practical problems of radon in dwelllings. It is found that the estimation of risks is not satisfactory. It is evident that the main source of radon is the ground. The mechanisms which influence the radon inflow have been studied. The permeability and water content of the soil has the same importance as the contents of uranium and radium. Measuring methods need to be developed. The number of houses with radon daughters exceeding 400 Bq/m3 is estimated to approximately 40 000. A number of practical methods to eliminate the risk are presented, and the cost for preventing it might amount to 50 000 SEK per house. Some 10 % of the ground is to be considered high risk ground requiring expensive constructions. Recommendations have been made in consideration of radon content when starting new buildings. Special loans are to be granted to reconstruct houses with radon daughters exceeding 400 Bq/m3. It is stated that the follow up of the radon problems should be made by the National Swedish Institute of Radiation Protection. (G.B.)

  13. Radon levels in Cyprus

    International Nuclear Information System (INIS)

    Radon levels in atmospheric and aquatic systems in Cyprus have recently been measured using the radon monitor Alpha Guard. Indoor and outdoor radon levels were obtained in situ, whereas analysis of radon concentrations in water was performed using tap and ground water samples collected from several areas of the island. The average value for outdoor and indoor radon concentration is 11±10 and 7±6 Bq m-3, respectively, and for tap and ground water 0.4 Bq l-1 and 1.4 Bq l-1, respectively. From these data the annual dose equivalent of airborne radon to the Cypriot population is about 0.19 mSv y-1, which is quite low compared to the total dose equivalent of natural and man-made ionising radiation in Cyprus. Radon levels in aquatic systems are relatively low due to an exhaustive utilisation of ground water resources and also to the increased input of desalinated sea water in the water distribution network and eventually into the ground water reservoirs

  14. The Austrian radon project

    International Nuclear Information System (INIS)

    With the completion of the Austrian Radon Project, the map of the annual mean radon concentrations in Austrian homes is available now. The extrapolation of the indoor data to a standard situation was used to create a 'radon potential' map, which should indicate the radon risk from the ground without the influence of house type, living situation and all other parameters, that could influence the indoor radon concentration. This map specifies areas where radon-safe building techniques should be applied. In the next future the main task for the Austrian radon program will be the transformation of recommendations into use, i. e. to inform the public as well as to teach the persons who are responsible for the construction of a house, how to make a house radon-safe. It seems essential that all people who are involved in the construction of a house, starting from the planning and ending with the people working at the building site, should be informed about the problems with radon because a lack of knowledge in one part of the chain could substantially reduce the effectiveness of any protective measure. The way we try to inform the public as well as several special target groups will be demonstrated. An important question is the effectiveness of such information campaigns. This means: does the information reach the target groups, are the people accepting this information and finally do they apply the recommendations? Therefore it seems necessary to test the methods of information distribution for their efficiency already during the information campaigns. (orig.)

  15. Lung Cancer Attributable to Indoor Radon Exposures in Two Radon--Prone Areas, Stei (Romania) and Torrelodones (Spain)

    International Nuclear Information System (INIS)

    Radon and radon progeny are present indoors, in houses and others dwellings, representing the most important contribution to dose from natural sources of radiation. Most studies have demonstrated an increased risk of lung cancer at high concentration of radon for both smokers and nonsmokers. For medium and low concentrations which are the typical residential radon levels, recent researches have also demonstrated increased risks of lung cancer for people exposed. The work presents a comparative analysis of the radon exposure data in the two radon--prone areas, Stei, Transylvania, (Romania), in the near of old Romanian uranium mines and in the granitic area of Torrelodones town, Sierra de Guadarrama (Spain). One important difference between the two studied areas is related to the houses built using uranium waste as construction material in Stei area. Measurements of indoor radon were performed in 280 dwellings (Romania) and 91 dwellings (Spain) by using nuclear track detectors, CR 39. The highest value measured in Stei area was 2650 Bq·m-3. and 366 Bq·m-3 in the Spanish region. The results are compute with the BEIR VI report estimates using the age-duration model at an exposure rate below 2650 Bq·m-3. A total of 233 lung cancer deaths were calculated in the Stei area for a period of 13 years (1994-2006), which is 116.82% higher than observed from the national statistics. In comparison, in Torrelodones area, a number of 276 deaths caused by lung cancer were estimated along a period of 13 years, which is 2.09 times higher than the number observed by authorities. This represents a significantly evidence that elevated risk can strongly be associated with cumulated radon exposure.

  16. Hazardous waste disposal in relationship to radon gas emanation in atmosphere

    International Nuclear Information System (INIS)

    Radioactive/toxic radon gas (Rn) produced naturally in the ground by the normal decay of uranium (U) and radium (Ra) is widely distributed in trace amounts in the earth's crust. It is a colorless, odorless and tasteless element and is one of the six generally known noble gases which are inert gases lacking the usual or anticipated chemical or biological action. Most radon gas is concentrated in the oxidation belt which is at a relatively shallow depth from the ground surface. Under normal conditions, the amount of radon gas seeping into the atmosphere or entering into residential buildings is very little and will not be harmful to human health. In recent years, due to population growth, a progressive living standard and industrial progress, many natural farm lands, forests and wetlands have been destroyed by conversion into residential and industrial compounds; consequently, such construction activities and industrial waste disposal changes the dynamic equilibrium of the ecosystem which can trigger and accelerate radon gas emanation and mobilization. This change is the major reason for the problem of indoor radon concentration which has significantly increased in recent years. Recent findings indicate that radon is not a totally inert element as previously thought. It can be influenced by local environments such as temperature, pH value, ion exchange, redox reaction, etc. to some degree. Also radon gas interacts with soil, water, air and others; unfortunately, the interface mechanisms between radon and the environment are not yet clearly understood and little information on these aspects is available. In this paper only the hazardous waste disposal causes for radon emanation are discussed. To deal with such complex phenomena, a new approach is presented that assumes radon gas interaction with the environment through dust in the air and suspensions in the water and soil-water system

  17. Indoor radon in Slovenia

    Directory of Open Access Journals (Sweden)

    Vaupotič Janja

    2003-01-01

    Full Text Available The Slovenian Radon Programme started in 1990. Since then, radon and radon short-lived decay products have been surveyed in 730 kindergartens, 890 schools, 1000 randomly selected homes, 5 major spas, 26 major hospitals, 10 major municipal water supply plants, and 8 major wineries. Alpha scintillation cells, etched track detectors, electret-based detectors and various continuously measuring devices have been used. On the basis of estimated effective doses, decisions were made on appropriate mitigation. In total, 35 buildings have been appropriately modified. The programme is displayed and results reviewed chronologically and discussed.

  18. Measuring your radon risk

    International Nuclear Information System (INIS)

    In its annual report for 1992/93, the NRPB has warned that tens of thousands of UK employees may be exposed to high levels of radon at work. In addition to those who work underground, employees at risk of radon-induced lung cancer are typically those who spend long periods indoors. This article reviews the implications for all employers especially those in low or unknown levels of radon who resist taking measurements in the belief that by not measuring, they are not liable. (UK)

  19. Design issues in studies of radon and lung cancer: Implications of the joint effect of smoking and radon

    International Nuclear Information System (INIS)

    Many case-control studies have been undertaken to assess whether and to what extent residential radon exposure is a risk factor for lung cancer. Nearly all these studies have been conducted in populations including smokers and nonsmokers. In this paper, we show that, depending on the nature of the joint effect of radon and tobacco on lung cancer risk, it may be very difficult to detect a main effect due to radon in mixed smoking and nonsmoking populations. If the joint effect is closer to additive than multiplicative, the most cost-effective way to achieve adequate statistical power may be to conduct a study among never-smokers. Because the underlying joint effect is unknown, and because many studies have been carried out among mixed smoker and nonsmoker populations, it would be desirable to conduct some studies with adequate power among never-smokers only. 30 refs., 4 figs., 2 tabs

  20. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by......Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... the scouts twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the...

  1. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by...... the scouts twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the...

  2. What Is Radon?

    Science.gov (United States)

    ... Learn About Cancer » What Causes Cancer? » Other Carcinogens » Pollution » Radon Share this Page Close Push escape to ... Cancer Colon/Rectum Cancer Lung Cancer Prostate Cancer Skin Cancer Show All Cancer Types News and Features ...

  3. ROE Radon Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The polygon dataset represents predicted indoor radon screening levels in counties across the United States. These data were provided by EPA’s Office of Radiation...

  4. Radon i danske lejeboliger

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Skytte Clausen, Louise

    I denne undersøgelse kortlægges radonindholdet i indeluften og det undersøges, hvordan indholdet af radon i indeluften er fordelt og spredes i en ejendom, og om det er muligt at pege på en bygningsdel eller en bygningskomponent som en spredningsvej for radon i boliger. Boligerne er lejeboliger og...... ligger i etageejendomme, kæde- og rækkehuse tilhørende bygningstyper opført fra 1850 og frem. De udvalgte ejendomme ligger i områder af landet, hvor der ved tidligere undersøgelser har vist sig at være en stor andel af huse med et højt indhold af radon i indeluften. Koncentrationen af radon er målt over...

  5. Radon in workplaces

    International Nuclear Information System (INIS)

    The radiological assessment of the results of radon measurements in dwellings is not automatically applicable to workplaces due to different forms of utilization, constructional conditions, time of exposure, heating and ventilation conditions, additional aerosol sources, aerosol parameters, chemical substances, etc. In order to investigate the peculiarities of the radon situation in workplaces located inside buildings compared with that in dwellings, long-time recordings of radon, attached radon progeny and unattached radon progeny concentrations (218Po, 214Pb, 214Bi) are carried out at several categories of workplaces (e.g. offices, social establishments, schools, production rooms, workshops, kitchens, agricultural facilities). 36 workplaces have been investigated. There have been carried out at least 2-3 long-time recordings for each workplace during different seasons. At the same time the gamma dose rate, meteorological conditions, aerosol particle concentrations have been registered. Many special dates from the workplaces and the buildings have been recorded. Activity size distribution of the aerosol-attached and unattached fraction of short-lived radon decay products have been determinated in 20 workplaces. Mainly the following measurement systems were used: Radon- and Radon Progeny Monitor EQF 3020, SARAD GmbH, Germany. Alpha-Track Radon Detectors, BfS Berlin, Germany. Screen Diffusion Batteries with Different Screens, University of Goettingen, Germany. Low-Pressure Cascade Impactor, Type BERNER. Condensation Nuclei Counter, General Electric, USA. PAEC-fp-Rn-Monitor, University of Goettingen, Germany. Through the measurements, many peculiarities in the course of the radon-concentration, the equilibrium factor F, the unattached fraction fp and the activity size distribution have been determined. These amounts are influenced mainly by the working conditions and the working intervals. The influence of these peculiarities in workplaces on the dose have been

  6. Personal radon daughter dosimetry

    International Nuclear Information System (INIS)

    The conventional means of radon daughter exposure estimatikn for uranium miners in Canada is by grab sampling and time weighting. Personal dosimetry is a possible alternative method with its own advantages and limitations. The author poses basic questions with regard to two methods of radon daughter detection, thermoluminescent chips and track-etch film. An historical review of previous and current research and development programs in Canada and in other countries is presented, as are brief results and conclusions of each dosimeter evaluation

  7. Radon-Instrumentation

    International Nuclear Information System (INIS)

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  8. Radon in homes

    International Nuclear Information System (INIS)

    Radon 222 and its radioactive decay products can enter buildings and, through inhalation, expose the inhabitants' pulmonary tissues to ionizing radiation. Studies of radon levels in the US indicate that variations of 100-fold or greater exist among private dwellings. In one region, 55% of homes had levels exceeding 4 pCi/L (0.15 Bq/L), which is the guidance level recommended by the US Environmental Protection Agency. Ventilation and tightness of construction are important determinants of radon levels. In some instances, fans or heat exchangers can reduce excessive concentrations, but in others more elaborate remedial measures may be required. Physicians may obtain information about radon through Environmental Protection Agency regional offices and state radiation control programs. The risk of radiogenic cancer is believed to increase with exposure to ionizing radiation. According to some estimates, concentrations of radon decay products in US homes could be responsible for several thousand cases of lung cancer per year. Studies of radon levels in representative buildings and guidelines are needed to ensure safe, effective, and cost-effective counter-measures. Architects, contractors, designers, building code administrators, health physicists, and biomedical investigators can help with solutions

  9. Radon og boligen

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    Radon er en radioaktiv og sundhedsskadelig luftart, som ved indånding øger risikoen for lungekræft. Der er ingen dokumenteret nedre grænse for, hvornår radon er ufarligt. Derfor anbefales det, at man tilstræber et så lavt radonindhold i indeluften som muligt. Man kan hverken lugte, se, høre eller...... smage radon, så vil du vide, om du har radon i din bolig, må du måle radonindholdet i indeluften. Radon forekommer naturligt i jorden og kan suges ind sammen med jordluft, hvis der inde er et undertryk, og hvis konstruktionerne mod jord er utætte. Jordluft trænger ind gennem revner og utætte samlinger......, fx omkring rør til kloak, vand og varmeforsyning. Koncentrationen af radon i jorden varierer meget fra sted til sted, også lokalt og gennem året. Tidligere undersøgelser har vist, at der kan forekomme høje koncentrationer i Sydgrønland, specielt i området syd for Narsalik ved Paamiut, 61°30’N....

  10. Radon in Croatian spas

    International Nuclear Information System (INIS)

    There are ten thermal spas in Croatia and all of them provide health services for patients and visitors. Radon measurements were performed since there is a lack of data concerning natural radioactivity originated from radon and its short-lived progenies in such environments. The thermal water at two different sites (the indoor swimming pool with geothermal water and the spring) in each spa was sampled and radon concentrations were measured by AlphaGUARD radon measuring system. The obtained values were in the range of 0.7 to 19 Bq.dm-3 and 2 to 94 Bq.dm-3 for indoor swimming pools and springs, respectively. Integrated measurements of radon concentration in air were performed by two solid state nuclear track detectors LR-115 II (open and diffusion one) thus enabling estimation of equilibrium factor between radon and its daughters. The annual effective doses received by spa workers were found to be about 1 mSv/y (below the lower limit value of 3 mSv/y recommended by ICRP 65). The doses of patients and visitors were one or two order of magnitude lower than that of the personnel. (author)

  11. Radon and radon daughter monitoring (including thoron daughter monitoring)

    International Nuclear Information System (INIS)

    Radon/radon daughter and thoron daughter measurement techniques are outlined. The necessary precautions and critical assessments of each method are also presented with a view to providing a better understanding of the various measurement methods

  12. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim-3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  13. Radon prevention in new construction in Finland: A nationwide sample survey in 2009

    International Nuclear Information System (INIS)

    The building code for radon prevention and the associated practical guidelines were revised in Finland in 2003-2004. Thereafter, preventive measures have become more common and effective and indoor radon concentrations have been markedly reduced. In this study, the indoor radon concentration was measured in 1500 new low-rise residential houses. The houses were randomly selected and represented 7 % of the houses that received building permission in 2006. The average radon concentration of all the houses measured, which were completed in 2006-2008, was 95 Bq m-3, the median being 58 Bq m-3. The average was 33 % lower than in houses completed in 2000-2005. The decrease was 47 % in provinces with the highest indoor radon concentration and 26 % elsewhere in the country. In houses with a slab-on-ground foundation that had both passive radon piping and sealing measures carried out using a strip of bitumen felt in the joint between the foundation wall and floor slab, the radon concentration was on average reduced by 57 % compared with houses with no preventive measures. Preventive measures were taken nationwide in 54 % of detached houses and in provinces with the highest radon concentration in 92 % of houses. (authors)

  14. Modeling Joint Exposures and Health Outcomes for Cumulative Risk Assessment: The Case of Radon and Smoking

    Directory of Open Access Journals (Sweden)

    Jonathan I. Levy

    2011-09-01

    Full Text Available Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case example, given its large attributable risk, effect modification due to smoking, and significant variability in radon concentrations and smoking patterns. In spite of this fact, no study to date has estimated geographic and sociodemographic patterns of both radon and smoking in a manner that would allow for inclusion of radon in community-based cumulative risk assessment. In this study, we apply multi-level regression models to explain variability in radon based on housing characteristics and geological variables, and construct a regression model predicting housing characteristics using U.S. Census data. Multi-level regression models of smoking based on predictors common to the housing model allow us to link the exposures. We estimate county-average lifetime lung cancer risks from radon ranging from 0.15 to 1.8 in 100, with high-risk clusters in areas and for subpopulations with high predicted radon and smoking rates. Our findings demonstrate the viability of screening-level assessment to characterize patterns of lung cancer risk from radon, with an approach that can be generalized to multiple chemical and non-chemical stressors.

  15. Radon and thoron monitoring in the environment of Kumaun Himalayas: survey and outcomes

    International Nuclear Information System (INIS)

    Monitoring of radon, thoron and their daughter products was carried out in houses of Kumaun Himalaya, India using LR-115 plastic track detectors. The measurements were made in residential houses from June 1999 to May 2000 at a height of 2.5 m from ground level using a twin chamber radon dosimeter. The twin chamber radon dosimeter can record the values of radon, thoron and their decay products separately. Maximum and minimum indoor radon and thoron concentrations were evaluated and activity concentrations of radon and thoron daughters were estimated. The resulting dose rates due to radon, thoron and their decay products varied from 0.04 to 1.89 μSv/h. A detailed analysis of the distribution of radon, thoron and their decay products inside the house is also reported. The observed dose rates inside the houses of Kumaun Himalaya were found to be lower than the ICRP recommended value of 200 Bq/m3 and thus are within safe limits

  16. Quaternary deposits and weathered bedrock material as a source of dangerous radon emissions in Estonia

    Directory of Open Access Journals (Sweden)

    Petersell Valter

    2015-06-01

    Full Text Available The risk of dangerous radon emissions in Estonia is high, being among the highest in Europe. In almost 33 per cent of Estonian land area, the content of radon in soil-contained air exceeds the safe limit for unrestricted construction (50 kBq/m3. In such high radon-risk areas the concentration of radon in soil-contained air ranges from 50 to 400 kBq/m3, in a few cases reaching up to 2,100 kBq/m3 exceeding the permitted level for residential areas. The situation is particularly serious in the northernmost part of the country, where uranium-rich graptolite argillite (Dictyonema shale and the Obolus phosphorite are close to ground surface and their particles are constituent parts of Quaternary deposits. Radon emissions from bedrock have been investigated in detail, but to date Quaternary strata as a source of radon emissions are poorly studied. According to our measurements the highest concentrations of radon are related to tills containing clasts and fines of graptolite argillite and phosphorite. Glacial deposits include also granitoidal material, containing U, Th and K, which have been transported by glaciers from the outcrop areas of crystalline basement rocks in Finland and the Gulf of Finland. Due to weathering, outwash and repeated redeposition other genetic types are poorer in radioactive elements and they are weaker sources of radon.

  17. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air -- restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  18. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  19. Radon as a hydrological indicator

    Energy Technology Data Exchange (ETDEWEB)

    Komae, Takami [National Research Inst. of Agricultural Engineering, Tsukuba, Ibaraki (Japan)

    1997-02-01

    The radon concentration in water is measured by a liquid scintillation method. After the radioactive equilibrium between radon and the daughter nuclides was attained, the radon concentration was determined by the liquid scintillation analyzer. {alpha}-ray from radon, then two {beta}- and two {alpha}-ray from the daughter nuclei group were released, so that 500% of the apparent counting efficiency was obtained. The detector limit is about 0.03 Bq/l, the low value, which corresponds to about 5.4x10{sup -15} ppm. By determining the radon concentration in groundwater, behavior of radon in hydrological process, the groundwater exchange caused by pumping and exchange between river water and groundwater were investigated. The water circulation analysis by means of radon indicator in the environment was shown. By using the large difference of radon concentration between in river water and in groundwater, arrival of injected water to the sampling point of groundwater was detected. (S.Y.)

  20. Case-control study of radon and lung cancer in New Jersey

    International Nuclear Information System (INIS)

    Radon is known to cause lung cancer in humans; however, there remain uncertainties about the effects associated with residential exposures. This case-control study of residential radon and lung cancer was conducted in five counties in New Jersey and involved 561 cases and 740 controls. A yearlong α-track detector measurement of radon was completed for ∼93% of all residences lived in at the time of interview (a total of 2063). While the odds ratios (ORs) for whole data were suggestive of an increased risk for exposures >75 Bq m-3, these associations were not statistically significant. The adjusted excess OR (EOR) per 100 Bq m-3 was -0.13 (95% CI: -0.30 to 0.44) for males, 0.29 (95% CI: -0.12 to 1.70) for females and 0.05 (95% CI: -0.14 to 0.56) for all subjects combined. An analysis of radon effects by histological type of lung cancer showed that the OR was strongest for small/oat cell carcinomas in both males and females. There was no statistical heterogeneity of radon effects by demographic factors (age at disease occurrence, education level and type of respondent). Analysis by categories of smoking status, frequency or duration did not modify the risk estimates of radon on lung cancer. The findings of this study are consistent with an earlier population-based study of radon and lung cancer among New Jersey women, and with the North American pooling of case control radon seven studies, including the previous New Jersey study. Several uncertainties regarding radon measurements and assumptions of exposure history may have resulted in underestimation of a true exposure-response relationship. (authors)

  1. Cigarette use and the estimation of lung cancer attributable to radon in the United States

    International Nuclear Information System (INIS)

    Residential exposure to radioactive radon and its decay products has been estimated to account for 10-12% of all lung cancer deaths in the US. It has been difficult to evaluate fully the impact of cigarette smoking, the most important cause of lung cancer, on this estimate, because factors for patterns of tobacco use have not been included in the risk models, since risk models are derived from studies of underground miners exposed to radon and detailed data on smoking are limited. Lung cancer risk estimates for exposure to radon progeny in smoker and non-smoker populations are obtained by applying the same risk model to each population group, thereby assuming the joint effects of smoking and exposure to radon progeny are multiplicative. However, in miners, joint relative risks (RR) for the two exposures are most consistent with an intermediate relationship between multiplicative and additive, so that the present approach likely results in an overestimate of risk in smokers and an underestimate of risk in nonsmokers. One approach for adjusting risk models to incorporate smoking status is based on the relative magnitude of the effects of radon progeny in smokers and nonsmokers and therefore may not be applicable to non-miner populations if the proportion of smokers and the RR for smoking differ. We show that the modification can be derived explicitly by assuming an arithmetic mixture model for the joint RR for smoking and exposure to radon progeny. In this way, smoking parameters in the population of interest (the proportion of smokers and the RR of smoking) can be used directly to adjust radon progeny risk models and obtain risk estimates that are specific for smokers and nonsmokers. With an intermediate RR relationship for smoking and radon progeny, the attributable percentage of lung cancer deaths from residential radon may be twofold greater in nonsmokers than in smokers. 20 refs., 1 fig., 3 tabs

  2. Temporal patterns of lung cancer risk from radon and smoking - consequences to remediation measures

    International Nuclear Information System (INIS)

    Studies of uranium miners conducted since the late 1960s demonstrated that the risk depends on cumulated exposure in terms of working level months (WLM) integrating both duration of exposure and concentration of radon. It has been also demonstrated that the risk from radon decreases with time since exposure. The present analysis of temporal changes of relative risk is based on a model where the total individual exposure is partitioned into components in dependence on time. Exposure to radon is studied in a cohort of 9411 Czech uranium miners with 766 cases of lung cancer and in a residential study of 11 803 inhabitants exposed to radon in houses with 218 cases. In addition, temporal patterns of the risk from smoking are analyzed in a case-control study of patients from a major Prague hospital including 566 cases. For both carcinogens, the relative risk decreases with time since exposure. The risk from exposures before 20-34 years is 36% and 34% in comparison to period 5-19 for smoking and radon, respectively. The effect of exposures from more distant periods 35-49 is only 5% for smoking and 14% for radon in comparison to 5-19 years. This substantial decrease of relative risk with time may contribute to a better evaluation of remediation measures taken in houses and in the cost effectiveness of remediation. Combined effect of smoking and radon is studied by a nested case-control approach including 434 cases and 962 controls. Analyses of the joint effects of smoking and radon, conducted in the occupational and the residential studies, suggest a sub-multiplicative interaction. The relative risk from radon among non-smokers is higher by a factor of 2-3 in comparison to smokers, suggesting different patterns of lung deposition and clearance among smokers and non-smokers. (author)

  3. Radon in the workplace

    International Nuclear Information System (INIS)

    This Guide has been prepared for the Health and Safety Executive (HSE) by the Building Research Establishment (BRE). Following the guidance is not compulsory and you are free to take other action. However if you do follow the guidance you will normally be doing enough to comply with the law. Health and Safety Inspectors seek to secure compliance with the law and may refer to this guidance as illustrating good practice. In the past, concern about exposure of employees to radon has largely centred on the mining environment. In recent times, with increased knowledge and mapping of radon levels in homes, attention has increasingly turned to radon exposure in buildings used for work purposes. Now there is a considerable fund of information to show that employees in some buildings can receive very significant radiation doses from radon. Surveys show that levels of radon tend to be higher in buildings with small rooms, such as offices rather than larger factory and warehouse constructions. The particular problem is that the nature of the work process gives no clue as to the radon hazard that may exist, and the employer may be unaware of its presence and how to deal with it. This Guide is aimed principally at employers and those who control buildings used for work purposes, or their representatives. It offers guidance on practical measures for reducing radon levels in workplaces. The guidance should also be of interest and assistance to those, such as surveyors and builders, concerned with specifying and carrying out the necessary remedial measures. Advice is provided for the majority of building types and construction situations likely to be encountered in larger non-domestic buildings. For buildings where construction is similar to that found in dwellings the guidance published by BRE on remedial measures for dwellings should be used. BRE prepared this Guide with assistance from the National Radiological Protection Board (NRPB) and Cornwall County Council under contract

  4. Radon: risk to health? El radón: ¿riesgo para la salud?

    Directory of Open Access Journals (Sweden)

    Juan Miguel Barros Dios

    2011-12-01

    Full Text Available Radon (Rn222 is a radioactive noble gas whose origin is Radium (Ra226 when it emits an alpha particle (two protons and two neutrons or a helium nucleus. Rn222 transforms in another radioactive element (Po218 when an alpha particle is emitted. Its carcinogenic effect on the lung was discovered various decades ago, first on uranium miners and later on general population exposed at home to residential radon. The main factor influencing radon concentration in dwellings is the uranium content of the subsoil, since uranium is the first element of the radioactive disintegration chain where radon appears. Geological risk areas of Spain due to their granite and therefore uranium content are Galicia, the Northwest and the West of Spain. Numerous countries of Europe and America have enforced legislation focused to protect population and reduce radon concentration in order to prevent lung cancer appearance. These laws comprise public buildings and private homes. Since the late 80s, alpha radiation generated by radon and its short-life descendents has been classified as carcinogenic agents by the International Agency for Research on Cancer (Lyon, 1988 and the National Research Council (BEIR IV, 1988.El radón (Rn222 es un gas noble radiactivo que procede directamente del radio (Ra226 cuando este emite una partícula alfa (dos protones y dos neutrones o núcleo de helio, y que a su vez se transforma en otro elemento radiactivo (Po218 al desprenderse de otra partícula alfa. Desde hace varias décadas se conoce su efecto como factor de riesgo del cáncer primario pulmonar, primero en mineros del uranio y posteriormente en la población general expuesta al radón residencial en hogares construidos sobre suelos de rocas ricas en uranio (U238, elemento inicial de la cadena de degradación radiactiva de la que procede el radón. Áreas geológicamente constituidas por granitos o pizarras, como son las de gran parte de Galicia y todo el noroeste y oeste de la pen

  5. Peculiar radon spot in Hungary

    International Nuclear Information System (INIS)

    For the public, radon in homes is the main source of exposure. Mostly rather steady radon exhalations have been experienced from rocks or building materials rich in uranium. But in a village of North-East Hungary high indoor radon concentrations have been observed, varying in time, due to the peculiar geochemical conditions. (author)

  6. Radon in the indoor environment

    International Nuclear Information System (INIS)

    A precise retrospective assessment of long-term radon exposures in dwellings is essential for estimating lung-cancer risks. The objectives of this research are (1) to investigate the deposition of radon progeny in the human respiratory tract by means of direct measurements as a function of aerosol conditions, (2) to assess the radon concentrations in buildings retrospectively with volume traps

  7. Bavarian radon network und education of radon experts; Bayerisches Radon-Netzwerk und Ausbildung zur Radon-Fachperson

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, S.; Kunte, A. [Bayerisches Landesamt fuer Umwelt, Augsburg (Germany)

    2013-07-01

    The Bavarian Environment Agency (LfU) initiated 2012 the Bavarian Radon Network and the training initiative to become a 'Radon-Fachperson' (radon specialist) to further the awareness concerning radon. The Bavarian Radon Network was established in summer 2012 by the LfU in cooperation with the 'Bauzentrum Muenchen' (Munich Building Center). The Bavarian Radon Network is meant to link radon specialists, specialists from the building and real estate sector, municipal and private building owners, stakeholders, government agencies and science. Meetings are held biannually. The four day course to become a Radon-Fachperson is primarily aimed at building specialists, e.g. architects, construction engineers, ventilation engineers and staff of private and public construction offices. The course imparts specialised knowledge of radon prevention for new buildings, realisation of radon mitigation, measurement instrumentation and methods as well as fundamentals of radiation protection. With the Radon-Fachperson there are henceforth qualified specialists in the field of radon in buildings available in Bavaria. (orig.)

  8. Radon in land use planning

    International Nuclear Information System (INIS)

    Radon poses a health risk. Therefore, it is important that the municipality takes into account radon, in land use planning. This Radiation Info provides an overview of what makes an additional radon prone area and what tools are available to assess this. The background is the Planning and Building Act provisions on risk analysis (ROS) and zones(eb)

  9. Classification of radon exposed workplaces

    International Nuclear Information System (INIS)

    At this time the project 'Investigations of Radiation Exposure through Radon and Radon Progenies in Workplaces' is carried out in order to record the peculiarities of the radon situation in workplaces located inside buildings compared with that in dwellings. Through examples of measurements, first knowledge from investigations are presented. (orig.)

  10. Chemical properties of radon

    Energy Technology Data Exchange (ETDEWEB)

    Stein, L.

    1986-01-01

    Radon is frequently regarded as a totally inert element. It is, however, a ''metalloid'' - an element which lies on the diagonal of the Periodic Table between the true metals and nonmetals and which exhibits some of the characteristics of both. It reacts with fluorine, halogen fluorides, dioxygenyl salts, fluoro-nitrogen salts, and halogen fluoride-metal fluoride complexes to form ionic compounds. Several of the solid reagents can be used to collect radon from air but must be protected from moisture, since they hydrolyze readily. Recently, solutions of nonvolatile, cationic radon have been produced in nonaqueous solvents. Ion-exchange studies have shown that the radon can be quantitatively collected on columns packed with either Nafion resins or complex salts. In its ionic state, radon is able to displace H/sup +/, Na/sup +/, K/sup +/, Cs/sup +/, Ca/sup 2 +/, and Ba/sup 2 +/ ions from a number of solid materials. 27 refs., 6 figs.

  11. Towards a Brazilian radon map: consortium radon Brazil

    International Nuclear Information System (INIS)

    Recently, the idea of generating radon map of Brazil has emerged. First attempts of coordinating radon surveys-carried out by different groups across the country-and initial discussions on how to proceed on a larger scale were made at the First Brazilian Radon Seminary, Natal, September 2012. Conventionally, it is believed that indoor radon is no major problem in Brazil, because the overall benign climate usually allows high ventilation rates. Nevertheless, scattered measurements have shown that moderately high indoor radon concentrations (up to a few hundred Bq m-3) do occur regionally. Brazilian geology is very diverse and there are regions where an elevated geo-genic radon potential exists or is expected to exist. Therefore, a Brazilian Radon Survey is expected to be a challenge, although it appears an important issue, given the rising concern of the public about the quality of its environment. (authors)

  12. Aerosol particle size distribution in building and caves: impact to the radon-related dose evaluation

    International Nuclear Information System (INIS)

    The results of evaluation of the aerosol particle size spectra observed in the Bozkov cave are presented and compared with the spectra observed in residential areas. The radon-to-dose conversion factor is discussed, as is the correction factor referred to as the cave factor. (P.A.)

  13. The householders' guide to radon

    International Nuclear Information System (INIS)

    This guide is a follow-up to the leaflet Radon in Houses which was issued previously by the Department of the Environment. It is intended for people who live in areas with high levels of radon. It is written particularly for householders whose homes have already been tested and found to have an appreciable level of radon. It explains what radon is, how it gets into houses and what the effects on health may be. It also outlines some of the ways of reducing the level of radon and gives guidance both on how to get the work done and likely costs. (author)

  14. Radon risk maps - correct applications

    International Nuclear Information System (INIS)

    The Czech Republic has been surveyed for radon risk, and maps on the 1:200 000 scale have been set up based on results of field measurements of the volume activity of radon in soil air (4 800 measurements in total). The maps are used in territorial planning, in setting up strategies for financing remedial actions and in determining priorities for radon monitoring in buildings and in drinking water. The radon pathway from a rock is affected by soil permeability, tectonic defects and climatic factors. The radon risk assessment, however, cannot rely on regional maps solely; additional, more detailed measurements are necessary. (M.D.). 2 tabs., 3 refs

  15. Radon: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Lepman, S.R.; Boegel, M.L.; Hollowell, C.D.

    1981-01-01

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given.

  16. Radon: a bibliography

    International Nuclear Information System (INIS)

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given

  17. Dry radon gas generator

    International Nuclear Information System (INIS)

    A radon gas standard with a source strength of 120037 pCi capable of delivering 121 pCi of radon gas successively to a large number of cells has been developed. The absolute source strength has been calibrated against two radium solution standards and is accurate to 4 percent. A large number of cells (approxiiately 50) may be calibrated conveniently on a daily basis with appropriate corrections for sequential changes in the amount of gas delivered, and a correction for the growth of radon in the standard on successive days. Daily calibration of ten cells or less does not require these corrections. The standard is suitable for field use and the source emanation rate is stable over extreme temperatue and pressure ranges and over six months

  18. Radon depth migration

    International Nuclear Information System (INIS)

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation

  19. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222Rn and 226Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  20. Radon strategy in Saxony

    International Nuclear Information System (INIS)

    The Free State of Saxony developed a strategy on radon protection in buildings. It is based on a decision of the Saxon parliament enacted in 2005 and triggered by the upcoming European Basic Safety Standards which will contain regulations on radon in dwellings for the first time. The strategy is focusing on information of the public and monitoring programs as well as on educational and training measures for the building construction trades. The conventional methods of radiation protection (keeping distance and avoiding contact) are not effective for radon protection. Thus investigation and development of adequate building construction measures and ventilation are the main principles for a successful strategy. Special attention is given to energy efficient construction measures. The activities of the free State of Saxony to implement these measures are introduced. (orig.)

  1. Residential Energy Efficiency Research Planning Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  2. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  3. Radon programmes and health marketing.

    Science.gov (United States)

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed. PMID:21498864

  4. Radon assay for SNO+

    International Nuclear Information System (INIS)

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+

  5. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  6. A continuous measuring apparatus base on deduction arithmetic for environmental radon and radon progeny

    International Nuclear Information System (INIS)

    The continuous measuring for environmental radon and radon progeny is the premise to calculate the radiation dose from radon precisely. An intelligent measuring apparatus for environmental radon and radon progeny using scintillation cell and filter-sampling technique with deduction arithmetic is described. The measuring theory, structures of the apparatus and some measuring data of standard radon chamber and offices are given detail. (authors)

  7. Indoor radon exposure and lung cancer: a review of ecological studies.

    Science.gov (United States)

    Yoon, Ji Young; Lee, Jung-Dong; Joo, So Won; Kang, Dae Ryong

    2016-01-01

    Lung cancer has high mortality and incidence rates. The leading causes of lung cancer are smoking and radon exposure. Indeed, the World Health Organization (WHO) has categorized radon as a carcinogenic substance causing lung cancer. Radon is a natural, radioactive substance; it is an inert gas that mainly exists in soil or rock. The gas decays into radioactive particles called radon progeny that can enter the human body through breathing. Upon entering the body, these radioactive elements release α-rays that affect lung tissue, causing lung cancer upon long-term exposure thereto. Epidemiological studies first outlined a high correlation between the incidence rate of lung cancer and exposure to radon progeny among miners in Europe. Thereafter, data and research on radon exposure and lung cancer incidence in homes have continued to accumulate. Many international studies have reported increases in the risk ratio of lung cancer when indoor radon concentrations inside the home are high. Although research into indoor radon concentrations and lung cancer incidence is actively conducted throughout North America and Europe, similar research is lacking in Korea. Recently, however, studies have begun to accumulate and report important data on indoor radon concentrations across the nation. In this study, we aimed to review domestic and foreign research into indoor radon concentrations and to outline correlations between indoor radon concentrations in homes and lung cancer incidence, as reported in ecological studies thereof. Herein, we noted large differences in radon concentrations between and within individual countries. For Korea, we observed tremendous differences in indoor radon concentrations according to region and year of study, even within the same region. In correlation analysis, lung cancer incidence was not found to be higher in areas with high indoor radon concentrations in Korea. Through our review, we identified a need to implement a greater variety of

  8. Measurements of radon concentrations in a sample representative of housing in Franche-Comte; Mesure de concentrations en radon dans un echantillon representatif de logements de Franche-Comte

    Energy Technology Data Exchange (ETDEWEB)

    Aury, K.; Clinard, F.; Tillier, C. [Cire Centre-Est, 21 - Dijon (France); Catelinois, O.; Pirard, P. [Institut de Veille Sanitaire, Saint-Maurice (France); Aury, K. [Centre d' Epidemiologie de Population, Registre Dijonnais des AVC, 21 - Dijon (France); Nourry, L. [Direction Regionale des Affaires Sanitaires et Sociales de Franche-Comte, 25 - Besancon (France); Hochart, A. [Observatoire Regional de la Sante de Franche-Comte, 25 - Besancon (France)

    2008-09-15

    Three departments on four ones in Franche-Comte are classified at risk for radon: measurements are so compulsory in establishments receiving public. For the residential sector, no obligation of measurement are compulsory when french people spend 70% of their time in it. The data concerning homes are fragmentary and deserve to be completed. This campaign of measurements has confirmed the existence of radon in relatively high concentrations in Franche-Comte, including the sedimentary areas, justifying the necessity to realize a precise evaluation of the sanitary impact. The model will allow to study different strategies to reduce radon in houses. (N.C.)

  9. Characterization of radon penetration of different structural domains of concrete. Final project report

    International Nuclear Information System (INIS)

    This report documents the research activities by Rogers and Associates Engineering Corporation on grant DE-FG03-93ER61600 during the funded project period from August 1993 to April 1996. The objective of this research was to characterize the mechanisms and rates of radon gas penetration of the different structural domains of the concrete components of residential floor slabs, walls, and associated joints and penetrations. The research was also to characterize the physical properties of the concretes in these domains to relate their radon resistance to their physical properties. These objectives support the broader goal of characterizing which, if any, concrete domains and associated properties constitute robust barriers to radon and which permit radon entry, either inherently or in ways that could be remediated or avoided

  10. Mechanisms and sources of radon entry in buildings constructed with modern technologies

    International Nuclear Information System (INIS)

    To investigate the influence of modern building construction technologies on the accumulation of radon indoor, 20 rooms in buildings constructed using mostly monolithic concrete or aerated concrete blocks have been studied. Dominance of the diffusion mechanism of radon entry in buildings constructed with modern technologies has been established. As a result of computer simulations it was found that the main contribution to the variability of radon concentration was made by changes in the ventilation rate. At a low ventilation rate (-1) radon concentration above 200 Bq m-3 can be observed for residential buildings. There is a need for the regulation of the radium-specific activity in building materials. According to the estimates of this study, the content of 226Ra in building materials should not exceed the value of 100 Bq kg-1. (authors)

  11. Radon thematic days - Conference proceedings

    International Nuclear Information System (INIS)

    This document brings together the available presentations given at the Radon thematic days organized by the French society of radiation protection (SFRP). Twenty five presentations (slides) are compiled in the document and deal with: 1 - General introduction about radon (Sebastien Baechler, IRA); 2 - Survey of epidemiological studies (Dominique Laurier, IRSN); 3 - Dosimetric model (Eric Blanchardon, Estelle Davesne, IRSN); 4 - Radon issue in Franche-Comte: measurement of the domestic exposure and evaluation of the associated health impact (Francois Clinard, InVS); 5 - WHO's (World Health Organization) viewpoint in limiting radon exposure in homes (Ferid Shannoun, OMS); 6 - Radon measurement techniques (Roselyne Ameon, IRSN); 7 - Quality of radon measurements (Francois Bochud, IRA); 8 - International recommendations (Jean-Francois Lecomte, IRSN); 9 - Radon management strategy in Switzerland - 1994-2014 (Christophe Murith, OFSP); 10 - 2011-2015 action plan for radon risk management (Jean-Luc Godet, Eric Dechaux, ASN); 11 - Radon at work place in Switzerland (Lisa Pedrazzi, SUVA); 12 - Strategies of radiation protection optimization in radon exposure situations (Cynthia Reaud, CEPN); 13 - Mapping of the radon potential of geologic formations in France (Geraldine Ielsch, IRSN); 14 - Radon database in Switzerland (Martha Gruson, OFSP); 15 - Radon 222 in taps water (Jeanne Loyen, IRSN); 16 - Buildings protection methods (Bernard Collignan, CSTB, Roselyne Ameon, IRSN); 17 - Preventive and sanitation measures in Switzerland (Claudio Valsangiacomo, SUPSI); 18 - Training and support approach for building specialists (Joelle Goyette-Pernot, Fribourg engineers and architects' school); 19 - Status of radon bulk activity measurements performed between 2005-2010 in public areas (Cyril Pineau, ASN); 20 - Neuchatel Canton experiments (Didier Racine, SENE); 21 - Montbeliard region experience in the radon risk management (Isabelle Netillard, Pays de Montbeliard Agglomeration); 22

  12. Estimation of effective doses derived from radon in selected SPA centers that use geothermal waters based on the information of radon concentrations

    Directory of Open Access Journals (Sweden)

    Katarzyna Walczak

    2013-04-01

    Full Text Available Background: Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Material and Methods: Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers, Iran (5, China (4 and India (5. Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. Results: We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings. In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. Conclusions: The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program. Med Pr 2013;64(2:193–198

  13. Residential Segregation of Socioeconomic Variables and Health Indices in Iran

    OpenAIRE

    Seyed Saeed Hashemi Nazari; Mahmood Mahmoodi; Kourosh Holakouie Naieni

    2013-01-01

    Background: Measures of segregation are essential tools for evaluation of social equality. They describe complex structural patterns by single quantities and allow the comparison of inequalities over time or between residential places. In many countries, patterns of residential segregation are well described (e.g., South Africa, Great Britain, United States of America). In this study, for the first time in Iran, we measured residential segregation for some socioeconomic and health variables a...

  14. Is there any interaction between domestic radon exposure and air pollution from traffic in relation to childhood leukemia risk?

    DEFF Research Database (Denmark)

    Bräuner, E.V.; Andersen, Claus Erik; Andersen, H.P.;

    2010-01-01

    risk within different strata of air pollution and traffic density. Results: The relative risk for childhood leukemia in association with a 103 Bq/m3-years increase in radon was 1.77 (1.11, 2.82) among those exposed to high levels of NOx and 1.23 (0.79, 1.91) for those exposed to low levels of NOx...... childhood leukemia. Methods: We included 985 cases of childhood leukemia and 1,969 control children. We used validated models to calculate residential radon and street NOx concentrations for each home. Conditional logistic regression analyses were used to analyze the effect of radon on childhood leukemia...

  15. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  16. Contribution of radon and radon daughters to respiratory cancer

    International Nuclear Information System (INIS)

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime

  17. Development of a radon-aerosol system for testing radon and radon decay products measuring instruments

    International Nuclear Information System (INIS)

    Exposures to radon and its decay products may arise from NORM-related work activities. Employers are responsible for monitoring radon in their workplaces, and the methods and instruments used must be subjected to adequate quality assurance. A radon chamber is an important component of a quality assurance programme. In this study we developed a radon-aerosol chamber and used it to characterise the prototype version of a newly developed radon decay product measuring instrument. The system comprises a small radon chamber with dry radon source, aerosol chamber, monodisperse aerosol generator, and TSI aerodynamic particle sizer with its accessories. Radon-laden air mixed with aerosols is pumped from the radon-aerosol system through the radon decay product measuring instrument. The instrument's response is obtained continuously from alpha spectrometric analyses of the radon decay products, 218Po and 214Po, deposited on a membrane filter (0.8 - m pore sizes and 25 mm diameter) held close to a silicon surface barrier detector. A second couple of filter and detector is inserted downstream to check the efficiency and eventual leakage of the membrane filter. The results show that alpha activity on the filter nearer to the inlet was significantly higher than the activity on the second filter. There were also significant losses of aerosols to the inner wall of the instrument as air flows through. The implications of these observations on the response of the instrument are discussed. (author)

  18. Cost-benefit considerations in the development of policies and procedures for controlling indoor exposure to radon and its decay products

    International Nuclear Information System (INIS)

    The applicability of ALARA to the problem of controlling residential radon levels is limited. Cost-benefit considerations can nevertheless be useful in guiding policy in this area. From a societal perspective, the cost-benefit balance for mitigating radon in homes to the EPA action level of 4 pCi/L, or lower, is generally better than for most programs aimed at reducing environmental risks. Reduction of radon levels in new homes tends to be less costly; moreover, reduced radon levels in new construction may be achievable with a net cost savings to the homeowner due to concomitant decreases in energy expenses. Since programs to reduced radon exposure rely on voluntary actions by homeowners, the societal cost-benefit balance cannot dictate the extent of radon mitigation efforts. However, both economic incentives and governmental guidance can influence these efforts. Cost-benefit analysis can be an important tool in formulating such guidance

  19. Human exposure to indoor radon: A survey in the region of Guarda, Portugal

    International Nuclear Information System (INIS)

    Radon (222Rn) is a radioactive gas, abundant in granitic areas, such as the city of Guarda at the northeast of Portugal. This gas is recognised as a carcinogenic agent, being appointed by the World Health Organization as the second leading cause of lung cancer after tobacco smoke. Therefore, the knowledge of radon concentrations inside the houses (where people stay longer) is important from the point of view of radiological protection. The main goal of this study was to assess the radon concentration in an area previously identified with a potentially high level of residential radon. The radon concentration was measured using CR-39 detectors, exposed for a period of 2 months in 185 dwellings in the Guarda region. The radon concentration in studied dwellings, ranged between 75 and 7640 Bq m-3, with a geometric mean of 640 Bq m-3 and an arithmetic mean of 1078 Bq m-3. Based on a local winter-summer radon concentration variation model, these values would correspond to an annual average concentration of 860 Bq m-3. Several factors contribute to this large dispersion, the main one being the exact location of housing construction in relation to the geochemical nature of the soil and others the predominant building material and ventilation. Based on the obtained results an average annual effective dose of 15 mSv y-1 is estimated, well above the average previously estimated for Portugal. (authors)

  20. World History Of Radon Research And Measurement From The Early 1900's To Today

    International Nuclear Information System (INIS)

    In 1900, Dorn discovered the emanation in the uranium series that eventually became the well-known gas 222Rn. From 1900 through 1908, it was demonstrated that 222Rn is a radioactive gas found in tap water, highly condensable at low temperatures with a half-life of approximately 3.7 days and can be collected on charcoal by adsorption. Although, radon was discovered in 1900, the effects of prolonged exposure had been suspected and noted 300 years earlier among underground miners who developed lung cancer. During the period from 1924-1932, it was suggested that radon was the cause of high lung cancer incidence. In 1951, researchers at the university of Rochester N.Y. pointed out that the lung cancer health hazard was from the alpha radiation dose delivered by the radon decay products that deposited in the respiratory tract. The findings of the BEIR Committee Report VI, which was based on epidemiological studies in different groups of mines in the 1950's and 1960's and on laboratory studies, showed that from 60,000 miners over 2,600 developed lung cancer where only 750 were expected.Since 1998, the epidemiological study conducted in Iowa US, showed beyond any reasonable doubt that radon decay products cause lung cancer among women who lived at least twenty years in their homes. This paper will cover early radon measurements in soil, building material, ground water and in different air environments such as in the atmosphere, caves spas, underground mines and in residential indoor air environment. Radon measurements were conducted in many areas for diagnostic purposes. Radon was used as natural tracer to study air masses, vertical diffusion, and atmospheric studies, in earthquake prediction, and as a geological indicator for radium and uranium. In the early radon measurements, electroscopes, electrometers and primitive ionization chambers were used for many years. In the 1940's fast pulse ionization chambers replaced total ionization chambers. From the mid 1950's onwards

  1. EML indoor radon workshop, 1982

    International Nuclear Information System (INIS)

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniques for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs

  2. Concentration variation of radon in the room

    International Nuclear Information System (INIS)

    The study was carried out to determine the variation of radon concentration in the room. Radon detector used was solid nuclear tracks detector (SSNTD) LR-115. From this result, suitable points to make radon measurement was determined

  3. Radon in Norwegian dwellings

    International Nuclear Information System (INIS)

    Measurements of radon in indoor air have been made in a total of about 7500 randomly selected dwellings in Norway from all parts of the country. The number of selected dwellings in each municipality is about proportional to its population, except for the two largest municipalities, Oslo and Bergen, where somewhat smaller samples were taken due to the higher population density. The measurements were performed by nuclear track detectors from the National Radiological Protection Boards in United Kingdom, and the integration time for the measurements was 6 months. The detectors were spread evenly over all seasons of the year to eliminate influence from seasonal variation in the radon level. One single measurement was performed in each dwelling: in the main bedroom. The results shows that the distribution of radon concentrations in Norwegian bedrooms is log-normal. The aritmetic mean of the measurements, including all categories of dwellings, is calculated to be 51 Bq/m3 and the corresponding geometric mean to be 26 Bq/m3. In a large proportion of single-family houses the living room and the kitchen are located on the ground floor while the bedrooms are located one floor higher. The results of the study shows that the radon level is somewhat higher at the ground floor than on the first floor, and higher in the basement than on the first floor. Taking this into account, and assuming that measurements in bedrooms on the first floor is a representative average for living room and kitchen, the average radon concentration for Norwegian dwellings is estimated to be between 55-65 Bq/m3. In this estimate, possible influences of the fact that the winters 87/88 and 88/89 were much warmer than normal and may therefor have lowered the results, has been taken into account. 15 refs., 9 figs., 15 tabs

  4. Construction of radon/radon daughter calibraton chamber

    International Nuclear Information System (INIS)

    The radon/radon daughter test chamber is a copper lined room 1.65x1.75x2.75m with an effective volume of 8000 litres. The air residence time is controlled by circulating the air in the chamber through absolute filters which remove 99.9% of particulates. Radon is drawn into the chamber from a 17 μCi 226RaCl source using the pressure differential across the blowers (<3 psi)

  5. Human perception of radon risk and radon mitigation: Some remarks

    International Nuclear Information System (INIS)

    The Radon program in the Czech Republic has a relatively long and rich history. Procedures, which enable to evaluate the risk of radon penetration from the ground, to protect new buildings, to find existing buildings with elevated indoor radon levels and to realise remedial measures in such buildings, have been developed, published and tested. In some cases, the whole system may fail due to psychological or sociological reasons. Three types of problems (conflicts) will be presented: human behaviour affecting measurement results, conflict between individual and 'all-society' points of view, interpretation of radon risk itself. (authors)

  6. Cost-effectiveness analysis of radon remediation in schools

    International Nuclear Information System (INIS)

    Indoor radon is an important source of radiation dosage in the general population and has been recognised as a world-wide environmental and public health challenge. Governments in many Western and Eastern European and North American countries are undertaking active radon-risk reduction policies, including the remediation of existing residential and work place building stocks (1). These endeavours include a priority of remediating school buildings. Epidemiological and technical radon research has produced information which has enabled attention to be turned to specific effectiveness and optimisation questions regarding radon identification and remediation programmes in buildings, including schools. Decision making about policy implementation has been an integral part of these programmes and questions have been raised about the economic implications of the regulations and optimisation strategies for workplace action level policy (2,3). (the action level applied to schools is 400 Bq m-3). No previous study has estimated the cost-effectiveness of a radon remediation programme for schools using the methodological framework now considered appropriate in the economic evaluation of health interventions. It is imperative that this should be done, in order that the resources required to obtain health gain from radon remediation in schools can be systematically compared with equivalent data for other health interventions and radon remediation programmes. In this study a cost-effectiveness analysis of radon remediation in schools was undertaken, using the best available national data and information from Northamptonshire on the costs and effectiveness of radon identification and remediation in schools, and the costs and health impact of lung cancer cases. A model based on data from Northamptonshire is presented (where 6.3% of residential stock is over 200 Bq m-3). The resultant cost-effectiveness ratio was pound 7,550 per life year gained in pound 1997. Results from the

  7. Compact anti-radon facility

    Energy Technology Data Exchange (ETDEWEB)

    Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I., E-mail: ivan.stekl@utef.cvut.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horská 3a/22, 128 00 Prague 2 (Czech Republic); Fojtík, P.; Hýža, M.; Hůlka, J.; Jílek, K. [SÚRO (NRPI) National Radiation Protection Institute, Bartoškova 1450/28, 140 00 Prague 4 (Czech Republic); Stoček, P.; Veselý, J. [ATEKO a.s., Resslova 956/13, 501 01Hradec Králové, Czech Republic. (Czech Republic); Busto, J. [CPPM, Universite de Marseille, CNRS/IN2P3, F-13288 Marseille (France)

    2015-08-17

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  8. Legal issues in radon affairs

    Energy Technology Data Exchange (ETDEWEB)

    Massuelle, M.H. [Inst. de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1999-12-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of expertsand the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise.

  9. Legal issues in radon affairs

    International Nuclear Information System (INIS)

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of experts and the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise

  10. Radon In BATAN Housing Complex

    International Nuclear Information System (INIS)

    Radon in Batan Housing Complex. Indoor measurement of radon concentration in Batan housing complex in Pasar Minggu, Pasar Jumat and Batan Indah, Indonesia has been carried out using passive radon dosimeter with CR-39 (Baryotrack) nuclear track detector. Result of measurement shows that, radon concentration was between 5,5 - 55,5 Bq/m3 in Batan Indah, between 8,8 - 54,0 Bq/m3 in Pasar Jumat and Pasar Minggu complex, between 10,3 - 52,5 Bq/m3. The highest Radon concentration was found in the room with uncemented and floor from tegel with highest porosity, so that radon from the wall and can easily duffuse into the room. Also the effective dose which was received by the people who lived in the complex has been discussed

  11. Radon and the environment - 222Rn

    International Nuclear Information System (INIS)

    After having presented some physical and chemical characteristics of radon 222, this report describes the presence of radon in the environment (in the atmosphere and in soft waters), discusses the radio-toxic effect of radon on human health (exposure, epidemiology, dose calculation, share of radon in population exposure to ionizing radiations), comments the presence of radon in buildings, briefly describes actions aimed at reducing radon concentration within buildings, briefly addresses the issue of professional exposure to radon, evokes regulatory aspects (at the international level, in France, in Switzerland), and comments principles and practices of radon measurement in buildings, water, and underground cavities

  12. Radon and radiation biology of the lung

    International Nuclear Information System (INIS)

    The main papers presented at the meeting dealt with the behaviour of radon and the indoor environment, radiation biology of the lung, lung dosis and the possible cancer risk caused by radon in homes, contamination of the room air. A series of special papers treated the radon problem in detail: sources and transport mechanisms of radon, geological aspects of the radon radiation burden in Switzerland, radon in homes, search for radon sources, and the Swiss radon-programme RAPROS. 67 figs., 13 tabs., 75 refs

  13. The therapeutic use of radon

    International Nuclear Information System (INIS)

    Spas with a somewhat elevated concentration of Radon222 (between 300 and 3000 Bq/l) are described to achieve good clinical results in the treatment of chronic rheumatic diseases. Recently a prospective randomized doubel-blind-study proved the pain reducing efficacy of Radon therapy in patients with cervical pain. Studies in experimental animal models have accumulated remarkable data in tissues and organs that provide a rationale to explain the observed effects of Radon therapy in patients. (orig.)

  14. Radon exposure in Slovenia spas

    International Nuclear Information System (INIS)

    Radon and gamma dose rates were surveyed in five Slovenian spas, at Rogaska Slatina, Radenci, Moravci, Podcetrtek, and Catez. Due to effective ventilation systems, the indoor air radon concentration rarely exceeds 200 Bq.m-3 and is usually lower. Under the present operational conditions and working regimes of the spas, there is no basis for concern about elevated exposure of personnel to radon. (author)

  15. Radon Research Program, FY 1992

    International Nuclear Information System (INIS)

    The United States Department of Energy, Office of Health and Environmental Research (DOE/OHER) is the principal federal agency conducting basic research related to indoor radon. The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. There still remains a significant number of uncertainties in the currently available knowledge that is used to estimate lung cancer risk from exposure to environmental levels of radon and its progeny. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny and to identify and understand biological mechanisms of lung cancer development and required copollutants at low levels of exposure. Information useful in radon control strategies is also provided by the basic science undertaken in this program

  16. Radon Research Program, FY-1990

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) Office of Health and Environmental Research (OHER) has established a Radon Research Program with the primary objectives of acquiring knowledge necessary to improve estimates of health risks associated with radon exposure and also to improve radon control. Through the Radon Research Program, OHER supports and coordinates the research activities of investigators at facilities all across the nation. From this research, significant advances are being made in our understanding of the health effects of radon. OHER publishes this annual report to provide information to interested researchers and the public about its research activities. This edition of the report summarizes the activities of program researchers during FY90. Chapter 2 of this report describes how risks associated with radon exposure are estimated, what assumptions are made in estimating radon risks for the general public, and how the uncertainties in these assumptions affect the risk estimates. Chapter 3 examines how OHER, through the Radon Research Program, is working to gather information for reducing the uncertainties and improving the risk estimates. Chapter 4 highlights some of the major findings of investigators participating in the Radon Research Program in the past year. And, finally, Chapter 5 discusses the direction in which the program is headed in the future. 20 figs

  17. Radon and geophysics: recent advances

    International Nuclear Information System (INIS)

    Analysis of radon data obtained before and after the M6.9 earthquake in the Reventador, Ecuador, area shows beyond doubt that both positive and negative radon anomalies were generated even at rather large distances from the epicenter. The influence of groundwater and fault networks is strongly suggested by the findings. Investigations using an additional radon source implanted at the experimental sites show that near surface radon anomalies are primarily due, if not exclusively, to deeper fluid motion acting as transport vectors. Such behaviour is likely to support the idea that pore collapse generates an upward motion of pore fluids acting as radon carriers. Considering only depth related radon concentration curves, moderately sized radon anomalies would be expected, contrary to observation. A theoretical model devised on the basis of the analysis of transient states shows that large amounts of radon are expected to show during a short duration prior to an earthquake or an eruption. It has been shown particularly that short term variations are induced in direct correlation with temperature variation and large term variations are induced in counter correlation with temperature variation. In addition, laboratory experiments and deep-well experiments have been carried out to investigate radon transport in groundwater as a function of depth. (author)

  18. Public radiation exposure due to radon transport from a uranium mine

    International Nuclear Information System (INIS)

    Radon and radon daughter concentrations at locations several kilometres away from a uranium mine are due both to the background sources and the mine-related sources. The contribution of these two types of sources should be distinguished because the authorised limits on public radiation dose apply only to the mine-related sources. Such a distinction can be achieved by measuring radon and radon daughter concentration in the wind sectors containing only the background sources and those in the wind sectors containing both the background and the mine-related sources. This approach has been used to make estimates of public radiation dose due to radon transport from the Ranger Uranium Mine in Australia. The residential town of Jabiru, the non-residential working town of Jabiru East, and the aboriginal camp sites in the vicinity of the mine were considered. The results indicate that, for the groups of population considered, the annual mine-related dose varies between 0.04 and 0.2 mSv. (author)

  19. Radon Dose Determination for Cave Guides in Czech Republic

    Science.gov (United States)

    Thinova, Lenka; Rovenska, Katerina

    2008-08-01

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the "cave factor" 1.5. The value of "cave factor" which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of

  20. Radon Dose Determination for Cave Guides in Czech Republic

    International Nuclear Information System (INIS)

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the 'cave factor' 1.5. The value of 'cave factor' which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of

  1. Radon - The management of the risk related to radon

    International Nuclear Information System (INIS)

    This leaflet briefly explains what radon is, where it comes from, and what it becomes. It indicates and briefly comments its concentrations in French departments, describes how radon can affect our health (lung cancer), describes how the risk can be reduced in buildings, and indicates the existing regulatory provisions

  2. Exposure to radon and radon progeny in the indoor environment. Final report

    International Nuclear Information System (INIS)

    This report discusses the work done by the Center for Energy and Environmental Studies at Princeton University as part of the radon research program. It involves radon measurements in various buildings, as well as the use of natural ventilation to mitigate radon levels. The report is divided into four chapters: The use of radon entry rate measurements to understand radon concentration in buildings; Use of natural basement ventilation to control radon in single family dwellings; The effect of natural ventilation on radon and radon progeny levels in houses; and Comparison of natural and forced ventilation for radon mitigation in houses

  3. Reflections on the development of the computer software RNX for the design of radon mitigation systems

    International Nuclear Information System (INIS)

    In 1989, the Bonneville Power Administration (BPA) funded the development of an expert system to assist professional mitigators in the selection and design of residential radon mitigation systems. A prototype of the software at various stages of development was demonstrated before radon mitigators and staffs of federal and state agencies. Professional review was solicited throughout the nation. The final version of the software was completed in November 1992. Now the authors discuss their experiences in the successful completion of the project and potential impacts of the software. (orig.). (2 refs.)

  4. Measurement of radon activity concentration and determination of inhalatory indoor radiation burden in Hungarian dwellings

    International Nuclear Information System (INIS)

    Indoor radon activity concentrations were measured by LR-115 track detectors in 122 residential buildings in Hungary during 2.5 years in 3-month exposure periods. For all the buildings the mean value is 42.1 Bq/m3 and the arithmetic mean is 55.2 Bq/m3. The estimated per capita annual effective dose equivalent is 2.1 mSv based on measurements and on the recommendations of the ICRP 50. The indoor radon levels were also checked for various building materials, location of flats, seasons and geographical position. (author) 11 refs.; 8 figs.; 2 tabs

  5. The significance of radon in radioactive pollution of environment. Pt. 2. Radon effect on living organism

    International Nuclear Information System (INIS)

    Authors review the history of radon monitoring. Epidemiological studies of lung cancer and its correlation to radon concentration in mines and buildings are described. The influence of radon on animals living in the buildings built from waste materials is described. Authors review plans concerning creation of radon monitoring system in Poland. The necessity of monitoring influence of radon on animals is described

  6. Radon measurement studies with indigenously developed continuous radon monitor (CRM)

    International Nuclear Information System (INIS)

    This paper reports the results of radon concentration measurements carried out with an indigenously developed microcontroller based Continuous Radon Monitor. The system uses a ZnS(Ag) detector and passive sampling method for estimation of radon concentration. A comparative study of the results recorded by present system with Genitron make Alphaguard was conducted at uranium mine environment at Jaduguda. The studies show that the continuous radon monitor can be very comprehensively and effectively used for radon concentration measurements with a minimum detectable concentration of ∼ 30 Bq/m3. The inter comparison of the system with the more standard Alphaguard system also indicate that the results recorded by the CRM yield a sensitivity of 0.3 counts per hour per Becquerel activity per unit volume. (author)

  7. Chemical methods for removing radon and radon daughters from air.

    Science.gov (United States)

    Stein, L

    1972-03-31

    Liquid bromine trifluoride and the solid complexes ClF(2)SbF(6), BrF(2)SbF(6), BrF(4)Sb(2)F(11), IF(4)(SbF(6))(3) and BrF(2)BiF(6) react spontaneously with radon and radon daughters at 25 degrees C, converting the radioelements to nonvolatile ions and compounds. The reagents can be used in gas-scrubbing units to remove radon and radon daughters from air. The halogen fluoride-antimony pentafluoride complexes may be suitable for purifying air in uranium mines and analyzing radon in air, since they have low dissociation pressures at 25 degrees C and are less hazardous to handle than liquid halogen fluorides. PMID:5013675

  8. Lung Cancer Risk from Occupational and Environmental Radon and Role of Smoking in Two Czech Nested Case-Control Studies

    Directory of Open Access Journals (Sweden)

    Ladislav Tomasek

    2013-03-01

    Full Text Available The aim of the present study was to evaluate the risk of lung cancer from combined exposure to radon and smoking. Methodologically, it is based on case-control studies nested within two Czech cohort studies of nearly 11,000 miners followed-up for mortality in 1952–2010 and nearly 12,000 inhabitants exposed to high levels of radon in homes, with mortality follow-up in 1960–2010. In addition to recorded radon exposure, these studies use information on smoking collected from the subjects or their relatives. A total of 1,029 and 370 cases with smoking information have been observed in the occupational and environmental (residential studies, respectively. Three or four control subjects have been individually matched to cases according to sex, year of birth, and age. The combined effect from radon and smoking is analyzed in terms of geometric mixture models of which the additive and multiplicative models are special cases. The resulting models are relatively close to the additive interaction (mixing parameter 0.2 and 0.3 in the occupational and residential studies, respectively. The impact of the resulting model in the residential radon study is illustrated by estimates of lifetime risk in hypothetical populations of smokers and non-smokers. In comparison to the multiplicative risk model, the lifetime risk from the best geometric mixture model is considerably higher, particularly in the non-smoking population.

  9. Radon in ground water supplies

    International Nuclear Information System (INIS)

    In September 1986, the System Water Quality Department of the American Water Works Service Co. began conducting a radon survey that was designed to determine the levels of radon in American ground water supplies, and to assess the radon removal efficiency of existing treatment processes such as filtration through granular activated carbon (GAC) and various forms of aeration. The survey found that companies in the northeastern part of the country experienced the highest levels of radon in ground water supplies. The highest concentrations were in individual wells in New Hampshire, Maryland, Connecticut, Rhode Island, New Jersey, Pennsylvania and California. The analytical results from the occurrence phase of the survey seemed to correlate well with the known geology of the aquifer materials from which samples of ground water were drawn. The highest levels were associated with formations of uranium-bearing granitic rocks. GAC can effectively reduce radon concentrations in drinking water supplies to very low levels. However, the amount of contact time within the carbon bed required to do so would be prohibitive to many water utilities from an operational and economic standpoint. Further, disposal of the spent GAC as a low-level radioactive waste may be required. Aeration is very effective in the removal of radon from drinking water. Packed tower aerators achieved > 95% reduction in radon concentrations and conventional cascading tray aerators achieved > 75% reduction in radon concentrations. 7 refs., 6 tabs

  10. Radon - The management of the risk related to radon; Le radon la gestion du risque lie au radon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This leaflet briefly explains what radon is, where it comes from, and what it becomes. It indicates and briefly comments its concentrations in French departments, describes how radon can affect our health (lung cancer), describes how the risk can be reduced in buildings, and indicates the existing regulatory provisions

  11. Radon and buildings: Pt. 2

    International Nuclear Information System (INIS)

    Noise from fan-assisted radon sump systems can be a problem in the home. This leaflet describes how to design a sump system with a view to minimising noise disturbance. It also includes advice on reducing noise from unsatisfactory existing systems. The leaflet will be of interest to householders, builders and designers dealing with noise from fan-assisted radon sump systems. (author)

  12. Radon awareness survey in Pakistan

    International Nuclear Information System (INIS)

    Significant progress has been made in reducing the risk from exposure to radon and its progeny all over the world as a result of efforts made by different organisations which are working together to educate public about the harmful effects of radon. During the past several surveys, it was found that uneducated people were totally ignorant of radon in Pakistan. Even a large number of science graduates knew very little about radon and its hazards. Therefore, a nationwide survey was conducted to measure general awareness and factual knowledge about radon and its health hazards. In this regard, a questionnaire was prepared and distributed among different classes of the society including students, government employees and general public throughout the country. A total of 7000 people with different educational backgrounds participated in this survey, which includes uneducated people (1000), science and humanities graduates (2000 each) and under graduate (2000). Statistical analysis, excluding uneducated people, revealed that 30.4% of the total respondents were aware of radon and 69.6% had even not heard of radon. Only ∼8.4% of the total respondents were knowledgeably aware of radon. (authors)

  13. Indoor radon concentration in Poland

    International Nuclear Information System (INIS)

    Preliminary survey of Rn concentration indoors by means of track detectors and y-ray dose rate with the use of TLD in almost 500 homes in selected areas of Poland was performed in the late 1980s. It was concluded that radon contributes 1.16 mSv i.e. about 46 per cent of the total natural environment ionizing radiation dose to the Polish population. Comparison of the average radon concentrations in 4 seasons of a year and in 3 groups of buildings: masonry, concrete and wood, revealed that the ground beneath the building structure is likely the dominant source of radon indoors. Since the National Atomic Energy Agency in its regulations of 1988-03-31 set up the permissible limit of the equilibrium equivalent concentration of radon in new buildings (equal 100 Bq/m3), the nation-scale survey project for radon in buildings has been undertaken. These regulations were supposed to take effect in 1995-01-01. The project has 3 objectives: to estimate the radiation exposure due to radon daughters received by Polish population to identify radon-prone areas in Poland to investigate dependence of the indoor radon concentrations on such parameters as: type of construction material, presence (or absence) of cellar under the building, number of floor

  14. Radon measurements in indoor workplaces

    International Nuclear Information System (INIS)

    Radon measurements in several office buildings located in Tokyo were carried out with two types of device to study the time-dependent radon concentration in indoor workplaces. Both types of device use the electrostatic field for the collection of 218Po onto the electrode of the detector. One provides an average radon concentration throughout the day. The other, in which a weekly timer is installed in the circuit of the electrode of the device, provides an average radon concentration during working hours (9:00-17:00, Monday-Friday). Although radon concentrations in Japanese dwellings have been found to be generally low, relatively high concentrations were observed in the office buildings. No consistent seasonal variation was recognised in this study. Little difference of average radon concentrations between working hours and the whole day was found throughout the year in two offices. On the other hand, a significant difference was observed in other offices. The operation of an air conditioner might change the radon concentration during working hours. From the results of radon measurements the average effective dose in the workplace was estimated to be 0.23 mSv for 2000 working hours in a year. (Author)

  15. Radon concentration in The Netherlands

    International Nuclear Information System (INIS)

    In 1000 dwellings, which can be assumed to be an reasonable representation of the average Dutch dwellings, time averaged radon concentrations, radon daughter concentrations and gamma-exposure tempi are determined during a year with passive dosemeters. They are also determined outdoor at circa 200 measure points. (Auth.)

  16. Radon measurements in hispaniola dwellings

    International Nuclear Information System (INIS)

    The results of a national radon survey and a number of regional surveys of radon in spanish dwelling are reviewed. The best estimate of the geometric mean of indoor radon concentrations is 41.1. Bq/m-3 and single-family dwellings have been shown to be more at risk than apartments. Results need to be interpreted with some caution due to differences in survey methodologies and measurement procedures. The risks from radon exposure are put in perspective by comparison with other voluntary risks. Finally, although a number of 'high risk' areas have already been identified, it is concluded that implementation of a national programme to reduce radon exposure may await a better definition of the problem extent. (authors). 20 refs., 1 tab

  17. Radon levels in Oslo schools

    International Nuclear Information System (INIS)

    Radon measurements using passive CR-39 detectors have been conducted in all schools in Oslo municipality during winter 2003/2004. Results are presented and discussed in the light of qualitative and quantitative factors, some of which are specific for schools as workplaces. Analysis is conducted with respect to factors relating to building construction type, ventilation principle, age of building, building size etc. The influence of ventilation type on radon levels is studied, and problems of investigations based purely on conventional passive radon detectors are noted. Over-estimation of radon concentration by passive detectors and day-night variations of indoor radon levels in buildings with mechanical ventilation systems are discussed. Several guiding principles for planning similar investigations based on above discussions are outlined. (author)

  18. Radon - To mobilise civil society

    International Nuclear Information System (INIS)

    As radon is one of the two main sources of exposure of population to ionizing radiations in France, is notably said to be responsible of 1.000 to 3.000 deaths for lung cancer per year, and could be at the origin of other cancers like child leukaemia, this set of articles evokes the different factors which promote radon transfer from soils to buildings, studies performed to better identify geological sources of radon, actions implemented to assess radon presence in dwellings (distribution of 'radon kits' in Brittany), the performance of radiological expertise by the IRSN on the request of public authorities, the project of dwelling inventory and population information. A second article reports examples of intervention by the IRSN to inform local authorities, inhabitants, academics, public utilities, building professions, and even children. Technical solutions adopted in the United Kingdom are briefly evoked

  19. Environmental radon and cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Haque, A.K.M.M.; Kirk, A.E. (South Bank Polytechnic, London (United Kingdom))

    1992-01-01

    Data collected from the office of Population Censuses and Surveys (OPCS) statistics and those published by the Leukaemia Research Fund (LRF) have been analysed with a view to examining whether radon is a possible causative agent in the induction of leukaemias. Radon concentration values have been taken from a NRPB survey. Positive correlation has been observed between radon concentration and incidence of acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), acute lymphoblastic leukaemia (ALL) and chronic lymphoid leukaemia (CLL). Employing the method of BEIR IV, the lifetime probability of leukaemia incidence, R[sub o], of a non-exposed person (zero radon concentration) has been calculated for AML, CML, ALL and CLL, which agree well with those values obtained from extrapolation of linear graphs of leukaemia deaths versus radon concentration. (author).

  20. Radon availability in New Mexico

    International Nuclear Information System (INIS)

    The New Mexico Bureau of Mines and Mineral Resources (NMBMMR) in cooperation with the Radiation Licensing and Registration Section of the New Mexico Environment Department (NMED) and the US Environmental Protection Agency (EPA) have been evaluating geologic and soil conditions that may contribute to elevated levels of indoor radon throughout New Mexico. Various data have been integrated and interpreted in order to determine areas of high radon availability. The purpose of this paper is to summarize some of these data for New Mexico and to discuss geologic controls on the distribution of radon. Areas in New Mexico have been identified from these data as having a high radon availability. It is not the intent of this report to alarm the public, but to provide data on the distribution of radon throughout New Mexico

  1. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    Science.gov (United States)

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  2. Experimental pulmonary carcinogenesis by radon and its daughters

    International Nuclear Information System (INIS)

    Information on experimental pulmonary carcinogenesis by radon and its daughters has come mostly from experiments carried out in France and United States of America. In rats a dose response relation was estimated to be linear with dose at low dose region. Studies of rats exposed daily to radon and radon daughters indicated that the frequency of pulmonary cancer at total exposure greater than 3000 WLM was greater when the exposure rates were low. At low total exposures the dose-rate effect was less apparent. Cigarette smoke increased the pulmonary cancer in rats but decreased in dogs. The decrease may be due to a decrease of absorbed doses with increased secretion of mucus and to an enhancement of mucociliary clearance. After inhalation of 222Ru at equilibrium with radon daughters, rats were inoculated intrapleurally with asbestos fibres or glass fibres. The additive co-carcinogenic effects of this type of insult were demonstrated by the increased incidence of malignant thoracic tumours. As for species differences, dogs and hamsters are relatively resistant to cancer induction and rats are sensitive. While bronchogenic carcinomas are the most frequently observed radiation-induced pulmonary cancer in humans, bronchioloalveolar carcinomas are the most frequent type in most animal species. (author)

  3. Radon dosimetry: a review of radon and radon daughter exposure conditions in dwellings and other structures

    International Nuclear Information System (INIS)

    Within the past few years several situations have been brought to light which indicate an increased radiation exposure of certain segments of the general population caused by human activities. The most widely publicized activities are those associated with the mining and milling of uranium in the western United States, the phosphate industry in Florida, and those potential problems represented by former Manhattan Engineer District sites. One of the primary problems involves exposure to radon and radon daughters which are released from large waste piles or, in some cases, evolve from backfill and construction materials used in homes, schools, and other buildings. This report presents a review of the available data on radon and radon daughter concentrations in dwellings and other structures. The primary objectives were to compile and tabulate pertinent radon exposure data and to prepare a statistical summary of the data which will be useful in the prediction of normal levels of radon and radon daughter concentrations in these structures. In addition, other parameters associated with radon exposure conditions are presented and discussed

  4. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the cra

  5. A critical look at the development of radon legislation in Slovakia

    International Nuclear Information System (INIS)

    incompetence of its employees because there is set the limit of volume activity of radon in indoor residential homes at 4000 Bq/m3, which is higher than the value in 1976 allowed for the mining environment. They have been avoiding regulating the penetration of the radon from the soil into the individual family home constructions while it is well known that the greatest threat to the population by radon is concentrated in houses. (author)

  6. Citizen's Guide to Radon: The Guide to Protecting Yourself and Your Family from Radon

    Science.gov (United States)

    ... US EPA US Environmental Protection Agency Search Search Radon Share Facebook Twitter Google+ Pinterest Contact Us You ... Your Family from Radon A Citizen's Guide to Radon: The Guide to Protecting Yourself and Your Family ...

  7. Determination of Radon Concentration Levels in Soil and Indoor By Using CR-39 Track Etch Detectors in Demirhan, Lefke and Lefkosa (Cyprus)

    International Nuclear Information System (INIS)

    Soil radon monitoring and indoor radon concentration levels have been of scientific and technological interest because of using in studies of hydrology, geology, earth-quake prediction and earth sciences. It is known fact that radon has enormous negative effects to human health. Therefore, it is highly recommended to measure radon concentration level and to make up area maps in residential areas. In this study, we carried out radon concentration levels drawn from indoor and soils in Demirhan, Lefke and Lefkosa by using CR-39 track etch detectors. CR 39 detectors, based on alpha particle etched track detectors, are very attractive for the assessment of radon exposure. Soil and indoor radon monitoring were performed at 31 locations in Lefkosa. CR-39 detectors were placed in the houses and soil for 30 days and after exposure to radon and its daughters, CR-39 detectors were etched in 20% NaOH solution at 70 degree for 16 hours and were counted under an optical microscope. It was observed that the indoor and soil radon concentration levels varied from 135,3-375 Bq/m3 and 84,72-1341 Bq/m3 , respectively

  8. Asbestos and radon

    International Nuclear Information System (INIS)

    To understand the effects of inhaled agents on the lung, a characterization of both the lung and the inhaled agent is essential. Since deposition of the agent is the result of a dynamic process involving the particles as they move through the tracheobronchial tree, the authors' goal is to understand this interaction. To lay the groundwork for this they present basic tracheobronchial anatomy and physiology. Then they examine information on deposition and clearance of asbestos and radon and discuss how this relates to the resultant pathology

  9. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products

    International Nuclear Information System (INIS)

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ''dose conversion convention''. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/Peq, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/Peq coefficients indicate the effective dose E per unit exposure Peq to radon decay products. (orig./CB)

  10. Radon and energy efficient homes

    International Nuclear Information System (INIS)

    Radon and its daughters in indoor air are presently responsible for dose equivalents of about 31 mSv/year (3 rem/year) to parts of the respiratory tract. Linear extrapolation from the dose response values of uranium miners heavily exposed to radon and its decay products would suggest that almost all lung cancers in the non-smoking population are caused by environmental 222Rn. Using epidemiological data on the types of lung cancer found in non-smokers of the general public as compared to the miners, a smaller effect of low level radon exposure is assumed, which would result in a lung cancer mortality rate due to radon of about 10 deaths per year and million or 25% of the non-smoker rate. Higher indoor radon concentrations in energy efficient homes mostly caused by reduced air exchange rates will lead to a several fold increase of the lung cancer incidence from radon. Based on the above assumption, about 100 additional lung cancer deaths/year-million will result both from an increase in radionuclide concentrations in indoor air and a concomitant rise in effectiveness of radiation to cause cancer with higher exposure levels. Possibilities to reduce indoor radon levels in existing buildings and costs involved are discussed. (Auth.)

  11. Radon Concentrations measurements in ENPD

    International Nuclear Information System (INIS)

    Various national and international surveys have demonstrated an increase in radon (222Rn) levels in environment and consequently there is a continuous growing concern about its health effects on the population. Inhalation of indoor radon has long been recognized as a risk to health. The major sources of the indoor radon and its daughters are building materials, natural gas and an underground-derived water supply. In the present work, a set of radon measurements was carried out, using CR-39 solid state nuclear track detector, in different sites in Experimental Nuclear Physics Department (ENPD), Nuclear Research Center (NRC), Atomic Energy Authority (AEA), Egypt. The results showed that the radon concentration and exhalation rate in these sites varied from 10.81 to 264.80 Bq.m-3 and 1.45 to 33.95 mBq.m-2. h-1, respectively. The mean values of radon concentration in meeting rooms, laboratories, stores and bathroom) were 31.211, 198.22, 221.64 and 168.34 Bq.m-3, respectively. The mean values of exhalation rate were (in the same locations) 4, 25, 28.42 and 21.58 mBq.m-2.h-1 respectively. This data showed that stores and laboratories had a significantly higher radon concentration and exhalation rate compared with other rooms.

  12. Radiological Protection Against Radon Exposure

    International Nuclear Information System (INIS)

    At its meeting in Porto, Portugal, in November 2009, the Main Commission of the International Commission on Radiological Protection (ICRP) approved the formation of a new Task Group, reporting to Committee 4, to develop guidance on radiological protection against radon exposure. The paper is a description of the Task Group’s draft report which has been posted on the ICRP website for public consultation. In this report, the Commission provides updated guidance on radiological protection against radon exposure. The report has been developed considering the recently consolidated ICRP general recommendations, the new scientific knowledge about the radon risk and the experience gained by many organizations and countries in the control of radon exposure. The report describes the characteristics of radon exposure, covering sources and transfer mechanisms, the nature of the risk, the exposure conditions, the similarities with other existing exposure situations and the challenges to manage radon exposure. To control the main part of radon exposure, the Commission recommends an integrated approach focused as far as possible on the management of the building or location in which radon exposure occurs, whatever the purpose of the building and the types of its occupants. This approach is based on the optimization principle and a graded approach according to the degree of responsibilities at stake, notably in workplaces, and the level of ambition of the national authorities. The report emphasizes the importance of preventive actions. The report also considers how to control radon exposure in workplaces when workers’ exposure can reasonably be regarded as being the responsibility of the operating management. In such a case, workers’ exposures are considered as occupational and controlled using the corresponding requirements on the basis of the optimization principle and the application, as appropriate, of the dose limit. (author)

  13. Cooperative usages of radon facilities

    International Nuclear Information System (INIS)

    Outlined are the structure and activity of the Radon Facilities, which, partly two storied, consists of a total floor space of about 300 m2 and is characteristic of high-ceilinged rooms. In the controlled area of the first floor, there are rooms of radium for radon source, sham environmental laboratory having the standard radon chamber of inner volume of 25 m3, monitoring room, etc. Radium is sintered in porous ceramic fiber so as to efficiently and stably release radon. In the radon chamber, W 3610 x D 2720 x H 2500 mm/controllable temperature of 5-30 deg. C and humidity of 30-90%, exposure to the constant level of radon is possible, of which reliability of absolute measurement by an ionization chamber, AlphaGUARD, is assured by periodical correction primarily in National Institute of Radiological Sciences (NIRS) and secondarily by Physikalische-Technische Bundesanstalt (Germany). The reliability has been also assured by cooperative comparative experiments with 6 Japanese facilities and 10 abroad. Decay products of radon for exposure are adsorbed on aerosol yielded from Sinclair-Lamer condensing particulate generator. In 2008, cooperative studies have been done with Niigata University of development of atmospheric radon/thoron measurement system with use of Cherenkov radiation, and with Tokyo University for calibration of measurement system of levels of radon, thoron and their decay products. Other non-controlled area includes a preparatory laboratory, a room for data analysis, etc. And on the second floor, air conditioning machineries for air supply and exhaust. (T.T.)

  14. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    International Nuclear Information System (INIS)

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  15. Measurements of radon and thoron concentrations in dwellings of Sri Ganganagar District, Rajasthan using single entry pin-hole dosimeter

    International Nuclear Information System (INIS)

    In present investigation, newly designed single entry face pin-hole dosimeter with LR-115 Solid State Nuclear Track Detector has been used for the integrated passive measurements of residential radon and thoron in the environmental air of Sri Ganganagar district, Rajasthan, India. The annual average indoor radon and thoron concentrations in dwellings of the study area ranges from 19 to 62 Bq/m-3 and 25 to 89 Bq/m-3 with mean values of 43 Bq/m-3 and 51 Bq/m-3, respectively. The annual effective dose due to the exposure to radon was found to vary from 0.48 to 1.56 mSv y-1 with an average value of 1.08 mSv y-1. However, the annual effective dose due to the exposure to thoron was found to vary from 0.07 to 0.25 mSv y-1 with an average of 0.14 mSv y-1. The result shows that the average thoron concentration was higher than the average radon concentration in the dwellings of the study area. An effort has been made to find possible relationships of indoor radon and thoron concentrations with ventilation conditions of dwellings. Analysis of ventilation conditions reveal that the indoor radon and thoron concentrations were higher in poorly ventilated dwellings compared with the well-ventilated ones. Seasonal variations of indoor radon and thoron reveal the minimum concentrations in summer and the maximum in winter. (author)

  16. Influence of ventilation strategies on indoor radon concentrations based on a semiempirical model for Florida-style houses

    International Nuclear Information System (INIS)

    Measurements in a full-scale experimental facility are used to benchmark a semiempirical model for predicting indoor radon concentrations for Florida-style houses built using slab-on-grade construction. The model is developed to provide time-averaged indoor radon concentrations from quantitative relationships between the time-dependent radon entry and elimination mechanisms that have been demonstrated to be important for this style of residential construction. The model successfully predicts indoor radon concentrations in the research structure for several pressure and ventilation conditions. Parametric studies using the model illustrate how different ventilation strategies affect indoor radon concentrations. It is demonstrated that increasing house ventilation rates by increasing the effective leakage area of the house shell does not reduce indoor radon concentrations as effectively as increasing house ventilation rates by controlled duct ventilation associated with the heating, ventilating, and air conditioning system. The latter strategy provides the potential to minimize indoor radon concentrations while providing positive control over the quality of infiltration air. 9 refs., 5 figs

  17. Uranium mill tailings and radon

    International Nuclear Information System (INIS)

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  18. Uranium mill tailings and radon

    International Nuclear Information System (INIS)

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  19. Radon in dwellings the national radon survey Cork and Kerry

    International Nuclear Information System (INIS)

    This report presents the results of the third phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Cork and Kerry. The average radon concentrations for the houses measured in these counties were 76 Bq/m3 and 70 Bq/m3. The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m3. Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  20. Radon in dwellings the national radon survey Galway and Mayo

    International Nuclear Information System (INIS)

    This report presents the results of the final phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Galway and Mayo. The average radon concentrations for the houses measured in these counties were 112 Bq/m3 and 100 Bq/m3, respectively. The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m3. Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  1. Radon, gamma-ray exposure and natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Wanabongse, P.; Thorarit, W.; Yimchalam, N. [Thailand Institute of Nuclear Technology, Ongkarak, Nakorn Nayok (Thailand); Bovornkitti, S. [The Royal Institute, Bangkok (Thailand)

    2011-07-01

    Measurements were conducted to determine residential radon exposure levels in provinces with high lung cancer incidence in three different regions of Thailand. The measurements revealed that the average indoor radon levels were 20.0, 24.4, and 13.1 Bq m{sup -3}, and that the average gamma dose rates were 145, 164, and 54 nSv h{sup -1} in Chiangmai, Songkhla and Khonkaen provinces, respectively. The spectroscopic analysis of soil samples collected from the three provinces showed that the highest contents of Ra-226, Th-232, and K-40 were present in Songkhla, with values of 93.7, 71.9, and 786.9 Bq kg{sup -1}, respectively, and the lowest contents were present in Khonkaen, with values of 15.6, 19.0, and 46.8 Bq kg{sup -1}, respectively. The results of our analysis of the activity concentrations of naturally occurring radionuclides helped explain the lower levels of radon gas and gamma-ray exposure in Khonkaen. (orig.)

  2. Radon, gamma-ray exposure and natural radionuclides

    International Nuclear Information System (INIS)

    Measurements were conducted to determine residential radon exposure levels in provinces with high lung cancer incidence in three different regions of Thailand. The measurements revealed that the average indoor radon levels were 20.0, 24.4, and 13.1 Bq m-3, and that the average gamma dose rates were 145, 164, and 54 nSv h-1 in Chiangmai, Songkhla and Khonkaen provinces, respectively. The spectroscopic analysis of soil samples collected from the three provinces showed that the highest contents of Ra-226, Th-232, and K-40 were present in Songkhla, with values of 93.7, 71.9, and 786.9 Bq kg-1, respectively, and the lowest contents were present in Khonkaen, with values of 15.6, 19.0, and 46.8 Bq kg-1, respectively. The results of our analysis of the activity concentrations of naturally occurring radionuclides helped explain the lower levels of radon gas and gamma-ray exposure in Khonkaen. (orig.)

  3. Low-cost continuous radon monitor: Phase 1 final report

    International Nuclear Information System (INIS)

    The report covers the initial stage of development on a new type radon gas monitor. The monitor uses a combination of an alpha-sensitive microelectronic device and gas adsorption materials to create a small, inexpensive detector for home or institutional use. The objectives of the work were: build a test circuit and verify that it can be used to detect alpha particles as predicted; select and deposit on the sensor materials with high adsorptivity for radon; use a calibrated radon test chamber to evaluate the performance of the monitor; and use the test data to estimate the count rates and statistical accuracy to be expected during the course of a residential monitoring program, and determine whether changes need to be made in either the sensing element or the adsorbing layer to make a practical device. These objectives were substantially met in the course of the Phase I research program. The count rates registered by the device indicate that further improvements in sensitivity are needed, but overall feasibility has been demonstrated

  4. Need for an integrated approach towards the assessment of radon, thoron and their progeny exposures

    International Nuclear Information System (INIS)

    Recent publications dealing with epidemiological studies on North American and European populations have indicated statistically significant lung cancer risk coefficients attributable to residential radon exposures. These are essentially based on radon gas itself as the quantitative measure of exposures. However, considering that true exposures depend upon the intricate mechanisms of decay product deposition in the lung, it is necessary to go for the assessment of decay products including their size distributions and deposition velocities. This approach is essential for assessing the risks of thoron and its decay products which is of considerable importance in the public domain and in the thorium fuel cycle. The recent development of deposition based progeny concentration measurement techniques appear to be best suited for radiological risk assessments both among occupational workers and general study populations. These provide an easy to wear alternative for radon inhalation dosimetry similar to TLDs for external gamma radiations. It is urgently required to characterize their performance under a variety of residential indoor and workplace conditions. This may be achieved through an integrated multi-parametric study programme involving measurements of radon, thoron and their progeny concentrations along with fine and coarse fractions and indoor source terms. This will not only in delineate the true exposure profiles and indoor parameters (e.g. deposition velocities and air exchange rates) in the country, but also will help in establishing deposition dosimetry as a basic technique for inhalation exposure estimations for occupational workers and subjects living in high background radiation areas

  5. Evolution of radon dose evaluation

    Directory of Open Access Journals (Sweden)

    Fujimoto Kenzo

    2004-01-01

    Full Text Available The historical change of radon dose evaluation is reviewed based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR reports. Since 1955, radon has been recognized as one of the important sources of exposure of the general public. However, it was not really understood that radon is the largest dose contributor until 1977 when a new concept of effective dose equivalent was introduced by International Commission on Radiological Protection. In 1982, the dose concept was also adapted by UNSCEAR and evaluated per caput dose from natural radiation. Many researches have been carried out since then. However, lots of questions have remained open in radon problems, such as the radiation weighting factor of 20 for alpha rays and the large discrepancy of risk estimation among dosimetric and epidemiological approaches.

  6. ERRICCA radon model intercomparison exercise

    DEFF Research Database (Denmark)

    Andersen, C.E.; Albarracín, D.; Csige, I.;

    1999-01-01

    that results obtained with these models are of good quality, it is necessary that such models are tested. This document reports on a benchmark test organized by the EU project ERRICCA: European Researchinto Radon in Construction Concerted Action. The test comprises the following cases: (1) Steady...... transport of radon, flux calculations, and partitioning of radon between air and water in soilpores. Seven groups participated in the intercomparison. All groups submitted results without knowing the results of others. For these results, relatively large group-to-group discrepancies were observed. Because......, however, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommendedthat additional exercises are carried out....

  7. Communicating the risk from radon

    International Nuclear Information System (INIS)

    A prominent television station developed a special series of newscasts and public service announcements about radon. This was combined with their advertising of the availability of reduced-price radon test kits in a local supermarket chain. The large number of test kits sold was a success from a marketing perspective, but not from a public health perspective - especially because of the very small share of high readings that were mitigated. In contrast, a study of housing sales showed a much higher testing rate and corresponding mitigation when risk communication accompanied the housing transaction, rather than being directed toward the general public. This paper examined the relative effectiveness of these alternative approaches to radon risk communication, emphasizing the implications for developing and implementing radon programs

  8. A Radon Progeny Deposition Model

    CERN Document Server

    Guiseppe, V E; Hime, A; Rielage, K; Westerdale, S

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to depos...

  9. Radon measurements in schools: an interim report

    International Nuclear Information System (INIS)

    The report provides school officials, groups such as Parent-Teacher Associations, and other interested person with interim information on how to measure radon in schools and what to do if elevated levels are found. The first sections of the document contain facts about radon and the health risks associated with radon exposure. The next sections summarize what is known about radon in schools and provide guidance for conducting radon measurements. The last sections describe how to interpret the measurement results and suggest techniques that can be used to reduce radon concentrations if elevated levels are found

  10. Ventilation influence upon indoor air radon level

    International Nuclear Information System (INIS)

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level. Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition, although using household conditioner requires a sealed room which should lead to a higher radon level. Turning on air conditioner helps lower indoor radon level. Therefore, the total indoor air Rn levels are normal > ventilation > exhaust or in-draft > exhaust plus in-draft

  11. VENTILATION INFLUENCE UPON INDOOR AIR RADON LEVEL

    Institute of Scientific and Technical Information of China (English)

    田德源

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level.Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition.although using household conditioner requires a sealed room which should lead to a higher radon level.Turning on air conditioner helps lower indoor radon level.Therefore.the total indoor air Rn levels are normal>ventilation>exhaust or indraft> exhaust plus indraft.

  12. Radon risk communication research: Practical lessons

    International Nuclear Information System (INIS)

    Those responsible for state and local radon programs often express frustration about the small share of homes that have been tested for radon, and the small share of those with high readings that have been mitigated. There are now a number of completed studies that have examined how well alternative ways of communicating about radon risk have accomplished the goals of motivating appropriate testing and mitigation. This paper summarizes the research results that are most crucial for planning and implementing effective radon risk communication programs. We identify six reasons why people do not respond to radon as a serious threat and provide some remedies suggested by radon studies

  13. Exposure to radon daughters in workplaces

    International Nuclear Information System (INIS)

    The paper focuses on the exposure to natural radiation at places of work, in the United Kingdom. Sources of natural radiation include: cosmic rays, radiation from the earth, internal body radioactivity, and radon daughters. These sources are described, along with exposure standards for radon daughters. Factors leading to the variability and unpredictability of radon daughter concentrations in work places, and recent studies of radon concentrations in UK buildings, are both discussed. Methods for measuring radon and its daughters, and measures to reduce radon concentrations in buildings, are also outlined. (U.K.)

  14. On the Inverse Radon Transform

    Czech Academy of Sciences Publication Activity Database

    Chvála, František

    Praha : Humusoft, 2007, s. 1-6. ISBN 978-80-7080-658-6. [Annual Conference Proceedings - Technical Computing Prague 2007 /15./. Prague (CZ), 14.11.2007] R&D Projects: GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : inverse Radon transform * Radon transform Subject RIV: BA - General Mathematics www.humusoft.cz/akce/matlab07

  15. Analysis of seasonal variations of indoor radon concentrations in the Tokyo Metropolitan Isotope Research Center

    International Nuclear Information System (INIS)

    From October 1988 to September 1991, we measured radon gas concentrations in different types of residential buildings in Tokyo and outlying prefectures for the purpose of evaluating potential radiation risk to the people living in the area. The characteristics of seasonal variation and relevant factors influencing the radon gas concentration levels were analyzed. However, in order to estimate the radiation risk to people, we also needed to obtain data of buildings other than residences in which people may spend time for working, shopping, etc. As a part of such investigation, we measured the indoor radon gas concentrations in four different buildings at the Tokyo Metropolitan Isotope Research Center. The average indoor concentration level in a three-storied concrete steel building was lower than that of the residential concrete steel building, and mostly showed a similar seasonal variation (i.e., higher in winter and lower in summer). The average indoor concentration level in a one-story prefabricated building was almost equivalent to that in an ordinary prefabricated residential building, but the phase of variation was different. Measurements in two other concrete steel buildings showed different average levels depending on the ventilating conditions (i.e., a lower concentration level in a more frequently ventilated room). Seasonal variations in these two buildings also showed different tendencies depending on ventilating conditions (i.e., smaller variation in a more frequently ventilated room). (author)

  16. Radon gas measurement in Corum

    International Nuclear Information System (INIS)

    The existence of the natural radioactive sources in earth's crust which has long half-life and the degradation products of these in the environmental medium such as earth, rocks, foods, water, air, forms the basis of radiation which people are exposed to. Radon is the unique radioactive gas in the nature and it is made up of radium which is the result of uranium degradation. It is necessary to determine the radon concentration because of the difference in the concentration of uranium existence in different places. TAEK (Turkish Atomic Energy Authority) allows 400 Bq/m3 of radon concentration at houses, 1000 Bq/m3 at offices per year. In this attempt, government buildings, houses and offices were determined as the sampling places in Corum city center and towns to represent Corum. While disposing the radon measuring detectors, places which are close to the ground level were preferred. 74 radon detectors were left in those places for 60 days and in the end the detectors were collected while discontinuing the connection of environment and they were assessed. According to the results, the average radon gas concentration in 14 government buildings is 71,71 Bq/m3, in 15 offices 32,26 Bq/m3 and at houses 42,34 Bq/m3.

  17. Health Effects of High Radon Environments in Central Europe: Another Test for the LNT Hypothesis?

    Science.gov (United States)

    Becker, Klaus

    2003-01-01

    Among the various "natural laboratories" of high natural or technical enhanced natural radiation environments in the world such as Kerala (India), Brazil, Ramsar (Iran), etc., the areas in and around the Central European Ore Mountains (Erzgebirge) in the southern parts of former East Germany, but also including parts of Thuringia, northern Bohemia (now Czech Republic), and northeastern Bavaria, are still relatively little known internationally.Although this area played a central role in the history of radioactivity and radiation effects on humans over centuries, most of the valuable earlier results have not been published in English or quotable according to the current rules in the scientific literature and therefore are not generally known internationally. During the years 1945 to 1989, this area was one of the world's most important uranium mining areas, providing the former Soviet Union with 300,000 tons of uranium for its military programs. Most data related to health effects of radon and other carcinogenic agents on miners and residents became available only during the years after German reunification. Many of the studies are still unpublished, or more or less internal reports.By now, substantial studies have been performed on the previously unavailable data about the miners and the population, providing valuable insights that are, to a large degree, in disagreement with the opinion of various international bodies assuming an increase of lung cancer risk in the order of 10% for each 100 Bq/m(3) (or doubling for 1000 Bq/m(3)), even for small residential radon concentrations. At the same time, other studies focusing on never-smokers show little or no effects of residential radon exposures. Experiments in medical clinics using radon on a large scale as a therapeutic against various rheumatic and arthritic disease demonstrated in randomized double-blind studies the effectiveness of such treatments.The main purpose of this review is to critically examine, including

  18. Radon integral measurement system

    International Nuclear Information System (INIS)

    The Radon Integral Measurement System (SMIR) is a device designed specially to detect, to count and to store the data of the acquisition of alpha particles emitted by Radon-222 coming from the underground. The system includes a detection chamber, a radiation detector, a digital system with bateries backup and an auxiliary photovoltaic cell. A personal computer fixes the mode in which the system works, transmitting the commands to the system by the serial port. The heart of the system is a microprocesor working with interrupts by hardware. Every external device to the microprocessor sends his own interrupt request and the microprocessor handles the interrupts with a defined priority. The system uses a real time clock, compatible with the microprocessor, to take care of the real timing and date of the acquisition. A non volatile RAM is used to store data of two bytes every 15 minutes along 41 days as a maximum. After the setting up to the system by the computer, it can operate in stand alone way for up 41 days in the working place without the lose of any data. If the memory is full the next data will be written in the first locations of the memory. The memory is divided in pages corresponding every one of this to a different day of the acquisition. The counting time for every acquisition can be programmed by the user from 15 minutes to 65535 minutes but it is recommended to use a small time not to reach the limit of 65535 counts in every acquisition period. We can take information of the system without affecting the acquisition process in the field by using a lap top computer, then the information can be stored in a file. There is a program in the computer that can show the information in a table of values or in a bar graph. (Author)

  19. Radon as geological tracer

    International Nuclear Information System (INIS)

    Full text: This work presents measurements of 222Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of 40K, 232Th and 23'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using 222Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m-3 recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  20. Radon in Estonian dwellings - Results from a National Radon Survey

    International Nuclear Information System (INIS)

    A countrywide survey of radon concentrations in Estonian dwellings was carried out during the period 1998-2001. The survey formed a part of the cooperation program on radiation protection between the Estonian Radiation Protection (Kiirguskeskus) Centre and the Swedish Radiation Protection Authority (SSI). The survey included measurements in a number of dwellings representative for Estonia in detached houses and multifamily buildings (only dwellings on the bottom floor were included in the survey). Altogether, radon concentrations were measured in 515 dwellings, a number large enough to be statistically significant. All measurements were made with alphatrack film detectors of the same type that SSI uses in Sweden. The measurements were made during a 2-3 month period during the winter half-year. Two detectors were used in each dwelling. In Estonia there are 0.17 million dwellings in detached houses and 0.45 million in multi apartment buildings. Of the 1.26 million inhabitants in Estonia. 0.36 million live in detached houses and 0.90 million in multi apartment buildings. Most of the latter were built during the Soviet occupation. Of the dwellings in multifamily buildings 30 % are assumed to be situated on the first floor. The mean radon concentration in dwellings in detached hoses, according to the survey results, is 103 Bq/m3, in dwellings on the bottom floor in multi apartment buildings it is 78 Bq/m3. In 1% of the dwellings the radon concentration exceeded 400 Bq/m3. The highest radon concentration found in the study was 1040 Bq/m3. Based on the assumption that the average radon concentration in the dwellings in multi-apartment buildings that are not situated on the bottom floor is 30 Bq/m3, and that these dwellings constitute 70% of all dwellings in multi apartment buildings, the mean radon concentration in dwellings in multi apartment buildings is calculated to be 44 Bq/m3. The mean value for all Estonia dwellings is calculated to be 60 Bq/m3. Using the detriment

  1. Radon legislation and national guidelines

    International Nuclear Information System (INIS)

    The International Commission on Radiological Protection (ICRP) and The Council of the European Union have recommended the Member States to take action against radon in homes and at workplaces. Within the EU project European Research into Radon in Construction Concerted Action, ERRICCA, the Topic Group on Legal and Building Code Impact was designated to study the current radon legislation and give advice regarding future enactment of laws and recommendations. On behalf of the Group, a questionnaire on radon legislation was sent out to nearly all European states and a selection of non-European states. Questions were asked regarding reference levels for dwellings, workplaces and drinking water, and about regulations or recommendations for building materials and city planning. All 15 EU Member States, 17 non-EU European countries and 10 non-European countries responded to the questionnaire. Their answers are considered current as of the end of 1998. Most European States and many non-European countries have recommended reference levels for dwellings and workplaces, and some have guidelines for measures against radon incorporated in their building codes and guidelines for construction techniques. However, only a few countries have enforced reference levels or regulations for planning and construction. The reference levels for indoor radon concentration in existing and new dwellings or workplaces are within the range 150-1000 Bq/m3. Sweden is the only country (Out of 15 EU member states) which has enforced limits for existing dwellings. Sweden and the UK have both enforced levels for new dwellings. 7 non-European countries (Out of 17 responding countries) have enforced levels for existing dwellings and 9 have them for new dwellings. At the end of 1998, only Finland, Sweden, the Czech Republic, Romania, Russia and the Slovak Republic had limits for radon in water, although 8 countries were planning to introduce such limits. The present limits are within the range for 50

  2. Indoor radon and radon daughters survey at Campinas-Brazil using CR-39: First results

    CERN Document Server

    Guedes, S; Iunes, P J; Navia, L M S; Neman, R S; Paulo, S R; Rodrigues, V C; Souza, W F; Tello, C A S; Zúñiga, A G

    1999-01-01

    The first results of a radon and radon daughters (RD) survey performed at Campinas-SP, Brazil, are presented. We employed a technique that, potentially, makes possible to measure the radon and RD activity in the air and to separate from this result the activity of radon, alone. In this preliminary paper only the former activity is studied.

  3. Balance letter on information days on radon. The radon in question. To fight against radon

    International Nuclear Information System (INIS)

    Since 1999 actions to detect radon in public building have been implemented, after three years, more than 13 000 establishments have been verified. These actions are going to be reinforced by the publication of a new regulatory frame that will give obligation to householder or operator of a place open to the public to carry out measures of exposure surveillance on geographic areas with a strong exhalation potential of radon. (N.C.)

  4. S. 791: This Act may be cited as the Radon Information Act of 1991, introduced in the US Senate, One Hundred Second Congress, First Session, April 9, 1991

    International Nuclear Information System (INIS)

    This bill was introduced into the US Senate on April 9, 1991 to amend Title III of the Toxic Substances Control Act (15 USC. 2661 et seq.). This legislation will require certain information relating to radon to be made available in connection with certain real estate transactions. In addition, radon testing devices offered for sale will be required to be tested in the radon measurement proficiency program of the Environmental Protection Agency. Buyers of homes have the right to know about radon risks, radon testing, and radon abatement techniques before they purchase a home. The purposes of this bill are: to establish a procedure by which home buyers receive information about radon; and to provide radon-related information to prospective home buyers at the time of all home sale transactions involving mortgage loans that are secured by a first lien on residential real property and are federally insured, guaranteed, made, or assisted or are purchased by a federally chartered secondary mortgage market institution

  5. Measurement of individual radon exposures

    International Nuclear Information System (INIS)

    Full text: At the Institute for Radiation Protection of the Helmholtz Center Munich, recently, a new electronic radon exposure meter has recently been developed. The device is small and light and can therefore easily be carried on person. The battery life-time is about half a year. The device is suitable for measurement of individual public, medical and occupational radon exposures. As an example for public exposure, measurements have been performed on twenty-three members of the institute who agreed to place one exposure meter in their office and two exposure meters at home (sleeping room and living room). In addition, a fourth exposure meter was carried on person all the time, for about one week. Mean indoor radon concentrations in the sleeping rooms were between about 25 and 150 Bq/m3, those in the living rooms between 7 and about 110 Bq/m3, and those in the offices between 25 and about 1,900 Bq/m3. Individual mean radon concentrations as measured by the fourth exposure meter were between 26 and 170 Bq/m3. Note that, if individual exposures were calculated based on the radon concentrations in sleeping and living rooms and on typical residence times in these rooms - as was also done in epidemiological studies on lung cancer risk from indoor radon - individual radon concentrations that are about a factor two lower were obtained. As an example for occupational exposure, safe guards working in tombs of the Valley of the Kings in Luxor, Egypt, were asked to carry an exposure meter on person all the time, for about three days. During the same period of time, additional exposure meters were placed inside those tombs, to measure radon concentrations in air. Altogether, during this measurement campaign, 12 tombs were investigated. Measured radon concentrations in the tombs ranged from about 50 to almost 12,000 Bq/m3 depending on the investigated tomb. As a result, individual doses from radon inhalation were also high for some of the safe guards, and may exceed a value of

  6. Mapping of groundwater radon potential

    International Nuclear Information System (INIS)

    The domestic use of water with elevated radon concentration may represent a public health hazard, partly due to the release of radon to the indoor air. While only a limited number of countries have implemented regulations with respect to radon in water, many more are considering doing so. The compulsory limits proposed by Swedish authorities are 100 Bq/1 for public water, while water from private wells is not to exceed 1000 Bq/1. Furthermore, it is recommended that water with a radon content above 500 Bq/1 should not be given to children under five years of age. In Sweden, the estimated number of wells with radon levels above 1000 Bq/1 exceeds 10,000, with a considerable amount in excess of 10,000 Bq/1. The highest radon concentration in a well supplying drinking water encountered so far is 57,000 Bq/1. Radon levels exceeding 500 Bq/1 are almost exclusively found in wells drilled into bedrock and in springs with intramontaneous water. Elevated ground water radon levels require that the water has passed through bedrock with elevated concentration of uranium, or through fractures with coatings of minerals containing enhanced concentrations of radium-226. Intramontaneous water from areas with uranium-bearing rock types (e.g. uranium-rich granites, pegmatites and vulcanites) often manifests elevated radon levels. Routines for the establishment of risk maps focusing on water are currently under development. The backbone of the process is the access to high spatial resolution radiometric information together with bedrock and soil information on a detailed scale (1:50,000). This information is available from the Geological Survey of Sweden, which is routinely carrying out airborne measurements at an altitude of 30 m and a line spacing of 200 m. While some 60% of Sweden is covered up to now, 75 % is expected to be covered within the next ten years. Other available databases utilized in the risk mapping process include radon measurements in wells, geochemical data from

  7. Comparison of urinary excretion of radon from the human body before and after radon bath therapy

    International Nuclear Information System (INIS)

    Theoretically, the human body absorbs radon through the lungs and the skin and excretes it through the lungs and the excretory organs during radon bath therapy. To check this theory, the radon concentrations in urine samples were compared before and after radon bath therapy. During the therapy, the geometric mean (GM) and the geometric standard deviation of the radon concentration in air and in the bath water were 979 Bq m-3, 1.58 and 73.6 Bq dm-3, 1.1, respectively. Since radon was detected in each urine sample (GM around 3.0 Bq dm-3), urinary excretion of radon was confirmed. The results of this study can neither reject nor confirm the hypothesis of radon absorption through the skin. A 15 times higher increment of inhaled radon level did not cause significant changes in radon of urine samples. (authors)

  8. Development of continuous monitor for radon progeny

    International Nuclear Information System (INIS)

    More than a half of radiation exposure in natural environment is influenced from radon in air. With an important contribution of short-lived radon decay products called progeny to the human exposure, radon is regulated as an equilibrium-equivalent radon concentration that is equivalent to radon progeny concentration weighted with potential α energies of respective nuclide. Radon progeny concentration varies with atmospheric conditions. It is important on evaluation of progenies behavior and caused radiation exposure to obtain the change of radon progeny concentration with continuous measurement. We developed continuous monitor for each radon progeny of low level in outdoor with a long roll of filter and α ray spectra measured in vacuumed cell. (author)

  9. An overview of Ireland's National Radon Policy

    International Nuclear Information System (INIS)

    In Ireland radon is a significant public health issue and is linked to 150-200 lung cancer deaths each year. Irish National Radon Policy aims to reduce individual risk by identifying and remediating buildings with high radon concentrations and also to reduce collective dose through radon prevention as required by revised building regulations. Achievements to date are significant and include the completion of the National Radon Survey, the testing of every school in Ireland, the on-going testing of social housing, collaboration between the public health and radiation protection authorities and the inclusion of radon in inspections of workplaces. However, this work now needs to be drawn together centrally to comprehensively address the radon problem. The RPII and the relevant central governing department, the Dept. of Environment, Heritage and Local Government are currently working to constitute a group of key experts from relevant public authorities to drive the development of a National Radon Control Strategy. (authors)

  10. Thermo-diffusional radon waves in soils.

    Science.gov (United States)

    Minkin, Leonid; Shapovalov, Alexander S

    2016-09-15

    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil-atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown. PMID:27155259

  11. Study of radon diffusion through clay bricks

    International Nuclear Information System (INIS)

    Radon is a naturally occurring radioactive gas that is generated in the earth's crust and is free to migrate through soil and be released to the indoor and outdoor atmosphere. Much attention has been given to the radiological health hazard posed by increased radon concentrations in the living and working environment. In order to study radon profiles for geophysical purposes and to predict its entry indoors, it is necessary to study its transport through building materials. The most common way of modeling radon flow through building materials is the advective transport by pressure-driven air flow from the source. The transport phenomenon of radon through diffusion is a significant contributor to indoor radon entry. The diffusion coefficient of radon gas in building materials is often used as an indication for radon transportability through a porous medium and, furthermore, as an essential tool for quantitative predictions of radon concentrations in dwellings by estimating the exhalation rates of the wall surfaces. Radon diffusion coefficients in bricks were determined by employing the two compartment method in which one compartment is kept at a high radon concentration while the other is initially at low concentration. The radon diffusion coefficient is then deduced by monitoring the radon in the second compartment by measuring the steady state radon flux into the compartment. In this case, a steady-state solution was used to calculate the diffusion coefficient. The radon diffusion coefficients were found to vary from 0.32x10-6 m2/s to 0.48 x10-6 m2/s and the diffusion length were from 36x10-2 m to 42 x102 m in bricks. The results indicate that the bricks analyzed are fairly radon tight. (author)

  12. Resonance particularity of natural radon exhalation

    International Nuclear Information System (INIS)

    Natural radon flows exhalated by rocks as a result of vibrational effects at a frequency in the range of 0-45 Hz were measured under laboratory conditions. Variations of volumetric activity of subsurface radon under natural conditions at a frequency of 16.6 Hz were determined. It was ascertained that the intensity of radon flow exhaled by rocks depends on the frequency of vibration effects. The maximum yield of radon is observed at frequencies about 16 and 32 Hz

  13. The radon: evaluation and risk management

    International Nuclear Information System (INIS)

    The radon exposure constitutes for the French population the first cause of natural irradiation among the different natural sources of irradiation. It is possible to have a significant action on it, either by making draught proof in order to avoid to radon to get inside houses, either by ventilating in order to dispel the radon and improve air quality. (N.C.)

  14. The distribution of Radon concentration in caves.

    OpenAIRE

    Cigna Arrigo A.

    2003-01-01

    Radon concentration in caves is known to vary within an extremely wide range. Here the distribution of the average values of radon concentration is examined and a power law describing is identified, i.e. radon concentration has a fractal dimension D=1.26. This fact means that concentrations are not grouped around a mean value, a characteristic common to many other phenomena.

  15. Control of radon in Finnish workplaces

    International Nuclear Information System (INIS)

    Natural radiation in Finland is regulated in the Finnish Radiation Act from 1992. Occupational exposure to natural radiation is regulated by an amendment of the Radiation Decree in 1998. The most important issues in Finland are radon in workplaces, radioactivity in drinking water and in building materials, and mining and industrial processes. Radon levels in mines have been measured regularly since 1972. Finland has an action level for radon in workplaces of 400 Bq/m3. Radon prone areas have been identified primarily from measurements of radon in dwellings. Radon measurements are compulsory in workplaces in radon prone areas unless it can be shown by other means that radon levels are low. A programme focusing on radon in workplaces was initiated in 1992. To date, radon measurements have been carried out in 10,000 workplaces and remedial actions have been taken in 200 of these. The average reduction in radon concentration in remediated buildings is about 1,500 Bq/m3. Identification of NORM industries is based on the radionuclide content of the materials used (>1.4 Bq/g U and >0.4 Bq/g Th). The occupational exposure should not exceed 1 mSv/y (excluding radon)

  16. Reducing Radon in Schools: A Team Approach.

    Science.gov (United States)

    Ligman, Bryan K.; Fisher, Eugene J.

    This document presents the process of radon diagnostics and mitigation in schools to help educators determine the best way to reduce elevated radon levels found in a school. The guidebook is designed to guide school leaders through the process of measuring radon levels, selecting the best mitigation strategy, and directing the efforts of a…

  17. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil

  18. Reply to 'Explaining the lung cancer versus radon exposure data for USA counties'

    International Nuclear Information System (INIS)

    Full text: Professor Cohen states in his letter that his analysis 'encompasses all of the Doll suggestions'. It is, however, logically impossible for it to have done so using data at the level of counties. This is because the effect of cigarette smoking on the relationship between residential radon and individual lung cancer risk will be determined by the relationship between smoking status and lung cancer among the individuals within each county. Unless smoking is irrelevant to lung cancer risk (which we know to be untrue) or smoking status and residential radon are uncorrelated within each county (which seems unlikely), the relationship between residential radon and lung cancer at the county level will differ from that at the level of the individual in a way that cannot be overcome by including corrections for smoking habits at the county level, even if these corrections correctly represent the smoking habits of the individuals within each county. The difference in the relationship between a risk factor and a disease rate at the level of the individual and at an area level is the ecologic fallacy and is described in detail by Greenland and Robins (1994) and Morgenstern (1998). Lubin (1998) has also demonstrated that biases caused by the ecologic fallacy can be of any magnitude from minus infinity to plus infinity. In two recent studies (Lagarde and Pershagen 1999, Darby et al 2000), parallel individual and ecological analyses have been carried out of identical data from case-control studies of residential radon (Peshagen et al 1994, Darby et al 1998). These analyses have shown that, in addition to any bias caused by the ecological fallacy, ecological studies of residential radon and lung cancer are also prone to biases caused by determinants of lung cancer risk that vary at the level of the ecological unit concerned. In these two examples, the additional variables were latitude and urban/rural status respectively. The explanation of these variables is not yet

  19. Simplified Floor-Area-Based Energy-Moisture-Economic Model for Residential Buildings

    Science.gov (United States)

    Martinez, Luis A.

    2009-01-01

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building…

  20. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  1. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  2. Building America Research Benchmark Definition, Updated December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht, Cheryn [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-01-01

    To track progress toward aggressive multi-year, whole-house energy savings goals of 40%–70% and on-site power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America (BA) Research Benchmark in consultation with the Building America industry teams.

  3. Building America Research Benchmark Definition: Updated December 19, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2008-12-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams.

  4. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T.

    1997-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  5. Radon reduction in house crawl space

    International Nuclear Information System (INIS)

    Radon, a naturally occurring radioactive gas, is drawn from the soil into a house when low air pressure exists in the house. This is a commonplace environmental hazard in the United States, Canada, and northern Europe. The U.S. Environmental Protection Agency (EPA) is developing and demonstrating procedures to use in reducing the radon concentrations in a variety of house types. Until recently, research has focused on basement houses because of their great potential for radon entry; however, other housing substructures also present unique radon problems. Several radon reduction alternatives for crawl space houses are noted, and the successful demonstration of one of these alternatives, subplastic suction, is described in detail

  6. Radon in the drinking water in Bavaria

    International Nuclear Information System (INIS)

    The EU guideline on the requirements for the protection of the public concerning radioactive matter in water was approved in October 2013, including mandatory regulations for radon in drinking water. The guideline has to be implemented into national laws within two years. The contribution includes an overview on the radon situation in the Bavarian drinking and ground water. Increased radon concentrations are observed only in the north-eastern basement rocks. The contribution also describes facts that can influence the radon concentration in drinking and ground water. Recommendations and measures in case of increased radon concentrations are summarized for decision making support in public health departments and water treatment plants.

  7. Ethanol as radon storage: applications for measurement

    International Nuclear Information System (INIS)

    Ethanol as Radon Storage: Applications for Measurement Ethanol has a solubility for radon of 6 Bq/l per kBq/m3 air, 24 times higher than water. On filtration of ethanol, radon decay products are completely adsorbed on glass fiber filters, as previously reported for water. Hence: 1. A new simple method for measuring radon in soil air, without expensive equipment. 2. The production of mailable radon calibration sources ('radonol') with 50-100 kBq/l in PET-bottles with 3.8 days half-life, using uraniferous rocks as primary source. (orig.)

  8. Simulation of Radon Transport in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Semprini, Lewis; Kruger, Paul

    1983-12-15

    Numerical simulation of radon transport is a useful adjunct in the study of radon as an in situ tracer of hydrodynamic and thermodynamic numerical model has been developed to assist in the interpretation of field experiments. The model simulates transient response of radon concentration in wellhead geofluid as a function of prevailing reservoir conditions. The radon simulation model has been used to simulate radon concentration response during production drawdown and two flowrate transient tests in vapor-dominated systems. Comparison of model simulation with experimental data from field tests provides insight in the analysis of reservoir phenomena such as propagation of boiling fronts, and estimates of reservoir properties of porosity and permeability thickness.

  9. Radon exhalation from building materials

    International Nuclear Information System (INIS)

    The new Israeli standard 5098 limits the total radiation dose of the general public from building materials to 0.45 mSv / year. A building material is accepted if it satisfies a criterion depending on the activity concentration of the natural radionuclides 226Ra, 232Th, 40K and on the Radon (222Rn) exhalation rate. As compared with existing standards, which consider only the gamma dose, this standard includes the Radon contribution allowing thereby to rigorously control the radiation dose from this practice to the general public in Israel. While the radionuclide activity may be measured via standard HPGe gamma spectroscopy, the measurement of the Radon exhalation rate is not yet standardized. According to Standard 5098 the Ministry of the Environment is responsible to recommend the optimal technique

  10. Radon exchange dynamics in a Karst system investigated by radon continuous measurements in water: First results

    International Nuclear Information System (INIS)

    In 2008 the underground Karst Laboratory of Bossea Cave started research on radon exchange dynamics between bedrock, cave waters (main collector and percolations) and indoor underground atmosphere. Radon air concentrations, normally high, increase more and more during the collector's floods. An explanation of this is a radon-water solubilisation process more effective in flood events, because of a greater rock-water contact surface. Radon is then carried by water into the cave and released into the air. To verify this, continuous measurements of radon concentration are needed not only in the air, but also in the waters of the cave. So a new device for continuous radon monitoring in water was tested, connected to the AlphaGuard radon monitor. For the first 6 months of 2010, for different sections of the cave, the correlations between radon in the air, radon in the waters and the collector's stream flow fluctuations were presented and discussed. (authors)

  11. Variation of the unattached fraction of radon progeny and its contribution to radon exposure.

    Science.gov (United States)

    Guo, Lu; Zhang, Lei; Guo, Qiuju

    2016-06-01

    The unattached fraction of radon progeny is one of the most important factors for radon exposure evaluation through the dosimetric approach. To better understand its level and variation in the real environment, a series of field measurements were carried out indoors and outdoors, and radon equilibrium equivalent concentration was also measured. The dose contribution of unattached radon progeny was evaluated in addition. The results show that no clear variation trend of the unattached fraction of radon progeny is observed in an indoor or outdoor environment. The average unattached fraction of radon progeny for the indoors and outdoors are (8.7  ±  1.6)% and (9.7  ±  2.1)%, respectively. The dose contribution of unattached radon progeny to total radon exposure is some 38.8% in an indoor environment, suggesting the importance of the evaluation on unattached radon progeny. PMID:27171653

  12. Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore

    International Nuclear Information System (INIS)

    The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified

  13. Radon programme in the Czech Republic

    International Nuclear Information System (INIS)

    The framework of the Radon programme in the Czech republic includes both precautionary measures and interventions. The programme informally started in early eighties has been now incorporated in national legislation (Atomic Act, Radiation Protection Decree, etc.). Aim of precautionary measures is to avert construction of building above natural radiation guidance levels (200 Bq/m3 for indoor radon concentration and 0.5 Sv/h for gamma dose rate) by protection of new buildings against soil radon ingress, by regulation of natural radioactivity in building materials and supplied water. Aim of interventions is to identify buildings affected by enhanced natural radioactivity and help owners to put into effect reasonable remedial measures. Two sets of intervention levels for indoor natural exposure were established: guidance intervention levels 400 Bq/m3 (indoor radon), 1.0 Sv/h (indoor gamma dose rate) and limit values 4000 Bq/m3 and 10 Sv/h. The radon programme is based both on governmental and private activities. The governmental activities include representative and targeted indoor radon survey, subsidy for radon mitigation, mitigation test measurements and public information on radon issue. The private activities include radon measurement (radon index of building site, indoor measurements, radon diagnosis) and remedial measures. More than 100 commercial companies were authorised by Radiation Protection Authority (SUJB) to provide these measurements

  14. Transport of radon from soil into residences

    International Nuclear Information System (INIS)

    To develop effective monitoring and control programs for indoor radon it is important to understand the causes of the broad range of concentrations that has been observed. Measurements of indoor radon concentration and air-exchange rate in dwellings in several countries indicate that this variability arises largely from differences among structures in the rate of radon entry. Recent evidence further suggests that the major source of indoor radon in many circumstances is the soil adjacent to the building foundation and that pressure-driven flow, rather than molecular diffusion, is the dominant transport process by which radon enters the buildings. Key factors affecting radon transport from soil are radon production in soil, flow-inducing mechanisms, soil permeability, and building substructure type. 24 references, 1 figure

  15. Radon survey in Metropolitan Toronto schools

    International Nuclear Information System (INIS)

    The radon testing survey in Metropolitan Toronto public schools was the most intensive project of its kind ever undertaken in Canadian schools. It also included an extensive public education program on radiation and radon-in-schools. The radon levels at 632 schools were measured using the CAIRS Radon Monitors. Ninety percent of the locations measured were found to have a radon level equal to or less than 2 mWL. Two locations in two different schools were found to have a radon level at or above the Action Level (20 mWL). The remaining results were between the two extremes. Follow-up testing in those schools where more than 10 mWL of radon was found is in progress. (author)

  16. Membrane barriers for radon gas flow restrictions

    International Nuclear Information System (INIS)

    Research was performed to assess the feasibility of barrier membrane substances, for use within mining or associated high risk environments, in restricting the diffusion transport of radon gas quantities. Specific tests were conducted to determine permeability parameters of a variety of membrane materials with reference to radon flow capabilities. Tests were conducted both within laboratory and in-situ emanation environments where concentrations and diffusion flows of radon gas were known to exist. Equilibrium radon gas concentrations were monitored in initially radon-free chambers adjacent to gas sources, but separated by specified membrane substances. Membrane barrier effectiveness was demonstrated to result in reduced emanation concentrations of radon gas within the sampling chamber atmosphere. Minimum gas concentrations were evidenced where the barrier membrane material was shown to exhibit lowest radon permeability characteristics

  17. Additional contamination when radon is in excess

    International Nuclear Information System (INIS)

    A study of the behavior of the 222Rn progeny on clothes, skin and hair has been performed in a place with very high radon concentration. In the past, radon concentration was established to be about 32 kBq/m3 in a very high humidity environment inside a tourist cave in Extremadura (Spain). The results show that 222Rn daughters are adhered on clothes, skin and hair, adding some radioactive concentration to that due to radon and its progeny existing in the breathable air. - Highlights: • Adhered 222Rn progeny was studied in a place with high radon concentration. • Radioactive radon daughters are attached to clothing, skin and hair. • Proper clothing, hat and gloves must be used when radon concentration is high. • A shower with soap is advisable after exposition to high radon concentrations

  18. Characterizing the source of radon indoors

    International Nuclear Information System (INIS)

    Average indoor radon concentrations range over more than two orders of magnitude, largely because of variability in the rate at which radon enters from building materials, soil, and water supplies. Determining the indoor source magnitude requires knowledge of the generation of radon in source materials, its movement within materials by diffusion and convection, and the means of its entry into buildings. This paper reviews the state of understanding of indoor radon sources and transport. Our understanding of generation rates in and movement through building materials is relatively complete and indicates that, except for materials with unusually high radionuclide contents, these sources can account for observed indoor radon concentrations only at the low end of the range observed. Our understanding of how radon enters buildings from surrounding soil is poorer, however recent experimental and theoretical studies suggest that soil may be the predominant source in many cases where the indoor radon concentration is high. 73 references, 3 figures, 1 table

  19. Radon removal from the water resource

    International Nuclear Information System (INIS)

    Concerning the presence of radioactive substances in groundwater used for public supply, particular attention is paid to radon removal in water treatment process. The processes based on water aeration are the most common methods for the reduction of radon concentrations in water. Simple spraying, bubble aeration in the deeper layers of water and various modifications of water aeration in a horizontal arrangement - Inka system and aeration towers - are used for radon removal from water. Vacuum de-aeration is another possibility of reducing the concentration of radon in water. However, this procedure is not widely used in practice as compared to the above methods. The article presents the results obtained from the pilot tests for radon removal by using the aeration tower and Inka aeration system in the water resource supplying the city of Istebné with drinking water. Key words: radon, radon removal , aeration tower , Inka aerator , water quality

  20. Investigation of radon level in Chongqing

    International Nuclear Information System (INIS)

    Contents of radon in air in the urban district, building fields,diggings and hotel in Chongqing were investigated. Result shows that the mean concentration of radon is 10.8 Bq/m3 in air in the urban district, and the mean concentration of radon is 1193 Bq/m3 in soils on building fields. Radon level is obviously different in each of diggings, with the highest being in fluorite mine and the second in plumbum and zinc mine. The statistical mean value of radon concentration of 10 typles of diggings investigated is 65.2 Bq/m3, while the mean concentration of radon in fluorite mine is 369 Bq/m3, which is 35 times higher than in the urban area. The mean concentration of radon is 32.9 Bq/m3 in eight hotels. (authors)

  1. Radon and buildings: Pt. 1

    International Nuclear Information System (INIS)

    An effective way of reducing the level of radon in dwellings is to extract air from beneath the ground floor. This is usually achieved by mechanical ventilation or by use of a radon sump. However, in some circumstances, these remedial measures may lower the air pressure inside the dwelling. In a small number of cases, this causes combustion gases from open-flued combustion appliances, such as open fires, to spill into the living spaces. Spillage of this type is potentially hazardous. This leaflet recommends ways to reduce the likelihood of spillage, and suggests solutions if spillage does occur. (author)

  2. Radon in ground water - Hydrogeologic impact and indoor air contamination

    International Nuclear Information System (INIS)

    This book focuses on: geologic and hydrogeologic controls that influence radon occurrence; monitoring radon, radium and other radioactivity from geologic sources; mining impacts on occurrence of radon, radium, and other radioactivity in ground water; sampling and analysis; radon and radium in water supply wells; predictive models for occurrence of radon and other radioactivity; and remedial action

  3. 30 CFR 57.5046 - Protection against radon gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against...

  4. Review of low-energy construction, air tightness, ventilation strategies and indoor radon: results from Finnish houses and apartments

    International Nuclear Information System (INIS)

    Low-energy and passive house construction practices are characterised by increased insulation, high air tightness of the building shell and controlled mechanical ventilation with heat recovery. As a result of the interaction of mechanical ventilation and high air tightness, the pressure difference in a building can be markedly enhanced. This may lead to elevated indoor radon levels. Minor leakages in the foundation can affect the radon concentration, even in the case where such leaks do not markedly reduce the total air tightness. The potential for high pressures to affect indoor radon concentrations markedly increases when the air tightness ACH50, i.e. the air change per hour induced by a pressure difference of 50 Pa, is -1. Pressure differences in Finnish low-rise residential houses having mechanical supply and exhaust ventilation with heat recovery (MSEV) are typically 2-3 Pa, clearly lower than the values of 5-9 Pa in houses with only mechanical exhaust ventilation (MEV). In MSEV houses, radon concentrations are typically 30 % lower than in MEV houses. In new MSEV houses with an ACH50 of 0.6 h-1, the limit for passive construction, the analytical estimates predict an increase of 100 % in the radon concentration compared with older houses with an ACH50 of 4.0 h-1. This poses a challenge for efficient radon prevention in new construction. Radon concentrations are typically 30 % lower in houses with two storeys compared with only one storey. The introduction of an MSEV ventilation strategy in typically very airtight apartments has markedly reduced pressure differences and radon concentrations. (authors)

  5. An assessment of ecological and case-control methods for estimating lung cancer risk due to indoor radon

    International Nuclear Information System (INIS)

    Studies of underground miners indicate that indoor radon is an important cause of lung cancer. This finding has raised concern that exposure to radon also causes lung cancer in the general population. Epidemiological studies, including both case-control and ecological approaches, have directly addressed the risks of indoor residential radon; many more case-control studies are in progress. Ecological studies that associate lung-cancer rates with typical indoor radon levels in various geographic areas have not consistently shown positive associations. The results of purportedly negative ecological studies have been used as a basis for questioning the hazards of indoor radon exposure. Because of potentially serious methodologic flaws for testing hypotheses, we examined the ecological method as a tool for assessing lung-cancer risk from indoor radon exposure. We developed a simulation approach that utilizes the Environmental Protection Agency (EPA) radon survey data to assign exposures to individuals within counties. Using the computer-generated data, we compared risk estimates obtained by ecological regression methods with those obtained from other regression methods and with the open-quotes trueclose quotes risks used to generate the data. For many of these simulations, the ecological models, while fitting the summary data well, gave risk estimates that differed considerably from the true risks. For some models, the risk estimates were negatively correlated with exposure, although the assumed relationship was positive. Attempts to improve the ecological models by adding smoking variables, including interaction terms, did not always improve the estimates of risk, which are easily affected by model misspecification. Because exposure situations used in the simulations are realistic, our results show that ecological methods may not accurately estimate the lung-cancer risk associated with indoor radon exposure

  6. Radon monitoring and hazard prediction in Ireland

    Science.gov (United States)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given

  7. Effects of home ventilation systems on indoor radon--radon daughter levels. Final report

    International Nuclear Information System (INIS)

    A study was conducted in a house in Polk County, Florida, to determine the effects of normal home ventilation methods on radon, radon progeny, and working levels. Three ventilation conditions were studied which approximate those found during normal occupancy. The effects of the central air conditioner, the central blower without air conditioning, and outside air ventilation were studied, with radon, radon progeny, and working level measurements made sequentially until significant changes ceased to be observed. In all three experiments, radon, radon progeny, and working levels decreased, with the decreases corresponding to estimated increases in house ventilation rate

  8. Indoor radon levels and their relationship with radon exhalation rates from building surface in Hong Kong

    International Nuclear Information System (INIS)

    The indoor radon concentrations of more than 60 sites in Hong Kong is measured using activated charcoal canisters to identify the underlying distribution pattern. The strong relationship between the indoor radon concentrations and the radon exhalation rate from building surface has been investigated. It has been found that the indoor radon comes mainly from radium in building materials, and that the radon concentration depends on the radon exhalation rate from indoor building surface and on the ventilation. It is also asserted that the radioactivity level of building materials used in Hong Kong is increasing

  9. Geographical associations between radon and cancer: is domestic radon level a marker of socioeconomic status

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, S.P. (University College, London (United Kingdom). Toxicology Lab. Middlesex School of Medicine, London (United Kingdom)); Stern, G.

    1991-12-01

    Previous studies showing a geographical association between radon and various cancers, particularly the leukaemias and lymphomas, appear to be confounded by the role of radon levels as a surrogate for socioeconomic status. Higher socioeconomic status (at least at the UK county level) is correlated with higher levels of domestic radon. Controlling for the relationship between socioeconomic status and radon removes the correlation between radon exposure and lymphoproliferative disease. Reported associations between radon and lymphoproliferative disease (and possibly other cancers) may be secondary to socioeconomic variables. (author).

  10. 76 FR 72006 - Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon...

    Science.gov (United States)

    2011-11-21

    ... COMMISSION Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon... Recovery Facility Surveys of Radon and Radon Progeny in Air and Demonstrations of Compliance with 10 CFR 20... that existing guidance does not sufficiently detail how the NRC staff reviews surveys of radon...

  11. Is there any interaction between domestic radon exposure and air pollution from traffic in relation to childhood leukemia risk?

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Andersen, Claus Erik; Andersen, Helle P.;

    2010-01-01

    air pollution and traffic density. The relative risk for childhood leukemia in association with a 10(3) Bq/m(3)-years increase in radon was 1.77 (1.11, 2.82) among those exposed to high levels of NOx and 1.23 (0.79, 1.91) for those exposed to low levels of NOx (p (interaction,) 0.17). Analyses for...... included 985 cases of childhood leukemia and 1,969 control children. We used validated models to calculate residential radon and street NOx concentrations for each home. Conditional logistic regression analyses were used to analyze the effect of radon on childhood leukemia risk within different strata of...

  12. Practical usefulness of radon risk maps and detailed in-situ classification of radon risk

    International Nuclear Information System (INIS)

    The presentation answers the frequent question about the practical usefulness, advantages and disadvantages of radon risk maps and detailed in-situ classification of radon risk. Czech Radon Programme derives the benefit from radon maps on various scales - 1:500 000, 1:200 000 and 1:50 000, as well as from the uniform method for direct detailed classification of radon risk. The reliability assessment of the practical usefulness is based on the direct comparison between the results obtained from detailed in-situ classification of radon risk of building sites and the corresponding reading from the radon risk map. Altogether almost one thousand of detailed radon risk assessments, i.e. tens of thousands of soil-gas radon concentration measurements, were compared with the expected radon risk categories in five radon risk map sheets on the scale 1:50 000. The new results more specify and correspond to the previous results from comparisons performed in 1992, 1995 and 2002. We can prepare quite consistent maps, which can be successfully used to direct the search of existing houses with higher indoor radon values. On the other hand, the risk of underestimation or overestimation in the case of deriving the radon risk classification of a specific building site from the map seems to be too high to use the maps for direct assessment of specific sites. For new buildings, it is recommended to use detailed in-situ measurements and classification. (authors)

  13. Why measure radon decay products?

    International Nuclear Information System (INIS)

    Combined development in spectrometry, instrumentation and ventilation modelling with its dependence on short- and long-term weather fluctuations renders possible a new, economical metrology for radon decay products. Short-term measurements can, with few restrictions, be converted to annual exposures of an accuracy superior to that from conventional medium-term Rn gas measurements. (orig.)

  14. Nanodosimetry of radon alpha particles

    International Nuclear Information System (INIS)

    It is currently accepted that energy deposition at the nanometer level (rather than conventional microdosimetry) determines the biological effects of ionizing radiation. Many previously established experimental techniques (e.g., the Rossi proportional counter) or theoretical methods (e.g., simplified calculations using the continuous slowing-down approximation (CSDA)) are inapplicable to the study of nanodosimetry. The peculiarities of the geometry of exposure to radon progeny further complicate the problem. This is because the conditions under which several open-quotes classicalclose quotes models of radiation action are obtained (e.g., the alpha-beta formulation of the Theory of Dual Radiation Action, which is built on microdosimetry) are no longer valid. It thus becomes clear that not only new techniques but new concepts are required to describe the effects of radon alpha particles. In this paper we discuss a number of computational aspects specific to radon nanodosimetry. In particular, we describe the novel concept of open-quotes associated surfaceclose quotes (AS) which is necessary for efficiently converting Monte-Carlo-generated particle tracks to nanodosimetric spectra. The AS is the analog of Lea's associated volume, applied to radiation sources subject to the geometrical restrictions of internal exposure. We systematically analyze factors affecting the nanodosimetry of radon progeny, such as the distance between the radioactive source and the sensitive volume, the size of the sensitive volume, and CSDA versus full Monte-Carlo track generation

  15. Nanodosimetry of radon alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M. [Columbia Univ. New York, NY (United States); Varma, M.N. [U.S. Department of Energy, Washington, DC (United States)

    1992-12-31

    It is currently accepted that energy deposition at the nanometer level (rather than conventional microdosimetry) determines the biological effects of ionizing radiation. Many previously established experimental techniques (e.g., the Rossi proportional counter) or theoretical methods (e.g., simplified calculations using the continuous slowing-down approximation (CSDA)) are inapplicable to the study of nanodosimetry. The peculiarities of the geometry of exposure to radon progeny further complicate the problem. This is because the conditions under which several {open_quotes}classical{close_quotes} models of radiation action are obtained (e.g., the alpha-beta formulation of the Theory of Dual Radiation Action, which is built on microdosimetry) are no longer valid. It thus becomes clear that not only new techniques but new concepts are required to describe the effects of radon alpha particles. In this paper we discuss a number of computational aspects specific to radon nanodosimetry. In particular, we describe the novel concept of {open_quotes}associated surface{close_quotes} (AS) which is necessary for efficiently converting Monte-Carlo-generated particle tracks to nanodosimetric spectra. The AS is the analog of Lea`s associated volume, applied to radiation sources subject to the geometrical restrictions of internal exposure. We systematically analyze factors affecting the nanodosimetry of radon progeny, such as the distance between the radioactive source and the sensitive volume, the size of the sensitive volume, and CSDA versus full Monte-Carlo track generation.

  16. Indoor radon and childhood leukaemia

    International Nuclear Information System (INIS)

    This paper summarises the epidemiological literature on domestic exposure to radon and risk for childhood leukaemia. The results of 12 ecological studies show a consistent pattern of higher incidence and mortality rates for childhood leukaemia in areas with higher average indoor radon concentrations. Although the results of such studies are useful to generate hypotheses, they must be interpreted with caution, as the data were aggregated and analysed for geographical areas and not for individuals. The seven available case - control studies of childhood leukaemia with measurement of radon concentrations in the residences of cases and controls gave mixed results, however, with some indication of a weak (relative risk < 2) association with acute lymphoblastic leukaemia. The epidemiological evidence to date suggests that an association between indoor exposure to radon and childhood leukaemia might exist, but is weak. More case - control studies are needed, with sufficient statistical power to detect weak associations and based on designs and methods that minimise misclassification of exposure and provide a high participation rate and low potential selection bias. (authors)

  17. Groundwater radon measurements in Algeria

    International Nuclear Information System (INIS)

    Radon contents of groundwater sources have led to a great interest in hydrological, hydrogeological and geological engineering. The most interesting applications are: The determination of the fluctuations of the piezometric levels in groundwater to evaluate hydrogeological resources, the study of recent hydrothermal manifestations, the study of oil- and gas-bearing regions, the estimation of uranium deposits and the study of the relationship between the radon concentration and the degree of stress of the earth's crust at different stages of seismic activity. Waters from springs and deep wells in the plateau of Tassili (southeast Algeria) were sampled, measured and radon quantified. Radon measurements were performed using two different methods. The first method, active, based on the use of a Lucas-type scintillation chamber in conjunction with a portable monitor (model Pylon AB-5); the second method, passive, using an electret ion chamber with a 4 l glass analysis bottle. The aim of this work is to develop a method for sampling, detecting, evaluating and measuring the 222Rn in groundwater using the scintillation cell method. A comparison of the two methods was carried out and both were found to be useful under environmental conditions in Algeria

  18. Indoor radon in Tunisian spas

    International Nuclear Information System (INIS)

    Indoor radon concentrations were measured in four well-known spas of Tunisia using nuclear track detectors. The radon concentrations in these spas were found to be in the range of 19 - 870 Bq.m-3. The equilibrium factor F between radon and its progeny was found to vary in the range of 0.2 - 0.5, depending upon the ventilation rates within the buildings of the spas. Using the exposure-dose conversion factor, the effective doses to patients and workers were estimated and the dose was found to vary in the range 3.7 x 10-3 - 12.5 x 10-3 mSv.y-1 and 0.45 - 1.5 mSv.y-1 for patients and workers, respectively. These values are well inside the limit recommended for the annual dose limit of 20 mSv.y-1 for an occupational worker. The radium content in the groundwater of all four spas was measured and the results showed no correlation between the 226Ra concentration in water and radon concentration in indoor air of the investigated spas. (authors)

  19. Multi-stage diffused bubble aeration system for the removal of volatile organics and radon--A case history

    International Nuclear Information System (INIS)

    Community acceptance of a water treatment plant project in the 1990's is just as important as the technical performance of the equipment. The low profile of the multi-stage diffused bubble aeration system, as well as the technical performance of this equipment, provides the perfect solution for water treatment facilities that are constructed in residential areas. This case history involves the installation of a multi-stage diffused bubble system in a residential neighborhood in New Jersey without compromising any of the aesthetic qualities. As a result of a routine monitoring program, low levels of trichloroethylene were detected in the outcrop area. At the same time, routine analysis for radon in the source of supplies indicated that the wells located in the outcrop area showed levels of radon between 800 and 1,150 picoCuries per liter

  20. Radon and hydrotherapy: application to French spas

    International Nuclear Information System (INIS)

    Owing to the use of thermal water for treatments, the dissolved radon ends up, through degassing, in the atmosphere of the various spa premises. According to the type of treatments, the radon activity concentration in the air is very variable; it depends on two factors, the supply of thermal water, and therefore of radon, and the ventilation of the various premises. In unfavourable, even non-existent, ventilation conditions, it is not uncommon to measure radon concentration reaching several thousands of becquerels per air cubic meter. These high values of radon activity concentration, with or without its short-lived daughters, may lead to a staff exposure of approximately ten or several tens of mSv per year. A French spa was subject to a radon 'expertise' during which the radon source terms, 'ground in contact with the buildings' and 'thermal water' were characterized. The radon mapping in the internal atmosphere of the various spa premises and the workstations' analysis resulted in an assessment of the exposure due to radon inhalation. This study showed that on workstations, notably linked to hydrotherapy, the staff exposure to radon is in the same range as the dose assessments from foreign studies. The implementation of an appropriate ventilation of the treatment rooms and a better management of the thermal water in the spa resulted in a significant reduction of staff exposure

  1. Indoor radon remediation : effect of ventilation

    International Nuclear Information System (INIS)

    Radon and its progeny are the major contributors to the natural radiation dose received by human beings. As per the ICRP recommendations, it becomes necessary to take remedial steps for the reduction of radon daughters in a dwelling place if the level is found to be more than 200 Bqm-3. Ventilation process can simulate the conditions generated through advection or diffusion, therefore it may be major factors that control the indoor radon concentration is the room. In the present investigations, the effects of natural ventilation in a room having an external source of radon have been studied. The variation in radon concentration with operative time of exhaust fan has also been studied. For radon concentration measurement the LR-115 type II solid state nuclear track detectors (SSNTDs) were use. The radon reduction factor, which is the ratio of radon concentrations before and after remediation has been calculated. The radon reduction factor was found to vary 1.08 to 1.17 due to natural ventilation where as 1.17 to 3.01 due to forced ventilation. The results indicate that optimized ventilation (natural or forced) can be simple mean of radon remediation in dwellings. (author)

  2. Radon in groundwater in magmatic rocks

    International Nuclear Information System (INIS)

    One of the specifics of groundwater in magmatic rocks is a high level of radioactive components, such as radon and radium. First of all, radon has a negative influence on human health and leads to ecological and geological problems for territories with high levels of radon in groundwater. Radon-rich water has the highest therapeutic effect among curative mineral waters. Radon water is widespread in the world and is used in spas and sanatoriums very actively. Thirdly, radon is a very informative indicator of hydrogeological and geological processes. The Baltic Shield is the region with a high level of radon concentration. In Russia, the fi ssured water of the Baltic Shield is spread in Karelia, Murmansk and St.Petersburg region. Many of samples contain high levels of radon (200 Bq/l), sometimes more than 1700 Bq/l. Water from uranium-rich rock with maximum concentration of radon, e.g. uranium-rich granites and pegmatite, commonly have radon concentrations in excess of 500 Bq/l. The same situation as in Karelia can also be observed in Finland. Thus, the geochemical properties of fissured groundwater and their isotopic composition could be useful identificator to research the and to analyze the time of water circulation. (orig.)

  3. Studying of the radon risk in Azerbaijan

    International Nuclear Information System (INIS)

    Full text : Radon is the one of the most toxic and radioactive gases. According to the International Committee on Radiation Protection, 50-90 percent from common doze of people exposure by natural radioactive sources comes from radon and its decay products. Radon is colorless, odorless and tasteless gas, so it can not be detected without special equipment. Radon gas easily escapes from the ground into the air, where it decays into the short-lived products which are called radon decay products. In the decay process these products emit radioactive alpha particles and which are attached to aerosols, dust and other particles in the air. In 1987, radon and its decay products were identified by experts of the International Agency on Cancer Research to the group of carcinogenic elements for humans. Results of radiometric studies carried out in Azerbaijan , showed that natural radiation field on the territory of Azerbaijan is in the range typical for rocks and soils of the Earth and is about 6-8 mk R/h. However there are places where the radon distribution can offer dangerous. In Azerbaijan studying of natural levels of radon has not been conducted. As a result, the map of the distribution of radon volume activity for Azerbaijan has been drawn, which highlights the areas with the anomalous radon concentration, which are dangerous for human health.

  4. Risk Reassessment Based on Radon Exposure Reconstruction

    International Nuclear Information System (INIS)

    Full text: The paper deals with the risk assessment based on the field data obtained during the radon survey of the rural community Gornja Stubla (Kosovo) in 1998-1999. Results of the survey identify this region as the high natural radiation environment background area (average indoor radon concentration being 450 Bq/m3). The survey includes contemporary (SSNTDs) and retrospective (volume and surface traps) indoor radon and thoron gas long-term measurements. During the survey the questionnaires were completed with data on housing characteristics and habits occupants. To assess the radiation risk due to inhalation of radon and thoron progeny more precisely a model to reconstruct the lifetime radon exposure of the population in Gornja Stubla was developed. The model estimates the exposure in respect to two groups of factors: those known to influence significantly the indoor radon concentration itself (i.e. geographical factor, age of house and the floor level of the room) and the specific population characteristics (i.e. the temporal occupancy pattern of the rooms as a function of age and sex). The variations of radon level observed after comparison of radon measurements by contemporary and retrospective techniques are considered as well. Thus the lifetime exposure to radon and thoron progenies is assessed for the typically exposed part of the population and for dwelling occupants receiving the highest exposure in their houses due to the measured radon concentration. The approach developed and presented here permits an improved estimates of radiation risk to be made. (author)

  5. Instrumentation for a radon research house

    International Nuclear Information System (INIS)

    A highly automated monitoring and control system for studying radon and radon-daughter behavior in residences has been designed and built. The system has been installed in a research house, a test space contained in a two-story wood-framed building, which allows us to conduct controlled studies of (1) pollutant transport within and between rooms, (2) the dynamics of radon daughter behavior, and (3) techniques for controlling radon and radon daughters. The system's instrumentation is capable of measuring air-exchange rate, four-point radon concentration, individual radon daughter concentrations, indoor temerature and humidity, and outdoor weather parameters (temperature, humidity, modules, wind speed, and wind direction). It is also equipped with modules that control the injection of radon and tracer gas into the test space, the operation of the forced-air furnace, the mechanical ventilation system, and the mixing fans located in each room. A microcomputer controls the experiments and records the data on magnetic tape and on a printing terminal. The data on tape is transferred to a larger computer system for reduction and analysis. In this paper we describe the essential design and function of the instrumentation system, as a whole, singling out those components that measure ventilation rate, radon concentration, and radon daughter concentrations

  6. Measurement of indoor radon levels in Bhubaneshwar

    International Nuclear Information System (INIS)

    One dominant and almost inevitable natural source of airborne activity is Radon (222Rn) which is produced as a result of decay of U in the earth crust. Measurements of indoor radon are of importance because of the radiation dose to human population due to the inhalation of radon and its daughters, constitutes more than 50% of the total dose, including that from the natural sources [UNSCEAR, 1988]. The radon concentration in the environment depends upon the source term, ventilation rate and weather. India is so vast in extent and so varied geological formations that wide variations can be expected in indoor radon concentration levels. So it may be desirable to make extensive measurements of radon levels at various parts of the country. An attempt has been made to study the seasonal and geological variation of radon levels at various locations of Bhubaneshwar city using solid state nuclear track detectors (SSNTD). The ongoing preliminary measurements of indoor radon exposure to population were discussed. Radon passive dosimeters loaded with CR-39 films have been used in this study. The minimum and maximum values of radon measured were 8.46 and 42.64 Bq/m3. A discussion of some results obtained is presented in the paper. (author). 4 refs., 1 tab

  7. Annual dose from radon in Mongolia

    International Nuclear Information System (INIS)

    Today, the research of radon is one of the most important themes in nuclear physics and environmental science. Research in indoor air radon and outdoor air radon are very significant for hygiene. Outdoor air radon changes with geographical region, season, month and hours of day. And indoor air radon pertains from outdoor air radon, buildings material and ventilation. Experimental data of determination Rn222 by Scintillation method (SAC-4) in outdoor air, in premises of a microtron MT-22, other working rooms and dwellings (concrete, brick, wooden and Mongolian ger) are considered. With the purpose of research of radiation safety in indoor and outdoor of the microtron, we have developed a technique of determination radon and its short-lived decay product Po218 by the scintillation counter SAC-4. Concrete, brick, wooden, mongolian ger 4 buildings radon concentration in winter (November and December) of 6 years, measurements 400 points average to cause to out average and annual dose rate from radon are measured. Radon concentration has in outdoor air (winter) 18.7 (2.3/38.8) Bq/m3. Indoor air (concrete, brick, wooden, Mongolian ger) radon concentration has 26.0 (8.2/42.6) Bq/m3. Received dose rate annual to human of radon 0.8 (0.33/1.26) mSv/year. This concentration is less than maximum effective dose (2.5mSv/year) of human year. Mongolian National Standard 'Method of determination of radon concentration in air' (MNS5246:2003) is processed and certified. The work is carried out at the Nuclear Research Centre of the National University of Mongolia. (author)

  8. Radon-safe new buildings, documentation and technology development. Main report; Radonsikring i nybyggeri, dokumentation og teknologiudvikling. Hovedrapport

    Energy Technology Data Exchange (ETDEWEB)

    Breddam Overgaard, L.; Bruun Petersen, J.; Neerup Jeppesen, M.

    2011-07-01

    penetrations with silicone sealant is also the most effective method. In the study it is furthermore concluded that there is no immediate difference in the two radon cavity barrier solutions (above and below the slab). Subproject 3 (radon potential in soil). At an introductory level it has been attempted to survey the radon potential (the amount of radon released from the soil) at the location of the construction of the subproject 1 residential development. The main part of the study consisted of developing and testing a method of ''passive sampling'' by immersion of measuring equipment in 1 m deep drillings. In the study significant radon levels were demonstrated in soil containing tertiary clay (black, micaceous). In comparing the aforementioned passive approach with previous ''active measurements'', it is estimated that passive measurements obtain an approximate expression (average) of the radon level of the entire borehole profile, while soil gas extraction sampling merely expresses a concentration at a level specific point (x m below the surface). The evaluation of the study concluded that satisfactory results had been achieved. It would however be relevant to improve the setup for future follow-up studies (as with subproject 2), and conduct repeated measurements prior to final conclusions. (LN)

  9. Indoor - soil gas radon relationshipin the Central Bohemian Plutonic Complex

    OpenAIRE

    I. Fojtíková; J. Miksová; I. Barnet

    2005-01-01

    The relationship of indoor radon measurements and radon in bedrock was studied in the granitoid Central Bohemian Plutonic Complex (CBPC). The indoor data were linked to vectorised geological and radon risk maps using the coordinates of particular dwellings. For each geological unit and rock type it was possible to calculate the statistical characteristics of indoor radon measurements. A clear relationship between indoor radon values and radon in bedrock was confirmed in al...

  10. Lung cancer risk due to exposure to indoor radon in Western Germany

    International Nuclear Information System (INIS)

    In a case-control study in West-Germany the lung cancer risk due to exposure to indoor radon was investigated. From 1990 to 1996 incident lung cancer patients as well as a random sample recruited from the population were interviewed according to their residential history, smoking, occupational exposure and other risk factors. 2 charcoal canisters and 2 alpha track detectors were placed for 1 year in the present and former dwellings of participants. The evaluation included 1449 cases and 2297 controls recruited from the entire study area, and 365 cases and 595 controls recruited from radon-prone matching areas within the entire study area. Odds ratios were estimated according to a logistic regression model simultaneously adjusted to smoking and to exposure to asbestos. Furthermore the linear trend was calculated. In the entire study area no elevated odds ratio is seen. However, in the radon-prone matching areas a clear influence of exposure to radon on the lung cancer risk is observed. The adjusted odds ratio [95% CI] is 1.59 [1.08, 2.27], 1.93 [1.19, 3.13] and 1.93 [0.99, 3.77] for 50-80, 80-140 and over 140 Bq/m3 compared to 0-50 Bq/m3. The odds ratio for the linear trends is 1.13 [0.88, 1.46] for an increase in exposure of 100 Bq/m3. (orig./MG)

  11. Radon-thoron and their progeny measurements in high rise buildings in district Faridabad, Haryana

    International Nuclear Information System (INIS)

    The District Faridabad situated in Southern Haryana is an industrial hub and has seen a radical upsurge in the construction of high rise buildings (residential and official both) in the recent past. The city is densely populated and a large number of people spent a lot of time, both working and living, in high rise buildings made up of concrete blocks and fired bricks. The building materials and the ventilation conditions are the major contributing and controlling factors for the levels of radioactivity in general and concentration of Radon-Thoron and their progeny in particular in dwellings and workplaces. It is well established that indoor radon/thoron and daughters are the largest contributor to total radiation dose received by populations and they account for more than 50% of the total dose. More so, radiation exposure beyond permissible levels can lead to many deleterious effects. As per the data available in the literature, such studies have not yet been carried out in such buildings and therefore call for an initiative for the captioned measurements. In the present paper we shall report on the measurements of Radon-Thoron and their progeny levels in high rise buildings in Faridabad and the annual inhalation and effective dose to the inhabitants carried out using solid state nuclear track detectors, LR-115 type II exposed in the environment at different levels of high rise buildings for 90 days using twin chamber dosimetry cups. The incorporated data shows that as the level increases, the concentration of radon decreases. (author)

  12. Remedial measures in Swedish and Norwegian houses - application of radon and radon decay product measurements

    International Nuclear Information System (INIS)

    Houses and apartments in Sweden and Norway with excessive indoor radon concentrations were studied in detail with a variety of methods, standard and novel ones recently developed. For suitable remediation it is necessary to distinguish soil radon and exhalation from blue (porous) concrete. Our CARBOTEST-S is a simple, sensitive, in-situ method to quantify radon exhalation from existing walls, as well as radon permeability of different protective foils and final quality control of foils applied to existing walls. (orig.)

  13. Second workshop on radon and radon daughters in urban communities associated with uranium mining and processing

    International Nuclear Information System (INIS)

    A second meeting of Atomic Energy Control Board staff, federal and provincial government representatives, and consultants was held to discuss progress in reducing the concentrations of radon and its daughter products in houses in communities like Bancroft, Elliot Lake, Port Hope, and Uranium City. Participants discussed successful and unsuccessful remedial techniques, possible sources of radon, and methods of measuring radon and radon daughters in buildings

  14. Study on the solubility of radon in tissues; Untersuchung der Loeslichkeit von Radon in Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Claudia; Kraft, Gerhard; Maier, Andreas; Beek, Patrick van [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-08-01

    At the GSI Helmholtz Center in Darmstadt a radon chamber with conditions similar to the radon galleries was built for studies on the solubility of radon in tissues using cell cultures and animals. The samples are investigated using gamma spectroscopy following the radon exposure measuring Pb-214 and Bi-214. The original concentration of Rn-222 in the sample is determined by the time dependence of the decay rates of Rn-222. The experimental conditions and preliminary measurements are described.

  15. Application of sensitive and supersensitive radon detectors for radon flux density and radon concentration in environmental monitoring

    International Nuclear Information System (INIS)

    The paper presents a review of principles and operational parameters of the latest instrumental development in sensitive and high sensitive radon detectors at Australian Nuclear Science and Technology Organisation (ANSTO). The focus is on advances in measurement technology of radon concentration in air and radon flux density. Two areas in which ANSTO is actively involved are discussed. The first area concerns radon in air monitoring at Cape Grim Baseline Air Pollution Station. Results recorded at the Station with a supersensitive radon detector characterised by lower limit of detection down to few mBq m-3 with time resolution better than 90 minutes are presented to illustrate importance of the technique in global monitoring of airborne pollution. The second area concerns estimates of radon and thoron fluxes from large geographical areas. This is illustrated by results obtained during an Australia-wide survey of radon fluxes and from thoron flux measurements around the Mauna Loa Observatory in Hawaii. The radon flux estimates from Australia come from a coarse net of spot measurements combined with data from aerial gamma surveys. It is argued that as radon global flux and air concentration estimates improve, the data will provide progressively more stringent tests of global air transport models. (author)

  16. Radon and its daughters in vivo

    International Nuclear Information System (INIS)

    Some aspects of the behavior of radon and its short-lived daughters in vivo are described and a relationship between the radon exhalation rate and time after a meal is demonstrated. A major but short-lived postprandial increase in the exhalation rate of radon produced from skeletally-deposited radium was observed and a similar effect in exhalation rate of environmental radon by persons containing no radium was noted. Persons living in houses with elevated concentrations of radon may contain sufficient activity for its detection by external gamma-ray counting. Some of the activity observed is due to inhaled daughter-products in the chest, and some to daughter-products associated with and produced by the decay of radon throughout the body. 3 references, 8 figures. (MF)

  17. Radon reduction in crawl-space houses

    International Nuclear Information System (INIS)

    This paper gives results of an EPA study of radon-mitigation alternatives for crawl space houses in several houses in Nashville, TN. Application of one of these alternative mitigation options, suction under a polyethylene membrane, has been successful in significantly reducing radon levels in both the crawl space and the house. The large radon concentrations measured under unvented plastic ground covers and the moisture barriers found in many crawl spaces can act as radon-rich reservoirs capable of contaminating a crawl space and house during periods of depressurization. With the exhaust components of the mitigation system in place, radon levels below the plastic decreased by more than 95% under both passive and active suction conditions. Based on the study, the design of a cost-effective subplastic suction passive radon mitigation system for crawl spaces seems promising

  18. Indoor radon concentrations in Vushtrri, Kosovo

    International Nuclear Information System (INIS)

    Indoor air radon concentration was measured by exposing trac ketch detectors in the two elementary schools, one high school, a kindergarten and the hospital in the city of Vushtrri. Measurements were performed with the radon monitor PRM-145, which uses alpha scintillation cells and serves to determine the current concentration of radon. The results we obtained are in the range between the average values of radon for the interior spaces, and values that pose a potential risk for lung cancer. Measuring the concentration of radon was done in total of 34 rooms and came up with values which are between 28Bqm-3 and 398Bqm-3. In order to reduce the concentration of radon, we have built a ventilation pump, then we performed repeated measurements and finally came with results between 130-145Bqm-3.

  19. Diffusion of radon gas in soil cavities

    International Nuclear Information System (INIS)

    To assess the potential radon hazard of a new home construction site and the steps (if any) that should be taken to mitigate that hazard, the soil pore gas radon source strength S (i.e., the number of radon atoms emitted into a unit volume of pore gas per unit time), the pore gas radon diffusion length L, and the soil porosity p must be known. Methods exist for measuring the steady-state soil pore gas radon concentration. The purposes of this paper are to analyze the kinetics of the radon concentration in a cavity in the soil, to determine the parameters that affect the kinetics, and to establish and analyze an in situ method for measuring S, L, and p

  20. Radon concentration measurements in bituminous coal mines

    International Nuclear Information System (INIS)

    Radon measurements were carried out in Kozlu, Karadon and Uezuelmez underground coal mines of Zonguldak bituminous coal basin in Turkey. Passive-time integrating method, which is the most widely used technique for the measurement of radon concentration in air, was applied by using nuclear etched track detectors (CR-39) in the study area. The radon concentration measurements were performed on a total of 42 points in those three mines. The annual exposure, the annual effective dose and lifetime fatality risk, which are the important parameters for the health of workers, were estimated based on chronic occupational exposure to the radon gas, which is calculated using UNCEAR-2000 and ICRP-65 models. The radon concentrations at several coal production faces are higher than the action level of 1000 Bq m-3. It is suggested that the ventilation rates should be rearranged to reduce the radon concentration. (authors)

  1. Geostatistics approach to radon potential mapping

    International Nuclear Information System (INIS)

    Soil-gas radon potential assessment is an important component of the most of national radon programs. With regard to recent intensive advances in all fields of science and increasing demands on accuracy in data there is an urgent need to support current approaches by alternative methods. Important finding of this study is the benefit of variographic analysis based on random sampling for prediction of the overall radon potential, as a counterpart of a widely used regular sampling. In addition, as could be seen the temporal variability might be a crucial factor affecting consequent accuracy of radon risk assessment. We hope that introduced combination of geo-statistics tools, results of long-term radon activity monitoring and, in general, dealing with uncertainties affecting radon potential/risk assessment can bring synergic effect providing more exhaustive data treatment. (authors)

  2. Radiation load from radon exposure in Slovakia

    International Nuclear Information System (INIS)

    In this paper the results of monitoring of radon exposure in Slovakia by passive solid state nuclear track detectors (SSNTD ) (placed in about 6,000 selected dwellings, 1000 selected buildings of the kindergartens and basic schools, 12 selected spa buildings) and personal doses measured by SSNTD (130 miners from three ore mines and 13 tourist guides from seven show karst caves) are presented. The national survey results suggest that Slovak Republic may be among the countries with higher radon risk in Central Europe. The annual effective dose from indoor radon exposure is 2.1 mSv per inhabitants. The district with highest indoor radon concentrations and districts with high radon levels in spa buildings correlate with known presence of uranium in the soil. The soil is probably the main source of radon in Slovak dwellings, spa and school buildings too

  3. New devices for radon measurements

    International Nuclear Information System (INIS)

    This work includes the description of two new devices for radon surveys developed by the authors and produced in Kazakhstan. The first appliance is 'Ramon-Radon-01' used to measure 222Rn radon in various mediums such as air, water, soil, and radon exhalation. The major advantage of the appliance lies in the absence of radioactive pollution in it after measurements. The appliances widely used in the CIS such as 'RAA-01', 'Alpharad' (produced by 'MTM Zaschita', Russia) and 'Alphaguard' (Germany) take samples directly to the measuring camera. For instance, the activity concentration of samples after they are taken by 'RAA-01' and 'Alpharad' is measured by means of electrostatic precipitation of RaA (218 Po) atoms to the square of semiconductor detector with subsequent registration of RaA alpha decay. The obvious disadvantage is that the subsequent measurement of relatively small 222Rn activity concentration values after great values of 222Rn activity concentration have been obtained requires a considerable exposure of the appliance sometimes exceeding 10 hours. Therefore, appliances register a relatively low value of the top measurement range of 20 KBq/m3. 'Alphaguard' has similar limitation resulting from precipitation of radon daughter decay products on the walls of ionizing chamber where radon activity concentration is measured. The radioactive lag of 'RAA-01', 'Alpharad' and 'Alphaguard' makes them of little use as well for automatic monitoring in the conditions of abruptly time negative derivatives on change of radon activity concentration. The second advantage is that 'Ramon-Radon-01', as opposed to above described appliances, registers almost zero radioactive lag, thanks to its constructive peculiarities which enable an abrupt increase of top range of measured value up to 5x105 Bq/m3, only limited by velocity of electron units of the appliance. The third advantage is that measurement discontinuity is determined only by time of full measurement cycle adding up

  4. Workshop on radon and radon daughters in urban communities associated with uranium mining and processing

    International Nuclear Information System (INIS)

    This meeting of Atomic Energy Control Board staff, representatives of other government departments, and consultants was called to exchange information on steps taken to lower radiation levels in houses in communities such as Elliot Lake, Uranium City, and Port Hope. Discussions covered the sources of radon and radon daughters in these houses, radon measurement techniques, and remedial methods that worked or were not successful

  5. The radon: evaluation and risk management; Le radon: evaluation et gestion du risque

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, A.C. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Masse, R. [Academie des Technologies, 75 - Paris (France); Aurengo, A. [Hopital Pitie-Salpetriere, Service de Medecine Nucleaire, 75 - Paris (France); Erich Wichmann, H. [Neuberberg Munich Univ. (Germany); Timarche, M.; Laurier, D.; Robe, M.Ch. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Baubron, J.C.; Bonijoly, D. [BRGM, 75 - Paris (France); Collignan, B. [Centre Scientifique et Technique du Batiment, (CSTB), 75 - Paris (France); Berrier, H. [Direction Gle de l' Urbanisme de l' Habitat et de la Construction, 75 - Paris (France); Jaouen, J. [Direction Departementale des Affaires Sanitaires et Sociales de la Haute-Vienne (France); Caamano, D. [Direction Departementale des Affaires Sanitaires et Sociales de l' Essonne, 91 (France); Guiot, F. [Direction Departementale des Affaires Sanitaires et Sociales de la Haute-Marne (France); Grall, B. [Direction Departementale des Affaires Sanitaires et Sociales de Bretagne (France); Frutos Vasquez, B.; Olaya Adan, M. [Istituto de Ciencias de la Construction (Italy); Garcia Cadierno, J.P.; Martin Matarranz, J.L.; Serrano Renedo, J.; Suarez Mahou, E. [Consejo de Seguridad Nuclear, Madrid (Spain); Fernandez, J.A. [ENUSA Industrias Avanzadas (Spain); Mjones, L.; Pirard, P. [Institut de veille sanitaire, 94415 - Saint-Maurice (France); Godet, J.L.; Rougy, Ch. [Direction Gle de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France)

    2003-06-15

    The radon exposure constitutes for the French population the first cause of natural irradiation among the different natural sources of irradiation. It is possible to have a significant action on it, either by making draught proof in order to avoid to radon to get inside houses, either by ventilating in order to dispel the radon and improve air quality. (N.C.)

  6. Characteristics of radon escaping and mode of ventilation for radon discharge in long blinding heading

    International Nuclear Information System (INIS)

    The effect of ventilation for radon discharge in working face of long blind heading is described. Combined mode of ventilation is considered as a good method to reduce radon. Using the powerful air exhauster and the tubes of large diameter, the concentration of radon in heading face can be less than allowable

  7. Physics underlying the searching for radon sources in houses

    International Nuclear Information System (INIS)

    The radon diagnostics of houses is briefly outlined. The aim of radon diagnostics consists in the identification of radon sources (subsoil, building material, water), location of the main and side pathways of radon inlet in the building, quantification of the amounts of radon passing through the pathways and spreading through the house. The stack effect of radon suction from the subsoil into the building due to the temperature difference or underpressure caused by wind is described. The radon risk is different in the different seasons of the year and also varies throughout the day. Good diagnosis of radon transfer into a house requires a great deal of skill. (M.D.). 1 fig

  8. Contribution of radon in tap water to indoor radon concentrations

    International Nuclear Information System (INIS)

    The contribution of radon (222Rn) in domestic water supplies to the concentration of 222Rn in indoor atmospheres has been investigated and found to be significant for concentrations over a few thousand picocuries per liter in the water supply. A model predicting average indoor increments due to this source is presented and supported by a series of measurements made in the laboratory and in private homes in the vicinity of Houston, Texas. The efficiency with which radon is transferred from water to air was experimentally determined, and these efficiencies were combined with estimates of average indoor water use to produce a source term proportional to the concentration of 222Rn in the tap water. The importance of the dwelling volume and the air change rate is discussed

  9. The radon influence of SAGE results

    CERN Document Server

    Gavrin, V N; Mirmov, I N

    2002-01-01

    The method for evaluating systematic errors, connected with radon, is described in the experiment on determining the SAGE solar neutrino flux. The systematic error by the measured neutrino capture rate in the gallium 75 SNU target does not exceed 0.3 SNU. The obtained value (0.3 SNU) is the upper limit of the radon systematic error. Its low value means, that radon does not contribute significantly to the SAGE result

  10. The radon influence of SAGE results

    International Nuclear Information System (INIS)

    The method for evaluating systematic errors, connected with radon, is described in the experiment on determining the SAGE solar neutrino flux. The systematic error by the measured neutrino capture rate in the gallium 75 SNU target does not exceed 0.3 SNU. The obtained value (0.3 SNU) is the upper limit of the radon systematic error. Its low value means, that radon does not contribute significantly to the SAGE result

  11. Radon Survey in Hospitals in Slovenia

    International Nuclear Information System (INIS)

    In Slovenia, several radon studies at workplaces have been carried out in last years, supported by the Ministry of Education, Science and Sport, and the Ministry of Health. After radon surveys in kindergartens, schools and homes, within which about 2600 buildings were checked for radon and which provided the level of radon problem in the country, next investigations were focused on the workplaces with potentially higher radon risk. Hence, in the Postojna Cave permanent radon monitoring was introduced in 1995 and comprehensive radon studies were performed: in 5 bigger spas during 1996-1998, in major waterworks and wine cellars in 2001, and in major Slovene hospitals in 2002. This paper reports the results of radon study in 26 major Slovene hospitals, comprising radon concentrations in 201 rooms and dose estimates for 1025 persons working in these rooms. Radon survey in 201 rooms of 26 major hospitals in Slovenia revealed only 7 rooms in which monthly average radon concentration in the indoor air exceeded 400 Bqm-3. Generally, concentrations in basement were on average for about 30% higher than in ground floor, although exceptionally high values have also been found in the ground floor. For 966 persons (94.2%) of the total of 1025 persons working in the rooms surveyed, the annual effective dose, estimated according to the Basic Safety Standards was below 1 mSv, while for 59 it exceeded 1 mSv. In 7 rooms with more than 400 Bqm-3 in which 16 persons receive between 2.1 and 7.3 mSv per year radon monitoring is continued. (author)

  12. Status of radon monitoring in Haryana

    International Nuclear Information System (INIS)

    Radon is present in trace amounts almost everywhere (indoor and outdoor) on the earth, being distributed in the soil, the ground water and in the lower atmosphere. Radon migrates and appears mainly by diffusion processes from the point of origin following α- decay of 226Ra in underground soil and building materials used in the construction of floors, walls, and ceilings. The influx of radon is a function of (1) Permeability of the underlying soil (2) Geological, meteorological and structural factor and (3) Permeability of the medium. The concentration of radon in the atmosphere varies depending on the place, time, and height above the ground and meteorological conditions. When radon decays it forms its progeny 218Po and 214Po, which are electrically charged and can attach themselves to tiny dust particles, water vapours, oxygen, trace gases in indoor air and other solid surfaces. These daughter products (aerosols) remain air-borne for a long time and can easily be inhaled into the lung and can adhere to the epithelial lining of the lung, thereby irradiating the tissue. Bronchial stem cells and secretion cells in airways are considered to be the main target cells for the induction of lung cancer resulting from radon exposure. The exposure of population to high concentrations of radon and its daughters for a long period may lead to pathological effects like the respiratory functional changes and the occurrence of lung cancer. Some studies have been carried out by different researchers for radon monitoring in Haryana state of India using alpha sensitive LR-115 type II plastic track detectors. The following studies have been carried out: 1. Indoor radon in different dwellings like cemented, soil bricks, mud and fly ash bricks. 2. Radon in industrial units like thermal power plants, gas power plants, LPG bottling plants and refineries 3. Radon exhalation rates measurements in building materials viz; soil, fly ash, cement, sand and stones. 4. Radon diffusion studies

  13. Study and treatment of situations implying radon

    International Nuclear Information System (INIS)

    The radon is a radioactive gas with a natural origin. It comes from a disintegration of uranium and radium present in the soils. It comes from granitic and volcanic subsoils. The radon can accumulate in buildings. It is the principal source of natural exposure and the second one after medical exposures. It is the only one source of radiations on which man is susceptible to act. Ventilation and airtightness are solutions to reduce radon concentration. (N.C.)

  14. Radon in the Hotels in Montenegro

    International Nuclear Information System (INIS)

    Indoor radon concentrations in the 16 hotels in Montenegro, well known by tourists, were measured in winter period by an integral method, with etch-track detectors. Radon concentrations obtained at the 30 measuring sites are in a range (22 - 90) Bq/m3, with an arithmetic mean of 43 Bq/m3. This means that the radon levels in the all surveyed hotels in Montenegro are much bellow the most stringent reference level internationally recommended. (author)

  15. A perspective on risks from radon

    International Nuclear Information System (INIS)

    In its Statement on Radon (November 2009), the International Commission on Radiological Protection (ICRP) has reduced the upper reference level for radon gas in dwellings to 300 Bq m-3. The recommended level for workplaces is 1000 Bq m-3. A risk coefficient of 8 x 10-10 per Bq h m-3 is recommended without reference to smoking habits. On the basis of these figures: 1) The estimated risk of fatal cancer from exposure to radon at home and at work could be greater than the observed risk of accidental death from travelling by car, which would be surprising if true. 2) The estimated risk of lung cancer from radon could be greater than the observed risk of lung cancer from all causes, which is actually known to be dominated by smoking. The author is not aware of any direct evidence of risks from inhaling radon in Australian dwellings, 99% of which have radon levels below 50 Bq m-3. Evidence available from other countries shows that: 1) The effects of radon in the incidences of lung cancer are uncertain at levels less then about 50-100 Bq m-3. 2) The estimation of risks at levels below 200 Bq m-3 depends on extrapolation from risks observed at higher levels. 3) Risks to non-smokers from radon are 25 times less than risks to smokers. Its concluded that the ICRP Statement on Radon and radon policies in the US and UK have the potential to cause unwarranted concern. Some people may be made to feel they need to spend money modifying their homes and workplaces to protect occupants from exposure to radon when there is no compelling reason to show that this is necessary. The vast majority of non-smokers do not need to be protected from radon. (Author)

  16. Use of various microdosimetric models for the prediction of radon induced damage in human lungs.

    Science.gov (United States)

    Böhm, R; Nikodémová, D; Holý, K

    2003-01-01

    Exposure to radon and radon decay products in some residential areas and at workplaces constitutes one of the greatest risks from natural sources of ionising radiation. Recently, increasing attention has been paid to the precise estimations of this health risk by numerous models. The compartmental model published in ICRP Publication 66 (HRTM) has been used for calculating alpha activity concentration in human lung. Energy deposition in the tissue was calculated by the Bethe-Bloch equation. The aim of this study was to check the performance and to compare the reliability of the microdosimetric models. In this work different thicknesses of mucus in the cases of non-smokers and smokers has been considered. Transformed cells were considered as the radiation risk parameters. The radiation risk evaluation for different exposure levels was based on homogeneous and heterogeneous distributions of target cells. The results of application of these procedures were compared with the epidemiological study of Czechoslovakian uranium miners. PMID:12918790

  17. Radon and radon daughters in mine atmospheres and influencing factors

    International Nuclear Information System (INIS)

    The measurement of the total activity of radon daughters in the air of mines has become a routine procedure in order to control the radiation exposure in miners due to the inhalation of these radionuclides. Normally the measured concentration is given in terms of total potential α-energy of the short lived radon daughters. In addition, the degree of equilibrium between the daughter products in air and the fraction of daughter products not attached to aerosol particles (the unattached fraction) must be known. The concentrations of radon and daughter products may vary considerably during the day. Seasonal variations are also frequently found. It is therefore important to have knowledge of the magnitude of these variations and of the factors having the strongest influence upon the concentrations. In this paper the main results of a study on the radiological characteristics of non-uranium mines are summarized. The correlations between the unattached fraction of the potential α-energy and the unattached fraction of the individual daughters, and between the equilibrium factor F, and the individual daughter ratios are discussed

  18. Establishment of a radon test chamber

    International Nuclear Information System (INIS)

    A walk-in type radon test chamber of 23 m3 has been built for testing and calibration of radon measurement instruments. The environmental conditions of the test chamber can be varied within a wide range of values. The design objectives specification, monitoring instruments and testing results of this chamber are discussed. This test chamber is available for domestic radon researchers and its accuracy can be traced to the international standard. A routine intercomparison study will be held annually by using this chamber. Other tests like radon progeny and thoron standard may also be performed in this chamber. (1 fig.)

  19. Measuring probe for radon concentration monitoring

    International Nuclear Information System (INIS)

    Variation of radon emanation in mining excavation is caused by changes of stress in geologic layer, coal or other minerals are extracted from. To investigate this phenomenon, a model of an instrument for continuous monitoring of radon concentration in mine environment was developed. The measuring head constructed in the form of a cylinder operates with modified mining radiometer RGR-40. The instrument can measure radon concentration employing the method of natural diffusion of radon to the measuring head, or forced air sampling by an membrane air pump. The measuring results are stored in internal memory of the instrument and are displayed on LCD screen. (author)

  20. Low-Cost Radon Reduction Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rose, William B. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Francisco, Paul W. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Merrin, Zachary [Partnership for Advanced Residential Retrofit, Champaign, IL (United States)

    2015-09-01

    The aim of the research was to conduct a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation-living space floor assembly. Fifteen homes in the Champaign, Illinois area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity the foundation was improved. However, this improved isolation did not lead to significant reductions in radon concentration in the living space. Other factors such as outdoor temperature were shown to have an impact on radon concentration.

  1. Radon concentrations in Taipei metropolitan railway station

    International Nuclear Information System (INIS)

    For routine airborne radon monitoring, including use in field conditions, the technique based on electret ion chamber technology seems to be the most suitable choice in many applications. However, this simple and relatively inexpensive method has some specific drawbacks: poorer reproducibility at lower radon concentrations, some uncertainty in the use of manufacturer suggested gamma correction factors, and limited reusability. A modified electret ion chamber method has been proposed, but it is mainly for water borne radon measurement. Therefore, we still applied the simple method recommended by the manufacturer to survey radon concentrations in Taipei Railway Station. (author)

  2. Radon in the Environment: Friend or Foe?

    International Nuclear Information System (INIS)

    Radon222 is a naturally occurring radioactive gas that is part of the Uranium decay series. Its Presence in the environment is associated mainly with trace amounts of uranium and its immediate parent, radium226, in rocks, soil and groundwater. About one-half of the effective doses from natural sources is estimated to be delivered by inhalation of the short lived radon progeny. Owing to this fact, radon is the most popular subject of studies on environmental radioactivity. The presence of high level of radon in indoor environment constitutes a major health hazard for man. The radon progeny is well established as causative agents of lung cancer and other types of caners. Radon unique properties as a naturally radioactive gas have led to its use as a geophysical tracer for locating buried faults and geological structures, in exploring for uranium, and for predicting earthquakes. Radon has been used as a tracer in the study of atmospheric transport process. There have been several other applications of radon in meteorology, water research and medicine. This paper summarizes the health effects and the potential benefits of radon and its progeny.

  3. Radon in Austria: metrology and practice

    International Nuclear Information System (INIS)

    The implementation of radon mitigation and precaution standards needs continuously scientific attendance and research networking on international level. Otherwise the radon issue could degrade easily to a simplified techno-economical exercise without sustainable results in public health. In this paper the radon investigations in Austria which have been carried out in the last 20 years and the applied methods and derived standards for mitigation and precaution at home and workplaces are discussed. Future strategies, scientific and social necessities to solve the radon problem are outlined comprehensively. Strategies future research in Austria are discussed in consideration of the medium-term perspective of the European radiation protection. (orig.)

  4. Radon risk mapping using indoor monitoring data

    International Nuclear Information System (INIS)

    An empirical statistical model is described for the use of indoor radon monitoring data as an indicator of the areal radon risk from soil and bedrock. The percentages of future homes expected to have radon concentrations exceeding the design level of 200 Bq/m3 unless constructed to provide protection against the entry of radon were assessed. The radon prognosis was made for different subareas, soil types and foundation types. This kind of report is used by the heath and building authorities. In this study, 2689 indoor radon measurements were made in one of Finland's most radon-prone areas, consisting of eleven municipalities with a total area of 4600 km2 and a population of 186,000. Radon concentrations were seasonally adjusted. Data on the location, geology and construction of buildings were determined from maps and questionnaires. The measurements covered different kinds of geological units in the area. The radon risk is highest in the gravel-dominated subarea in an ice-marginal formation and lowest in the northern half of the area in buildings constructed on bedrock. In these two areas, the design level of 200 Bq/m3 would be exceeded in 99% and 39% of new houses with slab-on-grade. (au) (6 refs.)

  5. Collection of radon with solid oxidizing reagents

    International Nuclear Information System (INIS)

    Although it is generally considered to be inert, radon reacts spontaneously at ambient temperature with a number of fluorine-containing compounds, including dioxygenyl salts, fluoronitrogen salts, and halogen fluoride-metal fluoride complexes. A method for the collection of radon from air, using either dioxygenyl hexafluoroantimonate (O2+SbF6-) or hexafluoroiodine hexafluoroantimonate (IF6+SbF6-) reagent, is described. The air is passed though a drying tube and then through a bed of the reagent, which captures radon as a nonvolatile product. In tests with radon-air mixtures containing 45-210000 pCi/L of radon-222, more than 99% of the radon was retained by beds of powders (2.3-3.0 g of compound/cm2) and pellets (7.5-10.9 g of compound/cm2). The gas mixtures were designed to simulate radon-contaminated atmospheres in underground uranium mines. No dependence of collection efficiency upon radon concentration was observed. The method can be used for the analysis of radon-222 (by measurement of the γ emissions of the short-lived daughters, lead-214 and bismuth-214) and the purification of small volumes of air

  6. RADON AND CARCINOGENIC RISK IN MOSCOW

    OpenAIRE

    S. M. Golovanev

    2015-01-01

    Objective: comparative evaluation of carcinogenic risk inMoscowfrom radon in indoor and atmospheric pollutants.Materials and methods: the lung cancer incidence in Moscow; radiation-hygienic passport of the territory; .U.S. EPA estimated average age at all and radon induced deaths, years of life lost; Report of UNSCEAR 2006 and WHO handbook on indoor radon, 2009. Trend analysis of incidence; evaluation of the excess relative risk; assessment of ratio radon-induced population risk and published...

  7. Methods of radon measurement and devices

    International Nuclear Information System (INIS)

    The following topics and instrumentation are discussed: The quantity to be measured; Active measurement methods (scintillation cells, ionisation chambers, electrostatic collection of decay products); Passive measurement methods (charcoal detectors; electret ion chambers; etched track detectors); and Detector considerations for large-scale surveys ('always on' or 'switchable' detectors?; response to radon-220; avoidance of electrostatic effects; quality assurance for passive radon detectors; quality control within the laboratory; external quality assurance; detectors need to be easily deliverable). It is concluded that the ideal detector for large scale surveys of radon in houses is a small, closed detector in a conducting holder which excludes radon-220, supported by rigorous quality assurance procedures. (P.A.)

  8. Determination of radon in natural gas pipelines

    International Nuclear Information System (INIS)

    The aim of this study was to develop the methodology for collection and analysis of radon from a natural gas pipeline. Activated charcoal was used as collection media. Two methods were designed for collecting radon gas samples from onshore and offshore production sites. For onshore sites a continuous gas sampling method from the pipeline was developed. In case of offshore sites, a batch sampling method was designed. Gamma spectroscopy was utilized to determine the concentration of radon by analysis of radon daughters on the charcoal. (author)

  9. Czech studies of lung cancer and radon

    International Nuclear Information System (INIS)

    According to the International Agency for Research on Cancer, there is a significant evidence to classify radon as a carcinogen. Using extrapolations from occupational studies, it can be shown that for some countries environmental exposure to radon is the second most important cause of lung cancer in the general population after cigarette smoking. Czech studies among uranium miners, established in 1970 by Josef Sevc, and in the general population aim to contribute to knowledge on the risk from radon, particularly by evaluating temporal factors and interaction of radon exposure and smoking

  10. Residential Energy Efficiency Research Planning Meeting Summary Report: Washington, D.C. - October 27-28, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  11. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  12. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014

    International Nuclear Information System (INIS)

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  13. Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements

    International Nuclear Information System (INIS)

    Building materials are the second major source of indoor radon after soil. The contribution of building materials towards indoor radon depends upon the radium content and exhalation rates and can be used as a primary index for radon levels in the dwellings. The radon flux data from the building materials was used for calculation of the indoor radon concentrations and doses by many researchers using one and two dimensional model suggested by various researchers. In addition to radium content, the radon wall flux from a surface strongly depends upon the radon diffusion length (L) and thickness of the wall (2d). In the present work the indoor radon concentrations from the measured radon exhalation rate of building materials calculated using different models available in literature and validation of models was made through measurement. The variation in the predicted radon flux from different models was compared with d/L value for wall and roofs of different dwellings. The results showed that the radon concentrations predicted by models agree with experimental value. The applicability of different model with d/L ratio was discussed. The work aims to select a more appropriate and general model among available models in literature for the prediction of indoor radon. -- Highlights: • The measurement of indoor radon concentration was carried out by pin hole based dosimeter. • The indoor radon concentration was calculated from different model available in the literature. A comparison of wall flux from two different approaches was carried out for different d/L ratio. • A more appropriate model for prediction of indoor radon concentration was validated

  14. Influence of constructional energy-saving measures on the radon-concentration in the air in dwellings

    International Nuclear Information System (INIS)

    Due to energy-saving measures the air exchange in residential houses may be reduced. In order to determine time-dependent courses the indoor radon-concentrations were measured both, before and after renovation for several weeks. In addition, the most relevant climatic conditions or indoor climate factors, as e.g. the CO2-concentration, were measured. Verifying the renovation success, Blower-Door registered -Tests were performed, both as well before and after the renovation. Simultaneously the radon-concentration was measured. The results before and after renovation were compared with respect to seasonal parameters and the inhabitant's behavior. By investigation of the correlation coefficient the influencing parameters and the impact of the energy saving measures were analyzed. Based on the findings a model was developed to characterize the time-dependent course based on the influence quantities. The energy-saving measures at the building considerably influence the radon dynamics. Due to the denser building envelope, fresh air flows in case of underinflation caused by stack effect not only from the outside but even through the basement from the soil. Thus, by this path the radon-containing air can be transported into the dwelling's rooms as well. The influences of the users outweigh the influence of weather parameters, thus, the radonemission- rate was used for user-independent determination of the radon situation.

  15. Environmental radon and thoron monitor

    International Nuclear Information System (INIS)

    A large two-filter type monitor (ERM-3) has been developed for measuring environmental levels of radon and thoron to within several picocuries per cubic meter. The inlet filters of the monitor remove daughter activity from the entering air stream but permit radon and thoron to pass. Daughter activity formed in the 0.9 m3 decay chamber is collected by the fixed exit filter. The alpha activity of the filter is detected with a zinc sulfide scintillator and a 12 cm phototube, counted with an automatic timer and scaler, and is printed out on a teletypewriter for predetermined counting intervals. The teletypewriter also punches a tape to provide computer-compatible readout

  16. Integral measurement system for radon

    International Nuclear Information System (INIS)

    The Integral measurement system for Radon is an equipment to detect, counting and storage data of alpha particles produced by Radon 222 which is emanated through the terrestrial peel surface. This equipment was designed in the Special Designs Department of the National Institute of Nuclear Research. It supplies information about the behavior at long time (41 days) on each type of alpha radiation that is present into the environment as well as into the terrestrial peel. The program is formed by an User program, where it is possible to determine the operation parameters of a portable probe that contains, a semiconductor detector, a microprocessor as a control central unit, a real time clock and calendar to determine the occurred events chronology, a non-volatile memory device for storage the acquired data and an interface to establish the serial communications with other personal computers. (Author)

  17. Radon in the drinking water in Bavaria; Radon in Trinkwasser in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Simone; Reifenhaeuser, Christiane [Bayerisches Landesamt fuer Umwelt, Augsburg (Germany)

    2014-03-01

    The EU guideline on the requirements for the protection of the public concerning radioactive matter in water was approved in October 2013, including mandatory regulations for radon in drinking water. The guideline has to be implemented into national laws within two years. The contribution includes an overview on the radon situation in the Bavarian drinking and ground water. Increased radon concentrations are observed only in the north-eastern basement rocks. The contribution also describes facts that can influence the radon concentration in drinking and ground water. Recommendations and measures in case of increased radon concentrations are summarized for decision making support in public health departments and water treatment plants.

  18. Radon prevention coating in hot and humid environment

    International Nuclear Information System (INIS)

    The radon prevention performance of a new self-made radon prevention coating was researched in the radon contamination provided by the releasing radon modules. With coating thickness of 0.8 mm, the radon mitigation efficiency in 1# radon module concentration is optimal when the addition of defoaming agent is 0.3% (mass fraction). The radon mitigation efficiency increases with the coating thickness when the defoaming agent of 0.3% is added, but the radon mitigation efficiency tends to be stable as the coating thickness is more than 2.0 mm. The radon mitigation efficiency of radon prevention coating appended precipitated barium sulphate decreases obviously, and the addition of ash calcium, white cement and gesso don't decrease radon mitigation efficiency. The addition of white cement and gesso addition affects the radon prevention stability, while radon mitigation efficiency of radon prevention coating with ash calcium keeps a good performance. Under the hot and humid environment, the radon prevention coating still has good radon mitigation efficiency in 2# radon module concentration. (authors)

  19. Radon Concentration Intercomparison in Serbia

    International Nuclear Information System (INIS)

    According to Law on Ionizing Radiation Protection and on Nuclear Safety radioactivity testing in Serbia may be performed only by accredited laboratories. Accredited laboratories ought to participate in interlaboratory comparison or proficiency-testing programme for each accredited method. The participants in radon concentration intercomparison in 2012 in Serbia were three laboratories. The laboratories are practicing the same method for radon measurement using charcoal canisters US EPA protocol 520/5-87-005, 1987. The results of intercomparison were evaluated by using the u-test which was calculated according to the IAEA criteria. Measurements with u-score lower than or equal to 2.58 are considered acceptable. Eight canisters were exposed at two sites in Vinèa Institute, four canisters were used in each location simultaneously. Exposure times were between 2 and 3 days. Difference in masses before and after exposure was measured in order to perform the correction for humidity. Standard and background canisters are used for the calibration of the measurement equipment. Standard canister is a sealed canister with the same matrix and geometry as the canisters used for measurements, but with the known activity of radon. All eight charcoal canisters were measured in all three participating laboratories on HP Ge detectors. Each laboratory corrects the results with calibration factor and with adjustment factor obtained from canisters manufacturer. The activities of radon concentrations were calculated independently. From the comparison of the performance of these 3 laboratories, it can be seen that all of them had an excellent performance in this intercomparison, which indicates the stability of the performance of the analytical systems in these laboratories.(author)

  20. Radon risk in ore miners

    International Nuclear Information System (INIS)

    Underground workers are exposed to various clastogenic agents. One of these agents, radon, attracts attention of recent research as it causes lung cancer in the population occupationally exposed to its various concentrations especially in mine air of uranium mines or ore mines. This paper is a pilot study in which the numbers of chromosomal aberrations (CA) in lymphocytes of ore mines (Nizna Slana-iron ore, Hnusta-talc ore) located in east central Slovakia were followed and related to the lifetime underground radon exposure and to lifetime smoking. Seventy miners volunteering after an informed consent served as donors of venous blood. Twenty healthy pro-bands, age matched with the miners, which never worked underground (mostly clerks) served as donors of control blood samples. The exposure to radon and smoking has been estimated according to working-records and personal anamnesis. The findings unequivocally showed a small but statistically significant clastogenic effect of the exposure to underground environment of the mines concerned. This study has shown also a small but significant influence of smoking, which in the subgroup of miners working underground less than 1500 shifts may have acted synergically with the underground exposure. It was concluded tat: (1) Significantly higher counts of chromosomal aberrations in lymphocytes of 70 miners than in an age matched control group of 20 white-collar workers were found; (2) The higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; (3) The positive dependence of the number of chromosomal aberrations from the exposure to smoking was loose and it was expressed by significantly higher chromosomal aberrations counts in the group of miners working less than 1500 shifts underground; (4) A dependence of chromosomal aberrations counts from the exposure to radon could not be assessed. At relatively low numbers of pro-bands in subgroups it was not ruled out the confounding

  1. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    of active faults. Importantly, the study also reveals that, above numerous sediments of Kathmandu Valley, radon concentration in dwellings can potentially exceed the level of 300 Bq m-3 for residential areas; a fact that should be seriously taken into account by the governmental and non-governmental agencies as well as building authorities. (authors)

  2. Radon in Norwegian mines 1984

    International Nuclear Information System (INIS)

    Measurements of radon and radon doughters contrations in 19 Norwegian mines are now routinely performed by the National Institute of Radiation Hygiene (SIS). Passive integration radon dosimeters combining activated corbon and TLD (dosemeters developed at SIS) are used. These dosemeters that measure the mean concentration values over a certain time are managed by the protection departments of the mines. The dosemeters are sent by post to the mines, and the mines return them to SIS after irradiation for reading-off at the SIS laboratories. The Norwegian State Labour Supervision has established a concentration of 30 pCi/l (1100Bq/m3) as the limit for occupationals staying under the ground. If measured values approach this limit, SIS and State Labour Supervision will visit the mines for working out a survey for the need for remedial actions. The mean annual effective dose equivalent of Norwegian miners is appr. 7% of the ICRP limit. The value of the highest doses are appr. 35% of the ICRP limit. Remedial actions in three mines may be considered

  3. Screening measurements of radon concentration levels at a school using passive type radon monitors

    International Nuclear Information System (INIS)

    We measured the indoor radon concentration in our school of about 100 rooms using passive type radon monitors. The type of distribution of the radon concentration followed the logarithmic normal type distribution. The average concentration was about 30 Bq/m3, and the geometric average of it was 21 Bq/m3, respectively. The place of highest concentration was the terminal room of the computer center. The radon concentration of that area was about 200 Bq/m3. The second highest place was a closed off shelving room of the school library. The radon concentration values depended on the type of window frames. In the room with aluminum sash window frames, the value was relatively high. We also measured the radon concentration in the bedrooms of students' homes. We asked about 200 students to measure radon concentration in their bedrooms using the same type of radon monitors for six months. The obtained radon concentration also followed logarithmic normal type distribution. The average concentration was 8.6 Bq/m3. The students' home towns are located throughout Ibaraki-prefecture. Using the data, we got an average radon concentration for each of the cities and towns. The average radon concentrations for inland cities and towns were relatively higher than seaside towns. This experiment was a good opportunity to show students the existence of natural radioisotopes in their surroundings. (author)

  4. Screening measurements of radon concentration levels at a school using passive type radon monitors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, Takao; Soeta, Takayuki; Mori, Shinji [Ibaraki National Coll. of Technology, Hitachinaka (Japan)] [and others

    1995-01-01

    We measured the indoor radon concentration in our school of about 100 rooms using passive type radon monitors. The type of distribution of the radon concentration followed the logarithmic normal type distribution. The average concentration was about 30 Bq/m3, and the geometric average of it was 21 Bq/m3, respectively. The place of highest concentration was the terminal room of the computer center. The radon concentration of that area was about 200 Bq/m3. The second highest place was a closed off shelving room of the school library. The radon concentration values depended on the type of window frames. In the room with aluminum sash window frames, the value was relatively high. We also measured the radon concentration in the bedrooms of students` homes. We asked about 200 students to measure radon concentration in their bedrooms using the same type of radon monitors for six months. The obtained radon concentration also followed logarithmic normal type distribution. The average concentration was 8.6 Bq/m3. The students` home towns are located throughout Ibaraki-prefecture. Using the data, we got an average radon concentration for each of the cities and towns. The average radon concentrations for inland cities and towns were relatively higher than seaside towns. This experiment was a good opportunity to show students the existence of natural radioisotopes in their surroundings. (author).

  5. Radon and radon daughter measurements at and near the former Middlesex Sampling Plant, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    The results of the radon and radon daughter measurements made to date (1978) at the Middlesex Sampling Plant in Middlesex, New Jersey, are presented in this report. These measurements were one portion of a more comprehensive radiological survey conducted at this site and the surrounding area from 1976 to 1978. The surveyed property served as a uranium ore sampling plant during the 1940's and early 1950's and as a result contains elevated levels of surface an subsurface contamination. On-site indoor radon daughter and radon concentrations exceeded both the US Surgeon General Guidelines and the Nuclear Regulatory Commission's maximum permissible concentration limits for radon (10 CFR Part 20) in all structures surveyed. Off-site structures showed concentrations of radon and radon daughters at or only slightly above background levels, except for one site where the radon levels were found to be above the 10 CFR Part 20 guidelines. Outdoor radon ad radon daughter concentrations, measured both on and off the site, were well below the guidelines, and the data give no indication of significant radon transport from the site

  6. Indoor radon: controlling factors, definition of the radon potential and its geographical distribution over Austria

    International Nuclear Information System (INIS)

    Full text: For the last years indoor radon concentrations have been measured in several thousand Austrian buildings in the framework of the Austrian national radon project (OENRAP). The measured 222Rn concentrations do not only depend on local conditions related to geology and soil permeability but also on the types of the building or the room in which the measurement has been performed, like floor level or window type. Therefore, in order to produce comparable results a standardized quantity, called radon potential, must be defined. Furthermore, in order to be able to interpolate the radon potential between measured points and to draw radon maps it is necessary to quantify its spatial behaviour, like regional tendencies and spatial correlations of the radon potential of locations separated by different distances. The poster discusses the factors which control the indoor radon concentration. Among the main factors are the level of the building in which the room under consideration is located and if the building has a basement; indicating its isolation against soil gas. The poster presents a definition of the radon potential and investigates its geographical distribution over the area of Austria. It turns out that, in spite of seemingly erratic fluctuations of the radon potential which can often be observed on a local scale, on a regional scale there is a significant, systematic spatial behaviour. The resulting radon potential map is presented as well as a radon risk map based on the technique of indicator kriging. (author)

  7. Instruments and methods for measuring indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Public concern about unusually high indoor concentrations of radon in the northeastern US has greatly increased the demand for reliable, inexpensive, and portable instrumentation. Different types of information are needed to completely assess the problem of indoor radon, such as: concentrations of radon, sources and emanation and health effects. Measurement accuracy, convenience and cost also merit consideration. The techniques presently used to monitor radon and progeny are sufficiently developed to meet most of these requirements and objectives for the assessment of the radiation exposure of the general public. The types of instruments used for these measurements depend on whether one is interested in a broad-based screening survey of the indoor environment for radon, an investigation to characterize radon sources and pathways, or to help establish standards and guidelines and compliance criteria. Measurement of the airborne concentrations of radon and progeny is the most important step in estimating indoor exposure levels and in identifying a potential problem. Therefore, in this paper the authors will review and evaluate the major measurement techniques, i.e., prompt or grab sampling (active and passive). Emphasis will be placed on portable, low cost instruments, both passive and active, and on proper calibration methods in atmospheres in which radon and progeny are traceable to a primary National Bureau of Standards source. Also described for the determination of radon input into the indoor environment are techniques for measuring radon exhalation from building surfaces and the underlying soil, radon in water, and radium in the soil. 36 references, 3 tables

  8. Radon as an Anthropogenic Indoor Air Pollutant

    Science.gov (United States)

    Gillmore, Gavin; Crockett, Robin

    2016-04-01

    Radon is generally regarded as a naturally occurring radiological hazard but we report here measurements of significant, hazardous radon concentrations that arise from man-made sources, including granite ornaments/artefacts, uranium glass and glazed objects as well radium dial watches. This presentation concerns an examination and assessment of health risks from radium and uranium found in historical artefacts, many of which were once viewed as everyday items, and the radon that emanates from them. Such objects were very popular in industrialised countries such as the USA, UK and European countries) particularly between and including the two World Wars but are still readily available. A watch collection examined gave rise to a hazardous radon concentration of 13.24 kBq•m-3 approximately 67 times the Domestic Action Level of 200 Bq•m-3.The results for an aircraft altimeter are comparable to those of the watches, indicating radon activity equivalent to several watches, and also indicate an equilibrium concentration in the 16.3 m3 room ca. 33 times the UK domestic Action Level. Results from a granite block indicate a radon emanation of 19.7 Bq•kg-1, but the indicated equilibrium concentration in the 16.3 m3 room is only ca. 1.7% of the UK domestic Action Level. Uranium-glazed crockery and green uranium glass were scoped for radon activity. The former yielded a radon concentration of ca. 44 Bq•m-3 in a small (7 L) sealed container. The latter yielded a lower radon concentration in a larger (125 L) sealed container of ca. 6 Bq•m-3. This is barely above the background radon concentration in the laboratory, which was typically ca. 1-2 Bq•m-3. Individual items then are capable of giving rise to radon concentrations in excess of the UK Domestic Action Level in rooms in houses, particularly if poorly ventilated. We highlight the gap in the remediation protocols, which are focused on preventing radon entering buildings from outside, with regard to internally

  9. Radon removal system for indoor air

    International Nuclear Information System (INIS)

    Removal of radon gas using dynamic adsorption onto charcoal has received attention previously, but the method has not been used in houses because of practical considerations: (1) If the radon were retained long enough to decay away, excessive quantities of charcoal would be required. In addition, the gamma radiation from the decay products of radon would require shielding. (2) If the charcoal were regenerated using current technology, heated air would be required to strip off the radon. This regeneration method would be costly due to the energy requirements; the use of heated indoor air for regeneration followed by exhausting this air to the outdoors, would also depressurize the basement, tending to increase the influx of radon gas. In the work described here, the radon gas in a house's basement airspace is adsorbed onto charcoal; the removal efficiency is independent of the radon concentration at levels found indoors. The charcoal is regenerated by stripping off the radon with unheated outdoor air. If two adsorbent beds are used, one adsorbs radon while the other regenerates. Thus, the device can operate continuously, approaching a pseudo steady-state. A laboratory-scale prototype of this adsorption/stripping system was tested in the laboratory using various charcoals and operating conditions, including extremes of seasonal temperatures and relative humidities. Neither temperature nor relative humidity had a detrimental effect on removal efficiency. Once-through removal efficiencies were as high as 98% after multiple adsorption and stripping cycles. The efficacy of a full-scale system was evaluated in a high-radon house. The radon concentration was reduced by as much as 90%; further field tests will be done soon

  10. Remedial measures to reduce radon concentrations in a house with high radon levels

    International Nuclear Information System (INIS)

    Measures to reduce radon concentrations have been studied in an old house in which the radon decay-product concentration initially exceeded 0.3 Working Level (WL). Some of the measures were only partially successful. Installation of a concrete floor, designed to prevent ingress of radon in soil gas, reduced the radon decay-product concentration below 0.1 WL, but radon continued to enter the house through pores in an internal wall of primitive construction that descended to the foundations. Radon flow was driven by the small pressure difference between indoor air and soil gas. An under-floor suction system effected a satisfactory remedy and maintained the concentration of radon decay products below 0.03 WL

  11. Solar eruptions - soil radon - earthquakes

    International Nuclear Information System (INIS)

    For the first time a new natural phenomenon was established: a contrasting increase in the soil radon level under the influence of solar flares. Such an increase is one of geochemical indicators of earthquakes. Most researchers consider this a phenomenon of exclusively terrestrial processes. Investigations regarding the link of earthquakes to solar activity carried out during the last decade in different countries are based on the analysis of statistical data ΣΕ (t) and W (t). As established, the overall seismicity of the Earth and its separate regions depends of an 11-year long cycle of solar activity. Data provided in the paper based on experimental studies serve the first step on the way of experimental data on revealing cause-and-reason solar-terrestrials bonds in a series solar eruption-lithosphere radon-earthquakes. They need further collection of experimental data. For the first time, through radon constituent of terrestrial radiation objectification has been made of elementary lattice of the Hartmann's network contoured out by bio location method. As found out, radon concentration variations in Hartmann's network nodes determine the dynamics of solar-terrestrial relationships. Of the three types of rapidly running processes conditioned by solar-terrestrial bonds earthquakes are attributed to rapidly running destructive processes that occur in the most intense way at the juncture of tectonic massifs, along transformed and deep failures. The basic factors provoking the earthquakes are both magnetic-structural effects and a long-term (over 5 months) bombing of the surface of lithosphere by highly energetic particles of corpuscular solar flows, this being approved by photometry. As a result of solar flares that occurred from 29 October to 4 November 2003, a sharply contrasting increase in soil radon was established which is an earthquake indicator on the territory of Yerevan City. A month and a half later, earthquakes occurred in San-Francisco, Iran, Turkey

  12. Radon awareness in Ireland: a assessment of the effectiveness of radon road shows

    International Nuclear Information System (INIS)

    Full text: In late 2004 the Radiological Protection Institute of Ireland (R.P.I.I.) initiated a series of radon road shows in areas designated as High Radon Areas 1 in the R.P.I.I. s national radon survey of homes. The main objective of these road shows was to provide information to a local audience on the risks of exposure to radon. These road shows target both employers and householders. Each road show has the same general format. A presentation and/or meeting with a major employer representative group within the area. The purpose is to make employers aware of the risks associated with exposure to radon in the workplace and to highlight their obligations under current Irish health and safety legislation regarding radon in the workplace. An information stand on radon manned by R.P.I.I. staff members in a local shopping centre or other similar area. This provides those concerned about radon with accessible information on radon exposure risks, how to measure radon and the steps a home owner could take to reduce radon concentrations where necessary. Where possible R.P.I.I. staff members visit one or more schools in the general area. A short presentation on radon was given to students and students were given an opportunity to asks questions Maximizing media exposure to publicize our visits is vital to the success of these visits. Each visit is preceded by a Press Release whose main aim is to brief local and national media on the radon issue so as to achieve maximum publicity mainly through radio and television coverage. In general the media are very interested in the whole radon area and R.P.I.I. staff members have given 57 radio and 10 television interviews to date since the commencement of this initiative. The four road shows carried out to date have been successful in encouraging householders to carry out radon measurements. Since the start of the road shows to the present, the R.P.I.I. has seen a 44% increase in the number of householders requesting radon

  13. Development of a radon chamber and measurement of the radon solubility in tissues

    International Nuclear Information System (INIS)

    Every year thousands of patients with inflammatory diseases of the musculoskeletal system undergo radon therapy, but the molecular mechanism and the risk of this therapy are not understood. To study the effects of radon exposure in vitro and in vivo we constructed a radon exposure chamber in the framework of the GREWIS project. With this device we are able to expose samples under controlled and reproducible conditions including the radon galleries in Austria and Germany. Adjustable parameters are radon activity-concentration, temperature, humidity and exposure time. These parameters are permanently monitored and controlled. During experiments with cell cultures it is also possible to adjust the CO2-concentration. In addition, experiments with mice can be performed with this setup. To measure the radon kinetics in different types of tissue we exposed tissue samples like fat or muscle and mice in the radonchamber. Afterwards we measured the -spectra of the short living radon decay products lead-214 and bismuth-214 in the exposed samples with a HPGe-Detector. We recorded the spectra at different time points after exposure and calculated the initial amount of radon at the end of the exposure period in the sample and investigated the diffusion of the radon out of it. We compared the results from different types of tissue but also activated coal. In an activated coal sample the radon is bound to it via Van-der-Waals-force and the decay spectra are governed by the life time of the bound radon (3,8 days). In contrast in the biological samples the primary radon diffuses out of the samples in less than 20 minutes and the spectra follow the kinetics of the decay of the daughter products. These measurements where performed for the first time under therapy conditions like in radon galleries and also with higher radon concentration. In our experiments we could see an enhanced accumulation of radon and its decay products in fatty tissue compared to muscle tissue. Also in tendon

  14. Methods of radon remediation in Finnish dwellings

    International Nuclear Information System (INIS)

    A study was made of remedial measures taken in dwellings with high indoor radon concentrations and the results obtained. The data regarding the remedial measures taken in 400 dwellings was obtained from a questionnaire study. The mean annual average indoor radon concentration before the remedies was 1.500 Bq/m3, the concentration exceeding in nearly every house the action level of 400 Bq/m3. After the measures were taken the mean indoor radon concentration was 500 Bq/m3. The resulting indoor radon concentration was less than 400 Bq/m3 in 60 percent of the dwellings. The best results were achieved using sub-slab-suction and radon well. These methods effectively decrease both the flow of radon bearing air from soil into dwellings and the radon concentration of leakage air. Typical reduction rates in radon concentration were 70-95 percent. The action level was achieved in more than 70 percent of the houses. Sealing the entry routes and improvement of the ventilation resulted typically in reduction rates of 10-50 percent. The goal of the report is to give useful information for the house owners, the do-it-yourself-mitigators, the mitigation firms and the local authorities. The report includes practical guidance, price information and examples of remedial measures. (13 refs., 10 figs., 2 tabs.)

  15. Radon diagnostics and tracer gas measurements

    International Nuclear Information System (INIS)

    An outline is presented of the tracer gas technique, which is used for continuous measurements of air ventilation rate (generally time-varying) and for simultaneous estimation of air ventilation rate and radon entry rate, and some of its limitations are discussed. The performance of this technique in the calculation of the air ventilation rate is demonstrated on real data from routine measurements. The potential for air ventilation rate estimation based on radon measurements only is discussed. A practical application is described of the tracer gas technique to a simultaneous estimation of the air ventilation rate and radon entry rate in a real house where the effectiveness of radon remedy was tested. The following main advantages of the CO tracer gas techniques are stressed: (i) The averaging method continuous determination of the ventilation rate with good accuracy (≤ 20 %). (ii) The newly presented and verified method based on simultaneous measurements of radon concentration and CO gas concentration enables separate continuous measurements of the radon entry rate and ventilation rate. The results of comparative measurements performed with the aim to estimate the inaccuracy in determination of radon entry rate showed acceptable and good agreement up to approximately 10 %. The results of comparative measurements performed with the aim to estimate the mutual commensuration of the method to the determination of the ventilation rate confirmed the expected unreliability the two parametric non-linear regression method, which is the most frequently used method in radon diagnostic in the Czech Republic

  16. Systematic radon survey over active volcanoes

    International Nuclear Information System (INIS)

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate

  17. Radon Risk Communication Strategies: A Regional Story.

    Science.gov (United States)

    Cheng, Winnie

    2016-01-01

    Risk communication on the health effects of radon encounters many challenges and requires a variety of risk communication strategies and approaches. The concern over radon exposure and its health effects may vary according to people's level of knowledge and receptivity. Homeowners in radon-prone areas are usually more informed and have greater concern over those not living in radon-prone areas. The latter group is often found to be resistant to testing. In British Columbia as well as many other parts of the country, some homes have been lying outside of the radon-prone areas have radon levels above the Canadian guideline, which is the reason Health Canada recommends that all homes should be tested. Over the last five years, the Environment Health Program (EHP) of Health Canada in the British Columbia region has been using a variety of different approaches in their radon risk communications through social media, workshops, webinars, public forums, poster contests, radon distribution maps, public inquiries, tradeshows and conference events, and partnership with different jurisdictions and nongovernmental organizations. The valuable lessons learned from these approaches are discussed in this special report. PMID:26867298

  18. Quantitative framework for assessing indoor radon policy

    International Nuclear Information System (INIS)

    Radon gas in the indoor environment is recognized as a problem of considerable magnitude; likely responsible for 5,000 to 20,000 lung cancer deaths per year in the United States (Cohen, 1978; Nero, 1986). Radon is an inert, radioactive element in the decay chain or uranium-238 which occurs ubiquitously in soil and rock. Radon emanating from the ground enters houses through cracks and porous building materials in the substructure. Depending on characteristics of the housing design, construction and ventilation practices, dangerously high concentrations can result. The U.S. Environmental Protection Agency (EPA) has taken a lead role in addressing the indoor radon problem. Their strategy is to work with the States and the private sector to characterize the extent of exposure in problem areas and identify alternative actions to reduce health risks. Since radon poses a risk that occurs in private homes, the responsibility for testing and remediation lies largely with the homeowner. This paper presents a quantitative framework to analyze indoor radon policy on a regional scale. A model is developed which describes regional radon risk reduction in terms of the percentage of homeowners in the region who decide to monitor their homes, the likelihood of homeowners taking alternative remedial actions, and the effectiveness of remediation methods in lowering radon concentrations. Different government policies are analyzed in terms of their potential effect on model parameters and resulting risk reductions

  19. Development of a portable radon progeny monitor

    International Nuclear Information System (INIS)

    Important nuclides in the radon family contributing to the effective dose are the members of the radon short-life progeny, 218Po and 214Po and direct measurement of these progenies is suitable for dosimetry. Survey of the radon progeny concentrations in a number of dwellings and offices is very difficult because we have no convenient instrument for the measurement. At present, radon dosimetry is carried out based on the concentration of the parent radon itself. Therefore, for accurate estimation of public or personal effective dose, it is necessary to develop a facile and portable radon progeny monitor. In this study, a portable radon progeny monitor (PRPM) was designed and developed to automatically estimate the individual progeny concentration in the natural environment. The properties of PRPM were investigated. The dimensions of the entire instrument were 65 x 145 x 170 mm and the total weight was 780 g. The portability of PRPM was much superior to the conventional instrument. The PRPM can operate automatically to estimate individual progeny concentration. All component materials of the monitor were selected based on the data of specified performance, cost performance and availability bon the market. The concentration of individual radon progeny was estimated by the build-up decay. It was concluded that PRPM is much suitable for outdoor study and personal dose estimation, as well as indoor measurement. In the field survey, especially in mines and caverns, PRPM is found as a valuable and convenient instrument. (M.N.)

  20. Locating and limiting radon in dwellings

    International Nuclear Information System (INIS)

    More than 3,300 Swedish dwellings have an indoor radon daughter concentration above 400 Bq.m-3 (or 0.108 WL). It is considered to be unsafe to live in any of these dwellings and the radon daughter concentration has to be reduced. Before deciding what measures to take, it is important to determine the radon sources. Possible sources are exhalation from building materials and/or radon transport from the ground into the building through cracks and joints in the slab. Different methods of locating the sources have been developed. To locate cracks and joints in slabs the ventilation rate and the air pressure difference relative to the ground are changed while monitoring radon/radon daughter concentration. The effect of five different measures to reduce the indoor radon daughter concentration have also been evaluated: increased ventilation rate by mechanical ventilation, ventilation of the small spaces between the floor and the slab, sealing the surface of radon exhaling walls, sealing joints and cracks in the slab, and ventilation of the drainage under the slab. (author)

  1. Radon risk evaluation of building ground

    International Nuclear Information System (INIS)

    A screening of radon concentrations in houses of two quarters in the south of Dresden showed that in first floor dwellings the reference value of 250 Bq/m3 was exceeded in 10% and 30% of the cases, respectively, with maximum values of 5300 and 6300 Bq/m3, respectively. By instruction of the municipality of Dresden, department of environmental protection, investigations were carried out for predicting the radon risk of any building site inside the town's area. By evaluating of measured concentrations of radium 226 in soils and in bedrocks as well as radon in the soil air, by evaluating of geologic data and maps and by modelling based on geologic data the town's area of Dresden could be classified in areas of negligible, normal high and very high radon risk and in a radon risk area caused by former mining and burning of uranium contaminated pitch coal. On the basis of measured or calculated data on radium and radon concentrations, air permebailities of soils, effectiv migration length of radon in soils and soil thickness between the slab and the underlying bedrock a method was recommended for evaluating the radon risk of a given building ground. (orig.)

  2. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  3. Atmospheric radon families and environmental radioactivity

    International Nuclear Information System (INIS)

    The Committee on Investigation and Research Regarding the Effect of Radon in the Atmosphere Exerted on Environmental Radioactivity was organized, in 1982, in order to carry out the research and discussion on radon and joint observation. As the results, the following facts were revealed: (1) the effectiveness of various methods of measuring environmental radon and its daughters, for example, Track Etch Detectors for the deposition rate of airborne radon daughters, (2) the analysis of radon family concentration from the viewpoint of geophysical phenomena, for instance, the relationships among the concentration, wind speed, solar radiation, net radiation, atmospheric stability, precipitation snow cover, and diffusion equation. And it was also reveleaed that the exhalation rate of radon at Siberia in winter is not low in spite of low temperature, and that the scavenging effect of snowfall to radon daughters is large, from the comparison between the atmospheric radon daughters concentrations at the Japan Sea and at Fukui located at north part of Central Japan. (J.P.N.)

  4. Characterization of radon levels in indoor air

    Energy Technology Data Exchange (ETDEWEB)

    George, A.C.

    1982-01-01

    The purpose is to describe the different types of monitoring and sampling techniques that can determine the radiation burden of the general public from radon and its decay products. This is accomplished by measuring the range and distribution of radon and radon decay products through broad surveys using simple and convenient integrating monitoring instruments. For in-depth studies of the behavior of radon decay products and calculation of the radiation dose to the lung, fewer and more intensive and complex measurements of the particle size distribution and respiratory deposition of the radon decay products are required. For diagnostic purposes, the paper describes measurement techniques of the sources and exhalation rate of radon and the air exchange inside buildings. Measurement results form several studies conducted in ordinary buildings in different geographical areas of the United States, using the described monitoring techniques, indicate that the occupants of these buildings are exposed to radon and radon decay product concentrations, varying by as much as a factor of 20.

  5. Radon measurements in mines and dwellings

    International Nuclear Information System (INIS)

    Radon measurements using a time integrating passive radon dosemeter (MAKROFOL track etch detector) have been performed in Brazilian and German mines and dwellings. The present state of the measurement technique is summarized. The results are presented together with exposure calculations and dose estimations for occupational exposure in open pit and underground mines and for the general public in houses. (orig./HP)

  6. Radon concentration in thermal waters of Venezuela

    International Nuclear Information System (INIS)

    The radon content in thermal waters of Venezuela has been measured, and a method for carrying out serial measurements has been developed. Besides radon, the thorium and radium content has also been measured. Drinking water sources in the area of Caracas has also been measured. (K.A.)

  7. Radon makes trouble between expert committees

    International Nuclear Information System (INIS)

    This article highlights the disagreement between 2 scientific commissions about the maximal acceptable concentration of radon. 1000 or 400 becquerels for each cubic-meter of air (Bq/m3). Information about the average concentration of radon in the different French departments is given by means of a map. (A.C.)

  8. Sources and protective measures of indoor radon

    International Nuclear Information System (INIS)

    This paper presents the relative contribution to indoor radon 222Rn of various sources in twenty three rooms of three kinds in Taiyuan area. The results show that the major sources in this area are radon emanation from surfaces of soil and building materials and that from outdoor air, while the contribution of water and gas consumed in the rooms is less important. These results suggest a basis for taking suitable protective measures against indoor radon. Some materials are also recommended which are effective in restraining radon exhalation and low in price, by testing more than ten kinds of materials and comparing them using cost-effectiveness analysis technique, such as painting materials, polyvinyl alcohol (CH2:CHOH)n, etc. Their sealing effects on radon exhalation were examined with home-made REM-89 Radon Exhalation Monitor. The deposition effects of negative ion generator and humidifier on radon progeny were also tested. The maximum deposition may reach 70-90%, which proves they are also effective and economical in radon protection. (2 tabs., 3 figs.)

  9. Nuclear literacy in light of radon

    International Nuclear Information System (INIS)

    Since 1992 the RAD Lauder Laboratory has carried out a survey of indoor radon levels all over Hungary. The co-workers of RAD Lauder were pupils and teachers in local schools. More than 50,000 people have taken the survey and received detailed information on the radon levels in their homes. (authors)

  10. A complete low cost radon detection system

    International Nuclear Information System (INIS)

    Monitoring the 222Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center. - Author-Highlights: • Low cost radon detection. • Integrated GSM modem for early warning of radon anomalies. • Radon detection in environment

  11. Removal of Radon from Household Water.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Research and Development.

    By far, the greatest risk to health from radon occurs when the gas enters the house from underlying soil and is inhaled. The U.S. Environmental Protection Agency (EPA) is studying ways to reduce radon in houses, including methods to remove the gas from water to prevent its release in houses when the water is used. While this research has not…

  12. Radon Measurements in Schools: An Interim Report.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Radiation Programs.

    Radon-222 is a colorless, odorless, tasteless, radioactive gas that occurs naturally in soil, rocks, underground water, and air. The United States Environmental Protection Agency (EPA) and other scientific organizations have identified an increased risk of lung cancer associated with exposure to elevated levels of radon in homes. Schools in many…

  13. Radon Measurement in Schools. Revised Edition.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    The Environmental Protection Agency (EPA) and other major national and international scientific organizations have concluded that radon is a human carcinogen and a serious environmental health problem. The EPA has conducted extensive research on the presence and measurement of radon in schools. This report provides school administrators and…

  14. Radon Reduction Methods: A Homeowner's Guide.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) is studying the effectiveness of various ways to reduce high concentrations of radon in houses. This booklet was produced to share what has been learned with those whose radon problems demand immediate action. The booklet describes nine methods that have been tested successfully--by EPA and/or other…

  15. Effects of radon in indoor air studied

    International Nuclear Information System (INIS)

    Radon is an odorless, tasteless and colourless radioactive noble gas that enters indoor air from the ground. Radon causes lung cancer. A committee set up to evaluate the health risks of chemical substances has been drafting a report on radon, which will compile the major research findings on the lung cancer risk posed by radon. Animal tests have shown that even small doses of radon can cause lung cancer. Smokers seem to contract radon-induced lung cancer more readily than non-smokers. Because research findings have been conflicting, however, it is not known exactly how high the risk of lung cancer caused by indoor radon exposure really is. Several major research projects are under way to obtain increasingly accurate risk assessments. An on-going European joint project brings together several studies - some already finished, some still being worked on. In this way it will be possible to get more accurate risk assessments than from individual studies. In order to prevent lung cancer, it is important to continue the work of determining and reducing radon connects and to combat smoking. (orig.)

  16. Drinking-water criteria document for radon (draft). Scientific review

    International Nuclear Information System (INIS)

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a Drinking Water Criteria Document on Radon. The document is an extensive review of radon on the following topics: Physical and chemical properties; Toxicokinetics and human exposure; Health effects of radon; Mechanisms of toxicity of radon; Quantification of toxicological effects

  17. Determination of radon prone areas by optimized binary classification

    International Nuclear Information System (INIS)

    Geogenic radon prone areas are regions in which for natural reasons elevated indoor radon concentrations must be expected. Their identification is part of radon mitigation policies in many countries, as radon is acknowledged a major indoor air pollutant, being the second cause of lung cancer after smoking. Defining and estimating radon prone areas is therefore of high practical interest. In this paper a method is presented which uses the geogenic radon potential as predictor and thresholds of indoor radon concentration for defining radon prone areas, from which thresholds for the geogenic radon potential are deduced which decide whether a location is flagged radon prone or not, in the absence of actual indoor observations. The overall results are different maps of radon prone areas, derived from the geogenic radon map, and depending (1) on the criterion which defines what a radon prone area is; and (2) on the choice of score whose maximization defines the optimal classifier. Such map is not the result of a transfer model (geogenic to indoor radon), but of the optimization of a classification rule. The method is computationally simple but has its caveats and statistical traps, some of which are also addressed. - Highlights: • A classification-based method for estimating radon prone areas. • Geogenic radon potential as predictor. • Optimization of ROC graphs

  18. Radiological impact of presence of radon, thoron and their progeny in the environment of LPG bottling plant

    International Nuclear Information System (INIS)

    Complete text of publication follows. The problem of radon, a ubiquitously present radioactive gas, is an important global problem of radiation hygiene concerning the world population. Measurement of radon, thoron and their progeny is important because the radiation dose to human population due to inhalation of radon and its progeny contribute more than 50% of the dose from all sources of radiation, both naturally occurring and man-made (UNSCEAR, 2000). The estimated level of health risk associated with average indoor radon levels is much higher than those due to other environmental carcinogen (Nazaroff and Nero, 1988). Recently, a pooled analysis of seven case control studies showed a positive correlation between residential exposure to radon and lung cancer (Krewski et al., 2005). The U.S. Environmental Protection Agency (EPA) currently recommends that all levels beneath the third floor be tested for radon (USEPA, 2005). In this light, tracking indoor radon concentration is thus fundamental from health and hygiene point of view. In the present work, the inhalation dose rates, annual effective dose and the lifetime fatality risk to the workers in the LPG bottling plant due to exposure from the mixed field of radon and thoron were measured. The measurements have been carried out by using tracks etch technique using solid state nuclear track detectors (SSNTDs) has been used. It is one of the most widely used techniques for radon measurement. The radon and thoron concentration and the inhalation dose were found to vary from 7.78±2.02 Bq/m3 to 59.01±5.57 Bq/m3, 1.16±0.28 Bq/m3 to 65.08±5.09 Bq/m3, and 0.23 mSv/y to 2.29 mSv/y respectively. The concentration of radon daughters was found to vary from 0.84 mWL to 6.38 mWL, the concentration of thoron daughters was found to vary from 0.03 mWL to 1.76 mWL, the annual exposure due to radon and thoron daughters, collectively, was found to vary from 0.036 WLM to 0.273 WLM, the life time fatality risk was found to vary

  19. Radon risk perception and testing: Sociodemographic correlates

    International Nuclear Information System (INIS)

    While numerous health education campaigns have been carried out to alert the public to radon's potential dangers and to encourage testing and mitigation, there has been little follow-up to determine which segments of the public are now most aware of the possible hazards of radon. Using information from the 1990 National Health Interview Survey (NHIS), the authors have examined beliefs regarding radon and radon-testing activities among different sociodemographic groups. They used logistic regression to determine the relationship between these beliefs and actions and age, gender, education, income, minority status, and smoking status. The results suggest relatively superficial knowledge regarding radon, and very little testing, within the survey population. In particular, significantly less knowledge was observed among female and minority respondents, while less testing behavior was seen among older respondents. Lower educational levels and lower family income were associated with both decreased knowledge and testing. Recommendations for future education campaigns are discussed

  20. Indoor radon risk potential of Hawaii

    International Nuclear Information System (INIS)

    A comprehensive evaluation of radon risk potential in the State of Hawaii indicates that the potential for Hawaii is low. Using a combination of factors including geology, soils, source-rock type, soil-gas radon concentrations, and indoor measurements throughout the state, a general model was developed that permits prediction for various regions in Hawaii. For the nearly 3,100 counties in the coterminous U.S., National Uranium Resource Evaluation (NURE) aerorad data was the primary input factor. However, NURE aerorad data was not collected in Hawaii, therefore, this study used geology and soil type as the primary and secondary components of potential prediction. Although the radon potential of some Hawaiian soils suggests moderate risk, most houses are built above ground level and the radon soil potential is effectively decoupled from the house. Only underground facilities or those with closed or recirculating ventilation systems might have elevated radon potential. (author)