WorldWideScience

Sample records for amelogenesis imperfecta due

  1. Amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    K P Mahesh

    2012-01-01

    Full Text Available Amelogenesis imperfecta (AI represents a group of developmental disorder of teeth structure, genomic in origin, which affects the structure and clinical appearance of enamel of all or nearly all the teeth, and which may be associated with morphologic or biochemical changes elsewhere in the body. It can be hypoplastic, hypomineralized, or both. Teeth affected may be discoloured, sensitive, or prone to disintegration. A case of yellow brown discoloration in a hindu female aged 26, reported with same chief complaint. On examination of the patient, generalized yellowish brown discoloration of the teeth was seen. Radiographic and histopathologic examination confirms the diagnosis of AI.

  2. Genetics Home Reference: amelogenesis imperfecta

    Science.gov (United States)

    ... Me Understand Genetics Home Health Conditions amelogenesis imperfecta amelogenesis imperfecta Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Amelogenesis imperfecta is a disorder of tooth development. This ...

  3. Amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Aldred Michael

    2007-04-01

    Full Text Available Abstract Amelogenesis imperfecta (AI represents a group of developmental conditions, genomic in origin, which affect the structure and clinical appearance of enamel of all or nearly all the teeth in a more or less equal manner, and which may be associated with morphologic or biochemical changes elsewhere in the body. The prevalence varies from 1:700 to 1:14,000, according to the populations studied. The enamel may be hypoplastic, hypomineralised or both and teeth affected may be discoloured, sensitive or prone to disintegration. AI exists in isolation or associated with other abnormalities in syndromes. It may show autosomal dominant, autosomal recessive, sex-linked and sporadic inheritance patterns. In families with an X-linked form it has been shown that the disorder may result from mutations in the amelogenin gene, AMELX. The enamelin gene, ENAM, is implicated in the pathogenesis of the dominant forms of AI. Autosomal recessive AI has been reported in families with known consanguinity. Diagnosis is based on the family history, pedigree plotting and meticulous clinical observation. Genetic diagnosis is presently only a research tool. The condition presents problems of socialisation, function and discomfort but may be managed by early vigorous intervention, both preventively and restoratively, with treatment continued throughout childhood and into adult life. In infancy, the primary dentition may be protected by the use of preformed metal crowns on posterior teeth. The longer-term care involves either crowns or, more frequently these days, adhesive, plastic restorations.

  4. Esthetic and functional rehabilitation of mutilated dentition and loss of vertical dimension due to amelogenesis imperfecta.

    Science.gov (United States)

    Mittal, Shweta; Tewari, Sanjay; Goel, Rajat

    2014-04-01

    Cases of severe attrition are a common finding. Among the congenital anomalies, amelogenesis imperfecta and dentinogenesis imperfecta are important conditions that may cause accelerated wear of teeth. The following case report describes the complete oral rehabilitation of a patient diagnosed with amelogenesis imperfecta. A detailed treatment plan was chalked out which included proper oral hygiene measures, restoration of carious teeth and endodontic treatment followed by foundation restorations of teeth that were crucial for the final prostheses. Patient was given transitional restorations for about 6 weeks with the aim of regaining the lost vertical dimensions. Final rehabilitation was done by fixed dental prostheses.

  5. Amelogenesis imperfecta: an introduction.

    Science.gov (United States)

    Gadhia, K; McDonald, S; Arkutu, N; Malik, K

    2012-04-27

    Amelogenesis imperfecta (AI) is an inherited disorder that is associated with mutations in five genes (AMEL; ENAM; MMP20; KLK4 and FAM83H) with a wide range of clinical presentations (phenotypes). It affects the structure and appearance of enamel of all teeth, both in the primary and secondary dentition. In this review paper, we look at the epidemiology, classification, aetiology, clinical description and diagnosis of AI. In the following three papers of this series, we aim to describe the role of paediatric dentists, orthodontists and restorative dentists in the clinical management of patients with AI.

  6. Amelogenesis imperfecta: a clinician's challenge.

    Science.gov (United States)

    Chamarthi, V; Varma, B R; Jayanthi, M

    2012-01-01

    Defective enamel formation can be explained as defects occurring at the stages of enamel formation. Quantitative defects in matrix formation leads to hypoplastic form of amelogenesis imperfecta. Inadequate mineralization of matrix leads to hypocalcification and hypomaturation variants. The demarcation of matrix formation and mineralization is not so distinct. This paper describes a case of a 7-year-old boy with amelogenesis imperfecta - Type IA i.e., hypoplastic pitted autosomal dominant.

  7. Amelogenesis imperfecta: the orthodontic perspective.

    Science.gov (United States)

    Arkutu, N; Gadhia, K; McDonald, S; Malik, K; Currie, L

    2012-05-25

    Orthodontics in patients with amelogenesis imperfecta can be complicated by commonly occurring dental features in this group as well as patient factors. In this article we examine ways to avoid the common pitfalls of orthodontic management and the importance of adequate and timely liaison between the general dental practitioner and the multidisciplinary team.

  8. AMELOGENESIS IMPERFECTA: A CLINICAL REPORT

    Directory of Open Access Journals (Sweden)

    Veena

    2015-01-01

    Full Text Available AIM: This clinical case report describes the oral rehabilitation of a young adult female patient diagnosed with hypoplastic Amelogenesis imperfecta. SUMMARY : Amelogenesis Imperfecta is a hereditary condition that affects the formation of the enamel mineralization process of both the primary and secondary dentition. It is clinically and genetically heterogeneous grou p of condition that affects both the quantity and quality of the enamel structure resulting in extensive loss of tooth tissue , poor esthetics and tooth sensitivity. The main objective for the selected treatment was to enhance the esthetics , and restoring m asticatory function. Treatment was divided into phases which included removal of impacted canine , lengthening of the maxillary and mandibular clinical crowns , and placement of anterior and posterior crowns.

  9. Enamel formation and amelogenesis imperfecta.

    Science.gov (United States)

    Hu, Jan C-C; Chun, Yong-Hee P; Al Hazzazzi, Turki; Simmer, James P

    2007-01-01

    Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel.

  10. Multiple unerupted teeth with amelogenesis imperfecta in siblings.

    Science.gov (United States)

    Hegde, Shruthi

    2012-05-01

    Amelogenesis imperfecta encompasses a group of inherited abnormalities that are generally considered to primarily affect the formation and/or calcification of enamel. This case report describes the unusual presentation of amelogenesis imperfecta in siblings as multiple unerupted teeth, multiple pulpal calcifications, and multiple dilacerations of roots along with the defect in the enamel. The intent of our report is to highlight a rare co-occurrence of amelogenesis imperfecta with multiple morphologic alterations in siblings.

  11. Multiple Unerupted Teeth with Amelogenesis Imperfecta in Siblings

    Directory of Open Access Journals (Sweden)

    Shruthi Hegde

    2012-01-01

    Full Text Available Amelogenesis imperfecta encompasses a group of inherited abnormalities that are generally considered to primarily affect the formation and/or calcification of enamel. This case report describes the unusual presentation of amelogenesis imperfecta in siblings as multiple unerupted teeth, multiple pulpal calcifications, and multiple dilacerations of roots along with the defect in the enamel. The intent of our report is to highlight a rare co-occurrence of amelogenesis imperfecta with multiple morphologic alterations in siblings.

  12. Amelogenesis imperfecta and localised aggressive periodontitis: A rare clinical entity

    Directory of Open Access Journals (Sweden)

    Gayatri Gundannavar

    2013-01-01

    Full Text Available This case report presents two female patients whose chief complaint was discoloration of teeth. On careful clinical examination it was found that the patients had features of amelogenesis imperfecta and localised aggressive periodontitis. This article will give an insight of clinical and radiographic features of amelogenesis imperfecta with localised aggressive periodontitis, which is a rare clinical entity.

  13. Amelogenesis imperfecta and localised aggressive periodontitis: A rare clinical entity.

    Science.gov (United States)

    Gundannavar, Gayatri; Rosh, Radhika M; Chandrasekaran, Shoba; Hussain, Ahad M

    2013-01-01

    This case report presents two female patients whose chief complaint was discoloration of teeth. On careful clinical examination it was found that the patients had features of amelogenesis imperfecta and localised aggressive periodontitis. This article will give an insight of clinical and radiographic features of amelogenesis imperfecta with localised aggressive periodontitis, which is a rare clinical entity.

  14. Amelogenesis imperfecta: review of diagnostic findings and treatment concepts.

    Science.gov (United States)

    Sabandal, Martin M I; Schäfer, Edgar

    2016-09-01

    Mineralization defects like amelogenesis imperfecta are often of hereditary origin. This article reviews the diagnostic findings and summarizes the suggested treatment approaches. Currently, there are no defined therapy recommendations available for patients suffering from amelogenesis imperfecta. The mentioned therapies are more or less equal but no comprehensive therapy recommendation is evident. When treating patients suffering from amelogenesis imperfecta, a comprehensive therapy of almost every dental discipline has to be considered. The earlier the diagnosis of amelogenesis imperfecta is confirmed, the better the outcome is. Optimal treatment approaches consist of early diagnosis and treatment approach and frequent dental recall appointments to prevent progressive occlusal wear or early destruction by caries. Full-mouth prosthetic treatment seems to be the best treatment option.

  15. Amelogenesis Imperfecta with Coronal Resorption: Report of Three Cases.

    Science.gov (United States)

    Bhatia, Shannu K; Hunter, M Lindsay; Ashley, Paul F

    2015-12-01

    Intracoronal resorption of the permanent dentition in cases of amelogenesis imperfecta (AI) is a rare finding which poses an added complication to the already complex management of this condition. This paper presents three cases of AI associated with delayed eruption of permanent teeth in which asymptomatic intracoronal resorption occurred. CPD/Clinical Relevance: This paper highlights the fact that teeth affected with amelogenesis imperfecta may undergo asymptomatic intracoronal resorption which is only identifiable radiographically.

  16. Amelogenesis Imperfecta, Facial Esthetics and Snap-On Smile.

    Science.gov (United States)

    Wilson, Lee; Bradshaw, Jonathan P; Marks, Murray K

    2015-01-01

    Amelogenesis imperfecta is a hereditary enamel protein disorder affecting deciduous and secondary crown formation. The prevalence ranges from 1:700 to 1:14,000 depending on the population. These teeth may be hypoplastic, hypomineralized, or hypermineralized and are often discolored, sensitive and caries vulnerable. Patients often present with psychosocial issues due to appearance. Primary teeth are often treated with stainless steel crowns while secondary teeth are treated with full coverage esthetic crowns. The presenting preteen male here was fitted with Snap-On Smile? (www.snaponsmile.com). This treatment option provided cosmetic enhancement of the patient's appearance besides stabilization without altering the primary and secondary dentition during adolescent development.

  17. Amelogenesis imperfecta and the treatment plan - interdisciplinary team approach.

    Science.gov (United States)

    Suchancova, B; Holly, D; Janska, M; Stebel, J; Lysy, J; Thurzo, A; Sasinek, S

    2014-01-01

    Amelogenesis imperfecta is a set of hereditary defects representing mainly the development defects of enamel without the presence of whole-body symptoms. Developmental disorders can manifest a complete absence of enamel, which is caused by improper differentiation of ameloblasts. This article describes the diagnosis and treatment of a patient with amelogenesis imperfecta, as well as the need for interdisciplinary cooperation to achieve the best possible morphological, skeletal, functional and aesthetic rehabilitation of the patients with this diagnosis. Furthermore, the article reviews literature dealing with other anomalies occurring in association with amelogenesis imperfect (Fig. 12, Ref. 20).

  18. Interradicular dentin dysplasia associated with amelogenesis imperfecta with taurodontism or trichodentoosseous syndrome: A diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Veda Hegde

    2014-01-01

    Full Text Available Amelogenesis imperfecta is a hereditary disorder with diverse clinical presentation, where enamel is the tissue that is primarily affected either quantitatively or qualitatively. Hypomaturation/hypoplastic amelogenesis imperfecta with taurodontism is a rare variant of amelogenesis imperfecta which is often confused with trichodentoosseous syndrome. We report a rare case of hereditary enamel defect with taurodontism associated with interradicular dentin dysplasia.

  19. Interradicular dentin dysplasia associated with amelogenesis imperfecta with taurodontism or trichodentoosseous syndrome: a diagnostic dilemma.

    Science.gov (United States)

    Hegde, Veda; Srikanth, K

    2014-01-01

    Amelogenesis imperfecta is a hereditary disorder with diverse clinical presentation, where enamel is the tissue that is primarily affected either quantitatively or qualitatively. Hypomaturation/hypoplastic amelogenesis imperfecta with taurodontism is a rare variant of amelogenesis imperfecta which is often confused with trichodentoosseous syndrome. We report a rare case of hereditary enamel defect with taurodontism associated with interradicular dentin dysplasia.

  20. Enamelin and autosomal-dominant amelogenesis imperfecta.

    Science.gov (United States)

    Hu, J C-C; Yamakoshi, Y

    2003-01-01

    Dental enamel forms as a progressively thickening extracellular layer by the action of proteins secreted by ameloblasts. The most abundant enamel protein is amelogenin, which is expressed primarily from a gene on the X-chromosome (AMELX). The two most abundant non-amelogenin enamel proteins are ameloblastin and enamelin, which are expressed from the AMBN and ENAM genes, respectively. The human AMBN and ENAM genes are located on chromosome 4q13.2. The major secretory products of the human AMELX, AMBN, and ENAM genes have 175, 421, and 1103 amino acids, respectively, and are all post-translationally modified, secreted, and processed by proteases. Mutations in AMELX have been shown to cause X-linked amelogenesis imperfecta (AI), which accounts for 5% of AI cases. Mutations in ENAM cause a severe form of autosomal-dominant smooth hypoplastic AI that represents 1.5%, and a mild form of autosomal-dominant local hypoplastic AI that accounts for 27% of AI cases in Sweden. The discovery of mutations in the ENAM gene in AI kindreds proved that enamelin is critical for proper dental enamel formation and that it plays a role in human disease. Here we review how enamelin was discovered, what is known about enamelin protein structure, post-translational modifications, processing by proteases, and its potentially important functional properties such as its affinity for hydroxyapatite and influence on crystal growth in vitro. The primary structures of human, porcine, mouse, and rat enamelin are compared, and the human enamelin gene, its structure, chromosomal localization, temporal and spatial patterns of expression, and its role in the etiology of amelogenesis imperfecta are discussed.

  1. Interdisciplinary approach to oral rehabilitation of patient with amelogenesis imperfecta.

    Science.gov (United States)

    Yilmaz, Burak; Oz, Ulas; Yilmaz, Hasan Guney

    2014-03-01

    Amelogenesis imperfecta is a hereditary condition that affects the development of enamel, causing quantity, structural and compositional anomalies that involve all dentitions. Consequently, the effects can extend to both the primary and secondary dentitions. Patients with amelogenesis imperfecta may present with clinical difficulties, such as insufficient crown length, tooth sensitivity and orthodontic discrepancies, all of which can be resolved successfully with an interdisciplinary approach. This case report describes the interdisciplinary approach to the treatment of a 22-year-old patient with amelogenesis imperfecta. The proper alignment of anterior teeth and gingivo-cervical line was provided with orthodontic and periodontal treatments. All-ceramic crowns were placed on anterior, and metal-ceramic restorations were placed on posterior teeth to reduce sensitivity and improve esthetics with function. Improved esthetic appearance, reduced tooth sensitivity and the resolution of a potentially harmful psychosocial condition were achieved. Patient remained satisfied in the 12-month follow-up examination.

  2. Amelogenesis imperfecta: A challenge to restoring esthetics and function

    Directory of Open Access Journals (Sweden)

    Ranganath V

    2010-01-01

    Full Text Available Rehabilitation of complicated cases poses difficulty in clinical practice, both with respect to restoring function and with esthetics. One such clinical condition where the dentist has to give importance to proper planning of the treatment and execution of the plan is amelogenesis imperfecta (AI, a condition where both function and esthetics are accommodated. This article discusses both the functional and esthetic rehabilitation of a patient with AI. Both the esthetics and function were hampered in this patient due to the condition. As a result, the treatment was properly planned and executed. A number of treatment options are available for us today to treat such a case. There is no one technique to be followed as such. However, the aim was to properly diagnose the case and provide good function and esthetics to the patient.

  3. Rehabilitation of amelogenesis imperfecta using a reorganized approach: a case report.

    Science.gov (United States)

    Chan, Kingsley H C; Ho, Edward H T; Botelho, Michael G; Pow, Edmond H N

    2011-05-01

    Amelogenesis imperfecta is a genetic disorder that causes defective enamel development in both the primary and permanent dentitions. Significant tooth structure damage often results in various pulpal symptoms, occlusal disharmony, impaired function, and esthetic disfigurement. These problems pose great challenges to the clinician when rehabilitating patients with amelogenesis imperfecta. This case report describes an uncomplicated and logical way to reorganize, temporize, and completely restore an extensively damaged dentition caused by amelogenesis imperfecta.

  4. Amelogenesis imperfecta and anterior open bite: Etiological, classification, clinical and management interrelationships.

    Science.gov (United States)

    Alachioti, Xanthippi Sofia; Dimopoulou, Eleni; Vlasakidou, Anatoli; Athanasiou, Athanasios E

    2014-01-01

    Although amelogenesis imperfecta is not a common dental pathological condition, its etiological, classification, clinical and management aspects have been addressed extensively in the scientific literature. Of special clinical consideration is the frequent co-existence of amelogenesis imperfecta with the anterior open bite. This paper provides an updated review on amelogenesis imperfecta as well as anterior open bite, in general, and documents the association of these two separate entities, in particular. Diagnosis and treatment of amelogenesis imperfecta patients presenting also with anterior open bite require a lengthy, comprehensive and multidisciplinary approach, which should aim to successfully address all dental, occlusal, developmental, skeletal and soft tissue problems associated with these two serious clinical conditions.

  5. Characterization of the nanoscratch, microstructure, and composition in hypoplastic amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Ping Qing

    2015-07-01

    Full Text Available Hypoplastic amelogenesis imperfecta is a widespread hereditary disease that causes the loss of enamel. The purpose of this study was to investigate the nanoscratch resistance of hypoplastic amelogenesis imperfecta for providing a reference for restorative treatment. Four unerupted third molars from a patient diagnosed with hypoplastic amelogenesis imperfecta and seven unerupted third molars from normal individuals were compared. Atomic force microscopy and energy-dispersive X-ray spectroscopy were used to observe the microstructure and composition of the teeth (enamel and dentin. The nanoscratch tests of teeth (enamel and dentin were investigated using a nanoscratch tester, scanning electron microscopy, and a stylus profilometer. The results indicated that hypoplastic amelogenesis imperfecta teeth had different microstructures compared to normal teeth. Hypoplastic amelogenesis imperfecta demonstrated a higher composition of organic substance. Meanwhile, the friction coefficient of hypoplastic amelogenesis imperfecta was higher than that of normal teeth, and inferior frictional resistance of hypoplastic amelogenesis imperfecta teeth was observed. The main damaging mechanisms observed in hypoplastic amelogenesis imperfecta under nanoscratch were the combination of delamination, debris, and cracks in enamel with delamination, debris, and plastic deformation in dentin. Our findings suggested that new dental restorative materials should be selected to match the mechanical properties of hypoplastic amelogenesis imperfecta.

  6. Homozygous and compound heterozygous MMP20 mutations in amelogenesis imperfecta.

    Science.gov (United States)

    Gasse, B; Karayigit, E; Mathieu, E; Jung, S; Garret, A; Huckert, M; Morkmued, S; Schneider, C; Vidal, L; Hemmerlé, J; Sire, J-Y; Bloch-Zupan, A

    2013-07-01

    In this article, we focus on hypomaturation autosomal-recessive-type amelogenesis imperfecta (type IIA2) and describe 2 new causal Matrix metalloproteinase 20 (MMP20) mutations validated in two unrelated families: a missense mutation p.T130I at the expected homozygous state, and a compound heterozygous mutation having the same mutation combined with a nucleotide deletion, leading to a premature stop codon (p.N120fz*2). We characterized the enamel structure of the latter case using scanning electron microscopy analysis and microanalysis (Energy-dispersive X-ray Spectroscopy, EDX) and confirmed the hypomaturation-type amelogenesis imperfecta as identified in the clinical diagnosis. The mineralized content was slightly decreased, with magnesium substituting for calcium in the crystal structure. The anomalies affected enamel with minimal inter-rod enamel present and apatite crystals perpendicular to the enamel prisms, suggesting a possible new role for MMP20 in enamel formation.

  7. Minimally invasive rehabilitation of a patient with amelogenesis imperfecta

    OpenAIRE

    Büchi, Dominik; Fehmer, Vincent; Sailer, Irena; Wolleb, Karin; Jung, Ronald

    2014-01-01

    This case report describes a minimally invasive step-by-step approach to treat a patient with amelogenesis imperfecta. This is a genetic developmental disorder of the dental enamel, which clinically manifests as white and dark discolorations of the teeth. The clinical examination did not reveal the true depth of the staining. Therefore, a step-wise treatment approach was chosen. The first step consisted of a home bleaching procedure, which led to a slight improvement of the esthetic appearanc...

  8. Immediate Desensitization in Teeth Affected by Amelogenesis Imperfecta

    OpenAIRE

    Moreira,Rudá França; Figueiredo,Rossana Gomes; Oliveira,Henrique Eduardo de; Fonseca,Ana Christina Lamosa da; Miranda,Mauro Sayão de

    2016-01-01

    Abstract The aim of this paper was to describe a clinical case of immediate dental desensitization using a self-etch adhesive system in an adolescent patient diagnosed with amelogenesis imperfecta (AI). AI was associated with severe tooth sensitivity, treated by the application of a universal adhesive system for desensitization of the teeth affected by AI. Reduction of tooth sensitivity was assessed using a visual analog scale during all reevaluations. The technique was effective for reducing...

  9. Noninvasive esthetic treatment for hypomaturation amelogenesis imperfecta: a case report.

    Science.gov (United States)

    Nahsan, Flávia Pardo Salata; Silva, Luciana Mendonça da; Lima, Thiago Mendes de; Bertocco, Verônica Pereira de Lima; Chui, Fabíola Mendonça da Silva; Martins, Leandro de Moura

    2016-01-01

    Enamel alterations, such as amelogenesis imperfecta, can compromise the harmony of the smile and the patient's self-esteem and may cause tooth sensitivity. A simple and effective treatment approach uses the natural stratification of composite resins to mask deficient enamel formation and mimic the natural appearance of the substrate. The operative steps and principles for restorative success are described in this case report with 36-month follow-up.

  10. Early restorative rehabilitation of children and adolescents with amelogenesis imperfecta

    OpenAIRE

    Pousette Lundgren, Gunilla

    2015-01-01

    Amelogenesis imperfecta (AI) is a rare, genetically determined defect in enamel mineralization. Patients with (AI) can present with rapid tooth loss or fractures of enamel and dental sensitivity as well as alterations in enamel thickness, color, and shape. These factors may compromise esthetic appearance and masticatory function. Existing treatment recommendations suggest using resin composite restorations until adulthood, although such restorations have a limited longevity. The mai...

  11. Amelogenesis Imperfecta - An account of Three Generations affected in a Family

    Directory of Open Access Journals (Sweden)

    G Sarat

    2004-01-01

    Full Text Available Amelogenesis Imperfecta is a hereditary condition affecting dental enamel without any systemic manifestation. This condition can be inherited as either Autosomal or X-linked. In this case report, we discuss with the help of Pedigree Analysis, an account of three generations in a family affected by Autosomal Dominant, Hypoplastic type of Amelogenesis Imperfecta.

  12. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid.

  13. Crown lengthening procedure in the management of amelogenesis imperfecta

    Science.gov (United States)

    Kalaivani, S.; Manohar, Jenish; Shakunthala, P.; Sujatha, S.; Rajasekaran, S. A.; Karthikeyan, B.; Kalaiselvan, S.

    2015-01-01

    Full mouth rehabilitation includes a promising treatment planning and execution thus fulfilling esthetic, occlusal, and functional parameters maintaining the harmony of the stomatognathic system. Crown lengthening procedures have become an integral component of the esthetic armamentarium and are utilized with increasing frequency to enhance the appearance of restorations placed in the esthetic zone. Crown lengthening plays a role to create healthy relationship of the gingiva and bone levels so as to gain access to more of the tooth which can be restored, if it is badly worn, decayed or fractured, below the gum line. This paper highlights the full mouth crown lengthening procedure performed on a patient with amelogenesis imperfecta. PMID:26538965

  14. Crown lengthening procedure in the management of amelogenesis imperfecta.

    Science.gov (United States)

    Kalaivani, S; Manohar, Jenish; Shakunthala, P; Sujatha, S; Rajasekaran, S A; Karthikeyan, B; Kalaiselvan, S

    2015-08-01

    Full mouth rehabilitation includes a promising treatment planning and execution thus fulfilling esthetic, occlusal, and functional parameters maintaining the harmony of the stomatognathic system. Crown lengthening procedures have become an integral component of the esthetic armamentarium and are utilized with increasing frequency to enhance the appearance of restorations placed in the esthetic zone. Crown lengthening plays a role to create healthy relationship of the gingiva and bone levels so as to gain access to more of the tooth which can be restored, if it is badly worn, decayed or fractured, below the gum line. This paper highlights the full mouth crown lengthening procedure performed on a patient with amelogenesis imperfecta.

  15. Amelogenesis imperfecta - lifelong management. Restorative management of the adult patient.

    Science.gov (United States)

    Patel, M; McDonnell, S T; Iram, S; Chan, M F W-Y

    2013-11-08

    The biggest challenge restorative dentists face in rehabilitating patients with amelogenesis imperfecta (AI) is trying to restore aesthetics, function and occlusal stability while keeping the treatment as conservative as possible. The goals of treatment should be to prolong the life of the patient's own teeth and avoid or delay the need for extractions and subsequent replacement with conventional fixed, removable or implant retained prostheses. In order to achieve these goals a stepwise approach to treatment planning is required starting with the most conservative but aesthetically acceptable treatment. This article discusses the management of AI and presents the various treatment options available for restoring the adult patient who presents to the dentist with AI.

  16. Immediate Desensitization in Teeth Affected by Amelogenesis Imperfecta.

    Science.gov (United States)

    Moreira, Rudá França; Figueiredo, Rossana Gomes; Oliveira, Henrique Eduardo; Fonseca, Ana Christina Lamosa da; Miranda, Mauro Sayão de

    2016-01-01

    The aim of this paper was to describe a clinical case of immediate dental desensitization using a self-etch adhesive system in an adolescent patient diagnosed with amelogenesis imperfecta (AI). AI was associated with severe tooth sensitivity, treated by the application of a universal adhesive system for desensitization of the teeth affected by AI. Reduction of tooth sensitivity was assessed using a visual analog scale during all reevaluations. The technique was effective for reducing tooth sensitivity. It was concluded that the adhesive system for tooth desensitization had an immediate effect and maintained its effectiveness during a 12-month follow-up period.

  17. Conservative treatment for amelogenesis imperfecta: a case report.

    Science.gov (United States)

    Campos, Roberto Elias; Miranda Valdivia, Andrea Dolores Correia; Santos-Filho, Paulo Cesar de Freitas; Menezes, Murilo de Souza; de Oliveira Junior, Osmir Batista; Soares, Carlos Jose

    2014-01-01

    Amelogenesis imperfecta is a hereditary condition that can alter the thickness, color, and shape of tooth enamel. Recent adhesive materials and techniques have provided less invasive treatment options. This case report presents the treatment of a patient whose anterior teeth had color alterations, white spots, pits, and shape defects. Using a more conservative technique, the mandibular and maxillary anterior teeth were restored using veneer direct composite restorations. After 6 years, the restorations demonstrated no deterioration, and no pathology was seen in association with the rehabilitation.

  18. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta.

    Science.gov (United States)

    Kim, J W; Seymen, F; Lee, K E; Ko, J; Yildirim, M; Tuna, E B; Gencay, K; Shin, T J; Kyun, H K; Simmer, J P; Hu, J C-C

    2013-10-01

    Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related.

  19. Occurrence of epidermolysis bullosa along with Amelogenesis imperfecta in female patient of India

    Directory of Open Access Journals (Sweden)

    A P Javed

    2013-01-01

    Full Text Available Epidermolysis bullosa (EB is an inherited disorder, which is characteristically presented as skin blisters developing in response to minor injury. Junctional variety of EB is also associated with enamel hypoplasia. Amelogenesis imperfecta presents with abnormal formation of the enamel both in deciduous and permanent dentition. This article describes a previously unreported case of Amelogenesis imperfecta with complete loss of enamel in a young female patient with EB.

  20. Occurrence of epidermolysis bullosa along with Amelogenesis imperfecta in female patient of India.

    Science.gov (United States)

    Javed, A P; Shenai, Prashanth; Chatra, Laxmikanth; Veena, K M; Rao, Prasanna Kumar; Prabhu, Rachana

    2013-11-01

    Epidermolysis bullosa (EB) is an inherited disorder, which is characteristically presented as skin blisters developing in response to minor injury. Junctional variety of EB is also associated with enamel hypoplasia. Amelogenesis imperfecta presents with abnormal formation of the enamel both in deciduous and permanent dentition. This article describes a previously unreported case of Amelogenesis imperfecta with complete loss of enamel in a young female patient with EB.

  1. Exonal deletion of SLC24A4 causes hypomaturation amelogenesis imperfecta.

    Science.gov (United States)

    Seymen, F; Lee, K-E; Tran Le, C G; Yildirim, M; Gencay, K; Lee, Z H; Kim, J-W

    2014-04-01

    Amelogenesis imperfecta is a heterogeneous group of genetic conditions affecting enamel formation. Recently, mutations in solute carrier family 24 member 4 (SLC24A4) have been identified to cause autosomal recessive hypomaturation amelogenesis imperfecta. We recruited a consanguineous family with hypomaturation amelogenesis imperfecta with generalized brown discoloration. Sequencing of the candidate genes identified a 10-kb deletion, including exons 15, 16, and most of the last exon of the SLC24A4 gene. Interestingly, this deletion was caused by homologous recombination between two 354-bp-long homologous sequences located in intron 14 and the 3' UTR. This is the first report of exonal deletion in SLC24A4 providing confirmatory evidence that the function of SLC24A4 in calcium transport has a crucial role in the maturation stage of amelogenesis.

  2. Dental rehabilitation of amelogenesis imperfecta using thermoformed templates.

    Science.gov (United States)

    Sockalingam, Snmp

    2011-01-01

    Amelogenesis imperfecta represents a group of dental developmental conditions that are genomic in origin. Hypoplastic AI, hypomineralised AI or both in combination were the most common types seen clinically. This paper describes oral rehabilitation of a 9-year-old Malay girl with inherited hypoplastic AI using transparent thermoforming templates. The defective surface areas were reconstructed to their original dimensions on stone cast models of the upper and lower arches using composite, and transparent thermoform templates were fabricated on the models. The templates were used as crown formers to reconstruct the defective teeth clinically using esthetically matching composite. The usage of the templates allowed direct light curing of the composite, accurate reproducibility of the anatomic contours of the defective teeth, reduced chair-side time and easy contouring and placement of homogenous thickness of composite in otherwise inaccessible sites of the affected teeth.

  3. Bilateral nephrocalcinosis and amelogenesis imperfecta: A case report

    Directory of Open Access Journals (Sweden)

    Alok Patel

    2015-01-01

    Full Text Available Amelogenesis imperfecta (AI is a group of hereditary disorders that affect the quality and/or quantity of dental enamel. This paper describes the clinicopathological features of a patient who was born of nonconsanguineous parents and who presented with oral alterations, including yellow and misshapen teeth, intrapulpal calcifications, delayed tooth eruption, and gum enlargement. Scanning electron microscopy of the teeth revealed hypoplastic enamel, and a renal ultrasound detected bilateral nephrocalcinosis, leading to a diagnosis of AI and nephrocalcinosis syndrome. Since nephrocalcinosis is often asymptomatic and can be associated with impaired renal function, dentists who see children with a generalized and thin hypoplastic AI should consider a renal ultrasound scan and referral to a Nephrologist. Children with nephrocalcinosis should also be considered for a dental check.

  4. Amelogenesis imperfecta: Report of a case and review of literature

    Directory of Open Access Journals (Sweden)

    Chaudhary Mayur

    2009-01-01

    Full Text Available Amelogenesis imperfecta (AI is a diverse collection of inherited diseases that exhibit quantitative or qualitative tooth enamel defects in the absence of systemic manifestations. Also known by varied names such as Hereditary enamel dysplasia, Hereditary brown enamel, Hereditary brown opalescent teeth, this defect is entirely ectodermal, since mesodermal components of the teeth are basically normal. The AI trait can be transmitted by either autosomal dominant, autosomal recessive, or X-linked modes of inheritance. Genes implicated in autosomal forms are genes encoding enamel matrix proteins, namely: enamelin and ameloblastin, tuftelin, MMP-20 and kallikrein - 4. This article presents a case reported to Dr. D. Y. Patil, Dental College and Hospital, Pune, India, along with a review of this often seen clinical entity.

  5. Amelogenesis Imperfecta and Screening of Mutation in Amelogenin Gene

    Directory of Open Access Journals (Sweden)

    Fernanda Veronese Oliveira

    2014-01-01

    Full Text Available The aim of this study was to report the clinical findings and the screening of mutations of amelogenin gene of a 7-year-old boy with amelogenesis imperfecta (AI. The genomic DNA was extracted from saliva of patient and his family, followed by PCR and direct DNA sequencing. The c.261C>T mutation was found in samples of mother, father, and brother, but the mutation was not found in the sequence of the patient. This mutation is a silent mutation and a single-nucleotide polymorphism (rs2106416. Thus, it is suggested that the mutation found was not related to the clinical presence of AI. Further research is necessary to examine larger number of patients and genes related to AI.

  6. Dental rehabilitation of amelogenesis imperfecta using thermoformed templates

    Directory of Open Access Journals (Sweden)

    SNMP Sockalingam

    2011-01-01

    Full Text Available Amelogenesis imperfecta represents a group of dental developmental conditions that are genomic in origin. Hypoplastic AI, hypomineralised AI or both in combination were the most common types seen clinically. This paper describes oral rehabilitation of a 9-year-old Malay girl with inherited hypoplastic AI using transparent thermoforming templates. The defective surface areas were reconstructed to their original dimensions on stone cast models of the upper and lower arches using composite, and transparent thermoform templates were fabricated on the models. The templates were used as crown formers to reconstruct the defective teeth clinically using esthetically matching composite. The usage of the templates allowed direct light curing of the composite, accurate reproducibility of the anatomic contours of the defective teeth, reduced chair-side time and easy contouring and placement of homogenous thickness of composite in otherwise inaccessible sites of the affected teeth.

  7. Functional and esthetic rehabilitation of a patient with amelogenesis imperfecta.

    Science.gov (United States)

    Ergun, Gulfem; Kaya, Bekir Murat; Egilmez, Ferhan; Cekic-Nagas, Isil

    2013-01-01

    Amelogenesis imperfecta (AI) is a hereditary disorder that causes developmental alterations in the structure of enamel. In addition, tooth sensitivity, missing or impacted teeth, taurodontism, altered dental esthetics and anterior open bite can also be associated with AI. This clinical report presents the diagnosis, treatment planning and prosthetic rehabilitation of a 19-year-old female patient with AI associated with a group of dental anomalies. Following clinical and radiographic examination, histologic evaluation of the teeth confirmed the diagnosis of rough pattern hypoplastic AI. The patient was rehabilitated with full-mouth zirconium oxide ceramic fixed bridges. Adaptation of the temporomandibular joints and masticatory muscles to the bridges was carefully observed over 3 years. At the end of this follow-up period, the patient was satisfied with the esthetics, function and phonation of her prostheses.

  8. Bilateral nephrocalcinosis and amelogenesis imperfecta: A case report.

    Science.gov (United States)

    Patel, Alok; Jagtap, Chetana; Bhat, Chetan; Shah, Rohan

    2015-01-01

    Amelogenesis imperfecta (AI) is a group of hereditary disorders that affect the quality and/or quantity of dental enamel. This paper describes the clinicopathological features of a patient who was born of nonconsanguineous parents and who presented with oral alterations, including yellow and misshapen teeth, intrapulpal calcifications, delayed tooth eruption, and gum enlargement. Scanning electron microscopy of the teeth revealed hypoplastic enamel, and a renal ultrasound detected bilateral nephrocalcinosis, leading to a diagnosis of AI and nephrocalcinosis syndrome. Since nephrocalcinosis is often asymptomatic and can be associated with impaired renal function, dentists who see children with a generalized and thin hypoplastic AI should consider a renal ultrasound scan and referral to a Nephrologist. Children with nephrocalcinosis should also be considered for a dental check.

  9. Amelogenesis Imperfecta: 1 Family, 2 Phenotypes, and 2 Mutated Genes.

    Science.gov (United States)

    Prasad, M K; Laouina, S; El Alloussi, M; Dollfus, H; Bloch-Zupan, A

    2016-12-01

    Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous group of diseases characterized by enamel defects. The authors have identified a large consanguineous Moroccan family segregating different clinical subtypes of hypoplastic and hypomineralized AI in different individuals within the family. Using targeted next-generation sequencing, the authors identified a novel heterozygous nonsense mutation in COL17A1 (c.1873C>T, p.R625*) segregating with hypoplastic AI and a novel homozygous 8-bp deletion in C4orf26 (c.39_46del, p.Cys14Glyfs*18) segregating with hypomineralized-hypoplastic AI in this family. This study highlights the phenotypic and genotypic heterogeneity of AI that can exist even within a single consanguineous family. Furthermore, the identification of novel mutations in COL17A1 and C4orf26 and their correlation with distinct AI phenotypes can contribute to a better understanding of the pathophysiology of AI and the contribution of these genes to amelogenesis.

  10. Enamel renal syndrome with associated amelogenesis imperfecta, nephrolithiasis, and hypocitraturia: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Bhesania, Dhvani; Arora, Ankit; Kapoor, Sonali [Dept. of Conservative Dentistry and Endodontics, Manubhai Patel Dental College, Maharaja Krishnakumarsinhji Bhavnagar University, Vadodara (India)

    2015-09-15

    Numerous cases of enamel renal syndrome have been previously reported. Various terms, such as enamel renal syndrome, amelogenesis imperfecta and gingival fibromatosis syndrome, and enamel-renal-gingival syndrome, have been used for patients presenting with the dental phenotype characteristic of this condition, nephrocalcinosis or nephrolithiasis, and gingival findings. This report describes a case of amelogenesis imperfecta of the enamel agenesis variety with nephrolithiasis in a 21-year-old male patient who complained of small teeth. The imaging modalities employed were conventional radiography, cone-beam computed tomography, and renal sonography. Such cases are first encountered by dentists, as other organ or metabolic diseases are generally hidden. Hence, cases of amelogenesis imperfecta should be subjected to advanced diagnostic modalities, incorporating both dental and medical criteria, in order to facilitate comprehensive long-term management.

  11. Amelogenesis Imperfecta with Taurodontism, Microdontia, and Minor Thalassemia: A Case Report

    Directory of Open Access Journals (Sweden)

    Fatemeh Mazhari

    2013-12-01

    Full Text Available Amelogenesis imperfecta is a group of genetic disorders that affects both the morphology and quality of tooth structure. Although the disease entity is primarily associated with abnormalities of dental and oral structures, it has been reported to be associated with a few syndromes. A 9-year-old girl with minor thalassemia referred to the Department of Pediatric Dentistry of the Mashhad Faculty of Dentistry with a complaint of sensitivity of first permanent molars. Dental findings consisted of amelogenesis imperfecta, microdontia, posterior cross bite and taurodontism. This is the first report of thalassemia accompanied with amelogenesis imperfecta. Although the patients often are non-symptomatic, the trait can be passed on to a child and if both parents carry the trait, the child could develop a more severe form of the disease; therefore, early diagnosis is important.

  12. Enamel renal syndrome with associated amelogenesis imperfecta, nephrolithiasis, and hypocitraturia: A case report.

    Science.gov (United States)

    Bhesania, Dhvani; Arora, Ankit; Kapoor, Sonali

    2015-09-01

    Numerous cases of enamel renal syndrome have been previously reported. Various terms, such as enamel renal syndrome, amelogenesis imperfecta and gingival fibromatosis syndrome, and enamel-renal-gingival syndrome, have been used for patients presenting with the dental phenotype characteristic of this condition, nephrocalcinosis or nephrolithiasis, and gingival findings. This report describes a case of amelogenesis imperfecta of the enamel agenesis variety with nephrolithiasis in a 21-year-old male patient who complained of small teeth. The imaging modalities employed were conventional radiography, cone-beam computed tomography, and renal sonography. Such cases are first encountered by dentists, as other organ or metabolic diseases are generally hidden. Hence, cases of amelogenesis imperfecta should be subjected to advanced diagnostic modalities, incorporating both dental and medical criteria, in order to facilitate comprehensive long-term management.

  13. Diagnosis and esthetic functional rehabilitation of a patient with amelogenesis imperfecta.

    Science.gov (United States)

    Oliveira, Ilione Kruschewsky Costa Sousa; Fonseca, Jussara de Fatima Barbosa; do Amaral, Flavia Lucisano Botelho; Pecorari, Vanessa Gallego Arias; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes

    2011-06-01

    Amelogenesis imperfecta is a hereditary disease that causes structural anomalies in dental enamel of both the primary and permanent dentition. The anomaly may present a variety of clinical forms and appearances, with its main characteristics being the loss of tooth structure, compromised esthetic appearance, and dental sensitivity. The aim of this study was to present the clinical report of a 16-year-old patient with severely compromised esthetics as a result of amelogenesis imperfecta of the hypocalcified type who was rehabilitated with composite resin and ceramic crowns.

  14. No Evidence for Association between Amelogenesis Imperfecta and Candidate Genes

    Directory of Open Access Journals (Sweden)

    M Ghandehari Motlagh

    2009-03-01

    Full Text Available "nBackground: Amelogenesis imperfecta (AI is an inherited tooth disorder. Despite the fact that up to now, several gene muta­tions in MMP20, ENAM, AMELX and KLK4 genes have been reported to be associated with AI, many other genes sug­gested to be involved. The main objective of this study was to find the mutations in three major candidate genes including MMP20, ENAM and KLK4 responsible for AI from three Iranian families with generalized hypoplastic phenotype in all teeth. "nMethods: All exon/intron boundaries of subjected genes were amplified by polymerase chain reaction and subjected to direct sequencing."nResults: One polymorphisms was identified in KLK4 exon 2, in one family a homozygous mutation was found in the third base of codon 22 for serine (TCG>TCT, but not in other families. Although these base substitutions have been occurred in the signaling domain, they do not seem to influence the activity of KLK4 protein."nConclusion: Our results might support the further evidence for genetic heterogeneity; at least, in some AI cases are not caused by a gene in these reported candidate genes.

  15. Minimally invasive rehabilitation of a patient with amelogenesis imperfecta.

    Science.gov (United States)

    Büchi, Dominik; Fehmer, Vincent; Sailer, Irene; Wolleb, Karin; Jung, Ronald

    2014-01-01

    This case report describes a minimally invasive step-by-step approach to treat a patient with amelogenesis imperfecta. This is a genetic developmental disorder of the dental enamel, which clinically manifests as white and dark discolorations of the teeth. The clinical examination did not reveal the true depth of the staining. Therefore, a step-wise treatment approach was chosen. The first step consisted of a home bleaching procedure, which led to a slight improvement of the esthetic appearance, but the stains were still clearly visible. The next step was the application of a microabrasion technique. This led to further improvement, but not to a satisfactory result for this patient who had high esthetic expectations. Thus, the third step was undertaken: it was planned to restore the maxillary incisors and canines with ceramic veneers. The dental technician prepared a wax-up, which served as a basis for a clinical mock-up. After discussing the mock-up and the treatment plan with the patient, crown lengthening was performed on teeth 11 and 23 to improve the pink esthetics. Subsequently, the teeth were prepared in a minimally invasive way and a final impression was taken. Following try-in, the six veneers were inserted with resin cement.

  16. Adenovirus gene transfer to amelogenesis imperfecta ameloblast-like cells.

    Directory of Open Access Journals (Sweden)

    Anton V Borovjagin

    Full Text Available To explore gene therapy strategies for amelogenesis imperfecta (AI, a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5 vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including "pK7" and/or "RGD" motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3 fiber "knob" domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both α(vβ3/α(vβ5 integrins and heparan sulfate proteoglycans (HSPGs highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.

  17. Target gene analyses of 39 amelogenesis imperfecta kindreds.

    Science.gov (United States)

    Chan, Hui-Chen; Estrella, Ninna M R P; Milkovich, Rachel N; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2011-12-01

    Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred.

  18. Prosthetic and Surgical Approach for Oral Rehabilitation in a Patient with Amelogenesis Imperfecta: A Clinical Report

    Directory of Open Access Journals (Sweden)

    H. Sazegara

    2007-06-01

    Full Text Available Amelogenesis imperfecta is a heterogeneous group of hereditary disorders. Its treatment continues throughout the patients’ childhood and adolescence and consists of advanced restorative care in severe cases.A thorough prosthodontic treatment plan including orthognatic surgery, full veneer crowns and all ceramic anterior crowns is presented in this clinical report.

  19. Hypomaturation amelogenesis imperfecta caused by a novel SLC24A4 mutation.

    Science.gov (United States)

    Herzog, Curtis R; Reid, Bryan M; Seymen, Figen; Koruyucu, Mine; Tuna, Elif Bahar; Simmer, James P; Hu, Jan C-C

    2015-02-01

    In this case report of autosomal recessive pigmented hypomaturation amelogenesis imperfecta (AI), we identify a novel homozygous missense mutation (g.165151 T>G; c.1317 T>G; p.Leu436 Arg) in SLC24A4, a gene encoding a potassium-dependent sodium-calcium exchanger that is critical for hardening dental enamel during tooth development.

  20. Hypomaturation Amelogenesis Imperfecta Caused By A Novel SLC24A4 Mutation

    Science.gov (United States)

    Herzog, Curtis R.; Reid, Bryan M.; Seymen, Figen; Koruyucu, Mine; Tuna, Elif Bahar; Simmer, James P.; Hu, Jan C-C.

    2014-01-01

    In this case report of autosomal recessive pigmented hypomaturation amelogenesis imperfecta (AI), we identify a novel homozygous missense mutation (g.165151T>G; c.1317T>G; p.Leu436Arg) in SLC24A4, a gene encoding a potassium-dependent sodium-calcium exchanger that is critical for hardening dental enamel during tooth development. PMID:25442250

  1. Ceramic Veneers and Direct-Composite Cases of Amelogenesis Imperfecta Rehabilitation.

    Science.gov (United States)

    Shibata, S; Taguchi, Cmc; Gondo, R; Stolf, S C; Baratieri, L N

    2016-01-01

    The aim of this article is to present two case reports for the treatment of patients affected with amelogenesis imperfecta. One case was treated with composite resin and the other case with ceramic veneers. Esthetic and functional results were achieved using both treatments, and a review of advantages and disadvantages is presented.

  2. Interdisciplinary management for restoration of function and esthetics in a patient with hereditary amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Sushma Dhiman

    2015-01-01

    Full Text Available Amelogenesis imperfecta (AI is a type of the hereditary disorder which is expressed as a group of conditions causing developmental alterations in the structure of enamel. It is associated with a reduction of oral health-related quality-of-life, has an impact on psychological well-being, and leads to various physiological problems. Children or adults with AI express varying degree of malocclusions either in the form of crowding, impacted teeth, spacing, retained teeth, reduced vertical height due to abnormal tooth structure or undue tooth loss. Orthodontic treatment should precede esthetic rehabilitation. Proper diagnosis of the case is quintessential to provide durable functional and esthetic result to these patients, improving the quality of their lives. We present a case of interdisciplinary management for restoring function and esthetics in a patient with hereditary AI of the hypoplastic type accompanied with tooth impaction and some other dental anomalies.

  3. Dental management of amelogenesis imperfecta patients: a primer on genotype-phenotype correlations.

    Science.gov (United States)

    Ng, F K; Messer, L B

    2009-01-01

    Amelogenesis imperfecta (AI) represents a group of hereditary conditions which affects enamel formation in the primary and permanent dentitions. Mutations in genes critical for amelogenesis result in diverse phenotypes characterized by variably thin and/or defective enamel. To date, mutations in 5 genes are known to cause AI in humans. Understanding the molecular etiologies and associated inheritance patterns can assist in the early diagnosis of this condition. Recognition of genotype-phenotype correlations will allow clinicians to guide genetic testing and select appropriate management strategies for patients who express different phenotypes. The purpose of this paper was to provide a narrative review of the current literature on amelogenesis imperfecta, particularly regarding recent advances in the identification of candidate genes and the patterns of inheritance.

  4. Missense Mutation in Fam83H Gene in Iranian Patients with Amelogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    S Jalal Pourhashemi

    2014-12-01

    Full Text Available Amelogenesis Imperfecta (AI is a disorder of tooth development where there is an abnormal formation of enamel or the external layer of teeth. The aim of this study was to screen mutations in the four most important candidate genes, ENAM, KLK4, MMP20 and FAM83H responsible for amelogenesis imperfect.Geneomic DNA was isolated from five Iranian families with 22 members affected with enamel malformations. The PCR amplifications were typically carried out for amplification the coding regions for AI patients and unaffected family members. The PCR products were subjected to direct sequencing. The pedigree analysis was performed using Cyrillic software.One family had four affected members with autosomal dominant hypocalcified amelogenesis imperfecta (ADHPCAI; pedigree analysis revealed four consanguineous families with 18 patients with autosomal recessive hypoplastic amelogenesis imperfecta (ARHPAI. One non-synonymous single-nucleotide substitution, c.1150T>A, p. Ser 342Thr was identified in the FAM83H, which resulted in ADHCAI. Furthermore, different polymorphisms or unclassified variants were detected in MMP20, ENAM and KLK4.Our results are consistent with other studies and provide further evidence for pathogenic mutations of FAM83H gene. These findings suggest different loci and genes could be implicated in the pathogenesis of AI.

  5. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry.

    Science.gov (United States)

    Urzúa, Blanca; Ortega-Pinto, Ana; Morales-Bozo, Irene; Rojas-Alcayaga, Gonzalo; Cifuentes, Víctor

    2011-02-01

    Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.

  6. Scanning electron microscopy and calcification in amelogenesis imperfecta in anterior and posterior human teeth

    OpenAIRE

    Sánchez-Quevedo, M. C.; Ceballos, G.; García, J. M.; Rodriguez, I. A.; Gómez de Ferraris, M. E.; Campos, Antonio

    2001-01-01

    Teeth fragments from members of a famil? clinically and genetically diagnosed as having amelogenesis imperfecta were studied by scanning electron microscopy and X-ray microprobe analysis to establish the morphological patterns and the quantitative concentration of calcium in the enamel of anterior (canine, incisor) and posterior (premolar and molar) teeth. The prism patterns in the enamel of teeth from both regions were parallel or irregularly decussate, with ...

  7. Aesthetic And Functional Rehabilitation Of The Primary Dentition Affected By Amelogenesis Imperfecta.

    OpenAIRE

    Maria Carolina Salomé Marquezin; Bruna Raquel Zancopé; Larissa Ferreira Pacheco; Maria Beatriz Duarte Gavião; Fernanda Miori Pascon

    2015-01-01

    The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars wit...

  8. Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a danish five-generation family with a novel FAM83H nonsense mutation

    DEFF Research Database (Denmark)

    Haubek, Dorte; Gjørup, Hans; Jensen, Lillian Gryesten

    2011-01-01

    Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a danish five-generation family with a novel FAM83H nonsense mutation......Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a danish five-generation family with a novel FAM83H nonsense mutation...

  9. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H.; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-01-01

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2f/f;Bmp4f/fameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling. PMID:27146352

  10. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression.

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-05-05

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling.

  11. Typical Features of Amelogenesis Imperfecta in Two Patients with Bartter’s Syndrome

    Directory of Open Access Journals (Sweden)

    Hercílio Martelli-Júnior

    2012-12-01

    Full Text Available Background/Aims: Amelogenesis imperfecta (AI is due to many inherited defects of enamel formation that affect the quantity and quality of enamel, leading to delay in tooth eruption and cosmetic consequences. AI has been described in association with nephrocalcinosis, which is called the enamel-renal syndrome. The aim of this case report is to describe typical features of AI in 2 patients with Bartter’s syndrome (BS for the first time. Methods: -Eight patients with confirmed BS were systematically screened for dental abnormalities as part of protocol. Those with suggestive clinical features of AI were submitted to panoramic X-ray and decayed teeth were analyzed by scanning electron microscopy. Results: Typical features of AI were detected in 2 girls with BS. These 2 patients showed nephrocalcinosis, and diagnosis and adequate clinical control were delayed. Genetic analysis detected the mutation responsible for BS in 1 of these patients. In this case, BS was due to a homozygous mutation of exon 5 of the KCNJ1 gene resulting in a substitution of valine for alanine at the codon 214 (A214V. Conclusions: The finding of typical features of AI in BS might constitute preliminary evidence that abnormalities of the biomineralization process found in patients with renal tubular disorders might also affect calcium deposition in dental tissues.

  12. Amelogenesis Imperfecta: Rehabilitation and Brainstorming on the Treatment Outcome after the First Year

    Directory of Open Access Journals (Sweden)

    Ayça Deniz İzgi

    2015-01-01

    Full Text Available Amelogenesis imperfecta (AI affects enamel on primary and permanent dentition. This hereditary disorder is characterized by loss of enamel, poor esthetics, and hypersensitivity. Functional and cosmetic rehabilitation is challenging with variety of treatment options. This report presents the treatment of an AI patient using conventional fixed dentures and discusses issues related to posttreatment complications and prosthetic treatment outcome after 1 year of follow-up. A 19-year-old male AI patient with impaired self-esteem presented with hypersensitive, discolored, and mutilated teeth. Clinical examination revealed compromised occlusion and anterior open-bite. After hygiene maintenance full-coverage porcelain-fused-to-metal fixed restorations were indicated and applied. At the end of the treatment acceptable functional and esthetic results could be achieved. However, nearly a year after treatment a gingival inflammation in the esthetic zone complicated the outcome. Insufficient oral hygiene was to be blamed. Tooth sensitivity present from early childhood in these patients may prevent oral hygiene from becoming a habit. The relaxation due to relieve of hypersensitivity after treatment makes oral hygiene learning difficult. Continuous oral hygiene maintenance motivation may be crucial for the success of the treatment of AI patients. Treatment of AI patients should be carefully planned and an acceptable risk-benefit balance should be established.

  13. A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; Brookes, Steven J; Shore, Roger C; Smith, Claire E L; Abi Farraj, Layal; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-04-15

    We identified a family in which pitted hypomineralized amelogenesis imperfecta (AI) with premature enamel failure segregated in an autosomal recessive fashion. Whole-exome sequencing revealed a missense mutation (c.586C>A, p.P196T) in the I-domain of integrin-β6 (ITGB6), which is consistently predicted to be pathogenic by all available programmes and is the only variant that segregates with the disease phenotype. Furthermore, a recent study revealed that mice lacking a functional allele of Itgb6 display a hypomaturation AI phenotype. Phenotypic characterization of affected human teeth in this study showed areas of abnormal prismatic organization, areas of low mineral density and severe abnormal surface pitting in the tooth's coronal portion. We suggest that the pathogenesis of this form of AI may be due to ineffective ligand binding of ITGB6 resulting in either compromised cell-matrix interaction or compromised ITGB6 activation of transforming growth factor-β (TGF-β) impacting indirectly on ameloblast-ameloblast interactions and proteolytic processing of extracellular matrix proteins via MMP20. This study adds to the list of genes mutated in AI and further highlights the importance of cell-matrix interactions during enamel formation.

  14. Endoplasmic reticulum stress in amelogenesis imperfecta and phenotypic rescue using 4-phenylbutyrate.

    Science.gov (United States)

    Brookes, Steven J; Barron, Martin J; Boot-Handford, Ray; Kirkham, Jennifer; Dixon, Michael J

    2014-05-01

    Inherited diseases caused by genetic mutations can arise due to loss of protein function. Alternatively, mutated proteins may mis-fold, impairing endoplasmic reticulum (ER) trafficking, causing ER stress and triggering the unfolded protein response (UPR). The UPR attempts to restore proteostasis but if unsuccessful drives affected cells towards apoptosis. Previously, we reported that in mice, the p.Tyr64His mutation in the enamel extracellular matrix (EEM) protein amelogenin disrupts the secretory pathway in the enamel-forming ameloblasts, resulting in eruption of malformed tooth enamel that phenocopies human amelogenesis imperfecta (AI). Defective amelogenin post-secretory self-assembly and processing within the developing EEM has been suggested to underlie the pathogenesis of X chromosome-linked AI. Here, we challenge this concept by showing that AI pathogenesis associated with the p.Tyr64His amelogenin mutation involves ameloblast apoptosis induced by ER stress. Furthermore, we show that 4-phenylbutyrate can rescue the enamel phenotype in affected female mice by promoting cell survival over apoptosis such that they are able to complete enamel formation despite the presence of the mutation, offering a potential therapeutic option for patients with this form of AI and emphasizing the importance of ER stress in the pathogenesis of this inherited conformational disease.

  15. Amelogenesis Imperfecta: Rehabilitation and Brainstorming on the Treatment Outcome after the First Year

    Science.gov (United States)

    İzgi, Ayça Deniz; Kale, Ediz; Niğiz, Remzi

    2015-01-01

    Amelogenesis imperfecta (AI) affects enamel on primary and permanent dentition. This hereditary disorder is characterized by loss of enamel, poor esthetics, and hypersensitivity. Functional and cosmetic rehabilitation is challenging with variety of treatment options. This report presents the treatment of an AI patient using conventional fixed dentures and discusses issues related to posttreatment complications and prosthetic treatment outcome after 1 year of follow-up. A 19-year-old male AI patient with impaired self-esteem presented with hypersensitive, discolored, and mutilated teeth. Clinical examination revealed compromised occlusion and anterior open-bite. After hygiene maintenance full-coverage porcelain-fused-to-metal fixed restorations were indicated and applied. At the end of the treatment acceptable functional and esthetic results could be achieved. However, nearly a year after treatment a gingival inflammation in the esthetic zone complicated the outcome. Insufficient oral hygiene was to be blamed. Tooth sensitivity present from early childhood in these patients may prevent oral hygiene from becoming a habit. The relaxation due to relieve of hypersensitivity after treatment makes oral hygiene learning difficult. Continuous oral hygiene maintenance motivation may be crucial for the success of the treatment of AI patients. Treatment of AI patients should be carefully planned and an acceptable risk-benefit balance should be established. PMID:26783475

  16. Amelogenesis Imperfecta: Rehabilitation and Brainstorming on the Treatment Outcome after the First Year.

    Science.gov (United States)

    İzgi, Ayça Deniz; Kale, Ediz; Niğiz, Remzi

    2015-01-01

    Amelogenesis imperfecta (AI) affects enamel on primary and permanent dentition. This hereditary disorder is characterized by loss of enamel, poor esthetics, and hypersensitivity. Functional and cosmetic rehabilitation is challenging with variety of treatment options. This report presents the treatment of an AI patient using conventional fixed dentures and discusses issues related to posttreatment complications and prosthetic treatment outcome after 1 year of follow-up. A 19-year-old male AI patient with impaired self-esteem presented with hypersensitive, discolored, and mutilated teeth. Clinical examination revealed compromised occlusion and anterior open-bite. After hygiene maintenance full-coverage porcelain-fused-to-metal fixed restorations were indicated and applied. At the end of the treatment acceptable functional and esthetic results could be achieved. However, nearly a year after treatment a gingival inflammation in the esthetic zone complicated the outcome. Insufficient oral hygiene was to be blamed. Tooth sensitivity present from early childhood in these patients may prevent oral hygiene from becoming a habit. The relaxation due to relieve of hypersensitivity after treatment makes oral hygiene learning difficult. Continuous oral hygiene maintenance motivation may be crucial for the success of the treatment of AI patients. Treatment of AI patients should be carefully planned and an acceptable risk-benefit balance should be established.

  17. Recessive Mutations in ACPT, Encoding Testicular Acid Phosphatase, Cause Hypoplastic Amelogenesis Imperfecta.

    Science.gov (United States)

    Seymen, Figen; Kim, Youn Jung; Lee, Ye Ji; Kang, Jenny; Kim, Tak-Heun; Choi, Hwajung; Koruyucu, Mine; Kasimoglu, Yelda; Tuna, Elif Bahar; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Kim, Young-Jae; Lee, Sang-Hoon; Lee, Zang Hee; Zhang, Hong; Hu, Jan C-C; Simmer, James P; Cho, Eui-Sic; Kim, Jung-Wook

    2016-11-03

    Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders affecting tooth enamel. The affected enamel can be hypoplastic and/or hypomineralized. In this study, we identified ACPT (testicular acid phosphatase) biallelic mutations causing non-syndromic, generalized hypoplastic autosomal-recessive amelogenesis imperfecta (AI) in individuals from six apparently unrelated Turkish families. Families 1, 4, and 5 were affected by the homozygous ACPT mutation c.713C>T (p.Ser238Leu), family 2 by the homozygous ACPT mutation c.331C>T (p.Arg111Cys), family 3 by the homozygous ACPT mutation c.226C>T (p.Arg76Cys), and family 6 by the compound heterozygous ACPT mutations c.382G>C (p.Ala128Pro) and 397G>A (p.Glu133Lys). Analysis of the ACPT crystal structure suggests that these mutations damaged the activity of ACPT by altering the sizes and charges of key amino acid side chains, limiting accessibility of the catalytic core, and interfering with homodimerization. Immunohistochemical analysis confirmed localization of ACPT in secretory-stage ameloblasts. The study results provide evidence for the crucial function of ACPT during amelogenesis.

  18. Chairside treatment of amelogenesis imperfecta, including establishment of a new vertical dimension with resin nanoceramic and intraoral scanning.

    Science.gov (United States)

    Zimmermann, Moritz; Koller, Christina; Hickel, Reinhard; Kühnisch, Jan

    2016-09-01

    Amelogenesis imperfecta is a hereditary disease affecting the structural development of tooth substance. This clinical report describes a 1-visit chairside treatment of an 8-year-old patient with amelogenesis imperfecta, using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Intraoral scanning was performed using the Cerec Omnicam. Thirteen resin nanoceramic crowns (Lava Ultimate) were fabricated chairside by using a Cerec MCXL milling unit and seated adhesively. The patient's treatment included establishing a new occlusal vertical dimension and new centric relationship. Reevaluation after 6 months showed a stable situation.

  19. Amelogenesis imperfecta with multiple impacted teeth and skeletal class III malocclusion: complete mouth rehabilitation of a young adult.

    Science.gov (United States)

    Patil, Pravinkumar G; Patil, Smita P

    2014-01-01

    Amelogenesis imperfecta is an autosomal dominant disorder. It is a group of hereditary diseases showing abnormal enamel density and crown malformation. This clinical report describes the oral rehabilitation of a young adult diagnosed with a variant of hypoplastic amelogenesis imperfecta with multiple impacted teeth and skeletal class III malocclusion. The treatment procedures of teeth extractions, endodontic treatment of remaining teeth followed by post and core restorations, esthetic and functional crown lengthening, and metal ceramic fixed dental prostheses were performed sequentially in the maxillary arch. The mandibular arch was restored with an overdenture. One-year follow-up revealed satisfactory results.

  20. Literature review of amelogenesis imperfecta with case report

    Directory of Open Access Journals (Sweden)

    Sumathy C Chanmougananda

    2012-01-01

    Full Text Available Amelogenesis impertecta (Al is a diverse collection of inherited diseases that exhibit qualitative or quantitative tooth enamel defects in the absence of systemic manifestations. Also known by varied names, such as hereditary enamel dysplasia, hereditary brown opalescent teeth, this defect is entirely ectodermal, since mesodermal components of the teeth are basically normal. This article details a case of Al along with complete review which presents in his twin siblings with clinical, radiological and histopathological report.

  1. An Interdisciplinary Approach for Rehabilitating a Patient with Amelogenesis Imperfecta: A Case Report

    Directory of Open Access Journals (Sweden)

    Niloufar Khodaeian

    2012-01-01

    Full Text Available Amelogenesis imperfecta (AI has been defined as a group of hereditary enamel defects. It can be characterized by enamel hypoplasia, hypomaturation, or hypocalcification of the teeth. AI may be associated with some other dental and skeletal developmental defects. Restoration for patients with this condition should be oriented toward the functional and esthetic rehabilitation. This clinical report describes the oral rehabilitation of a young patient diagnosed with the hypoplastic type of AI in posterior teeth and hypomatured type of AI in anterior teeth.

  2. Amelogenesis Imperfecta and Generalized Gingival Overgrowth Resembling Hereditary Gingival Fibromatosis in Siblings: A Case Report

    Directory of Open Access Journals (Sweden)

    Emre Yaprak

    2012-01-01

    Full Text Available Amelogenesis imperfecta (AI is a group of hereditary disorders primarily characterized by developmental abnormalities in the quantity and/or quality of enamel. There are some reports suggesting an association between AI and generalized gingival enlargement. This paper describes the clinical findings and oral management of two siblings presenting both AI and hereditary gingival fibromatosis (HGF like generalized gingival enlargements. The treatment of gingival enlargements by periodontal flap surgery was successful in the management of the physiologic gingival form for both patients in the 3-year follow-up period. Prosthetic treatment was also satisfactory for the older patient both aesthetically and functionally.

  3. Periodontal management and restoration of an amelogenesis imperfecta patient: a case report.

    Science.gov (United States)

    Horowitz, Robert A; Gautam, D K; Karol, Suneet; Kumari, Bindiya

    2014-02-01

    This report describes the treatment of a young male patient diagnosed with amelogenesis imperfecta (AI), a hereditary disorder that affects the enamel of both primary and permanent dentition. For management and rehabilitation, it is crucial to determine the type of AI-hypoplastic, hypomaturation, or hypocalcified. As with this patient, who presented with tricho-dento osseous syndrome, patients may present with associated expression of a syndrome (partial or full) and secondary changes in the periodontium. AI is a serious problem; therefore extensive treatment using a multidisciplinary approach must be instituted, especially if the patient is syndrome-associated.

  4. The absence of correlations between a clinical classification and ultrastructural findings in amelogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Baeckman, B.; Lundgren, T.; Engstroem, E.U.; Falk, L.K.L.; Chabala, J.M.; Levi-Setti, R.; Noren, J.G. (Dept. of Pedodontics, Univ. of Goeteborg (Sweden))

    1993-01-01

    This study was performed to examine whether a clinical classification of different phenotypes of amelogenesis imperfecta could be discernible at the ultrastructural level. 17 primary teeth from 16 children with hypomineralization, hypomaturation, or hypoplastic variants of the disease were collected for histologic studies of the enamel by means of polarized light microscopy, scanning electron microscopy (SEM), and secondary ion mass spectrometry (SIMS). Polarization microscopy showed that the enamel was hypomineralized; in 6 teeth a wavy configuration of the enamel prisms also appeared. Three histomorphologic main types could be discerned. In 10 of the teeth extensive hypermineralization of the bulk of the enamel was found. 1 tooth had an unusually tick enamel with only a thin normally mineralized surface layer. SIMS images showed less pronounced signals from Ca[sup 2+] and Na[sup +], but with stronger signals from Cl[sup -] and CN[sup -], representing the organic component of enamel. The SEM images showed an irregular prism pattern with marked interprismatic areas. Irrespective of the clinical appearance or the herediatary pattern the main findings were hypomineralized enamel with or without wavy bands. Neither of the analytical methods used in this paper distinguishes between the clinical phenotypes of amelogenesis imperfecta. 35 refs., 9 figs., 1 tab.

  5. Clinical findings and long-term managements of patients with amelogenesis imperfecta.

    Science.gov (United States)

    Koruyucu, Mine; Bayram, Merve; Tuna, Elif Bahar; Gencay, Koray; Seymen, Figen

    2014-10-01

    The aim of this clinical case series is to present a diagnosis and different treatment methods of patients in different ages with amelogenesis imperfecta (AI) as well as further treatments during a 3-6 years follow-up period. A number of 31 patients (16 female, 15 male with a mean age of 10.77 ± 2.65 years) with AI have been examined for the study group between 2007 and 2010 years. A detailed anamnesis was recorded, followed by a clinical and radiological assessment of oral health. The types of AI classified for each patient according to clinical and radiographic evaluation. The main complaints of patients, presence of dental caries and dental anomalies were noted. Necessary treatments had been planned for the individual cases of AI. A number of 19 patients had hypoplastic (HP) form, and 10 patients showed hypomaturation (HM) form of AI, while one patient showed hypocalcified form of AI and one patient had HM-HP form with taurodontism. Main complaints were chiefly related to dissatisfactory esthetics and dental sensitivity. Caries prevalence index was 93.5%. Mean decayed, missing, filling permanent teeth (DMF) and DMF surface (DMFS) were found as 2.74 ± 1.71 and 6.23 ± 3.99; df (decayed, filling primary teeth) and dfs (decayed, filling primary teeth surface) were found as 3.12 ± 2.85 and 5.24 ± 4.97, respectively. All patients received individual clinical care, including preventive, restorative, and prosthetic treatments. Patients have scheduled for regular follow-up in every 3 months. Composite restorations were used as the most common treatment (25 patients, 80.6%). The treatment plan should be based on patient's age, type of defects and individual needs of the patients. Necessary treatment plan is essential, not only due to functional and aesthetic reasons, but also for the positive psychological impact on young patients.

  6. Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI).

    Science.gov (United States)

    Masuya, Hiroshi; Shimizu, Kunihiko; Sezutsu, Hideki; Sakuraba, Yoshiyuki; Nagano, Junko; Shimizu, Aya; Fujimoto, Naomi; Kawai, Akiko; Miura, Ikuo; Kaneda, Hideki; Kobayashi, Kimio; Ishijima, Junko; Maeda, Takahide; Gondo, Yoichi; Noda, Tetsuo; Wakana, Shigeharu; Shiroishi, Toshihiko

    2005-03-01

    Amelogenesis imperfecta (AI) is a group of commonly inherited defects of dental enamel formation, which exhibits marked genetic and clinical heterogeneity. The genetic basis of this heterogeneity is still poorly understood. Enamelin, the affected gene product in one form of AI (AIH2), is an extracellular matrix protein that is one of the components of enamel. We isolated three ENU-induced dominant mouse mutations, M100395, M100514 and M100521, which caused AI-like phenotypes in the incisors and molars of the affected individuals. Linkage analyses mapped each of the three mutations to a region of chromosome 5 that contained the genes encoding enamelin (Enam) and ameloblastin (Ambn). Sequence analysis revealed that each mutation was a single-base substitution in Enam. M100395 (Enam(Rgsc395)) and M100514 (Enam(Rgsc514)) were putative missense mutations that caused S to I and E to G substitutions at positions 55 and 57 of the translated protein, respectively. Enam(Rgsc395) and Enam(Rgsc514) heterozygotes showed severe breakage of the enamel surface, a phenotype that resembled local hypoplastic AI. The M100521 mutation (Enam(Rgsc521)) was a T to A substitution at the splicing donor site in intron 4. This mutation resulted in a frameshift that gave rise to a premature stop codon. The transcript of the Enam(Rgsc521) mutant allele was degraded, indicating that Enam(Rgsc521) is a loss-of-function mutation. Enam(Rgsc521) heterozygotes showed a hypomaturation-type AI phenotype in the incisors, possibly due to haploinsufficiency of Enam. Enam(Rgsc521) homozygotes showed complete loss of enamel on the incisors and the molars. Thus, we report here that the Enam gene is essential for amelogenesis, and that mice with different point mutations at Enam may provide good animal models to study the different clinical subtypes of AI.

  7. Restoring function and esthetics in a patient with amelogenesis imperfecta: a case report.

    Science.gov (United States)

    Sengun, Abdulkadir; Ozer, Füsun

    2002-03-01

    Amelogenesis imperfecta is a hereditary disorder that affects enamel on primary and permanent teeth. It is a rare dental disease but represents a major restorative challenge for the dentist. A 14-year-old boy presented with sensitive, discolored, and mutilated teeth and a decreased vertical dimension of occlusion. The aim of treatment was to reduce dental sensitivity, to restore esthetics, and to correct the vertical dimension of occlusion. To modify the occlusion, and to protect the dentin from chemical and thermal attacks, nickel-chrome onlays were placed on the molars. To improve the esthetics of the incisors and premolars, resin composite restorations were applied. The patient was regularly recalled during the postoperative period. Radiographic and clinical examinations 10 months posttreatment revealed no evidence of disorders associated with the restored teeth or their supporting structures.

  8. Satisfaction After Restoring Aesthetics and Function in a Child with Amelogenesis Imperfecta: A Case Report

    Directory of Open Access Journals (Sweden)

    Nihal Özcan

    2016-08-01

    Full Text Available Amelogenesis imperfecta (AI is a hereditary disorder that disrupts the formation of enamel in both primary and permanent dentition. Management of AI is a challenge for the patient and the clinician. This case report presents the management of AI in a six-year-old female patient. Considering the patient’s age, we decided to make removable dentures in order to avoid growth and development problems. Conventional complete dentures were made, vertical dimension was increased, and the desired aesthetics and function were gained. Additionally, satisfaction with prosthodontic rehabilitation was evaluated using a questionnaire. A high level of patient and parent satisfaction was obtained. Treatment planning for patients with AI is related to many factors including the age and socioeconomic status of the patient, the type and severity of the disorder, the intraoral situation at the time the treatment is planned and most importantly, cooperation of the patient plays a major role.

  9. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta.

    Science.gov (United States)

    Santos, Maria C L G; Hart, P Suzanne; Ramaswami, Mukundhan; Kanno, Cláudia M; Hart, Thomas C; Line, Sergio R P

    2007-01-31

    Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

  10. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Hart Thomas C

    2007-01-01

    Full Text Available Abstract Amelogenesis imperfecta (AI is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

  11. Full mouth rehabilitation of a patient with amelogenesis imperfecta: a case report.

    Science.gov (United States)

    Rajesh, P; Prasad, Maruthi; Haldal, Sindhu

    2014-07-01

    Amelogenesis imperfecta (AI) is a hereditary disorder expressing a group of conditions which cause developmental alterations in the structure of enamel. This disorder has an adverse impact on oral health and also hampers the quality of life of the individual causing physiologic problems. The treatment of such patients would not only upgrade their quality-of-life, but also improve their self-esteem. The correction of such severely worn out dentition may require extensive restorative treatment to achieve appropriate results. It is important to identify the factors that contribute to the excessive wear and loss of vertical dimension. The correction of the defects has to be done without violating the biologic or mechanical principles. Full mouth rehabilitation in such patients improves esthetics, function and comfort. The following case report presents a systematic approach in rehabilitating a case of AI hypoplastic type using full mouth metal reinforced porcelain restorations.

  12. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI. Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB, while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing mutations were identified and perfectly segregated with the enamel defects in three families: a 19-bp insertion mutation in the exon 7 of ENAM (c.406_407insTCAAAAAAGCCGACCACAA, p.K136Ifs*16 in Family 1, a single-base deletion mutation in the exon 5 of ENAM (c. 139delA, p. M47Cfs*11 in Family 2, and a LAMB3 nonsense mutation in the last exon (c.3466C>T, p.Q1156X in Family 3. Our results suggest that heterozygous mutations in ENAM and LAMB3 genes can cause hypoplastic AI with markedly different phenotypes in Chinese patients. And these findings extend the mutation spectrum of both genes and can be used for mutation screening of AI in the Chinese population.

  13. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta.

    Science.gov (United States)

    Wang, Xin; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-01-01

    Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI). Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB), while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing mutations were identified and perfectly segregated with the enamel defects in three families: a 19-bp insertion mutation in the exon 7 of ENAM (c.406_407insTCAAAAAAGCCGACCACAA, p.K136Ifs*16) in Family 1, a single-base deletion mutation in the exon 5 of ENAM (c. 139delA, p. M47Cfs*11) in Family 2, and a LAMB3 nonsense mutation in the last exon (c.3466C>T, p.Q1156X) in Family 3. Our results suggest that heterozygous mutations in ENAM and LAMB3 genes can cause hypoplastic AI with markedly different phenotypes in Chinese patients. And these findings extend the mutation spectrum of both genes and can be used for mutation screening of AI in the Chinese population.

  14. Treatment plan in amelogenesis imperfecta: A structured literature review on treatment protocols and dedicating the best possible options

    Directory of Open Access Journals (Sweden)

    Azari A.

    2008-12-01

    Full Text Available "nAmelogenesis imperfecta is an inherited disease that disturbs the formation of the enamel. It occurs as two main categories, hypomineralized and hypoplastic. Both deciduous and permanent teeth are affected, and the disorder may create unaesthetic appearance, dental sensitivity, and severe attrition. In this article through performing a structured literature review, numerous treatment modalities which so far advocated in rehabilitation of amelogenesis imperfecta in adults and children is discussed. The progressive changes on open bite, the problem of bonding during restorative phase of treatment , the rehabilitation difficulties of deciduous as well as permanent teeth is also discussed in detail and finally the interdisciplinary approach for treatment of this disability is demonstrated and some points for decision making in treatment protocols are suggested.

  15. Rehabilitation of a patient with amelogenesis imperfecta using porcelain veneers and CAD/CAM polymer restorations: A clinical report.

    Science.gov (United States)

    Saeidi Pour, Reza; Edelhoff, Daniel; Prandtner, Otto; Liebermann, Anja

    2015-01-01

    The complete dental rehabilitation of patients with a vertical dimension loss (VDL) caused by structural enamel deficits associated with amelogenesis imperfecta (AI) represents a difficult challenge for restorative teams. Accurate analysis and treatment planning that includes esthetic and functional evaluations and adequate material selection are important prerequisites for successful results. Long-term provisional restorations play an important role in exploring and elucidating the patients' esthetic demands and functional needs. Restorative treatment options can vary from requiring only oral hygiene instructions to extensive dental restorations that include composite fillings, ceramic veneers, metal-ceramic, or all-ceramic crowns. This case report describes a full-mouth rehabilitation of a patient with amelogenesis imperfecta including the case planning, bite replacement, preparation, and restoration setting steps with an experimental CAD/CAM polymer and porcelain veneers.

  16. Localization of a gene for autosomal dominant amelogenesis imperfecta (ADAI) to chromosome 4q

    Energy Technology Data Exchange (ETDEWEB)

    Forsman, K.; Lind. L.; Westermark, E. [Univ. of Umea (Sweden)] [and others

    1994-09-01

    Amelogenesis imperfecta (AI), a disorder affecting the formation of enamel, is significantly more common in Northern Sweden than in other parts of the world. The disease is genetically and clinically heterogenous, and autosomal dominant, autosomal recessive and X-linked inheritance patterns have been recognized. Linkage analysis has identified two different loci for X-linked AI, one of which is identical to the gene encoding the enamel protein amelogenin. However, in families with an autosomal inheritance pattern for AI, the genetic basis of the disease still remains unknown. We report a linkage analysis study performed on three Swedish families where the affected members had an autosomal dominant variant of AI (ADAI) clinically characterized as local hypoplastic. Significant linkage to microsatellite markers on chromosome 4q were obtained, with a maximum lod score of 5.55 for the marker D4S428. Recombinations in the family localized the ADAI locus to the interval between D4S392 and D4S395. This chromosome region contains both a locus for the dental disorder dentinogenesis imperfecta and the albumin gene. Serum albumin has been suggested to play a role in enamel formation, and the albumin gene is therefore a candidate gene for this genetic disease.

  17. Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta.

    Science.gov (United States)

    Parry, David A; Smith, Claire E L; El-Sayed, Walid; Poulter, James A; Shore, Roger C; Logan, Clare V; Mogi, Chihiro; Sato, Koichi; Okajima, Fumikazu; Harada, Akihiro; Zhang, Hong; Koruyucu, Mine; Seymen, Figen; Hu, Jan C-C; Simmer, James P; Ahmed, Mushtaq; Jafri, Hussain; Johnson, Colin A; Inglehearn, Chris F; Mighell, Alan J

    2016-10-06

    Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the pH of the developing enamel matrix. The means by which the enamel organ regulates pH during amelogenesis is largely unknown. We identified rare homozygous variants in GPR68 in three families with amelogenesis imperfecta, a genetically and phenotypically heterogeneous group of inherited conditions associated with abnormal enamel formation. Each of these homozygous variants (a large in-frame deletion, a frameshift deletion, and a missense variant) were predicted to result in loss of function. GPR68 encodes a proton-sensing G-protein-coupled receptor with sensitivity in the pH range that occurs in the developing enamel matrix during amelogenesis. Immunohistochemistry of rat mandibles confirmed localization of GPR68 in the enamel organ at all stages of amelogenesis. Our data identify a role for GPR68 as a proton sensor that is required for proper enamel formation.

  18. Amelogenesis imperfecta

    Science.gov (United States)

    ... 2016 Updated by: Michael Kapner, DDS, general and aesthetic dentistry, Norwalk Medical Center, Norwalk, CT. Review provided ... for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department ...

  19. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    Science.gov (United States)

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  20. Full-mouth adhesive rehabilitation in a case of amelogenesis imperfecta: a 5-year follow-up case report.

    Science.gov (United States)

    Gerdolle, David; Mortier, Eric; Richard, Adeline; Vailati, Francesca

    2015-01-01

    Amelogenesis imperfecta (AI) is a hereditary disorder caused by mutations of genes primarily involved in the enamel formation. Several different types of AI have been identified, based on the phenotype and on the mode of inheritance. Regardless of the type, the dental treatment tends to be the same, favoring the complete removal of the compromised enamel late in the patient's life. With the new dentistry guidelines that orient clinicians towards minimal invasiveness, it should be mandatory to intercept patients affected by AI earlier, not only to protect the dentition from further degradation but also to help patients improve their self-esteem. This article examines the restorative dentistry performed on a 24-year-old Caucasian female suffering from the hypoplastic type of AI, using only adhesive procedures. Due to the complex needs of the patient, an interdisciplinary approach was followed, involving orthodontics, periodontics, and restorative dentistry. A full-mouth adhesive rehabilitation was achieved by means of direct composite restorations, veneer/onlays and facial/palatal veneers. No elective endodontic therapy was necessary for restorative purposes. The esthetics, mechanics, and biological success were achieved and maintained. The bond to the enamel did not show signs of degradation (eg, discoloration or infiltration) even after 5 years of function. This is encouraging as it shows that adhesive techniques may be a reliable approach even in the presence of a compromised enamel layer.

  1. Novel genetic linkage of rat Sp6 mutation to Amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Muto Taro

    2012-06-01

    Full Text Available Abstract Background Amelogenesis imperfecta (AI is an inherited disorder characterized by abnormal formation of tooth enamel. Although several genes responsible for AI have been reported, not all causative genes for human AI have been identified to date. AMI rat has been reported as an autosomal recessive mutant with hypoplastic AI isolated from a colony of stroke-prone spontaneously hypertensive rat strain, but the causative gene has not yet been clarified. Through a genetic screen, we identified the causative gene of autosomal recessive AI in AMI and analyzed its role in amelogenesis. Methods cDNA sequencing of possible AI-candidate genes so far identified using total RNA of day 6 AMI rat molars identified a novel responsible mutation in specificity protein 6 (Sp6. Genetic linkage analysis was performed between Sp6 and AI phenotype in AMI. To understand a role of SP6 in AI, we generated the transgenic rats harboring Sp6 transgene in AMI (Ami/Ami + Tg. Histological analyses were performed using the thin sections of control rats, AMI, and Ami/Ami + Tg incisors in maxillae, respectively. Results We found the novel genetic linkage between a 2-bp insertional mutation of Sp6 gene and the AI phenotype in AMI rats. The position of mutation was located in the coding region of Sp6, which caused frameshift mutation and disruption of the third zinc finger domain of SP6 with 11 cryptic amino acid residues and a stop codon. Transfection studies showed that the mutant protein can be translated and localized in the nucleus in the same manner as the wild-type SP6 protein. When we introduced the CMV promoter-driven wild-type Sp6 transgene into AMI rats, the SP6 protein was ectopically expressed in the maturation stage of ameloblasts associated with the extended maturation stage and the shortened reduced stage without any other phenotypical changes. Conclusion We propose the addition of Sp6 mutation as a new molecular diagnostic criterion for the

  2. A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q24.3.

    Science.gov (United States)

    Mendoza, Gustavo; Pemberton, Trevor J; Lee, Kwanghyuk; Scarel-Caminaga, Raquel; Mehrian-Shai, Ruty; Gonzalez-Quevedo, Catalina; Ninis, Vasiliki; Hartiala, Jaana; Allayee, Hooman; Snead, Malcolm L; Leal, Suzanne M; Line, Sergio R P; Patel, Pragna I

    2007-01-01

    Amelogenesis imperfecta (AI) is a collective term used to describe phenotypically diverse forms of defective tooth enamel development. AI has been reported to exhibit a variety of inheritance patterns, and several loci have been identified that are associated with AI. We have performed a genome-wide scan in a large Brazilian family segregating an autosomal dominant form of AI and mapped a novel locus to 8q24.3. A maximum multipoint LOD score of 7.5 was obtained at marker D8S2334 (146,101,309 bp). The disease locus lies in a 1.9 cM (2.1 Mb) region according to the Rutgers Combined Linkage-Physical map, between a VNTR marker (at 143,988,705 bp) and the telomere (146,274,826 bp). Ten candidate genes were identified based on gene ontology and microarray-facilitated gene selection using the expression of murine orthologues in dental tissue, and examined for the presence of a mutation. However, no causative mutation was identified.

  3. Deletion of amelotin exons 3–6 is associated with amelogenesis imperfecta

    Science.gov (United States)

    Smith, Claire E.L.; Murillo, Gina; Brookes, Steven J.; Poulter, James A.; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F.; Mighell, Alan J.

    2016-01-01

    Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective dental enamel formation. Amelotin (AMTN) is a secreted protein thought to act as a promoter of matrix mineralization in the final stage of enamel development, and is strongly expressed, almost exclusively, in maturation stage ameloblasts. Amtn overexpression and Amtn knockout mouse models have defective enamel with no other associated phenotypes, highlighting AMTN as an excellent candidate gene for human AI. However, no AMTN mutations have yet been associated with human AI. Using whole exome sequencing, we identified an 8,678 bp heterozygous genomic deletion encompassing exons 3-6 of AMTN in a Costa Rican family segregating dominant hypomineralised AI. The deletion corresponds to an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 residues. Exfoliated primary teeth from an affected family member had enamel that was of a lower mineral density compared to control enamel and exhibited structural defects at least some of which appeared to be associated with organic material as evidenced using elemental analysis. This study demonstrates for the first time that AMTN mutations cause non-syndromic human AI and explores the human phenotype, comparing it with that of mice with disrupted Amtn function. PMID:27412008

  4. Aesthetic and Functional Rehabilitation of the Primary Dentition Affected by Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Maria Carolina Salomé Marquezin

    2015-01-01

    Full Text Available The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child’s psychosocial development.

  5. A Randomized Controlled Trial of Crown Therapy in Young Individuals with Amelogenesis Imperfecta.

    Science.gov (United States)

    Pousette Lundgren, G; Morling Vestlund, G I; Trulsson, M; Dahllöf, G

    2015-08-01

    Amelogenesis imperfecta (AI) is a rare, genetically determined defect in enamel mineralization. Existing treatment recommendations suggest resin-composite restorations until adulthood, although such restorations have a limited longevity. New crown materials allow for minimal preparation techniques. The aim of this study was to compare the quality and longevity of 2 crown types-Procera and IPS e.max Press-in adolescents and young adults with AI. A secondary aim was to document adverse events. We included 27 patients (11 to 22 y of age) with AI in need of crown therapy in a randomized controlled trial using a split-mouth technique. After placing 119 Procera crowns and 108 IPS e.max Press crowns following randomization, we recorded longevity, quality, adverse events, and tooth sensitivity. After 2 y, 97% of the crowns in both crown groups had excellent or acceptable quality. We found no significant differences in quality between Procera and IPS e.max Press crowns. Tooth sensitivity was significantly reduced after crown therapy (P < 0.001). Endodontic complications occurred in 3% of crowns. The results show that it is possible to perform crown therapy with excellent results and without severe complications in young patients with AI. The study is registered at http://www.controlled-trials.com (ISRCTN70438627).

  6. Simple recessive mutation in ENAM is associated with amelogenesis imperfecta in Italian Greyhounds.

    Science.gov (United States)

    Gandolfi, Barbara; Liu, Hongwei; Griffioen, Layle; Pedersen, Niels C

    2013-08-01

    We report a familial enamel hypoplasia in Italian Greyhounds resembling non-syndromic autosomal recessive amelogenesis imperfecta (AI) of humans. The condition uniformly affects deciduous and permanent teeth and is manifested by enamel roughening/thinning and brownish mottling. Affected teeth are often small and pointed with increased gaps. However, basic tooth structure is usually maintained throughout life, and fractures and dental cavities are not a serious problem as in humans. No tissues or organs other than teeth were affected by this mutation, and there was no relationship between enamel hypoplasia and either autoimmunity or periodontal disease, which also are prevalent in the breed. The enamel hypoplasia was associated with a 5-bp deletion in exon 10 of the enamelin (ENAM) gene. The prevalence of the enamel defect in Italian Greyhounds was 14%, and 30% of dogs with normal teeth were carriers. Genome analyses suggest that the trait is under inadvertent positive selection. Based on the deletion detected in the ENAM gene, a genetic test was developed for identifying mutation carriers, which would enable breeders to manage the trait.

  7. Research situation of amelogenesis imperfecta%遗传性釉质发育不全研究现状

    Institute of Scientific and Technical Information of China (English)

    王欣; 赵玉鸣

    2016-01-01

    遗传性釉质发育不全(amelogenesis imperfecta,AI)通常是指不伴有系统性疾病的一类单基因遗传病,乳牙、恒牙均可累及.目前已知的AI致病基因众多,且临床表型和基因型之间存在一定相关性.AI治疗计划的制定及预后评估与早期确诊息息相关.

  8. Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a Danish five-generation family with a novel FAM83H nonsense mutation

    DEFF Research Database (Denmark)

    Haubek, Dorte; Gjørup, Hans; Jensen, Lillian Gryesten

    2011-01-01

    BACKGROUND.  Autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI) is a disease with severe dental manifestations. OBJECTIVES.  The aims were by means of a genome-wide linkage scan to search for the gene underlying the ADHCAI phenotype in a Danish five-generation family and to study...

  9. Complex morphological and molecular genetic examination of amelogenesis imperfecta: a case presentation of two Czech siblings with a non-syndrome form of the disease.

    Science.gov (United States)

    Kripnerova, Tereza; Krulisova, Veronika; Ptakova, Nikola; Macek, Milan; Dostalova, Tatjana

    2014-01-01

    Amelogenesis imperfecta (AI) is an overarching term for a group of rare inherited disorders of hard tooth tissues. It is characterized by various defects in proper enamel formation. AI is a severe disorder that affects both the aesthetics and function of the dentition, with affected teeth increasingly suffering from dental caries. Therefore, early diagnosis and lifelong stomatological interventions are important. Due to the complex nature of AI family history, stomatological, radiographic, and molecular genetic examinations should be part of the diagnostic portfolio. Additionally, we utilized new visualization methods for the assessment of teeth demineralization. We present a case report of two affected Czech sisters (6 and 8 years old) with clinically defined AI. These are the first Czech cases in which comprehensive clinical and genetic analysis had been carried out and reflect the complex clinical nature, positive treatment options, and limitations of candidate-gene molecular genetic testing.

  10. Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice.

    Science.gov (United States)

    Vogel, P; Hansen, G M; Read, R W; Vance, R B; Thiel, M; Liu, J; Wronski, T J; Smith, D D; Jeter-Jones, S; Brommage, R

    2012-11-01

    The FAM20 family of secreted proteins consists of three members (FAM20A, FAM20B, and FAM20C) recently linked to developmental disorders suggesting roles for FAM20 proteins in modulating biomineralization processes. The authors report here findings in knockout mice having null mutations affecting each of the three FAM20 proteins. Both Fam20a and Fam20c null mice survived to adulthood and showed biomineralization defects. Fam20b (-/-) embryos showed severe stunting and increased mortality at E13.5, although early lethality precluded detailed investigations. Physiologic calcification or biomineralization of extracellular matrices is a normal process in the development and functioning of various tissues (eg, bones and teeth). The lesions that developed in teeth, bones, or blood vessels after functional deletion of either Fam20a or Fam20c support a significant role for their encoded proteins in modulating biomineralization processes. Severe amelogenesis imperfecta (AI) was present in both Fam20a and Fam20c null mice. In addition, Fam20a (-/-) mice developed disseminated calcifications of muscular arteries and intrapulmonary calcifications, similar to those of fetuin-A deficient mice, although they were normocalcemic and normophosphatemic, with normal dentin and bone. Fam20a gene expression was detected in ameloblasts, odontoblasts, and the parathyroid gland, with local and systemic effects suggesting both local and/or systemic effects for FAM20A. In contrast, Fam20c (-/-) mice lacked ectopic calcifications but were severely hypophosphatemic and developed notable lesions in both dentin and bone to accompany the AI. The bone and dentin lesions, plus the marked hypophosphatemia and elevated serum alkaline phosphatase and FGF23 levels, are indicative of autosomal recessive hypophosphatemic rickets/osteomalacia in Fam20c (-/-) mice.

  11. Amelogenesis imperfecta in two families with defined AMELX deletions in ARHGAP6.

    Directory of Open Access Journals (Sweden)

    Jan C-C Hu

    Full Text Available Amelogenesis imperfecta (AI is a group of inherited conditions featuring isolated enamel malformations. About 5% of AI cases show an X-linked pattern of inheritance, which are caused by mutations in AMELX. In humans there are two, non-allelic amelogenin genes: AMELX (Xp22.3 and AMELY (Yp11.2. About 90% of amelogenin expression is from AMELX, which is nested within intron 1 of the gene encoding Rho GTPase activating protein 6 (ARHGAP6. We recruited two AI families and determined that their disease-causing mutations were partial deletions in ARHGAP6 that completely deleted AMELX. Affected males in both families had a distinctive enamel phenotype resembling "snow-capped" teeth. The 96,240 bp deletion in family 1 was confined to intron 1 of ARHGAP6 (g.302534_398773del96240, but removed alternative ARHGAP6 promoters 1c and 1d. Analyses of developing teeth in mice showed that ARHGAP6 is not expressed from these promoters in ameloblasts. The 52,654 bp deletion in family 2 (g.363924_416577del52654insA removed ARHGAP6 promoter 1d and exon 2, precluding normal expression of ARHGAP6. The male proband of family 2 had slightly thinner enamel with greater surface roughness, but exhibited the same pattern of enamel malformations characteristic of males in family 1, which themselves showed minor variations in their enamel phenotypes. We conclude that the enamel defects in both families were caused by amelogenin insufficiency, that deletion of AMELX results in males with a characteristic snow-capped enamel phenotype, and failed ARHGAP6 expression did not appreciably alter the severity of enamel defects when AMELX was absent.

  12. Phenotype-genotype correlations in mouse models of amelogenesis imperfecta caused by Amelx and Enam mutations.

    Science.gov (United States)

    Coxon, Thomas Liam; Brook, Alan Henry; Barron, Martin John; Smith, Richard Nigel

    2012-01-01

    Mutations in human and in mouse orthologous genes Amelx and Enam result in a diverse range of enamel defects. In this study we aimed to investigate the phenotype-genotype correlation between the mutants and the wild-type controls in mouse models of amelogenesis imperfecta using novel measurement approaches. Ten hemi-mandibles and incisors were dissected from each group of Amelx(WT), Amelx(X/Y64H), Amelx(Y/Y64H), Amelx(Y64H/Y64H), and Enam(WT), Enam(Rgsc395) heterozygous and Enam(Rgsc395) homozygous mice. Their macro-morphology, colour and micro-topography were assessed using bespoke 2D and 3D image analysis systems and customized colour and whiteness algorithms. The novel methods identified significant differences (p ≤ 0.05) between the Amelx groups for mandible and incisor size and enamel colour and between the Enam groups for incisor size and enamel colour. The Amelx(WT) mice had the largest mandibles and incisors, followed in descending order of size by the Amelx(X/Y64H), Amelx(Y/Y64H) and Amelx(Y64H/Y64H) mice. Within the Enam groups the Enam(WT) incisors were largest and the Enam(Rgsc395) heterozygous mice were smallest. The effect on tooth morphology was also reflected by the severity of the enamel defects in the colour and whiteness assessment. Amelogenin affected mandible morphology and incisor enamel formation, while enamelin only affected incisors, supporting the multifunctional role of amelogenin. The enamelin mutation was associated with earlier forming enamel defects. The study supported the critical involvement of amelogenin and enamelin in enamel mineralization.

  13. Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta.

    Science.gov (United States)

    El-Sayed, Walid; Parry, David A; Shore, Roger C; Ahmed, Mushtaq; Jafri, Hussain; Rashid, Yasmin; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2009-11-01

    Healthy dental enamel is the hardest and most highly mineralized human tissue. Though acellular, nonvital, and without capacity for turnover or repair, it can nevertheless last a lifetime. Amelogenesis imperfecta (AI) is a collective term for failure of normal enamel development, covering diverse clinical phenotypes that typically show Mendelian inheritance patterns. One subset, known as hypomaturation AI, is characterised by near-normal volumes of organic enamel matrix but with weak, creamy-brown opaque enamel that fails prematurely after tooth eruption. Mutations in genes critical to enamel matrix formation have been documented, but current understanding of other key events in enamel biomineralization is limited. We investigated autosomal-recessive hypomaturation AI in a consanguineous Pakistani family. A whole-genome SNP autozygosity screen identified a locus on chromosome 15q21.3. Sequencing candidate genes revealed a point mutation in the poorly characterized WDR72 gene. Screening of WDR72 in a panel of nine additional hypomaturation AI families revealed the same mutation in a second, apparently unrelated, Pakistani family and two further nonsense mutations in Omani families. Immunohistochemistry confirmed intracellular localization in maturation-stage ameloblasts. WDR72 function is unknown, but as a putative beta propeller is expected to be a scaffold for protein-protein interactions. The nearest homolog, WDR7, is involved in vesicle mobilization and Ca2+-dependent exocytosis at synapses. Vesicle trafficking is important in maturation-stage ameloblasts with respect to secretion into immature enamel and removal of cleaved enamel matrix proteins via endocytosis. This raises the intriguing possibility that WDR72 is critical to ameloblast vesicle turnover during enamel maturation.

  14. Clinical and molecular analysis of the enamelin gene ENAM in Colombian families with autosomal dominant amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Sandra Gutiérrez

    2012-01-01

    Full Text Available In this study, we analyzed the phenotype, clinical characteristics and presence of mutations in the enamelin gene ENAM in five Colombian families with autosomal dominant amelogenesis imperfecta (ADAI. 22 individuals (15 affected and seven unaffected belonging to five Colombian families with ADAI and eight individuals (three affected and five unaffected belonging to three Colombian families with autosomal recessive amelogenesis imperfecta (ARAI that served as controls for molecular alterations and inheritance patterns were studied. Clinical, radiographic and genetic evaluations were done in all individuals. Eight exons and three intron-exon boundaries were sequenced for mutation analysis. Two of the five families with ADAI had the hypoplasic phenotype, two had the hypocalcified phenotype and one had the hypomaturative phenotype. Anterior open bite and mandibular retrognathism were the most frequent skeletal abnormalities in the families with ADAI. No mutations were found. These findings suggest that ADAI in these Colombian families was unrelated to previously described mutations in the ENAM gene. These results also indicate that other regions not included in this investigation, such as the promoter region, introns and other genes should be considered as potential ADAI candidates.

  15. Kallikrein 4 and amelogenesis imperfecta%激肽释放酶4与釉质发生不全

    Institute of Scientific and Technical Information of China (English)

    王光平; 李明霞; 刘建国

    2013-01-01

      激肽释放酶4(KLK4)在釉质发生的转换期和成熟早期大量表达,水解基质蛋白,降低牙釉蛋白与羟磷灰石的结合,促进釉质晶体的生长和矿化。如果其基因突变或缺失,将导致釉质发生不全。本文就KLK4的结构、KLK4的表达与生物学功能、 KLK4的调控因子、 KLK4与釉质发生不全等研究进展作一综述。%  Kallikrein 4(KLK4) is a protease expressed during the transition and maturation stages of dental enamel formation. KLK4 can degrade enamel proteins, reduce enamel proteins combination to hydroxyapatite, and promote the enamel crystals growth and mineralization. KLK4 mutations or defects cause hypomaturation amelogenesis im-perfecta. This article reviewed the structure, expression, functions, regulatory factors of KLK4 and its effect on amelogenesis imperfecta.

  16. Clinical and molecular analysis of the enamelin gene ENAM in Colombian families with autosomal dominant amelogenesis imperfecta.

    Science.gov (United States)

    Gutiérrez, Sandra; Torres, Diana; Briceño, Ignacio; Gómez, Ana Maria; Baquero, Eliana

    2012-07-01

    In this study, we analyzed the phenotype, clinical characteristics and presence of mutations in the enamelin gene ENAM in five Colombian families with autosomal dominant amelogenesis imperfecta (ADAI). 22 individuals (15 affected and seven unaffected) belonging to five Colombian families with ADAI and eight individuals (three affected and five unaffected) belonging to three Colombian families with autosomal recessive amelogenesis imperfecta (ARAI) that served as controls for molecular alterations and inheritance patterns were studied. Clinical, radiographic and genetic evaluations were done in all individuals. Eight exons and three intron-exon boundaries were sequenced for mutation analysis. Two of the five families with ADAI had the hypoplasic phenotype, two had the hypocalcified phenotype and one had the hypomaturative phenotype. Anterior open bite and mandibular retrognathism were the most frequent skeletal abnormalities in the families with ADAI. No mutations were found. These findings suggest that ADAI in these Colombian families was unrelated to previously described mutations in the ENAM gene. These results also indicate that other regions not included in this investigation, such as the promoter region, introns and other genes should be considered as potential ADAI candidates.

  17. Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta.

    Science.gov (United States)

    Parry, David A; Brookes, Steven J; Logan, Clare V; Poulter, James A; El-Sayed, Walid; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Sayed, Jihad; Raïf, El Mostafa; Shore, Roger C; Dashash, Mayssoon; Barron, Martin; Morgan, Joanne E; Carr, Ian M; Taylor, Graham R; Johnson, Colin A; Aldred, Michael J; Dixon, Michael J; Wright, J Tim; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2012-09-07

    Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the protein's phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis.

  18. Amelogenin signal peptide mutation: Correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Lagerstroem-Fermer, M.; Nilsson, M.; Pettersson, U. [Univ. of Uppsala (Sweden)] [and others

    1995-03-01

    Formation of tooth enamel is a poorly understood biological process. In this study the authors describe a 9-bp deletion in exon 2 of the amelogenin gene (AMGX) causing X-linked hypoplastic amelogenesis imperfecta, a disease characterized by defective enamel. The mutation results in the loss of 3 amino acids and exchange of 1 in the signal peptide of the amelogenin protein. This deletion in the signal peptide probably interferes with translocation of the amelogenin protein during synthesis, resulting in the thin enamel observed in affected members of the family. The authors compare this mutation to a previously reported mutation in the amelogenin gene that causes a different disease phenotype. The study illustrates that molecular analysis can help explain the various manifestations of a tooth disorder and thereby provide insights into the mechanisms of tooth enamel formation. 16 refs., 2 figs., 1 tab.

  19. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta.

    Science.gov (United States)

    Huckert, Mathilde; Stoetzel, Corinne; Morkmued, Supawich; Laugel-Haushalter, Virginie; Geoffroy, Véronique; Muller, Jean; Clauss, François; Prasad, Megana K; Obry, Frédéric; Raymond, Jean Louis; Switala, Marzena; Alembik, Yves; Soskin, Sylvie; Mathieu, Eric; Hemmerlé, Joseph; Weickert, Jean-Luc; Dabovic, Branka Brukner; Rifkin, Daniel B; Dheedene, Annelies; Boudin, Eveline; Caluseriu, Oana; Cholette, Marie-Claude; Mcleod, Ross; Antequera, Reynaldo; Gellé, Marie-Paule; Coeuriot, Jean-Louis; Jacquelin, Louis-Frédéric; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Van Hul, Wim; Bertola, Debora; Dollé, Pascal; Verloes, Alain; Mortier, Geert; Dollfus, Hélène; Bloch-Zupan, Agnès

    2015-06-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder.

  20. Interdisciplinary Full Mouth Rehabilitation of a Patient with Amelogenesis Imperfecta: A Case Report with 8 Years Follow-up.

    Science.gov (United States)

    Sreedevi, S; Sanjeev, R; Ephraim, Rena; Joseph, Mathai

    2014-01-01

    This case report deals with the interdisciplinary approach of a 28-year-old lady with Amelogenesis imperfecta of the hypoplastic kind. The patient came with a chief illness of worn out teeth, unsatisfactory esthetics and severe sensitivity of teeth. Her family history revealed a related situation in her father's brother and her sister. On clinical assessment, the crowns of all teeth were worn out. The plan of the treatment was to protect as much tooth structure, restore the vertical dimension, and improve esthetics and masticatory function. The treatment procedures involved prosthodontic, endodontic, and periodontic interventions. After recording the vertical height, endodontic treatment and crown lengthening were performed with respect to the lower anteriors. The lost vertical height was regained in stages by insertion of full coverage crowns for all the teeth. The patient's esthetic and functional needs were met with systematic and sequential interdisciplinary treatment approach.

  1. Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth

    Science.gov (United States)

    Li, Li-Li; Liu, Pei-Hong; Xie, Xiao-Hua; Ma, Su; Liu, Chao; Chen, Li; Qin, Chun-Lin

    2016-01-01

    FAM20A has been studied to a very limited extent. Mutations in human FAM20A cause amelogenesis imperfecta, gingival fibromatosis and kidney problems. It would be desirable to systemically analyse the expression of FAM20A in dental tissues and to assess the pathological changes when this molecule is specifically nullified in individual tissues. Recently, we generated mice with a Fam20A-floxed allele containing the beta-galactosidase reporter gene. We analysed FAM20A expression in dental tissues using X-Gal staining, immunohistochemistry and in situ hybridization, which showed that the ameloblasts in the mouse mandibular first molar began to express FAM20A at 1 day after birth, and the reduced enamel epithelium in erupting molars expressed a significant level of FAM20A. By breeding K14-Cre mice with Fam20Aflox/flox mice, we created K14-Cre;Fam20Aflox/flox (conditional knock out, cKO) mice, in which Fam20A was inactivated in the epithelium. We analysed the dental tissues of cKO mice using X-ray radiography, histology and immunohistochemistry. The molar enamel matrix in cKO mice was much thinner than normal and was often separated from the dentinoenamel junction. The Fam20A-deficient ameloblasts were non-polarized and disorganized and were detached from the enamel matrix. The enamel abnormality in cKO mice was consistent with the diagnosis of amelogenesis imperfecta. The levels of enamelin and matrix metalloproteinase 20 were lower in the ameloblasts and enamel of cKO mice than the normal mice. The cKO mice had remarkable delays in the eruption of molars and hyperplasia of the gingival epithelium. The findings emphasize the essential roles of FAM20A in the development of dental and oral tissues. PMID:27281036

  2. Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth.

    Science.gov (United States)

    Li, Li-Li; Liu, Pei-Hong; Xie, Xiao-Hua; Ma, Su; Liu, Chao; Chen, Li; Qin, Chun-Lin

    2016-06-30

    FAM20A has been studied to a very limited extent. Mutations in human FAM20A cause amelogenesis imperfecta, gingival fibromatosis and kidney problems. It would be desirable to systemically analyse the expression of FAM20A in dental tissues and to assess the pathological changes when this molecule is specifically nullified in individual tissues. Recently, we generated mice with a Fam20A-floxed allele containing the beta-galactosidase reporter gene. We analysed FAM20A expression in dental tissues using X-Gal staining, immunohistochemistry and in situ hybridization, which showed that the ameloblasts in the mouse mandibular first molar began to express FAM20A at 1 day after birth, and the reduced enamel epithelium in erupting molars expressed a significant level of FAM20A. By breeding K14-Cre mice with Fam20A(flox/flox) mice, we created K14-Cre;Fam20A(flox/flox) (conditional knock out, cKO) mice, in which Fam20A was inactivated in the epithelium. We analysed the dental tissues of cKO mice using X-ray radiography, histology and immunohistochemistry. The molar enamel matrix in cKO mice was much thinner than normal and was often separated from the dentinoenamel junction. The Fam20A-deficient ameloblasts were non-polarized and disorganized and were detached from the enamel matrix. The enamel abnormality in cKO mice was consistent with the diagnosis of amelogenesis imperfecta. The levels of enamelin and matrix metalloproteinase 20 were lower in the ameloblasts and enamel of cKO mice than the normal mice. The cKO mice had remarkable delays in the eruption of molars and hyperplasia of the gingival epithelium. The findings emphasize the essential roles of FAM20A in the development of dental and oral tissues.

  3. Treatment of teeth in the esthetic zone in a patient with amelogenesis imperfecta using composite veneers and the clear matrix technique: A case report

    OpenAIRE

    Bogosavljević Aleksandar; Mišina Vanja; Jordačević Jovana; Abazović Milka; Dukić Smiljka; Ristić Ljubiša; Daković Dragana

    2016-01-01

    Introduction. Restorative dental treatment of patients with a generalized form of amelogenesis imperfecta (AI) remains a challenge even today. The treatment approach is multidisciplinary and includes action of several dental disciplines such as restorative, orthodontic, and prosthetic dental specialties. Case report. A 18-year-old female patent was referred to the Department of Restorative Dentistry and Periodontology at the Military Medical Academy of Belg...

  4. Identification of the first multi-exonic WDR72 deletion in isolated amelogenesis imperfecta, and generation of a WDR72-specific copy number screening tool.

    Science.gov (United States)

    Hentschel, Julia; Tatun, Dana; Parkhomchuk, Dmitri; Kurth, Ingo; Schimmel, Bettina; Heinrich-Weltzien, Roswitha; Bertzbach, Sabine; Peters, Hartmut; Beetz, Christian

    2016-09-15

    Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous disorder of tooth development which is due to aberrant deposition or composition of enamel. Both syndromic and isolated forms exist; they may be inherited in an X-linked, autosomal recessive, or autosomal dominant manner. WDR72 is one of ten currently known genes for recessive isolated AI; nine WDR72 mutations affecting single nucleotides have been described to date. Based on whole exome sequencing in a large consanguineous AI pedigree, we obtained evidence for presence of a multi-exonic WDR72 deletion. A home-made multiplex ligation-dependent probe amplification assay was used to confirm the aberration, to narrow its extent, and to identify heterozygous carriers. Our study extends the mutational spectrum for WDR72 to include large deletions, and supports a relevance of the previously proposed loss-of-function mechanism. It also introduces an easy-to-use and highly sensitive tool for detecting WDR72 copy number alterations.

  5. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; El-Sayed, Walid; Shore, Roger C; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-01-01

    The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.

  6. Mutations in CNNM4 Cause Jalili Syndrome, Consisting of Autosomal-Recessive Cone-Rod Dystrophy and Amelogenesis Imperfecta

    Science.gov (United States)

    Parry, David A.; Mighell, Alan J.; El-Sayed, Walid; Shore, Roger C.; Jalili, Ismail K.; Dollfus, Hélène; Bloch-Zupan, Agnes; Carlos, Roman; Carr, Ian M.; Downey, Louise M.; Blain, Katharine M.; Mansfield, David C.; Shahrabi, Mehdi; Heidari, Mansour; Aref, Parissa; Abbasi, Mohsen; Michaelides, Michel; Moore, Anthony T.; Kirkham, Jennifer; Inglehearn, Chris F.

    2009-01-01

    The combination of recessively inherited cone-rod dystrophy (CRD) and amelogenesis imperfecta (AI) was first reported by Jalili and Smith in 1988 in a family subsequently linked to a locus on chromosome 2q11, and it has since been reported in a second small family. We have identified five further ethnically diverse families cosegregating CRD and AI. Phenotypic characterization of teeth and visual function in the published and new families reveals a consistent syndrome in all seven families, and all link or are consistent with linkage to 2q11, confirming the existence of a genetically homogenous condition that we now propose to call Jalili syndrome. Using a positional-candidate approach, we have identified mutations in the CNNM4 gene, encoding a putative metal transporter, accounting for the condition in all seven families. Nine mutations are described in all, three missense, three terminations, two large deletions, and a single base insertion. We confirmed expression of Cnnm4 in the neural retina and in ameloblasts in the developing tooth, suggesting a hitherto unknown connection between tooth biomineralization and retinal function. The identification of CNNM4 as the causative gene for Jalili syndrome, characterized by syndromic CRD with AI, has the potential to provide new insights into the roles of metal transport in visual function and biomineralization. PMID:19200525

  7. Amelogenesis Imperfecta and Early Restorative Crown Therapy: An Interview Study with Adolescents and Young Adults on Their Experiences

    Science.gov (United States)

    Wickström, Anette; Hasselblad, Tove; Dahllöf, Göran

    2016-01-01

    Patients with Amelogenesis imperfecta (AI) can present with rapid tooth loss or fractures of enamel as well as alterations in enamel thickness, color, and shape; factors that may compromise aesthetic appearance and masticatory function. The aim was to explore the experiences and perceptions of adolescents and young adults living with AI and receiving early prosthetic therapy. Seven patients with severe AI aged 16 to 23 years who underwent porcelain crown therapy participated in one-to-one individual interviews. The interviews followed a topic guide consisting of open-ended questions related to experiences of having AI. Transcripts from the interviews were analyzed using thematic analysis. The analysis process identified three main themes: Disturbances in daily life, Managing disturbances, and Normalization of daily life. These themes explain the experiences of patients living with enamel disturbances caused by AI and receiving early crown therapy. Experiences include severe pain and sensitivity problems, feelings of embarrassment, and dealing with dental staff that lack knowledge and understanding of their condition. The patients described ways to manage their disturbances and to reduce pain when eating or drinking, and strategies for meeting other people. After definitive treatment with porcelain crown therapy, they described feeling like a normal patient. In conclusion the results showed that adolescents and young adults describe a profound effect of AI on several aspects of their daily life. PMID:27359125

  8. Noninvasive and Multidisciplinary Approach to the Functional and Esthetic Rehabilitation of Amelogenesis Imperfecta: A Pediatric Case Report

    Directory of Open Access Journals (Sweden)

    Juliana Feltrin de Souza

    2014-01-01

    Full Text Available Case Report. An 8-year-old girl with amelogenesis imperfecta (AI reported unsatisfactory aesthetics, difficulty in mastication, and dental hypersensitivity. The intraoral examination observed mixed dentition, malocclusion in anteroposterior relationships, anterior open bite, and dental asymmetry. A hypoplastic form of AI was diagnosed in the permanent dentition. A multidisciplinary planning was performed and divided into preventive, orthopedic, and rehabilitation stages. Initially, preventive treatment was implemented, with fluoride varnish applications, in order to protect the fragile enamel and reduce the dental sensitivity. In the second stage, the patient received an interceptive orthopedic treatment to improve cross-relationship of the arches during six months. Finally, the rehabilitation treatment was executed to establish the vertical dimension. In the posterior teeth, indirect composite resin crowns were performed with minimally invasive dental preparation. Direct composite resin restorations were used to improve the appearance of anterior teeth. Follow-Up. The follow-up was carried out after 3, 6, 12, and 18 months. After 18 months of follow-up, The restoration of integrity, oral hygiene, and patient satisfaction were observed . Conclusion. Successful reduction of the dental hypersensitivity and improvement of the aesthetic and functional aspects as well as quality of life were observed.

  9. Amelogenesis Imperfecta and Early Restorative Crown Therapy: An Interview Study with Adolescents and Young Adults on Their Experiences.

    Directory of Open Access Journals (Sweden)

    Gunilla Pousette Lundgren

    Full Text Available Patients with Amelogenesis imperfecta (AI can present with rapid tooth loss or fractures of enamel as well as alterations in enamel thickness, color, and shape; factors that may compromise aesthetic appearance and masticatory function. The aim was to explore the experiences and perceptions of adolescents and young adults living with AI and receiving early prosthetic therapy. Seven patients with severe AI aged 16 to 23 years who underwent porcelain crown therapy participated in one-to-one individual interviews. The interviews followed a topic guide consisting of open-ended questions related to experiences of having AI. Transcripts from the interviews were analyzed using thematic analysis. The analysis process identified three main themes: Disturbances in daily life, Managing disturbances, and Normalization of daily life. These themes explain the experiences of patients living with enamel disturbances caused by AI and receiving early crown therapy. Experiences include severe pain and sensitivity problems, feelings of embarrassment, and dealing with dental staff that lack knowledge and understanding of their condition. The patients described ways to manage their disturbances and to reduce pain when eating or drinking, and strategies for meeting other people. After definitive treatment with porcelain crown therapy, they described feeling like a normal patient. In conclusion the results showed that adolescents and young adults describe a profound effect of AI on several aspects of their daily life.

  10. Mapping of the locus for autosomal dominant amelogenesis imperfecta (AIH2) to a 4-Mb YAC contig on chromosome 4q11-q21

    Energy Technology Data Exchange (ETDEWEB)

    Kaerrman, C.; Holmgren, G.; Forsman, K. [Univ. Hospital, Umea (Sweden)]|[Univ. of Umea (Sweden)] [and others

    1997-01-15

    Amelogenesis imperfecta (Al) is a clinically and genetically heterogeneous group of inherited enamel defects. We recently mapped a locus for autosomal dominant local hypoplastic amelogenesis imperfecta (AIH2) to the long arm of chromosome 4. The disease gene was localized to a 17.6-cM region between the markers D4S392 and D4S395. The albumin gene (ALB), located in the same interval, was a candidate gene for autosomal dominant AI (ADAI) since albumin has a potential role in enamel maturation. Here we describe refined mapping of the AIH2 locus and the construction of marker maps by radiation hybrid mapping and yeast artificial chromosome (YAC)-based sequence tagged site-content mapping. A radiation hybrid map consisting of 11 microsatellite markers in the 5-cM interval between D4S409 and D4S1558 was constructed. Recombinant haplotypes in six Swedish ADAI families suggest that the disease gene is located in the interval between D4S2421 and ALB. ALB is therefore not likely to be the disease-causing gene. Affected members in all six families share the same allele haplotypes, indicating a common ancestral mutation in all families. The AIH2 critical region is less than 4 cM and spans a physical distance of approximately 4 Mb as judged from radiation hybrid maps. A YAC contig over the AIH2 critical region including several potential candidate genes was constructed. 35 refs., 4 figs., 1 tab.

  11. Treatment of teeth in the esthetic zone in a patient with amelogenesis imperfecta using composite veneers and the clear matrix technique: A case report

    Directory of Open Access Journals (Sweden)

    Bogosavljević Aleksandar

    2016-01-01

    Full Text Available Introduction. Restorative dental treatment of patients with a generalized form of amelogenesis imperfecta (AI remains a challenge even today. The treatment approach is multidisciplinary and includes action of several dental disciplines such as restorative, orthodontic, and prosthetic dental specialties. Case report. A 18-year-old female patent was referred to the Department of Restorative Dentistry and Periodontology at the Military Medical Academy of Belgrade, Serbia. She was diagnosed with AI and formerly had been treated for a long period of time at the Department of Pediatric Dentistry and Orthodontics. Her primary concern upon arrival was discomfort and concern for the esthetic appearance of the anterior teeth. The treatment was done with the modified clear matrix technique used in composite veneer restoration of teeth in the esthetic zone. Conclusion. Because fixed prosthetic restoration with crowns, is the final treatment of AI patients it involves severe tooth structure loss. The clear matrix method which was done in this case allowed for greater comfort, functionality, simplicity, speed, greater economic efficiency and tooth structure preservation.

  12. Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a Danish five-generation family with a novel FAM83H nonsense mutation.

    Science.gov (United States)

    Haubek, Dorte; Gjørup, Hans; Jensen, Lillian G; Juncker, Inger; Nyegaard, Mette; Børglum, Anders D; Poulsen, Sven; Hertz, Jens M

    2011-11-01

    BACKGROUND.  Autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI) is a disease with severe dental manifestations. OBJECTIVES.  The aims were by means of a genome-wide linkage scan to search for the gene underlying the ADHCAI phenotype in a Danish five-generation family and to study the phenotypic variation of the enamel in affected family members. RESULTS.  Significant linkage was found to a locus at chromosome 8q24.3 comprising the gene FAM83H identified to be responsible for ADHCAI in other families. Subsequent sequencing of FAM83H in affected family members revealed a novel nonsense mutation, p.Y302X. Limited phenotypic variation was found among affected family members with loss of translucency and discoloration of the enamel. Extensive posteruptive loss of enamel was found in all teeth of affected subjects. The tip of the cusps on the premolars and molars and a zone along the gingival margin seemed resistant to posteruptive loss of enamel. We have screened FAM83H in another five unrelated Danish patients with a phenotype of ADHCAI similar to that in the five-generation family, and identified a de novo FAM83H nonsense mutation, p.Q452X in one of these patients. CONCLUSION.  We have identified a FAM83H mutation in two of six unrelated families with ADHCAI and found limited phenotypic variation of the enamel in these patients.

  13. Osteogenesis imperfecta due to compound heterozygosity for the LEPRE1 gene.

    Science.gov (United States)

    Moul, Adrienne; Alladin, Amanda; Navarrete, Cristina; Abdenour, George; Rodriguez, Maria M

    2013-10-01

    Osteogenesis imperfecta is a rare connective tissue disorder characterized by bone fragility and low bone density. Most cases are caused by an autosomal dominant mutation in either COL1A1 or COL1A2 gene encoding type I collagen. However, autosomal recessive forms have been identified. We present a patient with severe respiratory distress due to osteogenesis imperfecta simulating type II, born to a non-consanguineous couple with mixed African-American and African-Hispanic ethnicity. Cultured skin fibroblasts demonstrated compound heterozygosity for mutations in the LEPRE1 gene encoding prolyl 3-hydroxylase 1 confirming the diagnosis of autosomal recessive osteogenesis imperfecta type VIII, perinatal lethal type.

  14. Improved protocol to purify untagged amelogenin - Application to murine amelogenin containing the equivalent P70→T point mutation observed in human amelogenesis imperfecta.

    Science.gov (United States)

    Buchko, Garry W; Shaw, Wendy J

    2015-01-01

    Amelogenin is the predominant extracellular protein responsible for converting carbonated hydroxyapatite into dental enamel, the hardest and most heavily mineralized tissue in vertebrates. Despite much effort, the precise mechanism by which amelogenin regulates enamel formation is not fully understood. To assist efforts aimed at understanding the biochemical mechanism of enamel formation, more facile protocols to purify recombinantly expressed amelogenin, ideally without any tag to assist affinity purification, are advantageous. Here we describe an improved method to purify milligram quantities of amelogenin that exploits its high solubility in 2% glacial acetic acid under conditions of low ionic strength. The method involves heating the frozen cell pellet for two 15min periods at ∼70°C with 2min of sonication in between, dialysis twice in 2% acetic acid (1:250 v/v), and reverse phase chromatography. A further improvement in yield is obtained by resuspending the frozen cell pellet in 6M guanidine hydrochloride in the first step. The acetic acid heating method is illustrated with a murine amelogenin containing the corresponding P70→T point mutation observed in an human amelogenin associated with amelogenesis imperfecta (P71T), while the guanidine hydrochloride heating method is illustrated with wild type murine amelogenin (M180). The self-assembly properties of P71T were probed by NMR chemical shift perturbation studies as a function of protein (0.1-1.8mM) and NaCl (0-367mM) concentration. Relative to similar studies with wild type murine amelogenin, P71T self-associates at lower protein or salt concentrations with the interactions initiated near the N-terminus.

  15. Nano-scratch research of amelogenesis imperfecta teeth%釉质发育不全磨牙的微观磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    李悦; 高姗姗; 岳虹池; 于海洋

    2012-01-01

    目的 对比研究釉质发育不全磨牙的微观摩擦磨损性能.方法 分别采用原子力显微镜(AFM)、能量色散X线光谱仪(EDX)对釉质发育不全牙及正常牙进行微观形貌观察和物质成分分析;通过纳米划痕技术并结合扫描电镜(SEM)对比分析其微观摩擦磨损性能上的差异.结果 AFM图显示釉质发育不全牙釉质比正常牙釉质连接疏松且可见有孔状结构,粗糙度大.EDX检测发现釉质发育不全牙釉质Ca、P含量较正常牙低,C含量较正常牙高.釉质发育不全牙釉质在同等载荷下较正常牙的摩擦系数大,破坏严重.结论 釉质发育不全牙与正常牙在微观结构、物质组成和微观摩擦磨损上均有较大差异.在临床上对釉质发育不全牙做修复时,应充分考虑这一因素.%Objective To study the differences between amelogenesis imperfecta (AI) teeth and normal human (NH) teeth in wear properties. Methods The ultrastructure of the human tooth enamel from adult patient diagnosed with AI was investigated using atomic force microscope (AFM) and compared with the surface of normal human tooth enamel. The composition of tooth enamel of AI teeth and normal human teeth were analyzed by energydispersive X-ray spec-troscopy (EDX). The properties of micro-friction and wear between AI teeth and normal human teeth were compared using nano-scratch technology and scanning electron microscope (SEM). Results The AI teeth were found porosity and the loosely packed hydroxyapatite was distributed randomly compared with normal human teeth. The amount of C was higher while the amount of Ca, P were lower in AI teeth than normal human teeth. The friction coefficient of both AI teeth and normal human teeth was increasing with the load increased and the friction coefficient of AI teeth was higher than normal human teeth with the same load. Meanwhile, the destruction of AI teeth was more severe than normal human teeth with the same load. Conclusion The AI

  16. Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta.

    Science.gov (United States)

    Parry, David A; Poulter, James A; Logan, Clare V; Brookes, Steven J; Jafri, Hussain; Ferguson, Christopher H; Anwari, Babra M; Rashid, Yasmin; Zhao, Haiqing; Johnson, Colin A; Inglehearn, Chris F; Mighell, Alan J

    2013-02-07

    A combination of autozygosity mapping and exome sequencing identified a null mutation in SLC24A4 in a family with hypomineralized amelogenesis imperfect a (AI), a condition in which tooth enamel formation fails. SLC24A4 encodes a calcium transporter upregulated in ameloblasts during the maturation stage of amelogenesis. Screening of further AI families identified a missense mutation in the ion-binding site of SLC24A4 expected to severely diminish or abolish the ion transport function of the protein. Furthermore, examination of previously generated Slc24a4 null mice identified a severe defect in tooth enamel that reflects impaired amelogenesis. These findings support a key role for SLC24A4 in calcium transport during enamel formation.

  17. Amelogenesis imperfecta with bilateral nephrocalcinosis

    OpenAIRE

    P Poornima; Katkade, Shashikant; Mohamed, Roshan Noor; Mallikarjuna, Rachappa

    2013-01-01

    A 12-year-old patient presented with a severe delay of eruption in permanent maxillary and mandibular incisors. On examination, there was over-retained primary teeth and delayed eruption of permanent teeth. Retained primary teeth showed light yellow discolouration whereas permanent teeth were distinct yellow with thin or little enamel. Subsequent imaging revealed all the premolars except maxillary left first premolar showed signs of intra-alveolar coronal resorption, nephrocalcinosis with bil...

  18. Amelogenesis imperfecta with bilateral nephrocalcinosis.

    Science.gov (United States)

    Poornima, P; Katkade, Shashikant; Mohamed, Roshan Noor; Mallikarjuna, Rachappa

    2013-05-24

    A 12-year-old patient presented with a severe delay of eruption in permanent maxillary and mandibular incisors. On examination, there was over-retained primary teeth and delayed eruption of permanent teeth. Retained primary teeth showed light yellow discolouration whereas permanent teeth were distinct yellow with thin or little enamel. Subsequent imaging revealed all the premolars except maxillary left first premolar showed signs of intra-alveolar coronal resorption, nephrocalcinosis with bilateral multiple calculi and small papillary tip calcifications, marked increase in alkaline phosphatase. Subsequent dental treatment for restoring the functional and aesthetic requirement followed by appropriate treatment for renal problem was undertaken.

  19. The genetics of amelogenesis imperfecta: a review of the literature Genética da amelogênese imperfeita: uma revisão da literatura

    Directory of Open Access Journals (Sweden)

    Maria Cristina Leme Godoy dos Santos

    2005-09-01

    Full Text Available A melogenesis imperfecta (AI is a group of inherited defects of dental enamel formation that show both clinical and genetic heterogeneity. Enamel findings in AI are highly variable, ranging from deficient enamel formation to defects in the mineral and protein content. Enamel formation requires the expression of multiple genes that transcribes matrix proteins and proteinases needed to control the complex process of crystal growth and mineralization. The AI phenotypes depend on the specific gene involved, the location and type of mutation, and the corresponding putative change at the protein level. Different inheritance patterns such as X-linked, autosomal dominant and autosomal recessive types have been reported. Mutations in the amelogenin, enamelin, and kallikrein-4 genes have been demonstrated to result in different types of AI and a number of other genes critical to enamel formation have been identified and proposed as candidates for AI. The aim of this article was to present an evaluation of the literature regarding role of proteins and proteinases important to enamel formation and mutation associated with AI.A melogênese imperfeita é um grupo de doenças hereditárias que causa defeito na formação esmalte dental e mostra heterogeneidade clínica e genética. O esmalte é afetado com alta variabilidade, desde deficiência na formação do esmalte até defeitos no conteúdo mineral e protéico. A formação do esmalte requer a expressão de múltiplos genes que transcrevem proteínas e proteinases importantes para controlar o complexo processo de crescimento dos cristais e mineralização. O fenótipo da AI depende do gene envolvido, sua localização e tipo de mutação, e a conseqüente alteração na proteína. Diferentes padrões hereditários com ligado ao X, autossômico dominante e autossômico recessivo já foram descritos. Mutações nos genes correspondentes da amelogenina, enamelina, e calicreína-4 demonstraram resultar em

  20. Learning about Osteogenesis Imperfecta

    Science.gov (United States)

    ... genetic terms used on this page. Learning About Osteogenesis Imperfecta What is Osteogenesis imperfecta? What are the symptoms ... imperfecta Additional Resources on Osteogenesis imperfecta What is Osteogenesis imperfecta? Osteogenesis imperfecta (OI) is a genetic disorder that ...

  1. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies.

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L; Hacia, Joseph G; Paine, Michael L

    2017-03-13

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.

  2. Scanning Еlectron Мicroscopy of Еnamel and Dentin of Тeeth with Hypocalcified Аmelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Belcheva Ani B.

    2016-03-01

    Full Text Available The histological features of teeth with hypocalcified amelogenesis imperfecta (AI have been poorly studied, which calls into question the effectiveness of modern adhesive techniques used in the treatment of these noncarious defects.

  3. Osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Gupte Tejashri

    2006-05-01

    Full Text Available Osteogenesis imperfecta is an inherited disorder of the connective tissue. The extreme bone fragility seen in patients suffering from osteogenesis imperfecta pose a series of problems with regard to behavior management and rendering of quality dental treatment. Presented here a case of a four year old child suffering from osteogenesis imperfecta.

  4. What Is Osteogenesis Imperfecta?

    Science.gov (United States)

    ... your browser. Home Osteogenesis Imperfecta Osteogenesis Imperfecta Basics What Is Osteogenesis Imperfecta? Fast Facts: An Easy-to- ... Being Done on Osteogenesis Imperfecta? For More Information What Causes Osteogenesis Imperfecta? OI is caused by one ...

  5. Osteogenesis imperfecta and dentinogenesis imperfecta: Associated disorders

    OpenAIRE

    2005-01-01

    This paper presents a review of dentinogenesis imperfecta occurring in patients with osteogenesis imperfecta. The systemic manifestations and the oral aspects of dentinogenesis imperfecta in osteogenesis imperfecta are discussed, and an illustrative case is described.

  6. Osteogenesis imperfecta and dentinogenesis imperfecta: associated disorders.

    Science.gov (United States)

    Rios, Daniela; Vieira, Ana Luiza Falavinha; Tenuta, Livia Maria Andaló; Machado, Maria Aparecida de Andrade Moreira

    2005-10-01

    This paper presents a review of dentinogenesis imperfecta occurring in patients with osteogenesis imperfecta. The systemic manifestations and the oral aspects of dentinogenesis imperfecta in osteogenesis imperfecta are discussed, and an illustrative case is described.

  7. Regulation of pH During Amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Nanci, Antonio; Kurtz, Ira; Wright, J Timothy; Paine, Michael L

    2010-02-01

    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.

  8. Osteogensis imperfecta type I is commonly due to a COLIAI null allel of type I collagen

    Energy Technology Data Exchange (ETDEWEB)

    Willing, M.C.; Pruchno, C.J. (Univ. of Iowa, Iowa City, IA (United States)); Atkinson, M.; Byers, P.H. (Univ. of Washington, Seattle, WA (United States))

    1992-09-01

    Dermal fibroblasts from most individuals with osteogenesis imperfecta (OI) type I produce about half the normal amount of type I procollagen, as a result of decreased synthesis of one of its constituent chains, pro[alpha](I). To test the hypothesis that decreased synthesis of pro[alpha](I) chains results from mutations in the COL1A1 gene, the authors used primer extension with nucleotide-specific chain termination to measure the contribution of individual COL1A1 alleles to the mRNA pool in fibroblasts from affected individuals. A polymorphic Mn/I restriction endonuclease site in the 3'-untranslated region of COL1A1 was used to distinguish the transcripts of the two alleles in heterozygous individuals. Twenty-three individuals from 21 unrelated families were studied. In each case there was marked diminution in steady-state mRNA levels from one COL1A2 allele. Loss of an allele through deletion or rearrangement was not the cause of the diminished COL1A1 mRNA levels. Primer extension with nucleotide-specific chain termination allows identification of the mutant COL1A1 allele in cell strains that are heterozygous for an expressed polymorphism. It is applicable to sporadic cases, to small families, and to large families in whom key individuals are uninformative at the polymorphic sites used in linkage analysis, making it a useful adjunct to the biochemical screening of collagenous proteins for OI. 40 refs., 3 figs., 1 tab.

  9. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways–Novel Insight into the Origins of Enamel Pathologies

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L.; Hacia, Joseph G.; Paine, Michael L.

    2017-01-01

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3′-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI. PMID:28287144

  10. Osteogenesis imperfecta.

    Science.gov (United States)

    Huber, Michaell A

    2007-03-01

    Osteogenesis imperfecta is a relatively common hereditary connective tissue disorder characterized by bone fragility and fractures. Other frequently affected tissues include tendons, ligaments, skin, sclera, teeth, and middle and inner ear. Molecular studies have demonstrated that most cases result from mutations affecting the genes responsible for the formation of type 1 collagen. The phenotypic presentation varies from mild to lethal. Commonly observed dental abnormalities include dentinogenesis imperfecta and malocclusion. Medical therapies using bisphosphonates have resulted in reduced fracture risk and decreased bone pain. To date, no cases of bisphosphonate-associated osteonecrosis have been reported. With appropriate precautions, the patient with osteogenesis imperfecta can tolerate and benefit from the delivery of necessary dental care to control oral disease, improve function, and improve esthetics.

  11. Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia.

    Science.gov (United States)

    Barron, Martin J; McDonnell, Sinead T; Mackie, Iain; Dixon, Michael J

    2008-11-20

    The hereditary dentine disorders, dentinogenesis imperfecta (DGI) and dentine dysplasia (DD), comprise a group of autosomal dominant genetic conditions characterised by abnormal dentine structure affecting either the primary or both the primary and secondary dentitions. DGI is reported to have an incidence of 1 in 6,000 to 1 in 8,000, whereas that of DD type 1 is 1 in 100,000. Clinically, the teeth are discoloured and show structural defects such as bulbous crowns and small pulp chambers radiographically. The underlying defect of mineralisation often results in shearing of the overlying enamel leaving exposed weakened dentine which is prone to wear. Currently, three sub-types of DGI and two sub-types of DD are recognised but this categorisation may change when other causative mutations are found. DGI type I is inherited with osteogenesis imperfecta and recent genetic studies have shown that mutations in the genes encoding collagen type 1, COL1A1 and COL1A2, underlie this condition. All other forms of DGI and DD, except DD-1, appear to result from mutations in the gene encoding dentine sialophosphoprotein (DSPP), suggesting that these conditions are allelic. Diagnosis is based on family history, pedigree construction and detailed clinical examination, while genetic diagnosis may become useful in the future once sufficient disease-causing mutations have been discovered. Differential diagnoses include hypocalcified forms of amelogenesis imperfecta, congenital erythropoietic porphyria, conditions leading to early tooth loss (Kostmann's disease, cyclic neutropenia, Chediak-Hegashi syndrome, histiocytosis X, Papillon-Lefevre syndrome), permanent teeth discolouration due to tetracyclines, Vitamin D-dependent and vitamin D-resistant rickets. Treatment involves removal of sources of infection or pain, improvement of aesthetics and protection of the posterior teeth from wear. Beginning in infancy, treatment usually continues into adulthood with a number of options including

  12. Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia

    Directory of Open Access Journals (Sweden)

    MacKie Iain

    2008-11-01

    Full Text Available Abstract The hereditary dentine disorders, dentinogenesis imperfecta (DGI and dentine dysplasia (DD, comprise a group of autosomal dominant genetic conditions characterised by abnormal dentine structure affecting either the primary or both the primary and secondary dentitions. DGI is reported to have an incidence of 1 in 6,000 to 1 in 8,000, whereas that of DD type 1 is 1 in 100,000. Clinically, the teeth are discoloured and show structural defects such as bulbous crowns and small pulp chambers radiographically. The underlying defect of mineralisation often results in shearing of the overlying enamel leaving exposed weakened dentine which is prone to wear. Currently, three sub-types of DGI and two sub-types of DD are recognised but this categorisation may change when other causative mutations are found. DGI type I is inherited with osteogenesis imperfecta and recent genetic studies have shown that mutations in the genes encoding collagen type 1, COL1A1 and COL1A2, underlie this condition. All other forms of DGI and DD, except DD-1, appear to result from mutations in the gene encoding dentine sialophosphoprotein (DSPP, suggesting that these conditions are allelic. Diagnosis is based on family history, pedigree construction and detailed clinical examination, while genetic diagnosis may become useful in the future once sufficient disease-causing mutations have been discovered. Differential diagnoses include hypocalcified forms of amelogenesis imperfecta, congenital erythropoietic porphyria, conditions leading to early tooth loss (Kostmann's disease, cyclic neutropenia, Chediak-Hegashi syndrome, histiocytosis X, Papillon-Lefevre syndrome, permanent teeth discolouration due to tetracyclines, Vitamin D-dependent and vitamin D-resistant rickets. Treatment involves removal of sources of infection or pain, improvement of aesthetics and protection of the posterior teeth from wear. Beginning in infancy, treatment usually continues into adulthood with a

  13. Circadian rhythms regulate amelogenesis.

    Science.gov (United States)

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-07-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of the development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24 h) intervals both at RNA and protein levels. This study also reveals that the two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory stage ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation stage ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stages of amelogenesis might be under circadian control. Changes in clock gene expression patterns might result in significant alterations of enamel apposition and mineralization.

  14. Osteogenesis imperfecta: pathophysiology and treatment.

    Science.gov (United States)

    Hoyer-Kuhn, Heike; Netzer, Christian; Semler, Oliver

    2015-07-01

    Osteogenesis imperfecta is a rare hereditary disease mostly caused by mutations impairing collagen synthesis and modification. Recently recessive forms have been described influencing differentiation and activity of osteoblasts and osteoclasts. Most prominent signs are fractures due to low traumata and deformities of long bones and vertebrae. Additional patients can be affected by dwarfism, scoliosis Dentinogenesis imperfecta, deafness and a blueish discoloration of the sclera. During childhood state of the art medical treatment are i.v. bisphosphonates to increase bone mass and to reduce fracture rate. Surgical interventions are needed to treat fractures, to correct deformities and should always be accompanied by physiotherapeutic and rehabilitative interventions.

  15. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  16. Congenital adrenal hyperplasia with localized aggressive periodontitis and amelogenesis imperfecta.

    Science.gov (United States)

    Ajlan, Sumaiah Abdulbaqi

    2015-11-01

    Congenital adrenal hyperplasia (CAH) is an inherited medical condition that implies defects in steroid biosynthesis. The dental findings of a female patient with CAH are reported. The patient suffered from severe periodontal tissue destruction, obvious enamel defects, as well as some occlusal problems. The management approach is presented and the possibility of interrelation of her dental findings with her medical condition is discussed.

  17. Novel MMP20 and KLK4 Mutations in Amelogenesis Imperfecta.

    Science.gov (United States)

    Seymen, F; Park, J-C; Lee, K-E; Lee, H-K; Lee, D-S; Koruyucu, M; Gencay, K; Bayram, M; Tuna, E B; Lee, Z H; Kim, Y-J; Kim, J-W

    2015-08-01

    In order to achieve highly mineralized tooth enamel, enamel proteinases serve the important function of removing the remaining organic matrix in the mineralization and maturation of the enamel matrix. Mutations in the kallikrein 4 (KLK4), enamelysin (MMP20), and WDR72 genes have been identified as causing hypomaturation enamel defects in an autosomal-recessive hereditary pattern. In this report, 2 consanguineous families with a hypomaturation-type enamel defect were recruited, and mutational analysis was performed to determine the molecular genetic etiology of the disease. Whole exome sequencing and autozygosity mapping identified novel homozygous mutations in the KLK4 (c.620_621delCT, p.Ser207Trpfs*38) and MMP20 (c.1054G>A, p.Glu352Lys) genes. Further analysis on the effect of the mutations on the translation, secretion, and function of KLK4 and MMP20 revealed that mutant KLK4 was degraded intracellularly and became inactive while mutant MMP20 was expressed at a normal level but secreted only minimally with proteolytic function.

  18. Crown lengthening procedure in the management of amelogenesis imperfecta

    OpenAIRE

    2015-01-01

    Full mouth rehabilitation includes a promising treatment planning and execution thus fulfilling esthetic, occlusal, and functional parameters maintaining the harmony of the stomatognathic system. Crown lengthening procedures have become an integral component of the esthetic armamentarium and are utilized with increasing frequency to enhance the appearance of restorations placed in the esthetic zone. Crown lengthening plays a role to create healthy relationship of the gingiva and bone levels s...

  19. Genetics Home Reference: dentinogenesis imperfecta

    Science.gov (United States)

    ... abnormalities. Type I occurs in people who have osteogenesis imperfecta , a genetic condition in which bones are brittle ... Dentinogenesis imperfecta type I occurs as part of osteogenesis imperfecta , which is caused by mutations in one of ...

  20. Genetics Home Reference: osteogenesis imperfecta

    Science.gov (United States)

    ... Me Understand Genetics Home Health Conditions osteogenesis imperfecta osteogenesis imperfecta Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Osteogenesis imperfecta (OI) is a group of genetic disorders that ...

  1. Msx2 -/- transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis.

    Science.gov (United States)

    Aïoub, M; Lézot, F; Molla, M; Castaneda, B; Robert, B; Goubin, G; Néfussi, J R; Berdal, A

    2007-11-01

    The physiological function of the transcription factor Msx2 in tooth and alveolar bone was analysed using a knock-in transgenic mouse line. In this mouse line, the beta-galactosidase gene was used to disrupt Msx2: thus, beta-galactosidase expression was driven by the Msx2 promoter, but Msx2 was not produced. This allowed to monitor Msx2 expression using a beta-galactosidase assay. Msx2 transgenic mice ubiquitously and continuously expressed the mutated Msx2-nlacZ gene in cells of the complex formed by tooth and alveolar bone. Msx2 -/- homozygous mice displayed a wide spectrum of alterations in tooth eruption and morphology as well as dental and periodontal defects from the first post-natal weeks up to 6 months. These defects culminated with the formation of an odontogenic tumour at the mandibular third molar site. This study suggests that bone resorption is a functional target of Msx2 in the alveolar compartment, since Msx2 was expressed in osteoclasts, with the highest expression levels found in the active sites of bone modelling associated with tooth eruption and root elongation. The RANK osteoclast differentiation pathway was affected in microdissected Msx2 -/- mouse alveolar bone (as inferred by RANK ligand mRNA levels) compared to basal bone and wild-type controls. Decreased alveolar osteoclast activity was observed in Msx2 -/- mice, similar to that seen in osteopetrosis, another condition in which osteoclast activity is impaired and odontogenic tumours form. These data suggest a pleiotropic role for Msx2 in oral bone growth from birth until adult homeostasis. RANK pathway appeared to be modulated by Msx2, in addition to the previously reported modulations of BMP4 and laminin5alpha3 in early tooth development. Non-overlapping Msx1 and Msx2 expression patterns suggested that these two homeogenes play non-redundant roles in skeletal growth, with Msx1 targeting basal bone and Msx2 targeting alveolar bone. This study provides a detailed analysis of the phenotype resulting from the Msx2 null mutation and identifies the impact of Msx1 and Msx2 on post-natal oral bone growth.

  2. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Directory of Open Access Journals (Sweden)

    Zhichun Zhang

    Full Text Available Mutation of distal-less homeobox 3 (DLX3 is responsible for human tricho-dento-osseous syndrome (TDO with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  3. A rare combination of amniotic constriction band with osteogenesis imperfecta.

    Science.gov (United States)

    Shah, Krupa Hitesh; Shah, Hitesh

    2015-11-11

    Amniotic constriction bands and osteogenesis imperfecta are disorders arising from a collagen defect. We report a rare association of amniotic bands with osteogenesis imperfecta in a child. The child was born with multiple amniotic bands involving the right leg, both hands and both feet. Multiple fractures of long bones of lower limbs occurred in childhood due to trivial trauma. Deformities of the femur and tibia due to malunion with osteopenia and blue sclerae were present. The patient was treated with z plasty of constriction band of the right tibia and bisphosphonate for osteogenesis imperfecta. This rare association of both collagen diseases may provide further insight for the pathogenesis of these diseases.

  4. Osteogenesis imperfecta/lobstein syndrome associated with dentinogenesis imperfecta.

    Science.gov (United States)

    Lingaraju, Naresh; Nagarathna, P J; Vijayalakshmi, R; Sheshadri, P

    2013-01-01

    Osteogenesis imperfecta is a collagen related disorder characterized by increased bone fragility and low bone mass. The important oral finding in osteogenesis imperfect is the presence of dentinogenesis imperfecta. This article presents a case of osteogenesis imperfecta (type IV B) with dentinogenesis imperfecta where a 7-year-old girl had opalacent primary teeth associated with severe bone deformity, scoliosis, barrel shaped rib cage, and short stature. The clinical, radiographic ad histologic features are reviewed along with management aspects.

  5. Osteogenesis Imperfecta Overview

    Science.gov (United States)

    ... close(); docprint.focus(); */ } //--> Print-Friendly Page June 2015 Definition Osteogenesis imperfecta (OI) is a genetic disorder characterized ... OI lead productive and successful lives. They attend school, develop friendships and other relationships, have careers, raise ...

  6. Myths about OI (Osteogenesis Imperfecta)

    Science.gov (United States)

    ... Based on the OI Foundation publication Introduction to Osteogenesis Imperfecta: A Guide for Medical Professionals, Individuals and Families ... for Children, editor, 2013. Page updated August, 2015. © Osteogenesis Imperfecta Foundation, 2015 Privacy Policy

  7. The Relationship between Osteogenesis Imperfecta and Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Babak Soltani

    2011-09-01

    Full Text Available ObjectiveA 4-month-old female with osteogenesis imperfecta (OI type II was admitted in PICU of our center due to severe respiratory distress and fever with a diagnosis of severe pneumonia, and mechanical ventilation was initiated. Due to severe hypotonia, NCV and EMG were performed, and spinal muscular atrophy (SMA type I was diagnosed.Keywords: Osteogenesis imperfecta; spinal muscular atrophy; hypotonia

  8. Dentinogenesis imperfecta associated with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Mina Biria

    2012-01-01

    Full Text Available This paper presents a case with dentinogenesis imperfecta (DI associated with osteogenesis imperfecta. Systemic and dental manifestations of OI and its medical and dental treatments are discussed in this paper. A 5-year-old child with the diagnosis of OI was referred to the Dental School of Shaid Beheshti University of Medical Sciences. On clinical examination yellow/brown discoloration of primary teeth with the attrition of the exposed dentin and class III malocclusion was observed. Enamel of first permanent molars was hypoplastic. Radiographic examinations confirmed the diagnosis of DI. A histological study was performed on one of the exfoliating teeth, which showed abnormal dentin. Primary teeth with DI were more severely affected compared to permanent teeth; enamel disintegration occurred in teeth with DI, demonstrating the need for restricts recalls for these patients.

  9. Dentinogenesis imperfecta associated with osteogenesis imperfecta.

    Science.gov (United States)

    Biria, Mina; Abbas, Fatemeh Mashhadi; Mozaffar, Sedighe; Ahmadi, Rahil

    2012-07-01

    This paper presents a case with dentinogenesis imperfecta (DI) associated with osteogenesis imperfecta. Systemic and dental manifestations of OI and its medical and dental treatments are discussed in this paper. A 5-year-old child with the diagnosis of OI was referred to the Dental School of Shaid Beheshti University of Medical Sciences. On clinical examination yellow/brown discoloration of primary teeth with the attrition of the exposed dentin and class III malocclusion was observed. Enamel of first permanent molars was hypoplastic. Radiographic examinations confirmed the diagnosis of DI. A histological study was performed on one of the exfoliating teeth, which showed abnormal dentin. Primary teeth with DI were more severely affected compared to permanent teeth; enamel disintegration occurred in teeth with DI, demonstrating the need for restricts recalls for these patients.

  10. What Are the Symptoms of Osteogenesis Imperfecta?

    Science.gov (United States)

    ... Resources and Publications What are the symptoms of osteogenesis imperfecta (OI)? Skip sharing on social media links Share ... decline and inability to breathe. 2 , 3 , 4 Osteogenesis Imperfecta Foundation. (2008). Respiratory issues in osteogenesis imperfecta. Retrieved ...

  11. Osteogenesis imperfecta type V

    DEFF Research Database (Denmark)

    Rauch, Frank; Moffatt, Pierre; Cheung, Moira;

    2013-01-01

    Osteogenesis imperfecta (OI) type V is an autosomal dominant bone fragility disorder that we had described a decade ago. Recent research has shown that OI type V is caused by a recurrent c.-14C>T mutation in IFITM5. In the present study, we assessed all patients diagnosed with OI type V at our...

  12. Dentinogenesis imperfecta: A case report

    Directory of Open Access Journals (Sweden)

    Subramaniam P

    2008-06-01

    Full Text Available Dentinogenesis imperfecta is an autosomal dominant disorder of tooth development characterized by the presence of opalescent dentin, resulting in a dusky blue to brownish discoloration of the teeth. This condition is genetically and clinically heterogeneous; it may affect only the teeth or it may be associated with the osteogenesis imperfecta. Dentinogenesis imperfecta has been subdivided into three types: type I is associated with osteogenesis imperfecta; in type II there is no associated osteogenesis imperfecta; and when the condition is associated with the Brandywine triracial isolate and large pulp chambers it is classified as type III. This report describes a 16-year-old female patient who showed the characteristic dental features of dentinogenesis imperfecta type II. The etiology and prevalence of the disorder, and a comprehensive treatment plan, will be briefly reviewed.

  13. Dentinogenesis imperfecta: a case report.

    Science.gov (United States)

    Subramaniam, P; Mathew, S; Sugnani, S N

    2008-06-01

    Dentinogenesis imperfecta is an autosomal dominant disorder of tooth development characterized by the presence of opalescent dentin, resulting in a dusky blue to brownish discoloration of the teeth. This condition is genetically and clinically heterogeneous; it may affect only the teeth or it may be associated with the osteogenesis imperfecta. Dentinogenesis imperfecta has been subdivided into three types: type I is associated with osteogenesis imperfecta; in type II there is no associated osteogenesis imperfecta; and when the condition is associated with the Brandywine triracial isolate and large pulp chambers it is classified as type III. This report describes a 16-year-old female patient who showed the characteristic dental features of dentinogenesis imperfecta type II. The etiology and prevalence of the disorder, and a comprehensive treatment plan, will be briefly reviewed.

  14. Defective Proteolytic Processing of Fibrillar Procollagens and Prodecorin Due to Biallelic BMP1 Mutations Results in a Severe, Progressive Form of Osteogenesis Imperfecta.

    Science.gov (United States)

    Syx, Delfien; Guillemyn, Brecht; Symoens, Sofie; Sousa, Ana Berta; Medeira, Ana; Whiteford, Margo; Hermanns-Lê, Trinh; Coucke, Paul J; De Paepe, Anne; Malfait, Fransiska

    2015-08-01

    Whereas the vast majority of osteogenesis imperfecta (OI) is caused by autosomal dominant defects in the genes encoding type I procollagen, mutations in a myriad of genes affecting type I procollagen biosynthesis or bone formation and homeostasis have now been associated with rare autosomal recessive OI forms. Recently, homozygous or compound heterozygous mutations in BMP1, encoding the metalloproteases bone morphogenetic protein-1 (BMP1) and its longer isoform mammalian Tolloid (mTLD), were identified in 5 children with a severe autosomal recessive form of OI and in 4 individuals with mild to moderate bone fragility. BMP1/mTLD functions as the procollagen carboxy-(C)-proteinase for types I to III procollagen but was also suggested to participate in amino-(N)-propeptide cleavage of types V and XI procollagens and in proteolytic trimming of other extracellular matrix (ECM) substrates. We report the phenotypic characteristics and natural history of 4 adults with severe, progressive OI characterized by numerous fractures, short stature with rhizomelic shortening, and deformity of the limbs and variable kyphoscoliosis, in whom we identified novel biallelic missense and frameshift mutations in BMP1. We show that BMP1/mTLD-deficiency in humans not only results in delayed cleavage of the type I procollagen C-propeptide but also hampers the processing of the small leucine-rich proteoglycan prodecorin, a regulator of collagen fibrillogenesis. Immunofluorescent staining of types I and V collagen and transmission electron microscopy of the dermis show impaired assembly of heterotypic type I/V collagen fibrils in the ECM. Our study thus highlights the severe and progressive nature of BMP1-associated OI in adults and broadens insights into the functional consequences of BMP1/mTLD-deficiency on ECM organization.

  15. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects

    Science.gov (United States)

    Morkmued, Supawich; Laugel-Haushalter, Virginie; Mathieu, Eric; Schuhbaur, Brigitte; Hemmerlé, Joseph; Dollé, Pascal; Bloch-Zupan, Agnès; Niederreither, Karen

    2017-01-01

    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations. PMID:28111553

  16. Cardiovascular disease in patients with osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Folkestad, Lars; Hald, Jannie Dahl; Gram, Jeppe

    2016-01-01

    BACKGROUND: Osteogenesis imperfecta (OI) is a hereditary connective tissue disease often due to mutations in genes coding for type 1 collagen. Collagen type 1 is important in the development of the heart and vasculature. Little is known about the risk of cardiovascular disease (CVD) in OI...... to development of these diseases. Our results suggest that the collagenopathy seen in OI may be part of the pathogenesis of CVD in OI....

  17. Prosthodontic rehabilitation of dentinogenesis imperfecta

    OpenAIRE

    2011-01-01

    Dentinogenesis imperfecta and its prosthodontic management is a challenging task. Treatment protocol varies according to clinical case. Although various reports in the literature suggest general guidelines for treatment planning, the present case report describes a full mouth rehabilitation of a young patient with dentinogenesis imperfecta treated by maxillary fixed partial dentures and mandibular fiber reinforced overdenture with metal occlusal surfaces.

  18. Prosthodontic rehabilitation of dentinogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Anil Goud

    2011-01-01

    Full Text Available Dentinogenesis imperfecta and its prosthodontic management is a challenging task. Treatment protocol varies according to clinical case. Although various reports in the literature suggest general guidelines for treatment planning, the present case report describes a full mouth rehabilitation of a young patient with dentinogenesis imperfecta treated by maxillary fixed partial dentures and mandibular fiber reinforced overdenture with metal occlusal surfaces.

  19. Prosthodontic rehabilitation of dentinogenesis imperfecta.

    Science.gov (United States)

    Goud, Anil; Deshpande, Saee

    2011-04-01

    Dentinogenesis imperfecta and its prosthodontic management is a challenging task. Treatment protocol varies according to clinical case. Although various reports in the literature suggest general guidelines for treatment planning, the present case report describes a full mouth rehabilitation of a young patient with dentinogenesis imperfecta treated by maxillary fixed partial dentures and mandibular fiber reinforced overdenture with metal occlusal surfaces.

  20. The Relationship between Osteogenesis Imperfecta and Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Babak Soltani

    2011-06-01

    Full Text Available ObjectiveA 4-month-old female with osteogenesis imperfecta (OI type II was admitted in PICU of our center due to severe respiratory distress and fever with a diagnosis of severe pneumonia, and mechanical ventilation was initiated. Due to severe hypotonia, NCV and EMG were performed, and spinal muscular atrophy (SMA type I was diagnosed.

  1. Child Abuse or Osteogenesis Imperfecta?

    Science.gov (United States)

    Child Abuse or Osteogenesis Imperfecta? 804 W. Diamond Ave., Ste. 210 Gaithersburg, MD 20878 (800) 981-2663 (301) ... welfare services to report a suspected case of child abuse. The child is taken away from the parents ...

  2. What Are the Treatments for Osteogenesis Imperfecta?

    Science.gov (United States)

    ... Resources and Publications What are the treatments for osteogenesis imperfecta (OI)? Skip sharing on social media links Share ... people with lung problems 4 Marini, J. (2010). Osteogenesis imperfecta. In F. Singer (Ed.), Diseases of bone and ...

  3. Osteogenesis imperfecta: cesarean deliveries in identical twins.

    Science.gov (United States)

    Dinges, E; Ortner, C; Bollag, L; Davies, J; Landau, R

    2015-02-01

    Osteogenesis imperfecta is a congenital disorder resulting in multiple fractures and extremely short stature, usually necessitating cesarean delivery. Identical twins with severe osteogenesis imperfecta each of whom underwent a cesarean delivery with different anesthetic modalities are presented. A review of the literature and anesthetic options for cesarean delivery and postoperative analgesia for women with osteogenesis imperfecta are discussed.

  4. A Guide to Education for Children with Osteogenesis Imperfecta. What Is OIF? Care of an Osteogenesis Imperfecta Baby and Child.

    Science.gov (United States)

    Ostegenesis Imperfecta Foundation, Inc., Manchester, NH.

    Three pamphlets provide basic information on the care and education of children with osteogenesis imperfecta (OI) a lifelong liability to fractures due to imperfectly formed "brittle bones." The first brochure, a guide to education for children with OI, addresses the importance of attitudes, the value of early education, public school…

  5. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    Science.gov (United States)

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo.

  6. Epileptic encephalopathy and amelogenesis imperfecta: Kohlschütter-Tönz syndrome.

    Science.gov (United States)

    Schossig, Anna; Wolf, Nicole I; Kapferer, Ines; Kohlschütter, Alfried; Zschocke, Johannes

    2012-05-01

    Kohlschütter-Tönz syndrome is a rare genetic disorder with epilepsy, psychomotor regression, and a severe enamel defect with yellow or brownish discoloration of the teeth. The first affected family was described in 1974, and 25 patients in 11 families have been reported until now. Inheritance is autosomal recessive. Epilepsy usually starts within the first or second year of life. All affected individuals show a psychomotor regression after onset of epilepsy or a developmental delay from birth on. Clinical course and disease severity are variable even within families. There are no known biochemical or other diagnostic markers of the condition. Very recently it has been shown that the condition is caused by mutations in the gene ROGDI but molecular data have only been reported for three families. It remains to be seen whether Kohlschütter-Tönz syndrome has the same molecular basis in all affected individuals.

  7. Metaphyseal bands in osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Suresh S

    2010-01-01

    Full Text Available An increasing number of patients with osteogenesis imperfecta are undergoing pamidronate therapy to prevent the incidence of fragility fractures. The authors herein report a child aged 3 years who received five cycles of pamidronate, resulting in metaphyseal bands, known as "zebra lines."

  8. The Spine in Patients With Osteogenesis Imperfecta.

    Science.gov (United States)

    Wallace, Maegen J; Kruse, Richard W; Shah, Suken A

    2017-02-01

    Osteogenesis imperfecta is a genetic disorder of type I collagen. Although multiple genotypes and phenotypes are associated with osteogenesis imperfecta, approximately 90% of the mutations are in the COL1A1 and COL1A2 genes. Osteogenesis imperfecta is characterized by bone fragility. Patients typically have multiple fractures or limb deformity; however, the spine can also be affected. Spinal manifestations include scoliosis, kyphosis, craniocervical junction abnormalities, and lumbosacral pathology. The incidence of lumbosacral spondylolysis and spondylolisthesis is higher in patients with osteogenesis imperfecta than in the general population. Use of diphosphonates has been found to decrease the rate of progression of scoliosis in patients with osteogenesis imperfecta. A lateral cervical radiograph is recommended in patients with this condition before age 6 years for surveillance of craniocervical junction abnormalities, such as basilar impression. Intraoperative and anesthetic considerations in patients with osteogenesis imperfecta include challenges related to fracture risk, airway management, pulmonary function, and blood loss.

  9. Dentinogenesis imperfecta: endodontic implications. Case report.

    Science.gov (United States)

    Pettiette, M T; Wright, J T; Trope, M

    1998-12-01

    Dentinogenesis imperfecta is a hereditary disorder resulting in defective dentin in both the primary and secondary dentitions. The complications of dentinogenesis imperfecta are difficult to manage and provide a challenge to the dentist. This case report concerns treating an African American patient with dentinogenesis imperfecta who appeared for treatment with endodontic pathosis. It illustrates the need for appropriate and timely restorative treatment to prevent pulpal pathosis. Also demonstrated is the difficulty of endodontically treating dentinogenesis imperfecta teeth because of pulpal obliteration and abnormal dentin mineralization. Early and correct diagnosis of dentinogenesis imperfecta is imperative to enable appropriate preventive interventions and optimal dental treatment. Although pulpal pathosis is rarely reported with dentinogenesis imperfecta, endodontic treatment is occasionally necessary and has a guarded prognosis if initiated after pulp canal obliteration has occurred.

  10. Femoral artery thrombosis after internal fixation of a transverse acetabular fracture in a patient with osteogenesis imperfecta type I

    Directory of Open Access Journals (Sweden)

    Morgan Steven J

    2008-01-01

    Full Text Available Abstract Osteogenesis imperfecta is a genetic disorder characterized by increased susceptibility to fractures and vascular injuries due to connective tissue fragility. In this case report, we present a patient with osteogenesis imperfecta type I who sustained a transverse fracture of the right acetabulum while transferring from bed to chair. The fracture was repaired through an ilioinguinal approach. During the surgery, an iatrogenic injury to the femoral artery and vein occurred. This intraoperative complication was salvaged by immediate vascular repair. We discuss the possible causes of iatrogenic vascular injuries in patients with osteogenesis imperfecta. Orthopaedic surgeons should be aware of this potentially devastating complication in this particular patient cohort.

  11. Dentinogenesis imperfecta associated with osteogenesis imperfecta: report of two cases.

    Science.gov (United States)

    Tsai, Chia-Ling; Lin, Yng-Tzer; Lin, Yai-Tin

    2003-02-01

    Osteogenesis imperfecta (OI) is a heritable systemic disorder of the connective tissue. Dentinogenesis imperfecta (DI), which is sometimes an accompanying symptom of OI, belongs to a group of genetically conditioned dentin dysplasias and is characterized clinically by an opalescent amber appearance of the dentin. Although the teeth of DI cases wear more easily and excessively compared to normal teeth, they do not appear to be more susceptible to dental caries than normal teeth. Two cases of DI associated with OI are presented in this paper, with 1 case suffering from nursing bottle caries. The purposes of this paper are to present the dental and skeletal characteristics of moderately and mildly involved DI associated with OI, and to discuss the possible methods of dental treatment. Patients with OI and opalescent teeth should be evaluated as soon as the deciduous teeth erupt; immediate dental involvement and oral hygiene instruction can be of help in reducing the necessity of extensive dental care.

  12. Valvular and aortic diseases in osteogenesis imperfecta.

    Science.gov (United States)

    Lamanna, Arvin; Fayers, Trevor; Clarke, Sophie; Parsonage, William

    2013-10-01

    Osteogenesis imperfecta (OI) is an inheritable connective tissue disorder caused by defective collagen synthesis with the principal manifestations of bone fragility. OI has been associated with left sided valvular regurgitation and aortic dilation. Valve and aortic surgery are technically feasible in patients with OI but are inherently high risk due to the underlying connective tissue defect. This report reviews the valvular and aortic pathology associated with OI and their management. We describe two cases of patients with OI who have significant aortic and mitral valve regurgitation, one of whom has been managed conservatively and the other who has undergone successful mitral valve repair and aortic valve replacement. The latter case represents the fifth case of mitral valve repair in a patient with OI reported in the medical literature.

  13. IFITM5 mutations and osteogenesis imperfecta.

    Science.gov (United States)

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  14. Osteogenesis Imperfecta (Type IV with Dental Findings in Siblings

    Directory of Open Access Journals (Sweden)

    Shishir Ram Shetty

    2011-01-01

    Full Text Available Osteogenesis imperfecta (OI is a hereditary disorder characterized by increased tendency for bone fractures due to high fragility. The clinical and radiological features of OI manifest in different age groups, although the disease is congenital in nature. Besides bone fragility, features like laxity of the ligaments, blue sclera, growth retardation, and scoliosis are also observed. In severe cases, respiratory distress and death have been reported. The most important oral finding in OI is the presence of yellowish-brown-coloured brittle teeth characteristic of dentinogenesis imperfecta. Genetic factors play a very important role in the pathogenesis of OI either as a dominant or recessive factor. When a child has OI, there is a 25% chance of the sibling to have the same disorder. We report two cases of OI in siblings born to parents with a history of consanguineous marriage. The clinical and radiological features of the two cases are described in detail.

  15. Treatment Concepts of Osteogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Ramji Lal Sahu

    2012-06-01

    Full Text Available Background: To explore the Application of the intramedullary nails for correction of deformity in the lower limbs and decrease the opportunity of refractures in children with osteogenesis imperfecta.Materials and Methods: From July 2005 to July 2009, 11 patients (5 males and 6 females, were recruited from Emergency and outpatient department having deformities of osteogenesis imperfecta in lower limbs. With 3 femurs and 5 tibias with deformity in lower limps were corrected by multiosteotomy and fixed with intramedullary interlocking nails, 6 (3 femurs and 3 tibias for Rush nails; 6 (2 femurs and 4 tibias for Ender nails; and 12 (6 femurs and 6 tibias for flexible intramedullary nails. All patients were operated under general or spinal anesthesia. Results: All deformities were perfectly corrected. All patients were available at final follow up, for 9 months to 36 months, mean 18 months. 2 patients had delayed union, 2 had superficial infection in the incision or pin tract, and 1 had refractures postoperatively. The results were excellent in 72.727% and good in 27.272% patients. Conclusion: Multiosteotomy and fixed intramedullary nails can correct the deformity in the lower limbs perfectly and decrease the opportunity of refractures in children with osteogenesis imperfecta, which has been proved to be a reliable method.

  16. CT findings of osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, Nobuto; Otsuru, Katsuyasu; Lee, Soichi; Takagi, Shigeyuki; Shigemori, Minoru.

    1987-08-01

    Two cases of osteogenesis imperfecta found in one family (father and daughter) are reported, and the CT findings are described. Case 1 is a 58-year-old man who fell and struck his head at home on November 10, 1984. He was transferred to Omuta City Hospital when he became semicomatose and decerebrate posturing was noted. His family history revealed 8 persons with osteogenesis imperfecta. A skull X-ray film showed a large skull vault, many wormian bones at the lambdoid suture, platybasia, and a basilar impression. A CT scan demonstrated a right acute subdural hematoma, while the bone image showed well-developed mastoid air cells and a skull deformity characteristic of osteogenesis imperfecta. He had an emergency operation, and a 170-gr clot was successfully evacuated. A postoperative CT scan demonstrated brain atrophy, possibly present before head trauma. Case 2 is the daughter of Case 1 (a 27-year-old woman). She also showed characteristic neuroradiological manifestations on a plain skull film and on a CT scan. A basilar impression and platybasia were also demonstrated. In this report, the possible mechanism of the production of a traumatic acute subdural hematoma is also discussed.

  17. Unilateral spinal anaesthesia in a patient with Osteogenesis Imperfecta with a lower leg fracture: a case report.

    Science.gov (United States)

    Baranovic, Senka; Lubina, Ivan Zvonimir; Vlahovic, Tomislav; Bakota, Bore; Maldini, Branka

    2013-09-01

    Osteogenesis Imperfecta is a rare, genetically determined disease with several possible complications in anaesthesia. Anaesthesiologists therefore pay special attention to the treatment of patients suffering from Osteogenesis Imperfecta since they commonly suffer from a difficult airway and intraoperative positioning difficulties. We report here the case of unilateral spinal anaesthesia in a patient suffering from Osteogenesis Imperfecta type I. A 28-year-old patient diagnosed with Osteogenesis Imperfecta type I was admitted to the hospital due to lower leg fracture requiring surgical treatment. The patient had blue sclerae, triangular-shaped face, macroglossia, scoliosis of thoracic and lumbar parts of the spine, pectus carinatum and thrombocytopenia. Upon the correction of thrombocytopenia, unilateral spinal anaesthesia with hyperbaric levobupivacain was chosen in order to avoid possible complications typical for general anaesthesia. Consequently, unilateral spinal anaesthesia with a customized local anesthetic could be consdered as a safe anesthetic method for such patients.

  18. Pathophysiology and therapeutic options in osteogenesis imperfecta: an update

    Directory of Open Access Journals (Sweden)

    Brizola E

    2016-03-01

    Full Text Available Evelise Brizola,1 Temis M Félix,2 Jay R Shapiro3 1Bone and Osteogenesis Imperfecta Department, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA; 2Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 3Osteoporosis and Metabolic Bone Disorders Center, Bethesda, MD, USAAbstract: Osteogenesis imperfecta (OI is a rare, heritable systemic disorder of bone and connective tissue, which in almost 90% of cases is due to mutations affecting the normal synthesis of type I collagen. In 1979, four OI phenotypes were categorized which were inherited as autosomal dominant characteristics. Individuals with OI present both genetic and phenotypic variabilities. Major characteristics of OI are bone fragility, blue sclerae, dentinogenesis imperfecta, short stature, scoliosis, and joint hyperextensibility. Both autosomal dominant and recessive inheritance are now recognized. Advances in molecular diagnosis have led to a major expansion in our understanding of the genetic basis for different OI phenotypes. To date, sequence variants in 17 genes are described as causative of OI. These genes regulate the synthesis of type I collagen pro-alpha polypeptide chains, proteins involved in type I collagen processing in the endoplasmic reticulum and proteins involved in osteoblast function. These new genetic associations have also led to uncertainty with regard to the current classification of OI phenotypes. Bisphosphonates have been widely used to improve bone mass and decrease fractures in both children and adults with OI. While effective in many but not all children when administered for 2–4 years, bisphosphonates have not proven effective in adults with OI. Studies are limited for treatment of adults with teriparatide and denosumab. Advances have been reported in the surgical management of OI. Although the role of physical therapy in the management

  19. A study of dentinogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eui Whan [Dept. of Oral Radiology, College of Dentistry, Chosun University, Kwangju (Korea, Republic of)

    1992-08-15

    The author observed a case of dentinogenesis imperfecta in a 8-year-old and a 9-year old brother with complaints of abnormal morphologic changes of the teeth. 1. Clinically, yellowish brown colored teeth, fractured crown and numerous retained root tips of edciduous teeth with severe attrition were observed in the both deciduous and permanent dentitions. 2. Radiographically, small-sized teeth partial or complete obliteration of the pulp chambers and pulp canals in the anterior teeth, partial obliteration of the pulp chambers and thin enamel in the permanent tooth germs were observed. 3. The familial history was their father has been lose his teeth early.

  20. An overlapping phenotype of Osteogenesis imperfecta and Ehlers-Danlos syndrome due to a heterozygous mutation in COL1A1 and biallelic missense variants in TNXB identified by whole exome sequencing.

    Science.gov (United States)

    Mackenroth, Luisa; Fischer-Zirnsak, Björn; Egerer, Johannes; Hecht, Jochen; Kallinich, Tilmann; Stenzel, Werner; Spors, Birgit; von Moers, Arpad; Mundlos, Stefan; Kornak, Uwe; Gerhold, Kerstin; Horn, Denise

    2016-04-01

    Osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) are variable genetic disorders that overlap in different ways [Cole 1993; Grahame 1999]. Here, we describe a boy presenting with severe muscular hypotonia, multiple fractures, and joint hyperflexibility, features that are compatible with mild OI and hypermobility type EDS, respectively. By whole exome sequencing, we identified both a COL1A1 mutation (c.4006-1G > A) inherited from the patient's mildly affected mother and biallelic missense variants in TNXB (p.Val1213Ile, p.Gly2592Ser). Analysis of cDNA showed that the COL1A1 splice site mutation led to intron retention causing a frameshift (p.Phe1336Valfs*72). Type 1 collagen secretion by the patient's skin fibroblasts was reduced. Immunostaining of a muscle biopsy obtained from the patient revealed a clear reduction of tenascin-X in the extracellular matrix compared to a healthy control. These findings imply that the combination of the COL1A1 mutation with the TNXB variants might cause the patient's unique phenotype.

  1. Differential expression of syndecan isoforms during mouse incisor amelogenesis.

    Science.gov (United States)

    Muto, Taro; Miyoshi, Keiko; Munesue, Seiichi; Nakada, Hiroshi; Okayama, Minoru; Matsuo, Takashi; Noma, Takafumi

    2007-08-01

    Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.

  2. Genetic Aspects of Dentinogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-10-01

    Full Text Available Dentinogenesis Imperfecta (DI is a hereditary, simple autosomal dominant disorder showing abnormalities in the dentin of the developing teeth and occurring at a rate of about 1 in 8000 births. The expression of DI shows a high penetrance and a low mutation rate. Two main types of DI appear to exist: type I which is the defect associated with osteogenesis imperfecta, and type II which is the classical hereditary opalescent dentin. The formerly proposed DI type III appears to be only a modified expression of the same gene as in the classical DI type II. Any gene therapy type of treatment is unrealistic for adolescent patients who already exhibit the symptoms. However, there is a good prospect for early screening since DI is inherited as a dominant disorder, and known trail from parents or siblings is a strong indication for later exposure to DI. At present there are no practical means to correct the genetic defect or to avoid the symptoms. Nevertheless, screening provides an early warning and helps to guide protective and restorative treatment so early that maximum amount of the natural dentition can be retained.

  3. Assessment of dysplastic dentin in osteogenesis imperfecta and dentinogenesis imperfecta.

    Science.gov (United States)

    Malmgren, Barbro; Lindskog, Sven

    2003-04-01

    Two semiquantitative scoring systems, Clinical Radiographic Score (CRS) and Dysplastic Dentin Score (DDS), were introduced for analyzing degree of dysplastic manifestations in dentin. The utility of both systems was demonstrated in a large material of teeth from patients with dentinogenesis imperfecta (DI) and osteogenesis imperfecta (OI). Twenty teeth from healthy controls, 81 teeth from 40 patients with OI, and 18 teeth with DI without OI (DI type II) were examined. The degree of dysplasia was correlated with type and form of OI and type of DI. The median DDS did not differ between DI associated with OI (DI type I) and DI type II. DDS in OI patients without clinical signs of DI was above that of control teeth. Both circumpulpal and mantle dentin showed increased DDS, although circumpulpal dentin was more severely affected. The median DDS was highest for the most severe type of non-lethal OI (type III). DDS increased significantly with form (severity) of OI. A significant association between DDS and CRS was found, although diagnosis of DI in less severe cases was not possible based on radiographic or clinical signs alone. Thus, the DDS system proved valuable when the CRS system based on radiographic/clinical manifestations failed, the most significant finding being subclinical histological manifestations of DI in patients with OI but without clinical or radiographic signs of DI. These subtle dysplastic changes are most likely an expression of genetic disturbances associated with OI and should not be diagnosed as DI, but rather be termed histologic manifestations of dysplastic dentin associated with OI.

  4. Update on the evaluation and treatment of osteogenesis imperfecta.

    Science.gov (United States)

    Harrington, Jennifer; Sochett, Etienne; Howard, Andrew

    2014-12-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that presents with a wide clinical phenotype spectrum: from perinatal lethality and severe deformities to very mild forms without fractures. Most cases of OI are due to autosomal dominant mutations of the type I collagen genes. A multidisciplinary approach with rehabilitation, orthopedic surgery, and consideration of medical therapy with bisphosphonates underpins current management. Greater understanding of the pathogenesis of OI may lead to novel, therapeutic approaches to help improve clinical symptoms of children with OI in the future.

  5. Adhesive Restorations as An Esthetic Solution in Dentinogenesis Imperfecta.

    Science.gov (United States)

    Ubaldini, Adriana Lemos Mori; Giorgi, Maria Cecília Caldas; Carvalho, Ariany Borges; Pascon, Fernanda Miori; Lima, Débora Alves Nunes Leite; Baron, Gisele Maria Marchi; Paulillo, Luís Alexandre Maffei Sartini; Aguiar, Flávio Henrique Baggio

    2015-01-01

    Loss of tooth structure is the main sequela of dentinogenesis imperfecta (DI). Due to severe enamel attrition, patients with DI often present with esthetic, occlusal, endodontic, and speech complications. Therefore, an interdisciplinary approach, divided into separate clinical steps, should be developed to provide comprehensive dental rehabilitation. The purpose of this case report is to discuss the use of composite resin restorations as a transitional treatment step for the anterior teeth of an eight-year-old boy with DI until his bone and dental development permit orthodontic and orthognatic surgery.

  6. Orthodontic and orthognathic management of a patient with osteogenesis imperfecta and dentinogenesis imperfecta: a case report.

    Science.gov (United States)

    Kindelan, J; Tobin, M; Roberts-Harry, D; Loukota, R A

    2003-12-01

    This case report describes a patient's severe Class III malocclusion, managed with a combination of orthodontic and orthognathic treatment. The medical history was complicated by osteogenesis imperfecta and dentinogenesis imperfecta. In addition the patient was a Jehovah's Witness. Patients with osteogenesis imperfecta carry an increased risk of perioperative haemorrhage, and this led to bimaxillary surgery being carried out as two discrete surgical episodes for the patient described. In addition, the risk of enamel fracture led to orthodontic bands being cemented on all teeth. In spite of the increased risks a successful outcome was achieved.

  7. Dentinogenesis imperfecta: the importance of early treatment.

    Science.gov (United States)

    Delgado, Antonio Carlos; Ruiz, Matilde; Alarcón, Jose Antonio; González, Encarnación

    2008-03-01

    Dentinogenesis imperfecta, also known as hereditary opalescent dentin, is a dentin development disorder with autosomal dominant transmission that affects both the primary and permanent dentition. A case is reported of a family in which the mother and her 6- and 20-year-old children were diagnosed with dentinogenesis imperfecta type II. The mouths of these patients illustrate the progressive deterioration of affected teeth if not adequately treated. The treatment of the 6-year-old son is described, and therapeutic approaches to this disorder in primary and permanent dentition are reviewed. This family exemplifies the need for the earliest possible diagnosis and treatment of dentinogenesis imperfecta to prevent extensive deterioration of the dentition and occlusion.

  8. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the CNNM4 gene.

    Directory of Open Access Journals (Sweden)

    Hans U Luder

    Full Text Available Jalili syndrome denotes a recessively inherited combination of an eye disease (cone-rod dystrophy and a dental disorder (amelogenesis imperfecta, which is caused by mutations in the CNNM4 gene. Whereas the ophthalmic consequences of these mutations have been studied comprehensively, the dental phenotype has obtained less attention. A defective transport of magnesium ions by the photoreceptors of the retina is assumed to account for the progressive visual impairment. Since magnesium is also incorporated in the mineral of dental hard tissues, we hypothesized that magnesium concentrations in defective enamel resulting from mutations in CNNM4 would be abnormal, if a similar deficiency of magnesium transport also accounted for the amelogenesis imperfecta. Thus, a detailed analysis of the dental hard tissues was performed in two boys of Kosovan origin affected by Jalili syndrome. Retinal dystrophy of the patients was diagnosed by a comprehensive eye examination and full-field electroretinography. A mutational analysis revealed a c.1312 dupC homozygous mutation in CNNM4, a genetic defect which had already been identified in other Kosovan families and putatively results in loss-of-function of the protein. The evaluation of six primary teeth using light and scanning electron microscopy as well as energy-dispersive X-ray spectroscopy showed that dental enamel was thin and deficient in mineral, suggesting a hypoplastic/hypomineralized type of amelogenesis imperfecta. The reduced mineral density of enamel was accompanied by decreased amounts of calcium, but significantly elevated levels of magnesium. In dentin, however, a similar mineral deficiency was associated with reduced magnesium and normal calcium levels. It is concluded that the c.1312 dupC mutation of CNNM4 results in mineralization defects of both enamel and dentin, which are associated with significantly abnormal magnesium concentrations. Thus, we could not disprove the hypothesis that a

  9. Hearing Loss in Osteogenesis Imperfecta: Characteristics and Treatment Considerations

    Directory of Open Access Journals (Sweden)

    Joseph P. Pillion

    2011-01-01

    Full Text Available Osteogenesis imperfecta (OI is the most common heritable disorder of connective tissue. It is associated with fractures following relatively minor injury, blue sclerae, dentinogenesis imperfecta, increased joint mobility, short stature, and hearing loss. Structures in the otic capsule and inner ear share in the histologic features common to other skeletal tissues. OI is due to mutations involving several genes, the most commonly involved are the COL1A1 or COL1A2 genes which are responsible for the synthesis of the proalpha-1 and proalpha-2 polypeptide chains that form the type I collagen triple helix. A genotype/phenotype relationship to hearing loss has not been established in OI. Hearing loss is commonly found in OI with prevalence rates ranging from 50 to 92% in some studies. Hearing loss in OI may be conductive, mixed, or sensorineural and is more common by the second or third decade. Treatment options such as hearing aids, stapes surgery, and cochlear implants are discussed.

  10. Osteogenesis imperfecta with joint contractures: Bruck syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Blacksin, M.F. [Department of Radiology, University of Medicine and Dentistry of New Jersey, 150 Bergen St., Rm. C320, Newark, NJ 07103-2426 (United States); Pletcher, B.A. [Center for Human and Molecular Genetics, Department of Pediatrics, University of Medicine and Dentistry of New Jersey, Newark, New Jersey (United States); David, M. [Department of Radiology, Newark-Beth Israel Medical Center, Newark, New Jersey (United States)

    1998-02-01

    We describe an Egyptian boy with osteogenesis imperfecta who was born with thumb contractures and bilateral antecubital pterygia. He was seen at 16 months of age with femur and tibial fractures, thoracic vertebral compression fractures, scoliosis and Wormian bones. The findings are consistent with a diagnosis of Bruck syndrome. (orig.) With 1 fig., 5 refs.

  11. Osteogenesis imperfecta in childhood : Prognosis for walking

    NARCIS (Netherlands)

    Engelbert, RHH; Uiterwaal, CSPM; Gulmans, VAM; Pruijs, H; Helders, PJM

    2000-01-01

    Objectives: We studied the predicted value of disease-related characteristics for the ability of children with osteogenesis imperfecta (OI) to walk. Study design: The severity of OI was classified according to Sillence. The parents were asked to report the age at which the child achieved motor miles

  12. The dynamics of DNA methylation and hydroxymethylation during amelogenesis.

    Science.gov (United States)

    Yoshioka, Hirotaka; Minamizaki, Tomoko; Yoshiko, Yuji

    2015-11-01

    Amelogenesis is a multistep process that relies on specific temporal and spatial signaling networks between the dental epithelium and mesenchymal tissues. Epigenetic modifications of key developmental genes in this process may be closely linked to a network of molecular events. However, the role of epigenetic regulation in amelogenesis remains unclear. Here, we have uncovered the spatial distributions of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) to determine epigenetic events in the mandibular incisors of mice. Immunohistochemistry and dot blotting showed that 5-hmC in ameloblasts increased from the secretory stage to the later maturation stage. We also demonstrated the distribution of 5-mC-positive ameloblasts with punctate nuclear labeling from sometime after the initiation of the secretory stage to the later maturation stage; however, dot blotting failed to detect this change. No obvious alteration of 5-mC/5-hmC staining in odontoblasts and dental pulp cells was observed. Concomitant with quantitative expression data, immunohistochemistry showed that maintenance DNA methyltransferase DNMT1 was highly expressed in immature dental epithelial cells and subsequently decreased at later stages of development. Meanwhile, de novo DNA methyltransferase Dnmt3a and Dnmt3b and DNA demethylase Tet family genes were universally expressed, except Tet1 that was highly expressed in immature dental epithelial cells. Thus, DNMT1 may sustain the undifferentiated status of dental epithelial cells through the maintenance of DNA methylation, while the hydroxylation of 5-mC may occur through the whole differentiation process by TET activity. Taken together, these data indicate that the dynamic changes of 5-mC and 5-hmC may be critical for the regulation of amelogenesis.

  13. Fixed Restoration of Amelogenesis Imperfecta%遗传性牙釉质发育不全固定修复

    Institute of Scientific and Technical Information of China (English)

    樊弘毅; 李晓箐; 高姗姗; 卿萍; 于海洋

    2012-01-01

    Objective:To study the characteristics of occlusion in patients with amclogcncsis impcrfecta and to investigate criteria for diagnosing and treating them with the aim of recovering their chewing functions. Methods: A treatment plan was made after complete oral evaluation. Then a transitional prosthesis was applied to the patient for a period (two or three months) of observation. When a proper occlusal position was confirmed, treated patients with fixed prosthesis. Results: Activity of tcm-poromandibular joints were stable and facial appearance was improved significantly. Conclusions: An appropriate design of fixed partial denture* accurate teeth reconstruction, establishment of a proper vertical dimension of occlusion, and the use of transient denture were important for acceptable facial appearance.%目的:研究遗传性牙釉质发育不全患者的咬合关系特点与诊治方法.方法:运用口腔固定修复技术对患者进行咬合重建.确定颌位关系后戴暂时性垫2~3个月,恢复到最适颌位之后行固定义齿修复.结果:患者的颞下颌关节活动稳定,咬合关系基本正常,且固定修复后患者的容貌有明显改观.结论:采用固定修复方法治疗遗传性牙釉质发育不全患者的咬合紊乱,进行咬合重建的效果令人满意.

  14. Dentin sialoprotein and dentin phosphoprotein overexpression during amelogenesis.

    Science.gov (United States)

    Paine, Michael L; Luo, Wen; Wang, Hong-Jun; Bringas, Pablo; Ngan, Amanda Y W; Miklus, Vetea G; Zhu, Dan-Hong; MacDougall, Mary; White, Shane N; Snead, Malcolm L

    2005-09-09

    The gene for dentin sialophosphoprotein produces a single protein that is post-translationally modified to generate two distinct extracellular proteins: dentin sialoprotein and dentin phosphoprotein. In teeth, dentin sialophosphoprotein is expressed primarily by odontoblast cells, but is also transiently expressed by presecretory ameloblasts. Because of this expression profile it appears that dentin sialophosphoprotein contributes to the early events of amelogenesis, and in particular to those events that result in the formation of the dentino-enamel junction and the adjacent "aprismatic" enamel. Using a transgenic animal approach we have extended dentin sialoprotein or dentin phosphoprotein expression throughout the developmental stages of amelogenesis. Overexpression of dentin sialoprotein results in an increased rate of enamel mineralization, however, the enamel morphology is not significantly altered. In wild-type animals, the inclusion of dentin sialoprotein in the forming aprismatic enamel may account for its increased hardness properties, when compared with bulk enamel. In contrast, the overexpression of dentin phosphoprotein creates "pitted" and "chalky" enamel of non-uniform thickness that is more prone to wear. Disruptions to the prismatic enamel structure are also a characteristic of the dentin phosphoprotein overexpressing animals. These data support the previous suggestion that dentin sialoprotein and dentin phosphoprotein have distinct functions related to tooth formation, and that the dentino-enamel junction should be viewed as a unique transition zone between enamel and the underlying dentin. These results support the notion that the dentin proteins expressed by presecretory ameloblasts contribute to the unique properties of the dentino-enamel junction.

  15. [Osteogenesis imperfecta and dentinogenesis imperfecta: diagnostic frontiers and importance in dentofacial orthopedics].

    Science.gov (United States)

    Kamoun-Goldrat, Agnès S; Le Merrer, Martine F

    2007-06-01

    Osteogenesis imperfecta is a genetic disease that varies in severity and is characterized by fragile bones that fracture easily. Many extra-skeletal manifestations can be noted such as blue sclerotic markings, dentinogenesis imperfecta and impaired hearing or deafness. In most cases, an anomaly of collagen is the cause. It is usually accompanied by a specific Class III type cranio-facial morphology with open bite and increased incidence of impacted permanent molars. Orthodontists called upon to treat the dental aspects of this malady, should be careful to protect their patients against bacterial infection and hemorrhages, and to be well aware of the side affects that can be caused by the biophosphanates that constitute the basis of current medical treatment of osteogenesis imperfecta.

  16. Dental management of severe dentinogenesis imperfecta in a mild form of osteogenesis imperfecta.

    Science.gov (United States)

    Stephen, L X G; Beighton, P

    2002-01-01

    Dentinogenesis Imperfecta (DI), in which the teeth are discolored, translucent and brittle, can occur in isolation as a familial trait and as a component of the skeletal dysplasia Osteogenesis Imperfecta (OI). In a Cape Town family, 20 persons in 3 generations had mild OI, with the additional manifestation of severe DI. The family was assessed at the Dental Genetic Unit of the University of the Western Cape and appropriate dental treatment was provided. In this setting, a detailed treatment plan was devised for a severely affected woman. This plan proved to be efficient and cost effective, and the final outcome was pleasing to the patient. Dentinogenesis Imperfecta is not uncommon and may well be encountered in conventional dental practice. The necessary clinical expertise is within the scope of the skills of the general dentist.

  17. Overlapping DSPP mutations cause dentin dysplasia and dentinogenesis imperfecta.

    Science.gov (United States)

    McKnight, D A; Simmer, J P; Hart, P S; Hart, T C; Fisher, L W

    2008-12-01

    Dentinogenesis imperfecta (DGI) and dentin dysplasia (DD) are allelic disorders due to mutations in DSPP. Typically, the phenotype breeds true within a family. Recently, two reports showed that 3 different net -1 bp frameshift mutations early in DSPP's repeat domain caused DD, whereas 6 more 3' frameshift mutations were associated with DGI. Here we identify a DD kindred with a novel -1 bp frameshift (c.3141delC) that falls within the portion of the DSPP repeat domain previously associated solely with the DGI phenotype. This new frameshift mutation shows that overlapping DSPP mutations can give rise to either DGI or DD phenotypes. Furthermore, the consistent kindred presentation of the DD or DGI phenotype appears to be dependent on an as-yet-undescribed genetic modifier closely linked to DSPP.

  18. Bone Material Properties in Osteogenesis Imperfecta.

    Science.gov (United States)

    Bishop, Nick

    2016-04-01

    Osteogenesis imperfecta entrains changes at every level in bone tissue, from the disorganization of the collagen molecules and mineral platelets within and between collagen fibrils to the macroarchitecture of the whole skeleton. Investigations using an array of sophisticated instruments at multiple scale levels have now determined many aspects of the effect of the disease on the material properties of bone tissue. The brittle nature of bone in osteogenesis imperfecta reflects both increased bone mineralization density-the quantity of mineral in relation to the quantity of matrix within a specific bone volume-and altered matrix-matrix and matrix mineral interactions. Contributions to fracture resistance at multiple scale lengths are discussed, comparing normal and brittle bone. Integrating the available information provides both a better understanding of the effect of current approaches to treatment-largely improved architecture and possibly some macroscale toughening-and indicates potential opportunities for alternative strategies that can influence fracture resistance at longer-length scales.

  19. Swellings over the Limbs as the Earliest Feature in a Patient with Osteogenesis Imperfecta Type V

    Directory of Open Access Journals (Sweden)

    Ali Al Kaissi

    2014-01-01

    Full Text Available Swellings over the upper and lower limbs were encountered in a one-year-old child. Skeletal survey showed a constellation of distinctive radiographic abnormalities of osteoporosis, hyperplastic callus and ossification of the interosseous membrane of the forearm, femora, and to lesser extent the tibiae. Neither wormian bones of the skull nor dentinogenesis imperfecta was present. Genetic tests revealed absence of mutation in COL1A1 or COL1A2 genes, respectively. The overall phenotypic features were consistent with the diagnosis of osteogenesis imperfecta type V (OI-V. The aim of this paper is to distinguish between swellings because of intrinsic bone disorders and these due to child physical abuse.

  20. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  1. Use of minimally invasive operation therapy with extended intramedullary nail on children with femoral fracture and deformity due to osteogenesis imperfecta%可延长髓内钉微创治疗成骨不全术后股骨再发畸形或骨折

    Institute of Scientific and Technical Information of China (English)

    房凤岭; 任秀智; 冯世庆; 李志良; 王风君; 袁桐强

    2013-01-01

    目的 探讨可延长髓内钉治疗成骨不全术后股骨再发畸形或骨折的疗效.方法 回顾性分析2009年6月至2012年6月采用可延长髓内钉治疗21例成骨不全术后股骨再发畸形或骨折患儿资料,男13例,女8例;年龄9岁6个月至15岁7个月,平均12岁3个月.所有患儿均已行股骨干截骨矫形不可延长髓内钉手术,此次手术距初次手术时间为2~4年,平均3年.所有患儿成长肢体于髓内钉远端部位再次出现畸形或骨折,其中9例为股骨干弯曲畸形,畸形成角度数为10°~30°,平均15°;12例为再发骨折.依据修订后的Sillence分型:Ⅲ型6例,Ⅳ型14例,Ⅴ型1例.21例患儿均在大转子及远端截骨处切开手术,切口长度为2~3 cm,采用可延长髓内钉再次固定骨折及矫正畸形.结果 21例患儿均获得随访,随访时间6~30个月,平均18个月.骨折愈合时间为7~12周,平均8.5周.待X线片示截骨愈合后患儿开始负重行走.所有患儿及其父母均对手术结果及畸形矫正效果表示满意,末次随访时患儿Barthel指数评分由术前平均72.85分(范围,50~90分)提高到术后平均91.42分(范围,80~100分).WeeFIM评分由术前平均55.42分(范围,40~70分)提高到术后平均79.00分(范围,70~86分).10例术前需拐杖辅助行走患儿,随访时可独立行走;6例术前因骨折而卧床患儿中,4例可独立行走,2例需拄拐活动.末次随访时,无一例出现感染、骨髓炎等并发症,无神经、血管损伤病例.结论 应用可延长髓内钉小切口手术,对肢体损伤小、出血少、骨折愈合时间短、患儿痛苦小,是治疗成骨不全术后股骨再发畸形或骨折的良好方法.%Objective To evaluate the therapeutic effect of extendable intramedullary nail on children with femoral deformity due to osteogenesis imperfecta.Methods From June 2009 to June 2012,21 patients with femoral deformity due to osteogenesis imperfecta were treated with extendable

  2. Possible Linkage of SP6 Transcriptional Activity with Amelogenesis by Protein Stabilization

    Directory of Open Access Journals (Sweden)

    Trianna W. Utami

    2011-01-01

    Full Text Available Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.

  3. Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization.

    Science.gov (United States)

    Utami, Trianna W; Miyoshi, Keiko; Hagita, Hiroko; Yanuaryska, Ryna Dwi; Horiguchi, Taigo; Noma, Takafumi

    2011-01-01

    Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.

  4. Osteogenesis Imperfecta, Pseudoachalasia, and Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Dilsa Mizrak

    2015-01-01

    Full Text Available Osteogenesis imperfecta (OI is a rare, inherited skeletal disorder characterized by abnormalities of type 1 collagen. Malignancy is rarely reported in patients with OI and it was suggested that this disease can protect against cancer. Here, we report a 41-year-old woman with symptoms of achalasia where repeated treatment of pneumatic dilation and stent replacement was unsuccessful; therefore, surgery was performed. Pathology showed gastric adenocarcinoma unexpectedly. Chemotherapy was given after assessing dihydropyrimidine dehydrogenase (DPD enzyme activity, which can be deficient in OI patients. This is the first report of gastric cancer mimicking achalasia in a patient with OI.

  5. Hyperplastic callus formation in osteogenesis imperfecta. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Burchardt, A.J. (Depts. of Radiology and Pediatric Orthopedic Surgery, Rigshospitalet, Copenhagen Univ. (Denmark)); Wagner, A.A. (Depts. of Radiology and Pediatric Orthopedic Surgery, Rigshospitalet, Copenhagen Univ. (Denmark)); Basse, P. (Depts. of Radiology and Pediatric Orthopedic Surgery, Rigshospitalet, Copenhagen Univ. (Denmark))

    1994-09-01

    We report a case of bilateral hyperplastic callus formation as a complication of fracture in a patient with osteogenesis imperfecta. The clinical and radiographic findings and the differential diagnosis are discussed. (orig.).

  6. DENTINOGENESIS IMPERFEC TA WITH OSTEOGENESIS IMPERFECTA: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Jesudass

    2015-03-01

    Full Text Available Dentinogegesis imperfecta (DI represents a group of hereditary conditions that are characterized by abnormal dentin formation. These conditions are genetically and clinically heterogenous and can affect only the teeth or can be associated with the condition Osteogegesis imperfecta . The Osteogegesis imperfecta (OI or the disease of fragile bones is a hereditary pathology affecting different tissues especially the bone. The teeth of DI cases wear more easily and excessively and also more susceptible to dental caries compa red to normal teeth. Early prosthodontic rehabilitation can prevent or delay the wear as well as loss of teeth in DI. Herewith, we present case report of 10yr old boy with discolored, severely attrited permanent teeth with sinus openings. A long with system ic abnormalities like blue sclera, bow legs, protruded sternum. The case was diagnosed as Dentinogegesis imperfecta type I and discussed in this case report.

  7. Osteogenesis Imperfecta:No Place for Imperfect Anaesthesiologist

    Directory of Open Access Journals (Sweden)

    Geeta Bhandari

    2008-01-01

    Full Text Available Osteogenesis imperfecta, an inherited disease of connective tissue, is associated with anatomic and physiologic abnormalities which make any form of anaesthesia a challenging task for the anaesthesiologist. We report a case of Osteogenesis imperfecta type -IV with severe anatomic deformities, who underwent replacement nailing procedure for periprosthetic fracture of shaft femur under general anaesthesia. We used a proseal LMA in the case, patient suffered a posterior dislocation of right shoulder on repositioning at the end of the surgery.

  8. Pediatric dental management of a patient with osteogenesis imperfecta and dentinogenesis imperfecta.

    Science.gov (United States)

    Muhney, Kelly; Campbell, Patricia Regener

    2007-01-01

    Osteogenesis imperfecta (OI) is a genetic disorder that affects all connective tissue. Clinical manifestations of OI include bone fragility, hyperlaxity of joints, hearing loss, abnormalities of stature and facial structure, blue sclerae, and dentinogenesis imperfecta (DI). OI is classified into four groups according to the severity and physical characteristics of the disease, although not all characteristics may be present in one individual. Currently, 20,000 to 50,000 individuals in the U.S. have been diagnosed with this disease. The aim of this article is to discuss medical and dental complications associated with OI and DI. A case presentation describes the clinical care of a patient from birth to age 12.

  9. The specific role of FAM20C in amelogenesis.

    Science.gov (United States)

    Wang, X; Jung, J; Liu, Y; Yuan, B; Lu, Y; Feng, J Q; Qin, C

    2013-11-01

    Previously, we showed that Sox2-Cre;Fam20C(fl/fl) mice in which Fam20C was ubiquitously inactivated had severe defects in dentin, enamel, and bone, along with hypophosphatemia. It remains to be determined if the enamel defects in the mice with universal inactivation of Family with sequence similarity 20-C (FAM20C) were associated with the dentin defects and whether hypophosphatemia in the knockout mice contributed to the enamel defects. In this study, we crossed Fam20C(fl/fl) mice with keratin 14-Cre (K14-Cre) transgenic mice to specifically inactivate Fam20C in the epithelial cells, including the dental epithelial cells that are responsible for forming tooth enamel. X-ray, backscattered scanning electron microscopic, and histological analyses showed that the K14-Cre;Fam20C(fl/fl) mice had severe enamel and ameloblast defects, while their dentin and alveolar bone were not significantly affected. Accordingly, serum biochemistry of the K14-Cre;Fam20C(fl/fl) mice showed normal phosphate and FGF23 levels in the circulation. Analysis of these data indicates that, while FAM20C is a molecule essential to amelogenesis, its inactivation in the dental epithelium does not significantly affect dentinogenesis. Hypophosphatemia makes no significant contribution to the enamel defects in the mice with the ubiquitous deletion of Fam20C.

  10. Dentinogenesis imperfecta - hardness and Young's modulus of teeth.

    Science.gov (United States)

    Wieczorek, Aneta; Loster, Jolanta; Ryniewicz, Wojciech; Ryniewicz, Anna M

    2013-01-01

    Dentinogenesis imperfecta type II (DI-II) is the most common dental genetic disease with reported incidence 1 in 8000. Elasticity and hardness of the enamel of teeth are important values which are connected with their resistance to attrition. It is hypothesized that values of physical properties for healthy teeth and teeth with DI-II are different. The aim of the study was to investigate some physical properties of teeth extracted from patients with DI-II in comparison with normal teeth. The material of the study was six teeth: three lower molars, with clinical signs of DI-II, which were extracted due to complications of pulp inflammation and three other lower molars which were extracted for orthodontic reasons - well formed, without any signs of pathology. The surfaces of DI-II and normal teeth were tested on the CSM Instruments Scratch Tester machine (producer CSEM Switzerland) by Oliver and Pharr method. The indenter used was Vicker's VG-73 diamond indenter. Additionally, the Scanning Electron Microscopy (SEM) analysis of the surface of the teeth with DI-II was made. Vickers hardness of the teeth with dental pathology (DI-II) was seven times smaller, and Young's modulus six times smaller than those of healthy teeth. The parameters of hardness and elasticity of enamel of teeth with clinical diagnosis of DI-II were very much smaller than in normal teeth and because of that can be responsible for attrition.

  11. Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis.

    Science.gov (United States)

    Somogyi-Ganss, Eszter; Nakayama, Yohei; Iwasaki, Kengo; Nakano, Yukiko; Stolf, Daiana; McKee, Marc D; Ganss, Bernhard

    2012-01-01

    Tooth enamel is formed in a typical biomineralization process under the guidance of specific organic components. Amelotin (AMTN) is a recently identified, secreted protein that is transcribed predominantly during the maturation stage of enamel formation, but its protein expression profile throughout amelogenesis has not been described in detail. The main objective of this study was to define the spatiotemporal expression profile of AMTN during tooth development in comparison with other known enamel proteins. A peptide antibody against AMTN was raised in rabbits, affinity purified and used for immunohistochemical analyses on sagittal and transverse paraffin sections of decalcified mouse hemimandibles. The localization of AMTN was compared to that of known enamel proteins amelogenin, ameloblastin, enamelin, odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4. Three-dimensional images of AMTN localization in molars at selected ages were reconstructed from serial stained sections, and transmission electron microscopy was used for ultrastructural localization of AMTN. AMTN was detected in ameloblasts of molars in a transient fashion, declining at the time of tooth eruption. Prominent expression in maturation stage ameloblasts of the continuously erupting incisor persisted into adulthood. In contrast, amelogenin, ameloblastin and enamelin were predominantly found during the early secretory stage, while odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4 expression in maturation stage ameloblasts paralleled that of AMTN. Secreted AMTN was detected at the interface between ameloblasts and the mineralized enamel. Recombinant AMTN protein did not mediate cell attachment in vitro. These results suggest a primary role for AMTN in the late stages of enamel mineralization.

  12. Disease: H00615 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available Lyroudia K Genes and related proteins involved in amelogenesis imperfecta. J Dent Res 84:1117-26 (2005) PMI...se autosomal-recessive hypomaturation amelogenesis imperfecta. Am J Hum Genet 85:699-705 (2009) PMID:1825222...ilies with autosomal-dominant hypocalcified amelogenesis imperfecta. Am J Hum Genet 82:489-94 (2008) ...

  13. El poder en la paz imperfecta y en Foucault

    Directory of Open Access Journals (Sweden)

    Cássia M. Rosato

    2012-04-01

    Full Text Available Este trabajo debate el concepto de poder en la paz imperfecta y en la obra de Foucault. El objetivo principal es demostrar que la perspectiva foucaultiana del poder no está lejos de la noción de poder en la paz imperfecta propuesta por Muñoz. Para tanto, ese artículo empieza con la idea de paz de UNESCO y el contexto sociopolítico que favoreció el surgimiento de esa concepción. Enseguida, presenta características de la paz imperfecta, así como el concepto de poder está inserido en esta proposición y en Foucault. Al final, apunta tres semejanzas y/o aproximaciones existentes entre ambas las orientaciones que confirman su cercanía.

  14. Pseudomass of the sternal manubrium in osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Yekeler, Ensar; Kumbasar, Basak; Dursun, Memduh; Tunaci, Mehtap [Department of Radiology, Istanbul University, Istanbul Faculty of Medicine, 34390, Capa, Istanbul (Turkey); Cantez, Serdar; Emiroglu, Halil Haldun [Department of Pediatrics, Istanbul University, Istanbul Faculty of Medicine, 34390, Capa, Istanbul (Turkey)

    2003-06-01

    Skeletal abnormalities such as hypertrophic callus formation and ''popcorn'' calcifications are rare radiological findings of osteogenesis imperfecta, causing tumor-like appearances on imaging. We report on a 7-year-old girl with osteogenesis imperfecta presenting with hepatomegaly and palpable lymphadenopathy in the left inguinal region on physical examination. Computed tomography examination revealed a high-density mass-like lesion of the manubrium sterni. Ultrasonography and a lateral roentgenogram of the chest verified that this was a pseudomass caused by a bowed sternal manubrium. (orig.)

  15. Dentinogenesis imperfecta: long-term rehabilitation in a child.

    Science.gov (United States)

    Bouvier, Dominique; Leheis, Benoît; Duprez, Jean-Pierre; Bittar, Elias; Coudert, Jean-Loup

    2008-01-01

    The treatment of dentinogenesis imperfecta represents a challenge for the dental practitioner. The aim of this case report was to describe the chronology and problems encountered in the long-term rehabilitation of a young girl suffering from dentinogenesis imperfecta with severe attrition. A 2-stage treatment over a period of 9 years is described and discussed. This treatment comprised an initial treatment to restore esthetic appearance and function during primary and mixed dentitions and a complete prosthetic rehabilitation in a second stage to protect permanent teeth with low-fusion ceramicmetal individual crowns. Discovery of a follicular cyst is also reported and its treatment is described.

  16. Prenatal diagnosis of lethal osteogenesis imperfecta in twin pregnancy.

    Science.gov (United States)

    Morin, L R; Herlicoviez, M; Loisel, J C; Jacob, B; Feuilly, C; Stanescu, V

    1991-06-01

    Lethal osteogenesis imperfecta was diagnosed at 27 weeks amenorrea in one fetus of a bichorial twin pregnancy. Sonographic findings included: short-limb dwarfism, hypotrophy and hypoechoic bones. The affected fetus was so translucent that only the normal fetus could be seen on plain in utero radiography. The affected fetus died immediately after birth. Postmortem radiography and histology were typical of lethal osteogenesis imperfecta of type IIA. Aids to the etiological diagnosis of in utero dwarfism are presented. Sonographic features correlated with neonatal death are described.

  17. Clinical manifestations and dental management of dentinogenesis imperfecta associated with osteogenesis imperfecta: Case report.

    Science.gov (United States)

    Abukabbos, Halima; Al-Sineedi, Faisal

    2013-10-01

    Dentinogenesis imperfecta (DI) associated with osteogenesis imperfecta (OI) is a genetic disorder that affects the connective tissues and results in dentine dysplasia. This case report discusses the systemic and dental manifestations of OI and DI in a 4-year-old child, with moderate presentation of both disorders, who was treated at King Fahd Military Medical Complex in Dhahran. Dental treatment included the use of strip and stainless-steel crowns under local anesthesia, as well as behavior modification techniques. Rigorous home care instructions, including reinforcement of the oral hygiene practice and avoidance of any episode that may lead to bone fracture, were discussed with the parents. The case was reevaluated at 3-month follow-up visits, wherein the medical and dental histories were updated, the child's growth was monitored, periodic clinical and radiographic examinations were performed, and the oral hygiene was evaluated via the debris index score and caries risk assessment. Further treatment of the permanent dentition may be needed in the future.

  18. Dentinogenesis imperfecta: an early treatment strategy.

    Science.gov (United States)

    Sapir, S; Shapira, J

    2001-01-01

    Dentinogenesis imperfecta (DI) type 2 is a disease inherited in a simple autosomal dominant mode. As soon as the teeth erupt the parents may notice the problem and look for a pediatric dentist's advice and treatment. Early diagnosis and treatment of DI is recommended, as it may prevent or intercept deterioration of the teeth and occlusion and improve esthetics. The purpose of this article is to present the objectives, treatment options, and problems encountered in the treatment of DI in the early primary dentition. A two-stage treatment of a toddler under general anesthesia is described and discussed. This paper recommends for severe cases of DI two treatment stages performed under general anesthesia. Stage 1 is early (around age 18-20 months) and is directed to covering the incisors with composite restorations and the first primary molars with preformed crowns. Stage 2 (around age 28-30 months) seeks to protect the second primary molars with preformed crowns and cover the canines with composite restorations.

  19. Deficient expression of the small proteoglycan decorin in a case of severe/lethal osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Dyne, K.M.; Valli, M.; Forlino, A.; Cetta, G. [Univ. of Pavia (Italy); Mottes, M. [Univ. of Verona (Italy); Kresse, H. [Univ. of Muenster (Germany)

    1996-05-03

    In osteogenesis imperfecta (OI) the effects of mutations in type I collagen genes generally reflect their nature and localization. Unrelated individuals sharing identical mutations present, in general, similar clinical phenotypes. However, in some such cases the clinical phenotype differs. This variable clinical expression could be the result of abnormalities in other connective tissue proteins. Since decorin is a component of connective tissue, binds to type I collagen fibrils and plays a role in matrix assembly, we studied decorin production in skin fibroblasts from OI patients. Cultured fibroblasts from one patient with extremely severe osteogenesis imperfecta (classified as type II/III) who has an {alpha}1(I)gly415ser mutation were found to secrete barely detectable amounts of decorin into culture medium. Western blotting using antibodies raised against decorin confirmed the reduction of the decorin core protein and Northern blot analysis showed decorin mRNA levels below the limit of detection. Cells from a patient, with a less severe phenotype, bearing a mutation in the same position of the triple helix ({alpha}1(1)gly415) expressed decorin normally. The different clinical phenotypes could be due to the differing genetic backgrounds of the patients, so it is tempting to conclude that in our most severely affected patient, the absence of decorin aggravates the clinical phenotype. 34 refs., 4 figs., 1 tab.

  20. A Case Report for a Complex Denture Case on a Special Care Patient with Osteogenesis Imperfecta.

    Science.gov (United States)

    Sawyer, Colin; Drysdale, David

    2015-05-01

    This case report presents a patient with Dentogenesis Imperfecta (DI) associated with Osteogenesis Imperfecta (OI) and its subsequent dental manifestations. The patient in this report (see Figure 1) has spent his life living with his disability type III OI (also known as brittle bone disease) and its degenerative affects. The patient is independent and enjoys his social life but felt his existing dentures were having an adverse effect on the quality of his life. The patient attended Dorset County Hospitals Special Care Dentistry and on clinical examination it was noted the patient was partially dentate with a class III malocclusion and brownish discoloration of the remaining teeth caused by enamel hypoplasia. Treatment for this patient would entail making a maxillary complete denture and a mandibular partial chrome denture, normally quite simple tasks but due to the DI and its dental manifestations, the treatment would be complicated. This case demonstrates how a complex case treated by a collaborative dental team using their different skills and knowledge can lead to a successful and rewarding treatment for both patient and team.

  1. GEP, a Local Growth Factor, is Critical for Odontogenesis and Amelogenesis

    Directory of Open Access Journals (Sweden)

    Zhengguo Cao, Baichun Jiang, Yixia Xie, Chuan-ju Liu, Jian Q. Feng

    2010-01-01

    Full Text Available Granulin epithelin precursor (GEP is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP and amelogenesis (ameloblastin, amelogenin and enamelin. In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.

  2. GEP, a local growth factor, is critical for odontogenesis and amelogenesis.

    Science.gov (United States)

    Cao, Zhengguo; Jiang, Baichun; Xie, Yixia; Liu, Chuan-ju; Feng, Jian Q

    2010-11-25

    Granulin epithelin precursor (GEP) is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP) and amelogenesis (ameloblastin, amelogenin and enamelin). In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.

  3. Mortality and Causes of Death in Patients With Osteogenesis Imperfecta

    DEFF Research Database (Denmark)

    Folkestad, Lars; Hald, Jannie Dahl; Canudas-Romo, Vladimir;

    2016-01-01

    Osteogenesis imperfecta (OI) is a hereditary connective tissue disease that causes frequent fractures. Little is known about causes of death and length of survival in OI. The objective of this work was to calculate the risk and cause of death, and the median survival time in patients with OI...

  4. Fracture Rates and Fracture Sites in Patients With Osteogenesis Imperfecta

    DEFF Research Database (Denmark)

    Folkestad, Lars; Hald, Jannie Dahl; Ersbøll, Annette Kjær;

    2017-01-01

    Osteogenesis imperfecta (OI) is a hereditary, clinically heterogeneous, connective tissue disorder. The population prevalence of OI in Denmark is 10.6 in 100,000. A hallmark of the disease is frequent fractures that are often precipitated by minimal trauma. The aim of the current study...

  5. A rare case of Osteogenesis Imperfecta Type III

    Directory of Open Access Journals (Sweden)

    Nagaraj MV, Jehangir HM

    2014-03-01

    Full Text Available Osteogenesis imperfecta (OI the most common genetic cause of osteoporosis is a generalized disorder of connective tissue, characterized by increased bone fragility, low bone mass, recurrent fractures & numerous extra-osseous features with unusual presentations. We report a case of 7 year old female child presenting with respiratory distress with bowing of limb. This case is presented for its rarity.

  6. Wormian bones in osteogenesis imperfecta and other disorders

    Energy Technology Data Exchange (ETDEWEB)

    Cremin, B.; Goodman, H.; Spranger, J.; Beighton, P.

    1982-03-01

    When are Wormian bones significant is not an easy question to answer, but its relevance is important in relation to bone dysplasias such as osteogenesis imperfecta. Recognition will differ with age of patient, radiographic objectivity, and personal subjectivity. In order to attempt an answer, the skull radiographs of 81 cases of osteogenesis imperfecta of varying ages were examined for the presence of Wormian bones. These were compared against the incidence of Wormian bones in 500 skull radiographs of normal children. Significant Wormian bones as against normal developmental variants were considered to be those more than 10 in number, measuring greater than 6 mm by 4 mm, and arranged in a general mosaic pattern. They were found in all the cases of osteogenesis imperfecta but not in the normal skulls. The occurrence of significant Wormian bones in other bone dysplasias from our material and that of the literature was recorded. Other incidental findings in the skulls of the cases of osteogenesis imperfecta were also appraised.

  7. Complete COL1A1 allele deletions in osteogenesis imperfecta

    NARCIS (Netherlands)

    van Dijk, Fleur S.; Huizer, Margriet; Kariminejad, Ariana; Marcelis, Carlo L.; Plomp, Astrid S.; Terhal, Paulien A.; Meijers-Heijboer, Hanne; Weiss, Marjan M.; van Rijn, Rick R.; Cobben, Jan M.; Pals, Gerard

    2010-01-01

    Purpose: To identify a molecular genetic cause in patients with a clinical diagnosis of osteogenesis imperfecta (OI) type I/IV. Methods: The authors performed multiplex ligation-dependent probe amplification analysis of the COL1A1 gene in a group of 106 index patients. Results: In four families with

  8. Collagen-derived markers of bone metabolism in osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Lund, A M; Hansen, M; Kollerup, Gina Birgitte;

    1998-01-01

    )] were measured in 78 osteogenesis imperfecta (OI) patients to investigate bone metabolism in vivo and relate marker concentrations to phenotype and in vitro collagen I defects, as shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). PICP and PINP were generally low...

  9. A Case of Dentinogenesis Imperfecta Treated with Submerged Root Technique.

    Science.gov (United States)

    Uday, Ginjupally; Chandar, Bhanu; Srilakshmi, J; Khaitan, Tanya; Babu, B Balaji

    2015-09-01

    Dentinogenesis imperfecta (DGI), an autosomal dominant trait, is one of the most common hereditary disorders affecting both the formation and mineralization of dentin. Either or both primary and permanent dentition is affected by it. Here, we present a case report of a 13-year-old female patient affected with DGI who had undergone prosthetic rehabilitation with submerged root technique.

  10. Osteogenesis imperfecta: the audiological phenotype lacks correlation with the genotype.

    NARCIS (Netherlands)

    Swinnen, F.K.R.; Coucke, P.J.; Paepe, A.M. De; Symoens, S.; Malfait, F.; Gentile, F.V.; Sangiorgi, L.; D'Eufemia, P.; Celli, M.; Garretsen, T.J.; Cremers, C.W.R.J.; Dhooge, I.J.; Leenheer, E. de

    2011-01-01

    ABSTRACT: BACKGROUND: Osteogenesis Imperfecta (OI) is a heritable connective tissue disorder mainly caused by mutations in the genes COL1A1 and COL1A2 and is associated with hearing loss in approximately half of the cases. The hearing impairment usually starts between the second and fourth decade of

  11. A type IV osteogenesis imperfecta family and pregnancy: a case report and literature review

    Institute of Scientific and Technical Information of China (English)

    FENG Zhao-yi; CHEN Qian; SHI Chun-yan; WEN Hong-wu; MA Ke; YANG Hui-xia

    2012-01-01

    Osteogenesis imperfecta is a group of inherited connective-tissue disorders in which synthesis or structure of type Ⅰ collagen is defective and causes osseous fragility.Type Ⅳ osteogenesis imperfecta is dominant inheritance.Here,we report a case of type Ⅳ osteogenesis imperfecta family and their female member's pregnancy.Abnormal sonographic findings (marked bowing and shortening of long bones) and family history made the diagnosis of fetus with osteogenesis imperfecta.The parents decided to give up rescuing the infant and a caesarean section at 27 weeks of gestation was implemented.n conclusion,it is possible to make a prenatal diagnosis of osteogenesis imperfecta by ultrasound.For the pregnant women with osteogenesis imperfecta,management decision should be made on an individual basis.

  12. A type IV osteogenesis imperfecta family and pregnancy: a case report and literature review.

    Science.gov (United States)

    Feng, Zhao-yi; Chen, Qian; Shi, Chun-yan; Wen, Hong-wu; Ma, Ke; Yang, Hui-xia

    2012-04-01

    Osteogenesis imperfecta is a group of inherited connective-tissue disorders in which synthesis or structure of type I collagen is defective and causes osseous fragility. Type IV osteogenesis imperfecta is dominant inheritance. Here, we report a case of type IV osteogenesis imperfecta family and their female member's pregnancy. Abnormal sonographic findings (marked bowing and shortening of long bones) and family history made the diagnosis of fetus with osteogenesis imperfecta. The parents decided to give up rescuing the infant and a caesarean section at 27 weeks of gestation was implemented. In conclusion, it is possible to make a prenatal diagnosis of osteogenesis imperfecta by ultrasound. For the pregnant women with osteogenesis imperfecta, management decision should be made on an individual basis.

  13. Radiation effect on the stages of amelogenesis in the rat incisor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyun Bae; Choi, Soon Chul; Park, Tae Won; You, Dong Soo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1997-02-15

    The purpose of this study was to investigate the radiation effect on the stages of amelogenesis. Twenty 11-day-old rats which were irradiated by 4 GY of gamma radiation on the 19th prenatal day were used for the experimental group and twenty 11-day-old rats which were not irradiated were used for the control group. The length of each zone of amelogenesis were measured on the sagittal section using a light microscopic enlargement at 400X the normal view while the morphologic changes of ameloblasts of each zone were observed electron-microscopically. The obtained results were as followed : 1. The length of the region of facing pulp and facing dentin of the zone of presecretion were increased by 11.5% (P<0.01) and 17.7% (P<0.01), respectively. 2. The length of the zone of secretion was increased by 17.3% (P<0.01), but the zone of maturation was decreased by 15.3% (P>0.01). 3. The total length of the zone of amelogenesis was not changed significantly (P>0.05). 4. Electron-microscopically, enlargement of the cell membrane, rER, mitochondria, and nuclear membrane were observed. These changes were mostly severe in the zone of maturation.

  14. Tratamiento de osteogénesis imperfecta con bisfosfonatos Treatment of osteogenesis imperfecta with bisphosphonates

    Directory of Open Access Journals (Sweden)

    Cristina Tau

    2007-08-01

    Full Text Available El tratamiento con bisfosfonatos (BP, ha mejorado la calidad de vida de los pacientes con osteogénesis imperfecta (OI. Los efectos benéficos son el alivio del dolor, la reducción de la incidencia de fracturas, la mejor movilidad corporal y la recuperación en las formas vertebrales. El tratamiento es más efectivo durante el período de crecimiento. Se presenta una actualización del tema. De la lectura de los anales se destacan los siguientes interrogantes: ¿Por cuánto tiempo deberá instituirse el tratamiento? ¿Es la vía oral tan efectiva como la endovenosa? ¿Cuál es la mejor dosis? ¿Cuándo suspender el tratamiento? ¿Se conservará la integridad del tejido óseo después de un tratamiento prolongado? ¿Qué fenómenos ocurren en el tejido óseo después de la interrupción de la terapia?.Treatment with bisphosphonates (BP improves the quality of life of patients with osteogenesis imperfecta (OI. Beneficial effects are the relief of bone pain, a reduction of fracture incidence, improvement of corporal mobility and recovery of normal vertebral form. Treatment is less effective after completion of growth is here. An update of the literature is here presented. A number of important unsolved questions have been pointed out: for how long should treatment be instituted? Is the oral route as effective as the intravenous one? Which is the best dose? When treatment should be stopped? How well preserved is the longterm integrity of the bones? Which are the phenomena occurring in bone tissue after interruption of therapy?.

  15. Impaired osteoblastogenesis in a murine model of dominant osteogenesis imperfecta: a new target for osteogenesis imperfecta pharmacological therapy.

    Science.gov (United States)

    Gioia, Roberta; Panaroni, Cristina; Besio, Roberta; Palladini, Giovanni; Merlini, Giampaolo; Giansanti, Vincenzo; Scovassi, Ivana A; Villani, Simona; Villa, Isabella; Villa, Anna; Vezzoni, Paolo; Tenni, Ruggero; Rossi, Antonio; Marini, Joan C; Forlino, Antonella

    2012-07-01

    The molecular basis underlying the clinical phenotype in bone diseases is customarily associated with abnormal extracellular matrix structure and/or properties. More recently, cellular malfunction has been identified as a concomitant causative factor and increased attention has focused on stem cells differentiation. Classic osteogenesis imperfecta (OI) is a prototype for heritable bone dysplasias: it has dominant genetic transmission and is caused by mutations in the genes coding for collagen I, the most abundant protein in bone. Using the Brtl mouse, a well-characterized knockin model for moderately severe dominant OI, we demonstrated an impairment in the differentiation of bone marrow progenitor cells toward osteoblasts. In mutant mesenchymal stem cells (MSCs), the expression of early (Runx2 and Sp7) and late (Col1a1 and Ibsp) osteoblastic markers was significantly reduced with respect to wild type (WT). Conversely, mutant MSCs generated more colony-forming unit-adipocytes compared to WT, with more adipocytes per colony, and increased number and size of triglyceride drops per cell. Autophagy upregulation was also demonstrated in mutant adult MSCs differentiating toward osteogenic lineage as consequence of endoplasmic reticulum stress due to mutant collagen retention. Treatment of the Brtl mice with the proteasome inhibitor Bortezomib ameliorated both osteoblast differentiation in vitro and bone properties in vivo as demonstrated by colony-forming unit-osteoblasts assay and peripheral quantitative computed tomography analysis on long bones, respectively. This is the first report of impaired MSC differentiation to osteoblasts in OI, and it identifies a new potential target for the pharmacological treatment of the disorder.

  16. 遗传性牙釉质发育不全家系分析%Analysis of a family with autosomal dominant amelogenesis imperfecta

    Institute of Scientific and Technical Information of China (English)

    王喜军; 汲平; 郭红梅; 易新竹

    2007-01-01

    目的:分析一遗传性牙釉质发育不全家系的发病情况及病变特征,明确其遗传方式,为进一步基因定位和克隆奠定基础.方法:2003-05在中国山东某市发现一遗传性牙釉质发育不全家系,先证者为1名43岁男性牙釉质发育不全患者.该家系现存活3代,共有36名家庭成员.对先证者及其家族进行口腔检查和全身检查,制备牙齿磨片镜下观察,对该患者及其亲属成员进行家系调查,系谱分析,明确可能的遗传方式.结果:①口腔及全身l临床表现:口腔检查可见大量牙石,釉质病变涉及全口牙齿,牙体呈黄褐色,磨耗重,釉质易碎裂剥脱.X射线显示牙釉质密度基本与牙本质相同,髓腔形态未见异常.临床表现符合Witkop 1989年分类中的钙化不全型牙釉质发育.全身系统检查排除系统性疾病.无四环素用药史,家族中无近亲结婚者,附近居民无相似病变.②牙齿磨片观察结果:可见釉丛及釉板明显,且数目增多,表明釉质发育较差.③遗传方式:该家系36名成员,3代中均有患者,共检出遗传性牙釉质发育不全患者13人,其中男7例,女6例,传递方式符合常染色体显性遗传的特点.结论:该家系为常染色体显性遗传性钙化不全型牙釉质发育不全家系,为下一步定位该家系致病基因奠定基础.

  17. Osteogénesis imperfecta con manifestaciones en el periodo neonatal Neonatal Presentation of Osteogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Gilberto Rodríguez-Herrera

    2009-04-01

    Full Text Available Se reporta un caso de un paciente masculino de un día de vida extrauterina; producto de una madre de 20 años, primigesta, prima segunda de su pareja. Nace por cesárea por presentación pélvica, con líquido amniótico meconizado, con un peso al nacer de 2275 gramos (RNTPEG. Al examen físico el niño se encontraba flácido, con cianosis leve, fontanelas amplias con comunicación de la anterior con la posterior, ausencia de escama occipital, escleras azules, retrognatia, extremidades cortas y con crepitación al movimiento. En las radiografías óseas con fracturas múltiples, formación de callo óseo y cambios displásicos en metáfisis. Se diagnostica por parte de los genetistas una osteogénesis imperfecta (OI y se da consejo genético a los padres. La OI es un conjunto de trastornos genéticos que afectan la integridad del tejido conectivo, debido a que se presentan mutaciones en la síntesis del colágeno, ya sean autosómicas dominantes o recesivas. En vista de que el diagnóstico es predominante-mente clínico y radiológico, se debe profundizar en los patrones óseos, ya que los pacientes pueden desarrollar cambios quísticos, densos o frágiles. A partir de este caso de OI tipo 2 severa se pretende discutir las diferencias entre los diferentes grupos.We report the case of a male patient with one day of life, his mother is a 20-yr-old gravida 1 para 1 male, there is parental consanguinity (second cousin. This patient born alive by Caesarean section in breech presentation with meconium stained amniotic fluid and birthweight 2275 g (small for gestational age term infant. Physical examination findings in this case are hypotonia, mild cyanosis, large anterior fontanelle, absence of occipital scale, blue sclera, retrognathia and shortening of the long bones whit crepitation. The radiografphic findings show numerous fractures, hyperplastic callus formation and dysplastic changes in metaphyses. He was diagnosed by the geneticists with OI

  18. Isolated dentinogenesis imperfecta and dentin dysplasia: revision of the classification.

    Science.gov (United States)

    de La Dure-Molla, Muriel; Philippe Fournier, Benjamin; Berdal, Ariane

    2015-04-01

    Dentinogenesis imperfecta is an autosomal dominant disease characterized by severe hypomineralization of dentin and altered dentin structure. Dentin extra cellular matrix is composed of 90% of collagen type I and 10% of non-collagenous proteins among which dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP) are crucial in dentinogenesis. These proteins are encoded by a single gene: dentin sialophosphoprotein (DSPP) and undergo several post-translational modifications such as glycosylation and phosphorylation to contribute and to control mineralization. Human mutations of this DSPP gene are responsible for three isolated dentinal diseases classified by Shield in 1973: type II and III dentinogenesis imperfecta and type II dentin dysplasia. Shield classification was based on clinical phenotypes observed in patient. Genetics results show now that these three diseases are a severity variation of the same pathology. So this review aims to revise and to propose a new classification of the isolated forms of DI to simplify diagnosis for practitioners.

  19. Children with Osteogenesis Imperfecta and Their Life Situation. Report and Documentation.

    Science.gov (United States)

    Brodin, Jane

    Children with osteogenesis imperfecta form a small and relatively unknown group, with 5 to 10 children diagnosed in Sweden each year and a total of around 200 people under the age of 17 having the condition. A questionnaire was completed by families of 24 Swedish children with osteogenesis imperfecta, and three families were interviewed. The…

  20. Multidisciplinary approach for a patient with dentinogenesis imperfecta and anterior trauma.

    Science.gov (United States)

    Roh, Won-Jong; Kang, Seung-Goo; Kim, Su-Jung

    2010-09-01

    Dentinogenesis imperfecta is an inherited dentinal dysplasia involving several risks for orthodontic treatment. This case report describes the multidisciplinary treatment of a 17-year-old girl whose Class II Division 1 malocclusion was complicated by dentinogenesis imperfecta type II and maxillary anterior trauma.

  1. All-ceramic restorations for complete-mouth rehabilitation in dentinogenesis imperfecta: a case report.

    Science.gov (United States)

    Moundouri-Andritsakis, Heleni; Kourtis, Stephanos G; Andritsakis, Demetrios P

    2002-10-01

    Prosthetic treatment of patients with dentinogenesis imperfecta is a challenge for the dental practitioner because numerous factors have to be considered. The use of all-ceramic restorations to rehabilitate the dentition of a young patient with dentinogenesis imperfecta is reported. Clinical and laboratory procedures are described.

  2. A CASE OF OSTEOGENESIS IMPERFECTA WITH S IGNIFICANT DISABILITY

    Directory of Open Access Journals (Sweden)

    Sahana

    2014-01-01

    Full Text Available Osteogenesis imperfecta (OI is a rare genetic disorder characterized by structural and quantitative defects in type 1 collagen resulting in susceptibility to fractures of long bones or vertebral compressions from mild or inconsequential trauma 1 .There are different types that range in seve rity from mild form to perinatal lethal form. We present a case of type 3 osteogenesis imperfect with multiple fractures , severe short stature and severe disability who survived till 5 years of age.

  3. Anesthetic Management in a Gravida with Type IV Osteogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Elizabeth Vue

    2016-01-01

    Full Text Available Osteogenesis imperfecta (OI is an inherited disorder of the connective tissues caused by abnormalities in collagen formation. OI may present many challenges to the anesthesiologist. A literature review reveals a wide range of implications, from basic positioning to management of the difficult airway. We present the anesthetic management of a 25-year-old gravid woman with OI, fetal demise, and possible uterine rupture, admitted for an exploratory laparotomy.

  4. AB069. Effect of osteogenesis imperfecta on children and their families

    Science.gov (United States)

    Dung, Vu Chi; Armstrong, Kate; Ngoc, Can Thi Bich; Thao, Bui Phuong; Khanh, Nguyen Ngoc; Trang, Nguyen Thu; Hoan, Nguyen Thi; Dat, Nguyen Phu; Munns, Craig

    2015-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder, with features that include increased bone fragility, pathological fractures, blue sclera, dentinogenesis imperfecta and conductive or mixed hearing loss. Clinical variability is wide from children with few fractures and normal stature to children with multiple fractures, long bone deformity, scoliosis and extreme short stature. Although there is no curative treatment, there are several therapeutic tools capable of improving the course of the condition and patient quality of life. We aim to evaluate the effect of OI on the well-being of children with the disorder and their families through a family-centered questionnaire. Sixty children with OI from the Vietnam National Hospital of Pediatrics and/or their parent(s), who attended the first annual family support group in 2011, completed a child and parent questionnaire. Sixty patients participated, 26 female and 34 male. The median age was 6.0 years [interquartile range (IQR), 0.25-18 years]. Of these, 36 (60%) had dentinogenesis imperfect and 23 (38.3%) had a scoliosis. The median number of fractures was 6.0 (IQR 0-30) and median number of hospitalizations due to OI was 5.0 (IQR 0-30). Among patients of school age, 9 (15%) could not go to school due to OI. Almost all parents (93.7%) worried about school social communication of the patients. Among these parents, 100% fear of inferiority with friends and 98.3% fear of broken bones. Most parents (76.2%) were significantly concerned about their child’s health. The parents’ themselves reported psychological concerns, with feelings of desperation (58.4%), anxiety (81.7%) and depression (56.7%). OI appeared to have a significant deleterious effect on the life of the patients and their families. These data provide a baseline from which to evaluate the effectiveness of interventions to improve the medical and psychological needs of this cohort and their families.

  5. Osteogenesis imperfecta: the audiological phenotype lacks correlation with the genotype

    Directory of Open Access Journals (Sweden)

    Swinnen Freya KR

    2011-12-01

    Full Text Available Abstract Background Osteogenesis Imperfecta (OI is a heritable connective tissue disorder mainly caused by mutations in the genes COL1A1 and COL1A2 and is associated with hearing loss in approximately half of the cases. The hearing impairment usually starts between the second and fourth decade of life as a conductive hearing loss, frequently evolving to mixed hearing loss thereafter. A minority of patients develop pure sensorineural hearing loss. The interindividual variability in the audiological characteristics of the hearing loss is unexplained. Methods With the purpose of evaluating inter- and intrafamilial variability, hearing was thorougly examined in 184 OI patients (type I: 154; type III: 4; type IV: 26, aged 3-89 years, with a mutation in either COL1A1 or COL1A2 and originating from 89 different families. Due to the adult onset of hearing loss in OI, correlations between the presence and/or characteristics of the hearing loss and the underlying mutation were investigated in a subsample of 114 OI patients from 64 different families who were older than 40 years of age or had developed hearing loss before the age of 40. Results Hearing loss was diagnosed in 48.4% of the total sample of OI ears with increasing prevalence in the older age groups. The predominant type was a mixed hearing loss (27.5%. A minority presented a pure conductive (8.4% or pure sensorineural (12.5% loss. In the subsample of 114 OI subjects, no association was found between the nature of the mutation in COL1A1 or COL1A2 genes and the occurrence, type or severity of hearing loss. Relatives originating from the same family differed in audiological features, which may partially be attributed to their dissimilar age. Conclusions Our study confirms that hearing loss in OI shows a strong intrafamilial variability. Additional modifications in other genes are assumed to be responsible for the expression of hearing loss in OI.

  6. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Directory of Open Access Journals (Sweden)

    Jae Won Choi

    2009-12-01

    Full Text Available Osteogenesis Imperfecta (OI is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1. Although P3H1 is known to hydroxylate a single residue (pro-986 in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB, encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  7. Immunocytochemical detection of dentin matrix proteins in primary teeth from patients with dentinogenesis imperfecta associated with osteogenesis imperfecta.

    Science.gov (United States)

    Orsini, G; Majorana, A; Mazzoni, A; Putignano, A; Falconi, M; Polimeni, A; Breschi, L

    2014-12-01

    Dentinogenesis imperfecta determines structural alterations of the collagen structure still not completely elucidated. Immunohistochemical analysis was used to assay Type I and VI collagen, various non-collagenous proteins distribution in human primary teeth from healthy patients or from patients affected by type I dentinogenesis imperfecta (DGI-I) associated with osteogenesis imperfecta (OI). In sound primary teeth, an organized well-known ordered pattern of the type I collagen fibrils was found, whereas atypical and disorganized fibrillar structures were observed in dentin of DGI-I affected patients. Expression of type I collagen was observed in both normal and affected primary teeth, although normal dentin stained more uniformly than DGI-I affected dentin. Reactivity of type VI collagen was significantly lower in normal teeth than in dentin from DGI-I affected patients (P<0.05). Expressions of dentin matrix protein (DMP)-1 and osteopontin (OPN) were observed in both normal dentin and dentin from DGI-I affected patients, without significant differences, being DMP1 generally more abundantly expressed. Immunolabeling for chondroitin sulfate (CS) and biglycan (BGN) was weaker in dentin from DGI-I-affected patients compared to normal dentin, this decrease being significant only for CS. This study shows ultrastructural alterations in dentin obtained from patients affected by DGI-I, supported by immunocytochemical assays of different collagenous and non-collagenous proteins.

  8. Immunocytochemical detection of dentin matrix proteins in primary teeth from patients with dentinogenesis imperfecta associated with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    G. Orsini

    2014-10-01

    Full Text Available Dentinogenesis imperfecta determines structural alterations of the collagen structure still not completely elucidated. Immunohistochemical analysis was used to assay Type I and VI collagen, various non-collagenous proteins distribution in human primary teeth from healthy patients or from patients affected by type I dentinogenesis imperfecta (DGI-I associated with osteogenesis imperfecta (OI. In sound primary teeth, an organized well-known ordered pattern of the type I collagen fibrils was found, whereas atypical and disorganized fibrillar structures were observed in dentin of DGI-I affected patients. Expression of type I collagen was observed in both normal and affected primary teeth, although normal dentin stained more uniformly than DGI-I affected dentin. Reactivity of type VI collagen was significantly lower in normal teeth than in dentin from DGI-I affected patients (P<0.05. Expressions of dentin matrix protein (DMP-1 and osteopontin (OPN were observed in both normal dentin and dentin from DGI-I affected patients, without significant differences, being DMP1 generally more abundantly expressed. Immunolabeling for chondroitin sulfate (CS and biglycan (BGN was weaker in dentin from DGI-I-affected patients compared to normal dentin, this decrease being significant only for CS. This study shows ultrastructural alterations in dentin obtained from patients affected by DGI-I, supported by immunocytochemical assays of different collagenous and non-collagenous proteins.

  9. Robust physical methods that enrich genomic regions identical by descent for linkage studies: confirmation of a locus for osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Cohen Nadine

    2009-03-01

    Full Text Available Abstract Background The monogenic disease osteogenesis imperfecta (OI is due to single mutations in either of the collagen genes ColA1 or ColA2, but within the same family a given mutation is accompanied by a wide range of disease severity. Although this phenotypic variability implies the existence of modifier gene variants, genome wide scanning of DNA from OI patients has not been reported. Promising genome wide marker-independent physical methods for identifying disease-related loci have lacked robustness for widespread applicability. Therefore we sought to improve these methods and demonstrate their performance to identify known and novel loci relevant to OI. Results We have improved methods for enriching regions of identity-by-descent (IBD shared between related, afflicted individuals. The extent of enrichment exceeds 10- to 50-fold for some loci. The efficiency of the new process is shown by confirmation of the identification of the Col1A2 locus in osteogenesis imperfecta patients from Amish families. Moreover the analysis revealed additional candidate linkage loci that may harbour modifier genes for OI; a locus on chromosome 1q includes COX-2, a gene implicated in osteogenesis. Conclusion Technology for physical enrichment of IBD loci is now robust and applicable for finding genes for monogenic diseases and genes for complex diseases. The data support the further investigation of genetic loci other than collagen gene loci to identify genes affecting the clinical expression of osteogenesis imperfecta. The discrimination of IBD mapping will be enhanced when the IBD enrichment procedure is coupled with deep resequencing.

  10. Distinctive tomographic abnormalities of the craniocervical region in a patient with osteogenesis imperfecta type IV B

    Energy Technology Data Exchange (ETDEWEB)

    Kaissi, Ali Al; Klaushofer, Klaus, E-mail: ali.alkaissi@osteologie.a [Ludwig Boltzmann Institute of Osteology, Vienna (Austria); Grill, Franz [Orthopaedic Hospital of Speising, Vienna (Austria). Paediatric Dept.

    2010-07-01

    Osteogenesis imperfecta is a clinically and genetically heterogeneous group of heritable disorders of connective tissue characterized by reduced bone mass (osteopenia) with associated bone fragility. The resulting skeletal manifestations are due to a generalized deficiency in the development of both membranous and endochondral bone and include markedly thin calvarium with delayed closure of the fontanelles and the sutures and excessive Wormian bone formation. Sillence et al. developed a classification system of OI subtypes: OI type I, which is characterised by blue sclerae; perinatal lethal OI type II, also known as congenital OI; OI type III, a progressively deforming subtype with normal sclera; and OI type IV, which is characterized by a normal sclera. Levin et al. have suggested that OI subtypes could be further divided into type A and B based on the absence or presence of dentinogenesis imperfecta. Basilar impression involves the upward (vertical) migration of the odontoid process into the foramen magnum with a depression in the cranium. Basilar impression is a developmental defect and refers to the infolding of the occipital condyles, an elevation of the clivus, and the posterior cranial fossa of the skull. The soft bones of the skull base allow for progressive infolding of the dysplastic clivus and translocation of the odontoid into the posterior fossa. The combination of platybasia and basilar impression can lead to severe distortion of the spinal cord and the anterior brain stem. The specific structures that can be involved include the upper cervical cord, medulla, pons, mid-brain, cerebellum, as well as the vertebrobasilar system. (author)

  11. Expression of steroid receptors in ameloblasts during amelogenesis in rat incisors

    Directory of Open Access Journals (Sweden)

    Sophia Houari

    2016-11-01

    Full Text Available Endocrine disrupting chemicals (EDCs play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA, one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH. In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30, of ketosteroid receptors (ERs, AR, PGR, GR, MR, of the retinoid receptor RXRα and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR, whereas the others were 13 to 612 fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step towards understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.

  12. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors.

    Science.gov (United States)

    Houari, Sophia; Loiodice, Sophia; Jedeon, Katia; Berdal, Ariane; Babajko, Sylvie

    2016-01-01

    Endocrine disrupting chemicals (EDCs) play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA), one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH). In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30), of ketosteroid receptors (ERs, AR, PGR, GR, MR), of the retinoid receptor RXRα, and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation-stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR), whereas the others were 13 to 612-fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step toward understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.

  13. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors

    Science.gov (United States)

    Houari, Sophia; Loiodice, Sophia; Jedeon, Katia; Berdal, Ariane; Babajko, Sylvie

    2016-01-01

    Endocrine disrupting chemicals (EDCs) play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA), one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH). In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30), of ketosteroid receptors (ERs, AR, PGR, GR, MR), of the retinoid receptor RXRα, and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation-stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR), whereas the others were 13 to 612-fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step toward understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis. PMID:27853434

  14. Current and emerging treatments for the management of osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Elena Monti

    2010-08-01

    Full Text Available Elena Monti1, Monica Mottes1, Paolo Fraschini2, PierCarlo Brunelli3, Antonella Forlino4, Giacomo Venturi1, Francesco Doro1, Silvia Perlini1, Paolo Cavarzere1, Franco Antoniazzi11Department of Life Sciences and Reproduction, Pediatric Clinic University of Verona, Verona, Italy; 2Istituto Di Ricovero e Cura a Carattere Scientifico, ‘E. Medea’, Associazione La Nostra Famiglia, Bosisio Parini (LC, Italy; 3Divisione di Ortopedia Pediatrica, Spedali Civili, Brescia, Italy; 4Department of Biochemistry “A. Castellani”, University of Pavia, ItalyAbstract: Osteogenesis imperfecta (OI is the most common bone genetic disorder and it is characterized by bone brittleness and various degrees of growth disorder. Clinical severity varies widely; nowadays eight types are distinguished and two new forms have been recently described although not yet classified. The approach to such a variable and heterogeneous disease should be global and therefore multidisciplinary. For simplicity, the objectives of treatment can be reduced to three typical situations: the lethal perinatal form (type II, in which the problem is survival at birth; the severe and moderate forms (types III–IX, in which the objective is ‘autonomy’; and the mild form (type I, in which the aim is to reach ‘normal life’. Three types of treatment are available: non-surgical management (physical therapy, rehabilitation, bracing and splinting, surgical management (intramedullary rod positioning, spinal and basilar impression surgery and medical-pharmacological management (drugs to increase the strength of bone and decrease the number of fractures as bisphosphonates or growth hormone, depending on the type of OI. Suggestions and guidelines for a therapeutic approach are indicated and updated with the most recent findings in OI diagnosis and treatment.Keywords: osteogenesis imperfecta, bone genetic disorder, bone brittleness, “brittle bone disease”, connective tissue malfunction, short

  15. [PREPARATIONS OF PAMIDRONOVIC ACID IN COMPLEX TREATMENT ON OSTEOGENESIS IMPERFECTA].

    Science.gov (United States)

    Zyma, A M; Guk, Yu M; Magomedov, O M; Gayko, O G; Kincha-Polishchuk, T A

    2015-07-01

    Modern view of drug therapy in the complex treatment of orthopedic manifestations of osteogenesis imperfecta (OI) was submitted. Developed and tested system of drug correction of structural and functional state of bone tissue (BT) using drugs pamidronovic acid, depending on osteoporosis severity and type of disease. Such therapy is appropriate to apply both independently and in conjunction with surgery to correct deformations of long bones of the lower extremities. Effectiveness and feasibility of the proposed methods of drug therapy was proved, most patients resume features walking and support.

  16. MRI-visible pericochlear lesions in osteogenesis imperfecta type I

    Energy Technology Data Exchange (ETDEWEB)

    Ziyeh, S.; Berger, R.; Reisner, K. [Radiologische Klinik, St. Vincentiuskrankenhaeuser, Karlsruhe (Germany)

    2000-10-01

    Osteogenesis imperfecta (OI) is an inherited generalized disorder of type-I collagen synthesis often associated with hearing loss. We present a case of OI type I in which hearing loss led to examination of the temporal bone with MRI. In the osseous otic capsule MRI demonstrated pericochlear lesions with soft tissue signal intensity and contrast enhancement. Changes similar to otosclerosis have been described in the temporal bone of OI patients when applying CT, but reports on MRI findings do not yet exist. (orig.)

  17. Clinical perspectives on osteogenesis imperfecta versus non-accidental injury.

    Science.gov (United States)

    Pereira, Elaine Maria

    2015-12-01

    Although non-accidental injuries (NAI) are more common in cases of unexplained fractures than rare disorders such as osteogenesis imperfecta (OI), ruling out OI and other medical causes of fracture is always indicated. The majority of OI patients can be diagnosed with the help of family history, physical examination, and radiographic findings. In particular, there are a few radiological findings which are seen more commonly in NAI than in OI which may help guide clinician considerations regarding the probability of either of these diagnoses. At the same time, molecular testing still merits careful consideration in cases with unexplained fractures without obvious additional signs of abuse.

  18. Perinatal lethal type II osteogenesis imperfecta: a case report.

    Science.gov (United States)

    Ayadi, Imene Dahmane; Hamida, Emira Ben; Rebeh, Rania Ben; Chaouachi, Sihem; Marrakchi, Zahra

    2015-01-01

    We report a new case of osteogenesis imperfecta (OI) type II which is a perinatal lethal form. First trimester ultrasound didn't identified abnormalities. Second trimester ultrasound showed incurved limbs, narrow chest, with hypomineralization and multiple fractures of ribs and long bones. Parents refused pregnancy termination; they felt that the diagnosis was late. At birth, the newborn presented immediate respiratory distress. Postnatal examination and bone radiography confirmed the diagnosis of OI type IIA. Death occurred on day 25 of life related to respiratory failure.

  19. Hyperplastic callus formation in osteogenesis imperfecta: CT and MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, O.; Kreitner, K.F. [Klinik fuer Radiologie, Johannes-Gutenberg-Univ. Mainz (Germany); Karbowski, A. [Orthopaedische Abtl., Krankenhaus der Augustinerinnen, Koeln (Germany)

    1998-09-01

    Hyperplastic callus formation is a noteworthy condition in patients with osteogenesis imperfecta because it often mimicks osteosarcoma on radiography. The findings of CT and MRI in hyperplastic callus formation have not been reported. In the presented case, MRI demonstrated contrast enhancement and edema of the surrounding soft tisssue, consistent with benign as well as malignant disease. Computed tomography showed a calcified rim of the lesion which may be a useful feature to rule out osteosarcoma in this condition. (orig.) With 2 figs., 18 refs.

  20. Osteogenesis imperfecta and clubfoot—a rare combination

    OpenAIRE

    Persiani, Pietro; Ranaldi, Filippo Maria; Martini, Lorena; Zambrano, Anna; Celli, Mauro; D’Eufemia, Patrizia; Villani, Ciro

    2016-01-01

    Abstract Background: Osteogenesis imperfecta (OI) is a rare congenital genetic osteodystrophy, which has a prevalence of 1:20,000. OI is caused by the mutation of the COL1A1/COL1A2 genes, leading to a deficit of quality and/or quantity in the synthesis of procollagen-α type 1. Seven different forms of diverse clinical entity have been classified by Sillence and Glorieux, although, recently, up to 11 forms characterized by different genetic mutations have been recognized. Patients with OI suff...

  1. Management of dentinogenesis imperfecta: a review of two case reports.

    Science.gov (United States)

    Rafeek, Reisha N; Paryag, Amit; Al-Bayaty, Haytham

    2013-01-01

    Dentinogenesis imperfecta (DI) is an inherited disorder that affects dentin and often manifests as tooth discoloration; in addition, the dentition is also extremely susceptible to wear. Treatment of DI focuses primarily on protecting affected dentin, reducing sensitivity, and improving esthetics. Routine restorative materials, such as amalgams and composites, may be used. In more severe cases, the treatment of choice is full coverage crowns, while bonding of veneers may be used to improve the esthetics of the anterior teeth. This study presents two cases of Type II DI in the same family and the management of each case. Restorative management included amalgams, composite veneers, crowns, bridges, and overdentures.

  2. Dentinogenesis imperfecta type II: an affected family saga.

    Science.gov (United States)

    Kamboj, Mala; Chandra, Anil

    2007-09-01

    Dentinogenesis imperfecta (DI) type II or hereditary opalescent dentin is inherited in simple autosomal dominant mode with high penetrance and low mutation rate. It generally affects both the deciduous and permanent dentitions. DI type II corresponds to a localized form of mesodermal dysplasia, observed in histodifferentiation. Early diagnosis and treatment are therefore, fundamental, aiming at obtaining a favourable prognosis since late intervention makes treatment more complex. We present two cases of DI type II with the disease affecting three generations of a family in India, and briefly highlight the molecular basis of this disease.

  3. Recent developments in osteogenesis imperfecta [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Joseph L. Shaker

    2015-09-01

    Full Text Available Osteogenesis imperfecta (OI is an uncommon genetic bone disease associated with brittle bones and fractures in children and adults. Although OI is most commonly associated with mutations of the genes for type I collagen, many other genes (some associated with type I collagen processing have now been identified. The genetics of OI and advances in our understanding of the biomechanical properties of OI bone are reviewed in this article. Treatment includes physiotherapy, fall prevention, and sometimes orthopedic procedures. In this brief review, we will also discuss current understanding of pharmacologic therapies for treatment of OI.

  4. Osteogenesis imperfecta Type VI with severe bony deformities caused by novel compound heterozygous mutations in SERPINF1.

    Science.gov (United States)

    Cho, Sung Yoon; Ki, Chang-Seok; Sohn, Young Bae; Kim, Su Jin; Maeng, Se Hyun; Jin, Dong-Kyu

    2013-07-01

    Osteogenesis imperfecta (OI) comprises a heterogeneous group of disorders characterized by bone fragility, frequent fractures, and low bone mass. Dominantly inherited COL1A1 or COL1A2 mutations appear to be causative in the majority of OI types, but rare recessively inherited genes have also been reported. Recently, SERPINF1 has been reported as another causative gene in OI type VI. To date, only eight SERPINF1 mutations have been reported and all are homozygous. Our patient showed no abnormalities at birth, frequent fractures, osteopenia, and poor response on pamidronate therapy. At the time of her most recent evaluation, she was 8 yr old, and could not walk independently due to frequent lower-extremity fractures, resulting in severe deformity. No clinical signs were seen of hearing impairment, blue sclera, or dentinogenesis imperfecta. In this study, we describe the clinical and radiological findings of one Korean patient with novel compound heterozygous mutations (c.77dupC and c.421dupC) of SERPINF1.

  5. Clinical Aspects, Imaging Features, and Considerations on Bisphosphonate-Related Osteonecrosis Risk in a Pediatric Patient with Osteogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Fábio Wildson Gurgel Costa

    2014-01-01

    Full Text Available Osteogenesis imperfecta (OI is a rare hereditary condition caused by changes in collagen metabolism. It is classified into four types according to clinical, genetic, and radiological criteria. Clinically, bone fragility, short stature, blue sclerae, and locomotion difficulties may be observed in this disease. OI is often associated to severe dental problems, such as dentinogenesis imperfecta (DI and malocclusions. Radiographically, affected teeth may have crowns with bulbous appearance, accentuated constriction in the cementoenamel junction, narrowed roots, large root canals due to defective dentin formation, and taurodontism (enlarged pulp chambers. There is no definitive cure, but bisphosphonate therapy is reported to improve bone quality; however, there is a potential risk of bisphosphonate-related osteonecrosis of the jaw. In this study we report a case of OI in a male pediatric patient with no family history of OI who was receiving ongoing treatment with intravenous perfusion of bisphosphonate and who required dental surgery. In addition, we discussed the clinical and imaging findings and briefly reviewed the literature.

  6. Osteogenesis imperfecta types I-XI: implications for the neonatal nurse.

    Science.gov (United States)

    Womack, Jody

    2014-10-01

    Osteogenesis imperfecta (OI), also called "brittle bone disease," is a rare heterozygous connective tissue disorder that is caused by mutations of genes that affect collagen. Osteogenesis imperfecta is characterized by decreased bone mass, bone fragility, and skin hyperlaxity. The phenotype present is determined according to the mutation on the affected gene as well as the type and location of the mutation. Osteogenesis imperfecta is neither preventable nor treatable. Osteogenesis imperfecta is classified into 11 types to date, on the basis of their clinical symptoms and genetic components. This article discusses the definition of the disease, the classifications on the basis of its clinical features, incidence, etiology, and pathogenesis. In addition, phenotype, natural history, diagnosis and management of this disease, recurrence risk, and, most importantly, the implications for the neonatal nurse and management for the family are discussed.

  7. Basilar impression and osteogenesis imperfecta in a three-year-old girl: CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rush, P.J.; Berbrayer, D.; Reilly, B.J.

    1989-01-01

    A 3-year-old girl with osteogenesis imperfecta developed symptomatic basilar impression. Her neurological symptoms were treated by foramen magnum decompression and laminectomy. This is an unusually young patient to have this condition.

  8. Stapedotomy in osteogenesis imperfecta : a prospective study of 32 consecutive cases

    NARCIS (Netherlands)

    Vincent, Robert; Wegner, Inge; Stegeman, Inge; Grolman, Wilko

    2014-01-01

    OBJECTIVE: To prospectively evaluate hearing outcomes in patients with osteogenesis imperfecta undergoing primary stapes surgery and to isolate prognostic factors for success. STUDY DESIGN: A nonrandomized, open, prospective case series. SETTING: A tertiary referral center. PATIENTS: Twenty-five con

  9. [Dentinogenesis imperfecta: a developmental anomaly of the dentin in the primary dentition. A literature review].

    Science.gov (United States)

    Bercovich, R

    2010-01-01

    This literature review summarizes the current knowledge about Dentinigenesis Imperfecta, a developmental anomaly of thedentin.The phenomenon's classification is presented in details, as well as its etiology, clinical, rentgenological and histological characteristics. In addition, the treatment modes are described.

  10. An unusual presentation of osteogenesis imperfecta type I

    Directory of Open Access Journals (Sweden)

    Rebelo M

    2011-04-01

    Full Text Available Marta Rebelo, Jandira Lima, José Diniz Vieira, José Nascimento CostaDepartment of Internal Medicine, University Hospital of Coimbra, Coimbra, PortugalAbstract: Osteogenesis imperfecta (OI is a rare inherited disorder with a broad spectrum of clinical and genetic variability. The genetic diversity involves, in the majority of the cases, mutations in one of the genes that encodes the type 1 collagen protein (COL1 A1 and COL1 A2, but it is not a requirement for the diagnosis. The most benign form is OI type I. The authors present a case report of a 25-year-old woman who had severe low back pain associated with incapacity to walk and breast-feed post-partum. Symptoms developed 2 weeks after delivery. The radiological examination revealed severe osteoporosis with no abnormalities in the laboratory findings. The clinical signs and a positive personal and family history of multiple fractures in childhood suggested OI type I, although other diagnosis, such as pregnancy-associated osteoporosis, was also considered. The atypical presentation of this rare disorder in adulthood calls attention to the need for early diagnosis for prompt treatment. Treatment of OI is never curative, but it improves the quality of the patient’s life.Keywords: osteogenesis imperfecta, collagen, pregnancy, osteoporosis

  11. Advances in the Classification and Treatment of Osteogenesis Imperfecta.

    Science.gov (United States)

    Thomas, Inas H; DiMeglio, Linda A

    2016-02-01

    Osteogenesis imperfecta (OI) is a rare disorder of type 1 collagen with 13 currently identified types attributable to inherited abnormalities in type 1 collagen amount, structure, or processing. The disease is characterized by an increased susceptibility to bony fracture. In addition to the skeletal phenotype, common additional extraskeletal manifestations include blue sclerae, dentinogenesis imperfecta, vascular fragility, and hearing loss. Medical management is focused on minimizing the morbidity of fractures, pain, and bone deformities by maximizing bone health. Along with optimizing Vitamin D status and calcium intake and physical/occupational therapy, individualized surgical treatment may be indicated. Pharmacological therapy with bisphosphonate medications is now routinely utilized for moderate to severe forms and appears to have a good safety profile and bone health benefits. New therapies with other anti-resorptives as well as anabolic agents and transforming growth factor (TGF)β antibodies are in development. Other potential treatment modalities could include gene therapy or mesenchymal cell transplant. In the future, treatment choices will be further individualized in order to reduce disease morbidity and mortality.

  12. Orthopaedic Considerations for the Adult With Osteogenesis Imperfecta.

    Science.gov (United States)

    Roberts, Timothy T; Cepela, Daniel J; Uhl, Richard L; Lozman, Jeffery

    2016-05-01

    Osteogenesis imperfecta is a heritable group of collagen-related disorders that affects up to 50,000 people in the United States. Although the disease is most symptomatic in childhood, adults with osteogenesis imperfecta also are affected by the sequelae of the disease. Orthopaedic manifestations include posttraumatic and accelerated degenerative joint disease, kyphoscoliosis, and spondylolisthesis. Other manifestations of abnormal collagen include brittle dentition, hearing loss, cardiac valve abnormalities, and basilar invagination. In general, nonsurgical treatment is preferred for management of acute fractures. High rates of malunion, nonunion, and subsequent deformity have been reported with both closed and open treatment. When surgery is necessary, surgeons should opt for load-sharing intramedullary devices that span the entire length of the bone; locking plates and excessively rigid fixation generally should be avoided. Arthroplasty may be considered for active patients, but the procedure frequently is associated with complications in this patient population. Underlying deformities, such as malunion, bowing, rotational malalignment, coxa vara, and acetabular protrusio, pose specific surgical challenges and underscore the importance of preoperative planning.

  13. Clinical and Molecular Characterization of Osteogenesis Imperfecta Type V

    Science.gov (United States)

    Brizola, Evelise; Mattos, Eduardo P.; Ferrari, Jessica; Freire, Patricia O.A.; Germer, Raquel; Llerena Jr, Juan C.; Félix, Têmis M.

    2015-01-01

    Osteogenesis imperfecta type V (OI-V) has a wide clinical variability, with distinct clinical/radiological features, such as calcification of the interosseous membrane (CIM) between the radius-ulna and/or tibia-fibula, hyperplastic callus (HPC) formation, dislocation of the radial head (DRH), and absence of dentinogenesis imperfecta (DI). Recently, a single heterozygous mutation (c.-14C>T) in the 5′UTR of the IFITM5 gene was identified to be causative for OI-V. Here, we describe 7 individuals from 5 unrelated families that carry the c.-14C>T IFITM5 mutation. The clinical findings in these cases are: absence of DI in all patients, presence of blue sclera in 2 cases, and 4 patients with DRH. Radiographic findings revealed HPC in 3 cases. All patients presented CIM between the radius and ulna, while 4 patients presented additional CIM between the tibia and fibula. Spinal fractures by vertebral compression were observed in all individuals. The proportion of cases identified with this mutation represents 4% of OI cases at our institution. The clinical identification of OI-V is crucial, as this mutation has an autosomal dominant inheritance with variable expressivity. PMID:26648832

  14. Osteogenesis Imperfecta in Adult Twins Responded To Treatment With Pamidronate

    Directory of Open Access Journals (Sweden)

    Mehtap Çakır

    2011-06-01

    Full Text Available Bisphosphonates are strong inhibitors of bone resorption and are used in the treatment of osteoporosis. Bisphosphonates are known to be effective in prevention of fractures, improvement of bone mineral density as well as in relieving bone pain in osteogenesis imperfecta (OI patients. Recent studies have shown that especially intravenous pamidronate may be more effective when given in childhood and adolescence. This effect was also shown in adult OI patients in some clinical trials.22-year-old twin brothers known to have OI were admitted to our endocrinology and metabolism outpatient clinic. On medical history, OI was diagnosed at the age of three and for the last eight years, they were not able to walk and were using wheelchairs. On physical examination, blue sclerae and dentinogenesis imperfecta were detected in both patients. According to the expanded Sillence classification of OI, the clinical findings were consistent with type IV OI. Intravenous pamidronate treatment was given three times at four-month intervals, according to Montreal protocol. During this period, the patients were also doing isometric exercises and were on physical therapy, diet, and bioresonance therapy.At the end of one year, bone pain regressed significantly in both patients and they were able to walk independently. These outcomes demonstrate that in selected adult OI patients, intravenous pamidronate treatment may be beneficial in preventing bone fractures and relieving pain. Türk Jem 2011; 15: 39-43

  15. Anestesia venosa total em paciente portador de Osteogênesis imperfecta: relato de caso Anestesia venosa total en paciente portador de Osteogénesis imperfecta: relato de caso Total intravenous anesthesia in Osteogenesis imperfecta patient: case report

    OpenAIRE

    José Francisco Nunes Pereira das Neves; Roberto Silva Sant'Anna; João Rosa de Almeida; Rodrigo Machado Saldanha; Marcos Gonçalves Magalhães

    2004-01-01

    JUSTIFICATIVA E OBJETIVOS: A Osteogênesis Imperfecta é uma doença genética rara do tecido conjuntivo, com prevalência de 1/10000, que primariamente envolve a ossificação endocondral, resultando em ossos frágeis, múltiplas fraturas e deformidades esqueléticas. O objetivo desse artigo foi relatar um caso de paciente portador de Osteogenesis Imperfecta, submetido à anestesia venosa total para tratamento cirúrgico de fratura de fêmur. RELATO DO CASO: Paciente do sexo masculino, 15 anos, 41 kg, 14...

  16. End-stage posttraumatic osteoarthritis treated with THA in osteogenesis imperfecta.

    Science.gov (United States)

    Chaus, George W; Heare, Travis

    2012-06-01

    Osteogenesis imperfecta is an incurable genetic disorder manifested with altered bone quality that predisposes patients to a multitude of fractures throughout their lives, including acetabular fractures. The management of acetabular fractures in patients with osteogenesis imperfecta remains a challenging clinical problem, with a paucity of literature supporting treatments and their outcomes. Limited reports in the literature validate the use of total hip arthroplasty (THA) in patients with osteogenesis imperfecta, and they describe the adult population only.This article describes a case of delayed diagnosis of a transverse acetabular fracture and femoral head impaction fracture that led to posttraumatic end-stage hip osteoarthritis in a 16-year-old boy with osteogenesis imperfecta (Sillence Type I) that was sustained after minimal trauma. Clinical examination 3 months postinjury revealed a significant pelvic obliquity, severe pain with hip range of motion, and limited hip range of motion. Imaging studies revealed a complete loss of articular cartilage and significant joint effusion.The patient underwent THA. No postoperative complications occurred. Two-year follow-up showed an excellent clinical result. The patient's hip was pain free, and he was able to walk with no limp.The authors are unaware of any reported cases of children with osteogenesis imperfecta undergoing THA. Based on the reported literature and the authors' experience, THA can be a reliable surgical option for patients with osteogenesis imperfecta.

  17. Whole exome sequencing reveals a mutation in an osteogenesis imperfecta patient

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Ergun

    2017-02-01

    Full Text Available Osteogenesis imperfecta (OI is an autosomal dominant disorder characterized mainly by bone fragility and blue sclerae. OI is caused by mutations in type I collagen genes, COL1A1 and COL1A2. Dentinogenesis imperfecta is a common disorder for osteogenesis imperfecta patients. More than half of the OI patients have also dentinogenesis imperfecta. Whole exome sequencing (WES, involves exome capture, which limits sequencing of the protein coding regions of the genome, composed of about 20,000 genes, 180,000 exons, and constituting approximately 1% of the whole genome. A major indication for use is molecular diagnosis of patients with suspected genetic disorders or of patients with known genetic disorders with substantial genetic heterogeneity involving substantial gene complexity. In this study, we performed WES for a patient prediagnosed as Osteogenesis imperfecta. He had also dentinogenesis imperfecta. The WES results confirmed with Sanger sequencing revealed as a missense mutation at codon 560 of COL1A1 gene: c.1678G>A p.(Gly560Cys. The mutation was in exon 25 and according to the dbSNP database this mutation corresponded to rs67507747. As a conclusion, it is very important to perform WES after an algorithm. This algorithm has to include, a suspect of a mendelian disorder, multiple genetic conditions in the differential diagnosis, and even if it is available the conventional diagnosis is prohibitively expensive. Finally, Sanger sequencing in order to confirm the results is also advised.

  18. Mutations in FKBP10 can cause a severe form of isolated Osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Steinlein Ortrud K

    2011-11-01

    Full Text Available Abstract Background Mutations in the FKBP10 gene were first described in patients with Osteogenesis imperfecta type III. Two follow up reports found FKBP10 mutations to be associated with Bruck syndrome type 1, a rare disorder characterized by congenital contractures and bone fragility. This raised the question if the patients in the first report indeed had isolated Osteogenesis imperfecta or if Bruck syndrome would have been the better diagnosis. Methods The patients described here are affected by severe autosomal recessive Osteogenesis imperfecta without contractures. Results Homozygosity mapping identified FKBP10 as a candidate gene, and sequencing revealed a base pair exchange that causes a C-terminal premature stop codon in this gene. Conclusions Our study demonstrates that FKBP10 mutations not only cause Bruck syndrome or Osteogenesis imperfecta type III but can result in a severe type of isolated Osteogenesis imperfecta type IV with prenatal onset. Furthermore, it adds dentinogenesis imperfecta to the spectrum of clinical symptoms associated with FKBP10 mutations.

  19. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    Science.gov (United States)

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  20. Heart disease in patients with osteogenesis imperfecta - A systematic review

    DEFF Research Database (Denmark)

    Ashournia, Hamoun; Johansen, Frank Ted; Folkestad, Lars

    2015-01-01

    INTRODUCTION: Osteogenesis imperfecta (OI) is a rare, inherited systemic connective tissue disease that causes decreased bioavailability of collagen type 1. Collagen type 1 is the most abundant connective tissue in the body and a key part of many organs. While the bone phenotype in OI is well...... described, less is known about the effects of decreased collagen on other organs. In the heart, collagen type 1 is present in the heart valves, chordae tendineae, annuli fibrosi and the interventricular septum. It is thus likely that the heart is affected in OI. OBJECTIVES: The aim of this systematic...... of 68 studies were included in the review, comprising 51 case reports, 8 small case series (ncase series (n≥10 patients) and 5 cross-sectional studies comparing patients and controls. Together, the papers comprised 499 patients and covered 45years of medical literature. The most...

  1. Dentinogenesis imperfecta type II: ultrastructure of teeth in sagittal sections.

    Science.gov (United States)

    Wieczorek, Aneta; Loster, Jolanta

    2013-01-01

    The morphological abnormalities of the teeth of patients affected by dentinogenesis imperfecta type 2 (DI-II) may underlie the difficulties with the clinical restoration of such teeth. We therefore performed a scanning electron microscopy (SEM) study of four permanent first mandibular molars of four DI-II patients with periapical pathosis. The teeth were prepared for SEM evaluation by standard methods. In the crown, the enamel presented a highly irregular surface with a number of cracks and crevices. In some places, only granular remains of the enamel were found, while in other parts of the crown, the enamel was absent. SEM examination revealed the structural changes responsible for the lower enamel's hardness and resistance to attrition, and for tooth wear, while the structural changes in the dentin may explain the failure of some adhesive restorative materials. This SEM study thus revealed structural defects which underlie the problems of attrition and restoration loss found in patients with this genetic dental condition.

  2. Multiple teeth fractures in dentinogenesis imperfecta: a case report.

    Science.gov (United States)

    Min, Boram; Song, Je Seon; Lee, Jae-Ho; Choi, Byung-Jai; Kim, Kwang-Mahn; Kim, Seong-Oh

    2014-01-01

    Dentinogenesis imperfecta (DGI) is a hereditary defect consisting of opalescent teeth composed of irregularly formed and hypomineralized dentin. This paper presents the multiple fractures of DGI-affected teeth and suggests the reason of low fracture resistance by observing the dentin microstructures directly using scanning electron microscope (SEM) and by measuring its surface hardness using the Vickers hardness test. SEM revealed that while the enamel microstructure was similar in the DGI-affected and normal teeth, the microstructure of the DGI-affected dentin was poorly woven and more loosely packed than that of the normal dentin. The Vickers hardness of the DGI-affected dentin was 4.89 times softer than the normal dentin. The low fracture resistance of DGI-affected teeth can be attributed to the poorly woven microstructure of their dentin, which leads to a reduction in hardness.

  3. Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Jerry KY Chan

    2014-10-01

    Full Text Available Osteogenesis Imperfecta (OI can be a severe disorder that can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC has the potential to improve the bone structure, growth and fracture healing. In this review we give an introduction to OI and MSC, and the basis for prenatal and postnatal transplantation in OI. We also summarize the two patients with OI who has received prenatal and postnatal transplantation of MSC.The findings suggest that prenatal transplantation of allogeneic MSC in OI is safe. The cell therapy is of likely clinical benefit with improved linear growth, mobility and reduced fracture incidence. Unfortunately, the effect is transient. For this reason postnatal booster infusions using same-donor MSC have been performed with clinical benefit, and without any adverse events.So far there is limited experience in this specific field and proper studies are required to accurately conclude on clinical benefits of MSC transplantation to treat OI.

  4. Severe osteogenesis imperfecta Type-III and its challenging treatment in newborn and preschool children. A systematic review.

    Science.gov (United States)

    Sinikumpu, Juha-Jaakko; Ojaniemi, Marja; Lehenkari, Petri; Serlo, Willy

    2015-08-01

    Osteogenesis imperfecta (OI) is a group of genetic disorders, of which Type III is the most severe among survivors. The disease is characterised in particular by bone fragility, decreased bone mass and increased incidence of fractures. Other usual findings are muscle hypotonia, joint hypermobility and short stature. Fractures and weak bones may consequently cause limb and spinal deformity and chronic physical disability. Bisphosphonates have revolutionised the treatment of newborn children with severe OI type III. Surgery is still needed in most patients due to high frequency of the fractures. In this systematic review we describe the present state-of-art in treating the most severe type of OI in newborn and preschool children with their bone fractures.

  5. Asymptomatic parental mosaicism for osteogenesis imperfecta associated with a new splice site mutation in COL1A2

    OpenAIRE

    2016-01-01

    Key Clinical Message Recurrent lethal perinatal osteogenesis imperfecta may result from asymptomatic parental mosaicism. A previously unreported mutation in COL1A2 leads to recurrent cases of fetal osteogenesis imperfecta Sillence type IIA, which emphasizes the importance of clinical and genetic evaluation of mosaicism in asymptomatic parents as verified mosaicism highly increases recurrence risk.

  6. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    Science.gov (United States)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  7. Osteogenesis Imperfecta Presented with Vertebral Fractures After Pregnancy and Treatment with Cyclical Etidronate: A Case Report

    Directory of Open Access Journals (Sweden)

    Cengiz Bahadır

    2005-06-01

    Full Text Available Osteogenesis imperfecta(OI is a kongenital skelatal disorder charecterized by low bone mass and increased bone fragility. Fractures due to increased bone fragility occur frequently in childhood and decrease with age. Only a few studies have been reported regarding the teratment of adult patients with OI. Our case was a 27 year old woman with severe back pain occured when she was lifting her baby. The patient had experienced multiple fractures of long bones by her childhood. Compression fractures at thoracal 10 and 12 vertebrae were found on Magnetic Resonance Imaging . Dual energy X-ray absorptiomety(DEXA showed that markedly decreased bone mineral density(BMD both at lumbar spine and femur. The diagnosis of OI type I was based on the findings of blue sclera, antecedent multiple fractures, positive family history and low bone mass. Patient was treated with cyclical etidronate, calcium and Vitamin D over a year. No new fractures were observed during the treatment period. Lomber and proximal femur BMD’s were found to be significantly increased at the end of one year. Our case was treated succesfully with combination of cyclical etidronate, calcium and vitamin D. Etidronate would seem to be available treatment for adult patients with OI. However, the best treatment regimen and the long-term outcomes of etidronate therapy are unknown.

  8. Full-mouth rehabilitation for a patient with dentinogenesis imperfecta: a clinical report.

    Science.gov (United States)

    Bencharit, Sompop; Border, Michael B; Mack, C Russell; Byrd, Warren C; Wright, John T

    2014-10-01

    Dentinogenesis imperfecta (DI) is a genetic disorder affecting the structural integrity of the dentin that can result in weakened dentin. The affected teeth, especially posterior teeth, often need to be extracted due to severe wear or fracture. This frequently yields a loss of posterior occlusion and occlusal vertical dimension. Besides wear and fracture, anterior teeth often have an unesthetic appearance because of discoloration. Current treatments of choice, including composite bonding restorations and, more recently, all-ceramic restorations, are typically suggested to preserve the remaining teeth and tooth structure. However, there are a limited number of studies on dental implants in patients with DI. The effectiveness of dentin bonding and dental implants in patients with DI is not known. This clinical report describes a 32-year-old Asian woman with DI who underwent full-mouth rehabilitation. The posterior occlusion, mostly in the molar areas, was restored with dental implants and ceramometal restorations. The anterior teeth and premolars were restored with bonded lithium disilicate glass-ceramic pressed veneers and crowns made with computer-aided design/computer-aided manufacturing. This case demonstrates that restoring functional occlusion and esthetics for a patient with DI can be completed successfully using contemporary implant therapy and adhesive dentistry.

  9. Radiation therapy of hyperplastic heterotopic ossifications in osteogenesis imperfecta; Two case reports. Strahlentherapie hyperplastischer heterotoper Ossifikationen bei Osteogenesis imperfecta; Zwei Falldarstellungen

    Energy Technology Data Exchange (ETDEWEB)

    Micke, O. (Muenster Univ. (Germany). Klinik und Poliklinik fuer Strahlentherapie - Radioonkologie); Wagner, W. (Muenster Univ. (Germany). Klinik und Poliklinik fuer Strahlentherapie - Radioonkologie); Poetter, R. (Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria). Universitaetsklinik fuer Strahlentherapie und Strahlenbiologie); Prott, F.J. (Muenster Univ. (Germany). Klinik und Poliklinik fuer Strahlentherapie - Radioonkologie); Karbowski, A. (Muenster Univ. (Germany). Klinik und Poliklinik fuer Allgemeine Orthopaedie)

    1994-06-01

    Purpose: Osteogenesis imperfecta is a rare hereditary disease of connective tissue with a genetic defect in collagen synthesis. In osteogenesis imperfecta hyperplastic heterotopic ossification can be induced by hyperplastic callus formation caused by trauma or operation. Heterotopic ossifications can be found in numerous benign diseases. The successful use of low dose radiotherapy in the treatment of heterotopic ossifications in well-known from the literature. Patients and Methods: We treated two children (a 13-year old girl and a ten-year old boy) with heterotopic ossifications of the lower extremities in osteogenesis imperfecta type IV (Lobstein) with a low dose irradiation (10x1 Gy, respectively 6x1 Gy) under megavoltage conditions. Results: After radiotherapy the children were painfree and the hyperplastic callus was considerably reduced. The previously immobilized patients could partly be mobilized. Thereby it could be contributed to the rehabilitation of the patients. New hyperplastic callus formation was not observed in the irradiated areas so far. Conclusion: Analogous to the successful radiation of heterotopic ossifications in other benign diseases radiation therapy seems to be a successful treatment of hyperplastic callus formation in osteogenesis imperfecta. Despite the late risks of radiotherapy radiation treatment of benign diseases in children might be indicated. (orig.)

  10. COL1A2 gene analysis in a Czech osteogenesis imperfecta patient: a candidate novel mutation in a patient affected by osteogenesis imperfecta type 3

    Directory of Open Access Journals (Sweden)

    Hrušková L

    2015-08-01

    Full Text Available Lucie Hrušková,1 Ivo Mařík,2,3 Stella Mazurová,1 Pavel Martásek,1 Ivan Mazura1 1Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 2Ambulant Centre for Defects of Locomotor Apparatus 1.1.c., Prague, Czech Republic; 3Faculty of Medical Studies, West Bohemia University, Pilsen, Czech RepublicAbstract: Osteogenesis imperfecta is a heritable bone fragility disease with a heterogenic genetic origin. Most cases result from mutations of either the COL1A1 gene or the COL1A2 gene. We identified a novel COL1A2 gene mutation in a Czech patient, born to unaffected parents, who was diagnosed according to clinical and anthropometric findings and radiographic features as having type 3 osteogenesis imperfecta, which is a severe form of this disease. The identified Gly814Trp mutation was predicted by a number of complementary bioinformatic programs to result in functional alteration of the protein. This case report provides both evidence of a novel COL1A2 mutation resulting in type 3 osteogenesis imperfecta and a genotype:phenotype correlation in this affected individual. Keywords: osteogenesis imperfecta type 3, collagen, alpha-2 (I chain, substitution, sequencing 

  11. [Postoperative radiation therapy for a patient with osteogenesis imperfecta: case report].

    Science.gov (United States)

    Ducournau, A; Lagarde, P; Henriques de Figueiredo, B; Antoine, M; Breton-Callu, C; Petit, A; Dallaudière, B; Sargos, P

    2014-03-01

    Osteogenesis imperfecta is an unusual disease also called Lobstein disease. Characterized by abnormalities of collagen biosynthesis, a possible mutation on 17th chromosome is described. On the other hand, 29% of breast cancers present a mutation on the same chromosome. Nevertheless, the association of osteogenesis imperfecta and breast cancer is at the moment unknown. Therapeutic management is very difficult because of a loss in dihydropyrimidine dehydrogenase for patients having osteogenesis imperfecta, generating some toxicity by default in catabolism of 5-fluorouracil. We report the case of a 49-year-old woman with a breast cancer in the context of osteogenesis imperfecta. Dosimetric considerations permitting to reduce chess dose level have been performed for this patient. With a follow-up of 6 months, no imaging fracture has been revealed after radiotherapy. No evident conclusion about radiation injury from a case report could be described in case of osteogenesis imperfecta. To our knowledge, this is the first case which take into account potential radiation induced toxicities.

  12. Transcriptional repression of the Dspp gene leads to dentinogenesis imperfecta phenotype in Col1a1-Trps1 transgenic mice.

    Science.gov (United States)

    Napierala, Dobrawa; Sun, Yao; Maciejewska, Izabela; Bertin, Terry K; Dawson, Brian; D'Souza, Rena; Qin, Chunlin; Lee, Brendan

    2012-08-01

    Dentinogenesis imperfecta (DGI) is a hereditary defect of dentin, a calcified tissue that is the most abundant component of teeth. Most commonly, DGI is manifested as a part of osteogenesis imperfecta (OI) or the phenotype is restricted to dental findings only. In the latter case, DGI is caused by mutations in the DSPP gene, which codes for dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Although these two proteins together constitute the majority of noncollagenous proteins of the dentin, little is known about their transcriptional regulation. Here we demonstrate that mice overexpressing the Trps1 transcription factor (Col1a1-Trps1 mice) in dentin-producing cells, odontoblasts, present with severe defects of dentin formation that resemble DGI. Combined micro-computed tomography (µCT) and histological analyses revealed tooth fragility due to severe hypomineralization of dentin and a diminished dentin layer with irregular mineralization in Col1a1-Trps1 mice. Biochemical analyses of noncollagenous dentin matrix proteins demonstrated decreased levels of both DSP and DPP proteins in Col1a1-Trps1 mice. On the molecular level, we demonstrated that sustained high levels of Trps1 in odontoblasts lead to dramatic decrease of Dspp expression as a result of direct inhibition of the Dspp promoter by Trps1. During tooth development Trps1 is highly expressed in preodontoblasts, but in mature odontoblasts secreting matrix its expression significantly decreases, which suggests a Trps1 role in odontoblast development. In these studies we identified Trps1 as a potent inhibitor of Dspp expression and the subsequent mineralization of dentin. Thus, we provide novel insights into mechanisms of transcriptional dysregulation that leads to DGI.

  13. Changes in amelogenesis in the rat incisor following short-term hypocalcaemia.

    Science.gov (United States)

    Yamaguti, Paulo M; Arana-Chavez, Victor E; Acevedo, Ana Carolina

    2005-02-01

    There is a relationship between hypocalcaemia and the enamel hypoplasia. Earlier studies in rats have reported a severe hypocalcaemia and enamel hypoplasia a month after thyro-parathyroidectomy (TPTX). The aims of this study were to look at earlier stages and to attempt to correlate morphological changes with alterations in the distribution of amelogenin. Twenty-five Wistar rats were, under anaesthesia, thyro-parathyroidectomized. Sham operated rats were included as controls. After 14, 30 or 57 days, the animals were reanesthatized and the tissues fixed by intracardiac perfusion of fixative. The lower incisors were processed for light microscopy and immunogold electron microscopy. After 14 days the thyro-parathyroidectomised rats were severely hypocalcaemic but amelogenesis was morphologically similar to controls. After 30 and 57 days, enamel defects were observed in the late secretory and early maturation stages in the thyro-parathyroidectomised rats. The immunocytochemical study revealed a concentration of stippled material immunolabelled for amelogenin at the secretory pole of the ameloblasts in the hypocalcaemic rats. The absence of enamel defects after 14 days suggests that this was an insufficient hypocalcaemic period to induce morphological alterations. The concentration of stippled material containing amelogenin suggests that alterations in matrix formation may be the basis of the morphological changes.

  14. Effect of calcium, given before or after a fluoride insult, on hamster secretory amelogenesis in vitro.

    Science.gov (United States)

    Bronckers, Antonius L J J; Bervoets, Theodorus J M; Wöltgens, Joseph H M; Lyaruu, Donacian M

    2006-05-01

    We tested the hypothesis that high-calcium medium given prior to or immediately after exposure to fluoride (F) reduces the negative effects of F on secretory amelogenesis. Hamster molar tooth germs were grown in organ culture in media with different calcium levels. Deposition of enamel matrix and matrix mineralization were monitored by incorporation of [3H]proline and uptake of 45Ca and acid-soluble 32PO4. Ameloblast structure and the occurrence of a fluorotic enamel matrix were examined by light and electron microscopy. A preculture of explants in high-calcium medium partially prevented the formation of fluorotic (non-mineralizing) enamel matrix, increased matrix secretion but could not prevent F-induced hypermineralization of the pre-exposure enamel. High-calcium medium, applied after F insult, accelerated the recovery of fluorotic matrix, improved ameloblast structure, enhanced amelogenin secretion, and increased enamel thickness. The data indicate that it might be the balance between the amount of mineral deposition and that of matrix secretion which is critical for the mineralization of newly secreted enamel. Exposure to F disturbs this balance by enhancing mineralization of the pre-exposure enamel, probably generating an excess of protons. High calcium may protect against F exposure by enhancing amelogenin secretion into the enamel space, thereby increasing the local buffering capacity at the mineralization front.

  15. AB129. Osteogenesis imperfecta: clinical features and bisphosphonate treatment outcome

    Science.gov (United States)

    Can, Ngoc Thi Bich; Vu, Dung Chi; Bui, Thao Phuong; Nguyen, Khanh Ngoc

    2015-01-01

    Background and objective Osteogenesis imperfecta (OI) comprises a group of disorders principally affecting type I collagen which result in increased bone fragility. Children with severe OI suffer recurrent fractures, resulting in severe deformity and growth stunting in many cases, with loss of independent ambulation by the teenage years in over 50% of cases. Recently, cyclical intravenous treatment with pamidronate has proven of benefit to children with severe forms of OI. This article aims to describle clinical features and laboratory manifestations of patient with OI and evaluate outcome of bisphosphonate management. Methods Clinical features, biochemical finding, and management outcome of 104 cases were study. The patients were classified into four major subtypes of Sillience et al. 1979. Patients with severe types were treatment with pamidronate (Aredia) used Rauch protocol 2003. Results Now we have 196 patients (87 females and 109 males) but we studied focus on 104 patients from 98 families (60 males, 44 females) onset at 2.1±3.0 years (median 0.35) with the average fracture bone of 5.9±4.4 times. In there, 17% type I, 8% type II, 63% type III, and 12% type IV. Clinical features include of intrauterine fracture visible on ultrasound 35%, bone deformation after birth 68%, triangle face 76%, long bone deformation 91%, chest deformation 46%, scoliosis 27%, short status 90%, blue sclera 83%, dentinogenesis imperfecta 20%, hearing loss 6%. Thirty patients have been treated with pamidronate at 3.2±3.7 years (4 months to 8 years) during 13±0.8 months (6-30 months). Fourteen patients had fracture bone after 6 months of treatment but no patients had fracture bone after 12 months. Seven patients had been treatment after 1.6±0.5 years, BMD increase from 0.39±0.311 to 0.79±0.105 g/cm2 (P<0.05). One patient had fever reaction after first pamidronate infusion but controlled with standard antipyretic therapy, and do not recur in later treatments. Conclusions OI has

  16. Successful operative rib fixation of traumatic flail chest in a patient with osteogenesis imperfecta.

    Science.gov (United States)

    Kulaylat, Afif N; Chesnut, Charles H; Santos, Ariel P; Armen, Scott B

    2014-09-01

    Increasing attention has been directed towards operative rib fixation of traumatic flail chest; reported benefits include more rapid weaning from the ventilator, decreased intensive care unit stays, decreased complications and improved functional results. The outcomes of this surgical intervention in patients with osteogenesis imperfecta, a rare condition characterized by low bone density and bone fragility, are unknown. This case demonstrates that, in the management of traumatic flail chest in a patient with osteogenesis imperfecta, surgical fixation can be successful and should be considered early.

  17. Anestesia venosa total em paciente portador de Osteogênesis imperfecta: relato de caso Anestesia venosa total en paciente portador de Osteogénesis imperfecta: relato de caso Total intravenous anesthesia in Osteogenesis imperfecta patient: case report

    Directory of Open Access Journals (Sweden)

    José Francisco Nunes Pereira das Neves

    2004-10-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: A Osteogênesis Imperfecta é uma doença genética rara do tecido conjuntivo, com prevalência de 1/10000, que primariamente envolve a ossificação endocondral, resultando em ossos frágeis, múltiplas fraturas e deformidades esqueléticas. O objetivo desse artigo foi relatar um caso de paciente portador de Osteogenesis Imperfecta, submetido à anestesia venosa total para tratamento cirúrgico de fratura de fêmur. RELATO DO CASO: Paciente do sexo masculino, 15 anos, 41 kg, 140 cm, com história de Osteogênesis Imperfecta e cardiopatia, programado para tratamento cirúrgico de fratura do fêmur. Na sala de operação foi monitorizado com ECG, FC, PANI e SpO2 e submetido à anestesia geral venosa total com propofol, alfentanil e cisatracúrio. Após IOT, foi acrescentada monitorização da P ET CO2 e da temperatura esofágica. No período intra-operatório e na sala de recuperação pós-anestésica não apresentou complicações. Teve alta hospitalar no 5º dia de pós-operatório. CONCLUSÕES: O presente relato mostrou boa evolução intra e pós-operatória de paciente com Osteogênesis Imperfecta submetido à anestesia geral venosa total. A complexidade da doença mostrou a necessidade de avaliação e monitorização adequada pelo anestesiologista.JUSTIFICATIVA Y OBJETIVOS: La Osteogénesis Imperfecta es una rara enfermedad genética del tejido conjuntivo, con prevalencia de 1/10000, que primariamente envuelve la osificación endocondral, resultando en huesos frágiles, múltiplas fracturas e deformidades esqueléticas. El objetivo de ese artículo fue relatar un caso de paciente portador de Osteogénesis Imperfecta, sometido a anestesia venosa total para tratamiento quirúrgico de fractura de fémur. RELATO DEL CASO: Paciente del sexo masculino, 15 años, 41 kg, 140 cm, con historia de Osteogénesis Imperfecta y cardiopatía, programado para tratamiento quirúrgico de fractura del fémur. En la sala de operaci

  18. Osteogenesis Imperfecta Type VI in Individuals from Northern Canada.

    Science.gov (United States)

    Ward, Leanne; Bardai, Ghalib; Moffatt, Pierre; Al-Jallad, Hadil; Trejo, Pamela; Glorieux, Francis H; Rauch, Frank

    2016-06-01

    Osteogenesis imperfecta (OI) type VI is a recessively inherited form of OI that is caused by mutations in SERPINF1, the gene coding for pigment-epithelium derived factor (PEDF). Here, we report on two apparently unrelated children with OI type VI who had the same unusual homozygous variant in intron 6 of SERPINF1 (c.787-10C>G). This variant created a novel splice site that led to the in-frame addition of three amino acids to PEDF (p.Lys262_Ile263insLeuSerGln). Western blotting showed that skin fibroblasts with this mutation produced PEDF but failed to secrete it. Both children were treated with intravenous bisphosphonates, but the treatment of Individual 1 was switched to subcutaneous injections of denosumab (dose 1 mg per kg body weight, repeated every 3 months). An iliac bone sample obtained after 5 denosumab injections (and 3 months after the last injection) showed no change in the increased osteoid parameters that are typical of OI type VI, but the number of osteoclasts in trabecular bone was markedly increased. This suggests that the effect of denosumab on osteoclast suppression is of shorter duration in children with OI type VI than what has previously been reported on adults with osteoporosis.

  19. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment.

    Science.gov (United States)

    Van Dijk, F S; Sillence, D O

    2014-06-01

    Recently, the genetic heterogeneity in osteogenesis imperfecta (OI), proposed in 1979 by Sillence et al., has been confirmed with molecular genetic studies. At present, 17 genetic causes of OI and closely related disorders have been identified and it is expected that more will follow. Unlike most reviews that have been published in the last decade on the genetic causes and biochemical processes leading to OI, this review focuses on the clinical classification of OI and elaborates on the newly proposed OI classification from 2010, which returned to a descriptive and numerical grouping of five OI syndromic groups. The new OI nomenclature and the pre-and postnatal severity assessment introduced in this review, emphasize the importance of phenotyping in order to diagnose, classify, and assess severity of OI. This will provide patients and their families with insight into the probable course of the disorder and it will allow physicians to evaluate the effect of therapy. A careful clinical description in combination with knowledge of the specific molecular genetic cause is the starting point for development and assessment of therapy in patients with heritable disorders including OI. © 2014 The Authors. American Journal of Medical Genetics Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  20. Novel dentin phosphoprotein frameshift mutations in dentinogenesis imperfecta type II.

    Science.gov (United States)

    Lee, K-E; Kang, H-Y; Lee, S-K; Yoo, S-H; Lee, J-C; Hwang, Y-H; Nam, K H; Kim, J-S; Park, J-C; Kim, J-W

    2011-04-01

    The dentin sialophosphoprotein (DSPP) gene encodes the most abundant non-collagenous protein in tooth dentin and DSPP protein is cleaved into several segments including the highly phosphorylated dentin phosphoprotein (DPP). Mutations in the DSPP gene have been solely related to non-syndromic form of hereditary dentin defects. We recruited three Korean families with dentinogenesis imperfecta (DGI) type II and sequenced the exons and exon-intron boundaries of the DSPP gene based on the candidate gene approach. Direct sequencing of PCR products and allele-specific cloning of the highly repetitive exon 5 revealed novel single base pair (bp) deletional mutations (c.2688delT and c.3560delG) introducing hydrophobic amino acids in the hydrophilic repeat domain of the DPP coding region. All affected members of the three families showed exceptionally rapid pulp chambers obliteration, even before tooth eruption. Individuals with the c.3560delG mutation showed only mild, yellowish tooth discoloration, in contrast to the affected individuals from two families with c.2688delT mutation. We believe that these results will help us to understand the molecular pathogenesis of DGI type II as well as the normal process of dentin biomineralization.

  1. Prosthetic treatment in dentinogenesis imperfecta type II: a case report

    Directory of Open Access Journals (Sweden)

    Sedat Güven

    2016-05-01

    Full Text Available INTRODUCTION: Dentinogenesis imperfecta (DI or hereditary opalescent dentin is an autosomal dominant disorder affecting both primary and permanent dentition. Early diagnosis and treatment of DI is important for normal facial growth and esthetic continuity by preserving occlusion and tooth structure. It also provides psychological motivation by increasing the patient’s quality of life. Providing functional dentition in DI patients prevents loss of the vertical dimension, while enabling normal growth of the facial bones and jaw joint. CASE REPORT: A 20-year-old male with DI was referred to our clinic with chewing difficulty and esthetic and speech problems. His brother also had this disease. Oral examination showed the loss of many teeth and the absence of enamel on most of the remaining teeth, causing discoloration and exposing soft dentinal tissue with calcification disorder. Despite widespread attrition of the teeth, pulp chambers were not exposed. The tip of the lower jaw was prominent in the patient’s profile. Placing metal-ceramic fixed dentures in the lower jaw and an overdenture prosthesis in the upper jaw improved the patient’s psychological state as well as his function, phonation, and esthetics. CONCLUSION: This case report presents the intraoral findings in a patient with DI, including the histopathological findings, and the prosthetic treatment approach and the treatment outcome.

  2. Dentinogenesis imperfecta type II: approach for dental treatment

    Directory of Open Access Journals (Sweden)

    Raquel Mantuaneli Scarel-Caminaga

    Full Text Available INTRODUCTION: Dentinogenesis imperfecta (DI is a hereditary dentin development disorder that affects both primary and permanent dentitions. The DI characteristics are discolored and translucent teeth ranging from gray to brownish-blue or amber. The enamel may split readily from the dentin when subjected to occlusal stress. Radiographically there are evident of cervical constrictions, short root and pulp chambers, and the root canals are smaller than normal or completely obliterated. The dental treatment choice can be decided on a case-by case‑basis, considering the degree of dental tissue loss, and child age and cooperation. OBJECTIVE: The aim of this case report was to describe the early dental treatment performed in a child affected by DI type II. CASE REPORT: The treatment involved basic preventive procedures. Primary molars were worn to such an extent that the remained tooth structure was covered with composite resin to protect the exposed dentin. Resin-based sealant was applied in all first permanent molars. Posterior cross bite was treated with the expansion of the upper arch. CONCLUSION: The early treatment restored the patient´s vertical dimension resulting in acceptable esthetics and function for the permanent teeth to complete their eruption.

  3. Mortality and Causes of Death in Patients With Osteogenesis Imperfecta

    DEFF Research Database (Denmark)

    Folkestad, Lars; Hald, Jannie Dahl; Canudas-Romo, Vladimir;

    2016-01-01

    Osteogenesis imperfecta (OI) is a hereditary connective tissue disease that causes frequent fractures. Little is known about causes of death and length of survival in OI. The objective of this work was to calculate the risk and cause of death, and the median survival time in patients with OI...... five to one to the OI cohort. We calculated hazard ratios for all-cause mortality and subhazard ratios for cause-specific mortality in a comparison of the OI cohort and the reference population. We also calculated all-cause mortality hazard ratios for males, females, and age groups (0 to 17.99 years......, 18.00 to 34.99 years, 35.00 to 54.99 years, 55.00 to 74.99 years, and >75 years). We identified 687 cases of OI (379 women) and included 3435 reference persons (1895 women). A total of 112 patients with OI and 257 persons in the reference population died during the observation period. The all-cause...

  4. Genetic mapping of the dentinogenesis imperfecta type II locus

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, A.H.; Dixon, M.J. [Univ. of Manchester (United Kingdom); Scherpbier-Heddema, T. [Fox Chase Cancer Center, Philadelphia, PA (United States)] [and others

    1995-10-01

    Dentinogenesis imperfecta type II (DGI-II) is an autosomal dominant disorder of dentin formation, which has previously been mapped to chromosome 4q12-21. In the current study, six novel short tandem-repeat polymorphisms (STRPs) have been isolated, five of which show significant evidence of linkage to DGI-II. To determine the order of the STRPs and define the genetic distance between them, nine loci (including polymorphisms for two known genes) were mapped through the CEPH reference pedigrees. The resulting genetic map encompasses 16.3 cM on the sex-averaged map. To combine this map with a physical map of the region, all of the STRPs were mapped through a somatic cell hybrid panel. The most likely location for the DGI-II locus within the fixed marker map is in the D4S2691-D4S2692 interval of 6.6 cM. The presence of a marker that shows no recombination with the DGI-II phenotype between the flanking markers provides an important anchor point for the creation of physical continuity across the DGI-II candidate region. 38 refs., 4 figs., 2 tabs.

  5. Roentgenographic Evaluation of the Spine in Patients With Osteogenesis Imperfecta

    Science.gov (United States)

    de Lima, Marcos Vaz; de Lima, Fabiana Vaz; Akkari, Miguel; de Resende, Vanessa Ribeiro; Santili, Claudio

    2015-01-01

    Abstract Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder that leads to bone weakness and deformities, especially in the spine, which can lead to poor outcomes. The aim of this study was to find patterns and risk factors in spinal deformities in patients with OI. In a retrospective study, 70 patients with OI were selected. Radiographs of the spine were evaluated. We observed the presence or absence of the following changes: biconcave vertebrae, chest and vertebral deformities, unilateral rib, and thoracolumbar kyphosis. The greater curve was considered the primary one, and the secondary curve considered compensatory. In the study sample, we observed that the patients’ ages ranged between 7 and 50 years, with a mean equal to 13 years, and 76% had scoliosis. In 68% of cases the main curve in the thoracic region was observed with the convexity to the right. The following was found in patients with OI: scoliosis, biconcave vertebrae, vertebral and chest deformity, unilateral rib, and thoracolumbar kyphosis. The thoracolumbar kyphosis is highly associated with thoracic hypokyphosis in patients with OI. PMID:26632680

  6. Childhood Osteoporosis and Presentation of Two Cases with Osteogenesis Imperfecta Type V / Osteoporoza V Otroški Dobi in Predstavitev Dveh Bolnikov Z Osteogenesis Imperfecta Tipa V

    Directory of Open Access Journals (Sweden)

    Bratanic Nina

    2015-03-01

    Full Text Available Uvod. Osteogenesis imperfecta (OI je vzročno heterogena bolezen, katere značilnost je osteoporoza v otroštvu. Pri vseh opisanih bolnikih s podtipom OI tipa V je vzrok bolezni ista mutacija c.-14C>T gena IFITM5. Kljub temu med bolniki obstaja izrazita fenotipska variabilnost v klinični sliki, toda opisan je le dober odgovor na zdravljenje z bisfosfonati.

  7. Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition.

    Science.gov (United States)

    Basel, Donald; Steiner, Robert D

    2009-06-01

    Osteogenesis imperfecta is a systemic heritable disorder of connective tissue whose cardinal manifestation is bone fragility. In approximately 90% of individuals with osteogenesis imperfecta, mutations in either of the genes encoding the pro-alpha1 or pro-alpha2 chains of type I collagen (COL1A1 or COL1A2) can be identified. Of those without collagen mutations, a number of them will have mutations involving the enzyme complex responsible for posttranslational hydroxylation of the position 3 proline residue of COL1A1. Two of the genes encoding proteins involved in that enzyme complex, LEPRE1 and cartilage-associated protein, when mutated have been shown to cause autosomal recessive osteogenesis imperfecta, which has a moderate to severe clinical phenotype, often indistinguishable from osteogenesis imperfecta types II or III. Mutations in COL1A1 or COL1A2 which result in an abnormal protein still capable of forming a triple helix cause a more severe phenotype than mutations that lead to decreased collagen production as a result of the dominant negative effect mediated by continuous protein turnover. The current standard of care includes a multidisciplinary approach with surgical intervention when necessary, proactive physiotherapy, and consideration for the use of bisphosphonates all in attempts to improve quality of life.

  8. MRI and CT features of hyperplastic callus in osteogenesis imperfecta tarda

    Energy Technology Data Exchange (ETDEWEB)

    Dobrocky, I. [Diagnostic Center Meidling, Vienna (Austria); Seidl, G. [Diagnostic Center Meidling, Vienna (Austria)]|[Universitaetsklinik fuer Radiodiagnostik, Vienna (Austria); Grill, F. [Orthopaedisches Spital Wien Speising, Vienna (Austria)

    1999-05-01

    We describe the MRI and CT findings of hyperplastic callus formation simulating a tumour of pelvis in patient with osteogenesis imperfecta tarda. Possible differential diagnoses and the impact of different imaging techniques on the correct diagnosis are discussed. (orig.) With 3 figs., 5 refs.

  9. Osteogenesis imperfecta : profiles of motor development as assessed by a postal questionnaire

    NARCIS (Netherlands)

    Engelbert, RHH; Uiterwaal, CSPM; Gulmans, VAM; Pruijs, HEH; Helders, PJM

    2000-01-01

    This study was performed to achieve more detailed information regarding the age and sequence in the development of motor milestones in the different types of osteogenesis imperfecta (OI). The parents of 98 patients with a diagnosis of OI were sent a questionnaire regarding the age at which patients

  10. Percutaneous vertebroplasty in the treatment of vertebral body compression fracture secondary to osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Rami, Parag M.; Heatwole, Eric V.; Boorstein, Jeffrey M. [Center for Vascular and Interventional Radiology, St. Vincent Mercy Medical Center, Toledo, OH (United States); McGraw, Kevin J. [Riverside Methodist Hospital, Columbus, OH (United States)

    2002-03-01

    Percutaneous vertebroplasty, a minimally invasive interventional radiological procedure, has recently been used effectively for the treatment of symptomatic vertebral body compression fractures. Primary indications for vertebroplasty include osteoporotic compression fracture, osteolytic vertebral metastasis and myeloma, and vertebral hemangioma. We present a case and extend the indication of percutaneous vertebroplasty in a patient with a vertebral body compression fracture secondary to osteogenesis imperfecta. (orig.)

  11. Children with Osteogenesis Imperfecta and Their Daily Living. Handicap Research Group Report No. 4.

    Science.gov (United States)

    Brodin, Jane

    The study examined aspects of daily living of Swedish children with osteogenesis imperfecta, a mineral deficiency in the skeleton which results in stunted growth and frequent fractures. A questionnaire was administered to 24 families with children under the age of 18 and 3 families were interviewed. The study found the families in great need of…

  12. Osteogenesis imperfecta in childhood : effects of spondylodesis on functional ability, ambulation and perceived competence

    NARCIS (Netherlands)

    Tolboom, N; Cats, EA; Helders, PJM; Pruijs, JEH; Engelbert, RHH

    2004-01-01

    We studied the effects of spondylodesis on spinal curvature, functional outcome, level of ambulation and perceived competence in 11 children with osteogenesis imperfecta (OI). Mean age at surgical intervention was 13.1 years (SD 2.5 years) and follow-up amounted to 3.4 years (SD 2.3 years). Spinal c

  13. Three Preschool Children with Osteogenesis Imperfecta--Interviews with Parents. Handicap Research Group Report No. 5.

    Science.gov (United States)

    Brodin, Jane; Millde, Kristina

    The report describes three preschool Swedish children with osteogenesis imperfecta (brittle bones) and the psychosocial support families require from society. Introductory sections explain the condition, review international research on brittle bones, consider the life situation of children with brittle bones, and examine societal support for…

  14. Atypical femoral fracture in an osteogenesis imperfecta patient successfully treated with teriparatide

    DEFF Research Database (Denmark)

    Holm, Jakob; Eiken, Pia; Hyldstrup, Lars;

    2014-01-01

    OBJECTIVE: We report a case of a successfully healed atypical femoral fracture (AFF) following treatment with teriparatide in a patient with osteogenesis imperfecta (OI). To our knowledge, no successful treatment of AFFs with teriparatide in this subpopulation has ever been described. METHODS...

  15. Efficacy and safety of bisphosponate therapy in children with osteogenesis imperfecta: a systematic review

    NARCIS (Netherlands)

    Rijks, Ester B G; Bongers, B.C.; Vlemmix, MJG; Boot, A.M.; van Dijk, ATH; Sakkers, RJB; van Brussel, M

    2015-01-01

    Background/Aims: To systematically assess contemporary knowledge regarding the effectiveness and safety of bisphosphonates (BPs) in children with osteogenesis imperfecta (OI). Methods: PubMed/MEDLINE, Embase, and Cochrane were searched for eligible articles up to June 2014. Studies eligible for incl

  16. Effect of paternal age in achondroplasia, thanatophoric dysplasia, and osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Orioli, I.M. [Universidade Federal do Rio de Janeiro (Brazil); Castilla, E.E. [Centro de Educacion Medica e Investigacion Clinica, Buenos Aires (Argentina); Scarano, G.; Mastroiacovo, P. [Universita Cattolica, Rome (Italy)

    1995-11-06

    The paternal ages of nonfamilial cases of achondroplasia (AC) (n = 78), thanatophoric dysplasia (TD) (n = 64), and osteogenesis imperfecta (OI) (n = 106), were compared with those of matched controls, from an Italian Indagine Policentrica Italiana sulle Malformazioni Congenite (IPIMC) and a South American Estudio Colaborativo Latinoamericano de Malformaciones Congenitas (ECLAMC) series. The degree of paternal age effect on the origin of these dominant mutations differed among the three conditions. Mean paternal age was highly elevated in AC, 36.30 {plus_minus} 6.74 years in the IPIMC, and 37.19 {plus_minus} 10.53 years in the ECLAMC; less consistently elevated in TD, 33.60 {plus_minus} 7.08 years in the IPIMC, and 36.41 {plus_minus} 9.38 years in the ECLAMC; and only slightly elevated in OI in the ECLAMC, 31.15 {plus_minus} 9.25 years, but not in the IPIMC, 32.26 {plus_minus} 6.07 years. Increased maternal age or birth order in these conditions disappeared when corrected for paternal age. Approximately 50% of AC and TD cases, and only 30% of OI cases, were born to fathers above age 35 years. For AC and TD, the increase in relative incidence with paternal age fitted an exponential curve. The variability of paternal age effect in these new mutations could be due, among other reasons, to the high proportion of germ-line mosaicism in OI parents, or to the localization of the AC gene, mapped to the 4p16.3 region, in the neighborhood of an unstable DNA area. 28 refs., 1 fig., 6 tabs.

  17. Targeting the LRP5 pathway improves bone properties in a mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Jacobsen, Christina M; Barber, Lauren A; Ayturk, Ugur M; Roberts, Heather J; Deal, Lauren E; Schwartz, Marissa A; Weis, MaryAnn; Eyre, David; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2014-10-01

    The cell surface receptor low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5(p.A214V) ) that is orthologous to a human HBM-causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5(+/p.A214V) mice to Col1a2(+/p.G610C) mice, which model human type IV OI. We found that Col1a2(+/p.G610C) ;Lrp5(+/p.A214V) offspring had significantly increased bone mass and strength compared to Col1a2(+/p.G610C) ;Lrp5(+/+) littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2(+/p.G610C) mice with a monoclonal antibody that inhibits sclerostin activity (Scl-Ab). We found that antibody-treated mice had significantly increased bone mass and strength compared to vehicle-treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI.

  18. Copy number variants in association with type 1 collagenopathy: Atypical osteogenesis imperfecta.

    Science.gov (United States)

    Balasubramanian, Meena; Cartwright, Ashley; Smith, Kath; Arundel, Paul; Bishop, Nicholas J

    2016-02-01

    We report a sibling-pair and a 4-year old child from two families with an atypical presentation in Osteogenesis imperfecta (OI). In the sib-pair, the older sibling initially came to medical attention due to a fracture history (Patient 1) and she was shown to have a COL1A2 mutation. In addition, she also had developmental delay, facial dysmorphism, and a history of frequent infections which led to a search for an alternate diagnosis. ArrayCGH revealed a 4.3 Mb duplication on chromosome 19q13.42q13.43, which was confirmed by FISH analysis. On further familial analysis, the younger sibling who had no previous fracture history was also found to have the COL1A2 mutation and tested positive for the 19q13.42q13.43 duplication (Patient 2). The 19q13 duplication appears to be the cause of intellectual disability in these siblings but given that this is a chromosomal duplication, it is still possible that there is an as yet unidentified cause that may account for the combined phenotype in this family. Patient 3 was a 4-year old child presenting with a femoral fracture, blue sclerae, developmental delay, and joint hypermobility. Genetic analyses confirmed a COL1A2 mutation but also revealed an 8.8 Mb deletion of 11q24.2q25, confirmed by G-band chromosome analysis. We discuss the differing phenotypes in patients presenting with atypical OI and stress the need to consider ancillary investigations in individuals presenting with heterogeneous phenotypic symptoms, not entirely attributable to OI.

  19. Effect of paternal age in achondroplasia, thanatophoric dysplasia, and osteogenesis imperfecta.

    Science.gov (United States)

    Orioli, I M; Castilla, E E; Scarano, G; Mastroiacovo, P

    1995-11-01

    The paternal ages of nonfamilial cases of achondroplasia (AC) (n = 78), thanatophoric dysplasia (TD) (n = 64), and osteogenesis imperfecta (OI) (n = 106), were compared with those of matched controls, from an Italian Indagine Policentrica Italiana sulle Malformazioni Congenite and a South American Estudio Colaborativo Latinoamericano de Malformaciones Congénitas series. The degree of paternal age effect on the origin of these dominant mutations differed among the three conditions. Mean paternal age was highly elevated in AC, 36.30 +/- 6.74 years in the IPIMC, and 37.19 +/- 10.53 years in the ECLAMC; less consistently elevated in TD, 33.60 +/- 7.08 years in the IPIMC, and 36.41 +/- 9.38 years in the ECLAMC; and only slightly elevated in OI in the ECLAMC, 31.15 +/- 9.25 years, but not in the IPIMC, 32.26 +/- 6.07 years. Increased maternal age or birth order in these conditions disappeared when corrected for paternal age. Approximately 50% of AC and TD cases, and only 30% of OI cases, were born to fathers above age 35 years. For AC and TD, the increase in relative incidence with paternal age fitted an exponential curve. The variability of paternal age effect in these new mutations could be due, among other reasons, to the high proportion of germ-line mosaicism in OI parents, or to the localization of the AC gene, mapped to the 4p16.3 region, in the neighborhood of an unstable DNA area.

  20. X-ray micro-analysis of the mineralization patterns in developing enamel in hamster tooth germs exposed to fluoride in vitro during the secretory phase of amelogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lyaruu, D.M.; Blijleven, N.; Hoeben-Schornagel, K.; Bronckers, A.L.; Woeltgens, J.H.

    1989-09-01

    The developing enamel from three-day-old hamster first maxillary (M1) molar tooth germs exposed to fluoride (F-) in vitro was analyzed for its mineral content by means of the energy-dispersive x-ray microanalysis technique. The aim of this study was to obtain semi-quantitative data on the F(-)-induced hypermineralization patterns in the enamel and to confirm that the increase in electron density observed in micrographs of F(-)-treated enamel is indeed due to an increase in mineral content in the fluorotic enamel. The tooth germs were explanted during the early stages of secretory amelogenesis and initially cultured for 24 hr in the presence of 10 ppm F- in the culture medium. The germs were then cultured for another 24 hr without F-. In order to compare the ultrastructural results directly with the microprobe data, we used the same specimens for both investigations. The net calcium counts (measurement minus background counts) in the analyses were used as a measure of the mineral content in the enamel. The aprismatic pre-exposure enamel, deposited in vivo before the onset of culture, was the most hypermineralized region in the fluorotic enamel, i.e., it contained the highest amount of calcium measured. The degree of the F(-)-induced hypermineralization gradually decreased (but was not abolished) in the more mature regions of the enamel. The unmineralized enamel matrix secreted during the initial F- treatment in vitro mineralized during the subsequent culture without F-. The calcium content in this enamel layer was in the same order of magnitude as that recorded for the newly deposited enamel in control tooth germs cultured without F-.

  1. Serum microRNA is a promising biomarker for osteogenesis imperfecta.

    Science.gov (United States)

    Wang, Ziqiang; Lu, Yanqin; Zhang, Xiumei; Ren, Xiuzhi; Wang, Yanzhou; Li, Zhiliang; Xu, Chao; Han, Jinxiang

    2012-05-01

    The purpose of our study was to screen preliminary differential expression bone-related microRNAs (miRNAs) in serum of patients with osteogenesis imperfacta and to clarify whether serum microRNA is a promising biomarker for osteogenesis imperfecta. geNorm and several other programes were performed to select suitable reference genes for quantitative detection of serum miRNAs from 6 candidate control genes. With geometric averaging of selected reference genes as a normalization factor, fluorescence-based quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect expression levels of more than 100 bone-related miRNAs obtained by means of miRanda, Targetscan and Pictar software calculations and reading the literature. Through analysis of expression stability and pairwise variations, all 6 candidate reference genes had a stable expression level in serum of 8 healthy controls and 8 patients with different characrteristics, and the optimal number of reference genes for normalization was 4 (snRNAU6, miR-92a, miR-16, and Let-7a). For further validation, the expression stability of 4 reference genes remained steady in serum of another 8 healthy controls and 16 patients with osteogenesis imperfecta (M osteogenesis imperfecta patients compared with 8 healthy controls. In conclusion, we identified snRNAU6, miR-92a, miR-16, and Let-7a as an internal reference gene group for qRT-PCR normalization and screening results revealed that there existed many differential expression bone-related miRNAs in serum of patients with osteogenesis imperfecta compared with healthy controls, and that these miRNAs had potential to be biomarkers for serologic tests and diagnosis of osteogenesis imperfecta with analysis of bioinformation.

  2. Osteogénesis imperfecta en una gatita de 2 meses - Osteogenesis imperfect in a kitten 2 months

    Directory of Open Access Journals (Sweden)

    Rodríguez, O

    2012-01-01

    Full Text Available ResumenLa ostegénesis imperfecta es una enfermedad congénita. Normalmente es causada por un gen que produce el colágeno tipo I, fundamental para el desarrollo del hueso.SummaryOsteogenesis imperfecta is a congenital disorder. It is normally caused by the gene that produces type I collagen, which is responsible for bone formation.

  3. What is new in genetics and osteogenesis imperfecta classification?

    Directory of Open Access Journals (Sweden)

    Eugênia R. Valadares

    2014-12-01

    Full Text Available OBJECTIVE: Literature review of new genes related to osteogenesis imperfecta (OI and update of its classification. SOURCES: Literature review in the PubMed and OMIM databases, followed by selection of relevant references. SUMMARY OF THE FINDINGS: In 1979, Sillence et al. developed a classification of OI subtypes based on clinical features and disease severity: OI type I, mild, common, with blue sclera; OI type II, perinatal lethal form; OI type III, severe and progressively deforming, with normal sclera; and OI type IV, moderate severity with normal sclera. Approximately 90% of individuals with OI are heterozygous for mutations in the COL1A1 and COL1A2 genes, with dominant pattern of inheritance or sporadic mutations. After 2006, mutations were identified in the CRTAP, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, WNT1, BMP1, and TMEM38B genes, associated with recessive OI and mutation in the IFITM5 gene associated with dominant OI. Mutations in PLS3 were recently identified in families with osteoporosis and fractures, with X-linked inheritance pattern. In addition to the genetic complexity of the molecular basis of OI, extensive phenotypic variability resulting from individual loci has also been documented. CONCLUSIONS: Considering the discovery of new genes and limited genotype-phenotype correlation, the use of next-generation sequencing tools has become useful in molecular studies of OI cases. The recommendation of the Nosology Group of the International Society of Skeletal Dysplasias is to maintain the classification of Sillence as the prototypical form, universally accepted to classify the degree of severity in OI, while maintaining it free from direct molecular reference.

  4. Animal models of osteogenesis imperfecta: applications in clinical research

    Directory of Open Access Journals (Sweden)

    Enderli TA

    2016-09-01

    Full Text Available Tanya A Enderli, Stephanie R Burtch, Jara N Templet, Alessandra Carriero Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA Abstract: Osteogenesis imperfecta (OI, commonly known as brittle bone disease, is a genetic disease characterized by extreme bone fragility and consequent skeletal deformities. This connective tissue disorder is caused by mutations in the quality and quantity of the collagen that in turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. Animal models of the disease have played a critical role in the understanding of the pathology and causes of OI and in the investigation of a broad range of clinical therapies for the disease. Currently, at least 20 animal models have been officially recognized to represent the phenotype and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. Here, we describe each of the animal models and the type of OI they represent, and present their application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates and sclerostin and mechanical (ie, vibrational loading. In the future, different dosages and lengths of treatment need to be further investigated on different animal models of OI using potentially promising treatments, such as cellular and chaperone therapies. A combination of therapies may also offer a viable treatment regime to improve bone quality and reduce fragility in animals before being introduced into clinical trials for OI patients. Keywords: OI, brittle bone, clinical research, mouse, dog, zebrafish

  5. Disease: H00618 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available lla M, MacDougall M DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet A 133A:138-41 (2005) ... ...ption, gene) Stephanopoulos G, Garefalaki ME, Lyroudia K Genes and related proteins involved in amelogenes...is imperfecta. J Dent Res 84:1117-26 (2005) PMID:17408482 (description, gene) Crawf

  6. Enamel renal syndrome: A rare case report

    Directory of Open Access Journals (Sweden)

    S V Kala Vani

    2012-01-01

    Full Text Available Enamel renal syndrome is a very rare disorder associating amelogenesis imperfecta with nephrocalcinosis. It is known by various synonyms such as amelogenesis imperfecta nephrocalcinosis syndrome, MacGibbon syndrome, Lubinsky syndrome, and Lubinsky-MacGibbon syndrome. It is characterized by enamel agenesis and medullary nephrocalcinosis. This paper describes enamel renal syndrome in a female patient born in a consanguineous family.

  7. Enamel microabrasion: An overview of clinical and scientific considerations

    OpenAIRE

    Pini, Núbia Inocencya Pavesi; Sundfeld-Neto, Daniel; Aguiar, Flavio Henrique Baggio; Sundfeld, Renato Herman; Martins, Luis Roberto Marcondes; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2015-01-01

    Superficial stains and irregularities of the enamel are generally what prompt patients to seek dental intervention to improve their smile. These stains or defects may be due to hypoplasia, amelogenesis imperfecta, mineralized white spots, or fluorosis, for which enamel microabrasion is primarily indicated. Enamel microabrasion involves the use of acidic and abrasive agents, such as with 37% phosphoric acid and pumice or 6% hydrochloric acid and silica, applied to the altered enamel surface wi...

  8. Osteogenesis imperfecta in childhood: MR imaging of basilar impression

    Energy Technology Data Exchange (ETDEWEB)

    Janus, G.J.M. E-mail: janus@knmg.nl; Engelbert, R.H.H.; Beek, E.; Gooskens, R.H.J.M.; Pruijs, J.E.H

    2003-07-01

    Objective: To determine on radiographs the presence of Basilar Impression (BI) in children with Osteogenesis Imperfecta (OI). To confirm this sign and altered geometrical relationships of the craniocervical junction in course of time with magnetic resonance imaging (MRI). Methods and patients: In a cohort study of 130 patients with OI (OI type I: 85; OI type III: 21; OI type IV: 24) lateral radiographs of the skull and cervical spine were made in a standardised way. MRI scans were performed when BI was suspected based upon protrusion of the odontoid above Chamberlain's line. Intracranial abnormalities as well as the basal angle were described. Neurological examination was performed in patients with conclusive BI at MRI-scan. Results and discussion: In eight patients BI could be confirmed by MRI-scan. None of the children had or developed in time neurological symptoms or signs. Follow up of BI by MRI scans was done in seven patients (mean: 5 years; range: 2-6 years). No alteration of intracranial findings were seen at subsequent investigation, although in one child Chamberlain's line increased from 8 (first MRI) to 15 mm (last MRI). BI can be diagnosed by radiographs but in the extreme osteoporotic bone and altered anatomy of the craniocervical junction of children with OI MRI is preferable. As intracranial pathology can be demonstrated by MRI, also a relation can be laid to possible neurological symptoms and signs at clinical examination. Conclusion: In our cohort study no alteration of the intracranial contents was seen at subsequent MRI scans. Although anatomic deformations exist in BI, no neurological symptoms or signs were present in our study and no operative reconstruction had to be performed. Periodical MRI-scan has not been of influence on the clinical decision making process. At the moment we perform a MRI-scan if BI is suspected at lateral skull radiographs. The MRI images serve as reference findings to anticipate on possible future symptoms and

  9. Osteogenesis imperfecta and clubfoot—a rare combination

    Science.gov (United States)

    Persiani, Pietro; Ranaldi, Filippo Maria; Martini, Lorena; Zambrano, Anna; Celli, Mauro; D’Eufemia, Patrizia; Villani, Ciro

    2016-01-01

    Abstract Background: Osteogenesis imperfecta (OI) is a rare congenital genetic osteodystrophy, which has a prevalence of 1:20,000. OI is caused by the mutation of the COL1A1/COL1A2 genes, leading to a deficit of quality and/or quantity in the synthesis of procollagen-α type 1. Seven different forms of diverse clinical entity have been classified by Sillence and Glorieux, although, recently, up to 11 forms characterized by different genetic mutations have been recognized. Patients with OI suffer from extreme bone fragility and osteoporosis, which often predisposes them to frequent fractures. This paper presents the case of a child with OI type IV who, at birth, was also diagnosed with a severe clubfoot (congenital talipes equinovarus) grade III. Patient's mother also suffers from OI type IV. Methods: The treatment was started by placing femoro-podalic corrective casts, according to the Ponseti method, but some unexpected problems occurred during this treatment. When the patient was 3 months of age, we decided to correct the clubfoot before the time limit planned, performing a bilateral posteromedial surgical release. Results: Three weeks after surgery the casts were removed and replaced with bilateral Spica cast-like braces. On the 6th postoperative week, the patient began wearing Bebax corrective shoes, after 1 year ambidextrous orthopedic shoes. Now, he is 2 years old and has started to walk properly without any orthesis. Conclusion: In the presence of an orthopedic pathology associated with OI, it is recommended to manage the patient according to the underlying pathology, always considering the bone fragility associated with OI. The final surgical treatment to correct the clubfoot can be done earlier, if necessary. In our opinion, this uncommon association between OI and clubfoot is non-syndromic. This means that the two congenital diseases are not necessarily included in a singular uncommon genetic syndrome, but the clubfoot was caused by multifactorial causes

  10. Dentinogenesis imperfecta type I: A case report with literature review on nomenclature system

    Directory of Open Access Journals (Sweden)

    D Devaraju

    2014-01-01

    Full Text Available Dentinogenesis imperfecta (DI is an inherited disorder affecting dentin. Defective dentin formation results in discolored teeth that are prone to attrition and fracture. Mutation in dentin sialophosphoprotein (DSPP has been found to cause the dentin disorders DI - I and II (shields II and III. Early diagnosis and treatment of DI is recommended as it may prevent or intercept deterioration of the teeth and occlusion and improve esthetics. Here, we report a case with characteristic clinical, radiological and histological features of DI-I. The etiology and classification followed in literature is confusing since dentinoenamel junction (DEJ in DI seems to be structurally and functionally normal and DI is clearly a disorder distinct from osteogenesis imperfecta (OI, but we still relate etiology of DI to DEJ and follow Shields classification. Therefore, we have briefly reviewed etiology and nomenclature system of DI.

  11. Dentinogenesis imperfecta type I: A case report with literature review on nomenclature system.

    Science.gov (United States)

    Devaraju, D; Devi, Bk Yashoda; Vasudevan, Vijeev; Manjunath, V

    2014-09-01

    Dentinogenesis imperfecta (DI) is an inherited disorder affecting dentin. Defective dentin formation results in discolored teeth that are prone to attrition and fracture. Mutation in dentin sialophosphoprotein (DSPP) has been found to cause the dentin disorders DI - I and II (shields II and III). Early diagnosis and treatment of DI is recommended as it may prevent or intercept deterioration of the teeth and occlusion and improve esthetics. Here, we report a case with characteristic clinical, radiological and histological features of DI-I. The etiology and classification followed in literature is confusing since dentinoenamel junction (DEJ) in DI seems to be structurally and functionally normal and DI is clearly a disorder distinct from osteogenesis imperfecta (OI), but we still relate etiology of DI to DEJ and follow Shields classification. Therefore, we have briefly reviewed etiology and nomenclature system of DI.

  12. Esthetic reconstruction of teeth in patient with dentinogenesis imperfecta--a case report.

    Science.gov (United States)

    Knezević, Alena; Tarle, Zrinka; Pandurić, Vlatko

    2006-03-01

    Dentinogenesis imperfecta (DI) is the result of a dominant genetic defect and affects both the deciduous and permanent dentitions. It is characterized by opalescent teeth composed of irregularly formed and undemineralized dentin which obliterates pulp chamber and root canal. DI can appear as a separate disorder or with osteogenesis imperfecta (OI). The teeth with DI show a grayish-blue to brown hue with dislodged enamel, dysplastic dentine with irregular dentinal tubules and interglobular dentine, short roots and pulpal obliteration, which all may lead to rapid and extensive attrition which require adequate crown reconstruction. The aim of this study was to show a reconstruction of frontal teeth in upper jaw with direct composite veneers in young adult patient with DI.

  13. A novel mutation in the DSPP gene associated with dentinogenesis imperfecta type II.

    Science.gov (United States)

    Lee, S-K; Lee, K-E; Jeon, D; Lee, G; Lee, H; Shin, C-U; Jung, Y-J; Lee, S-H; Hahn, S-H; Kim, J-W

    2009-01-01

    Hereditary dentin defects are divided into dentinogenesis imperfecta and dentin dysplasia. We identified a family segregating severe dentinogenesis imperfecta. The kindred spanned four generations and showed an autosomal-dominant pattern of inheritance. The proband was a child presenting with a severely affected primary dentition, with wide-open pulp chambers and multiple pulp exposures, resembling a DGI type III (DGI-III) pattern. We hypothesized that a mutation in the DSPP gene is responsible for this severe phenotype. Mutational analyses revealed a novel mutation (c.53T>A, p.V18D) near the intron-exon boundary in the third exon of the DSPP gene. We analyzed the effect of the mutation by means of an in vitro splicing assay, which revealed that the mutation did not affect pre-mRNA splicing. Further studies are needed for a better understanding of the nature of the disease and the development of an appropriate treatment strategy.

  14. Dental Management of a Child with Dentinogenesis Imperfecta: A Case Report

    Directory of Open Access Journals (Sweden)

    Najmeh Akhlaghi

    2016-10-01

    Full Text Available Dentinogenesis imperfecta (DI is a hereditary dentin defect caused by an autosomal dominant mutation in dentin sialophosphoprotein gene. Defective dentin development results in discolored teeth that are prone to wear and fracture. Early diagnosis and proper treatment are necessary to achieve better functional and esthetic results and minimize nutritional deficiencies and psychosocial distress. In order to prevent excessive loss of tooth structure, placement of stainless steel crowns (SSCs on deciduous and young permanent posterior teeth is recommended as soon as such teeth erupt. This clinical report presents the clinical manifestations and management of a 3.5-year-old child diagnosed with DI type II.Keywords: Dentin; Dentinogenesis Imperfecta; Tooth, Deciduous

  15. Radiological manifestations of biphosphonate treatment with APD in a child suffering from osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Devogelaer, J.P.; Deuxchaisnes, C.N. de; Malghem, J.; Maldague, B.

    1987-07-01

    A 12-year-old female suffering fromosteogenesis imperfecta (OI) was treated with 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (APD) orally, 250 mg daily, for periods of 2 months, alternating with periods of 2 months of abstinence. Total duration of therapy was 1 year. Radiological and clinical improvement was striking. Furthermore, X-rays of the bones showed large, parallel radio-opaque striae, corresponding exactly to the periods of therapy. These were present in all metaphyses.

  16. A rare presentation of a child with osteogenesis imperfecta and congenital laryngomalacia for herniotomy

    Directory of Open Access Journals (Sweden)

    Roshith Chandran

    2011-01-01

    Full Text Available Sometimes anaesthesiologists come across rare congenital anomalies in their practice. The inherent complications associated with the disorder necessitate tailor-made approaches for providing anaesthesia to even seemingly simple surgical interventions. Here, we share our experience of anaesthesia management of an infant with congenital laryngomalacia and recently diagnosed osteogenesis imperfecta type 1 who had presented to us with an acute abdomen for a semi-emergency herniotomy.

  17. Dentinogenesis imperfecta: A review and case report of a family over four generations

    Directory of Open Access Journals (Sweden)

    Bhandari Sudhir

    2008-01-01

    Full Text Available Dentinogenesis imperfecta (DGI is one of the most common hereditary disorders of dentin formation. It follows an autosomal dominant pattern of transmission, affecting both the formation and mineralization of dentin. Either or both primary and permanent dentition is affected by it. This paper briefly reviews the manifestations of DGI Type II (DGI1 and presents a case report of a family affected with DGI1 over four generations.

  18. Dentinogenesis imperfecta: a case report of comprehensive treatment for a teenager.

    Science.gov (United States)

    Biethman, Rick; Capati, Laura Richards; Eldger, Nicole

    2014-01-01

    Improving a smile can change a person's self-image. This case report describes treatment for an adolescent boy with dentinogenesis imperfecta. Soon to begin high school, the 14-year-old patient was severely obese and disliked his stained teeth. A combination of surgical periodontal treatment, endodontic treatment, and veneers improved both his smile and self-perception-which may have played a role in achieving his weight loss goal of 125 lb at 12 months post-treatment.

  19. Diagnostic features and pedodontic-orthodontic management in dentinogenesis imperfecta type II: a case report.

    Science.gov (United States)

    Huth, K Ch; Paschos, E; Sagner, T; Hickel, R

    2002-09-01

    Dentinogenesis imperfecta type II, also known as hereditary opalescent dentin, is an isolated inherited condition transmitted as an autosomal dominant trait affecting the primary and permanent dentition. The combined pedodontic-orthodontic management of a 4-year-old child is described. Following orthodontic analysis to encourage a favourable growth outcome, treatment comprised restoration of the primary teeth with stainless steel crowns and composite crowns. Differential diagnosis and alternative therapies, including orthodontic considerations, are discussed.

  20. Dentinogenesis imperfecta: a review and case report of a family over four generations.

    Science.gov (United States)

    Bhandari, Sudhir; Pannu, Karneev

    2008-01-01

    Dentinogenesis imperfecta (DGI) is one of the most common hereditary disorders of dentin formation. It follows an autosomal dominant pattern of transmission, affecting both the formation and mineralization of dentin. Either or both primary and permanent dentition is affected by it. This paper briefly reviews the manifestations of DGI Type II (DGI1) and presents a case report of a family affected with DGI1 over four generations.

  1. Osteogenesis Imperfecta with Celiac Disease and Type II Diabetes Mellitus Associated: Improvement with a Gluten-Free Diet

    Directory of Open Access Journals (Sweden)

    Luis Rodrigo

    2012-01-01

    Full Text Available Osteogenesis imperfecta (OI is a genetic disease, with a connective tissue alteration, consisting in the presence of multiple spontaneous fractures or after minimal traumatism. Its association with other metabolic processes is rarely described. We present the clinical case of a female adult patient of 43 years. From her infancy, she has had multiple fractures, needing several surgical interventions, and she was diagnosed of OI type 2 at adolescence age. Due mainly to difficulties in walking remaining in wheel-chair in the last three years, she was overweight with morbid obesity (BMI=45.4 and had a type-II DM associated. She suffered from recurrent abdominal pain and chronic diarrhea and was diagnosed of celiac disease (CD with increased intraepithelial duodenal infiltration, being classified as lymphocytic enteritis, Marsh I type. She was put on a gluten-free diet (GFD, having lost 6 kg of weight after 6 months, with a good control of DM-II and presenting a significant clinical improvement. It is rewarding to search the presence of two coincidental metabolic diseases associated to OI, specially CD, because of the dramatic clinical benefit in the general found after putting on a GFD.

  2. Orthopaedic complications of osteogenesis imperfecta; Les complications orthopediques de l'osteogenese imparfaite

    Energy Technology Data Exchange (ETDEWEB)

    Azrak, S.; Ksyar, R.; Ben Rais, N. [hOpital Ibn Sina, CHU de Rabat-Sale, Service de Medecine Nucleaire, Rabat-Sale (Morocco)

    2009-12-15

    Osteogenesis imperfecta is a genetic disease characterized by bone frailty. It is generally caused by an abnormal production of collagen, which is the main fibrous protein of the bone. Collagen is also present in the skin, tendons, the sclera of the eye and dentin. The most frequent manifestation of osteogenesis imperfecta is the occurrence of multiple fractures without major trauma. Severity and timing of the attack varies widely: some patients sustain a significant number of fractures during early childhood which may have a serious impact on growth, while others will have some fractures separated by a few years. In all cases, the bone strength improves in adulthood. The bone fractures cause pain and bone deformities sometimes result in a smaller size. Scoliosis is frequent and associated with painful vertebral collapses. We present a case of osteogenesis imperfecta in a 40-year-old adult and we describe the various orthopaedic complications of the disease, stressing the role of bone scintigraphy in the diagnosis and monitoring of these complications. (authors)

  3. ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Thomas S Lisse

    2008-02-01

    Full Text Available Osteogenesis imperfecta is an inherited disorder characterized by increased bone fragility, fractures, and osteoporosis, and most cases are caused by mutations affecting the type I collagen genes. Here, we describe a new mouse model for Osteogenesis imperfecta termed Aga2 (abnormal gait 2 that was isolated from the Munich N-ethyl-N-nitrosourea mutagenesis program and exhibited phenotypic variability, including reduced bone mass, multiple fractures, and early lethality. The causal gene was mapped to Chromosome 11 by linkage analysis, and a C-terminal frameshift mutation was identified in the Col1a1 (procollagen type I, alpha 1 gene as the cause of the disorder. Aga2 heterozygous animals had markedly increased bone turnover and a disrupted native collagen network. Further studies showed that abnormal proalpha1(I chains accumulated intracellularly in Aga2/+ dermal fibroblasts and were poorly secreted extracellularly. This was associated with the induction of an endoplasmic reticulum stress-specific unfolded protein response involving upregulation of BiP, Hsp47, and Gadd153 with caspases-12 and -3 activation and apoptosis of osteoblasts both in vitro and in vivo. These studies resulted in the identification of a new model for Osteogenesis imperfecta, and identified a role for intracellular modulation of the endoplasmic reticulum stress-associated unfolded protein response machinery toward osteoblast apoptosis during the pathogenesis of disease.

  4. Phase angle and World Health Organization criteria for the assessment of nutritional status in children with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Vicky Nogueira Pileggi

    Full Text Available Abstract Objective: To compare the phase angle of patients with osteogenesis imperfecta treated at a tertiary university hospital with patients in a control group of healthy children, and to assess the nutritional status of these patients through the body mass index proposed by the World Health Organization. Methods: Cross-sectional study carried out in a university hospital that included seven patients with osteogenesis imperfecta and a control group of 17 healthy children of the same gender and age. Weight and height were measured and bioelectrical impedance was performed. Subsequently, the phase angle was calculated based on resistance and reactance values. Results: The phase angle of the group of children with osteogenesis imperfecta was significantly lower than that of the control group (p<0.05. The body mass index criterion for age of the World Health Organization showed no difference between groups. Conclusions: Children with osteogenesis imperfecta have a nutritional risk detected by the phase angle, which is a useful tool for nutritional screening. The calculation result could help in the diet therapy of patients with osteogenesis imperfecta.

  5. Phase angle and World Health Organization criteria for the assessment of nutritional status in children with osteogenesis imperfecta

    Science.gov (United States)

    Pileggi, Vicky Nogueira; Scalize, Antonio Rodolpho Hakime; Camelo, José Simon

    2016-01-01

    Abstract Objective: To compare the phase angle of patients with osteogenesis imperfecta treated at a tertiary university hospital with patients in a control group of healthy children, and to assess the nutritional status of these patients through the body mass index proposed by the World Health Organization. Methods: Cross-sectional study carried out in a university hospital that included seven patients with osteogenesis imperfecta and a control group of 17 healthy children of the same gender and age. Weight and height were measured and bioelectrical impedance was performed. Subsequently, the phase angle was calculated based on resistance and reactance values. Results: The phase angle of the group of children with osteogenesis imperfecta was significantly lower than that of the control group (p<0.05). The body mass index criterion for age of the World Health Organization showed no difference between groups. Conclusions: Children with osteogenesis imperfecta have a nutritional risk detected by the phase angle, which is a useful tool for nutritional screening. The calculation result could help in the diet therapy of patients with osteogenesis imperfecta. PMID:27102998

  6. Diagnosis and esthetic functional rehabilitation of a patient with amelogenesis imperfecta%对一例釉质发育不全患者的诊断和美学功能性修复

    Institute of Scientific and Technical Information of China (English)

    Llione Kruschewsky Costa Sousa Oliveira; Jussarade Fátima Barbosa Fonseca; Flavia Lucisano Botelho do Amaral; Vanessa Gallego Arias Pecorari; Roberta Tarkany Basting; Fabiana Mantovani Gomes Fran(c)a; 王琳琳

    2012-01-01

    釉质发育不全是一种遗传病,可导致乳牙和恒牙的釉质结构异常.其临床表现及特征各异,主要包括牙齿结构异常,形态异常及牙齿敏感.本文报告了一例由于钙化不良型釉质发育不全导致严重美学缺陷的病例,对其采用复合树脂和烤瓷冠修复,进行功能性美学重建.

  7. 遗传性釉质发育不全家系致病基因的定位研究%Exclusion of Candidate Genes in a Family with Amelogenesis Imperfecta

    Institute of Scientific and Technical Information of China (English)

    王喜军; 汲平; 郭红梅; 易新竹

    2007-01-01

    目的 定位遗传性釉质发育不全(AI)家系的致病基因.方法 收集1个常染色体显性AI家系,提取该家系19名成员(其中患者9例)的外周血DNA,选择横跨釉蛋白基因、成釉蛋白基因、釉丛蛋白基因、基质金属蛋白酶基因、丝氨酸蛋白酶基因5个候选基因的短串联重复序列(STR),进行PCR扩增,经变性聚丙烯酰胺凝胶电泳确定基因型,并进行连锁分析.结果 得到19名个体的8个STR位点的基因型,分别为D1s498、D1s2343、D4s1543、D4s2361、D4s2969、D11s1339、mmp20、D19s246.连锁分析结果显示各位点的LOD值在重组率为0时均小于l,不支持该家系的致病基因与5个侯选基因上的STR位点的连锁关系.结论 连锁分析结果不支持该家系致病基因定位于已知基因座处,提示至少某些常染色体显性AI家系的致病基因不是文献所报道的AI候选基因,进一步证实了常染色体显性遗传性釉质发育不全的遗传异质性.

  8. Clinical success of deproteinization in hypocalcified amelogenesis imperfecta%脱蛋白技术应用于钙化不良型釉质发育不全的临床效果

    Institute of Scientific and Technical Information of China (English)

    Isd S s(o)nmez; Saziye Aras; Emin sen Tunc; Cigdem Kücükesen; 李欣

    2010-01-01

    目的:在口内条件下.以钙化不良釉质发育不全恒牙为样本.研究脱蛋白技术对复合树脂冠成功率的影响.方法:总计4个健康儿童32颗釉质发育不全的恒牙,通过赛璐珞冠(strip crowns)和复合树脂修复.左侧牙为对照.右侧牙为实验组.在实验组中,牙齿表面酸蚀后用5%次氯酸钠溶液处理1min.36个月后按照Ryge修改的USPHS标准检查临床效果.结果:脱蛋白处理对修复体解剖形态没有影响.36个月后两组修复体的颈部密合性与基线比较都不佳.两组都未发现新龋.讨论:脱蛋白技术不能显著地改变粘结修复的效果,然而长期随访显示.临床上对钙化不良型釉质发育不全应用树脂修复是成功的.

  9. 1 case of osteogenesis imperfecta combined with the fracture in the femoral shaft%成骨不全症合并股骨干骨折一例

    Institute of Scientific and Technical Information of China (English)

    于文超; 李刚

    2012-01-01

    @@ 临床资料 女性,24岁,2010年12月2日因轻微外伤致左大腿肿痛、畸形、活动受限2h就诊,查体:患者智力发育正常,听力良好,语言清楚.头颅大小正常,双眼巩膜呈浅蓝色(图1),牙齿发育良好,脊柱发育正常.左大腿中上段肿胀畸形明显,压痛,可扪及异常活动及骨擦感,下肢纵向叩击痛阳性.X线片示:骨盆扁平、不对称,脊柱骨质及形态未见明显异常,双侧股骨干变形,略向外方凸,皮质增厚,左股骨干中上段骨折,骨折线为横形,移位明显.%Osteogenesis imperfecta (OI) is an autosomal dominant disorder due to the obstruction in the formation of collagen type I, which is featured with the increase of the degree of bone fragility. Major manifestations in clinic: bone fragility, blue sclerae, hearing loss and mild-moderate skeletal deformity. 1 case of osteogenesis imperfecta combined with the fracture in the femoral shaft underwent open reduction, locked plate fixation and bone grafting in clinic, with good postoperative recovery.

  10. Dentinogenesis imperfecta associated with short stature, hearing loss and mental retardation: a new syndrome with autosomal recessive inheritance?

    Science.gov (United States)

    Cauwels, R G E C; De Coster, P J; Mortier, G R; Marks, L A M; Martens, L C

    2005-08-01

    The follow-up history and oral findings in two brothers from consanguineous parents suggest that the association of dentinogenesis imperfecta (DI), delayed tooth eruption, mild mental retardation, proportionate short stature, sensorineural hearing loss and dysmorphic facies may represent a new syndrome with autosomal recessive inheritance. Histological examination of the dentin matrix of a permanent molar from one of the siblings reveals morphological similarities with defective dentinogenesis as presenting in patients affected with Osteogenesis Imperfecta (OI), a condition caused by deficiency of type I collagen. A number of radiographic and histological characteristics, however, are inconsistent with classical features of DI. These findings suggest that DI may imply greater genetical heterogeneity than currently assumed.

  11. Ultrastructural and immunocytochemical characterization of ameloblast-enamel adhesion at maturation stage in amelogenesis in Macaca fuscata tooth germ.

    Science.gov (United States)

    Sawada, Takashi

    2015-12-01

    Maturation-stage ameloblasts are firmly bound to the tooth enamel by a basal lamina-like structure. The mechanism underlying this adhesion, however, remains to be fully clarified. The goal of this study was to investigate the mechanism underlying adhesion between the basal lamina-like structure and the enamel in monkey tooth germ. High-resolution immunogold labeling was performed to localize amelotin and laminin 332 at the interface between ameloblasts and tooth enamel. Minute, electron-dense strands were observed on the enamel side of the lamina densa, extending into the degrading enamel matrix to produce a well-developed fibrous layer (lamina fibroreticularis). In un-demineralized tissue sections, mineral crystals smaller than those in the bulk of the enamel were observed adhering to these strands where they protruded into the surface enamel. Immunogold particles reactive for amelotin were preferentially localized on these strands in the fibrous layer. On the other hand, those for laminin 332 were localized solely in the lamina densa; none were observed in the fibrous layer. These results suggest that the fibrous layer of the basal lamina-like structure is partly composed of amelotin molecules, and that these molecules facilitate ameloblast-enamel adhesion by promoting mineralization of the fibrous layer during the maturation stage of amelogenesis.

  12. Co-operative mineralization and protein self-assembly in amelogenesis: silica mineralization and assembly of recombinant amelogenins in vitro.

    Science.gov (United States)

    Fowler, Christabel E; Beniash, Elia; Yamakoshi, Yasuo; Simmer, James P; Margolis, Henry C

    2006-05-01

    An amorphous silica mineralization technique was used to produce inorganic/protein composites to elucidate the structure and mechanism of formation of amelogenin assemblies, which may play an important role in regulating enamel structure during the initial stages of amelogenesis. Full-length recombinant amelogenins from mouse (rM179) and pig (rP172) were investigated along with key degradation products (rM166 and native P148) lacking the hydrophilic C terminus found in parent molecules. The resulting products were examined using transmission electron microscopy and/or small-angle X-ray scattering. Using protein concentrations of 0.1-3 mg ml-1, large monodisperse spheres of remarkably similar mean diameters were observed using rM179 (124+/-4 nm) and rP172 (126+/-7 nm). These spheres also exhibited 'internal structure', comprising nearly spherical monodisperse particles of approximately 20 nm in diameter. In the presence of rM166, P148, and bovine serum albumin (control), large unstructured and randomly shaped particles (250-1000 nm) were observed. Without added protein, large dense spherical particles of silica (mean approximately 500 nm) lacking internal structure were produced. These findings demonstrate that full-length amelogenins have the ability to form higher-order structures, whereas amelogenins that lack the hydrophilic C terminus do not. The results also suggest that full-length amelogenin can guide the formation of organized mineralized structures through co-operative interactions between assembling protein and forming mineral.

  13. Effect of osteogenesis imperfecta mutations in tropocollagen molecule on strength of biomimetic tropocollagen-hydroxyapatite nanocomposites

    Science.gov (United States)

    Dubey, Devendra K.; Tomar, Vikas

    2010-01-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that affects cellular synthesis of Type-I collagen fibrils and causes extreme bone fragility. This study reports the effects of OI mutations in Tropocollagen (TC) molecules on strength of model Tropocollagen-Hydroxyapatite biomaterials with two different mineral [hydroxyapatite (HAP)] distributions using three dimensional atomistic simulations. Results show that the effect of TC mutations on the strength of TC-HAP biomaterials is insignificant. Instead, change in mineral distribution showed significant impact on the overall strength of TC-HAP biomaterials. Study suggests that TC mutations manifest themselves by changing the mineral distribution during hydroxyapatite growth and nucleation period.

  14. Dentinogenesis Imperfecta : A Family which was Affected for Over Three Generations.

    Science.gov (United States)

    Surendra, Poornima; Shah, Rohan; N M, Roshan; Reddy, V V Subba

    2013-08-01

    Dentinogenesis Imperfecta (DI) or hereditary opalescent dentin is inherited in a simple autosomal dominant mode with high penetrance and low mutation rates. It generally affects both the deciduous and the permanent dentitions. DI corresponds to a localized form of mesodermal dysplasia which is observed in the histo-differentiation. An early diagnosis and treatment are therefore fundamental, which aim at obtaining a favourable prognosis, since at late intervention makes the treatment more complex. We are presenting here a case of DI in which the disease affected the three generations of a family in India.

  15. [Bilateral quadriceps rupture in a patient with osteogenesis imperfecta. A case report].

    Science.gov (United States)

    Salcedo-Dueñas, Jesús Alejandro; Torres Castro, Carlos; Estrada Gómez, José Andrés; Algarín Reyes, José Antonio; Bello González, Alejandro

    2009-01-01

    We present the case of a 24-year-old patient with bilateral quadriceps rupture and history of type I congenital osteogenesis imperfecta diagnosed clinically and with ultrasound. Bilateral quadriceps tenoplasty was performed with an anterior approach and without any complications. The patient was discharged with bilateral neoprene knee-guards. The sutures were removed at the 21-day follow-up visit, rehabilitation was started at six weeks and the patient was doing well at the 2- and 3-month follow-up visits. Timely management and early rehabilitation contribute to decrease the risk of sequelae despite the poor functional prognosis.

  16. Comparative study of dentinogenesis imperfecta in different families of the same topographical region.

    Science.gov (United States)

    Jindal, Mk; Maheshwari, Sandhya; Verma, Radhika; Khan, Mohd Toseef

    2009-09-01

    Dental hard tissue is subject to variety of disorders. Dentinogenesis Imperfecta is one such disorder attributed to heredity. It is known to be an autosomal dominant trait. Teeth with such 'imperfect' dentin are liable to be weak and discolored. The disease has variable penetration and therefore can be expressed as a range of phenotypic manifestations from mild discoloration and chipping to frank attrition and multiple pulp canal exposures. Here we present a comparative study of a series of cases from different families of one topographical region with widely different presentation and histories that are characteristic of this disease.

  17. An integrated treatment approach: a case report for dentinogenesis imperfecta type II.

    Science.gov (United States)

    Shetty, N; Joseph, M; Basnet, P; Dixit, S

    2007-01-01

    Dentinogenesis imperfecta type II or hereditary opalscent dentin is one of the most common autosomal dominant anomaly of dentin that occurs in both sex affecting approximately 1:8000 persons. Clinically this disorder is characterized by variable blue gray to yellow brown teeth, with fracture of enamel and excessive wear. The treatment strategy is focused towards protecting teeth from further wear and tear and total oral rehabilitation of patient with paramount importance to aesthetics, obtaining an appropriate vertical dimension and providing soft tissue support which will help to return the facial profile to a more normal appearance. A multidisciplinary treatment planning is required for treatment of these individuals.

  18. Abordaje interdisciplinario de tres hermanas con Amelogénesis imperfecta: Reporte de Caso

    OpenAIRE

    Brenes A., Alejandra; Montero S., Olman

    2011-01-01

    Tres hermanas con edades de 7, 9 y 12 años fueron atendidas en la clínica del Posgrado de Odontopediatría de la Universidad de Costa Rica; ellas presentaban amelogénesis imperfecta tipo hipoplásico y mordida abierta anterior. La higiene bucodental en las tres, era muy deficiente, lo que obligó el abordaje con sesiones de fase higiénica que permitieran posteriormente, iniciar el tratamiento rehabilitador. Cada caso fue estudiado en forma independiente. Se hizo necesario proceder interdisciplin...

  19. Investigation of the Human Disease Osteogenesis Imperfecta: A Research-Based Introduction to Concepts and Skills in Biomolecular Analysis

    Science.gov (United States)

    Mate, Karen; Sim, Alistair; Weidenhofer, Judith; Milward, Liz; Scott, Judith

    2013-01-01

    A blended approach encompassing problem-based learning (PBL) and structured inquiry was used in this laboratory exercise based on the congenital disease Osteogenesis imperfecta (OI), to introduce commonly used techniques in biomolecular analysis within a clinical context. During a series of PBL sessions students were presented with several…

  20. Lethal osteogenesis imperfecta congenita and a 300 base pair gene deletion for an α1(I)-like collagen.

    NARCIS (Netherlands)

    F.M. Pope; K.S.E. Cheah (Kathryn); A.C. Nicholls; A.B. Price; F.G. Grosveld (Frank)

    1984-01-01

    textabstractBroad boned lethal osteogenesis imperfecta is a severely crippling disease of unknown cause. By means of recombinant DNA technology a 300 base pair deletion in an alpha 1(I)-like collagen gene was detected in six patients and four complete parent-child groups including patients with this

  1. Pyridinium cross-links in bone of patients with osteogenesis imperfecta: Evidence of a normal intrafibrillar collagen packing

    NARCIS (Netherlands)

    Bank, R.A.; Tekoppele, J.M.; Janus, G.J.M.; Wassen, M.H.M.; Pruijs, H.E.H.; Sluijs, H.A.H. van der; Sakkers, R.J.B.

    2000-01-01

    The brittleness of bone in patients with osteogenesis imperfecta (OI) has been attributed to an aberrant collagen network. However, the role of collagen in the loss of tissue integrity has not been well established. To gain an insight into the biochemistry and structure of the collagen network, the

  2. Hyperplastic callus formation in osteogenesis imperfecta type V mimicking osteosarcoma: 4-year follow-up with resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, R.L.V.; Amaral, D.T. [Federal University of Sao Paulo, Department of Radiology, Sao Paulo (Brazil); Jesus-Garcia, Filho R. [Federal University of Sao Paulo, Department of Orthopedic Surgery, Sao Paulo (Brazil); Saraiva, G. [Federal University of Sao Paulo, Department of Endocrinology, Sao Paulo (Brazil); Fernandes, A.R.C. [University of California San Diego, Department of MSK Radiology, San Diego, CA (United States); Resnick, D.

    2006-06-15

    We report a case of hyperplastic callus formation that occurred in both femurs in a patient with type V osteogenesis imperfecta (OI), with 4-year follow-up and resolution. The clinical, histological and imaging aspects of this condition are discussed. Recognition of the hyperplastic callus formation in this particular type of OI is important in order to avoid misdiagnosis. (orig.)

  3. Complete Remodeling after Conservative Treatment of a Severely Angulated Odontoid Fracture in a Patient with Osteogenesis Imperfecta : A Case Report

    NARCIS (Netherlands)

    Colo, Dino; Schlösser, Tom P C; Oostenbroek, Hubert J.; Castelein, RM

    2015-01-01

    Study Design. Case report. Objective. This is the first case report describing successful healing and remodeling of a traumatic odontoid fracture that was dislocated and severely angulated in a patient with osteogenesis imperfecta who was treated conservatively. Summary of Background Data. Osteogene

  4. Spontaneous and simultaneous bilateral rupture of the quadriceps tendon in a patient with osteogenesis imperfecta: a case report.

    Science.gov (United States)

    Figueroa, David; Calvo, Rafael; Vaisman, Alex

    2006-03-01

    Bilateral rupture of the quadriceps tendon is an uncommon and serious injury that usually occurs in middle aged to elderly patients. It is frequently associated with chronic metabolic disorders like diabetes, hyperparathyroidism, gout, chronic renal failure or the chronic use of steroids. We report a case of spontaneous bilateral rupture of the quadriceps tendon in a patient with osteogenesis imperfecta.

  5. CRTAP mutations in lethal and severe osteogenesis imperfecta: the importance of combining biochemical and molecular genetic analysis.

    NARCIS (Netherlands)

    Dijk, F.S. Van; Nesbitt, I.M.; Nikkels, P.G.J.; Dalton, A.; Bongers, E.M.H.F.; Kamp, J.M. van de; Hilhorst-Hofstee, Y.; Hollander, N.S. den; Lachmeijer, A.M.; Marcelis, C.L.M.; Tan-Sindhunata, G.M.; Rijn, R.R. van; Meijers-Heijboer, H.; Cobben, J.M.; Pals, G.

    2009-01-01

    Autosomal recessive lethal and severe osteogenesis imperfecta (OI) is caused by the deficiency of cartilage-associated protein (CRTAP) and prolyl-3-hydroxylase 1 (P3H1) because of CRTAP and LEPRE1 mutations. We analyzed five families in which 10 individuals had a clinical diagnosis of lethal and sev

  6. CRTAP mutations in lethal and severe osteogenesis imperfecta : the importance of combining biochemical and molecular genetic analysis

    NARCIS (Netherlands)

    Van Dijk, Fleur S.; Nesbitt, Isabel M.; Nikkels, Peter G. J.; Dalton, Ann; Bongers, Ernie M. H. F.; de Kamp, Jiddeke M. van; Hilhorst-Hofstee, Yvonne; Den Hollander, Nicolette S.; Lachmeijer, Augusta M. A.; Marcelis, Carlo L.; Tan-Sindhunata, Gita M. B.; van Rijn, Rick R.; Meijers-Heijboer, Hanne; Cobben, Jan M.; Pals, Gerard

    2009-01-01

    Autosomal recessive lethal and severe osteogenesis imperfecta (OI) is caused by the deficiency of cartilage-associated protein (CRTAP) and prolyl-3-hydroxylase 1 (P3H1) because of CRTAP and LEPRE1 mutations. We analyzed five families in which 10 individuals had a clinical diagnosis of lethal and sev

  7. Results of a bone splint technique for the treatment of lower limb deformities in children with type I osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Dasheng Lin

    2013-01-01

    Full Text Available Background: Children with osteogenesis imperfecta (OI can suffer from frequent fractures and limb deformities, resulting in impaired ambulation. Osteopenia and thin cortices complicate orthopedic treatment in this group. This study evaluates the clinical results of a bone splint technique for the treatment of lower limb deformities in children with type I OI. The technique consists of internal plating combined with cortical strut allograft fixation. Materials and Methods: We prospectively followed nine children (five boys, four girls with lower limb deformities due to type I OI, who had been treated with the bone splint technique (11 femurs, four tibias between 2003 and 2006. The fracture healing time, deformity improvement, ambulation ability and complications were recorded to evaluate treatment effects. Results: At the time of surgery the average age in our study was 7.7 years (range 5-12 years. The average length of followup was 69 months (range 60-84 months. All patients had good fracture healing with an average healing time of 14 weeks (range 12-16 weeks and none experienced further fractures, deformity, or nonunion. The fixation remained stable throughout the procedure in all cases, with no evidence of loosening or breakage of screws and the deformity and mobility significantly improved after surgery. Of the two children confined to bed before surgery, one was able to walk on crutches and the other needed a wheelchair. The other seven patients could walk without walking aids or support like crutches. Conclusions: These findings suggest that the bone splint technique provides good mechanical support and increases the bone mass. It is an effective treatment for children with OI and lower limb deformities.

  8. Osteogenesis imperfecta: Ultrastructural and histological findings on examination of skin revealing novel insights into genotype-phenotype correlation.

    Science.gov (United States)

    Balasubramanian, M; Sobey, G J; Wagner, B E; Peres, L C; Bowen, J; Bexon, J; Javaid, M K; Arundel, P; Bishop, N J

    2016-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders of bone formation, resulting in low bone mass and an increased propensity to fracture. Over 90% of patients with OI have a mutation in COL1A1/COL1A2, which shows an autosomal dominant pattern of inheritance. In-depth phenotyping and in particular, studies involving manifestations in the skin connective tissue have not previously been undertaken in OI. The aims of the study were to perform histological and ultrastructural examination of skin biopsies in a cohort of patients with OI; to identify common and distinguishing features in order to inform genotype-phenotype correlation; and to identify common and distinguishing features between the different subtypes of OI. As part of the RUDY (Rare Diseases in Bone, Joints and/or Blood Vessels) study, in collaboration with the NIHR Rare Diseases Translational Research Collaboration, we undertook a national study of skin biopsies in patients with OI. We studied the manifestations in the skin connective tissue and undertook in-depth clinical and molecular phenotyping of 16 patients with OI. We recruited 16 patients: analyses have shown that in type 1 collagen mutation positive patients (COL1A1/ COL1A2) (n-4/16) consistent findings included: variable collagen fibril diameter (CFD) and presence of collagen flowers. Histological examination in these patients showed an increase in elastic fibers that are frequently fragmented and clumped. These observations provide evidence that collagen flowers and CFD variability are consistent features in OI due to type 1 collagen defects and reinforce the need for accurate phenotyping in conjunction with genomic analyses.

  9. A novel mutation in LEPRE1 that eliminates only the KDEL ER- retrieval sequence causes non-lethal osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Masaki Takagi

    Full Text Available Prolyl 3-hydroxylase 1 (P3H1, encoded by the LEPRE1 gene, forms a molecular complex with cartilage-associated protein (CRTAP and cyclophilin B (encoded by PPIB in the endoplasmic reticulum (ER. This complex is responsible for one step in collagen post-translational modification, the prolyl 3-hydroxylation of specific proline residues, specifically α1(I Pro986. P3H1 provides the enzymatic activity of the complex and has a Lys-Asp-Glu-Leu (KDEL ER-retrieval sequence at the carboxyl terminus. Loss of function mutations in LEPRE1 lead to the Pro986 residue remaining unmodified and lead to slow folding and excessive helical post-translational modification of type I collagen, which is seen in both dominant and recessive osteogenesis imperfecta (OI. Here, we present the case of siblings with non-lethal OI due to novel compound heterozygous mutations in LEPRE1 (c.484delG and c.2155dupC. The results of RNA analysis and real-time PCR suggest that mRNA with c.2155dupC escapes from nonsense-mediated RNA decay. Without the KDEL ER- retrieval sequence, the product of the c.2155dupC variant cannot be retained in the ER. This is the first report of a mutation in LEPRE1 that eliminates only the KDEL ER-retrieval sequence, whereas other functional domains remain intact. Our study shows, for the first time, that the KDEL ER- retrieval sequence is essential for P3H1 functionality and that a defect in KDEL is sufficient for disease onset.

  10. Compuestos elásticos no lineales con condiciones de contacto imperfectas

    Directory of Open Access Journals (Sweden)

    Juan C. López Realpozo

    2008-01-01

    Full Text Available En el siguiente trabajo, se obtiene la ley efectiva de un compuesto laminado elástico no lineal formado por dos constituyentes, para lo cual utilizamos el Método de Homogeneización Asintótica. Se trabaja con un compuesto bifásico formado de los materiales aluminio y acero, en el que se consideran condición de contacto perfecta e imperfecta (tipo spring y tipo membrana entre las constituyentes. En los tipos de contacto imperfecto considerados, se tienen ambas constituyentes con propiedades isotrópicas. En este trabajo, se hace una extensión de resultados anteriormente publicados, donde solo se consideró condiciones de contacto perfecto entre las constituyentes para compuestos elásticos o piezoeléctricos. En este caso también se presentan algunos ejemplos numéricos donde se muestra que para los compuestos considerados, el Método de Homogeneización Asintótica es eficiente para determinar propiedades efectivas de compuestos en los cuales se considera condiciones de contacto imperfecta en la interfase.

  11. Tomographic imaging of collagen-mineral interaction: implications for osteogenesis imperfecta.

    Science.gov (United States)

    Landis, W J

    1995-01-01

    The novel method of high voltage electron microscopic tomography (3D) has been applied for the first time to examine ultrastructural features and spatial relations between collagen fibrils and mineral crystals in a mouse mutant (oim/oim) which replicates a moderate to severe form of osteogenesis imperfecta. The animal produces collagen consisting of the alpha1(I) homotrimer and has a brittle calcified skeleton. Three-dimensional image reconstructions of the Achilles tendons, which were found to mineralize in the mutant mice, revealed that their composite crystals were different in their structural appearance and spatial association with collagen compared to that determined in normal calcified tissues. These results indicate that the nature of the organic matrix of a mineralizing tissue critically influences the formation, structure, and location of the constituent mineral and, further, the data are interpreted as suggesting that the unusual structural and organizational interaction between mineral and collagen underlies the inherent brittleness and weakness of calcification in this model of osteogenesis imperfecta.

  12. Osteogenesis imperfecta type V: clinical and radiographic manifestations in mutation confirmed patients.

    Science.gov (United States)

    Kim, Ok-Hwa; Jin, Dong-Kyu; Kosaki, Keisuke; Kim, Jung-Wook; Cho, Sung Yoon; Yoo, Won Joon; Choi, In Ho; Nishimura, Gen; Ikegawa, Shiro; Cho, Tae-Joon

    2013-08-01

    Osteogenesis imperfecta (OI) type V is a specific OI phenotype with interosseous membrane calcification of the forearm and hyperplastic callus formation as typical features. The causative gene mutation for OI type V has been recently discovered. The purpose of this report is to review the clinical and radiographic characteristics of mutation confirmed OI type V in detail. Sixteen (nine familial and seven sporadic) patients were enrolled in the study. Blue sclera and dentinogenesis imperfecta were not evident in any patient. However, hypodontia in the permanent teeth, ectopic eruption, and short roots in molars were additionally observed in 11 patients. Of the radiographic abnormalities, cortical thickening and bony excrescence of interosseous margin of the ulna was the most common finding, followed by overgrowth of the olecranon and/or coronoid process of the ulna. Slender ribs and sloping of the posterior ribs with or without fractures were also a consistent finding. Hyperplastic callus was detected in 75% of patients and was commonly encountered at the femur. Heterotopic ossification in the muscles and tendon insertion sites were noted in four patients, which resulted in bony ankylosis or contracture of joints. The current study confirms common clinical and radiographic findings of OI type V and reports additional phenotypic information. These observations provide clues to recognize OI type V more promptly and guide to direct targeted molecular study. © 2013 Wiley Periodicals, Inc.

  13. Developmental charts for children with osteogenesis imperfecta, type I (body height, body weight and BMI).

    Science.gov (United States)

    Graff, Krzysztof; Syczewska, Malgorzata

    2017-03-01

    Osteogenesis imperfecta (OI) is a rare genetic disorder of type I collagen. Type I is the most common, which is called a non-deforming type of OI, as in this condition, there are no major bone deformities. This type is characterised by blue sclera and vertebral fractures, leading to mild scoliosis. The body height of these patients is regarded as normal, or only slightly reduced, but there are no data proving this in the literature. The aim of this study is the preparation of the developmental charts of children with OI type I. The anthropometric data of 117 patients with osteogenesis imperfecta were used in this study (61 boys and 56 girls). All measurements were pooled together into one database (823 measurements in total). To overcome the problem of the limited number of data being available in certain age classes and gender groups, the method called reverse transformation was used. The body height of the youngest children, aged 2 and 3 years, is less than that of their healthy peers. Children between 4 and 7 years old catch up slightly, but at later ages, development slows down, and in adults, the median body height shows an SDS of -2.7.

  14. What every clinical geneticist should know about testing for osteogenesis imperfecta in suspected child abuse cases.

    Science.gov (United States)

    Pepin, Melanie G; Byers, Peter H

    2015-12-01

    Non-accidental injury (NAI) is a major medical concern in the United States. One of the challenges in evaluation of children with unexplained fractures is that genetic forms of bone fragility are one of the differential diagnoses. Infants who present with fractures with mild forms of osteogenesis imperfecta (OI) (OI type I or OI type IV), the most common genetic form of bone disease leading to fractures might be missed if clinical evaluation alone is used to make the diagnosis. Diagnostic clinical features (blue sclera, dentinogenesis imperfecta, Wormian bones on X-rays or positive family history) may not be present or apparent at the age of evaluation. The evaluating clinician faces the decision about whether genetic testing is necessary in certain NAI cases. In this review, we outline clinical presentations of mild OI and review the history of genetic testing for OI in the NAI versus OI setting. We summarize our data of molecular testing in the Collagen Diagnostic Laboratory (CDL) from 2008 to 2014 where NAI was noted on the request for DNA sequencing of COL1A1 and COL1A2. We provide recommendations for molecular testing in the NAI versus OI setting. First, DNA sequencing of COL1A1, COL1A2, and IFITM5 simultaneously and duplication/deletion testing is recommended. If a causative variant is not identified, in the absence of a pathologic clinical phenotype, no additional gene testing is indicated. If a VUS is found, parental segregation studies are recommended.

  15. Combined Treatment with Laser Sintering and Zirconium: A Case Report of Dentinogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Simel Ayyildiz

    2013-01-01

    Full Text Available Osteogenesis imperfecta (OI is a heterogeneous disorder of connective tissue that manifests mainly as skeletal deformity and bone fragility. Dentinogenesis imperfecta (DI is sometimes an accompanying symptom of OI. The treatment protocol of these patients varies according to the clinical appearance. The case report here describes complete mouth rehabilitation of an 18-year-old male patient with OI and DI using direct metal laser sintering (DMLS technique of metal-ceramic restorations and zirconium all-ceramic crowns. DMLS is an additive metal fabrication technology that is simpler, more precise, and healthier than conventional manufacturing and can be remarkably cost effective. Moreover, the technique affords highly accurate production of fixed partial dentures with ideal marginal fit and excellent mechanical properties. The patient was treated using a multidisciplinary strategy that focused on controlling caries, protecting teeth from further wear, obtaining an appropriate vertical dimension, and providing soft tissue support to return the facial profile to a normal appearance using new technology in the field of prosthetics.

  16. Next-generation sequencing of common osteogenesis imperfecta-related genes in clinical practice

    Science.gov (United States)

    Árvai, Kristóf; Horváth, Péter; Balla, Bernadett; Tobiás, Bálint; Kató, Karina; Kirschner, Gyöngyi; Klujber, Valéria; Lakatos, Péter; Kósa, János P.

    2016-01-01

    Next generation sequencing (NGS) is a rapidly developing area in genetics. Utilizing this technology in the management of disorders with complex genetic background and not recurrent mutation hot spots can be extremely useful. In this study, we applied NGS, namely semiconductor sequencing to determine the most significant osteogenesis imperfecta-related genetic variants in the clinical practice. We selected genes coding collagen type I alpha-1 and-2 (COL1A1, COL1A2) which are responsible for more than 90% of all cases. CRTAP and LEPRE1/P3H1 genes involved in the background of the recessive forms with relatively high frequency (type VII and VIII) represent less than 10% of the disease. In our six patients (1–41 years), we identified 23 different variants. We found a total of 14 single nucleotide variants (SNV) in COL1A1 and COL1A2, 5 in CRTAP and 4 in LEPRE1. Two novel and two already well-established pathogenic SNVs have been identified. Among the newly recognized mutations, one results in an amino acid change and one of them is a stop codon. We have shown that a new full-scale cost-effective NGS method can be developed and utilized to supplement diagnostic process of osteogenesis imperfecta with molecular genetic data in clinical practice. PMID:27335225

  17. Genetic epidemiology, prevalence, and genotype–phenotype correlations in the Swedish population with osteogenesis imperfecta

    Science.gov (United States)

    Lindahl, Katarina; Åström, Eva; Rubin, Carl-Johan; Grigelioniene, Giedre; Malmgren, Barbro; Ljunggren, Östen; Kindmark, Andreas

    2015-01-01

    Osteogenesis imperfecta (OI) is a rare hereditary bone fragility disorder, caused by collagen I mutations in 90% of cases. There are no comprehensive genotype–phenotype studies on >100 families outside North America, and no population-based studies determining the genetic epidemiology of OI. Here, detailed clinical phenotypes were recorded, and the COL1A1 and COL1A2 genes were analyzed in 164 Swedish OI families (223 individuals). Averages for bone mineral density (BMD), height and yearly fracture rate were calculated and related to OI and mutation type. N-terminal helical mutations in both the α1- and α2-chains were associated with the absence of dentinogenesis imperfecta (P95% of the complete Swedish pediatric OI population. The prevalence of OI types I, III, and IV was 5.16, 0.89, and 1.35/100 000, respectively (7.40/100 000 overall), corresponding to what has been estimated but not unequivocally proven in any population. Collagen I mutation analysis was performed in the family of 97% of known cases, with causative mutations found in 87%. Qualitative mutations caused 32% of OI type I. The data reported here may be helpful to predict phenotype, and describes for the first time the genetic epidemiology in >95% of an entire OI population. PMID:25944380

  18. Combined treatment with laser sintering and zirconium: a case report of dentinogenesis imperfecta.

    Science.gov (United States)

    Ayyildiz, Simel; Sahin, Cem; Akgün, Ozlem Marti; Basak, Feridun

    2013-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous disorder of connective tissue that manifests mainly as skeletal deformity and bone fragility. Dentinogenesis imperfecta (DI) is sometimes an accompanying symptom of OI. The treatment protocol of these patients varies according to the clinical appearance. The case report here describes complete mouth rehabilitation of an 18-year-old male patient with OI and DI using direct metal laser sintering (DMLS) technique of metal-ceramic restorations and zirconium all-ceramic crowns. DMLS is an additive metal fabrication technology that is simpler, more precise, and healthier than conventional manufacturing and can be remarkably cost effective. Moreover, the technique affords highly accurate production of fixed partial dentures with ideal marginal fit and excellent mechanical properties. The patient was treated using a multidisciplinary strategy that focused on controlling caries, protecting teeth from further wear, obtaining an appropriate vertical dimension, and providing soft tissue support to return the facial profile to a normal appearance using new technology in the field of prosthetics.

  19. Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta.

    Science.gov (United States)

    Lindahl, Katarina; Åström, Eva; Rubin, Carl-Johan; Grigelioniene, Giedre; Malmgren, Barbro; Ljunggren, Östen; Kindmark, Andreas

    2015-08-01

    Osteogenesis imperfecta (OI) is a rare hereditary bone fragility disorder, caused by collagen I mutations in 90% of cases. There are no comprehensive genotype-phenotype studies on >100 families outside North America, and no population-based studies determining the genetic epidemiology of OI. Here, detailed clinical phenotypes were recorded, and the COL1A1 and COL1A2 genes were analyzed in 164 Swedish OI families (223 individuals). Averages for bone mineral density (BMD), height and yearly fracture rate were calculated and related to OI and mutation type. N-terminal helical mutations in both the α1- and α2-chains were associated with the absence of dentinogenesis imperfecta (P95% of the complete Swedish pediatric OI population. The prevalence of OI types I, III, and IV was 5.16, 0.89, and 1.35/100 000, respectively (7.40/100 000 overall), corresponding to what has been estimated but not unequivocally proven in any population. Collagen I mutation analysis was performed in the family of 97% of known cases, with causative mutations found in 87%. Qualitative mutations caused 32% of OI type I. The data reported here may be helpful to predict phenotype, and describes for the first time the genetic epidemiology in >95% of an entire OI population.

  20. Гематурия у ребенка с несовершенным остеогенезом (osteogenesis imperfecta)

    OpenAIRE

    Gupte Tejashri; Iyer V; Damle S; Malik N; Halbe A

    2011-01-01

    Osteogenesis imperfecta is an inherited disorder of the connective tissue. The extreme bone fragility seen in patients suffering from osteogenesis imperfecta pose a series of problems with regard to behavior management and rendering of quality dental treatment. Presented here a case of a four year old child suffering from osteogenesis imperfecta.

  1. An N-terminal glycine to cysteine mutation in the collagen COL1A1 gene produces moderately severe osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, W.; Scott, L.; Cohn, D. [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    1994-09-01

    Osteogenesis imperfecta (OI) is usually due to mutations in the type I procollagen genes COL1A1 and COL1A2. Point mutations close to the N-terminus are generally milder than those near the C-terminus of the molecule (the gradient hypothesis of collagen mutations). We describe a patient with moderately severe OI due to a mutation in the N-terminal portion of the triple helical domain of the {alpha}1(I) chain. Electrophoretic analysis of collagen isolated from fibroblast cultures suggested the abnormal presence of a cysteine in the N-terminal portion of the {alpha}1(I) chain. Five overlapping DNA fragments amplified from fibroblast RNA were screened for mutations using single strand conformational polymorphism (SSCP) and heteroduplex analyses. Direct DNA sequence analysis of the single positive fragment demonstrated a G to T transversion, corresponding to a glycine to cysteine substitution at position 226 of the triple helical domain of the {alpha}1(I) chain. The mutation was confirmed by restriction enzyme analysis of amplified genomic DNA. The mutation was not present in fibroblasts from either phenotypically normal parent. Combining this mutation with other reported mutations, glycine to cysteine substitutions at positions 205, 211, 223, and 226 produce a moderately severe phenotype whereas flanking mutations at positions 175 and 382 produce a mild phenotype. This data supports a regional rather than a gradient model of the relationship between the nature and location of type I collagen mutations and OI phenotype.

  2. Hereditary osteogenesis imperfecta in a Chinese family%遗传性成骨不全家系分析

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      目的探讨遗传性成骨不全(osteogenesis imperfecta,OI)一家系特征。方法2011年6月对河南安阳OI家系进行问卷调查、专科检查,搜集临床资料,绘制家系图谱,分析临床特点和遗传方式。结果该家系4代40人,患者10例,现存活患者7例,其中男5例,女2例。存活7例均存在骨折病史、骨骼畸形、蓝色巩膜、牙齿发育异常,3例听力受损,3例出现骨折愈合不良。结论该家系临床诊断符合Sillence I型成骨不全,遗传方式为常染色体显性遗传。%Objective To study the features of hereditary osteogenesis imperfecta in a Chinese family tree. Methods Hereditary osteogenesis imperfecta in a family of Anyang City, Henan Province, China, was investigated with questionnaire. The family underwent examination in our department and its clinical data were collected. An atlas was plotted for the family. The clinical features of hereditary osteogenesis imperfecta and its hereditary mode were analyzed. Results There were 40 members including 4 generations in the family. Of the 10 members with hereditary osteogenesis imperfecta, 7 were survivors (5 males and 2 females) with a history of fracture, bone deformity, blue sclera and teeth dysplasia, 3 had hearing impairment and 3 had poor fracture healing. Conclusion The clinical diagnosis of hereditary osteogenesis imperfecta in the family is consistent with Sillence I osteogenesis imperfecta with autosomal dominant inheritance as its hereditary mode.

  3. Standardized X-ray reports of the spine in osteogenesis imperfecta; Standard zur Befundung von Roentgenaufnahmen der Wirbelsaeule bei Patienten mit Osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, Friederike; Demant, A.W.; Koerber, S. [Universitaetsklinikum Koeln (Germany). Kinderradiologie, Inst. und Poliklinik fuer Radiologische Diagnostik; Semler, O.; Schoenau, E. [Universitaetsklinikum Koeln (Germany). Osteologie, Klinik und Poliklinik fuer Allgemeine Kinderheilkunde; Lackner, K.J. [Universitaetsklinikum Koeln (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik

    2011-05-15

    Purpose: In this study we present a standard for radiological reports in patients with osteogenesis imperfecta (OI). The parameters can be used to describe X-rays of the lateral spine and give an impartial description of anatomical structures during a treatment with bisphosphonates. Material and Methods: In this retrospective analysis we included 48 patients with OI (31 female, 17 male [1.5 months - 19 years, mean age 9.0 years]). Lateral spine X-rays were analyzed by 2 radiologists before and during treatment. The parameters of the standardized report are degree of kyphoscoliosis, compression of single vertebrae, predominant type of vertebral deformities and extent of vertebral compression (score 1 - 5). Results: There was no clear trend in the change of compression of single vertebrae. Some vertebrae with ventral compression showed an upgrowth to vertebrae with harmonic compression. Other deformities showed only marginal changes. In 26 patients the kyphoscoliosis improved (mean 10 degrees), in 36 patients the thoracic vertebrae compression increased and in 30 patients the vertebral height in the lumbar spine increased. The improvement of vertebral height was 1 point in the thoracic and lumbar spine. Conclusion: We propose a standardized report of X-rays of the lateral spine in patients with OI with quantitative and semiquantitative parameters using morphological criteria. These include compression of single vertebrae, degree of kyphoscoliosis, vertebral deformities and the severity of vertebral compression in the thoracic and lumbar spine. (orig.)

  4. Intravitreal bevacizumab for treatment of choroidal neovascularization associated with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Pukhraj Rishi

    2012-01-01

    Full Text Available A 12-year-old girl, diagnosed of osteogenesis imperfecta, presented with sudden visual loss in the left eye. Investigations revealed an active choroidal neovascular membrane. She underwent treatment with intravitreal Bevacizumab (1.25 mg/0.05 ml. Follow-up at 1 month revealed the development of lacquer crack running through the macula, underlying the fovea. The patient received two re-treatments at 1-month intervals, following which the choroidal neovascularization (CNV regressed completely. However, further progression of lacquer cracks was noted. At the last follow-up, 6 months following the last injection, the fundus remained stable and vision was maintained at 20/200. Considering the natural history of the disease and the increased risk of rupture of the Bruch′s membrane in such eyes, the possible complication of a lacquer crack developing must be borne in mind, before initiating treatment.

  5. Un análisis del ciclo económico en competencia imperfecta

    Directory of Open Access Journals (Sweden)

    Arévalo , Julián J.

    2002-12-01

    Full Text Available El objetivo de este artículo, que hace parte de un trabajo más extenso, es analizar el tema de las fluctuaciones del producto en un escenario de competencia imperfecta a la luz de los hechos estilizados. Se concluye que estas se pueden originar por shocks de oferta o demanda, o simplemente por el ajuste de la economía ante desbalances en los mercados de bienes o trabajo, causados por la rigidez de precios y salarios. De otro lado se justifica el argumento keynesiano acerca de la intervención del gobierno, pues en algunos casos la economía por sí sola no puede superar una etapa recesiva.

  6. Bone tissue ultrastructural defects in a mouse model for osteogenesis imperfecta: a Raman spectroscopy study

    Science.gov (United States)

    Chen, Tsoching; Kozloff, Kenneth M.; Goldstein, Steven A.; Morris, Michael D.

    2004-07-01

    Osteogenesis imperfecta (OI) is genetic defect in which the genes that code for the α1(I) or α2(I) chains of type I collagen are defective. The defects often result in substitution of a bulky amino acid for glycine, causing formation of collagen that can not form the normal triple helix. Depending on the details of the defects, the outcomes range from controllable to lethal. This study focuses on OI type IV, a more common and moderately severe form of the disease. People with the disease have a substantial increase in the risk and rate of fracture. We examine the spectroscopic consequences of these defects, using a mouse model (BRTL) that mimics OI type IV. We compare Raman images from tibial cortical tissue of wild-type mice and BRTL mice with single copy of mutation and show that both mineral to matrix ratios and collagen inter-fibril cross-links are different in wild-type and mutant mice.

  7. Splicing site mutations in dentin sialophosphoprotein causing dentinogenesis imperfecta type II.

    Science.gov (United States)

    Holappa, Heidi; Nieminen, Pekka; Tolva, Liisa; Lukinmaa, Pirjo-Liisa; Alaluusua, Satu

    2006-10-01

    Dentinogenesis imperfecta (DGI) type II (OMIM # 125490) is an inherited disorder affecting dentin. Defective dentin formation results in discolored teeth that are prone to attrition and fracture. To date, several mutations have been described in the dentin sialophosphoprotein (DSPP) gene, causing DGI types II and III and dentin dysplasia type II. DSPP encodes two proteins: dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Here, we describe a mutational analysis of DSPP in seven Finnish families with DGI type II. We report two mutations and five single nucleotide polymorphisms. In one family we found a mutation that has been described earlier in families with different ethnicity, while in six families we found a novel g.1194C>A (IVS2-3) transversion. Bioinformatic analysis of known DSPP mutations suggests that DGI type II is usually caused by aberration of normal splicing.

  8. Phenotype characterization and DSPP mutational analysis of three Brazilian dentinogenesis imperfecta type II families.

    Science.gov (United States)

    Acevedo, A C; Santos, L J S; Paula, L M; Dong, J; MacDougall, M

    2009-01-01

    The aim of this study was to perform phenotype analysis and dentin sialophosphoprotein (DSPP) mutational analysis on 3 Brazilian families diagnosed with dentinogenesis imperfecta type II (DGI-II) attending the Dental Anomalies Clinic in Brasilia, Brazil. Physical and oral examinations, as well as radiographic and histopathological analyses, were performed on 28 affected and unaffected individuals. Clinical, radiographic and histopathological analyses confirmed the diagnosis of DGI-II in 19 individuals. Pulp stones were observed in ground sections of several teeth in 2 families, suggesting that obliteration of pulp chambers and root canals results from the growth of these nodular structures. Mutational DSPP gene analysis of representative affected family members revealed 7 various non-disease-causing alterations in exons 1-4 within the dentin sialoprotein domain. Further longitudinal studies are necessary to elucidate the progression of pulpal obliteration in the DGI-II patients studied as well as the molecular basis of their disease.

  9. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Kobayashi A

    2014-02-01

    Full Text Available Akira Kobayashi, Tomomi Higashide, Hideaki Yokogawa, Natsuko Yamazaki, Toshinori Masaki, Kazuhisa Sugiyama Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan Objective: To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures. Patients and methods: Two patients (67-year-old male and his 26-year-old son with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Results: Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 µm oculus dexter (OD (the right eye and 384 µm oculus sinister (OS (the left eye in the father and 430 µm OD and 425 µm OS in the son. In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. Conclusion: The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients. Keywords: osteogenesis imperfecta, K-structure, confocal microscopy, Bowman's layer

  10. Increased intra-cortical porosity reduces bone stiffness and strength in pediatric patients with osteogenesis imperfecta.

    Science.gov (United States)

    Vardakastani, V; Saletti, D; Skalli, W; Marry, P; Allain, J M; Adam, C

    2014-12-01

    Osteogenesis imperfecta (OI) is a heritable disease occurring in one out of every 20,000 births. Although it is known that Type I collagen mutation in OI leads to increased bone fragility, the mechanism of this increased susceptibility to fracture is not clear. The aim of this study was to assess the microstructure of cortical bone fragments from patients with osteogenesis imperfecta (OI) using polarized light microscopy, and to correlate microstructural observations with the results of previously performed mechanical compression tests on bone from the same source. Specimens of cortical bone were harvested from the lower limbs of three (3) OI patients at the time of surgery, and were divided into two groups. Group 1 had been subjected to previous micro-mechanical compression testing, while Group 2 had not been subjected to any prior testing. Polarized light microscopy revealed disorganized bone collagen architecture as has been previously observed, as well as a large increase in the areal porosity of the bone compared to typical values for healthy cortical bone, with large (several hundred micron sized), asymmetrical pores. Importantly, the areal porosity of the OI bone samples in Group 1 appears to correlate strongly with their previously measured apparent Young's modulus and compressive strength. Taken together with prior nanoindentation studies on OI bone tissue, the results of this study suggest that increased intra-cortical porosity is responsible for the reduction in macroscopic mechanical properties of OI cortical bone, and therefore that in vivo imaging modalities with resolutions of ~100 μm or less could potentially be used to non-invasively assess bone strength in OI patients. Although the number of subjects in this study is small, these results highlight the importance of further studies in OI bone by groups with access to human OI tissue in order to clarify the relationship between increased porosity and reduced macroscopic mechanical integrity.

  11. Comparison of Calcitonin and Pamidronate Treatments in Children with Osteogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Neslihan Onenli Mungan

    2013-08-01

    Full Text Available Purpose: The main objective of this study was to compare the treatments of calcitonin and pamidronate by clinical, biochemical, and radiological findings in children with osteogenesis imperfecta and evaluate the efficiency of pamidronate treatment. Patients and methods: A total of 12 patients, aged 41±38 (1-120 months were studied. Group 1 was consisted of six patients who had received intranasal calcitonin at a dosage of 4-6 U/kg three times a week before switching to pamidronate treatment. Group 2 was also consisted of six patients who had received only pamidronate infusion at a dosage of 0.5-2 mg/kg every two months. Results: Annual fracture rates decreased from 2.72 ± 0.80 to 0.40 ± 0.70 (p0.05, and from -3.08 ± -0.61 to -2.29 ± -0.56 in pamidronate group. The difference between the Z-scores of bone mineral density after calcitonin and pamidronate treatments was statistically significant (p<0.05. The Z-scores of pre (-3.44 ± -0.96 and post (-2.47 ± -0.60 pamidronate treatments of whole 12 patients were significantly different (p<0.001. Conclusion: Pamidronate was significantly more effective in reducing pain, annual fracture rate, and increasing bone mineral density and mobility than calcitonin without any severe adverse effects even in the neonatal period and severe forms of osteogenesis imperfecta. [Cukurova Med J 2013; 38(4.000: 667-674

  12. A rare case of osteogenesis imperfecta combined with complete tooth loss.

    Science.gov (United States)

    Lu, Yanqin; Zhao, Fei; Ren, Xiuzhi; Li, Zhiliang; Yang, Xiaomeng; Han, Jinxiang

    2014-01-01

    Osteogenesis imperfecta (OI) is a heritable disorder of the connective tissue characterized by blue sclerae, osteoporosis and bone fragility. Dentinogenesis imperfecta type I is commonly seen in OI patients, but other dental impairments, such as tooth agenesis or complete tooth loss, are rarely reported for these patients. Here, we report the case of a 37-year-old female Chinese OI patient who experienced complete tooth loss before puberty. The patient has a family history of OI and her father has a history of tooth loss. She showed obvious OI phenotypes, including a dwarfed stature, blue sclerae, scoliosis, pigeon chest and a history of fractures. Tooth loss began at the age of 6 years and continued until complete tooth loss at 20 years; this occurred in the absence of dental decay, gum disease, accidents or drug usage. Radiological studies revealed osteoporosis of the lower limbs and an underdeveloped scapula. Type I collagen gene analysis identified a known c.2314G>A (p.Gly772Ser) substitution in the COL1A2 gene, which we suggest affects the interaction between type I collagen and extracellular matrix proteins, including cartilage oligomeric matrix protein, phosphophoryn and SPARC (secreted protein acidic and rich in cysteine). In silico prediction indicated a relatively mild effect of the mutation, so it is conceivable that the severity of the clinical phenotype may result from additional mutations in candidate genes responsible for abnormal dental phenotypes in this family. To our knowledge, this is the first report of an OI patient with a phenotype of complete tooth loss at a young age.

  13. Advance of Genetics Studies on Osteogenesis Imperfecta%成骨不全遗传学研究进展

    Institute of Scientific and Technical Information of China (English)

    任旋; 陈慧; 张秀德

    2012-01-01

    成骨不全是一种遗传性全身结缔组织疾病,以编码Ⅰ型胶原蛋白的基因(COL1A1和COL1A2)突变为主要致病机制,导致Ⅰ型胶原合成障碍,骨脆性增加.本文就成骨不全的临床分型、分子遗传学及治疗进展做一综述.%Osteogenesis imperfecta is a hereditary systemic connective tissue diseases with encoding type I collagen gene ( COL1A1 and COL1A2 ) mutation as the main pathogenic mechanism, which brings about type I collagen disorders, bone fragility. In this paper, we briefly reviewed the clinical type of osteogenesis imperfecta, the advances in molecular genetics and the treatment for the disease.

  14. Eleven years of experience with bisphosphonate plus alfacalcidol treatment in a man with osteogenesis imperfecta type I

    Directory of Open Access Journals (Sweden)

    Iwamoto J

    2012-12-01

    Full Text Available Jun Iwamoto,1 Yoshihiro Sato,2 Mitsuyoshi Uzawa,3 Hideo Matsumoto11Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, 2Department of Neurology, Mitate Hospital, Fukuoka, 3Department of Orthopaedic Surgery, Keiyu Orthopaedic Hospital, Gunma, JapanAbstract: We report the 11-year follow-up of a man with osteogenesis imperfecta type I who was treated with bisphosphonates and alfacalcidol. A 36-year-old Japanese man with osteogenesis imperfecta type I who had frequently experienced painful fragility fractures consulted our clinic because of chronic back pain. The patient had multiple morphometric vertebral fractures and a low bone mineral density (BMD at the lumbar spine. The patient was treated with cyclical etidronate 200 mg, for 2 weeks every 3 months, plus alfacalcidol 1 µg daily, for 2 years; and alendronate 5 mg daily or 35 mg weekly, plus alfacalcidol 1 µg daily for 9 years. After 11 years of treatment, BMD at the lumbar spine increased by 6.4%, following a 20.3% reduction in serum alkaline phosphatase. Serum calcium, phosphorus, and intact parathyroid hormone levels remained within the normal ranges. Three clinical fractures occurred at two ribs and the metacarpus, and two morphometric vertebral fractures occurred at the thoracic spine during the 11-year treatment period, but the patient experienced no adverse effects. Thus, the present case report shows the long-term outcome and safety of bisphosphonate plus alfacalcidol treatment in a man with osteogenesis imperfecta type I.Keywords: etidronate, alendronate, fragility fracture, bone mineral density, osteogenesis imperfecta

  15. SUCCESSFUL USE OF THE PONSETI METHOD IN THE TREATMENT OF FOUR CHILDREN WITH CLUBFOOT ASSOCIATED WITH OSTEOGENESIS IMPERFECTA TYPE I

    Directory of Open Access Journals (Sweden)

    Валерий Федорович Бландинский

    2014-06-01

    Full Text Available Conservative treatment of congenital clubfoot deformity in osteogenesis imperfecta is very challenging because the high risk of pathological fracture. There is little to no data of such cases hadn’t been found to be described in the literature. We present a child with osteogenesis imperfect and clubfoot deformity, who had been previously inefficiently treated with plaster casts and developed pathological fractures of the tibia. The use of Ponseti method allowed us to completely correct the deformity and avoid complications.

  16. Osteogenesis Imperfecta Model Peptides: Incorporation of Residues Replacing Gly within a Triple Helix Achieved by Renucleation and Local Flexibility

    OpenAIRE

    Xiao, Jianxi; Madhan, Balaraman; Li, Yingjie; Brodsky, Barbara; Baum, Jean

    2011-01-01

    Missense mutations, which replace one Gly with a larger residue in the repeating sequence of the type I collagen triple helix, lead to the hereditary bone disorder osteogenesis imperfecta (OI). Previous studies suggest that these mutations may interfere with triple-helix folding. NMR was used to investigate triple-helix formation in a series of model peptides where the residue replacing Gly, as well as the local sequence environment, was varied. NMR measurement of translational diffusion coef...

  17. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse.

    Science.gov (United States)

    Aubin, Isabelle; Adams, Carolyn P; Opsahl, Sibylle; Septier, Dominique; Bishop, Colin E; Auge, Nathalie; Salvayre, Robert; Negre-Salvayre, Anne; Goldberg, Michel; Guénet, Jean-Louis; Poirier, Christophe

    2005-08-01

    The mouse mutation fragilitas ossium (fro) leads to a syndrome of severe osteogenesis and dentinogenesis imperfecta with no detectable collagen defect. Positional cloning of the locus identified a deletion in the gene encoding neutral sphingomyelin phosphodiesterase 3 (Smpd3) that led to complete loss of enzymatic activity. Our knowledge of SMPD3 function is consistent with the pathology observed in mutant mice and provides new insight into human pathologies.

  18. Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with osteogenesis imperfecta.

    Science.gov (United States)

    Albert, Carolyne; Jameson, John; Smith, Peter; Harris, Gerald

    2014-09-01

    Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64-68% lower in the transverse vs. longitudinal beams (Pbone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (P≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta.

  19. Targeted exome sequencing identifies novel compound heterozygous mutations in P3H1 in a fetus with osteogenesis imperfecta type VIII.

    Science.gov (United States)

    Huang, Yanru; Mei, Libin; Lv, Weigang; Li, Haoxian; Zhang, Rui; Pan, Qian; Tan, Hu; Guo, Jing; Luo, Xiaomei; Chen, Chen; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Osteogenesis imperfecta (OI) is a highly clinically and genetically heterogeneous group of disorders. It is difficult to identify severe OI in the perinatal period. Here, a Chinese woman with a suspected history of fetal OI was referred to our institution at 19weeks of gestation, due to ultrasound inspection during antenatal screening, which revealed bulbous metaphyses, short humeri, and short thick bent femora in the fetus. Using targeted exome sequencing of 248 genes known to be involved in skeletal system diseases, we identified novel compound heterozygous mutation in the P3H1 gene in the fetus with OI type VIII: c.105_120del (p.D36Rfs*16) and c.2164C>T (p.Q722*). These two mutations were inherited from the father and mother, respectively. The mRNA level of P3H1 wasn't changed suggested that mRNA with this mutation escaped from nonsense-mediated RNA decay. Besides, the level of P3H1 was absence while the CRTAP was mildly decreased. In conclusion, our findings imply this novel compound heterozygous mutation as the molecular pathogenetic in a Chinese fetus with OI type VIII, and demonstrate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia with genetic and clinical heterogeneity, especially for autosomal recessive skeletal disorders.

  20. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials.

    Science.gov (United States)

    Hald, Jannie D; Evangelou, Evangelos; Langdahl, Bente L; Ralston, Stuart H

    2015-05-01

    Bisphosphonates are widely used off-label in the treatment of patients with osteogenesis imperfecta (OI) with the intention of reducing the risk of fracture. Although there is strong evidence that bisphosphonates increase bone mineral density in osteogenesis imperfecta, the effects on fracture occurrence have been inconsistent. The aim of this study was to gain a better insight into the effects of bisphosphonate therapy on fracture risk in patients with osteogenesis imperfecta by conducting a meta-analysis of randomized controlled trials in which fractures were a reported endpoint. We searched Medline, Embase, and the Cochrane Central Register of Controlled Trials in which the effects of bisphosphonates on fracture risk in osteogenesis imperfecta were compared with placebo and conducted a meta-analysis of these studies using standard methods. Heterogeneity was assessed using the I2 statistic. Six eligible studies were identified involving 424 subjects with 751 patient-years of follow-up. The proportion of patients who experienced a fracture was not significantly reduced by bisphosphonate therapy (Relative Risk [RR] = 0.83 [95% confidence interval 0.69-1.01], p = 0.06) with no heterogeneity between studies (I2  = 0). The fracture rate was reduced by bisphosphonate treatment when all studies were considered (RR = 0.71 [0.52-0.96], p = 0.02), but with considerable heterogeneity (I2  = 36%) explained by one study where a small number of patients in the placebo group experienced a large number of fractures. When this study was excluded, the effects of bisphosphonates on fracture rate was not significant (RR = 0.79 [0.61-1.02], p = 0.07, I2  = 0%). We conclude that the effects of bisphosphonates on fracture prevention in osteogenesis imperfecta are inconclusive. Adequately powered trials with a fracture endpoint are needed to further investigate the risks and benefits of bisphosphonates in this condition.

  1. The sagittal balance of the spine in children and adolescents with osteogenesis imperfecta.

    Science.gov (United States)

    Abelin, Karimane; Vialle, Raphaël; Lenoir, Thibault; Thévenin-Lemoine, Camille; Damsin, Jean-Paul; Forin, Véronique

    2008-12-01

    In severe forms of osteogenesis imperfecta, multiple compression fractures of the spine, as well as vertebral height shortening could be responsible for an increased thoracic kyphosis or a diminished lumbar lordosis. Theses progressive changes in sagittal shapes of the trunk could be responsible for a global sagittal trunk imbalance. We compare the parameters of sagittal spinopelvic balance in young patients with OI to those parameters in a control group of healthy volunteers. Eighteen patients with osteogenesis imperfecta were compared to a cohort of 300 healthy volunteers. A standing lateral radiograph of the spine was obtained in a standardized fashion. The sacral slope, pelvic tilt, pelvic incidence, lumbar lordosis, thoracic kyphosis, T1 and T9 sagittal offset were measured using a computer-assisted method. The variations and reciprocal correlations of all parameters in both groups according to each other were studied. Comparison of angular parameters between OI patients and control group showed an increased T1T12 kyphosis in OI patients. T1 and T9 sagittal offset was positive in OI patients and negative in control group. This statistically significant difference among sagittal offsets in both groups indicated that OI patients had a global sagittal balance of the trunk displaced anteriorly when compared to the normal population. Reciprocal correlations between angular parameters in OI patients showed a strong correlation between lumbar lordosis (L1L5 and L1S1) and sacral slope. The T9 sagittal offset was also strongly correlated with pelvic tilt. Pelvic incidence was correlated with L1S1 lordosis, T1 sagittal offset and pelvic tilt. In OI patients, the T1T12 thoracic kyphosis was statistically higher than in control group and was not correlated with other shape (LL) or pelvic (SS, PT or PI) parameters. Because isolated T1T12 kyphosis increase without T4T12 significant modification, we suggest that vertebral deformations worsen in OI patients at the upper part

  2. Osteogenesis imperfecta combined with osteonecrosis of the femoral head:1 case report%成骨不全症合并股骨头坏死一例

    Institute of Scientific and Technical Information of China (English)

    吴李菲; 蔡贤华; 黄卫兵; 夏平光

    2014-01-01

    Osteogenesis imperfecta ( OI ) is a genetically and clinically heterogeneous disorder of the bone and connective tissues characterized by osteoporosis, fragile bones, hyperextensible joints, dentinogenesis imperfecta, bluish coloration of the sclerae, and adult-onset hearing loss. One case of young patient treated in our department was diagnosed with OI and osteonecrosis of the femoral head ( ONFH ) by medical history, family history and imagingdata. After the treatment of percutaneous decompression procedure, his imaging data and the Harris score of both hip joints conifrmed the surgery was effective.

  3. Amelogenezis imperfektalı iki hastada estetik ve fonksiyonun sağlanması: olgu sunumu

    Directory of Open Access Journals (Sweden)

    Behiye Bolgul

    2011-11-01

    Full Text Available

    Amelogenesis imperfecta is a rare hereditarycondition in which enamel structure without evidence of sistemic disorders. Amelogenesis imperfecta is a disorder, requiring treatment due to esthetical, functional and related psychosocial problems. This article represents, two patients reffered to our clinic suffering from amelogenezis imperfecta who overcame the esthetical, functional and psychosocial problems by receiving multidisciplinary team rehabilitation.

     

    ÖZET

    Amelogenezis imperfekta herhangi bir sistemik hastalık olmaksızın mine yapısında belirgin bozuklukla karakterize nadir görülen herediter bir anomalidir. Amelogenezis imperfekta estetik, fonksiyon ve buna bağlı psikososyal sorunlarla hastanın hekime başvurması sonucu tedavi ihtiyacı doğurmaktadır. Bu makalede, kliniğimize başvurmuş amelogenezis imperfektalı iki kardeşin multidisipliner tedavi yaklaşımı sonucu estetik, fonksiyonel ve psikososyal problemlerinin ortadan kaldırıldığı bir vaka raporu sunulmaktadır.

    Anahtar Kelimeler: Amelogenezis imperfekta, hipoplastik tip, protetik tedavi.

  4. A DSPP Mutation Causing Dentinogenesis Imperfecta and Characterization of the Mutational Effect

    Directory of Open Access Journals (Sweden)

    Sook-Kyung Lee

    2013-01-01

    Full Text Available Mutations in the DSPP gene have been identified in nonsyndromic hereditary dentin defects, but the genotype-phenotype correlations are not fully understood. Recently, it has been demonstrated that the mutations of DSPP affecting the IPV leader sequence result in mutant DSPP retention in rough endoplasmic reticulum (ER. In this study, we identified a Korean family with dentinogenesis imperfecta type III. To identify the disease causing mutation in this family, we performed mutational analysis based on candidate gene sequencing. Exons and exon-intron boundaries of DSPP gene were sequenced, and the effects of the identified mutation on the pre-mRNA splicing and protein secretion were investigated. Candidate gene sequencing revealed a mutation (c.50C > T, p.P17L in exon 2 of the DSPP gene. The splicing assay showed that the mutation did not influence pre-mRNA splicing. However, the mutation interfered with protein secretion and resulted in the mutant protein remaining largely in the ER. These results suggest that the mutation affects ER-to-Golgi apparatus export and results in the reduction of secreted DSPP and ER overload. This may induce cell stress and damage processing and/or transport of dentin matrix proteins or other critical proteins.

  5. Multiparametric Classification of Skin from Osteogenesis Imperfecta Patients and Controls by Quantitative Magnetic Resonance Microimaging.

    Directory of Open Access Journals (Sweden)

    Beth G Ashinsky

    Full Text Available The purpose of this study is to evaluate the ability of quantitative magnetic resonance imaging (MRI to discriminate between skin biopsies from individuals with osteogenesis imperfecta (OI and skin biopsies from individuals without OI. Skin biopsies from nine controls (unaffected and nine OI patients were imaged to generate maps of five separate MR parameters, T1, T2, km, MTR and ADC. Parameter values were calculated over the dermal region and used for univariate and multiparametric classification analysis. A substantial degree of overlap of individual MR parameters was observed between control and OI groups, which limited the sensitivity and specificity of univariate classification. Classification accuracies ranging between 39% and 67% were found depending on the variable of investigation, with T2 yielding the best accuracy of 67%. When several MR parameters were considered simultaneously in a multivariate analysis, the classification accuracies improved up to 89% for specific combinations, including the combination of T2 and km. These results indicate that multiparametric classification by quantitative MRI is able to detect differences between the skin of OI patients and of unaffected individuals, which motivates further study of quantitative MRI for the clinical diagnosis of OI.

  6. A fracture risk assessment model of the femur in children with osteogenesis imperfecta (OI) during gait.

    Science.gov (United States)

    Fritz, Jessica M; Guan, Yabo; Wang, Mei; Smith, Peter A; Harris, Gerald F

    2009-11-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder characterized by skeletal deformities and increased bone fragility. There is currently no established clinical method for quantifying fracture risk in OI patients. This study begins the development of a patient-specific model for femur fracture risk assessment and prediction based on individuals' gait analysis data, bone geometry from imaging and material properties from nanoindentation (Young's modulus=19 GPa, Poisson's ratio=0.3). Finite element models of the femur were developed to assess fracture risk of the femur in a pediatric patient with OI type I. Kinetic data from clinical gait analysis was used to prescribe loading conditions on the femoral head and condyles along with muscle forces on the bone's surface. von Mises stresses were analyzed against a fracture strength of 115 MPa. The patient with OI whose femur was modeled showed no risk of femoral fracture during normal gait. The highest stress levels occurred during the mid-stance and loading responses phases of gait. The location of high stress migrated throughout the femoral diaphysis across the gait cycle. Maximum femoral stress levels occurred during the gait cycle phases associated with the highest loading. The fracture risk (fracture strength/von Mises stress), however, was low. This study provides a relevant method for combining functional activity, material property and analytical methods to improve patient monitoring.

  7. Clinical, cellular, microscopic, and ultrastructural studies of a case of fibrogenesis imperfecta ossium

    Science.gov (United States)

    Barron, Melissa L; Rybchyn, Mark S; Ramesh, Sutharshani; Mason, Rebecca S; Fiona Bonar, S; Stalley, Paul; Khosla, Sundeep; Hudson, Bernie; Arthur, Christopher; Kim, Edward; Clifton-Bligh, Roderick J; Clifton-Bligh, Phillip B

    2017-01-01

    Fibrogenesis imperfecta ossium is a rare disorder of bone usually characterized by marked osteopenia and associated with variable osteoporosis and osteosclerosis, changing over time. Histological examination shows that newly formed collagen is abnormal, lacking birefringence when examined by polarized light. The case presented demonstrates these features and, in addition, a previously undocumented finding of a persistent marked reduction of the serum C3 and C4. Osteoblasts established in culture from a bone biopsy showed abnormal morphology on electron microscopy and increased proliferation when cultured with benzoylbenzoyl-ATP and 1,25-dihydroxyvitamin D, contrasting with findings in normal osteoblasts in culture. A gene microarray study showed marked upregulation of the messenger RNA (mRNA) for G-protein-coupled receptor 128 (GPR 128), an orphan receptor of unknown function and also of osteoprotegerin in the patient’s osteoblasts in culture. When normal osteoblasts were cultured with the patient’s serum, there was marked upregulation of the mRNA for aquaporin 1. A single pathogenetic factor to account for the features of this disorder has not been defined, but the unique findings described here may facilitate more definitive investigation of the abnormal bone cell function. PMID:28326223

  8. Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta

    Science.gov (United States)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2016-04-01

    The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C-S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.

  9. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    Science.gov (United States)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  10. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Sinder, Benjamin P; Eddy, Mary M; Ominsky, Michael S; Caird, Michelle S; Marini, Joan C; Kozloff, Kenneth M

    2013-01-01

    Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by osteopenia and easy susceptibility to fracture. Symptoms are most prominent during childhood. Although antiresorptive bisphosphonates have been widely used to treat pediatric OI, controlled trials show improved vertebral parameters but equivocal effects on long-bone fracture rates. New treatments for OI are needed to increase bone mass throughout the skeleton. Sclerostin antibody (Scl-Ab) therapy is potently anabolic in the skeleton by stimulating osteoblasts via the canonical wnt signaling pathway, and may be beneficial for treating OI. In this study, Scl-Ab therapy was investigated in mice heterozygous for a typical OI-causing Gly→Cys substitution in col1a1. Two weeks of Scl-Ab successfully stimulated osteoblast bone formation in a knock-in model for moderately severe OI (Brtl/+) and in WT mice, leading to improved bone mass and reduced long-bone fragility. Image-guided nanoindentation revealed no alteration in local tissue mineralization dynamics with Scl-Ab. These results contrast with previous findings of antiresorptive efficacy in OI both in mechanism and potency of effects on fragility. In conclusion, short-term Scl-Ab was successfully anabolic in osteoblasts harboring a typical OI-causing collagen mutation and represents a potential new therapy to improve bone mass and reduce fractures in pediatric OI.

  11. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model.

    Science.gov (United States)

    Yao, Xiaomei; Carleton, Stephanie M; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L; Wang, Yong

    2013-06-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.

  12. The effect of SERPINF1 in-frame mutations in osteogenesis imperfecta type VI.

    Science.gov (United States)

    Al-Jallad, Hadil; Palomo, Telma; Roughley, Peter; Glorieux, Francis H; McKee, Marc D; Moffatt, Pierre; Rauch, Frank

    2015-07-01

    Osteogenesis imperfecta type VI is caused by mutations in SERPINF1, which codes for pigment-epithelium derived factor (PEDF). Most of the reported SERPINF1 mutations lead to premature termination codons, but three in-frame insertion or deletion mutations have also been reported. It is not clear how such in-frame mutations lead to OI type VI. In the present study we therefore investigated how SERPINF1 in-frame mutations affect the intracellular localization and secretion of PEDF. Skin fibroblasts affected by SERPINF1 in-frame mutations transcribed SERPINF1 at slightly reduced levels but secretion of PEDF was markedly diminished. Two deletions (p.F277del and the deletion of SERPINF1 exon 5) were associated with retention of PEDF in the endoplasmic reticulum and a stress response in osteoblastic cells. A recurrent in-frame duplication of three amino acids (p.Ala91_Ser93dup) appeared to lead to intracellular degradation but no retention in the endoplasmic reticulum or stress response. Immunofluorescence imaging in transiently transfected osteoblastic MC3T3-E1 cells suggested that PEDF affected by in-frame mutations was not transported along the secretory pathway. MC3T3-E1 osteoblasts stably overexpressing SERPINF1 with the p.Ala91_Ser93dup mutation had decreased collagen type I deposition and mineralization. Thus, the assessed homozygous in-frame deletions or insertions lead to retention or degradation within cellular compartments and thereby interfere with PEDF secretion.

  13. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    Science.gov (United States)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  14. Introduction of a new standardized assessment score of spine morphology in osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, F.; Schulze Uphoff, U.; Koerber, S.; Maintz, D. [Koeln Univ. (Germany). Dept. of Radiology; Schoenau, E.; Semler, O. [Koeln Univ. (Germany). Children' s Hospital

    2012-08-15

    Purpose: Osteogenesis imperfecta (OI) is a rare hereditary disease leading to multiple bone deformities and fractures. In the absence of causal therapy, a symptomatic approach is based on treatment with bisphosphonates and physiotherapy. The clinical and radiological manifestations vary. Therefore, standardization and quantification for an objective comparison, especially during therapy, are required. In this paper, radiological changes of the spine are quantified according to their clinical relevance to define a scoring system that transfers the morphological changes into a single value representing the severity of the disease. Materials and Methods: 268 lateral spine X-rays of 95 patients with OI (median age 5.6 years) were assessed. The findings were classified based on their clinical relevance. Results: The three criteria, vertebral compression, thoracolumbar kyphosis and deformity type, were quantified in a new grading system. Based on this, a 'severity classification' (1 to 5) was defined with implications for diagnostics and treatment. A mathematical formula that takes into account the three criteria and their correlations to clinical relevance, resulting in a 'severity score', was developed. Conclusion: 'Severity classification' and 'severity score' introduce a new concept for a standardized evaluation of spine X-rays in patients with OI. For both scientific and routine purposes, it provides the user with a simple and easy-to-handle tool for assessing and comparing different stages of severity prior to and during therapy with detailed accuracy. (orig.)

  15. Amelogénesis imperfecta. Informe de tres casos en una familia en Cali, Colombia.

    Directory of Open Access Journals (Sweden)

    Jesús Alberto Calero

    2009-11-01

    Full Text Available La frecuencia de la amelogénesis imperfecta (AI varía en las diferentes poblaciones mundiales. En Colombia se desconoce la frecuencia de la afección. Este informe muestra la consanguinidad de tres pacientes con AI la madre de 36 años y dos hijos de 8 y 15 años de edad. Esta condición se halló presente en cuatro familiares más próximos a la madre, lo que corrobora la condición hereditaria que se transmite como un rasgo dominante. El tratamiento para estos pacientes al principio es preventivo, con controles periódicos en los que se tiene en cuenta el manejo adecuado de hábitos de higiene oral. Una dieta balanceada pobre en azucares y agentes cariogénicos y una periódica fluorización se constituyen en el mejor procedimiento con la intención de fortalecer el esmalte remanente. Luego, a estos enfermos se les debe rehabilitar para la estética y la función de sus dientes.

  16. A novel splicing mutation alters DSPP transcription and leads to dentinogenesis imperfecta type II.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available Dentinogenesis imperfecta (DGI type II is an autosomal dominant disease characterized by a serious disorders in teeth. Mutations of dentin sialophosphoprotein (DSPP gene were revealed to be the causation of DGI type II (DGI-II. In this study, we identified a novel mutation (NG_011595.1:g.8662T>C, c.135+2T>C lying in the splice donor site of intron 3 of DSPP gene in a Chinese Han DGI-II pedigree. It was found in all affected subjects but not in unaffected ones or other unrelated healthy controls. The function of the mutant DSPP gene, which was predicted online and subsequently confirmed by in vitro splicing analysis, was the loss of splicing of intron 3, leading to the extended length of DSPP mRNA. For the first time, the functional non-splicing of intron was revealed in a novel DSPP mutation and was considered as the causation of DGI-II. It was also indicated that splicing was of key importance to the function of DSPP and this splice donor site might be a sensitive mutation hot spot. Our findings combined with other reports would facilitate the genetic diagnosis of DGI-II, shed light on its gene therapy and help to finally conquer human diseases.

  17. A novel DSPP mutation causes dentinogenesis imperfecta type II in a large Mongolian family

    Directory of Open Access Journals (Sweden)

    Chen Yujie

    2010-02-01

    Full Text Available Abstract Background Several studies have shown that the clinical phenotypes of dentinogenesis imperfecta type II (DGI-II may be caused by mutations in dentin sialophosphoprotein (DSPP. However, no previous studies have documented the clinical phenotype and genetic basis of DGI-II in a Mongolian family from China. Methods We identified a large five-generation Mongolian family from China with DGI-II, comprising 64 living family members of whom 22 were affected. Linkage analysis of five polymorphic markers flanking DSPP gene was used to genotype the families and to construct the haplotypes of these families. All five DSPP exons including the intron-exon boundaries were PCR-amplified and sequenced in 48 members of this large family. Results All affected individuals showed discoloration and severe attrition of their teeth, with obliterated pulp chambers and without progressive high frequency hearing loss or skeletal abnormalities. No recombination was found at five polymorphic markers flanking DSPP in the family. Direct DNA sequencing identified a novel A→G transition mutation adjacent to the donor splicing site within intron 3 in all affected individuals but not in the unaffected family members and 50 unrelated Mongolian individuals. Conclusion This study identified a novel mutation (IVS3+3A→G in DSPP, which caused DGI-II in a large Mongolian family. This expands the spectrum of mutations leading to DGI-II.

  18. A DSPP mutation causing dentinogenesis imperfecta and characterization of the mutational effect.

    Science.gov (United States)

    Lee, Sook-Kyung; Lee, Kyung-Eun; Song, Su Jeong; Hyun, Hong-Keun; Lee, Sang-Hoon; Kim, Jung-Wook

    2013-01-01

    Mutations in the DSPP gene have been identified in nonsyndromic hereditary dentin defects, but the genotype-phenotype correlations are not fully understood. Recently, it has been demonstrated that the mutations of DSPP affecting the IPV leader sequence result in mutant DSPP retention in rough endoplasmic reticulum (ER). In this study, we identified a Korean family with dentinogenesis imperfecta type III. To identify the disease causing mutation in this family, we performed mutational analysis based on candidate gene sequencing. Exons and exon-intron boundaries of DSPP gene were sequenced, and the effects of the identified mutation on the pre-mRNA splicing and protein secretion were investigated. Candidate gene sequencing revealed a mutation (c.50C > T, p.P17L) in exon 2 of the DSPP gene. The splicing assay showed that the mutation did not influence pre-mRNA splicing. However, the mutation interfered with protein secretion and resulted in the mutant protein remaining largely in the ER. These results suggest that the mutation affects ER-to-Golgi apparatus export and results in the reduction of secreted DSPP and ER overload. This may induce cell stress and damage processing and/or transport of dentin matrix proteins or other critical proteins.

  19. A novel DSPP mutation is associated with type II dentinogenesis Imperfecta in a chinese family

    Directory of Open Access Journals (Sweden)

    Xu Chengqi

    2007-08-01

    Full Text Available Abstract Background Hereditary defects of tooth dentin are classified into two main groups: dentin dysplasia (DD (types I and II and dentinogenesis imperfecta (DGI (types I, II, and III. Type II DGI is one of the most common tooth defects with an autosomal dominant mode of inheritance. One disease-causing gene, the dentin sialophosphoprotein (DSPP gene, has been reported for type II DGI. Methods In this study, we characterized a four-generation Chinese family with type II DGI that consists of 18 living family members, including 8 affected individuals. Linkage analysis with polymorphic markers D4S1534 and D4S414 that span the DSPP gene showed that the family is linked to DSPP. All five exons and exon-intron boundaries of DSPP were sequenced in members of type II DGI family. Results Direct DNA sequence analysis identified a novel mutation (c.49C→T, p.Pro17Ser in exon 1 of the DSPP gene. The mutation spot, the Pro17 residue, is the second amino acid of the mature DSP protein, and highly conserved during evolution. The mutation was identified in all affected individuals, but not in normal family members and 100 controls. Conclusion These results suggest that mutation p.Pro17Ser causes type II DGI in the Chinese family. This study identifies a novel mutation in the DSPP gene, and expands the spectrum of mutations that cause DGI.

  20. A novel splicing mutation alters DSPP transcription and leads to dentinogenesis imperfecta type II.

    Science.gov (United States)

    Zhang, Jun; Wang, Jiucun; Ma, Yanyun; Du, Wenqi; Zhao, Siyang; Zhang, Zuowei; Zhang, Xiaojiao; Liu, Yue; Xiao, Huasheng; Wang, Hongyan; Jin, Li; Liu, Jie

    2011-01-01

    Dentinogenesis imperfecta (DGI) type II is an autosomal dominant disease characterized by a serious disorders in teeth. Mutations of dentin sialophosphoprotein (DSPP) gene were revealed to be the causation of DGI type II (DGI-II). In this study, we identified a novel mutation (NG_011595.1:g.8662T>C, c.135+2T>C) lying in the splice donor site of intron 3 of DSPP gene in a Chinese Han DGI-II pedigree. It was found in all affected subjects but not in unaffected ones or other unrelated healthy controls. The function of the mutant DSPP gene, which was predicted online and subsequently confirmed by in vitro splicing analysis, was the loss of splicing of intron 3, leading to the extended length of DSPP mRNA. For the first time, the functional non-splicing of intron was revealed in a novel DSPP mutation and was considered as the causation of DGI-II. It was also indicated that splicing was of key importance to the function of DSPP and this splice donor site might be a sensitive mutation hot spot. Our findings combined with other reports would facilitate the genetic diagnosis of DGI-II, shed light on its gene therapy and help to finally conquer human diseases.

  1. Child abuse and osteogenesis imperfecta: how can they be still misdiagnosed? A case report

    Science.gov (United States)

    D’Eufemia, Patrizia; Palombaro, Marta; Lodato, Valentina; Zambrano, Anna; Celli, Mauro; Persiani, Pietro; De Bari, Maria Pia; Sangiorgi, Luca

    2012-01-01

    Summary Osteogenesis imperfecta (OI) is a rare hereditary disease caused by mutations in genes coding for type I collagen, resulting in bone fragility. In literature are described forms lethal in perinatal period, forms which are moderate and slight forms where the only sign of disease is osteopenia. Child abuse is an important social and medical problem. Fractures are the second most common presentation after skin lesions and may present specific patterns. The differential diagnosis between slight-moderate forms of OI and child abuse could be very challenging especially when other signs typical of abuse are absent, since both could present with multiple fractures without reasonable explanations. We report a 20 months-old female with a history of 4 fractures occurred between the age of three and eighteen months, brought to authorities’ attention as a suspected child abuse. However when she came to our department physical examination, biochemical tests, total body X-ray and a molecular analysis of DNA led the diagnosis of OI. Thus, a treatment with bisphosphonate and a physical rehabilitation process, according to Vojta method, were started with improvement in bony mineralization, gross motor skills and absence of new fracture. In conclusion our case demonstrates how in any child presenting fractures efforts should be made to consider, besides child abuse, all the other hypothesis even the rarest as OI. PMID:23289038

  2. Potential of human fetal chorionic stem cells for the treatment of osteogenesis imperfecta.

    Science.gov (United States)

    Jones, Gemma N; Moschidou, Dafni; Abdulrazzak, Hassan; Kalirai, Bhalraj Singh; Vanleene, Maximilien; Osatis, Suchaya; Shefelbine, Sandra J; Horwood, Nicole J; Marenzana, Massimo; De Coppi, Paolo; Bassett, J H Duncan; Williams, Graham R; Fisk, Nicholas M; Guillot, Pascale V

    2014-02-01

    Osteogenesis imperfecta (OI) is a genetic bone pathology with prenatal onset, characterized by brittle bones in response to abnormal collagen composition. There is presently no cure for OI. We previously showed that human first trimester fetal blood mesenchymal stem cells (MSCs) transplanted into a murine OI model (oim mice) improved the phenotype. However, the clinical use of fetal MSC is constrained by their limited number and low availability. In contrast, human fetal early chorionic stem cells (e-CSC) can be used without ethical restrictions and isolated in high numbers from the placenta during ongoing pregnancy. Here, we show that intraperitoneal injection of e-CSC in oim neonates reduced fractures, increased bone ductility and bone volume (BV), increased the numbers of hypertrophic chondrocytes, and upregulated endogenous genes involved in endochondral and intramembranous ossification. Exogenous cells preferentially homed to long bone epiphyses, expressed osteoblast genes, and produced collagen COL1A2. Together, our data suggest that exogenous cells decrease bone brittleness and BV by directly differentiating to osteoblasts and indirectly stimulating host chondrogenesis and osteogenesis. In conclusion, the placenta is a practical source of stem cells for the treatment of OI.

  3. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice☆

    Science.gov (United States)

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-01-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. PMID:22449447

  4. Phenotypic variation in dentinogenesis imperfecta/dentin dysplasia linked to 4q21.

    Science.gov (United States)

    Beattie, M L; Kim, J-W; Gong, S-G; Murdoch-Kinch, C A; Simmer, J P; Hu, J C-C

    2006-04-01

    Dentinogenesis imperfecta (DGI) and dentin dysplasia (DD) are allelic disorders that primarily affect the formation of tooth dentin. Both conditions are autosomal-dominant and can be caused by mutations in the dentin sialophosphoprotein gene (DSPP, 4q21.3). We recruited 23 members of a four-generation kindred, including ten persons with dentin defects, and tested the hypothesis that these defects are linked to DSPP. The primary dentition showed amber discoloration, pulp obliteration, and severe attrition. The secondary dentition showed either pulp obliteration with bulbous crowns and gray discoloration or thistle-tube pulp configurations, normal crowns, and mild gray discoloration. Haplotype analyses showed no recombination between three 4q21-q24 markers and the disease locus. Mutational analyses identified no coding or intron junction sequence variations associated with affection status in DMP1, MEPE, or the DSP portion of DSPP. The defects in the permanent dentition were typically mild and consistent with a diagnosis of DD-II, but some dental features associated with DGI-II were also present. We conclude that DD-II and DGI-II are milder and more severe forms, respectively, of the same disease.

  5. Clinical, histopathologic, and genetic investigation in two large families with dentinogenesis imperfecta type II.

    Science.gov (United States)

    Malmgren, B; Lindskog, S; Elgadi, A; Norgren, S

    2004-04-01

    Dentinogenesis imperfecta (DI) type II, an inherited disorder affecting dentin, has been linked to mutations in the dentin sialophosphoprotein ( DSPP) gene on chromosome 4q21. The gene product is cleaved into two dentin-specific matrix proteins, dentin sialoprotein (DSP) and dentin phosphoprotein. The aim of this investigation was to study genotypes and phenotypes in two affected families with special reference to clinical, radiographic, and histopathologic manifestations. Seven affected members of Family A and five of Family B were documented clinically and radiographically; 14 and 10 teeth, respectively, were available for histopathologic investigation and prepared for ground sections, which were assessed semiquantitatively for dysplastic manifestations in the dentin according to the scoring system, dysplastic dentin score (DDS). Venous blood samples were collected from six affected and ten unaffected members of Family A, and from eight affected and six unaffected members of Family B. Genomic DNA was extracted and used for sequence analyses. The two families presented with different missense mutations. An Arg68Trp missense mutation in the DSP part of the gene was revealed in all six analyzed affected individuals in Family A. This mutation was not present in any of the ten healthy members. In Family B, an Ala15Val missense mutation involving the last residue of the signal peptide was found in all eight affected but in none of the six healthy members. The clinical and radiographic disturbances and DDS were more severe in Family B. The data indicate the presence of a genotype-phenotype correlation in DI type II.

  6. Dentin phosphoprotein gene locus is not associated with dentinogenesis imperfecta types II and III

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, M.; Zeichner-David, M.; Davis, A.; Slavkin, H. (Univ. of Southern California, Los Angeles (United States)); Murray, J. (Univ. of Iowa, Iowa City (United States)); Crall, M. (Ohio State Univ., Columbus (United States))

    1992-01-01

    Dentinogenesis imperfecta (DGI) is an autosomal dominant inherited dental disease which affects dentin production and mineralization. Genetic linkage studies have been performed on several multigeneration informative kindreds. These studies determined linkage between DGI types II and III and group-specific component (vitamin D-binding protein). This gene locus has been localized to the long arm of human chromosome 4 in the region 4q11-q21. Although this disease has been mapped to chromosome 4, the defective gene product is yet to be determined. Biochemical studies have suggested abnormal levels of dentin phosphoprotein (DPP) associated with DGI type II. This highly acidic protein is the major noncollagenous component of dentin, being solely expressed by the ectomesenchymal derived odontoblast cells of the tooth. The purpose of the present study was to establish whether DPP is associated with DGI types II and III, by using molecular biology techniques. The results indicated that DPP is not localized to any region of human chromosome 4, thus suggesting that the DPP gene is not directly associated with DGI type II or DGI type III. The data do not exclude the possibility that other proteins associated with DPP posttranslational modifications might be responsible for this genetic disease.

  7. Dentin phosphoprotein compound mutation in dentin sialophosphoprotein causes dentinogenesis imperfecta type III.

    Science.gov (United States)

    Dong, Juan; Gu, TingTing; Jeffords, Leticia; MacDougall, Mary

    2005-01-30

    A rare compound mutation involving a 36 bp deletion and 18 bp insertion within exon 5 of the dentin sialophosphoprotein (DSPP) gene has been identified in a family with dentinogenesis imperfecta type III (DGI-III). The DSPP gene encodes two major tooth matrix proteins dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). DSPP mutations associated with DGI-III results in an in frame truncation of the serine aspartic acid triplet repeat found in DPP near the highly conserved carboxyl terminal region shortening the protein by six amino acids. Clinically this family presents with discolored amber opalescent teeth and severe attrition of the tooth structure. This study is the first report of a mutation within DPP associated with a genetic dentin disease. Our study indicates that DGI-III is allelic with some forms of DGI-II with and without progressive hearing loss and dentin dysplasia type II that have been shown to be caused by mutations within the DSP coding or signal peptide regions.

  8. High prevalence of coxa vara in patients with severe osteogenesis imperfecta.

    Science.gov (United States)

    Aarabi, Mehdi; Rauch, Frank; Hamdy, Reggie C; Fassier, François

    2006-01-01

    The purpose of this study was to determine the incidence and clinical presentation of coxa vara in 283 patients with osteogenesis imperfecta (OI). The charts and X-rays of 150 girls and 133 boys with OI were reviewed. The patients were classified according to the Sillence classification modified by Glorieux: 94 type I, 90 type IV, 67 type III, 18 type V, 10 type VI, and 4 type VII. The mean age was 9.4 years (range 0.3-23.3). Twenty-nine patients (10.2%) had coxa vara (23 left and 20 right). Fifty-five percent of them were type III, 24% type IV, 13.8% type VI, and 3.4% each of types V and VII. The incidence of coxa vara was 6% in type V, 8% in type IV, 24% in type III, 25% in type VII, and 40% in type VI (P Trendelenburg gait. In conclusion, coxa vara in OI is not rare, especially in severe forms of the disease. Regular clinical and radiologic follow-up is indicated in children with previous femoral rodding and in severely affected children, particularly those with OI type III.

  9. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength.

  10. Associação entre artrite idiopática juvenil e osteogenesis imperfecta: relato de caso

    Directory of Open Access Journals (Sweden)

    Blanca Elena Rios Gomes Bica

    2013-12-01

    Full Text Available Os autores relatam o caso de uma paciente de 53 anos que apresenta uma rara associação entre artrite idiopática juvenil (AIJ e osteogenesis imperfecta (OI, com acometimento poliarticular, incluindo a articulação temporomandibular. Apresentam uma revisão da literatura e uma discussão dos aspectos radiológicos do acometimento da referida articulação. Não foram encontrados relatos de casos com semelhante associação de doenças na literatura especializada.

  11. Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta

    Science.gov (United States)

    Tehrani, Kayvan F.; Pendleton, Emily G.; Lin, Charles P.; Mortensen, Luke J.

    2016-04-01

    Osteogenesis imperfecta (OI) is a currently uncurable disease where a mutation in collagen type I yields brittle bones. One potential therapy is transplantation of mesenchymal stem cells (MSCs), but controlling and enhancing transplanted cell survival has proven challenging. Therefore, we use a 2- photon imaging system to study individual transplanted cells in the living bone marrow. We ablated cells deep in the bone marrow and observed minimal collateral damage to surrounding tissue. Future work will evaluate the local impact of transplanted MSCs on bone deposition in vivo.

  12. Disease: H01015 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available mental disorder CNNM4 [HSA:26504] [KO:K16302] Cone-rod dystrophy and amelogenesis...consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Hum Genet 84:266-73 (...2009) PMID:20706282 (descritpion) Jalili IK Cone-rod dystrophy and amelogenesis i...ogenesis imperfecta. It is caused mutations in the CNNM4 gene that encodes a putati...H01015 Jalili syndrome Jalili syndrome is a combination of recessively inherited cone-rod dystrophy and amel

  13. Resource Centres for Rare Oral Diseases – Why?

    DEFF Research Database (Denmark)

    Daugaard-Jensen, Jette; Gjørup, Hans

    2010-01-01

    .5-73) and the male/female ratio was equal (1.06) Results: A: Oligodontia (N=154 ) and Amelogenesis Imperfecta (N=146 ) were the most frequently diagnosed dental anomalies. B: Osteogenesis Imperfecta (N=88), Ectodermal Dysplasia (N=81), Ehlers Danlos Syndrome (61) and Marfan Syndrome (N=44) were the largest groups...

  14. Osteogenesis imperfecta - iconographic study of two cases and review of the literature; Osteogenese imperfeita - revisao da literatura e iconografia baseada em dois casos

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ricardo Pires de; Fernandes, Cintia; Hilario, Marcelo Cobra; Barros, Wagner Moraes; Soares, Aldemir Humberto [Hospital Heliopolis, Sao Paulo, SP (Brazil)

    1996-07-01

    The authors present a literature review about osteogenesis imperfecta, a disease that leads to bone fragility and low height patterns caused by an abnormality of the collagen synthesis. The iconographic study is based on two cases of the tarda type. (author) 9 refs., 3 figs.

  15. Pregnancy complicated by a severe form of foetal osteogenesis imperfecta in a 17-year-old primigravida: case report and overview of literature.

    Science.gov (United States)

    Madu, Anthony Emeka; Olamijulo, Joseph Ayodeji

    2013-05-01

    Abstract Osteogenesis imperfecta (OI) is an important inheritable thanetrophic disorder with wide ranging variable implications and prognosis for babies in utero and those who survive the perinatal period. The diagnosis of the severe forms can be readily made but some forms of the disease are known to go unrecognised until childhood.

  16. Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen

    NARCIS (Netherlands)

    Schwarze, Ulrike; Cundy, Tim; Pyott, Shawna M.; Christiansen, Helena E.; Hegde, Madhuri R.; Bank, Ruud A.; Pals, Gerard; Ankala, Arunkanth; Conneely, Karen; Seaver, Laurie; Yandow, Suzanne M.; Raney, Ellen; Babovic-Vuksanovic, Dusica; Stoler, Joan; Ben-Neriah, Ziva; Segel, Reeval; Lieberman, Sari; Siderius, Liesbeth; Al-Aqeel, Aida; Hannibal, Mark; Hudgins, Louanne; McPherson, Elizabeth; Clemens, Michele; Sussman, Michael D.; Steiner, Robert D.; Mahan, John; Smith, Rosemarie; Anyane-Yeboa, Kwame; Wynn, Julia; Chong, Karen; Uster, Tami; Aftimos, Salim; Sutton, V. Reid; Davis, Elaine C.; Kim, Lammy S.; Weis, Mary Ann; Eyre, David; Byers, Peter H.

    2013-01-01

    Although biallelic mutations in non-collagen genes account for 10 of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in

  17. Molecular Mechanism of Osteogenesis Imperfecta%成骨不全的分子机制

    Institute of Scientific and Technical Information of China (English)

    徐超; 韩金祥; 鲁艳芹

    2012-01-01

    成骨不全是一类临床表现为骨质脆弱、易骨折等特征的罕见遗传性疾病.绝大多数(90%以上)显性患者发病系由Ⅰ型前胶原α链COLlA1和COLl A2基因突变引起胶原合成量不足,或结构改变.少数隐性患者发病为其他相关基因突变导致胶原翻译后过度修饰、折叠、装配和分泌过程异常.本文就成骨不全发病的遗传学及分子生物学机制作一综述.%Osteogenesis imperfecta ( OI) is a kind of rare genetic disease characterized by increased bone fragility and easy to fracture. Clinical symptoms include frequent bone fracture, short stature, blue sclera, dentinogenesis imperfecta and hearing loss. OI is a heterogeneous disease; its patterns of inheritance are predominated by autosomal dominant, but the autosomal recessive inheritance is rare. Patterns of clinical phenotype vary from mild to perinatal lethal one. Based on traditional silence type system of I-IV, type V-XII has been described till now. Ten different genes have been reported to cause OI. The genetic cause for type V is still unknown. COLlAl and C0LIA2, which encode the a chains of type I procollagen, are the main OI-related genes and relate to autosomal dominant OI. Mutations in these two genes lead to 90% of OI cases. The vast majority mutations of COLlAl and C0L1A2 are Gly substitution. In addition, eight different gene defect associated with recessive genetic OI have been reported in recent years. CRTAP, LEPREX and PPIB encode CRTAP, P3H1 and CyPB, respectively. They assemble into 3-hydroxylation complex which participates in posttranslational modification of collagen I. As chaperones, FKBP65 encoded by FKBP10 and HSP47 encoded by SERPINHl take part in the process of folding and assembling of collagen type I. OSX is a kind of transcription factor, which might be expected to play an important role in osteoblast differentiation. SERPINFl is close contact with metabolic disorder of bone. BMP1 defect is reported to cause

  18. A novel homozygous variant in SERPINH1 associated with a severe, lethal presentation of osteogenesis imperfecta with hydranencephaly.

    Science.gov (United States)

    Marshall, Charlotte; Lopez, Jaime; Crookes, Laura; Pollitt, Rebecca C; Balasubramanian, Meena

    2016-12-20

    Osteogenesis imperfecta (OI) is a genetic disorder characterised by low bone mineral density resulting in fractures. 85-90% of patients with OI carry a variant in the type 1 collagen genes, COL1A1 and COL1A2, which follows an autosomal dominant pattern of inheritance. However, within the last two decades, there have been growing number of variants identified in genes that follow an autosomal recessive pattern of inheritance. Our proband is a child born in Mexico with multiple fractures of ribs, minimal calvarial mineralisation, platyspondyly, marked compression and deformed long bones. He also presented with significant hydranencephaly, requiring ventilatory support from birth, and died at 8days of age. A homozygous c.338_357delins22 variant in exon 2 of SERPINH1 was identified. This gene encodes heat shock protein 47, a collagen-specific chaperone which binds to the procollagen triple helix and is responsible for collagen stabilisation in the endoplasmic reticulum. There is minimal literature on the mechanism of action for variants in SERPINH1 resulting in osteogenesis imperfecta. Here we discuss this rare, previously unreported variant, and expand on the phenotypic presentation of this novel variant resulting in a severe, lethal phenotype of OI in association with hydranencephaly.

  19. A cross-sectional multicenter study of osteogenesis imperfecta in North America - results from the linked clinical research centers.

    Science.gov (United States)

    Patel, R M; Nagamani, S C S; Cuthbertson, D; Campeau, P M; Krischer, J P; Shapiro, J R; Steiner, R D; Smith, P A; Bober, M B; Byers, P H; Pepin, M; Durigova, M; Glorieux, F H; Rauch, F; Lee, B H; Hart, T; Sutton, V R

    2015-02-01

    Osteogenesis imperfecta (OI) is the most common skeletal dysplasia that predisposes to recurrent fractures and bone deformities. In spite of significant advances in understanding the genetic basis of OI, there have been no large-scale natural history studies. To better understand the natural history and improve the care of patients, a network of Linked Clinical Research Centers (LCRC) was established. Subjects with OI were enrolled in a longitudinal study, and in this report, we present cross-sectional data on the largest cohort of OI subjects (n = 544). OI type III subjects had higher prevalence of dentinogenesis imperfecta, severe scoliosis, and long bone deformities as compared to those with OI types I and IV. Whereas the mean lumbar spine area bone mineral density (LS aBMD) was low across all OI subtypes, those with more severe forms had lower bone mass. Molecular testing may help predict the subtype in type I collagen-related OI. Analysis of such well-collected and unbiased data in OI can not only help answering questions that are relevant to patient care but also foster hypothesis-driven research, especially in the context of 'phenotypic expansion' driven by next-generation sequencing.

  20. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    Science.gov (United States)

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model.

  1. Tracing the pathway between mutation and phenotype in osteogenesis imperfecta: Isolation of mineralization-specific genes

    Energy Technology Data Exchange (ETDEWEB)

    Culbert, A.A.; Wallis, G.A.; Kadler, K.E. [Univ. of Manchester (United Kingdom)

    1996-05-03

    The brittleness of bone in people with lethal (type II) osteogenesis imperfecta, a heritable disorder caused by mutations in the type I collagen genes, arises from the deposition of abnormal collagen in the bone matrix. The inability of the abnormal collagen to participate in mineralization may be caused by its failure to interact with other bone proteins. Here, we have designed a strategy to isolate the genes important for mineralization of collagen during bone formation. Cells isolated from 16-day embryonic chick calvaria and seeded post-confluence in culture deposited a mineralized matrix over a period of 2 weeks. Chick skin fibroblasts seeded and cultured under the same conditions did not mineralize. Using RT-PCR, we prepared short cDNAs ({approximately}300 bp) corresponding to the 3{prime} ends of mRNA from fibroblasts and separately from the mineralizing calvarial cells. Subtractive cDNA hybridization generated a pool of cDNAs that were specific to mineralizing calvarial cells but not to fibroblasts. Screening of 100,000 plaques of a chick bone ZAP Express cDNA library with this pool of mineralizing-specific cDNAs identified ten clones which comprised full-length cDNAs for the bone proteins osteopontin (eight of the ten positives), bone sialoprotein II (one of the ten positives), and cystatin (one of the ten positives). cDNAs for type I collagen, fibronectin, alkaline phosphatase, house-keeping genes, and other genes expressed in fibroblasts were not identified in this preliminary screen. The pool of short cDNAs is likely to comprise cDNAs for further bone-specific genes and will be used to screen the entire bone cDNA library of 4.2 million clones. 30 refs., 4 figs.

  2. Evaluation of a Modified Pamidronate Protocol for the Treatment of Osteogenesis Imperfecta.

    Science.gov (United States)

    Palomo, Telma; Andrade, Maria C; Peters, Barbara S E; Reis, Fernanda A; Carvalhaes, João Tomás A; Glorieux, Francis H; Rauch, Frank; Lazaretti-Castro, Marise

    2016-01-01

    Intravenous pamidronate is widely used to treat children with osteogenesis imperfecta (OI). In a well-studied protocol ('standard protocol'), pamidronate is given at a daily dose of 1 mg per kg body weight over 4 h on 3 successive days; infusion cycles are repeated every 4 months. Here, we evaluated renal safety of a simpler protocol for intravenous pamidronate infusions (2 mg per kg body weight given in a single infusion over 2 h, repeated every 4 months; 'modified protocol'). Results of 18 patients with OI types I, III, or IV treated with the modified protocol for 12 months were compared to 18 historic controls, treated with standard protocol. In the modified protocol, mild transient post-infusion increases in serum creatinine were found during each infusion but after 12 months serum creatinine remained similar from baseline [0.40 mg/dl (SD: 0.13)] to the end of the study [0.41 mg/dl (SD: 0.11)] (P = 0.79). The two protocols led to similar changes in serum creatinine during the first pamidronate infusion [modified protocol: +2% (SD: 21%); standard protocol: -3% (SD: 8%); P = 0.32]. Areal lumbar spine bone mineral density Z-scores increased from -2.7 (SD: 1.5) to -1.8 (SD: 1.4) with the modified protocol, and from -4.1 (SD: 1.4) to -3.1 (SD: 1.1) with standard protocol (P = 0.68 for group differences in bone density Z-score changes). The modified pamidronate protocol is safe and may have similar effects on bone density as the standard pamidronate protocol. More studies are needed with longer follow-up to prove anti-fracture efficacy.

  3. Femoral non-elongating rodding in osteogenesis imperfecta - The importance of purchasing epiphyseal plate

    Directory of Open Access Journals (Sweden)

    Wei-Chun Li

    2015-04-01

    Full Text Available Background: Corrective osteotomy and intramedullary rodding are widely used in children with osteogenesis imperfecta (OI, but revision rodding is often required. This study aims to investigate the effect of purchasing distal femoral epiphysis on the longevity of fixation using non-elongating rod. Methods: We investigated children with Sillence type III or IV OI who received antegrade femoral Rush rod fixations at age between 4 and 10 years in our institution. The fixations were classified into group A in which the rod reached distal femoral epiphysis and group B in which the rod stopped at femoral metaphysis. Failure of fixation is defined as rod cutting out of the cortex or when revision surgery was performed. Calculation of longevity of each rod fixation and Kaplan-Meier survival analysis were performed and compared between the two groups. Results: Eighteen children had the first femoral rodding at a mean age of 6.9 years and received a total of 61 femoral roddings with a mean follow-up of 11.4 years. Group A included 38 roddings performed at a mean age of 7.1 years and group B included 23 roddings performed at a mean age of 6.6 years. Group A had less revision rate (58% vs. 87%, more chance of survival > 3 years (74% vs. 43%, and longer median survival time (80 months vs. 33 months than group B. Conclusions: Less revision rate and better 3-year and 5-year survival rate were proved in the roddings that purchased epiphysis. We emphasize on using the precise implant length to purchase distal femoral epiphysis when non-elongating rod is the only available implant for fixation in children with OI.

  4. Echocardiographic Evidence of Early Diastolic Dysfunction in Asymptomatic Children with Osteogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Khalfan S. Al-Senaidi

    2015-11-01

    Full Text Available Objectives: Structural and functional cardiovascular abnormalities have been reported in adults with osteogenesis imperfecta (OI; however, there is a lack of paediatric literature on this topic. This study aimed to investigate cardiovascular abnormalities in children with OI in comparison to a control group. Methods: This case-control study was conducted at the Sultan Qaboos University Hospital in Muscat, Oman, between May 2013 and August 2014. Data from eight patients with OI and 24 healthy controls were compared using conventional and tissue Doppler echocardiography (TDE. Results: The OI group had significantly lower peak early mitral valve flow velocity (P = 0.027, peak a-wave reversal in the pulmonary vein (P = 0.030 and peak early diastolic velocity of the mitral valve and upper septum (P = 0.001 each. The peak late diastolic velocities of the mitral valve (P = 0.002 and the upper septum (P = 0.037 were significantly higher in the OI group; however, the peak early/late diastolic velocity ratios of the mitral valve (P = 0.002 and upper septum (P = 0.001 were significantly lower. Left ventricular dimensions and aortic and pulmonary artery diameters were larger in the OI group when indexed for body surface area. Both groups had normal systolic cardiac function. Conclusion: Children with OI had normal systolic cardiac function. However, changes in myocardial tissue Doppler velocities were suggestive of early diastolic cardiac dysfunction. They also had increased left ventricular dimensions and greater vessel diameters. These findings indicate the need for early and detailed structural and functional echocardiographic assessment and follow-up of young patients with OI.

  5. Osteogénesis imperfecta con manifestaciones en el periodo neonatal

    Directory of Open Access Journals (Sweden)

    Gilberto Rodríguez-Herrera

    2009-04-01

    Full Text Available Se reporta un caso de un paciente masculino de un día de vida extrauterina; producto de una madre de 20 años, primigesta, prima segunda de su pareja. Nace por cesárea por presentación pélvica, con líquido amniótico meconizado, con un peso al nacer de 2275 gramos (RNTPEG. Al examen físico el niño se encontraba flácido, con cianosis leve, fontanelas amplias con comunicación de la anterior con la posterior, ausencia de escama occipital, escleras azules, retrognatia, extremidades cortas y con crepitación al movimiento. En las radiografías óseas con fracturas múltiples, formación de callo óseo y cambios displásicos en metáfisis. Se diagnostica por parte de los genetistas una osteogénesis imperfecta (OI y se da consejo genético a los padres. La OI es un conjunto de trastornos genéticos que afectan la integridad del tejido conectivo, debido a que se presentan mutaciones en la síntesis del colágeno, ya sean autosómicas dominantes o recesivas. En vista de que el diagnóstico es predominante-mente clínico y radiológico, se debe profundizar en los patrones óseos, ya que los pacientes pueden desarrollar cambios quísticos, densos o frágiles. A partir de este caso de OI tipo 2 severa se pretende discutir las diferencias entre los diferentes grupos.

  6. A novel splice acceptor mutation in the DSPP gene causing dentinogenesis imperfecta type II.

    Science.gov (United States)

    Kim, J W; Nam, S H; Jang, K T; Lee, S H; Kim, C C; Hahn, S H; Hu, J C C; Simmer, J P

    2004-08-01

    The dentin sialophosphoprotein (DSPP) gene (4q21.3) encodes two major noncollagenous dentin matrix proteins: dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Defects in the human gene encoding DSPP cause inherited dentin defects, and these defects can be associated with bilateral progressive high-frequency sensorineural hearing loss. Clinically, five different patterns of inherited dentin defects are distinguished and are classified as dentinogenesis imperfecta (DGI) types I, II, and III, and dentin dysplasia types I and II. The genetic basis for this clinical heterogeneity is unknown. Among the 11 members recruited from the studied kindred, five were affected with autosomal dominant DGI type II. The mutation (g.1188C-->G, IVS2-3C-->G) lay in the third from the last nucleotide of intron 2 and changed its sequence from CAG to GAG. The mutation was correlated with the affection status and was absent in 104 unaffected individuals (208 alleles) with the same ethnic and geological background. The proband was in the primary dentition stage and presented with multiple pulp exposures. The occlusal surface of his dental enamel was generally abraded, and the dentin was heavily worn and uniformly shaded brown. The dental pulp chambers appeared originally to be within normal limits without any sign of obliteration, but over time (by age 4), the pulp chambers became partially or completely obliterated. The oldest affected member (age 59) showed mild hearing loss at high-frequency (8 kHz). Permanent dentition was severely affected in the adults, who had advanced dental attrition, premature loss of teeth, and extensive dental reconstruction.

  7. Intrafibrillar Mineral May be Absent in Dentinogenesis Imperfecta Type II (DI-II)

    Energy Technology Data Exchange (ETDEWEB)

    Pople, John A.

    2001-03-29

    High-resolution synchrotron radiation computed tomography (SRCT) and small angle x-ray scattering (SAXS) were performed on normal and dentinogenesis imperfecta type II (DI-II) teeth. Three normal and three DI-II human third molars were used in this study. The normal molars were unerupted and had intact enamel; donors were female and ranged in age from 18-21y. The DI-II specimens, which were also unerupted with intact enamel, came from a single female donor age 20y. SRCT showed that the mineral concentration was 33% lower on average in the DI-II dentin with respect to normal dentin. The SAXS spectra from normal dentin exhibited low-angle diffraction peaks at harmonics of 67.6 nm, consistent with nucleation and growth of the apatite phase within gaps in the collagen fibrils (intrafibrillar mineralization). In contrast, the low-angle peaks were almost nonexistent in the DI-II dentin. Crystallite thickness was independent of location in both DI-II and normal dentin, although the crystallites were significantly thicker in DI-II dentin (6.8 nm (s.d. = 0.5) vs 5.1 nm (s.d. = 0.6)). The shape factor of the crystallites, as determined by SAXS, showed a continuous progression in normal dentin from roughly one-dimensional (needle-like) near the pulp to two-dimensional (plate-like) near the dentin-enamel junction. The crystallites in DI-II dentin, on the other hand, remained needle-like throughout. The above observations are consistent with an absence of intrafibrillar mineral in DI-II dentin.

  8. Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II.

    Science.gov (United States)

    Kim, Jung-Wook; Hu, Jan C-C; Lee, Jae-Il; Moon, Sung-Kwon; Kim, Young-Jae; Jang, Ki-Taeg; Lee, Sang-Hoon; Kim, Chong-Chul; Hahn, Se-Hyun; Simmer, James P

    2005-02-01

    The current system for the classification of hereditary defects of tooth dentin is based upon clinical and radiographic findings and consists of two types of dentin dysplasia (DD) and three types of dentinogenesis imperfecta (DGI). However, whether DGI type III should be considered a distinct phenotype or a variation of DGI type II is debatable. In the 30 years since the classification system was first proposed, significant advances have been made regarding the genetic etiologies of inherited dentin defects. DGI type II is recognized as an autosomal dominant disorder with almost complete penetrance and a low frequency of de novo mutations. We have identified a mutation (c.52G-->T, p.V18F) at the first nucleotide of exon 3 of the DSPP (dentin sialophosphoprotein) gene in a Korean family (de novo) and a Caucasian family. This mutation has previously been reported as causing DGI type II in a Chinese family. These findings suggest that this mutation site represents a mutational "hot spot" in the DSPP gene. The clinical and radiographic features of these two families include the classic phenotypes associated with both DGI type II and type III. Finding that a single mutation causes both phenotypic patterns strongly supports the conclusion that DGI type II and DGI type III are not separate diseases but rather the phenotypic variation of a single disease. We propose a modification of the current classification system such that the designation "hereditary opalescent dentin" or "DGI type II" should be used to describe both the DGI type II and type III phenotypes.

  9. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone.

    Science.gov (United States)

    Fratzl-Zelman, Nadja; Schmidt, Ingo; Roschger, Paul; Roschger, Andreas; Glorieux, Francis H; Klaushofer, Klaus; Wagermaier, Wolfgang; Rauch, Frank; Fratzl, Peter

    2015-04-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of inheritable connective tissue disorders characterized by mutation in genes involved in collagen synthesis and leading to increased bone fragility, low bone mass, impaired bone material properties and abnormally high bone matrix mineralization. Recessive OI type VI is caused by mutation in SERPINF1 leading to a loss-of-function of pigment epithelium-derived factor (PEDF) a collagen-binding protein with potent antiangiogenic activity. Affected patients develop a severe OI phenotype with a striking histological characteristic, rare in other OI types, of an excess of osteoid tissue and prolonged mineralization lag time. To get insights into matrix mineralization, we evaluated biopsies from 9 affected children by quantitative and by high-resolution backscattered electron imaging and assessed bone mineralization density distribution. Thickness, shape and arrangement of mineral particles were measured in a subset of 4 patients by synchrotron small angle X-ray scattering. Typical calcium content in the bone matrix was found to be increased compared to controls, even exceeding values found previously in OI patients with collagen-gene mutations. A main characteristic however, is the coexistence of this highly mineralized bone matrix with seams showing abnormally low mineral content. Atypical collagen fibril organization was found in the perilacunar region of young osteocytes, suggesting a disturbance in the early steps of mineralization. These observations are consistent with the presence of a heterogeneous population of mineral particles with unusual size, shape and arrangement, especially in the region with lower mineral content. The majority of the particles in the highly mineralized bone areas were less disorganized, but smaller and more densely packed than in controls and in previously measured OI patients. These data suggest that the lack of PEDF impairs a proper osteoblast-osteocyte transition and consequently

  10. 牙本质发育不全的硬组织研究与进展%Research and progress of dental hard tissues with dentinogenesis imperfecta

    Institute of Scientific and Technical Information of China (English)

    张莹; 邹静; 杨燃

    2012-01-01

    背景:牙本质发育不全是一种牙本质发育异常的常染色体显性遗传病,目前的研究大多集中在致病基因和临床治疗上,硬组织方面的研究相对较少.目的:就牙本质发育不全的硬组织研究进展做一综述.方法:以"牙本质发育不全,表面形态,动物模型,釉牙本质界,牙本质小管"为关键词,应用计算机检索1999/2011 CNKI数据库、PubMed 数据库,OVID 数据库.结果与结论:多数学者研究发现牙本质发育不全的釉质结构正常,病变主要表现在釉牙本质界和牙本质.其釉牙本质界大多表现为直线型外观,牙本质结构紊乱,钙化不规则,牙本质小管数目减少,胶原纤维形态和排列异常.这些异常结构的成因尚不清楚,有待深入研究.%BACKGROUND: Dentinogenesis imperfecta is an autosomal dominant genetic disease with dysplastic dentin. Currently, moststudies on dentinogenesis imperfecta are focused on phenotype analysis and clinical therapy, while the reports on dental hardtissue of dentinogenesis imperfecta are rare.OBJECTIVE: To summarize the research progress of dental hard tissue with dentinogenesis imperfecta.METHODS: A computer-based online search of CNKI, PubMed and OVID databases was performed for related articles publishedbetween 1999 and 2011, with the key words of "dentinogenesis imperfecta, surface morphology, animal model, enamel dentinaljunction, dentinal tubule" in English and Chinese.RESULTS AND CONCLUSION: Most researchers recognize that the enamel of dentinogenesis imperfecta has normal structure.The lesions are located in enamel dentinal junction. The enamel dentinal junction represents a linear appearance. The dentinrepresents a structure disturbance with irregular calcification. The number of dentinal tubules reduces. The shape andarrangement of collagen fibers are abnormal. The reasons for the abnormal structures are not clear and need further research.

  11. First mouse model for combined osteogenesis imperfecta and Ehlers-Danlos syndrome.

    Science.gov (United States)

    Chen, Frieda; Guo, Ruolin; Itoh, Shousaku; Moreno, Luisa; Rosenthal, Esther; Zappitelli, Tanya; Zirngibl, Ralph A; Flenniken, Ann; Cole, William; Grynpas, Marc; Osborne, Lucy R; Vogel, Wolfgang; Adamson, Lee; Rossant, Janet; Aubin, Jane E

    2014-06-01

    By using a genome-wide N-ethyl-N-nitrosourea (ENU)-induced dominant mutagenesis screen in mice, a founder with low bone mineral density (BMD) was identified. Mapping and sequencing revealed a T to C transition in a splice donor of the collagen alpha1 type I (Col1a1) gene, resulting in the skipping of exon 9 and a predicted 18-amino acid deletion within the N-terminal region of the triple helical domain of Col1a1. Col1a1(Jrt) /+ mice were smaller in size, had lower BMD associated with decreased bone volume/tissue volume (BV/TV) and reduced trabecular number, and furthermore exhibited mechanically weak, brittle, fracture-prone bones, a hallmark of osteogenesis imperfecta (OI). Several markers of osteoblast differentiation were upregulated in mutant bone, and histomorphometry showed that the proportion of trabecular bone surfaces covered by activated osteoblasts (Ob.S/BS and N.Ob/BS) was elevated, but bone surfaces undergoing resorption (Oc.S/BS and N.Oc/BS) were not. The number of bone marrow stromal osteoprogenitors (CFU-ALP) was unaffected, but mineralization was decreased in cultures from young Col1a1(Jrt) /+ versus +/+ mice. Total collagen and type I collagen content of matrices deposited by Col1a1(Jrt) /+ dermal fibroblasts in culture was ∼40% and 30%, respectively, that of +/+ cells, suggesting that mutant collagen chains exerted a dominant negative effect on type I collagen biosynthesis. Mutant collagen fibrils were also markedly smaller in diameter than +/+ fibrils in bone, tendon, and extracellular matrices deposited by dermal fibroblasts in vitro. Col1a1(Jrt) /+ mice also exhibited traits associated with Ehlers-Danlos syndrome (EDS): Their skin had reduced tensile properties, tail tendon appeared more frayed, and a third of the young adult mice had noticeable curvature of the spine. Col1a1(Jrt) /+ is the first reported model of combined OI/EDS and will be useful for exploring aspects of OI and EDS pathophysiology and treatment.

  12. Ultrastructural and histological findings on examination of skin in osteogenesis imperfecta: a novel study.

    Science.gov (United States)

    Balasubramanian, Meena; Wagner, Bart E; Peres, Luiz C; Sobey, Glenda J; Parker, Michael J; Dalton, Ann; Arundel, Paul; Bishop, Nicholas J

    2015-04-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders of bone formation, resulting in low bone mass and an increased propensity for fractures. It is a variable condition with a range of clinical severities. The histological and ultrastructural findings in the skin of patients with OI have not been described in detail in the previously published literature. Although protein analysis of cultured fibroblasts has historically been used in the diagnostic work-up of OI patients, other aspects of skin examination are not routinely performed as part of the diagnostic pathway in patients with OI. The aims of this study were to perform histological and ultrastructural examination of skin biopsies in patients with OI. This was to identify common and distinguishing features in the numerous genetically distinct subtypes of OI and compare the findings with those in patients who did not present with fractures, and to enable the use of the results thus obtained to aid in the diagnostic work-up of patients with OI. As part of a larger research study set-up to identify clinical features and natural history in patients with atypical features of OI, skin biopsy and examination (histology and electron microscopy) were undertaken. Genetic analysis and ancillary investigations were also performed to identify similarities within this group and to differentiate this group from the 'normal' population. At the end of this study, we were able to demonstrate that the histological and electron microscopic findings on a skin biopsy may be an indicator of the likelihood of identifying a pathogenic mutation in type 1 collagen genes. This is because patients with specific findings on examination, such as elastic fibre area fraction (on histological analysis), collagen fibril diameter variability, deviation from the expected mean and collagen flowers (on electron microscopy), are more likely to be positive on genetic analyses. This has, in turn, provided more insight into the

  13. Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone.

    Science.gov (United States)

    Vanleene, Maximilien; Shefelbine, Sandra J

    2013-04-01

    Osteogenesis imperfecta (OI) is characterized by extremely brittle bone. Currently, bisphosphonate drugs allow a decrease of fracture by inhibiting bone resorption and increasing bone mass but with possible long term side effects. Whole body mechanical vibrations (WBV) treatment may offer a promising route to stimulate bone formation in OI patients as it has exhibited health benefits on both muscle and bone mass in human and animal models. The present study has investigated the effects of WBV (45Hz, 0.3g, 15minutes/days, 5days/week) in young OI (oim) and wild type female mice from 3 to 8weeks of age. Vibration therapy resulted in a significant increase in the cortical bone area and cortical thickness in the femur and tibia diaphysis of both vibrated oim and wild type mice compared to sham controls. Trabecular bone was not affected by vibration in the wild type mice; vibrated oim mice, however, exhibited significantly higher trabecular bone volume fraction in the proximal tibia. Femoral stiffness and yield load in three point bending were greater in the vibrated wild type mice than in sham controls, most likely attributed to the increase in femur cortical cross sectional area observed in the μCT morphology analyses. The vibrated oim mice showed a trend toward improved mechanical properties, but bending data had large standard deviations and there was no significant difference between vibrated and non-vibrated oim mice. No significant difference of the bone apposition was observed in the tibial metaphyseal trabecular bone for both the oim and wild type vibrated mice by histomorphometry analyses of calcein labels. At the mid diaphysis, the cortical bone apposition was not significantly influenced by the WBV treatment in both the endosteum and periosteum of the oim vibrated mice while a significant change is observed in the endosteum of the vibrated wild type mice. As only a weak impact in bone apposition between the vibrated and sham groups is observed in the

  14. Benefit of infusions with ibandronate treatment in children with osteogenesis imperfecta

    Institute of Scientific and Technical Information of China (English)

    LI Mei; MENG Xun-wu; XU Ling; XIA Wei-bo; XING Xiao-ping; YU Wei; HU Ying-ying; JIANG Yan; WANG Ou; LIU Hai-juan; HAN Lan-wen

    2011-01-01

    Background Osteogenesis imperfecta (OI) is a rare bone disease and its effective treatment is relatively deficient. We tried to assess the effects of new bisphosphonate, ibandronate on children with OI.Methods In this open-label, prospective, controlled study, 30 children with OI were enrolled. They received either infusions of ibandronate (2 mg) in every three months or oral calcitriol 0.25 μg daily for 24 months. All patients took 500 mg calcium plus 200 U vitamin D daily together. The endpoints were the change of annual new fracture rate (observed by case history and X ray films of spine), bone mineral density (BMD, measured by dual energy X-ray absortiometry), serum concentration of carboxy-telopeptide cross-links of type Ⅰ collagen (CTX, bone resorption marker) and alkaline phosphatase (ALP, bone formation marker) during the follow-up.Results After the cyclic infusions of ibandronate, the annual new fracture rate was significantly decreased from 1.9 to 0.13 time, obviously lower than that of calcitriol group, which decreased from 1.8 to 1.0 time after the treatment (P <0.001).The significant increase of BMD at the lumbar spine, femoral neck, trochanter, total hip was found in the group of ibandronate by 59.0%, 42.0%, 47.5% and 36.6% in time dependent manner (compared with the baseline, P <0.001). The increase of BMD in ibandronate group was greater than that of calcitriol group (P <0.001). The concentrations of ALP and CTX were obviously decreased in ibandronate group, and the reduction of CTX was more significant than that of ALP (P <0.001). The tolerance of the children to ibandronate was quite well. Mild fever and muscle pain were found in 9 cases within 1-3 days after the first infusion of ibandronate, which could relieve after 1-2 days without special management.Conclusions The benefits of cyclic infusions of ibandronate to children with OI are significant because ibandronate could significantly reduce annual bone fracture rate

  15. Rough endoplasmic reticulum trafficking errors by different classes of mutant dentin sialophosphoprotein (DSPP) cause dominant negative effects in both dentinogenesis imperfecta and dentin dysplasia by entrapping normal DSPP.

    Science.gov (United States)

    von Marschall, Zofia; Mok, Seeun; Phillips, Matthew D; McKnight, Dianalee A; Fisher, Larry W

    2012-06-01

    Families with nonsyndromic dentinogenesis imperfecta (DGI) and the milder, dentin dysplasia (DD), have mutations in one allele of the dentin sialophosphoprotein (DSPP) gene. Because loss of a single Dspp allele in mice (and likely, humans) causes no dental phenotype, the mechanism(s) underling the dominant negative effects were investigated. DSPP mutations occur in three classes. (The first class, the mid-leader missense mutation, Y6D, was not investigated in this report.) All other 5′ mutations of DSPP result in changes/loss in the first three amino acids (isoleucine-proline-valine [IPV]) of mature DSPP or, for the A15V missense mutation, some retention of the hydrophobic leader sequence. All of this second class of mutations caused mutant DSPP to be retained in the rough endoplasmic reticulum (rER) of transfected HEK293 cells. Trafficking out of the rER by coexpressed normal DSPP was reduced in a dose-responsive manner, probably due to formation of Ca2+-dependent complexes with the retained mutant DSPP. IPV-like sequences begin many secreted Ca2+-binding proteins, and changing the third amino acid to the charged aspartate (D) in three other acidic proteins also caused increased rER accumulation. Both the leader-retaining A15V and the long string of hydrophobic amino acids resulting from all known frameshift mutations within the 3′-encoded Ca2+-binding repeat domain (third class of mutations) caused retention by association of the mutant proteins with rER membranes. More 5′ frameshift mutations result in longer mutant hydrophobic domains, but the milder phenotype, DD, probably due to lower effectiveness of the remaining, shorter Ca2+-binding domain in capturing normal DSPP protein within the rER. This study presents evidence of a shared underlying mechanism of capturing of normal DSPP by two different classes of DSPP mutations and offers an explanation for the mild (DD-II) versus severe (DGI-II and III) nonsyndromic dentin phenotypes. Evidence is also

  16. NOVEL SPLICING MUTATION OF COL1A1 GENE CAUSING OSTEOGENESIS IMPERFECTA TYPE I IN CHINESE PEDIGREE

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-lin; GU Ming-min; CUI Bing; LI Xi-hua; LU Zhen-yu; WANG Zhu-gang; YUAN Wen-tao; SONG Huai-dong

    2007-01-01

    Objective To detect the peculiar mutation in a Chinese family with osteogenesis imperfecta,COL1A1 and COL1A2 being analysed. Methods A genome screen was undertaken covering COL1A1 at 17q21-22 and COL1A2 at 7q22.1. The Linkage ( Version 5.1 ) was used for 2-point analysis. DNA sequencing was used to screen and identify the mutation. Results A linkage to the markers on chromosome 17q21-22 was observed. Sequence analysis of COL1A1 revealed a splicing mutation ( IVS8-2A > G) that converted the 3' end of intron 8 from AG to GG. Conclusion This mutation ( IVS 8-2A > G) is novel, and has not yet been registered in the Human Type Ⅰ and Type Ⅲ Collagen Mutations Database.

  17. Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2015-06-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by a change in bone tissue quality, but little data are available to describe the factors involved at the macroscopic scale. To better understand the effect of microstructure alterations on the mechanical properties at the sample scale, we studied the structural and mechanical properties of six cortical bone samples from children with OI treated with bisphosphonates and compared them to the properties of three controls. Scanning electron microscopy, high resolution computed tomography and compression testing were used to assess these properties. More resorption cavities and a higher osteocyte lacunar density were observed in OI bone compared with controls. Moreover, a higher porosity was measured for OI bones along with lower macroscopic Young's modulus, yield stress and ultimate stress. The microstructure was impaired in OI bones; the higher porosity and osteocyte lacunar density negatively impacted the mechanical properties and made the bone more prone to fracture.

  18. Hyperplastic callus formation in osteogenesis imperfecta type V: follow-up of three generations over ten years

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Moira S.; Azouz, E.M.; Glorieux, Francis H. [Shriners Hospital for Children and McGill University, Genetics Unit, Montreal, Quebec (Canada); Rauch, Frank [Shriners Hospital for Children and McGill University, Genetics Unit, Montreal, Quebec (Canada); Shriners Hospital for Children, Genetics Unit, Montreal, Quebec (Canada)

    2008-05-15

    Hyperplastic callus (HPC) formation is a prominent feature of osteogenesis imperfecta (OI) type V; however, little is known about its long-term outcome. In this case report we describe the occurrence, appearance and course of a femoral HPC in a patient with OI type V during 10 years of follow-up. Radiographs of HPC in this child were compared and contrasted with HPC formation in the femur of his father and paternal grandfather, who also were affected with OI type V. This case report makes it clear that HPC can lead to significant morbidity, not only in the acute phase but also long term as a result of residual alteration in bone architecture. (orig.)

  19. Advances in the research of osteogenesis imperfecta%成骨不全的相关研究进展

    Institute of Scientific and Technical Information of China (English)

    周琦; 白露

    2014-01-01

    成骨不全(osteogenesis imperfecta,OI)又称为脆骨症,是一种以骨受累为主要特征的先天性全身性结缔组织遗传疾病.该病致病机理复杂,遗传异质性高,其中90%的OI是由Ⅰ型胶原基因(COL1A1,COL1A2)突变导致结构或功能的异常引起的.目前治疗OI主要是使用药物或进行外科手术,但基因治疗将成为治疗该病的根本途径和主要研究热点.

  20. Anesthetic management for combined mitral valve replacement and aortic valve repair in a patient with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Huang Jiapeng

    2011-01-01

    Full Text Available Osteogenesis imperfecta is a rare disorder of connective tissues and presents multiple challenges, including difficult airway, hyperthermia, coagulopathy and respiratory dysfunction, for anesthesiologists, especially during cardiac surgery. We present anesthetic management of a patient with osteogenesis impertecta during double valve surgery. Dexmedetomidine infusion minimized the risks of malignant hyperthermia. Glidescope and in-line stabilization facilitated endotracheal intubation and protected his oral structures and cervical spine. Transesophageal echocardiography (TEE diagnosed a flail A3 segment and redundant left coronary cusp causing mitral and aortic regurgitation. The mitral valve was replaced and the aortic valve repaired. Coagulopathy was corrected according to comprehensive coagulation analysis. Glidescope, dexmedetomidine, coagulation analysis and TEE could facilitate anesthetic management in these patients.

  1. Unusual features associated with dentinogenesis imperfecta type II: report of two cases affecting the family over three generations

    Directory of Open Access Journals (Sweden)

    Shruthi Rao

    2017-03-01

    Full Text Available Dentinogenesis imperfecta (DI is an autosomal dominant genetic disease. It has a high degree of penetrance and a very low mutation rate. DI is characterized by opalescent dentin and discoloration of the teeth. The exposed dentin may undergo severe attrition. Early diagnosis and management of this condition is essential for the prevention of further complications and for the aesthetic purpose. We present clinical and radiographic features of two cases of DI type II affecting the family over three generations. This report also highlights rare features such as odontome, multiple impacted teeth and retained deciduous teeth along with features of DI in a 16-years old male.. [Cukurova Med J 2017; 42(1.000: 155-160

  2. Rib cage deformities alter respiratory muscle action and chest wall function in patients with severe osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Antonella LoMauro

    Full Text Available BACKGROUND: Osteogenesis imperfecta (OI is an inherited connective tissue disorder characterized by bone fragility, multiple fractures and significant chest wall deformities. Cardiopulmonary insufficiency is the leading cause of death in these patients. METHODS: Seven patients with severe OI type III, 15 with moderate OI type IV and 26 healthy subjects were studied. In addition to standard spirometry, rib cage geometry, breathing pattern and regional chest wall volume changes at rest in seated and supine position were assessed by opto-electronic plethysmography to investigate if structural modifications of the rib cage in OI have consequences on ventilatory pattern. One-way or two-way analysis of variance was performed to compare the results between the three groups and the two postures. RESULTS: Both OI type III and IV patients showed reduced FVC and FEV(1 compared to predicted values, on condition that updated reference equations are considered. In both positions, ventilation was lower in OI patients than control because of lower tidal volume (p<0.01. In contrast to OI type IV patients, whose chest wall geometry and function was normal, OI type III patients were characterized by reduced (p<0.01 angle at the sternum (pectus carinatum, paradoxical inspiratory inward motion of the pulmonary rib cage, significant thoraco-abdominal asynchronies and rib cage distortions in supine position (p<0.001. CONCLUSIONS: In conclusion, the restrictive respiratory pattern of Osteogenesis Imperfecta is closely related to the severity of the disease and to the sternal deformities. Pectus carinatum characterizes OI type III patients and alters respiratory muscles coordination, leading to chest wall and rib cage distortions and an inefficient ventilator pattern. OI type IV is characterized by lower alterations in the respiratory function. These findings suggest that functional assessment and treatment of OI should be differentiated in these two forms of the

  3. Osteogenesis imperfecta Type I caused by a novel mutation in the start codon of the COL1A1 gene in a Korean family.

    Science.gov (United States)

    Cho, Sung Yoon; Lee, Ji-Ho; Ki, Chang-Seok; Chang, Mi Sun; Jin, Dong-Kyu; Han, Heon-Seok

    2015-01-01

    Osteogenesis imperfecta (OI) comprises a heterogeneous group of disorders characterized by susceptibility to bone fractures ranging in severity from perinatal death to a subtle increase in fracture frequency. We report the case of a patient who appeared healthy at birth and did not experience any fractures until 12 months of age. We observed blue sclera, frequent fractures without commensurate trauma, nearly normal stature, the absence of dentinogenesis imperfecta, no bony deformity, and no limitation of mobility in the patient--all characteristics suggestive of OI Type I. The patient's mother also had blue sclera and a history of frequent fracture episodes until the age of 15 years. A novel COL1A1 missense mutation (c.2T>G) disrupting the start codon of the gene (ATG to AGG (Met1Arg)) was found in the patient and his mother.

  4. Two novel distinct COL1A2 mutations highlight the complexity of genotype-phenotype correlations in osteogenesis imperfecta and related connective tissue disorders.

    Science.gov (United States)

    Reuter, Miriam S; Schwabe, Georg C; Ehlers, Christian; Marschall, Christoph; Reis, André; Thiel, Christian; Graul-Neumann, Luitgard

    2013-12-01

    Osteogenesis imperfecta is a heritable connective tissue disorder characterized by variable symptoms including predisposition to fractures. Despite the identification of numerous mutations, a reliable genotype-phenotype correlation has remained notoriously difficult. We now describe two patients with osteogenesis imperfecta and novel, so far undescribed mutations in the COL1A2 gene, further highlighting this complexity. A 3-year-old patient presented with features reminiscent of a connective tissue disorder, with joint hypermobility, Wormian bones, streaky lucencies in the long bones and relative macrocephaly. The patient carried a heterozygous c.1316G > A (p.Gly439Asp) mutation in the COL1A2 gene located in a triple-helix region, in which glycine substitutions have been assumed to cause perinatal lethal OI (Sillence type II). A second family with type I osteogenesis imperfecta carried a heterozygous nonsense mutation c.4060C > T (p.Gln1354X) within the last exon of COL1A2. Whereas other heterozygous nonsense mutations in COL1A2 do not lead to a phenotype, in this case the mRNA is presumed to escape nonsense-mediated decay. Therefore the predicted COL1A2 propeptide lacks the last 13 C-terminal amino acids, suggesting that the OI phenotype results from decelerated assembly and overmodification of the collagen triple helix. The presented COL1A2 mutations exemplify the complexity of COL1A2 genotype-phenotype correlation in genetic counselling in OI.

  5. Molecular Basis of Human Enamel Defects

    Directory of Open Access Journals (Sweden)

    Chatzopoulos Georgios

    2014-03-01

    Full Text Available During eruption of teeth in the oral cavity, the effect of gene variations and environmental factors can result in morphological and structural changes in teeth. Amelogenesis imperfecta is a failure which is detected on the enamel of the teeth and clinical picture varies by the severity and type of the disease. Classification of the types of amelogenesis imperfecta is determined by histological, genetic, clinical and radiographic criteria. Specifically, there are 4 types of amelogenesis imperfecta (according to Witkop: hypoplastic form, hypo-maturation form, hypo-calcified form, and hypo-maturation/hypoplasia form with taurodontism and 14 subcategories. The diagnosis and classification of amelogenesis imperfecta has traditionally been based on clinical presentation or phenotype and the inheritance pattern. Several genes can be mutated and cause the disease. Millions of genes, possibly more than 10,000 genes produce proteins that regulate synthesis of enamel. Some of the genes and gene products that are likely associated with amelogenesis imperfecta are: amelogenin (AMELX, AMELY genes, ameloblastin (AMBN gene, enamelin (ENAM gene, enamelysin (MMP20 gene, kalikryn 4 (KLK 4 gene, tuftelins (Tuftelin gene, FAM83H (FAM83H gene and WDR72 (WDR72 gene. Particular attention should be given by the dentist in recognition and correlation of phenotypes with genotypes, in order to diagnose quickly and accurately such a possible disease and to prevent or treat it easily and quickly. Modern dentistry should restore these lesions in order to guarantee aesthetics and functionality, usually in collaboration with a group of dentists.

  6. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data

  7. Four patients with Sillence type I osteogenesis imperfecta and mild bone fragility, complicated by left ventricular cardiac valvular disease and cardiac tissue fragility caused by type I collagen mutations

    DEFF Research Database (Denmark)

    Vandersteen, Anthony M; Lund, Allan M; Ferguson, David J P

    2014-01-01

    Osteogenesis imperfecta (OI) type I is a hereditary disorder of connective tissue (HDCT) characterized by blue or gray sclerae, variable short stature, dentinogenesis imperfecta, hearing loss, and recurrent fractures from infancy. We present four examples of OI type I complicated by valvular heart...... disease and associated with tissue fragility. The diagnosis of a type I collagen disorder was confirmed by abnormal COL1A1 or COL1A2 gene sequencing. One patient was investigated with electrophoresis of collagens from cultured skin fibroblasts, showing structurally abnormal collagen type I, skin biopsy...

  8. Kohlschütter-Tönz Syndrome – Report of an additional case

    Science.gov (United States)

    González-Arriagada, Wilfredo A.; Carlos-Bregni, Román; Contreras, Elisa; Almeida, Oslei P.

    2013-01-01

    Kohlschütter-Tönz Syndrome is a rare disorder clinically characterized by amelogenesis imperfecta, epilepsy and progressive mental deterioration. We present an additional case of this syndrome of a nine year-old boy who was referred by pigmented teeth. The mental deterioration was associated with speech delay, impulsive behavior, attention-deficit/hyperactivity disorder, and learning problems. The physical examination revealed a reduction of lower third, slightly palpebral fissures, low ear and hair implantation, coarse hair and hypertrichosis. The intraoral examination showed alteration in teeth pigmentation diagnosed as amelogenesis imperfecta. Although rare, the present case report illustrates a syndrome that has dental anomalies and systemic alterations. It is important to recognize this syndrome as early as possible and paediatric dentist may contribute to the diagnosis and consequently to better manage the patients. Key words:Kohlschütter-Tönz syndrome, amelogenesis imperfecta, seizures, mental deterioration. PMID:24455057

  9. Osteogenesis imperfecta model peptides: incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility.

    Science.gov (United States)

    Xiao, Jianxi; Madhan, Balaraman; Li, Yingjie; Brodsky, Barbara; Baum, Jean

    2011-07-20

    Missense mutations, which replace one Gly with a larger residue in the repeating sequence of the type I collagen triple helix, lead to the hereditary bone disorder osteogenesis imperfecta (OI). Previous studies suggest that these mutations may interfere with triple-helix folding. NMR was used to investigate triple-helix formation in a series of model peptides where the residue replacing Gly, as well as the local sequence environment, was varied. NMR measurement of translational diffusion coefficients allowed the identification of partially folded species. When Gly was replaced by Ala, the Ala residue was incorporated into a fully folded triple helix, whereas replacement of Gly by Ser or Arg resulted in the presence of some partially folded species, suggesting a folding barrier. Increasing the triple-helix stability of the sequence N-terminal to a Gly-to-Ser replacement allowed complete triple-helix folding, whereas with the substitution of Arg, with its large side chain, the peptide achieved full folding only after flexible residues were introduced N-terminal to the mutation site. These studies shed light on the factors important for accommodation of Gly mutations within the triple helix and may relate to the varying severity of OI.

  10. Administration of soluble activin receptor 2B increases bone and muscle mass in a mouse model of osteogenesis imperfecta

    Institute of Scientific and Technical Information of China (English)

    Douglas J DiGirolamo; Vandana Singhal; Xiaoli Chang; Se-Jin Lee; Emily L Germain-Lee

    2015-01-01

    Osteogenesis imperfecta (OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI, many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B (ACVR2B) in a mouse model of type III OI (oim). Treatment of 12-week-old oim mice with ACVR2B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy, wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system.

  11. Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms.

    Science.gov (United States)

    Otsuru, Satoru; Gordon, Patricia L; Shimono, Kengo; Jethva, Reena; Marino, Roberta; Phillips, Charlotte L; Hofmann, Ted J; Veronesi, Elena; Dominici, Massimo; Iwamoto, Masahiro; Horwitz, Edwin M

    2012-08-30

    Transplantation of whole bone marrow (BMT) as well as ex vivo-expanded mesenchymal stromal cells (MSCs) leads to striking clinical benefits in children with osteogenesis imperfecta (OI); however, the underlying mechanism of these cell therapies has not been elucidated. Here, we show that non-(plastic)-adherent bone marrow cells (NABMCs) are more potent osteoprogenitors than MSCs in mice. Translating these findings to the clinic, a T cell-depleted marrow mononuclear cell boost (> 99.99% NABMC) given to children with OI who had previously undergone BMT resulted in marked growth acceleration in a subset of patients, unambiguously indicating the therapeutic potential of bone marrow cells for these patients. Then, in a murine model of OI, we demonstrated that as the donor NABMCs differentiate to osteoblasts, they contribute normal collagen to the bone matrix. In contrast, MSCs do not substantially engraft in bone, but secrete a soluble mediator that indirectly stimulates growth, data which provide the underlying mechanism of our prior clinical trial of MSC therapy for children with OI. Collectively, our data indicate that both NABMCs and MSCs constitute effective cell therapy for OI, but exert their clinical impact by different, complementary mechanisms. The study is registered at www.clinicaltrials.gov as NCT00187018.

  12. An unusual case of atrophic mandible fracture in a patient with osteogenesis imperfecta and on oral bisphosphonate therapy: Case report

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al-Osaimi

    2014-04-01

    Full Text Available Fractures of severely atrophic (height < 10 mm edentulous mandibles are infrequent and challenging to manage. Factors such as sclerotic bone and decreased vascularity combined with systemic diseases complicate the management of such fractures. Osteogenesis imperfecta (OI is a heterogeneous group of inherited disorders of type I collagen metabolism. Patients with OI characteristically present with histories of long bone fractures, deformities, blue sclerae, and opalescent dentin. However, fractures of the facial skeleton are rare. Bisphosphonate therapy has been proven to effectively reduce the fracture risk in patients with OI. The purpose of this clinical report is to present an unusual case of spontaneous fracture of the atrophic mandible in a patient with OI. Despite open reduction and internal fixation (ORIF with miniplate osteosynthesis, the patient developed a second fracture at a screw placement site distal to the first fracture. The patient was successfully treated with ORIF using locking reconstruction plates fixed in the symphyseal and angle regions. Bone healing following ORIF was normal, and no clinical sign of osteonecrosis as a result of bisphosphonate therapy was observed. Patients with OI can present with spontaneous fractures of already weakened mandibles. Although such fractures can be managed with care using established protocols, further research is required to examine the effects of concomitant medication, such as bisphosphonates.

  13. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment.

    Science.gov (United States)

    Sinder, Benjamin P; Salemi, Joseph D; Ominsky, Michael S; Caird, Michelle S; Marini, Joan C; Kozloff, Kenneth M

    2015-02-01

    Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown that bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical Wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly→Cys substitution on col1a1, for 5weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI.

  14. Osteogenesis imperfecta type I: Molecular heterogeneity for COL1A1 null alleles of type I collagen

    Energy Technology Data Exchange (ETDEWEB)

    Willing, M.C.; Deschenes, S.P.; Pitts, S.H.; Arikat, H.; Roberts, E.J.; Scott, D.A.; Slayton, R.L. [Univ. of Iowa, Iowa City, IA (United States); Byers, P.H. [Univ. of Washington, Seattle, WA (United States)

    1994-10-01

    Osteogenesis imperfecta (OI) type I is the mildest form of inherited brittle-bone disease. Dermal fibroblasts from most affected individuals produce about half the usual amount of type I procollagen, as a result of a COL1A1 {open_quotes}null{close_quotes} allele. Using PCR amplification of genomic DNA from affected individuals, followed by denaturing gradient gel electrophoresis (DGGE) and SSCP, we identified seven different COL1A1 gene mutations in eight unrelated families with OI type I. Three families have single nucleotide substitutions that alter 5{prime} donor splice sites; two of these unrelated families have the same mutation. One family has a point mutation, in an exon, that creates a premature termination codon, and four have small deletions or insertions, within exons, that create translational frameshifts and new termination codons downstream of the mutation sites. Each mutation leads to both marked reduction in steady-state levels of mRNA from the mutant allele and a quantitative decrease in type I procollagen production. Our data demonstrate that different molecular mechanisms that have the same effect on type I collagen production result in the same clinical phenotype. 58 refs., 4 figs., 1 tab.

  15. De novo mutation in the DSPP gene associated with dentinogenesis imperfecta type II in a Japanese family.

    Science.gov (United States)

    Kida, Miyuki; Tsutsumi, Tomonori; Shindoh, Masanobu; Ikeda, Hisami; Ariga, Tadashi

    2009-12-01

    Dentinogenesis imperfecta (DGI) type II is one of the most common dominantly inherited dentin defects, in which both the primary and permanent teeth are affected. Here, we report a Japanese family with autosomal-dominant DGI type II, including both molecular genetic defects and pathogenesis with histological analysis. Mutation analysis revealed a mutation (c.53T>A, p.V18D, g.1192T>A) involving the second nucleotide of the first codon within exon 3 of the dentin sialophosphoprotein (DSPP) gene. This mutation has previously been reported in a Korean family. Thus far, 24 allelic DSPP mutations have been reported, and this is the seventh mutation involving the DSPP V18 residue. Among those, only one other was shown to be caused by a de novo mutation, and that mutation also affected the V18 amino acid residue. The DSPP V18 residue is highly conserved among other mammalian species. These findings thus suggest that the V18 amino acid might be a sensitive mutational hot spot, playing a critical role in the pathogenesis of DGI.

  16. Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pQCT

    DEFF Research Database (Denmark)

    Folkestad, Lars; Hald, Jannie Dahl; Hansen, Stinus

    2012-01-01

    Osteogenesis Imperfecta (OI) is a hereditary disorder characterized by decreased biosynthesis or impaired morphology of collagen type-1 that leads to decreased bone mass and increased bone fragility. We hypothesized that patients with OI have altered bone microstructure and bone geometry. In this...... treated with bisphosphonates. HR-pQCT at the distal radius and distal tibia and dual-energy X-ray absorptiomentry of total hip, femoral neck, trochanteric region and the lumbar spine (L1-L4) were performed. The patients were shorter than the controls (159¿±¿10¿cm vs. 170¿±¿9¿cm, p¿...

  17. Skeletal phenotypes in adult patients with osteogenesis imperfecta-correlations with COL1A1/COL1A2 genotype and collagen structure

    DEFF Research Database (Denmark)

    Hald, J D; Folkestad, L; Harsløf, T

    2016-01-01

    Osteogenesis imperfecta (OI) is characterized by a high fracture rate and great heterogeneity. This cross-sectional study presents skeletal investigations and protein analyses in 85 adult OI patients. We find significant differences in bone mass, architecture, and fracture rate that correlate well...... of this study was to improve our understanding of clinical manifestations by investigating anthropometry and skeletal phenotypes (DXA, HRpQCT) in an adult OI population and compare the findings to underlying COL-1 genotype and structure. METHODS: The study comprised 85 OI patients aged 45 (19-78) years...

  18. Study on the Pathogenic Gene of Dentinogenesis Imperfecta of Type Ⅱ%Ⅱ型牙本质发育不全的致病基因研究进展

    Institute of Scientific and Technical Information of China (English)

    吴柒柱; 吉日木图; 齐玥; 陈宇杰; 刘海平; 白海花

    2009-01-01

    牙本质发育不全症是一种常染色体显性遗传病,其致病基因定位于4q2l.临床上分为三型:Ⅰ型(Dentinogenesis Imperfecta type Ⅰ, DGI-Ⅰ) 主要见于成骨发育不全(Osteogenesis Imperfecta, OI)患者的口腔,其病因被广泛认为是由Ⅰ型胶原基因突变导致.Ⅲ型(Dentinogenesis Imperfecta type Ⅲ, DGI-Ⅲ)是一种特殊的遗传性牙本质发育不全,在美国马里兰州的3个隔离民族群中独立发生.Ⅱ型(Dentinogenesis Imperfecta typeⅡ, DGI-Ⅱ)在临床上最为常见,成为研究热点.Ⅱ型牙本质发育不全的致病基因主要为牙本质唾液酸焦磷酸蛋白基因(dentin sialophosphoprotein, DSPP)突变引起,独立发生且具有高度的遗传异质性.主要对牙本质发育不全Ⅱ型的候选基因及DSPP的突变进行了综述.

  19. The phenotypic features of osteogenesis imperfecta resulting from a mutation of the carboxyl-terminal pro alpha 1(I) propeptide that impairs the assembly of type I procollagen and formation of the extracellular matrix

    NARCIS (Netherlands)

    Cole, WG; Chow, CW; Bateman, JF; Sillence, DO

    1996-01-01

    The features of a baby with lethal perinatal osteogenesis imperfecta (OI-II), resulting from the substitution of tryptophan 94 by cysteine in the carboxyl-terminal propeptide of pro alpha 1(I) chains of type I procollagen, were studied. The limbs and torso were of normal length, shape, and proportio

  20. 成骨不全的临床及X线表现分析%Analysis of the clinical manifestation of osteogenesis imperfecta and its X-ray images

    Institute of Scientific and Technical Information of China (English)

    杨建松

    2014-01-01

    目的:探讨成骨不全的临床X线表现及其病因。方法:回顾性分析4例成骨不全病例,所有病例均行X线检查。结果:4例均表现为蓝色巩膜,肢体畸形,X线表现为长骨及肋骨多发性骨折,颅骨骨化不全。结论:当遇到新生儿及小儿蓝色巩膜,肢体畸形,进行性听力障碍,应想到成骨不全的可能性。%Objective:To investigate the clinical X-ray manifestation of osteogenesis imperfecta and its pathogeny.Methods:Retrospective analyze 4 patients with osteogenesis imperfect.All the cases underwent X-ray examination.Results:4 cases all characterized by blue sclera,limb deformity,and the X-ray showed multiple long bone and fractured ribs,skull ossification incomplete.Conclusion:When we treated on the neonatal and pediatric blue sclera,limb deformity,progressive hearing impairment, we should think of the possibility of osteogenesis imperfecta.