WorldWideScience

Sample records for ameliorates high-glucose induced

  1. Flurbiprofen ameliorates glucose deprivation-induced leptin resistance

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    2016-09-01

    Full Text Available Leptin resistance is one of the mechanisms involved in the pathophysiology of obesity. The present study showed that glucose deprivation inhibited leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3 and signal transducer and activator of transcription 5 (STAT5 in neuronal cells. Flurbiprofen reversed glucose deprivation-mediated attenuation of STAT3, but not STAT5 activation, in leptin-treated cells. Glucose deprivation increased C/EBP-homologous protein (CHOP and glucose regulated protein 78 (GRP78 induction, indicating the activation of unfolded protein responses (UPR. Flurbiprofen did not affect the glucose deprivation-induced activation of UPR, but did attenuate the glucose deprivation-mediated induction of AMP-activated protein kinase (AMPK phosphorylation. Flurbiprofen may ameliorate glucose deprivation-induced leptin resistance in neuronal cells.

  2. 7,8-Dihydroxyflavone ameliorates high-glucose induced diabetic apoptosis in human retinal pigment epithelial cells by activating TrkB.

    Science.gov (United States)

    Yu, Xiaoyi; Liu, Qiuhong; Wang, Xiaochuan; Liu, Hong; Wang, Yan

    2018-01-01

    In diabetic retinopathy, prolonged high-level blood glucose induced significant impairments among various retinal tissues, including retinal pigment epithelial (RPE) cells. In an in vitro model of human RPE cells, we evaluated whether 7,8-Dihydroxyflavone (DHF) may effectively prevent high glucose-induced diabetic apoptosis among human RPE cells. ARPE-19 cells, a Human RPE cell line, were treated with d-glucose (50 mM) to induce apoptosis in vitro. Prior to glucose, ARPE-19 cells were pre-incubated with various concentrations of DHF. The effect of DHF on d-glucose-induced apoptosis was examined by TUNEL assay, in a concentration-dependent manner. The biological effects of DHF on Caspase-9 (Casp-9) and TrkB signaling pathways in d-glucose-injured ARPE-19 cells were evaluated by qRT-PCR and western blot (WB) assays. A TrkB antagonist, K252a, was also applied in DHF and d-glucose treated ARPE-19 cells. Possible effect of K252a blocking TrkB signaling pathway, thus reversing DHF-modulated apoptosis prevention was also examined by TUNEL and WB assays. DHF ameliorated d-glucose-induced diabetic apoptosis in ARPE-19 cells. Apoptotic factor Casp-9, at both mRNA and protein levels, were drastically inhibited by DHF in d-glucose-injured ARPE-19 cells. Also, DHF activated TrkB signaling pathway through phosphorylation. K252a dramatically reversed the preventive effect of DHF on d-glucose-induced apoptosis in ARPE-19 cells. Further investigation showed that K252a functioned through de-activating or de-phosphorylating TrkB signaling pathway. This work demonstrates that DHF, through activation of TrkB signaling pathway, has a preventive function in d-glucose-induced apoptosis in PRE cells in diabetic retinopathy. Copyright © 2017. Published by Elsevier Inc.

  3. Effects of Berberine on Amelioration of Hyperglycemia and Oxidative Stress in High Glucose and High Fat Diet-Induced Diabetic Hamsters In Vivo

    Directory of Open Access Journals (Sweden)

    Cong Liu

    2015-01-01

    Full Text Available This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1 for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses revealed that the treatment of berberine inhibited hepatic fat accumulation. Berberine significantly reduced plasma total cholesterol, triglyceride, free fatty acid, low density lipoprotein cholesterol, malondialdehyde, thiobarbituric acid-reactive substance, and 8-isoprostane level but significantly increased plasma superoxide dismutase activity. Glucose and insulin levels were significantly reduced in metformin and berberine-treated groups. Glucose tolerance tests documented that berberine-treated mice were more glucose tolerant. Berberine treatment increased expression of skeletal muscle glucose transporter 4 mRNA and significantly decreased liver low density lipoprotein receptor mRNA expression. The study suggested that berberine was effective in lowering blood glucose and lipids levels, reducing the body weight, and alleviating the oxidative stress in diabetic hamsters, which might be beneficial in reducing the cardiovascular risk factors in diabetes.

  4. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

    Science.gov (United States)

    Batchuluun, Battsetseg; Inoguchi, Toyoshi; Sonoda, Noriyuki; Sasaki, Shuji; Inoue, Tomoaki; Fujimura, Yoshinori; Miura, Daisuke; Takayanagi, Ryoichi

    2014-01-01

    Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity. High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects. Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. High plasma apolipoprotein B identifies obese subjects who best ameliorate white adipose tissue dysfunction and glucose-induced hyperinsulinemia after a hypocaloric diet.

    Science.gov (United States)

    Bissonnette, Simon; Saint-Pierre, Nathalie; Lamantia, Valerie; Leroux, Catherine; Provost, Viviane; Cyr, Yannick; Rabasa-Lhoret, Remi; Faraj, May

    2018-06-18

    To optimize the prevention of type 2 diabetes (T2D), high-risk obese subjects with the best metabolic recovery after a hypocaloric diet should be targeted. Apolipoprotein B lipoproteins (apoB lipoproteins) induce white adipose tissue (WAT) dysfunction, which in turn promotes postprandial hypertriglyceridemia, insulin resistance (IR), and hyperinsulinemia. The aim of this study was to explore whether high plasma apoB, or number of plasma apoB lipoproteins, identifies subjects who best ameliorate WAT dysfunction and related risk factors after a hypocaloric diet. Fifty-nine men and postmenopausal women [mean ± SD age: 58 ± 6 y; body mass index (kg/m2): 32.6 ± 4.6] completed a prospective study with a 6-mo hypocaloric diet (-500 kcal/d). Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured by 1-h intravenous glucose-tolerance test (IVGTT) followed by a 3-h hyperinsulinemic-euglycemic clamp, respectively. Ex vivo gynoid WAT function (i.e., hydrolysis and storage of 3H-triolein-labeled triglyceride-rich lipoproteins) and 6-h postprandial plasma clearance of a 13C-triolein-labeled high-fat meal were measured in a subsample (n = 25). Postintervention first-phase GIISIVGTT and total C-peptide secretion decreased in both sexes, whereas second-phase and total GIISIVGTT and clamp IS were ameliorated in men (P hypocaloric diet. We propose that subjects with high plasma apoB represent an optimal target group for the primary prevention of T2D by hypocaloric diets. This trial was registered at BioMed Central as ISRCTN14476404.

  6. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling.

    Science.gov (United States)

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek; Lee, Jong Eun

    2016-02-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia.

  7. Metformin Ameliorates Dysfunctional Traits of Glibenclamide- and Glucose-Induced Insulin Secretion by Suppression of Imposed Overactivity of the Islet Nitric Oxide Synthase-NO System.

    Directory of Open Access Journals (Sweden)

    Ingmar Lundquist

    Full Text Available Metformin lowers diabetic blood glucose primarily by reducing hepatic gluconeogenesis and increasing peripheral glucose uptake. However, possible effects by metformin on beta-cell function are incompletely understood. We speculated that metformin might positively influence insulin secretion through impacting the beta-cell nitric oxide synthase (NOS-NO system, a negative modulator of glucose-stimulated insulin release. In short-time incubations with isolated murine islets either glibenclamide or high glucose augmented insulin release associated with increased NO production from both neural and inducible NOS. Metformin addition suppressed the augmented NO generation coinciding with amplified insulin release. Islet culturing with glibenclamide or high glucose revealed pronounced fluorescence of inducible NOS in the beta-cells being abolished by metformin co-culturing. These findings were reflected in medium nitrite-nitrate levels. A glucose challenge following islet culturing with glibenclamide or high glucose revealed markedly impaired insulin response. Metformin co-culturing restored this response. Culturing murine islets and human islets from controls and type 2 diabetics with high glucose or high glucose + glibenclamide induced a pronounced decrease of cell viability being remarkably restored by metformin co-culturing. We show here, that imposed overactivity of the beta-cell NOS-NO system by glibenclamide or high glucose leads to insulin secretory dysfunction and reduced cell viability and also, importantly, that these effects are relieved by metformin inhibiting beta-cell NO overproduction from both neural and inducible NOS thus ameliorating a concealed negative influence by NO induced by sulfonylurea treatment and/or high glucose levels. This double-edged effect of glibenclamide on the beta-cellsuggests sulfonylurea monotherapy in type 2 diabetes being avoided.

  8. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice.

    Science.gov (United States)

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-09-10

    Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.

  9. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats.

    Science.gov (United States)

    Nasri, Rim; Abdelhedi, Ola; Jemil, Ines; Daoued, Ines; Hamden, Khaled; Kallel, Choumous; Elfeki, Abdelfattah; Lamri-Senhadji, Myriem; Boualga, Ahmed; Nasri, Moncef; Karra-Châabouni, Maha

    2015-12-05

    This study investigated the therapeutic potential of undigested goby fish (Zosterisessor ophiocephalus) muscle proteins (UGP) and their hydrolysates on high-fat-high-fructose diet (HFFD)-fed rats. HFFD induced hyperglycemia, manifested by a significant increase in the levels of glucose and glycogen as well as α-amylase activity when compared to normal rats. The administration of GPHs to HFFD-fed rats significantly decreased α-amylase activity and the contents of blood glucose and hepatic glycogen. By contrast, the UGP increased the glucose metabolic disorders in HFFD-fed rats. Furthermore, HFFD-fed rats showed oxidative stress, as evidenced by decreased antioxidant enzyme activities and glutathione (GSH) levels and increased concentration of the lipid peroxidation product malondialdehyde in liver and kidney. Interestingly, the daily gavage of UGP and GPHs improved the redox status in liver and kidney of HFFD-rats by ameliorating or reversing the above-mentioned changes. Moreover, GPHs exhibited a renal protective role by reversing the HFFD-induced decease of uric acid and increase of creatinine levels in serum and preventing some HFFD-induced changes in kidney architecture. The results demonstrate that GPHs contain bioactive peptides that possess significant hypoglycemic and antioxidant properties, and ameliorate renal damage in rats fed hypercaloric diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    Science.gov (United States)

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Hsiao-Ya Tsai

    2016-01-01

    Full Text Available Coenzyme Q10 (CoQ10, an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM or high glucose (25 mM enviroment for 3 days, followed by treatment with CoQ10 (10 μM for 24 hr. Cell proliferation, nitric oxide (NO production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK, eNOS/Akt, and heme oxygenase-1 (HO-1 were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients.

  12. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Science.gov (United States)

    Tsai, Hsiao-Ya; Lin, Chih-Pei; Huang, Po-Hsun; Li, Szu-Yuan; Chen, Jia-Shiong; Lin, Feng-Yen; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) enviroment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients. PMID:26682233

  13. Sulfotanshinone IIA Sodium Ameliorates Glucose Peritoneal Dialysis Solution-Induced Human Peritoneal Mesothelial Cell Injury via Suppression of ASK1-P38-mediated Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yao Zhou

    2018-05-01

    Full Text Available Background/Aims: Long-term use of high-glucose peritoneal dialysis solution (PDS induces peritoneal mesothelial cell (PMC injury, peritoneal dysfunction, and peritoneal dialysis (PD failure in patients with end-stage renal disease. How to preserve PMCs in PD is a major challenge for nephrologists worldwide. In this study, we aimed to elucidate the efficacy and mechanisms of sulfotanshinone IIA sodium (Tan IIa in ameliorating high-glucose PDS-induced human PMC injury. Methods: The human PMC line HMrSV5 was incubated with 4.25% PDS in vitro to mimic the high-glucose conditions in PD. Cellular viability was measured by Cell Counting Kit 8. Generation of superoxide and reactive oxygen species (ROS was assessed using a Total ROS/Superoxide Detection Kit. Oxidative modification of protein was evaluated by OxyBlot Protein Oxidation Detection Kit. TUNEL (dT-mediated dUTP nick end labeling assay and DAPI (4,6-diamidino-2-phenylindole staining were used to evaluate apoptosis. Western blot analysis was performed to evaluate the efficacy and mechanisms of Tan IIa. Results: Tan IIa protected PMCs against PDS-induced injury as evidenced by alleviating changes in morphology and loss of cell viability. Consistent with their antioxidant properties, N-acetyl-L-cysteine (NAC and Tan IIa suppressed superoxide and ROS production, protein oxidation, and apoptosis elicited by PDS. Apoptosis signal-regulating kinase 1 (ASK1-p38 signaling was activated by PDS. Both Tan IIa and NAC suppressed ASK1 and p38 phosphorylation elicited by PDS. Moreover, genetic downregulation of ASK1 ameliorated cell injury and inhibited the phosphorylation of p38 and activation of caspase 3. Conclusion: Tan IIa protects PMCs against PDS-induced oxidative injury through suppression of ASK1-p38 signaling.

  14. Exercise Ameliorates High Fat Diet Induced Cardiac Dysfunction by Increasing Interleukin 10

    Directory of Open Access Journals (Sweden)

    Varun eKesherwani

    2015-04-01

    Full Text Available Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α and attenuation of anti-inflammatory cytokine such as interleukin10 (IL-10 contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, eight week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1hr/day for 5 days/week for eight weeks. The four treatment groups: normal diet (ND, HFD, HFD + exercise (HFD + Ex and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

  15. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Emodin attenuates high glucose-induced TGF-β1 and fibronectin expression in mesangial cells through inhibition of NF-κB pathway

    International Nuclear Information System (INIS)

    Yang, Jie; Zeng, Zhi; Wu, Teng; Yang, Zhicheng; Liu, Bing; Lan, Tian

    2013-01-01

    The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF-β1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF-β1 and FN expression was significantly decreased by emodin. These results demonstrated that emodin suppressed TGF-β1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-induced IκB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF-β1 and FN

  17. Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Joung, Hyunchae; Kim, Bobae; Park, Hyunjoon; Lee, Kyuyeon; Kim, Hee-Hoon; Sim, Ho-Cheol; Do, Hyun-Jin; Hyun, Chang-Kee; Do, Myoung-Sool

    2017-05-01

    Metabolic diseases, such as glucose intolerance and nonalcoholic fatty-liver disease (NAFLD), are primary risk factors for life-threatening conditions such as diabetes, heart attack, stroke, and hepatic cancer. Extracts from the tropical tree Moringa oleifera show antidiabetic, antioxidant, anti-inflammatory, and anticancer effects. Fermentation can further improve the safety and nutritional value of certain foods. We investigated the efficacy of fermented M. oleifera extract (FM) against high-fat diet (HFD)-induced glucose intolerance and hepatic lipid accumulation and investigated the underlying mechanisms by analyzing expression of proteins and genes involved in glucose and lipid regulation. C57BL/6 mice were fed with normal chow diet (ND) or HFD supplemented with distilled water (DW, control), nonfermented M. oleifera extract (NFM), or FM for 10 weeks. Although body weights were similar among HFD-fed treatment groups, liver weight was decreased, and glucose tolerance test (GTT) results improved in the FM group compared with DW and NFM groups. Hepatic lipid accumulation was also lower in the FM group, and expressions of genes involved in liver lipid metabolism were upregulated. In addition, HFD-induced endoplasmic reticulum (ER) stress, oxidative stress, and lipotoxicity in quadriceps muscles were decreased by FM. Finally, proinflammatory cytokine mRNA expression was decreased by FM in the liver, epididymal adipose tissue, and quadriceps of HFD-fed mice. FMs may decrease glucose intolerance and NAFLD under HFD-induced obesity by decreasing ER stress, oxidative stress, and inflammation.

  18. Ginsenoside Re Ameliorates Brain Insulin Resistance and Cognitive Dysfunction in High Fat Diet-Induced C57BL/6 Mice.

    Science.gov (United States)

    Kim, Jong Min; Park, Chang Hyeon; Park, Seon Kyeong; Seung, Tae Wan; Kang, Jin Yong; Ha, Jeong Su; Lee, Du Sang; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2017-04-05

    The ameliorating effects of ginsenoside Re (G Re) on high fat diet (HFD)-induced insulin resistance in C57BL/6 mice were investigated to assess its physiological function. In the results of behavioral tests, G Re improved cognitive dysfunction in diabetic mice using Y-maze, passive avoidance, and Morris water maze tests. G Re also significantly recovered hyperglycemia and fasting blood glucose level. In the results of serum analysis, G Re decreased triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDLC), glutamic-oxaloacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) and increased the ratio of high-density lipoprotein cholesterol (HDLC). G Re regulated acetylcholine (ACh), acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), and oxidized glutathione (GSH)/total GSH by regulating the c-Jun N-terminal protein kinase (JNK) pathway. These findings suggest that G Re could be used to improve HFD-induced insulin resistance condition by ameliorating hyperglycemia via protecting the cholinergic and antioxidant systems in the mouse brains.

  19. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    Science.gov (United States)

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  20. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-11-27

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.

  1. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    International Nuclear Information System (INIS)

    Zhou, Jun; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-01-01

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.

  2. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Jing, Li; Zhang, Yu; Fan, Shengjie; Gu, Ming; Guan, Yu; Lu, Xiong; Huang, Cheng; Zhou, Zhiqin

    2013-09-05

    D-limonene is a major constituent in citrus essential oil, which is used in various foods as a flavoring agent. Recently, d-limonene has been reported to alleviate fatty liver induced by a high-fat diet. Here we determined the preventive and therapeutic effects of d-limonene on metabolic disorders in mice with high-fat diet-induced obesity. In the preventive treatment, d-limonene decreased the size of white and brown adipocytes, lowered serum triglyceride (TG) and fasting blood glucose levels, and prevented liver lipid accumulations in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, d-limonene reduced serum TG, low-density lipoprotein cholesterol (LDL-c) and fasting blood glucose levels and glucose tolerance, and increased serum high-density lipoprotein cholesterol (HDL-c) in obese mice. Using a reporter assay and gene expression analysis, we found that d-limonene activated peroxisome proliferator-activated receptor (PPAR)-α signaling, and inhibited liver X receptor (LXR)-β signaling. Our data suggest that the intake of d-limonene may benefit patients with dyslipidemia and hyperglycemia and is a potential dietary supplement for preventing and ameliorating metabolic disorders. © 2013 Elsevier B.V. All rights reserved.

  3. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Si, Hongwei; Liu, Dongmin; Bassaganya-Riera, Josep

    2007-02-01

    Despite their efficacy in improving insulin sensitivity, thiazolidinediones (TZDs) are associated with a number of side effects (i.e. weight gain, hepatotoxicity, congestive heart failure) that have limited their use by millions of diabetic patients. We have investigated whether abscisic acid (ABA), a naturally occurring phytochemical with structural similarities to TZDs, could be used as an alternative to TZDs to improve glucose homeostasis. We first examined whether ABA, similar to TZDs, activates PPARgamma in vitro. We next determined the lowest effective dose of dietary ABA (100 mg/kg) and assessed its effect on glucose tolerance, obesity-related inflammation, and mRNA expression of PPARgamma and its responsive genes in white adipose tissue (WAT) of db/db mice fed high-fat diets. We found that ABA induced transactivation of PPARgamma in 3T3-L1 pre-adipocytes in vitro. Dietary ABA-supplementation for 36 days decreased fasting blood glucose concentrations, ameliorated glucose tolerance, and increased mRNA expression of PPARgamma and its responsive genes (i.e., adiponectin, aP2, and CD36) in WAT. We also found that adipocyte hypertrophy, tumor necrosis factor-alpha (TNF-alpha) expression, and macrophage infiltration in WAT were significantly attenuated in ABA-fed mice. These findings suggest that ABA could be used as a nutritional intervention against type II diabetes and obesity-related inflammation.

  4. Brazilin Ameliorates High Glucose-Induced Vascular Inflammation via Inhibiting ROS and CAMs Production in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Thanasekaran Jayakumar

    2014-01-01

    Full Text Available Vascular inflammatory process has been suggested to play a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Recent studies have shown that brazilin exhibits antihepatotoxic, antiplatelet, cancer preventive, or anti-inflammatory properties. Thus, we investigated whether brazilin suppresses vascular inflammatory process induced by high glucose (HG in cultured human umbilical vein endothelial cells (HUVEC. HG induced nitrite production, lipid peroxidation, and intracellular reactive oxygen species formation in HUVEC cells, which was reversed by brazilin. Western blot analysis revealed that brazilin markedly inhibited HG-induced phosphorylation of endothelial nitric oxide synthase. Besides, we investigated the effects of brazilin on the MAPK signal transduction pathway because MAPK families are associated with vascular inflammation under stress. Brazilin blocked HG-induced phosphorylation of extracellular signal-regulated kinase and transcription factor NF-κB. Furthermore, brazilin concentration-dependently attenuated cell adhesion molecules (ICAM-1 and VCAM-1 expression induced by various concentrations of HG in HUVEC. Taken together, the present data suggested that brazilin could suppress high glucose-induced vascular inflammatory process, which may be closely related with the inhibition of oxidative stress, CAMs expression, and NF-κB activation in HUVEC. Our findings may highlight a new therapeutic intervention for the prevention of vascular diseases.

  5. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    Science.gov (United States)

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats.

  6. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats.

    Science.gov (United States)

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-05-23

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid.

  7. Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice.

    Science.gov (United States)

    Chudnovskiy, Rostislav; Thompson, Airlia; Tharp, Kevin; Hellerstein, Marc; Napoli, Joseph L; Stahl, Andreas

    2014-01-01

    To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25-50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13-17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet.

  8. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-κB pathway

    International Nuclear Information System (INIS)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong; Ma, Qinyun

    2012-01-01

    Highlights: ► Stevioside ameliorates high-fat diet-induced insulin resistance. ► Stevioside alleviates the adipose tissue inflammation. ► Stevioside reduces macrophages infiltration into the adipose tissue. ► Stevioside suppresses the activation of NF-κB in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-α, IL6, IL10, IL1β, KC, MIP-1α, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-κB) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-κB pathway.

  9. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ying Xin

    Full Text Available The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs into insulin-producing cells (IPCs for autologous transplantation may alleviate those limitations.hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice.The differentiated IPCs were characterized by Dithizone (DTZ positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo.IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.

  10. Intervention of D-glucose ameliorates the toxicity of streptozotocin in accessory sex organs of rat

    International Nuclear Information System (INIS)

    Vikram, A.; Tripathi, D.N.; Ramarao, P.; Jena, G.B.

    2008-01-01

    Streptozotocin (STZ) is a naturally occurring compound isolated from Streptomyces achromogens. It is used extensively for inducing diabetes in experimental animals. Diabetes mellitus is known to have proven adverse effects on male sexual organs and their reproductive functions. The atrophy of prostate gland and other organs of the genitourinary tract were observed in experimental diabetic animals. STZ exhibits a structural resemblance to D-glucose due to the presence of sugar moiety in its structure. Pancreatic β-cells mainly contain GLUT1 and GLUT2 glucose transporters. Possibly due to structural resemblance, STZ and D-glucose, share a common recognition site for entry into the β-cells. The objective of the present study is to evaluate the effect of D-glucose on STZ-induced toxicity in accessory sex organs of male rats. Animals were kept on overnight fasting. One group received vehicle and served as negative control, while all other groups were given STZ (45 mg/kg). Animals that received only STZ served as positive control. The effect of D-glucose was studied on STZ treated animals with different dosage of D-glucose (250, 500, 1000 and 2000 mg/kg). Restoration of body weight, plasma glucose and plasma insulin was evident only at 1000 and 2000 mg/kg of D-glucose. The protective effect of D-glucose is evident only when it is administered simultaneously with STZ. In the present investigation, we report that simultaneous administration of D-glucose along with STZ ameliorates STZ-induced toxicity. This is evident from the restoration of accessory sex organ's weight, cellular morphology as well as insulin level

  11. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong [State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Ma, Qinyun, E-mail: qinyunma@126.com [State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.

  12. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    Science.gov (United States)

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. High Glucose Represses hERG K+ Channel Expression through Trafficking Inhibition

    Directory of Open Access Journals (Sweden)

    Yuan-Qi Shi

    2015-08-01

    and ameliorates the high-glucose-induced inhibition of the hERG channel.

  14. PGBR extract ameliorates TNF-α induced insulin resistance in hepatocytes

    Directory of Open Access Journals (Sweden)

    Fu-Chih Chen

    2018-01-01

    Full Text Available Pre-germinated brown rice (PGBR could ameliorate metabolic syndrome, however, not much research estimates the effect of PGBR extract on insulin resistance. The aim of this study is to examine the effects of PGBR extract in TNF-α induced insulin resistance. HepG2 cells, hepatocytes, were cultured in DMEM medium and added with 5 μM insulin or with insulin and 30 ng/ml TNF-α or with insulin, TNF-α and PGBR extract (50, 100, 300 μg/ml. The glucose levels of the medium were decreased by insulin, demonstrating insulin promoted glucose uptake into cell. However, TNF-α inhibited glucose uptake into cells treated with insulin. Moreover, insulin increased the protein expressions of AMP-activated protein kinase (AMPK, insulin receptor substrate-1 (IRS-1, phosphatidylinositol-3-kinase-α (PI3K-α, serine/threonine kinase PI3K-linked protein kinase B (Akt/PKB, glucose transporter-2 (GLUT-2, glucokinase (GCK, peroxisome proliferator activated receptor-α (PPAR-α and PPAR-γ. TNF-α activated p65 and MAPKs (JNK1/2 and ERK1/2 which worsened the expressions of AMPK, IRS-1, PI3K-α, Akt/PKB, GLUT-2, GCK, glycogen synthase kinase-3 (GSK-3, PPAR-α and PPAR-γ. Once this relationship was established, we added PGBR extract to cell with insulin and TNF-α. We found glucose levels of medium were lowered and that the protein expressions of AMPK, IRS-1, PI3K-α, Akt/PKB, GLUT-2, GCK, GSK-3, PPAR-α, PPAR-γ and p65, JNK1/2 were also recovered. In conclusion, this study found that TNF-α inhibited insulin stimulated glucose uptake and aggravated related proteins expressions, suggesting that it might cause insulin resistance. PGBR extract was found to ameliorate this TNF-α induced insulin resistance, suggesting that it might be used in the future to help control insulin resistance.

  15. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice.

    Directory of Open Access Journals (Sweden)

    Naoto Terami

    Full Text Available Inhibition of sodium glucose cotransporter 2 (SGLT2 has been reported as a new therapeutic strategy for treating diabetes. However, the effect of SGLT2 inhibitors on the kidney is unknown. In addition, whether SGLT2 inhibitors have an anti-inflammatory or antioxidative stress effect is still unclear. In this study, to resolve these issues, we evaluated the effects of the SGLT2 inhibitor, dapagliflozin, using a mouse model of type 2 diabetes and cultured proximal tubular epithelial (mProx24 cells. Male db/db mice were administered 0.1 or 1.0 mg/kg of dapagliflozin for 12 weeks. Body weight, blood pressure, blood glucose, hemoglobin A1c, albuminuria and creatinine clearance were measured. Mesangial matrix accumulation and interstitial fibrosis in the kidney and pancreatic β-cell mass were evaluated by histological analysis. Furthermore, gene expression of inflammatory mediators, such as osteopontin, monocyte chemoattractant protein-1 and transforming growth factor-β, was evaluated by quantitative reverse transcriptase-PCR. In addition, oxidative stress was evaluated by dihydroethidium and NADPH oxidase 4 staining. Administration of 0.1 or 1.0 mg/kg of dapagliflozin ameliorated hyperglycemia, β-cell damage and albuminuria in db/db mice. Serum creatinine, creatinine clearance and blood pressure were not affected by administration of dapagliflozin, but glomerular mesangial expansion and interstitial fibrosis were suppressed in a dose-dependent manner. Dapagliflozin treatment markedly decreased macrophage infiltration and the gene expression of inflammation and oxidative stress in the kidney of db/db mice. Moreover, dapagliflozin suppressed the high-glucose-induced gene expression of inflammatory cytokines and oxidative stress in cultured mProx24 cells. These data suggest that dapagliflozin ameliorates diabetic nephropathy by improving hyperglycemia along with inhibiting inflammation and oxidative stress.

  16. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  17. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    International Nuclear Information System (INIS)

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-01-01

    Highlights: ► High glucose significantly induced TLR2 expression in gingival fibroblasts. ► High glucose increased NF-κB p65 nuclear activity, IL-1β and TNF-α levels. ► PKC-α/δ-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-κB) p65 nuclear activity, tumor necrosis factor-α (TNF-α) and interleukin-lβ (IL-1β) levels. Protein kinase C (PKC)-α and δ knockdown with siRNA significantly decreased TLR2 and NF-κB p65 expression (p < 0.05), whereas inhibition of PKC-β had no effect on TLR2 and NF-κB p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-κB expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-α and IL-1β secretion via inducing TLR2 through PKC-α and PKC-δ in human gingival fibroblasts.

  19. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Deng, Jia-Yin, E-mail: yazhou2991@126.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  20. The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin functions as antioxidant on human endothelial cells exposed to chronic hyperglycemia and metabolic high-glucose memory.

    Science.gov (United States)

    Pujadas, Gemma; De Nigris, Valeria; Prattichizzo, Francesco; La Sala, Lucia; Testa, Roberto; Ceriello, Antonio

    2017-06-01

    Dipeptidyl peptidase-4 inhibitors are widely used in type 2 diabetes. Endothelium plays a crucial role maintaining vascular integrity and function. Chronic exposure to high glucose drives to endothelial dysfunction generating oxidative stress. Teneligliptin is a novel dipeptidyl peptidase-4 inhibitor with antioxidant properties. This study is aimed to verify a potential protective action of teneligliptin in endothelial cells exposed to high glucose. Human umbilical vein endothelial cells were cultured under normal (5 mmol/L) or high glucose (25 mmol/L) during 21 days, or at high glucose during 14 days followed by 7 days at normal glucose, to reproduce the high-metabolic memory state. During this period, different concentrations of teneligliptin (0.1, 1.0 and 3.0 µmol/L) or sitagliptin (0.5 µmol/L) were added to cells. Ribonucleic acid and protein expression were assessed for antioxidant response, proliferation, apoptosis and endoplasmic reticulum stress markers. Teneligliptin promotes the antioxidant response in human umbilical vein endothelial cells, reducing ROS levels and inducing Nrf2-target genes messenger ribonucleic acid expression. Teneligliptin, but not sitagliptin, reduces the expression of the nicotine amide adenine dinucleotide phosphate oxidase regulatory subunit P22 -phox , however, both blunt the high glucose-induced increase of TXNIP. Teneligliptin improves proliferation rates in human umbilical vein endothelial cells exposed to high glucose, regulating the expression of cell-cycle inhibitors markers (P53, P21 and P27), and reducing proapoptotic genes (BAX and CASP3), while promotes BCL2 expression. Teneligliptin ameliorates high glucose-induced endoplasmic reticulum stress reducing the expression of several markers (BIP, PERK, ATF4, CHOP, IRE1a and ATF6). Teneligliptin has antioxidant properties, ameliorates oxidative stress and apoptotic phenotype and it can overcome the metabolic memory effect, induced by chronic exposure to high

  1. Blockade of Endothelin-1 Receptor Type B Ameliorates Glucose Intolerance and Insulin Resistance in a Mouse Model of Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Jan Polak

    2018-05-01

    Full Text Available Obstructive sleep apnea (OSA is associated with insulin resistance (IR and glucose intolerance. Elevated endothelin-1 (ET-1 levels have been observed in OSA patients and in mice exposed to intermittent hypoxia (IH. We examined whether pharmacological blockade of type A and type B ET-1 receptors (ETA and ETB would ameliorate glucose intolerance and IR in mice exposed to IH. Subcutaneously implanted pumps delivered BQ-123 (ETA antagonist; 200 nmol/kg/day, BQ-788 (ETB antagonist; 200 nmol/kg/day or vehicle (saline or propyleneglycol [PG] for 14 days in C57BL6/J mice (10/group. During treatment, mice were exposed to IH (decreasing the FiO2 from 20.9% to 6%, 60/h or intermittent air (IA. After IH or IA exposure, insulin (0.5 IU/kg or glucose (1 mg/kg was injected intraperitoneally and plasma glucose determined after injection and area under glucose curve (AUC was calculated. Fourteen-day IH increased fasting glucose levels (122 ± 7 vs. 157 ± 8 mg/dL, PG: 118 ± 6 vs. 139 ± 8; both p < 0.05 and impaired glucose tolerance (AUCglucose: 19,249 ± 1105 vs. 29,124 ± 1444, PG AUCglucose: 18,066 ± 947 vs. 25,135 ± 797; both p < 0.05 in vehicle-treated animals. IH-induced impairments in glucose tolerance were partially ameliorated with BQ-788 treatment (AUCglucose: 21,969 ± 662; p < 0.05. Fourteen-day IH also induced IR (AUCglucose: 7185 ± 401 vs. 8699 ± 401; p < 0.05. Treatment with BQ-788 decreased IR under IA (AUCglucose: 5281 ± 401, p < 0.05 and reduced worsening of IR with IH (AUCglucose: 7302 ± 401, p < 0.05. There was no effect of BQ-123 on IH-induced impairments in glucose tolerance or IR. Our results suggest that ET-1 plays a role in IH-induced impairments in glucose homeostasis.

  2. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  3. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    International Nuclear Information System (INIS)

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho

    2013-01-01

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation

  4. A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsiveness to a glucose load not explained by obesity

    NARCIS (Netherlands)

    La Fleur, S. E.; Luijendijk, M. C. M.; van Rozen, A. J.; Kalsbeek, A.; Adan, R. A. H.

    2011-01-01

    Objectives: In diet-induced obesity, it is not clear whether impaired glucose metabolism is caused directly by the diet, or indirectly via obesity. This study examined the effects of different free-choice, high-caloric, obesity-inducing diets on glucose metabolism. In these free-choice diets,

  5. 1,2,3,4,6 Penta-O-galloyl-β-d-glucose, a bioactivity guided isolated compound from Mangifera indica inhibits 11β-HSD-1 and ameliorates high fat diet-induced diabetes in C57BL/6 mice.

    Science.gov (United States)

    Mohan, C G; Viswanatha, G L; Savinay, G; Rajendra, C E; Halemani, Praveen D

    2013-03-15

    Methanolic leaf extract of Mangifera indica (MEMI) was subjected to bioactivity guided fractionation in order to identify the active antidiabetic constituent. 32 fractions were evaluated for possible 11β-HSD-1 inhibition activity under in vitro conditions. The EA-7/8-9/10-4 fraction was evolved as a most potent fraction among all the fractions and it was identified as well known gallotannin compound 1,2,3,4,6 penta-O-galloyl-β-d-glucose (PGG) by spectral analysis. Based on these results the PGG was further evaluated in ex vivo 11β-HSD-1 inhibition assay and high fat diet (HFD)-induced diabetes in male C57BL/6 mice. Single dose (10, 25, 50 and 100mg/kg) of PGG and carbenoxolone (CBX) have dose dependently inhibited the 11β-HSD-1 activity in liver and adipose tissue. Furthermore, HFD appraisal to male C57BL/6 mice caused severe hyperglycemia, hypertriglyceridemia, elevated levels of plasma corticosterone and insulin, increased liver and white adipose mass with increase in body weight was observed compare to normal control. Also, oral glucose tolerance was significantly impaired compare to normal control. Interestingly, post-treatment with PGG for 21 days had alleviated the HFD-induced biochemical alterations and improved oral glucose tolerance compare to HFD-control. In conclusion, the PGG isolated from MEMI inhibits 11β-HSD-1 activity and ameliorates HFD-induced diabetes in male C57BL/6 mice. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-12-01

    The aim of the present investigation was to investigate whether an aqueous extract of Buddleja officinalis (ABO), a traditional Korean herbal medicine, suppresses the endothelial extracellular matrix degradation under high glucose condition. The incubation with high concentration of glucose (25 mM) increased significantly matrix metalloproteinase (MMP)-2/-9 expressions and activities in primary cultured human umbilical vein endothelial cells (HUVEC). Pretreatment with ABO decreased high glucose-induced increase of MMP-2/-9 activities in a dose-dependent manner. Real time qRT-PCR revealed that high glucose-induced MMP-2/-9 mRNA expression levels were attenuated by pretreatment with ABO. High glucose-induced MCP-1 and IL-8 mRNA expression levels also decreased by ABO. ABO decreased high glucose-induced hydrogen peroxide production, oxidative stress marker. These results provide new insights into the pathophysiological mechanisms for anti-inflammatory properties of ABO in vascular diseases associated with diabetes mellitus. (c) 2008 John Wiley & Sons, Ltd.

  7. Flos Puerariae Extract Ameliorates Cognitive Impairment in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhong-he Liu

    2015-01-01

    Full Text Available Objective. The effects of Flos Puerariae extract (FPE on cognitive impairment associated with diabetes were assessed in C57BL/6J mice. Methods. Experimental diabetic mice model was induced by one injection of 50 mg/kg streptozotocin (STZ for 5 days consecutively. FPE was orally administrated at the dosages of 50, 100, or 200 mg/kg/day, respectively. The learning and memory ability was assessed by Morris water maze test. Body weight, blood glucose, free fatty acid (FFA and total cholesterol (TCH in serum, malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, and acetylcholinesterase (AChE activities in cerebral cortex and hippocampus were also measured. Results. Oral administration of FPE significantly improved cognitive deficits in STZ-induced diabetic mice. FPE treatment also maintained body weight and ameliorated hyperglycemia and dyslipidemia in diabetic mice. Additionally, decreased MDA level, enhanced CAT, and GSH-Px activities in cerebral cortex or hippocampus, as well as alleviated AChE activity in cerebral cortex, were found in diabetic mice supplemented with FPE. Conclusion. This study suggests that FPE ameliorates memory deficits in experimental diabetic mice, at least partly through the normalization of metabolic abnormalities, ameliorated oxidative stress, and AChE activity in brain.

  8. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice.

    Science.gov (United States)

    Chen, Cheng; Han, Xiuqing; Dong, Ping; Li, Zhaojie; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming

    2018-02-21

    Obesity has become a worldwide concern in recent years, which may cause many diseases. Much attention has been paid to food components that are considered to be beneficial in preventing chronic metabolic diseases. The present study was conducted to investigate the effects of sea cucumber saponin liposomes on certain metabolic markers associated with obesity. C57/BL6 mice fed with high-fat diet were treated with different forms of sea cucumber saponins for eight weeks. The results showed that liposomes exhibited better effects on anti-obesity and anti-hyperlipidemia activities than the common form of sea cucumber saponins. Sea cucumber saponin liposomes could also effectively alleviate adipose tissue inflammation by reducing pro-inflammatory cytokine releases and macrophage infiltration. Moreover, sea cucumber saponin liposomes improved insulin resistance by altering the uptake and utilization of glucose. Taken together, our results indicated that the intake of sea cucumber saponin liposomes might be able to ameliorate obesity-induced inflammation and insulin resistance.

  9. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    Science.gov (United States)

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  10. Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Dominguez-Bello, Maria Gloria; Kronsteiner, Barbara; Carbo, Adria; Lu, Pinyi; Viladomiu, Monica; Pedragosa, Mireia; Zhang, Xiaoying; Sobral, Bruno W; Mane, Shrinivasrao P; Mohapatra, Saroj K; Horne, William T; Guri, Amir J; Groeschl, Michael; Lopez-Velasco, Gabriela; Hontecillas, Raquel

    2012-01-01

    There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag(-) strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99-305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.

  11. Effect of Buddleja officinalis on high-glucose-induced vascular inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-06-01

    In this study, we aimed to investigate whether an aqueous extract of Buddleja officinalis (ABO) suppresses high-glucose-induced vascular inflammatory processes in the primary cultured human umbilical vein endothelial cells (HUVEC). The high-glucose-induced increase in expression of cell adhesion molecules (CAMs) such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-selectin (E-selectin) was significantly attenuated by pretreatment with ABO in a dose-dependent manner. Enhanced cell adhesion caused by high glucose in co-cultured U937 and HUVEC was also blocked by pretreatment with ABO. Pretreatment with ABO also blocked formation of high-glucose-induced reactive oxygen species (ROS). In addition, ABO suppressed the transcriptional activity of NF-kappaB and IkappaB phosphorylation under high-glucose conditions. Pretreatment with N(G)-nitro-l-arginine methyl ester (L-NAME), an endothelial nitric oxide (NO) synthase inhibitor, attenuated the protective action of ABO on high-glucose-induced CAM expression, suggesting a potential role of NO signaling. The present data suggest that ABO could suppress high-glucose-induced vascular inflammatory processes, and ABO may be closely related with the inhibition of ROS and NF-kappaB activation in HUVEC.

  12. Tesaglitazar, a dual PPAR{alpha}/{gamma} agonist, ameliorates glucose and lipid intolerance in obese Zucker rats.

    Science.gov (United States)

    Oakes, Nicholas D; Thalén, Pia; Hultstrand, Therese; Jacinto, Severina; Camejo, Germán; Wallin, Boel; Ljung, Bengt

    2005-10-01

    Insulin resistance, impaired glucose tolerance, high circulating levels of free fatty acids (FFA), and postprandial hyperlipidemia are associated with the metabolic syndrome, which has been linked to increased risk of cardiovascular disease. We studied the metabolic responses to an oral glucose/triglyceride (TG) (1.7/2.0 g/kg lean body mass) load in three groups of conscious 7-h fasted Zucker rats: lean healthy controls, obese insulin-resistant/dyslipidemic controls, and obese rats treated with the dual peroxisome proliferator-activated receptor alpha/gamma agonist, tesaglitazar, 3 mumol.kg(-1).day(-1) for 4 wk. Untreated obese Zucker rats displayed marked insulin resistance, as well as glucose and lipid intolerance in response to the glucose/TG load. The 2-h postload area under the curve values were greater for glucose (+19%), insulin (+849%), FFA (+53%), and TG (+413%) compared with untreated lean controls. Treatment with tesaglitazar lowered fasting plasma glucose, improved glucose tolerance, substantially reduced fasting and postload insulin levels, and markedly lowered fasting TG and improved lipid tolerance. Fasting FFA were not affected, but postprandial FFA suppression was restored to levels seen in lean controls. Mechanisms of tesaglitazar-induced lowering of plasma TG were studied separately using the Triton WR1339 method. In anesthetized, 5-h fasted, obese Zucker rats, tesaglitazar reduced hepatic TG secretion by 47%, increased plasma TG clearance by 490%, and reduced very low-density lipoprotein (VLDL) apolipoprotein CIII content by 86%, compared with obese controls. In conclusion, the glucose/lipid tolerance test in obese Zucker rats appears to be a useful model of the metabolic syndrome that can be used to evaluate therapeutic effects on impaired postprandial glucose and lipid metabolism. The present work demonstrates that tesaglitazar ameliorates these abnormalities and enhances insulin sensitivity in this animal model.

  13. Long-term feeding of red algae (Gelidium amansii ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model

    Directory of Open Access Journals (Sweden)

    Hshuan-Chen Liu

    2017-07-01

    Full Text Available This study was designed to investigate the effect of Gelidium amansii (GA on carbohydrate and lipid metabolism in rats with high fructose (HF diet (57.1% w/w. Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1 control diet group (Con; (2 HF diet group (HF; and (3 HF with GA diet group (HF + 5% GA. The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model.

  14. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model.

    Science.gov (United States)

    Liu, Hshuan-Chen; Chang, Chun-Ju; Yang, Tsung-Han; Chiang, Meng-Tsan

    2017-07-01

    This study was designed to investigate the effect of Gelidium amansii (GA) on carbohydrate and lipid metabolism in rats with high fructose (HF) diet (57.1% w/w). Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1) control diet group (Con); (2) HF diet group (HF); and (3) HF with GA diet group (HF + 5% GA). The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC) and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model. Copyright © 2016. Published by Elsevier B.V.

  15. Bitter melon extract ameliorates palmitate-induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 cells and high-fat/high-fructose-diet-induced fatty liver

    Directory of Open Access Journals (Sweden)

    Hwa Joung Lee

    2018-03-01

    Full Text Available Background: Bitter melon (BM improves glucose level, lipid homeostasis, and insulin resistance in vivo. However, the preventive mechanism of BM in nonalcoholic fatty liver disease (NAFLD has not been elucidated yet. Aim & Design: To determine the protective mechanism of bitter melon extract (BME, we performed experiments in vitro and in vivo. BME were treated palmitate (PA-administrated HepG2 cells. C57BL/6J mice were divided into two groups: high-fat/high-fructose (HF/HFr without or with BME supplementation (100 mg/kg body weight. Endoplasmic reticulum (ER stress, apoptosis, and biochemical markers were then examined by western blot and real-time PCR analyses. Results: BME significantly decreased expression levels of ER-stress markers (including phospho-eIF2α, CHOP, and phospho-JNK [Jun N-terminal kinases] in PA-treated HepG2 cells. BME also significantly decreased the activity of cleaved caspase-3 (a well known apoptotic-induced molecule and DNA fragmentation. The effect of BME on ER stress–mediated apoptosis in vitro was similarly observed in HF/HFr-fed mice in vivo. BME significantly reduced HF/HFr-induced hepatic triglyceride (TG and serum alanine aminotransferase (ALT as markers of hepatic damage in mice. In addition, BME ameliorated HF/HFr-induced serum TG and serum-free fatty acids. Conclusion: These data indicate that BME has protective effects against ER stress mediated apoptosis in HepG2 cells as well as in HF/HFr-induced fatty liver of mouse. Therefore, BME might be useful for preventing and treating NAFLD.

  16. Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Josep Bassaganya-Riera

    Full Text Available BACKGROUND: There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag(- strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99-305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM and increased adipose tissue regulatory T cells (Treg cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4 in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. CONCLUSIONS/SIGNIFICANCE: Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.

  17. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    Science.gov (United States)

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  18. Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning.

    Science.gov (United States)

    Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J

    2017-01-01

    Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017

  19. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    Science.gov (United States)

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  20. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    Directory of Open Access Journals (Sweden)

    Akiko Kojima-Yuasa

    2011-12-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs, key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis.

  1. Rg1 inhibits high glucose-induced mesenchymal activation and fibrosis via regulating miR-2113/RP11-982M15.8/Zeb1 pathway.

    Science.gov (United States)

    Xue, Li-Ping; Fu, Xiao-Lin; Hu, Min; Zhang, Li-Wei; Li, Ya-Di; Peng, Ya-Li; Ding, Peng

    2018-07-02

    Recent study has showed that Ginsenoside Rg1, the mian active compound of Panax ginseng, could ameliorate oxidative stress and myocardial apoptosis in diabetes mellitus. However, the roles and mechanisms of Rg1 in proliferative diabetic retinopathy (PDR) are still unclear. In the present study, we aimed to investigate the effects of Rg1 on mesenchymal activation of high-glucose (HG) cultured müller cells. High glucose conditions up-regulate MMP-2, MMP-9 and down-regulate TIMP-2, and promote mesenchymal activation in Müller cells. And Rg1 inhibits the HG-induced mesenchymal activation and HG-increased MMP-2 and MMP-9 and HG-decreased TIMP-2 in Müller cells. HG up-regulates Zeb1 and lncRNA RP11-982M15.8, and down-regulates miR-2113, and Rg1 inhibits these effects of HG. Both inhibition of miR-2113 and over-expression of RP11-982M15.8 significantly restored the HG induced mesenchymal activasion. Taken together, our findings suggested that Rg1 inhibited HG-induced mesenchymal activation and fibrosis via regulating miR-2113/RP11-982M15.8/Zeb1 pathway. Copyright © 2018. Published by Elsevier Inc.

  2. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway.

    Science.gov (United States)

    Lan, Tian; Wu, Teng; Gou, Hongju; Zhang, Qianqian; Li, Jiangchao; Qi, Cuiling; He, Xiaodong; Wu, Pingxiang; Wang, Lijing

    2013-11-01

    Mesangial cells (MCs) proliferation and accumulation of glomerular matrix proteins such as fibronectin (FN) are the early features of diabetic nephropathy, with MCs known to upregulate matrix protein synthesis in response to high glucose. Recently, it has been found that andrographolide has renoprotective effects on diabetic nephropathy. However, the molecular mechanism underlying these effects remains unclear. Cell viability and proliferation was evaluated by MTT. FN expression was examined by immunofluorescence and immunoblotting. Activator protein-1 (AP-1) activation was assessed by immunoblotting, luciferase reporter and electrophoretic mobility shift assays. Andrographolide significantly decreased high glucose-induced cell proliferation and FN expression in MCs. Exposure of MCs to high glucose markedly stimulated the expression of phosphorylated c-jun, whereas the stimulation was inhibited by andrographolide. Plasmid pAP-1-Luc luciferase reporter assay showed that andrographolide blocked high glucose-induced AP-1 transcriptional activity. EMSA assay demonstrated that increased AP-1 binding to an AP-1 binding site at -1,029 in the FN gene promoter upon high glucose stimulation, and the binding were disrupted by andrographolide treatment. These data indicate that andrographolide suppresses high glucose-induced FN expression by inhibiting AP-1-mediated pathway. © 2013 Wiley Periodicals, Inc.

  4. Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.

    Science.gov (United States)

    Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei

    2017-11-01

    Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.

  5. Chronic erythropoietin treatment improves diet-induced glucose intolerance in rats

    DEFF Research Database (Denmark)

    Caillaud, Corinne; Mechta, Mie; Ainge, Heidi

    2015-01-01

    Erythropoietin (EPO) ameliorates glucose metabolism through mechanisms not fully understood. In this study, we investigated the effect of EPO on glucose metabolism and insulin signaling in skeletal muscle. A 2-week EPO treatment of rats fed with a high-fat diet (HFD) improved fasting glucose levels...... and glucose tolerance, without altering total body weight or retroperitoneal fat mass. Concomitantly, EPO partially rescued insulin-stimulated AKT activation, reduced markers of oxidative stress, and restored heat-shock protein 72 expression in soleus muscles from HFD-fed rats. Incubation of skeletal muscle...... not directly activate the phosphorylation of AKT in muscle cells. We propose that the reduced systemic inflammation or oxidative stress that we observed after treatment with EPO could contribute to the improvement of whole-body glucose metabolism....

  6. Dietary yeast-derived mannan oligosaccharides have immune-modulatory properties but do not improve high fat diet-induced obesity and glucose intolerance.

    Directory of Open Access Journals (Sweden)

    Lisa R Hoving

    Full Text Available The indigestible mannan oligosaccharides (MOS derived from the outer cell wall of yeast Saccharomyces cerevisiae have shown potential to reduce inflammation. Since inflammation is one of the underlying mechanisms involved in the development of obesity-associated metabolic dysfunctions, we aimed to determine the effect of dietary supplementation with MOS on inflammation and metabolic homeostasis in lean and diet-induced obese mice. Male C57BL/6 mice were fed either a low fat diet (LFD or a high fat diet (HFD with, respectively, 10% or 45% energy derived from lard fat, with or without 1% MOS for 17 weeks. Body weight and composition were measured throughout the study. After 12 weeks of intervention, whole-body glucose tolerance was assessed and in week 17 immune cell composition was determined in mesenteric white adipose tissue (mWAT and liver by flow cytometry and RT-qPCR. In LFD-fed mice, MOS supplementation induced a significant increase in the abundance of macrophages and eosinophils in mWAT. A similar trend was observed in hepatic macrophages. Although HFD feeding induced a classical shift from the anti-inflammatory M2-like macrophages towards the pro-inflammatory M1-like macrophages in both mWAT and liver from control mice, MOS supplementation had no effect on this obesity-driven immune response. Finally, MOS supplementation did not improve whole-body glucose homeostasis in both lean and obese mice.Altogether, our data showed that MOS had extra-intestinal immune modulatory properties in mWAT and liver. However these effects were not substantial enough to significantly ameliorate HFD-induced glucose intolerance or inflammation.

  7. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats.

  8. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  9. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-04-01

    Full Text Available High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by 1H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.

  10. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons.

    Science.gov (United States)

    Liu, Di; Zhang, Hong; Gu, Wenjuan; Liu, Yuqin; Zhang, Mengren

    2013-01-01

    Ginsenoside Rb1 is one of the main active principles in traditional herb ginseng and has been reported to have a wide variety of neuroprotective effects. Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, so the present study aimed to observe the effects of ginsenoside Rb1 on ER stress signaling pathways in high glucose-treated hippocampal neurons. The results from MTT, TUNEL labeling and Annexin V-FITC/PI/Hoechst assays showed that incubating neurons with 50 mM high glucose for 72 h decreased cell viability and increased the number of apoptotic cells whereas treating neurons with 1 μM Rb1 for 72 h protected the neurons against high glucose-induced cell damage. Further molecular mechanism study demonstrated that Rb1 suppressed the activation of ER stress-associated proteins including protein kinase RNA (PKR)-like ER kinase (PERK) and C/EBP homology protein (CHOP) and downregulation of Bcl-2 induced by high glucose. Moreover, Rb1 inhibited both the elevation of intracellular reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential induced by high glucose. In addition, the high glucose-induced cell apoptosis, activation of ER stress, ROS accumulation and mitochondrial dysfunction can also be attenuated by the inhibitor of ER stress 4-phenylbutyric acid (4-PBA) and anti-oxidant N-acetylcysteine(NAC). In conclusion, these results suggest that Rb1 may protect neurons against high glucose-induced cell injury through inhibiting CHOP signaling pathway as well as oxidative stress and mitochondrial dysfunction.

  12. Antiresistin RNA Oligonucleotide Ameliorates Diet-Induced Nonalcoholic Fatty Liver Disease in Mice through Attenuating Proinflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Yi Tan

    2015-01-01

    Full Text Available The aim of this study was to determine whether inhibition of resistin by a synthetic antiresistin RNA (oligonucleotide oligo ameliorates metabolic and histological abnormalities in nonalcoholic fatty liver disease (NAFLD induced by high-fat diet (HFD in mice. The antiresistin RNA oligo and a scrambled control oligo (25 mg/kg of body weight were i.p. injected to HFD mice. Serum metabolic parameters and hepatic enzymes were measured after 4-week treatment. The treatment significantly reduced epididymal fat and attenuated the elevated serum resistin, cholesterol, triglycerides, glucose, and insulin with an improved glucose tolerance test. Antiresistin RNA oligo also normalized serum AST and ALT levels with improved pathohistology of NAFLD. Immunoblotting and qRT-PCR revealed that decreased protein and mRNA expression of resistin in fat and liver tissues of the treated mice were associated with reduction of adipose TNF-α and IL-6 expression and secretion into circulation. mRNA and protein expression of hepatic phosphoenolpyruvate carboxykinase (PEPCK and sterol regulatory element-binding protein-1c (SREBP-1c were also significantly decreased in the treated mice. Our results suggest that resistin may exacerbate NAFLD in metabolic syndrome through upregulating inflammatory cytokines and hepatic PEPCK and SREBP-1c. Antiresistin RNA oligo ameliorated metabolic abnormalities and histopathology of NAFLD through attenuating proinflammatory cytokines.

  13. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    Full Text Available This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF diet (63.1%. Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1 normal group (normal; (2 HF group; (3 chitosan + HF group (HF + C. The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8% significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF-α, Interleukin (IL-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC and triglyceride (TG contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C, very-low-density lipoprotein cholesterol (VLDL-C, the TC/high-density lipoprotein cholesterol (HDL-C ratio, and increased the HDL-C/(LDL-C + VLDL-C ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4 protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment

  14. ALDH2 Inhibition Potentiates High Glucose Stress-Induced Injury in Cultured Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Guodong Pan

    2016-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH gene superfamily consists of 19 isozymes. They are present in various organs and involved in metabolizing aldehydes that are biologically generated. For instance, ALDH2, a cardiac mitochondrial ALDH isozyme, is known to detoxify 4-hydroxy-2-nonenal, a reactive aldehyde produced upon lipid peroxidation in diabetic conditions. We hypothesized that inhibition of ALDH leads to the accumulation of unmetabolized 4HNE and consequently exacerbates injury in cells subjected to high glucose stress. H9C2 cardiomyocyte cell lines were pretreated with 10 μM disulfiram (DSF, an inhibitor of ALDH2 or vehicle (DMSO for 2 hours, and then subjected to high glucose stress {33 mM D-glucose (HG or 33 mM D-mannitol as an osmotic control (Ctrl} for 24 hrs. The decrease in ALDH2 activity with DSF pretreatment was higher in HG group when compared to Ctrl group. Increased 4HNE adduct formation with DSF pretreatment was higher in HG group compared to Ctrl group. Pretreatment with DSF leads to potentiated HG-induced cell death in cultured H9C2 cardiomyocytes by lowering mitochondrial membrane potential. Our results indicate that ALDH2 activity is important in preventing high glucose induced cellular dysfunction.

  15. Parathyroidectomy Ameliorates Glucose and Blood Pressure Control in a Patient with Primary Hyperparathyroidism, Type 2 Diabetes, and Hypertension

    Directory of Open Access Journals (Sweden)

    Alok Kumar

    2015-01-01

    Full Text Available Effect of parathyroidectomy on glucose control and hypertension is controversial. Here, we report a case of a patient with primary hyperparathyroidism, type 2 diabetes mellitus, and hypertension in whom parathyroidectomy ameliorated both glucose control and blood pressure. Once high serum calcium levels were noticed, ultrasonography of neck confirmed a well-defined oval hypoechoic mass posterior to the right lobe of the thyroid, confirmed by scintiscan. Parathyroidectomy resulted in improvement of blood pressure and blood glucose. We could stop insulin and antihypertensive medications. We conclude that in patients with type 2 diabetes with vague complaints like fatigue, body ache, and refractory hypertension, as a part of the diagnostic workup, clinicians should also check serum calcium levels and parathyroid hormone to rule out hyperparathyroidism. Correction of hyperparathyroidism may result in improvement of hypertension and glucose control.

  16. Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway.

    Science.gov (United States)

    He, Ting; Guan, Xu; Wang, Song; Xiao, Tangli; Yang, Ke; Xu, Xinli; Wang, Junping; Zhao, Jinghong

    2015-02-15

    Resveratrol (RSV) is reported to have renoprotective activity against diabetic nephropathy, while the mechanisms underlying its function have not been fully elucidated. In this study, we investigate the effect and related mechanism of RSV against high glucose-induced epithelial to mesenchymal transition (EMT) in human tubular epithelial cells (HK-2). A typical EMT is induced by high glucose in HK-2 cells, accompanied by increased levels of reactive oxygen species (ROS). RSV exhibits a strong ability to inhibit high glucose-induced EMT by decreasing intracellular ROS levels via down-regulation of NADPH oxidase subunits NOX1 and NOX4. The activation of extracellular signal-regulated kinase (ERK1/2) is found to be involved in high glucose-induced EMT in HK-2 cells. RSV, like NADPH oxidase inhibitor diphenyleneiodonium, can block ERK1/2 activation induced by high glucose. Our results demonstrate that RSV is a potent agent against high glucose-induced EMT in renal tubular cells via inhibition of NADPH oxidase/ROS/ERK1/2 pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. The anti-inflammatory and antifibrotic effects of Coreopsis tinctoria Nutt on high-glucose-fat diet and streptozotocin-induced diabetic renal damage in rats.

    Science.gov (United States)

    Yao, Lan; Li, Linlin; Li, Xinxia; Li, Hui; Zhang, Yujie; Zhang, Rui; Wang, Jian; Mao, Xinmin

    2015-09-07

    Diabetic nephropathy is a serious complication of diabetes whose development process is associated with inflammation, renal hypertrophy, and fibrosis. Coreopsis tinctoria Nutt, traditionally used as a healthcare tea, has anti-inflammatory, anti-hyperlipidemia, and glycemic regulation activities. The aim of our study was to investigate the renal protective effect of ethyl acetate extract of C. tinctoria Nutt (AC) on high-glucose-fat diet and streptozotocin (STZ)-induced diabetic rats. A diabetic rat model was induced by high-glucose-fat diet and intraperitoneal injection of 35 mg/kg STZ. After treatment with AC at a daily dose of 150, 300 or, 600 mg/kg for 4 weeks, metabolic and renal function parameters of serum and urine were examined. Degree of renal damage, renal proinflammatory cytokines, and fibrotic protein expression were analyzed by histopathology and immunohistochemistry. Renal AMP-activated protein kinase (AMPK) and transforming growth factor (TGF)-β1/Smad signaling pathway were determined by western blotting. Diabetic rats showed obvious renal dysfunction, inflammation and fibrosis. However, AC significantly reduced levels of blood glucose, total cholesterol, triglyceride, blood urea nitrogen, serum creatinine and urinary albumin, as well as expression of kidney proinflammatory cytokines of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. AC also ameliorated renal hypertrophy and fibrosis by reducing fibronectin and collagen IV and suppressing the TGF-β1/Smad signaling pathway. Meanwhile, AMPKα as a protective cytokine was markedly stimulated by AC. In summary, AC controls blood glucose, inhibits inflammatory and fibrotic processes, suppresses the TGF-β1/Smad signaling pathway, and activates phosphorylation of AMPKα in the kidneys, which confirms the protective effects of AC in the early stage of diabetic kidney disease.

  18. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells

    Directory of Open Access Journals (Sweden)

    Seung Eun Song

    2016-04-01

    Full Text Available This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6–25 mM increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM. High glucose increased reactive oxygen species (ROS generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.

  19. Eugenosedin-A improves glucose metabolism and inhibits MAPKs expression in streptozotocin/nicotinamide-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Kuo-Ping Shen

    2018-03-01

    Full Text Available This study examined the effects of eugenosedin-A (Eu-A in a streptozotocin (STZ/nicotinamide-induced rat model of type II diabetes mellitus (T2DM. Six-week-old Sprague–Dawley rats were randomly divided into three groups: (1 RD group, normal rats fed a regular diet (RD, (2 DM group, T2DM rats fed a high-fat diet, and (3 Eu-A group, T2DM rats fed a high fat diet plus oral Eu-A (5 mg/kg/day. After 30 days, the DM group had higher body weight, higher blood glucose and lower insulin levels than the RD group. The DM group also had increased protein expression of glycogen synthase kinase (GSK in liver and skeletal muscle and decreased protein expression of insulin receptor (IR, insulin receptor substrate-1 (IRS-1, IRS-2, AMP-activated protein kinase (AMPK, glucose transporter-4 (GLUT-4, glucokinase (GCK, and peroxisome proliferator-activated receptor γ (PPAR-γ. STZ/nicotinamide-induced T2DM increased the expression of mitogen-activated protein kinases (MAPKs: p38, ERK, JNK and inflammatory p65 protein. In the Eu-A treated T2DM rats, however, blood glucose was attenuated and the insulin concentration stimulated. Changes in IR, IRS-1 and IRS-2 proteins as well as AMPK, GLUT-4, GCK, GSK, PPAR-γ, MAPKs, and inflammatory p65 proteins were ameliorated. These results suggested that Eu-A alleviates STZ/nicotinamide-induced hyperglycemia by improving insulin levels and glucose metabolism, and inhibiting the MAPKs- and p65-mediated inflammatory pathway.

  20. [Valsartan inhibits angiotensin II-Notch signaling of mesangial cells induced by high glucose].

    Science.gov (United States)

    Yuan, Qin; Lyu, Chuan; Wu, Can; Lei, Sha; Shao, Ying; Wang, Qiuyue

    2016-01-01

    To explore the role of angiotensin II (Ang II)-Notch signaling in high glucose-induced secretion of extracellular matrix of rat mesangial cells (RMCs) and to further investigate the protective effect of valsartan (one of Ang II receptor blockers) on kidney. Subcultured RMCs were divided into groups as follows: normal glucose group (5.5 mmol/L glucose); high glucose group (30 mmol/L glucose); high concentration of mannitol as osmotic control group (5.5 mmol/L glucose and 24.5 mmol/L mannitol); normal glucose plus 1 μmol/L N-[N-(3, 5-difluorophenacetyl)-L-alanyl ]-S-phenylglycine t-butyl ester (DAPT) group; normal glucose plus (1, 5, 10) μmol/L valsartan group; high glucose plus 1 μmol/L DAPT group; high glucose plus (1, 5, 10) μmol/L valsartan group. Cells and supernatants were harvested after 12, 24 and 48 hours. Notch1 expression was examined by Western blotting. Secretion of transforming growth factor (TGF-β) and fibronectin (FN) were detected by ELISA. Compared to the normal glucose group, Notch1 expression was elevated in the high glucose group after 12 hours, and peaked at 24 hours. Besides, secretion of TGF-β and FN were much higher in the high glucose group than in the normal glucose group in a time-dependent manner. Compared to the untreated group, Notch1 expression decreased in a dose-dependent manner in the valsartan or DAPT treated group under high glucose after 24 hours. After pre-treatment by either valsartan or DAPT in the high glucose group, secretion of TGF-β and FN obviously decreased as compared to the untreated group. Hyperglycemia could stimulate activation of Notch signaling in cultured RMCs, which may increase secretion of downstream fibrotic factors such as TGF-β and FN. Valsartan may decrease the secretion of downstream FN in a dose-dependent manner via inhibiting AngII-Notch signaling.

  1. Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo

    Directory of Open Access Journals (Sweden)

    Rui-Rong Tan

    2015-08-01

    Full Text Available Gestational diabetes mellitus (GDM is one of the leading causes of offspring malformations, in which eye malformation is an important disease. It has raised demand for therapy to improve fetal outcomes. In this study, we used chick embryo to establish a GDM model to study the protective effects of proanthocyanidins on eye development. Chick embryos were exposed to high glucose (0.2 mmol/egg on embryo development day (EDD 1. Proanthocyanidins (1 and 10 nmol/egg were injected into the air sac on EDD 0. Results showed that both dosages of proanthocyanidins could prevent the eye malformation and rescue the high glucose-induced oxidative stress significantly, which the similar effects were showed in edaravone. However, proanthocyanidins could not decrease the glucose concentration of embryo eye. Moreover, the key genes regulating eye development, Pax6, was down-regulated by high glucose. Proanthocyanidins could restore the suppressed expression of Pax6. These results indicated proanthocyanidins might be a promising natural agent to prevent high glucose-induced eye malformation by restoring Pax6 expression.

  2. Ameliorative Activity of Ethanol Extract of Artocarpus heterophyllus Stem Bark on Pancreatic β-Cell Dysfunction in Alloxan-Induced Diabetic Rats.

    Science.gov (United States)

    Ajiboye, Basiru O; Ojo, Oluwafemi A; Adeyonu, Oluwatosin; Imiere, Oluwatosin D; Fadaka, Adewale O; Osukoya, Adetutu O

    2017-10-01

    This study sought to investigate the ameliorative effects of ethanol extract Artocarpus heterophyllus (EAH) in alloxan-induced diabetic rats. The rats were divided into 6 groups, with groups 1 and 2 serving as nondiabetic and diabetic control, respectively; group 3 serving as diabetic rats treated with 5 mg/kg glibenclamide; and groups 4 to 6 were diabetic rats treated with 50, 100, and 150 mg/kg of EAH, respectively. Assays determined were serum insulin, lipid peroxidation, and antioxidant enzyme activities. EAH stem bark reduced fasting blood glucose and lipid peroxidation levels and increased serum insulin levels and activities of antioxidant enzymes. Data obtained demonstrated the ability of EAH stem bark to ameliorate pancreatic β-cell dysfunction in alloxan-induced diabetic rats.

  3. Green Tea Polyphenols, Mimicking the Effects of Dietary Restriction, Ameliorate High-Fat Diet-Induced Kidney Injury via Regulating Autophagy Flux

    Directory of Open Access Journals (Sweden)

    Xiao Xie

    2017-05-01

    Full Text Available Epidemiological and experimental studies reveal that Western dietary patterns contribute to chronic kidney disease, whereas dietary restriction (DR or dietary polyphenols such as green tea polyphenols (GTPs can ameliorate the progression of kidney injury. This study aimed to investigate the renal protective effects of GTPs and explore the underlying mechanisms. Sixty Wistar rats were randomly divided into 6 groups: standard diet (STD, DR, high-fat diet (HFD, and three diets plus 200 mg/kg(bw/day GTPs, respectively. After 18 weeks, HFD group exhibited renal injuries by increased serum cystatin C levels and urinary N-acetyl-β-d-glucosaminidase activity, which can be ameliorated by GTPs. Meanwhile, autophagy impairment as denoted by autophagy-lysosome related proteins, including LC3-II, Beclin-1, p62, cathepsin B, cathepsin D and LAMP-1, was observed in HFD group, whereas DR or GTPs promoted renal autophagy activities and GTPs ameliorated HFD-induced autophagy impairment. In vitro, autophagy flux suppression was detected in palmitic acid (PA-treated human proximal tubular epithelial cells (HK-2, which was ameliorated by epigallocatechin-3-gallate (EGCG. Furthermore, GTPs (or EGCG elevated phosphorylation of AMP-activated protein kinase in the kidneys of HFD-treated rats and in PA-treated HK-2 cells. These findings revealed that GTPs mimic the effects of DR to induce autophagy and exert a renal protective effect by alleviating HFD-induced autophagy suppression.

  4. Carbenoxolone treatment ameliorated metabolic syndrome in WNIN/Ob obese rats, but induced severe fat loss and glucose intolerance in lean rats.

    Directory of Open Access Journals (Sweden)

    Siva Sankara Vara Prasad Sakamuri

    Full Text Available BACKGROUND: 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1 regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. METHODOLOGY/PRINCIPAL FINDINGS: Subcutaneous injection of CBX (50 mg/kg body weight or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment. Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. CONCLUSIONS/SIGNIFICANCE: We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions.

  5. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat.

    Science.gov (United States)

    Prakash, Prem; Singh, Vishal; Jain, Manish; Rana, Minakshi; Khanna, Vivek; Barthwal, Manoj Kumar; Dikshit, Madhu

    2014-03-15

    High dietary fructose causes insulin resistance syndrome (IRS), primarily due to simultaneous induction of genes involved in glucose, lipid and mitochondrial oxidative metabolism. The present study evaluates effect of a hepatoprotective agent, silymarin (SYM) on fructose-induced metabolic abnormalities in the rat and also assessed the associated thrombotic complications. Wistar rats were kept on high fructose (HFr) diet throughout the 12-week study duration (9 weeks of HFr feeding and subsequently 3 weeks of HFr plus SYM oral administration [once daily]). SYM treatment significantly reduced the HFr diet-induced increase expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α/β, peroxisome proliferator-activated receptor (PPAR)-α, forkhead box protein O1 (FOXO1), sterol regulatory element binding protein (SREBP)-1c, liver X receptor (LXR)-β, fatty acid synthase (FAS) and PPARγ genes in rat liver. SYM also reduced HFr diet mediated increase in plasma triglycerides (TG), non-esterified fatty acids (NEFA), uric acid, malondialdehyde (MDA), total nitrite and pro-inflammatory cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-gamma [IFN-γ] and tumor necrosis factor [TNF]) levels. Moreover, SYM ameliorated HFr diet induced reduction in glucose utilization and endothelial dysfunction. Additionally, SYM significantly reduced platelet activation (adhesion and aggregation), prolonged ferric chloride-induced blood vessel occlusion time and protected against exacerbated myocardial ischemia reperfusion (MI-RP) injury. SYM treatment prevented HFr induced mRNA expression of hepatic PGC-1α/β and also its target transcription factors which was accompanied with recovery in insulin sensitivity and reduced propensity towards thrombotic complications and aggravated MI-RP injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Ameliorating role of chromium ingestion on biochemical, histological and trigluconate disorders induced by diabetes and / or gamma irradiation in pregnant albino rats and their fetuses

    International Nuclear Information System (INIS)

    RAMADAN, F.L.; REZK, R.G.

    2006-01-01

    Chromium is an essential trace element in human nutrition for the regulation of insulin action thereby influencing carbohydrate and lipid metabolism The aim of the present study was to evaluate the role of chromium intake on radiation-induced damage in diabetic mothers. Diabetes was induced in female rats by intraperitoneal injection of 150 mg/kg alloxan dissolved in saline. Pregnant diabetic mothers were received chromium (20 mg/kg) from the 1st up to the 19 th day of gestation. Meanwhile, pregnant diabetic rats were exposed to 0.3 Gy gamma radiation on the 6th and the 12 th day of gestation. Chromium treatment of diabetic mothers ameliorated radiation-induced damage, which was obvious by diminishing the increase of glucose, malonaldehyde (MDA), total cholesterol levels and by ameliorating the decrease of glutathione level in blood serum. In addition,chromium treatment ameliorated the radiation-induced changes in cholesterol levels of the fetuses. Moreover, chromium treatment led to the regeneration of the normal architecture of maternal hepatic cells and blood vessels. It could be concluded that chromium supplementation to diabetic mothers ameliorated the radiation-induced biochemical, histopathological and teratological disorders. Furthermore, the results obtained showed that chromium administration caused a significant protection to diabetic pregnant females against radiation-induced spontaneous abortion and embryo malformations

  7. E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants.

    Science.gov (United States)

    Wang, Yujiao; Zhou, Yi; Xiao, Lirong; Zheng, Shijie; Yan, Naihong; Chen, Danian

    2017-10-02

    Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1 -/- mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl 2 ) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.

  8. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    Science.gov (United States)

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  9. Protective effects of antioxidants on high Glucose-induced malfunctions in human glomerular mesangial cells

    Directory of Open Access Journals (Sweden)

    Hosseini R

    2000-08-01

    Full Text Available Altered functions of mesangial cells induced by high glucose concentrations are thought to play an important role in the pathogenesis of diabetic nephropathy. We therefore investigated the effect of high glucose (39.2 mM alone and in combination with taurine (500 µM or vitamin E (100 µM in serum free medium (RPMI 1640 on the proliferative growth response and turnover of type IV collagen by human glomerular mesangial cells (GMC. The results showed that the high glucose level decreases the proliferation of the GMC which is reversed by taurine and vitamin E. In order to control the osmotic effects of high glucose, the GMC were also cultured in the presence of manitol. Manitol had no effect on the proliferation of GMC. Furthermore, the results showed that addition of vitamin E or taurine to media containing high glucose could reverse and normalize the collagen turn-over by the cultured mesangial cells. These results suggest that taurie and vitamin E may function as endogenous agents in the kidney to limit the development of glomerulosclerosis in diabetic renal disease.

  10. Cinnamon Extract Enhances Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myocytes by Inducing LKB1-AMP-Activated Protein Kinase Signaling

    Science.gov (United States)

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

  11. Glucose-Dependent Insulinotropic Polypeptide Ameliorates Mild Traumatic Brain Injury-Induced Cognitive and Sensorimotor Deficits and Neuroinflammation in Rats

    Science.gov (United States)

    Yu, Yu-Wen; Hsieh, Tsung-Hsun; Chen, Kai-Yun; Wu, John Chung-Che; Hoffer, Barry J.; Greig, Nigel H.; Li, Yazhou; Lai, Jing-Huei; Chang, Cheng-Fu; Lin, Jia-Wei; Chen, Yu-Hsin

    2016-01-01

    Abstract Mild traumatic brain injury (mTBI) is a major public health issue, representing 75–90% of all cases of TBI. In clinical settings, mTBI, which is defined as a Glascow Coma Scale (GCS) score of 13–15, can lead to various physical, cognitive, emotional, and psychological-related symptoms. To date, there are no pharmaceutical-based therapies to manage the development of the pathological deficits associated with mTBI. In this study, the neurotrophic and neuroprotective properties of glucose-dependent insulinotropic polypeptide (GIP), an incretin similar to glucagon-like peptide-1 (GLP-1), was investigated after its steady-state subcutaneous administration, focusing on behavior after mTBI in an in vivo animal model. The mTBI rat model was generated by a mild controlled cortical impact (mCCI) and used to evaluate the therapeutic potential of GIP. We used the Morris water maze and novel object recognition tests, which are tasks for spatial and recognition memory, respectively, to identify the putative therapeutic effects of GIP on cognitive function. Further, beam walking and the adhesive removal tests were used to evaluate locomotor activity and somatosensory functions in rats with and without GIP administration after mCCI lesion. Lastly, we used immunohistochemical (IHC) staining and Western blot analyses to evaluate the inflammatory markers, glial fibrillary acidic protein (GFAP), amyloid-β precursor protein (APP), and bone marrow tyrosine kinase gene in chromosome X (BMX) in animals with mTBI. GIP was well tolerated and ameliorated mTBI-induced memory impairments, poor balance, and sensorimotor deficits after initiation in the post-injury period. In addition, GIP mitigated mTBI-induced neuroinflammatory changes on GFAP, APP, and BMX protein levels. These findings suggest GIP has significant benefits in managing mTBI-related symptoms and represents a novel strategy for mTBI treatment. PMID:26972789

  12. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet–Induced Insulin Resistance

    Science.gov (United States)

    Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H.; Garvey, W. John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang

    2016-01-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. PMID:27207527

  13. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice.

    Science.gov (United States)

    Su, Hong-Ming; Feng, Li-Na; Zheng, Xiao-Dong; Chen, Wei

    2016-06-01

    Myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications.

  14. (+-Rutamarin as a dual inducer of both GLUT4 translocation and expression efficiently ameliorates glucose homeostasis in insulin-resistant mice.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Glucose transporter 4 (GLUT4 is a principal glucose transporter in response to insulin, and impaired translocation or decreased expression of GLUT4 is believed to be one of the major pathological features of type 2 diabetes mellitus (T2DM. Therefore, induction of GLUT4 translocation or/and expression is a promising strategy for anti-T2DM drug discovery. Here we report that the natural product (+-Rutamarin (Rut functions as an efficient dual inducer on both insulin-induced GLUT4 translocation and expression. Rut-treated 3T3-L1 adipocytes exhibit efficiently enhanced insulin-induced glucose uptake, while diet-induced obese (DIO mice based assays further confirm the Rut-induced improvement of glucose homeostasis and insulin sensitivity in vivo. Subsequent investigation of Rut acting targets indicates that as a specific protein tyrosine phosphatase 1B (PTP1B inhibitor Rut induces basal GLUT4 translocation to some extent and largely enhances insulin-induced GLUT4 translocation through PI3 kinase-AKT/PKB pathway, while as an agonist of retinoid X receptor α (RXRα, Rut potently increases GLUT4 expression. Furthermore, by using molecular modeling and crystallographic approaches, the possible binding modes of Rut to these two targets have been also determined at atomic levels. All our results have thus highlighted the potential of Rut as both a valuable lead compound for anti-T2DM drug discovery and a promising chemical probe for GLUT4 associated pathways exploration.

  15. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  16. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  17. Ameliorative Effect of Hexane Extract of Phalaris canariensis on High Fat Diet-Induced Obese and Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Rosa Martha Perez Gutierrez

    2014-01-01

    Full Text Available Obesity is one of the major factors to increase various disorders like diabetes. The present paper emphasizes study related to the antiobesity effect of Phalaris canariensis seeds hexane extract (Al-H in high-fat diet- (HFD- induced obese CD1 mice and in streptozotocin-induced mild diabetic (MD and severely diabetic (SD mice.AL-H was orally administered to MD and SD mice at a dose of 400 mg/kg once a day for 30 days, and a set of biochemical parameters were studied: glucose, cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, ALP, SGOT, SGPT, glucose-6-phosphatase, glucokinase, hexokinase, SOD, CAT, GSH, GPX activities, and the effect on insulin level. HS-H significantly reduced the intake of food and water and body weight loss as well as levels of blood glucose, serum cholesterol, triglyceride, lipoprotein, oxidative stress, showed a protective hepatic effect, and increased HDL-cholesterol, serum insulin in diabetic mice. The mice fed on the high-fat diet and treated with AL-H showed inhibitory activity on the lipid metabolism decreasing body weight and weight of the liver and visceral adipose tissues and cholesterol and triglycerides in the liver. We conclude that AL-H can efficiently reduce serum glucose and inhibit insulin resistance, lipid abnormalities, and oxidative stress in MD and SD mice. Our results demonstrate an antiobesity effect reducing lipid droplet accumulation in the liver, indicating that its therapeutic properties may be due to the interaction plant components soluble in the hexane extract, with any of the multiple targets involved in obesity and diabetes pathogenesis.

  18. Ameliorative Effect of Hexane Extract of Phalaris canariensis on High Fat Diet-Induced Obese and Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Perez Gutierrez, Rosa Martha; Madrigales Ahuatzi, Diana; Horcacitas, Maria Del Carmen; Garcia Baez, Efren; Cruz Victoria, Teresa; Mota-Flores, Jose Maria

    2014-01-01

    Obesity is one of the major factors to increase various disorders like diabetes. The present paper emphasizes study related to the antiobesity effect of Phalaris canariensis seeds hexane extract (Al-H) in high-fat diet- (HFD-) induced obese CD1 mice and in streptozotocin-induced mild diabetic (MD) and severely diabetic (SD) mice.AL-H was orally administered to MD and SD mice at a dose of 400 mg/kg once a day for 30 days, and a set of biochemical parameters were studied: glucose, cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, ALP, SGOT, SGPT, glucose-6-phosphatase, glucokinase, hexokinase, SOD, CAT, GSH, GPX activities, and the effect on insulin level. HS-H significantly reduced the intake of food and water and body weight loss as well as levels of blood glucose, serum cholesterol, triglyceride, lipoprotein, oxidative stress, showed a protective hepatic effect, and increased HDL-cholesterol, serum insulin in diabetic mice. The mice fed on the high-fat diet and treated with AL-H showed inhibitory activity on the lipid metabolism decreasing body weight and weight of the liver and visceral adipose tissues and cholesterol and triglycerides in the liver. We conclude that AL-H can efficiently reduce serum glucose and inhibit insulin resistance, lipid abnormalities, and oxidative stress in MD and SD mice. Our results demonstrate an antiobesity effect reducing lipid droplet accumulation in the liver, indicating that its therapeutic properties may be due to the interaction plant components soluble in the hexane extract, with any of the multiple targets involved in obesity and diabetes pathogenesis.

  19. A prescribed Chinese herbal medicine improves glucose profile and ameliorates oxidative stress in Goto-Kakisaki rats fed with high fat diet.

    Directory of Open Access Journals (Sweden)

    Lin Wu

    Full Text Available Oxidative stress (OS plays a role in hyperglycemia induced islet β cell dysfunction, however, studies on classic anti-oxidants didn't show positive results in treating diabetes. We previously demonstrated that the prescribed Chinese herbal medicine preparation "Qing Huo Yi Hao" (QHYH improved endothelial function in type 2 diabetic patients. QHYH protected endothelial cells from high glucose-induced damages by scavenging superoxide anion and reducing production of reactive oxygen species. Its active component protected C2C12 myotubes against palmitate-induced oxidative damage and mitochondrial dysfunction. In the present study, we investigated whether QHYH protected islet β cell function exacerbated by high fat diet (HFD in hyperglycemic GK rats. 4-week-old male rats were randomly divided into high HFD feeding group (n = 20 and chow diet feeding group (n = 10. Each gram of HFD contained 4.8 kcal of energy, 52% of which from fat. Rats on HFD were further divided into 2 groups given either QHYH (3 ml/Kg/d or saline through gastric tube. After intervention, serum glucose concentrations were monitored; IPGTTs were performed without anesthesia on 5 fasting rats randomly chosen from each group on week 4 and 16. Serum malondialdehyde (MDA concentrations and activities of serum antioxidant enzymes were measured on week 4 and 16. Islet β cell mass and OS marker staining was done by immunohistochemistry on week 16. QHYH prevented the exacerbation of hyperglycemia in HFD feeding GK rats for 12 weeks. On week 16, it improved the exacerbated glucose tolerance and prevented the further loss of islet β cell mass induced by HFD. QHYH markedly decreased serum MDA concentration, increased serum catalase (CAT and SOD activities on week 4. However, no differences of serum glucose concentration or OS were observed on week 16. We concluded that QHYH decreased hyperglycemia exacerbated by HFD in GK rats by improving β cell function partly via its

  20. Naringin Protects Against High Glucose-Induced Human Endothelial Cell Injury Via Antioxidation and CX3CL1 Downregulation

    Directory of Open Access Journals (Sweden)

    Guilin Li

    2017-08-01

    Full Text Available Background/Aims: The induction of endothelial injury by hyperglycemia in diabetes has been widely accepted. Naringin is a bio-flavonoid. Some studies showed that naringin alleviates diabetic complications, but the exact mechanisms by which naringin improves diabetic anomalies are not yet fully understood. The aim of this research was to study the protective effect of naringin on high glucose-induced injury of human umbilical vein endothelial cells (HUVECs. Methods: HUVECs were cultured with or without high glucose in the absence or presence of naringin for 5 days. The expression of CX3CL1 was determined by quantitative real-time RT-PCR (qPCR and western blot. The cellular bioenergetic analysis oxygen consumption rate (OCR was measured with a Seahorse Bioscience XF analyzer. Results: The production of reactive oxygen species (ROS, the expression of CX3CL1 and the level of AKT phosphorylation were increased in HUVECs cultured with high glucose compared with controls. However, naringin rescued these increases in ROS production, CX3CL1 expression and AKT phosphorylation. Nitric oxide (NO production and OCR were lower in the high glucose group, and naringin restored the changes induced by high glucose. Molecular docking results suggested that Naringin might interact with the CX3CL1 protein. Conclusion: Naringin protects HUVECs from high-glucose-induced damage through its antioxidant properties by downregulating CX3CL1 and by improving mitochondrial function.

  1. Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Radhika Kapoor

    Full Text Available Apoptosis is an early event of liver damage in diabetes and oxidative stress has been linked to accelerate the apoptosis in hepatocytes. Therefore, the compounds that can scavenge ROS may confer regulatory effects on high-glucose induced apoptosis. In the present study, primary rat hepatocytes were exposed to high concentration (40 mM of glucose. At this concentration decreased cell viability and enhanced ROS generation was observed. Depleted antioxidant status of hepatocytes under high glucose stress was also observed as evident from transcriptional level and activities of antioxidant enzymes. Further, mitochondrial depolarisation was accompanied by the loss of mitochondrial integrity and altered expression of Bax and Bcl-2. Increased translocation of apoptotic proteins like AIF (Apoptosis inducing factor & Endo-G (endonuclease-G from its resident place mitochondria to nucleus was also observed. Cyt-c residing in the inter-membrane space of mitochondria also translocated to cytoplasm. These apoptotic proteins initiated caspase activation, DNA fragmentation, chromatin condensation, increased apoptotic DNA content in glucose treated hepatocytes, suggesting mitochondria mediated apoptotic mode of cell death. Morin, a dietary flavonoid from Psidium guajava was effective in increasing the cell viability and decreasing the ROS level. It maintained mitochondrial integrity, inhibited release of apoptotic proteins from mitochondria, prevented DNA fragmentation, chromatin condensation and hypodiploid DNA upon exposure to high glucose. This study confirms the capacity of dietary flavonoid Morin in regulating apoptosis induced by high glucose via mitochondrial mediated pathway through intervention of oxidative stress.

  2. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  3. High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression

    Directory of Open Access Journals (Sweden)

    Ji Young Oh

    2018-04-01

    Full Text Available Background/Aims: Glucose plays an important role in stem cell fate determination and behaviors. However, it is still not known how glucose contributes to the precise molecular mechanisms responsible for stem cell migration. Thus, we investigate the effect of glucose on the regulation of the human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC migration, and analyze the mechanism accompanied by this effect. Methods: Western blot analysis, wound healing migration assays, immunoprecipitation, and chromatin immunoprecipitation assay were performed to investigate the effect of high glucose on hUCB-MSC migration. Additionally, hUCB-MSC transplantation was performed in the mouse excisional wound splinting model. Results: High concentration glucose (25 mM elicits hUCB-MSC migration compared to normal glucose and high glucose-pretreated hUCB-MSC transplantation into the wound sites in mice also accelerates skin wound repair. We therefore elucidated the detailed mechanisms how high glucose induces hUCB-MSC migration. We showed that high glucose regulates E-cadherin repression through increased Snail and EZH2 expressions. And, we found high glucose-induced reactive oxygen species (ROS promotes two signaling; JNK which regulates γ–secretase leading to the cleavage of Notch proteins and PI3K/Akt signaling which enhances GSK-3β phosphorylation. High glucose-mediated JNK/Notch pathway regulates the expression of EZH2, and PI3K/Akt/GSK-3β pathway stimulates Snail stabilization, respectively. High glucose enhances the formation of EZH2/Snail/HDAC1 complex in the nucleus, which in turn causes E-cadherin repression. Conclusion: This study reveals that high glucose-induced ROS stimulates the migration of hUCB-MSC through E-cadherin repression via Snail and EZH2 signaling pathways.

  4. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a.

    Directory of Open Access Journals (Sweden)

    Chaoming Peng

    Full Text Available Cardiac microvascular endothelial cells (CMECs dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose.CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay.ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs.Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.

  5. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Abu

    2015-01-01

    Full Text Available The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC which received standard rodent diet, the high fat diet (HFD which received high fat diet only, the high fat diet treated with T. crispa (HFDTC, and the high fat diet treated with orlistat (HFDO. After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05 reduced the body weight (41.14 ± 1.40%, adiposity index serum levels (4.910 ± 0.80%, aspartate aminotransferase (AST: 161 ± 4.71 U/L, alanine aminotransferase (ALT: 100.95 ± 3.10 U/L, total cholesterol (TC: 18.55 ± 0.26 mmol/L, triglycerides (TG: 3.70 ± 0.11 mmol/L, blood glucose (8.50 ± 0.30 mmo/L, resistin (0.74 ± 0.20 ng/mL, and leptin (17.428 ± 1.50 ng/mL hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL and C-peptide (136.48 pmol/L hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet.

  6. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  7. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Ulla, Anayt; Alam, Md Ashraful; Sikder, Biswajit; Sumi, Farzana Akter; Rahman, Md Mizanur; Habib, Zaki Farhad; Mohammed, Mostafe Khalid; Subhan, Nusrat; Hossain, Hemayet; Reza, Hasan Mahmud

    2017-06-02

    Obesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome. This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats. Male Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats. Supplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats. Our investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin

  8. Green tea extract with polyethylene glycol-3350 reduces body weight and improves glucose tolerance in db/db and high-fat diet mice.

    Science.gov (United States)

    Park, Jae-Hyung; Choi, Yoon Jung; Kim, Yong Woon; Kim, Sang Pyo; Cho, Ho-Chan; Ahn, Shinbyoung; Bae, Ki-Cheor; Im, Seung-Soon; Bae, Jae-Hoon; Song, Dae-Kyu

    2013-08-01

    Green tea extract (GTE) is regarded to be effective against obesity and type 2 diabetes, but definitive evidences have not been proven. Based on the assumption that the gallated catechins (GCs) in GTE attenuate intestinal glucose and lipid absorption, while enhancing insulin resistance when GCs are present in the circulation through inhibiting cellular glucose uptake in various tissues, this study attempted to block the intestinal absorption of GCs and prolong their residence time in the lumen. We then observed whether GTE containing the nonabsorbable GCs could ameliorate body weight (BW) gain and glucose intolerance in db/db and high-fat diet mice. Inhibition of the intestinal absorption of GCs was accomplished by co-administering the nontoxic polymer polyethylene glycol-3350 (PEG). C57BLKS/J db/db and high-fat diet C57BL/6 mice were treated for 4 weeks with drugs as follows: GTE, PEG, GTE+PEG, voglibose, or pioglitazone. GTE mixed with meals did not have any ameliorating effects on BW gain and glucose intolerance. However, the administration of GTE plus PEG significantly reduced BW gain, insulin resistance, and glucose intolerance, without affecting food intake and appetite. The effect was comparable to the effects of an α-glucosidase inhibitor and a peroxisome proliferator-activated receptor-γ/α agonist. These results indicate that prolonging the action of GCs of GTE in the intestinal lumen and blocking their entry into the circulation may allow GTE to be used as a prevention and treatment for both obesity and obesity-induced type 2 diabetes.

  9. Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes

    Science.gov (United States)

    Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967

  10. Interrelations between glucose-induced insulin response, metabolic indicators, and time of first ovulation in high-yielding dairy cows.

    Science.gov (United States)

    Bossaert, P; Leroy, J L M R; De Vliegher, S; Opsomer, G

    2008-09-01

    High-yielding dairy cows are more susceptible to metabolic and reproductive disorders than low-yielding cows. Insulin plays a pivotal role in the development of both problems. In the present study, we aimed to assess the glucose-induced insulin responses of dairy cows at different time points relative to calving and to relate this to the metabolic status and the time of first ovulation. Twenty-three healthy, multiparous Holstein-Friesian cows with a high genetic merit for milk yield were studied from 14 d prepartum to 42 d postpartum. Intravenous glucose tolerance tests were performed on -14, 14, and 42 d relative to calving to evaluate the plasma insulin and glucose responses to a glucose load, as estimated by the peak concentration, the area under the curve (AUC), and the clearance rates of insulin and glucose. Blood samples were obtained at 3-d intervals and analyzed for glucose, insulin, and nonesterified fatty acids (NEFA). The time of first ovulation was defined by transrectal ultrasonography and plasma progesterone analysis. Glucose-induced insulin AUC and peak concentration decreased and glucose clearance increased during lactation compared with the dry period. Plasma NEFA concentrations were negatively related to insulin AUC and peak concentrations. Fourteen cows ovulated within 42 d postpartum, and the remaining 9 cows suffered from delayed resumption of ovarian function. Survival analysis demonstrated that cows with lower NEFA concentrations during the dry period tended to have earlier resumption of ovarian activity. In conclusion, our data suggest a decreased plasma insulin response to glucose postpartum in high-yielding dairy cows, possibly contributing to metabolic stress during the early postpartum period. It is hypothesized that NEFA impair glucose-induced insulin secretion in dairy cows. Additionally, our results suggest the importance of lipolysis during the transition period as a risk factor for delayed ovulation.

  11. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    International Nuclear Information System (INIS)

    Fang, Qilu; Zhao, Leping; Wang, Yi; Zhang, Yali; Li, Zhaoyu; Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao; Li, Dan; Liang, Guang

    2015-01-01

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment

  12. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qilu [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zhao, Leping [Department of Pharmacy, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Yi; Zhang, Yali [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Zhaoyu [Department of International High School, Shanghai Jiaotong University Nanyang Affiliated (Kunshan) School, Minhang District, Shanghai (China); Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Dan, E-mail: yqyyld@163.com [Department of Nephrology, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment.

  13. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenglong [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zheng, Haining [Department of Hyperbaric Oxygen, Nanjing General Hospital of Nanjing Military Command, Nanjing (China); Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Ding, Dafa, E-mail: dingdafa2004@aliyun.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Lu, Yibing, E-mail: luyibing2004@126.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  14. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    International Nuclear Information System (INIS)

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-01-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK

  15. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.

    Science.gov (United States)

    Yu, Jingwen; Wu, Yanqing; Yang, Peixin

    2016-05-01

    Aberrant epigenetic modifications are implicated in maternal diabetes-induced neural tube defects (NTDs). Because cellular stress plays a causal role in diabetic embryopathy, we investigated the possible role of the stress-resistant sirtuin (SIRT) family histone deacetylases. Among the seven sirtuins (SIRT1-7), pre-gestational maternal diabetes in vivo or high glucose in vitro significantly reduced the expression of SIRT 2 and SIRT6 in the embryo or neural stem cells, respectively. The down-regulation of SIRT2 and SIRT6 was reversed by superoxide dismutase 1 (SOD1) over-expression in the in vivo mouse model of diabetic embryopathy and the SOD mimetic, tempol and cell permeable SOD, PEGSOD in neural stem cell cultures. 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a superoxide generating agent, mimicked high glucose-suppressed SIRT2 and SIRT6 expression. The acetylation of histone 3 at lysine residues 56 (H3K56), H3K14, H3K9, and H3K27, putative substrates of SIRT2 and SIRT6, was increased by maternal diabetes in vivo or high glucose in vitro, and these increases were blocked by SOD1 over-expression or tempol treatment. SIRT2 or SIRT6 over-expression abrogated high glucose-suppressed SIRT2 or SIRT6 expression, and prevented the increase in acetylation of their histone substrates. The potent sirtuin activator (SRT1720) blocked high glucose-increased histone acetylation and NTD formation, whereas the combination of a pharmacological SIRT2 inhibitor and a pan SIRT inhibitor mimicked the effect of high glucose on increased histone acetylation and NTD induction. Thus, diabetes in vivo or high glucose in vitro suppresses SIRT2 and SIRT6 expression through oxidative stress, and sirtuin down-regulation-induced histone acetylation may be involved in diabetes-induced NTDs. The mechanism underlying pre-gestational diabetes-induced neural tube defects (NTDs) is still elusive. Our study unravels a new epigenetic mechanism in which maternal diabetes-induced oxidative stress represses

  16. Buddleja officinalis suppresses high glucose-induced vascular smooth muscle cell proliferation: role of mitogen-activated protein kinases, nuclear factor-kappaB and matrix metalloproteinases.

    Science.gov (United States)

    Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-02-01

    Diabetes mellitus is a well-established risk factor for vascular diseases caused by atherosclerosis. In the development of diabetic atherogenesis, vascular smooth muscle cell proliferation is recognized as a key event. Thus, we aimed to investigate whether an ethanol extract of Buddleja officinalis (EBO) suppresses high glucose-induced proliferation in primary cultured human aortic smooth muscle cells (HASMC). [(3)H]-thymidine incorporation revealed that incubation of HASMC with a high concentration of glucose (25 mmol/L) increased cell proliferation. The expression levels of cell cycle protein were also increased by treatment with high glucose concentration. Pretreatment of HASMC with EBO significantly attenuated the increase of high glucose-induced cell proliferation as well as p38 mitogen-activated protein kinases (MAPK) and JNK phosphorylation. EBO suppressed high glucose-induced matrix metalloproteinase (MMP)-9 activity in a dose-dependent manner. In addition, EBO suppressed nuclear factor-kappaB (NF-kappaB) nuclear translocation and transcriptional activity in high glucose conditions. Taken together, the present data suggest that EBO could suppress high glucose-induced atherosclerotic processes through inhibition of p38, JNK, NF-kappaB and MMP signal pathways in HASMC.

  17. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    Science.gov (United States)

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  18. Autophagy activation, not peroxisome proliferator-activated receptor γ coactivator 1α, may mediate exercise-induced improvements in glucose handling during diet-induced obesity.

    Science.gov (United States)

    Rosa-Caldwell, Megan E; Brown, Jacob L; Lee, David E; Blackwell, Thomas A; Turner, Kyle W; Brown, Lemuel A; Perry, Richard A; Haynie, Wesley S; Washington, Tyrone A; Greene, Nicholas P

    2017-09-01

    What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED

  19. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice.

    Science.gov (United States)

    Shih, Chun-Ching; Shlau, Min-Tzong; Lin, Cheng-Hsiu; Wu, Jin-Bin

    2014-03-01

    Momordica charantia Linn. (Cucurbitaceae) fruit is commonly known as bitter melon. C57BL/6J mice were firstly divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% high-fat (HF) diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and still on HF diet and was given orally M. charantia extract (MCE) or rosiglitazone (Rosi) or not for 4 weeks. M. charantia decreased the weights of visceral fat and caused glucose lowering. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. MCE significantly increases the hepatic protein contents of AMPK phosphorylation by 126.2-297.3% and reduces expression of phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Most importantly, MCE decreased expression of hepatic 11beta hydroxysteroid dehydroxygenase (11beta-HSD1) gene, which contributed in attenuating diabetic state. Furthermore, MCE lowered serum triglycerides (TGs) by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein 1c and fatty acid synthase mRNA leading to reduction in TGs synthesis. This study demonstrates M. charantia ameliorates diabetic and hyperlipidemic state in HF-fed mice occurred by regulation of hepatic PEPCK, 11beta-HSD1 and AMPK phosphorylation. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Effect of perilipin-5 on apoptosis of cardiac microvascular endothelial cells induced by high fat and high glucose in mice

    Directory of Open Access Journals (Sweden)

    Jin DU

    2017-12-01

    Full Text Available Objective To investigate the effects and mechanisms of perilipin-5 (Plin5 on the apoptosis of mouse cardiac microvascular endothelial cells induced by high fat and high glucose. Methods The mouse cardiac microvascular endothelial cells (MCMECs cultured with high glucose medium were respectively given 0, 100, 300 and 500μmol/L palmitic acid for 24 hours. In order to explore the effects and mechanisms of Plin5 on MCMECs injuries induced by high fat and high glucose, MCMECs exposed to 300μmol/L palmitic acid for 24 hours were divided into control group, Scra siRNA group and Plin5 siRNA group. The control group was only treated with transfection reagent, the Scra siRNA group was given treatment of transfection reagent and garbled RNA, the Plin5 siRNA group was given treatment of transfection reagent and Plin5 specific siRNA. In order to further confirm the specific mechanism of Plin5 in high fat/glucose inducing MCMECs injury, MCMECs in Plin5 siRNA group were divided into vehicle group and N-acetyl cysteine (NAC group, and given the same intervention of high fat. The apoptotic rate was detected by flow cytometry, qRT-PCR and Western blotting were respectively used to detect the mRNA and protein expression of Plin5, and the intracellular reactive oxygen species (ROS level was tested by DHE staining and ELISA kit. Results The apoptotic rate of MCMECs was increased in a fat concentration-dependent manner (P<0.05. Compared with 0μmol/L palmitic acid group, the intracellular ROS content and the expression of Plin5 increased significantly in 300μmol/L palmitic acid group (P<0.05. Compared with the control group and the Scra siRNA group, the intracellular ROS content and apoptotic rate increased significantly in Plin5 siRNA group under the action of 300μmol/L palmitic acid (P<0.05. Compared with the vehicle group, the intracellular ROS content and apoptotic rate decreased remarkably in NAC group (P<0.05. Conclusion With inhibition of oxidative stress

  1. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by

  2. Physical exercise ameliorates mood disorder-like behavior on high fat diet-induced obesity in mice.

    Science.gov (United States)

    Park, Hye-Sang; Lee, Jae-Min; Cho, Han-Sam; Park, Sang-Seo; Kim, Tae-Woon

    2017-04-01

    Obesity is associated with mood disorders such as depression and anxiety. The aim of this study was to investigate whether treadmill exercise had any benefits on mood disorder by high fat diet (HFD) induced obesity. Mice were randomly divided into four groups: control, control and exercise, high fat diet (HFD), and HFD and exercise. Obesity was induced by a 20-week HFD (60%). In the exercise groups, exercise was performed 6 times a week for 12 weeks, with the exercise duration and intensity gradually increasing at 4-week intervals. Mice were tested in tail suspension and elevated plus maze tasks in order to verify the mood disorder like behavior such as depression and anxiety on obesity. In the present study, the number of 5-HT- and TPH-positive cells, and expression of 5-HT 1A and 5-HTT protein decreased in dorsal raphe, and depression and anxiety like behavior increased in HFD group compared with the CON group. In contrast, treadmill exercise ameliorated mood disorder like behavior by HFD induced obesity and enhanced expression of the serotonergic system in the dorsal raphe. We concluded that exercise increases the capacity of the serotonergic system in the dorsal raphe, which improves the mood disorders associated with HFD-induced obesity. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  4. High protein diet maintains glucose production during exercise-induced energy deficit: a controlled trial

    Science.gov (United States)

    Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metaboli...

  5. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  6. Protective Effects of Hesperidin (Citrus Flavonone on High Glucose Induced Oxidative Stress and Apoptosis in a Cellular Model for Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Wayne Young Liu

    2017-12-01

    Full Text Available The aim of this study was to investigate the protective effects and mechanisms of hesperidin, a plant based active flavanone found in citrus fruits, under the oxidative stress and apoptosis induced by high levels of glucose in retinal ganglial cells (RGCs. RGC-5 cells were pretreated with hesperidin (12.5, 25, or 50 μmol/L for 6 h followed by exposure to high (33.3 mmol/L d-glucose for 48 h. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was adopted to evaluate cell viability. Mitochondrial function was estimated by measuring the mitochondrial membrane potential (ΔΨm. A fluorescent probe was employed to evaluate the intercellular production of reactive oxygen species (ROS. Colorimetric assay kits were used to evaluate lipid peroxidation, antioxidant enzyme activities, and protein carbonyls formation. The expression of apoptosis-related proteins and mitogen-activated protein kinase (MAPK were measured with Western blotting. Hesperidin inhibited high glucose-mediated cell loss and restored mitochondrial function including a reversion of ΔΨm loss and cytochrome c release. Treated with hesperidin, high glucose-induced increase in ROS, malondialdehyde, and protein carbonyl levels were blocked in RGC-5 cells. Hesperidin was found to elevate the activities of superoxide dismutase, catalase, glutathione peroxidase, and to recover glutathione levels. Hesperidin inhibited high glucose-induced cell apoptosis by attenuating the downregulation of caspase-9, caspase-3, and Bax/Bcl-2. Furthermore, the phosphorylation of c-Jun N-terminal kinases (JNK and p38 MAPK triggered by high glucose were attenuated in RGC-5 cells after their incubation with hesperdin. We concluded that hesperidin may protect RGC-5 cells from high glucose-induced injury since it owns the properties of antioxidant action and blocks mitochondria-mediated apoptosis.

  7. Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages.

    Science.gov (United States)

    Dai, Jiezhi; Zhang, Xiaotian; Li, Li; Chen, Hua; Chai, Yimin

    2017-01-01

    Type 2 diabetes is a persistent inflammatory response that impairs the healing process. We hypothesized that stimulation with high glucose following a pro-inflammatory signal would lead to autophagy inhibition, reactive oxygen species (ROS) production and eventually to the activation of the Nod-like receptor protein (NLRP) -3. Macrophages were isolated from human diabetic wound. We measured the expression of NLRP3, caspase1 and interleukin-1 beta (IL-1β) by western blot and real-time PCR, and the surface markers on cells by flow cytometry. THP-1-derived macrophages exposed to high glucose were applied to study the link between autophagy, ROS and NLRP3 activation. LC3-II, P62, NLRP3 inflammation and IL-1β expression were measured by western blot and real-time PCR. ROS production was measured with a Cellular Reactive Oxygen Species Detection Assay Kit. Macrophages isolated from diabetic wounds exhibited a pro-inflammatory phenotype, including sustained NLRP3 inflammasome activity associated with IL-1β secretion. Our data showed that high glucose inhibited autophagy, induced ROS production, and activated NLRP3 inflammasome and cytokine secretion in THP-1-derived macrophages. To study high glucose-induced NLRP3 inflammasome signalling, we performed studies using an autophagy inducer, a ROS inhibitor and a NLRP3 inhibitor and found that all reduced the NLRP3 inflammasome activation and cytokine secretion. Sustained NLRP3 inflammasome activity in wound-derived macrophages contributes to the hyper-inflammation in human diabetic wounds. Autophagy inhibition and ROS generation play an essential role in high glucose-induced NLRP3 inflammasome activation and cytokine secretion in macrophages. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Propolis, a Constituent of Honey, Inhibits the Development of Sugar Cataracts and High-Glucose-Induced Reactive Oxygen Species in Rat Lenses

    Directory of Open Access Journals (Sweden)

    Teppei Shibata

    2016-01-01

    Full Text Available Purpose. This study investigated the effects of oral propolis on the progression of galactose-induced sugar cataracts in rats and the in vitro effects of propolis on high-glucose-induced reactive oxygen species (ROS and cell death in cultured rat lens cells (RLECs. Methods. Galactose-fed rats and RLECs cultured in high glucose (55 mM medium were treated with propolis or vehicle control. Relative lens opacity was assessed by densitometry and changes in lens morphology by histochemical analysis. Intracellular ROS levels and cell viability were measured. Results. Oral administration of propolis significantly inhibited the onset and progression of cataract in 15% and 25% of galactose-fed rats, respectively. RLECs cultured with high glucose showed a significant increase in ROS expression with reduced cell viability. Treatment of these RLECs with 5 and 50 μg/mL propolis cultured significantly reduced ROS levels and increased cell viability, indicating that the antioxidant activity of propolis protected cells against ROS-induced damage. Conclusion. Propolis significantly inhibited the onset and progression of sugar cataract in rats and mitigated high-glucose-induced ROS production and cell death. These effects may be associated with the ability of propolis to inhibit hyperglycemia-evoked oxidative or osmotic stress-induced cellular insults.

  9. MSCs ameliorates DPN induced cellular pathology via [Ca2+ ]i homeostasis and scavenging the pro-inflammatory cytokines.

    Science.gov (United States)

    Chandramoorthy, Harish C; Bin-Jaliah, Ismaeel; Karari, Hussian; Rajagopalan, Prasanna; Ahmed Shariff, Mohammed Eajaz; Al-Hakami, Ahmed; Al-Humayad, Suliman M; Baptain, Fawzi A; Ahmed, Humeda Suekit; Yassin, Hanaa Z; Haidara, Mohamed A

    2018-02-01

    The MSCs of various origins are known to ameliorate or modulate cell survival strategies. We investigated, whether UCB MSCs could improve the survival of the human neuronal cells and/or fibroblast assaulted with DPN sera. The results showed, the co-culture of UCB MSCs with human neuronal cells and/or fibroblasts could effectively scavenge the pro-inflammatory cytokines TNF-α, IL-1β, IFN-ɤ and IL - 12 and control the pro-apoptotic expression of p53/Bax. Further co-culture of UCB MSCs have shown to induce anti-inflammatory cytokines like IL-4, IL-10 and TGF-β and anti-apoptotic Bclxl/Bcl2 expression in the DPN sera stressed cells. Amelioration of elevated [Ca 2+ ] i and cROS, the portent behind the NFκB/Caspase-3 mediated inflammation in DPN rescued the cells from apoptosis. The results of systemic administration of BM MSCs improved DPN pathology in rat as extrapolated from human cell model. The BM MSCs ameliorated prolonged distal motor latency (control: 0.70 ± 0.06, DPN: 1.29 ± 0.13 m/s DPN + BM MSCs: 0.89 ± 0.02 m/s, p glucose levels. Together, all these results showed that administration of BM or UCB MSCs improved the DPN via ameliorating pro-inflammatory cytokine signaling and [Ca 2+ ] i homeostasis. © 2017 Wiley Periodicals, Inc.

  10. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat.

    Science.gov (United States)

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-06-01

    Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. High fructose feeding to rats and hamsters led to the development of insulin

  11. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2015-01-01

    Full Text Available Background & objectives: Curcuma oil (C. oil isolated from turmeric (Curcuma longa L. has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Methods: Male Golden Syrian hamsters on high fructose diet (HFr for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg or C. oil (300 mg/kg in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Results: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c, peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1α and PGC-1β genes known to be involved in lipid and glucose metabolism. Interpretation

  12. High-Salt Intake Ameliorates Hyperglycemia and Insulin Resistance in WBN/Kob-Leprfa/fa Rats: A New Model of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Yoshiichi Takagi

    2018-01-01

    Full Text Available High-salt intake is a major risk factor for developing hypertension in type 2 diabetes mellitus, but its effects on glucose homeostasis are controversial. We previously found that high-salt intake induces severe hypertension in WBN/Kob diabetic fatty (WBKDF rats. In the present study, we examined the effects of a high-salt intake on glucose homeostasis in WBKDF rats. Male WBKDF rats and age-matched Wistar rats at 6 weeks of age were each divided into two groups and fed either a normal-sodium (NS, 0.26% diet or high-sodium (HS, 8% diet for 7 weeks. Systolic blood pressure and urine volume were increased in WBKDF-HS and Wistar-HS. Body weight gain and food consumption were comparable between NS and HS in both strains. Plasma and urine glucose levels were significantly increased in WBKDF-NS but not in WBKDF-HS. HOMA-IR in WBKDF-HS was significantly lower compared with that in WBKDF-NS. The high plasma adiponectin level in WBKDF-NS compared with that in Wistar-NS was further enhanced in WBKDF-HS. Glycogen deposits and fat droplets in the livers of WBKDF-HS were reduced compared with those of WBKDF-NS. The present study demonstrated that HS intake ameliorated hyperglycemia and insulin resistance in WBKDF rats, which may be due to increased plasma levels of adiponectin.

  13. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  14. High fat diet-induced glucose intolerance impairs myocardial function, but not myocardial perfusion during hyperaemia: a pilot study

    Directory of Open Access Journals (Sweden)

    van den Brom Charissa E

    2012-06-01

    Full Text Available Abstract Background Glucose intolerance is a major health problem and is associated with increased risk of progression to type 2 diabetes mellitus and cardiovascular disease. However, whether glucose intolerance is related to impaired myocardial perfusion is not known. The purpose of the present study was to study the effect of diet-induced glucose intolerance on myocardial function and perfusion during baseline and pharmacological induced hyperaemia. Methods Male Wistar rats were randomly exposed to a high fat diet (HFD or control diet (CD (n = 8 per group. After 4 weeks, rats underwent an oral glucose tolerance test. Subsequently, rats underwent (contrast echocardiography to determine myocardial function and perfusion during baseline and dipyridamole-induced hyperaemia (20 mg/kg for 10 min. Results Four weeks of HFD feeding resulted in glucose intolerance compared to CD-feeding. Contractile function as represented by fractional shortening was not altered in HFD-fed rats compared to CD-fed rats under baseline conditions. However, dipyridamole increased fractional shortening in CD-fed rats, but not in HFD-fed rats. Basal myocardial perfusion, as measured by estimate of perfusion, was similar in CD- and HFD-fed rats, whereas dipyridamole increased estimate of perfusion in CD-fed rats, but not in HFD-fed rats. However, flow reserve was not different between CD- and HFD-fed rats. Conclusions Diet-induced glucose intolerance is associated with impaired myocardial function during conditions of hyperaemia, but myocardial perfusion is maintained. These findings may result in new insights into the effect of glucose intolerance on myocardial function and perfusion during hyperaemia.

  15. Quercetin Isolated from Toona sinensis Leaves Attenuates Hyperglycemia and Protects Hepatocytes in High-Carbohydrate/High-Fat Diet and Alloxan Induced Experimental Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yali Zhang

    2016-01-01

    Full Text Available The development of diabetes mellitus is related to oxidant stress induced by a high carbohydrate/high-fat diet (HFD. Quercetin, as a major bioactive component in Toona sinensis leaves (QTL, is a natural antioxidant. However, the exact mechanism by which QTL ameliorate diabetes mellitus is still unknown. In this study, we investigated the hypoglycemic effects and hepatocytes protection of QTL on HFD and alloxan induced diabetic mice. Intragastric administration of QTL significantly reduced body weight gain, serum glucose, insulin, total cholesterol, triglyceride, low density lipoprotein-cholesterol, alanine aminotransferase, and aspartate aminotransferase serum levels compared to those of diabetic mice. Furthermore, it significantly attenuated oxidative stress, as determined by lipid peroxidation, nitric oxide content, and inducible nitric oxide synthase activity and as a result attenuated liver injury. QTL also significantly suppressed the diabetes-induced activation of the p65/NF-κB and ERK1/2/MAPK pathways, as well as caspase-9 and caspase-3 levels in liver tissues of diabetic mice. Finally, micrograph analysis of liver samples showed decreased cellular organelle injury in hepatocytes of QTL treated mice. Taken together, QTL can be viewed as a promising dietary agent that can be used to reduce the risk of diabetes mellitus and its secondary complications by ameliorating oxidative stress in the liver.

  16. In vitro evidence of glucose-induced toxicity in GnRH secreting neurons: high glucose concentrations influence GnRH secretion, impair cell viability, and induce apoptosis in the GT1-1 neuronal cell line.

    Science.gov (United States)

    Pal, Lubna; Chu, Hsiao-Pai; Shu, Jun; Topalli, Ilir; Santoro, Nanette; Karkanias, George

    2007-10-01

    To evaluate for direct toxic effects of high glucose concentrations on cellular physiology in GnRH secreting immortalized GT1-1 neurons. Prospective experimental design. In vitro experimental model using a cell culture system. GT1-1 cells were cultured in replicates in media with two different glucose concentrations (450 mg/dL and 100 mg/dL, respectively) for varying time intervals (24, 48, and 72 hours). Effects of glucose concentrations on GnRH secretion by the GT1-1 neurons were evaluated using a static culture model. Cell viability, cellular apoptosis, and cell cycle events in GT1-1 neurons maintained in two different glucose concentrations were assessed by flow cytometry (fluorescence-activated cell sorter) using Annexin V-PI staining. Adverse influences of high glucose concentrations on GnRH secretion and cell viability were noted in cultures maintained in high glucose concentration (450 mg/dL) culture medium for varying time intervals. A significantly higher percentage of cells maintained in high glucose concentration medium demonstrated evidence of apoptosis by a fluorescence-activated cell sorter. We provide in vitro evidence of glucose-induced cellular toxicity in GnRH secreting GT1-1 neurons. Significant alterations in GnRH secretion, reduced cell viability, and a higher percentage of apoptotic cells were observed in GT1-1 cells maintained in high (450 mg/dL) compared with low (100 mg/dL) glucose concentration culture medium.

  17. Glucose-induced serum- and glucocorticoid-regulated kinase activation in oncofetal fibronectin expression

    International Nuclear Information System (INIS)

    Khan, Zia A.; Barbin, Yousef P.; Farhangkhoee, Hana; Beier, Norbert; Scholz, Wolfgang; Chakrabarti, Subrata

    2005-01-01

    Preferential expression of oncofetal extra domain-B fibronectin (EDB + FN), a proposed angiogenic marker, has been shown in proliferative diabetic retinopathy. High levels of glucose also increase EDB + FN expression in endothelial cells (ECs) via transforming growth factor-β1 (TGF-β1) and endothelin-1 (ET-1). The present study was aimed at elucidating the role of serum- and glucocorticoid-regulated kinase (SGK-1) in glucose-induced EDB + FN expression. Using human macro- and microvascular ECs, we show that high levels of glucose, TGF-β1, and ET-1 increase the EDB + FN expression via SGK-1 alteration at the mRNA, protein, and activity levels. Inhibition of TGF-β1 and ET-1 prevented glucose-induced SGK-1 activation and the EDB + FN expression. Furthermore, using siRNA-mediated SGK-1 gene silencing, we show that glucose-induced EDB + FN expression can be completely prevented. These findings provide first evidence of glucose-induced SGK-1 activation in altered EDB + FN expression and provide novel avenues for therapeutic modalities

  18. Adzuki bean ameliorates hepatic lipogenesis and proinflammatory mediator expression in mice fed a high-cholesterol and high-fat diet to induce nonalcoholic fatty liver disease.

    Science.gov (United States)

    Kim, Sera; Hong, Jihye; Jeon, Raok; Kim, Hyun-Sook

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a simple steatosis, in which fat accumulates more than 5% in the liver, and regarded as most common liver diseases worldwide. Because NAFLD can be developed to severe liver disease and correlated with metabolic disease, its importance is currently emphasized. Occurrence of NAFLD is strongly related to dietary patterns and lifestyles; therefore, the suggestion of physiologically beneficial food is essential. Based on these, adzuki beans containing anthocyanin, catechin, and adzukisaponin are suggested as a health-beneficial food. Moreover, the effects of adzuki beans on metabolic improvement are not well established through the in vivo studies. Therefore, this study hypothesized that adzuki beans can alleviate lipid accumulation and oxidative stress-mediated inflammation in high-cholesterol and high-fat diet-induced NALFD mice. To demonstrate its effects, 6-week-old C57BL/6 male mice were allocated into 4 groups and fed a normal diet (ND), a high-cholesterol and high-fat diet (HCD), and HCD with 10% and 20% adzuki bean for 10 weeks. The result shows that fasting blood glucose, serum and hepatic triglyceride and cholesterol levels, and antioxidative enzyme activity ameliorated in the adzuki bean groups (P hepatic lipogenesis, such as adiponectin, AMP-activated protein kinase α, sterol regulatory element-binding protein 1c, fatty acid synthase, carnitine palmitoyltransferase 1, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and apolipoprotein B, as well as proinflammatory mediators, such as tumor necrosis factor α, nuclear factor κB, and caspase-3, improved in both experimental groups (P hepatic messenger RNA expression of lipogenic and inflammatory mediators in NAFLD. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kover, Karen, E-mail: kkover@cmh.edu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Tasch, James; Hager, Melissa [Kansas City University Medical Biosciences, Kansas City, MO (United States); Clements, Mark; Moore, Wayne V. [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States)

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced

  20. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    International Nuclear Information System (INIS)

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-01-01

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H 2 O 2 assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H 2 O 2 levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP

  1. Total saponin of Dioscoreae hypoglaucae rhizoma ameliorates streptozotocin-induced diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Guo C

    2016-02-01

    Full Text Available Changrun Guo,1 Gang Ding,2 Wenzhe Huang,2 Zhenzhong Wang,2 Zhaoqing Meng,1,2 Wei Xiao2 1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China; 2Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang City, People’s Republic of China Background: Diabetic nephropathy has become the most common cause of morbidity and mortality in diabetic patients. Therefore, there is an urgent need for more effective and safer drugs for use in this condition.Purpose: The aims of this study were to investigate the ameliorative effects of total saponin of Dioscoreae hypoglaucae rhizoma (TSD on diabetic nephropathy and to explore the potential underlying mechanism(s.Methods: Rats with streptozotocin-induced diabetes were orally treated with TSD at 40, 80, and 160 mg/kg/d for 12 weeks. At the end of the treatment, blood, urine, and kidneys were collected for biochemical and histological examination.Results: The results demonstrated that TSD significantly decreased the fasting blood glucose, glycosylated hemoglobin, urinary protein, serum creatinine, and blood urea nitrogen levels in diabetic rats. The results of histological examinations showed that TSD ameliorated glomerular and tubular pathological changes in diabetic rats. Furthermore, TSD significantly prevented oxidative stress and reduced the renal levels of advanced glycation end products, transforming growth factor-β1, connective tissue growth factor, and tumor necrosis factor-α.Conclusion: This study demonstrated the renoprotective effects of TSD in experimental diabetic nephropathy via a number of different mechanisms. Keywords: total saponin of Dioscoreae hypoglaucae rhizoma, diabetic nephropathy, oxidative stress, AGEs, TGF-β1

  2. Ameliorative potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) on the relative tissue weights of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Eleazu, C O; Iroaganachi, M; Eleazu, K C

    2013-01-01

    To investigate the ameliorating potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) incorporated feeds on the renal and liver growths of diabetic rats, induced with 55 and 65 mg/kg body weight of Streptozotocin. The blood glucose level of the rats was measured with a glucometer, the protein and glucose and specific gravity (SPGR) in the urine samples of the rats were measured using urine assay strips and urinometer respectively. The chemical composition and antioxidant screening of the test feeds were carried out using standard techniques. Administration of the test feeds for 21 days to the diabetic rats of groups 4 and 5, resulted in 58.75% and 38.13% decreases in hyperglycemia and amelioration of their elevated urinary protein, glucose, SPGR, and relative kidney weights. The diabetic rats administered cocoyam incorporated feeds, had 2.71% and 19.52% increases in weight and growth rates, the diabetic rats administered unripe plantain incorporated feeds had 5.12% and 29.52% decreases in weight and growth rates while the diabetic control rats had 28.69%, 29.46%, 248.9% and 250.14% decreases in weights and growth rates. The cocoyam incorporated feeds contained higher antioxidants, minerals and phytochemicals except alkaloids than unripe plantain feed. Cocoyam and unripe plantain could be useful in the management of diabetic nephropathy.

  3. Ameliorative Potentials of Cocoyam (Colocasia esculenta L. and Unripe Plantain (Musa paradisiaca L. on the Relative Tissue Weights of Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    C. O. Eleazu

    2013-01-01

    Full Text Available Aim. To investigate the ameliorating potentials of cocoyam (Colocasia esculenta L. and unripe plantain (Musa paradisiaca L. incorporated feeds on the renal and liver growths of diabetic rats, induced with 55 and 65 mg/kg body weight of Streptozotocin. Method. The blood glucose level of the rats was measured with a glucometer, the protein and glucose and specific gravity (SPGR in the urine samples of the rats were measured using urine assay strips and urinometer respectively. The chemical composition and antioxidant screening of the test feeds were carried out using standard techniques. Results. Administration of the test feeds for 21 days to the diabetic rats of groups 4 and 5, resulted in 58.75% and 38.13% decreases in hyperglycemia and amelioration of their elevated urinary protein, glucose, SPGR, and relative kidney weights. The diabetic rats administered cocoyam incorporated feeds, had 2.71% and 19.52% increases in weight and growth rates, the diabetic rats administered unripe plantain incorporated feeds had 5.12% and 29.52% decreases in weight and growth rates while the diabetic control rats had 28.69%, 29.46%, 248.9% and 250.14% decreases in weights and growth rates. The cocoyam incorporated feeds contained higher antioxidants, minerals and phytochemicals except alkaloids than unripe plantain feed. Conclusion. Cocoyam and unripe plantain could be useful in the management of diabetic nephropathy.

  4. Phytoceramide Shows Neuroprotection and Ameliorates Scopolamine-Induced Memory Impairment

    Directory of Open Access Journals (Sweden)

    Seikwan Oh

    2011-10-01

    Full Text Available The function and the role phytoceramide (PCER and phytosphingosine (PSO in the central nervous system has not been well studied. This study was aimed at investigating the possible roles of PCER and PSO in glutamate-induced neurotoxicity in cultured neuronal cells and memory function in mice. Phytoceramide showed neuro-protective activity in the glutamate-induced toxicity in cultured cortical neuronal cells. Neither phytosphingosine nor tetraacetylphytosphingosine (TAPS showed neuroproective effects in neuronal cells. PCER (50 mg/kg, p.o. recovered the scopolamine-induced reduction in step-through latency in the passive avoidance test; however, PSO did not modulate memory function on this task. The ameliorating effects of PCER on spatial memory were confirmed by the Morris water maze test. In conclusion, through behavioral and neurochemical experimental results, it was demonstrated that central administration of PCER produces amelioration of memory impairment. These results suggest that PCER plays an important role in neuroprotection and memory enhancement and PCER could be a potential new therapeutic agent for the treatment of neurodegenerative diseases such as Alzheimer’s disease.

  5. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    Science.gov (United States)

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Role of carnitine in ameliorating the lead and / or irradiation induced toxicity in male albino rats

    International Nuclear Information System (INIS)

    El-Sayed, N.M.

    2005-01-01

    This work: aimed to investigate the protective effect of carnitine (3-hydroxy-4-N-trimethyl amino butyric acid) on the contents of total protein, albumin, glucose and lipid peroxides as malonaldehyde (MDA) in serum, in addition to liver glycogen and lipid peroxides content 1, 2, 4 weeks after exposure of rats to a collective dose of 4 Gy whole body gamma irradiation and / or lead treatment. Adult male rats received lead (50 mg/kg body weight) and / or exposed to fractionated dose (4 Gy) of gamma irradiation delivered as 0.5 Gy twice weekly for four weeks. Results of the present study revealed that fractionated whole body gamma irradiation and / or lead administration induced cellular damage manifested by a significant decrease in serum total protein and albumin, and a significant increase in serum glucose and MDA content as well as significant increase in liver glycogen and MDA. Administration of carnitine (200 mg/kg b.wt.) before lead and / or gamma irradiation, has significantly ameliorated the observed changes, indicating the prophylactic action of carnitine on lead and / or irradiation toxicity

  7. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Wada, Tetsuyuki; Yoshida, Shigeru; Tokuyama, Shogo

    2016-07-01

    We recently demonstrated that the cerebral sodium-glucose transporter (SGLT) is involved in postischaemic hyperglycaemia-induced exacerbation of cerebral ischaemia. However, the associated SGLT-mediated mechanisms remain unclear. Thus, we examined the involvement of cerebral SGLT-induced excessive sodium ion influx in the development of cerebral ischaemic neuronal damage. [Na+]i was estimated according to sodium-binding benzofuran isophthalate fluorescence. In the in vitro study, primary cortical neurons were prepared from fetuses of ddY mice. Primary cortical neurons were cultured for 5 days before each treatment with reagents, and these survival rates were assessed using biochemical assays. In in vivo study, a mouse model of focal ischaemia was generated using middle cerebral artery occlusion (MCAO). In these experiments, treatment with high concentrations of glucose induced increment in [Na+]i, and this phenomenon was suppressed by the SGLT-specific inhibitor phlorizin. SGLT-specific sodium ion influx was induced using a-methyl-D-glucopyranoside (a-MG) treatments, which led to significant concentration-dependent declines in neuronal survival rates and exacerbated hydrogen peroxide-induced neuronal cell death. Moreover, phlorizin ameliorated these effects. Finally, intracerebroventricular administration of a-MG exacerbated the development of neuronal damage induced by MCAO, and these effects were ameliorated by the administration of phlorizin. Hence, excessive influx of sodium ions into neuronal cells through cerebral SGLT may exacerbate the development of cerebral ischaemic neuronal damage. © 2016 Royal Pharmaceutical Society.

  8. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    Science.gov (United States)

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  9. Glucose-induced lipogenesis in pancreatic beta-cells is dependent on SREBP-1

    DEFF Research Database (Denmark)

    Sandberg, Maria B; Fridriksson, Jakob; Madsen, Lise

    2005-01-01

    High concentrations of glucose induce de novo fatty acid synthesis in pancreatic beta-cells and chronic exposure of elevated glucose and fatty acids synergize to induce accumulation of triglycerides, a phenomenon termed glucolipotoxicity. Here we investigate the role of sterol-regulatory element......, de novo fatty acid synthesis and lipid accumulation are induced primarily through sterol-regulatory elements (SREs) and not E-Boxes. Adenoviral expression of a dominant negative SREBP compromises glucose induction of some lipogenic genes and significantly reduces glucose-induction of de novo fatty...... acid synthesis. Thus, we demonstrate for the first time that SREBP activity is necessary for full glucose induction of de novo fatty acid synthesis in pancreatic beta-cells....

  10. Tissue inhibitor of matrix metalloproteinase-1 is required for high-fat diet-induced glucose intolerance and hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Fjære, Even; Andersen, Charlotte; Myrmel, Lene Secher

    2015-01-01

    -induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy...... and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation....... CONCLUSION: Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target....

  11. Human monoclonal antibodies against glucagon receptor improve glucose homeostasis by suppression of hepatic glucose output in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Wook-Dong Kim

    Full Text Available AIM: Glucagon is an essential regulator of hepatic glucose production (HGP, which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR, NPB112, on glucose homeostasis in diet-induced obese (DIO mice. METHODS: The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP. RESULTS: Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment. CONCLUSIONS: A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.

  12. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders

    Directory of Open Access Journals (Sweden)

    Zhimin Chen

    2017-08-01

    Conclusions: Nrg4 exerts pleiotropic beneficial effects on energy balance and glucose and lipid metabolism to ameliorate obesity-associated metabolic disorders. Biologic therapeutics based on Nrg4 may improve both type 2 diabetes and non-alcoholic fatty liver disease (NAFLD in patients.

  13. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin

    2018-06-01

    Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.

  14. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis.

    Science.gov (United States)

    Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon

    2017-05-01

    To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.

  15. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression.

    Directory of Open Access Journals (Sweden)

    Rikard G Fred

    Full Text Available BACKGROUND: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. METHODOLOGY/PRINCIPAL FINDINGS: Human islets were cultured for 24 hours in the presence of low (5.6 mM or high glucose (20 mM. Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1beta and IFN-gamma, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. CONCLUSION: Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism

  16. Antihyperglycemic effect of Persea duthieion blood glucose levels and body weight in alloxan induced diabetic rabbits.

    Science.gov (United States)

    Sultan, Khushbakht; Zakir, Muhammad; Khan, Haroon; Khan, Ihsaan Ullah; Ayaz, Sultan; Khan, Iqbal; Khan, Jafar; Khan, Murad Ali

    2016-05-01

    The present study was designed to investigate the antihyperglycemic effect of Persea duthieion blood glucose concentration and body weight in alloxan induced diabetic hyperglycemic rabbits. The results illustrated significant antihyperglycemic activity of crude extract with 17.44% and 28.02% amelioration at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment; equally supported by body weight recovery. Upon fractionation, most dominant antihyperglycemic effect was displayed by aqueous fraction with 22.12% and 34.43% effect followed by ethyl acetate fraction with 24.32% and 32.05% effect at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment. The effect on blood glucose was also reflected on body weight of animals. In conclusion, our study documented marked antihyperglycemic activity of extract/fractions of P. duthiei.

  17. ZINC-INDUCED HYPERLEPTINEMIA IN RATS RELATED TO THE AMELIORATION OF SUCROSE-INDUCED OBESITY WITH ZINC REPLETION

    International Nuclear Information System (INIS)

    HEIBASHY, M.I.; EL-NAHLA, A.M.; ASHOUR, I.; SALEH, SH.Y.A.

    2008-01-01

    Thirty adult albino rats (Rattus rattus) at 6 weeks of age were divided into three groups (ten for each). The first group was fed a standard laboratory diet for 8 weeks (control). The second group was made obese by giving them 32% sucrose solution in addition to the standard laboratory diet .The third group was received zinc supplementation (50 mg zinc acetate/ litre) with their sucrose solution. Body weight of all rats was measured weekly for 8 weeks. At 14 weeks of age, rats were killed and fasting blood samples were obtained. Serum glucose, insulin, cholesterol, triglyceride, leptin, tumour necrosis factor-α and zinc were measured.Results showed remarkable changes in body weights in sucrose fed rats only when compared to control and supplemented zinc rats group. Serum glucose, insulin, cholesterol and triglycerides were significantly increased in sucrose fed rats than both control and sucrose with zinc group. Serum leptin showed significant increase in sucrose fed rats than control and also showed higher significant value in sucrose fed rats supplemented with zinc comparing with sucrose fed rats and control ones. Tumour necrosis factor-? did not show any significant difference between all groups. Serum zinc concentration was decreased significantly in sucrose fed rats as compared to control. On the other hand, it was increased significantly in sucrose fed rats supplemented with zinc than other both groups. It could be concluded that zinc supplementation induced hyperleptinemia caused ameliorating effects in obese rats

  18. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts

    International Nuclear Information System (INIS)

    Chao, Louis Kuoping; Chang, W.-T.; Shih, Y.-W.; Huang, J.-S.

    2010-01-01

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and α-smooth muscle actin (α-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.

  19. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways.

    Science.gov (United States)

    Kumar, Sandeep; Kain, Vasundhara; Sitasawad, Sandhya L

    2012-07-01

    Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Glucagon-like peptide-1 reduces pancreatic β-cell mass through hypothalamic neural pathways in high-fat diet-induced obese rats.

    Science.gov (United States)

    Ando, Hisae; Gotoh, Koro; Fujiwara, Kansuke; Anai, Manabu; Chiba, Seiichi; Masaki, Takayuki; Kakuma, Tetsuya; Shibata, Hirotaka

    2017-07-17

    We examined whether glucagon-like peptide-1 (GLP-1) affects β-cell mass and proliferation through neural pathways, from hepatic afferent nerves to pancreatic efferent nerves via the central nervous system, in high-fat diet (HFD)-induced obese rats. The effects of chronic administration of GLP-1 (7-36) and liraglutide, a GLP-1 receptor agonist, on pancreatic morphological alterations, c-fos expression and brain-derived neurotrophic factor (BDNF) content in the hypothalamus, and glucose metabolism were investigated in HFD-induced obese rats that underwent hepatic afferent vagotomy (VgX) and/or pancreatic efferent sympathectomy (SpX). Chronic GLP-1 (7-36) administration to HFD-induced obese rats elevated c-fos expression and BDNF content in the hypothalamus, followed by a reduction in pancreatic β-cell hyperplasia and insulin content, thus resulting in improved glucose tolerance. These responses were abolished by VgX and SpX. Moreover, administration of liraglutide similarly activated the hypothalamic neural pathways, thus resulting in a more profound amelioration of glucose tolerance than native GLP-1 (7-36). These data suggest that GLP-1 normalizes the obesity-induced compensatory increase in β-cell mass and glucose intolerance through a neuronal relay system consisting of hepatic afferent nerves, the hypothalamus, and pancreatic efferent nerves.

  1. High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells

    International Nuclear Information System (INIS)

    Huang, Wei; Xu, Ling; Zhou, Xueqin; Gao, Chenlin; Yang, Maojun; Chen, Guo; Zhu, Jianhua; Jiang, Lan; Gan, Huakui; Gou, Fang; Feng, Hong; Peng, Juan; Xu, Yong

    2013-01-01

    Highlights: •The expression of SUMO1, SUMO2/3 under high glucose was obviously enhanced. •High glucose induced degradation of IκBα and activation of NF-κB pathway. •Sumoylation of IκBα in high glucose were significantly decreased. •The proteasome inhibitor MG132 could partially revert the degradation of IκBα. -- Abstract: The posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation of inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6 mmol/L), high glucose groups (10, 20, and 30 mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30 mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p < 0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p < 0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which

  2. N-Cadherin Attenuates High Glucose-Induced Nucleus Pulposus Cell Senescence Through Regulation of the ROS/NF-κB Pathway.

    Science.gov (United States)

    Hou, Gang; Zhao, Huiqing; Teng, Haijun; Li, Pei; Xu, Wenbin; Zhang, Junbin; Lv, Lulu; Guo, Zhiliang; Wei, Li; Yao, Hui; Xu, Yichun

    2018-05-11

    Diabetes mellitus (DM) is a potential etiology of disc degeneration. N-cadherin (N-CDH) helps maintain the cell viability, cell phenotype and matrix biosynthesis of nucleus pulposus (NP) cells. Here, we mainly aimed to investigate whether N-CDH can attenuate high glucose-induced NP cell senescence and its potential mechanism. Rat NP cells were cultured in a base culture medium and base culture medium with a 0.2 M glucose concentration. Recombinant lentiviral vectors were used to enhance N-CDH expression in NP cells. Senescence-associated β-galactosidase (SA-β-Gal) activity was measured by SA-β-Gal staining. NP cell proliferation was evaluated by CCK-8 assay. Telomerase activity and intracellular reactive oxygen species (ROS) content were tested by specific chemical kits according to the manufacturer's instructions. G0/G1 cell cycle arrest was evaluated by flow cytometry. Real-time PCR and Western blotting were used to analyze mRNA and protein expressions of senescence markers (p16 and p53) and matrix macromolecules (aggrecan and collagen II). Additionally, p-NF-κB expression was also analyzed by Western blotting to evaluate NF-κB pathway activity. High glucose significantly decreased N-CDH expression, increased ROS generation and NF-κB pathway activity, and promoted NP cell senescence, which was reflected in the increase in SA-β-Gal activity and senescence marker (p16 and p53) expression, compared to the control group. High glucose decreased telomerase activity and cell proliferation potency. However, N-CDH overexpression partially attenuated NP cell senescence, decreased ROS content and inhibited the activation of the NF-κB pathway under the high glucose condition. High glucose decreases N-CDH expression and promotes NP cell senescence. N-CDH overexpression can attenuate high glucose-induced NP cell senescence through the regulation of the ROS/ NF-κB pathway. This study suggests that N-CDH is a potential therapeutic target to slow DM-mediated disc NP

  3. Glucose-induced effects and joker function of glucose: endocrine or genotoxic prevalence?

    Science.gov (United States)

    Berstein, L M; Vasilyev, D A; Poroshina, T E; Kovalenko, I G

    2006-10-01

    The steady increase in chronic "glycemic load" is characteristic for modern times. Among myriad of glucose functions, two principals can be emphasized: first, endocrine (in particular, ability to induce insulin secretion) and second, DNA-damaging related to formation of reactive oxygen species (ROS). It was suggested by us earlier that a shift in the ratio of mentioned functions reflects a possible "joker" role of glucose as an important modifier of human pathology. Therefore, we embarked on a study to investigate an individual effect of peroral glucose challenge on serum insulin level and ROS generation by mononuclears (luminol-dependent/latex-induced chemiluminescence) in 20 healthy people aged between 28-75. Concentrations of glucose, blood lipids, carbonylated proteins, malondialdehyde, leptin and TNF-alpha were determined as well. On the basis of received data two separate groups could be distinguished: one (n=8), in which glucose stimulation of ROS generation by mononuclears was increased and relatively prevailed over induction of insulin secretion (state of the so called glucose-induced genotoxicity, GIGT), and another (n=12), in which signs of GIGT were not revealed. People who belonged to the first group were characterized with a tendency to lower body mass index, blood leptin and cholesterol and to higher TNF-alpha concentration. Thus, if joker function of glucose is realized in "genotoxic mode", the phenotype (and probably genotype) of subjects may be rather distinctive to the one discovered in glucose-induced "endocrine prevalence". Whether such changes may serve as a pro-mutagenic or pro-endocrine basis for the rise of different chronic diseases or, rather, different features/aggressiveness of the same disease warrants further study.

  4. RXR agonists inhibit high glucose-induced upregulation of inflammation by suppressing activation of the NADPH oxidase-nuclear factor-κB pathway in human endothelial cells.

    Science.gov (United States)

    Ning, R B; Zhu, J; Chai, D J; Xu, C S; Xie, H; Lin, X Y; Zeng, J Z; Lin, J X

    2013-12-13

    An inflammatory response induced by high glucose is a cause of endothelial dysfunction in diabetes and is an important contributing link to atherosclerosis. Diabetes is an independent risk factor of atherosclerosis and activation of retinoid X receptor (RXR) has been shown to exert anti-atherogenic effects. In the present study, we examined the effects of the RXR ligands 9-cis-retinoic acid (9-cis-RA) and SR11237 on high glucose-induced inflammation in human umbilical endothelial vein endothelial cells (HUVECs) and explored the potential mechanism. Our results showed that the inflammation induced by high-glucose in HUVECs was mainly mediated by the activation of nuclear factor-B (NF- κB). High glucose-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were in comparison, significantly decreased by treatment with RXR. The effect of RXR agonists was mainly due to the inhibition of NF-κB activation. Using pharmacological inhibitors and siRNA, we confirmed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was an upstream activator of NF-κB. Furthermore, RXR agonists significantly inhibited high glucose-induced activation of NADPH oxidase and significantly decreased the production of reactive oxygen species (ROS). To explore whether the rapid inhibitory effects of RXR agonists were in fact mediated by RXR, we examined the effect of RXR downregulation by RXR siRNA. Our results showed that RXR siRNA largely abrogated the effects of RXR agonists, suggesting the requirement of RXR expression. Therefore, we have shown that RXR is involved in the regulation of NADPH oxidase- NF-κB signal pathway, as the RXR ligands antagonized the inflammatory response in HUVECs induced by high glucose.

  5. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway.

    Science.gov (United States)

    Jiang, Mingxia; Zhang, Haifen; Zhai, Lijie; Ye, Bianliang; Cheng, Yin; Zhai, Chengkai

    2017-11-16

    Growing evidence indicates that oxidative stress (OS) plays a pivotal role in Diabetic nephropathy (DN). In a previous study we demonstrated that ALA/LA protected HK-2 cells against high glucose-induced cytotoxicity. So we aimed to establish the glucose injury model of HK-2 cells and investigate the beneficial effects of ALA/LA on high glucose-induced excessive production of TGF-β1 and the possible mechanisms mediating the effects. The expression of OS markers in high glucose-induced HK-2 cells treated with ALA/LA., including the antioxidant enzymes and reactive oxygen species (ROS) production, as well as the apoptosis rate were assayed by ELISA and flow cytometry. The p38/transforming growth factor β 1 (TGF-β 1 ) signal pathway were measured by real-time RT-PCR and western blot. The modeling condition of glucose toxicity on HK-2 cells was at the glucose concentration of 40.9 mM. ALA/LA can significantly increase the activities of antioxidant enzymes and decrease ROS production stimulated by high glucose. The study also found that ALA/LA caused a decrease in the apoptosis rate and TGF-β 1 level of HK-2 cells under high glucose stress through the ROS/p38 pathway. ALA/LA exerts protective effects in vitro through inhibition of ROS generation, down regulation of the activation of the p38MAPK pathway and the expression of TGF-β 1 in HK-2 cells.

  6. Phenylethanoid glycosides of Pedicularis muscicola Maxim ameliorate high altitude-induced memory impairment.

    Science.gov (United States)

    Zhou, Baozhu; Li, Maoxing; Cao, Xinyuan; Zhang, Quanlong; Liu, Yantong; Ma, Qiang; Qiu, Yan; Luan, Fei; Wang, Xianmin

    2016-04-01

    Exposure to hypobaric hypoxia causes oxidative stress, neuronal degeneration and apoptosis that leads to memory impairment. Though oxidative stress contributes to neuronal degeneration and apoptosis in hypobaric hypoxia, the ability for phenylethanoid glycosides of Pedicularis muscicola Maxim (PhGs) to reverse high altitude memory impairment has not been studied. Rats were supplemented with PhGs orally for a week. After the fourth day of drug administration, rats were exposed to a 7500 m altitude simulation in a specially designed animal decompression chamber for 3 days. Spatial memory was assessed by the 8-arm radial maze test before and after exposure to hypobaric hypoxia. Histological assessment of neuronal degeneration was performed by hematoxylin-eosin (HE) staining. Changes in oxidative stress markers and changes in the expression of the apoptotic marker, caspase-3, were assessed in the hippocampus. Our results demonstrated that after exposure to hypobaric hypoxia, PhGs ameliorated high altitude memory impairment, as shown by the decreased values obtained for reference memory error (RME), working memory error (WME), and total error (TE). Meanwhile, administration of PhGs decreased hippocampal reactive oxygen species levels and consequent lipid peroxidation by elevating reduced glutathione levels and enhancing the free radical scavenging enzyme system. There was also a decrease in the number of pyknotic neurons and a reduction in caspase-3 expression in the hippocampus. These findings suggest that PhGs may be used therapeutically to ameliorate high altitude memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. O-hexadecyl-dextran entrapped berberine nanoparticles abrogate high glucose stress induced apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Radhika Kapoor

    Full Text Available Nanotized phytochemicals are being explored by researchers for promoting their uptake and effectiveness at lower concentrations. In this study, O-hexadecyl-dextran entrapped berberine chloride nanoparticles (BC-HDD NPs were prepared, and evaluated for their cytoprotective efficacy in high glucose stressed primary hepatocytes and the results obtained compared with bulk berberine chloride (BBR treatment. The nanotized formulation treated primary hepatocytes that were exposed to high glucose (40 mM, showed increased viability compared to the bulk BBR treated cells. BC-HDD NPs reduced the ROS generation by ∼ 3.5 fold during co-treatment, prevented GSH depletion by ∼ 1.6 fold, reduced NO formation by ∼ 5 fold and significantly prevented decline in SOD activity in stressed cells. Lipid peroxidation was also prevented by ∼ 1.9 fold in the presence of these NPs confirming the antioxidant capacity of the formulation. High glucose stress increased Bax/Bcl2 ratio followed by mitochondrial depolarization and activation of caspase-9/-3 confirming involvement of mitochondrial pathway of apoptosis in the exposed cells. Co- and post-treatment of BC-HDD NPs prevented depolarization of mitochondrial membrane, reduced Bax/Bcl2 ratio and prevented externalization of phosphatidyl-serine confirming their anti-apoptotic capacity in those cells. Sub-G1 phase apparent in high glucose stressed cells was not seen in BC-HDD NPs treated cells. The present study reveals that BC-HDD NPs at ∼ 20 fold lower concentration are as effective as BBR in preventing high glucose induced oxidative stress, mitochondrial depolarization and downstream events of apoptotic cell death.

  8. Indomethacin treatment prevents high fat diet-induced obesity and insulin resistance but not glucose intolerance in C57BL/6J Mice

    DEFF Research Database (Denmark)

    Fjære, Even; Aune, Ulrike Liisberg; Røen, Kristin

    2014-01-01

    Chronic low grade inflammation is closely linked to obesity-associated insulin resistance. To examine how administration of the anti-inflammatory compound indomethacin, a general cyclooxygenase inhibitor, affected obesity development and insulin sensitivity, we fed obesity-prone male C57BL/6J mice...... a high fat/high sucrose (HF/HS) diet or a regular diet supplemented or not with indomethacin (±INDO) for 7 weeks. Development of obesity, insulin resistance, and glucose intolerance was monitored, and the effect of indomethacin on glucose-stimulated insulin secretion (GSIS) was measured in vivo...... and in vitro using MIN6 β-cells. We found that supplementation with indomethacin prevented HF/HS-induced obesity and diet-induced changes in systemic insulin sensitivity. Thus, HF/HS+INDO-fed mice remained insulin-sensitive. However, mice fed HF/HS+INDO exhibited pronounced glucose intolerance. Hepatic glucose...

  9. Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Li

    2016-10-01

    Full Text Available Chronic glucocorticoid exposure is known to cause depression and metabolic disorders. It is critical to improve abnormal metabolic status as well as depressive-like behaviors in patients with long-term glucocorticoid therapy. This study aimed to investigate the effects of resveratrol on the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Male ICR mice were administrated corticosterone (40 mg/kg by subcutaneous injection for three weeks. Resveratrol (50 and 100 mg/kg, fluoxetine (20 mg/kg and pioglitazone (10 mg/kg were given by oral gavage 30 min prior to corticosterone administration. The behavioral tests showed that resveratrol significantly reversed the depressive-like behaviors induced by corticosterone, including the reduced sucrose preference and increased immobility time in the forced swimming test. Moreover, resveratrol also increased the secretion of insulin, reduced serum level of glucose and improved blood lipid profiles in corticosterone-treated mice without affecting normal mice. However, fluoxetine only reverse depressive-like behaviors, and pioglitazone only prevent the dyslipidemia induced by corticosterone. Furthermore, resveratrol and pioglitazone decreased serum level of glucagon and corticosterone. The present results indicated that resveratrol can ameliorate depressive-like behaviors and metabolic abnormalities induced by corticosterone, which suggested that the multiple effects of resveratrol could be beneficial for patients with depression and/or metabolic syndrome associated with long-term glucocorticoid therapy.

  10. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle

    OpenAIRE

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid conten...

  11. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice.

    Science.gov (United States)

    Park, Hee-Sook; Hur, Haeng Jeon; Kim, Soon-Hee; Park, Su-Jin; Hong, Moon Ju; Sung, Mi Jeong; Kwon, Dae Young; Kim, Myung-Sunny

    2016-09-01

    Natural compounds that regulate peroxisome proliferator-activated receptor alpha (PPARα) have been reported to have beneficial effects in obesity-mediated metabolic disorders. In this study, we demonstrated that biochanin A (BA), an agonist of PPAR-α, improved hepatic steatosis and insulin resistance by regulating hepatic lipid and glucose metabolism. C57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), and an HFD supplemented with 0.05% BA for 12 weeks. Histological and biochemical examinations indicated that BA prevented obesity-induced hepatic steatosis and insulin resistance in HFD-fed mice. BA stimulated the transcriptional activation of PPAR-α in vitro and increased the expression of PPAR-α and its regulatory proteins in the liver. CE-TOF/MS analyses indicated that BA administration promoted the recovery of metabolites involved in phosphatidylcholine synthesis, lipogenesis, and beta-oxidation in the livers of obese mice. BA also suppressed the levels of gluconeogenesis-related metabolites and the expression of the associated enzymes, glucose 6-phosphatase and pyruvate kinase. Taken together, these results showed that BA ameliorated metabolic disorders such as hepatic steatosis and insulin resistance by modulating lipid and glucose metabolism in diet-induced obesity. Thus, BA may be a potential therapeutic agent for the prevention of obesity-mediated hepatic steatosis and insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. OGG1 Involvement in High Glucose-Mediated Enhancement of Bupivacaine-Induced Oxidative DNA Damage in SH-SY5Y Cells

    Science.gov (United States)

    Liu, Zhong-Jie; Zhao, Wei; Zhang, Qing-Guo; Li, Le; Lai, Lu-Ying; Jiang, Shan; Xu, Shi-Yuan

    2015-01-01

    Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1) which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS). SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use. PMID:26161242

  13. OGG1 Involvement in High Glucose-Mediated Enhancement of Bupivacaine-Induced Oxidative DNA Damage in SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Zhong-Jie Liu

    2015-01-01

    Full Text Available Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1 which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS. SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use.

  14. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    Directory of Open Access Journals (Sweden)

    Xiaofei Cheng

    2016-01-01

    Full Text Available Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM. Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9, matrix metalloproteinase 3 (MMP-3, and tissue inhibitor of metalloproteinase 1 (TIMP-1, was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  15. Postconditioning with sevoflurane ameliorates spatial learning and memory deficit via attenuating endoplasmic reticulum stress induced neuron apoptosis in a rat model of hemorrhage shock and resuscitation.

    Science.gov (United States)

    Hu, Xianwen; Wang, Jingxian; Zhang, Li; Zhang, Qiquan; Duan, Xiaowen; Zhang, Ye

    2018-06-02

    Hemorrhage shock could initiate endoplasmic reticulum stress (ERS) and then induce neuronal apoptosis. The aim of this study was to investigate whether sevoflurane postconditioning could attenuate brain injury via suppressing apoptosis induced by ERS. Seventy male rats were randomized into five groups: sham, shock, low concentration (sevo1, 1.2%), middle concentration (sevo2, 2.4%) and high concentration (sevo3, 3.6%) of sevoflurane postconditioning. Hemorrhage shock was induced by removing 40% of the total blood volume during an interval of 30 min. 1h after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The spatial learning and memory ability of rats were measured by Morris water maze (MWM) test three days after the operation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region were assessed after the MWM test. The expression of C/EBP-homologousprotein (CHOP) and glucose-regulated protein 78 (GRP78) in the hippocampus were measured at 24h after reperfusion. We found that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% significantly ameliorated the spatial learning and memory ability, decreased the TUNEL-positive cells, and reduced the GRP78 and CHOP expression compared with the shock group. These results suggested that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% could ameliorate spatial learning and memory deficit after hemorrhage shock and resuscitation injury via suppressing apoptosis induced by ERS. Copyright © 2018. Published by Elsevier B.V.

  16. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  17. The protective effect of magnesium lithospermate B against glucose-induced intracellular oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jian [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Xiangya School of Medicine, Changsha 410078 (China); Ren, Xian [Shanghai Green Valley Pharmaceutical Co., Ltd., Shanghai 201304 (China); Hou, Rui-ying; Dai, Xing-ping [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Xiangya School of Medicine, Changsha 410078 (China); Zhao, Ying-chun [Laboratories of Functional Genomics and Proteomics, Creighton University Medical Center, Omaha, NE 68131 (United States); Xu, Xiao-jing; Zhang, Wei; Zhou, Gan; Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Xiangya School of Medicine, Changsha 410078 (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Xiangya School of Medicine, Changsha 410078 (China)

    2011-07-22

    Highlights: {yields} LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. {yields} LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. {yields} LAB plays an important role against glucose-induced intracellular oxidative damage. {yields} The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway. -- Abstract: Objectives: To investigate the effects of magnesium lithospermate B (LAB) on intracellular reactive oxygen species (ROS) production induced by high dose of glucose or H{sub 2}O{sub 2}, we explored the influences of LAB on the expression of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor-2 (Nrf2) in HEK293T cells after treatment with high dose of glucose. Materials and methods: The total nuclear proteins in HEK293T cells were extracted with Cytoplasmic Protein Extraction Kit. The ROS level was determined by flow cytometry. The mRNA and protein expression of HO-1 and Nrf2 were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Results: LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. The amount of Nrf2 translocation was enhanced after cells were pretreated with 50 {mu}mol/L or 100 {mu}mol/L LAB. Silencing of Nrf2 gene eliminated the enhanced expression of HO-1 protein induced by high dose of glucose plus LAB. Conclusions: LAB plays an important role against glucose-induced intracellular oxidative damage. The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway.

  18. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  19. [Investigation the Inhibitory Effects of Kaempferol on Rat Renalmesangial Cells Proliferation under High Glucose Condition].

    Science.gov (United States)

    Chen, Ni; Han, Peng-Ding; Chen, Wen; Deng, Yan

    2017-07-01

    To investigate the protective effects of kaempferol on rat renal mesangial cells under high glucose condition and explore its mechanism. The HBZY-1 cells were divided into normal glucose group (5.5 mmol/L), high glucose group (25 mmol/L), 10 μmol/L kaempferol+high glucose group, and 30 μmol/L kaempferol+high glucose group. Cell proliferative ability was measured by MTT; cell cycle was analyzed by flow cytometry; mRNA and protein levels were determined by Real-time PCR and Western blot, respectively. Kaempferol had no effect on the proliferative ability of rat renal mesangial cells under normal glucose (5.5 mmol/L) condition. High glucose (25 mmol/L) enhanced the cell proliferative ability, and this effect was antagonized by kaempferol (10-30 μmol/L) treatment. High glucose reduced the cell population at G 0 /G 1 phase with an associated increase in S phase, and had no effect on G₂/M phase; and kaempferol treatment restored high glucose-induced changes in cell cycle. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Further, high glucose caused an increase in protein level of phosphorylated p38 mitogen-activated protein kinases (p38 MAPK), which was antagonized by kaempferol treatment. Our results suggest that kaempferol exerts its protective effect on rat renal mesangial cells under high glucose condition via p38 MAPK signaling pathway.

  20. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats.

    Science.gov (United States)

    Kato, Jiro; Kamiya, Hideki; Himeno, Tatsuhito; Shibata, Taiga; Kondo, Masaki; Okawa, Tetsuji; Fujiya, Atsushi; Fukami, Ayako; Uenishi, Eita; Seino, Yusuke; Tsunekawa, Shin; Hamada, Yoji; Naruse, Keiko; Oiso, Yutaka; Nakamura, Jiro

    2014-01-01

    Although the initial healing stage involves a re-epithelialization in humans, diabetic foot ulceration (DFU) has been investigated using rodent models with wounds on the thigh skin, in which a wound contraction is initiated. In this study, we established a rodent model of DFU on the plantar skin and evaluated the therapeutic efficacy of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in this model. The wounds made on the hind paws or thighs of streptozotocin induced diabetic or control rats were treated with BM-MSCs. Expression levels of phosphorylated focal adhesion kinase (pFAK), matrix metaroprotease (MMP)-2, EGF, and IGF-1, were evaluated in human keratinocytes, which were cultured in conditioned media of BM-MSCs (MSC-CM) with high glucose levels. Re-epithelialization initiated the healing process on the plantar, but not on the thigh, skin. The therapy utilizing BM-MSCs ameliorated the delayed healing in diabetic rats. In the keratinocytes cultured with MSC-CM, the decreased pFAK levels in the high glucose condition were restored, and the MMP2, EGF, and IGF-1 levels increased. Our study established a novel rat DFU model. The impaired healing process in diabetic rats was ameliorated by transplantation of BM-MSCs. This amelioration might be accounted for by the modification of keratinocyte functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Studying neuroprotective effect of Atorvastatin as a small molecule drug on high glucose-induced neurotoxicity in undifferentiated PC12 cells: role of NADPH oxidase.

    Science.gov (United States)

    Rayegan, Samira; Dehpour, Ahmad Reza; Sharifi, Ali Mohammad

    2017-02-01

    Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.

  2. Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes

    Directory of Open Access Journals (Sweden)

    Hualin Wang

    2018-04-01

    Full Text Available The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON, a high-fat diet (HFD group or a HFD supplemented with fish oil (FO group for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes’ expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.

  3. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice.

    Science.gov (United States)

    Jeon, Se Jin; Kim, Eunji; Lee, Jin Su; Oh, Hee Kyong; Zhang, Jiabao; Kwon, Yubeen; Jang, Dae Sik; Ryu, Jong Hoon

    2017-11-01

    Schizophrenia is a chronic psychotic disorder characterized by positive, negative, and cognitive symptoms. Primary treatments for schizophrenia relieve the positive symptoms but are less effective against the negative and cognitive symptoms. In the present study, we investigated whether maslinic acid, isolated from Syzygium aromaticum (clove), can ameliorate schizophrenia-like behaviors in mice induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. After maslinic acid treatment in the MK-801 model, we examined the behavioral alteration and signaling pathways in the prefrontal cortex. Mice were treated with maslinic acid (30 mg/kg), and their behaviors were evaluated through an array of behavioral tests. The effects of maslinic acid were also examined in the signaling pathways in the prefrontal cortex. A single administration of maslinic acid blocked the MK-801-induced hyperlocomotion and reversed the MK-801-induced sensorimotor gating deficit in the acoustic startle response test. In the social novelty preference test, maslinic acid ameliorated the social behavior deficits induced by MK-801. The MK-801-induced attention and recognition memory impairments were also alleviated by a single administration of maslinic acid. Furthermore, maslinic acid normalized the phosphorylation levels of Akt-GSK-3β and ERK-CREB in the prefrontal cortex. Overall, maslinic acid ameliorated the schizophrenia-like symptoms induced by MK-801, and these effects may be partly mediated through Akt-GSK-3β and ERK-CREB activation. These findings suggest that maslinic acid could be a candidate for the treatment of several symptoms of schizophrenia, including positive symptoms, sensorimotor gating disruption, social interaction deficits, and cognitive impairments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR alpha expression in adipose tissue.

    Science.gov (United States)

    Hontecillas, Raquel; Diguardo, Maggie; Duran, Elisa; Orpi, Marcel; Bassaganya-Riera, Josep

    2008-10-01

    Catalpic acid (CAT) is a conjugated linolenic acid (CLN) isomer containing trans-9, trans-11, cis-13 double bonds in an 18-carbon chain and it is found primarily in the seed oil of ornamental and medicinal trees and shrubs of the family Bignoniaceae. The objective of this study was to investigate whether CAT decreases obesity and ameliorates insulin sensitivity and glucose tolerance in mice fed high-fat diets. To test the efficacy of CAT in decreasing obesity and diabetes we used both a model of diet-induced obesity (DIO) and a genetic model of obesity (i.e., mice lacking the leptin receptor). Blood was collected on days 0, 7, 14, 21 and 28 for determining fasting glucose and insulin concentrations in plasma. In addition, a glucose tolerance test was administered on day 28. We found that dietary CAT (1g/100g) decreased fasting plasma glucose and insulin concentrations, ameliorated the glucose normalizing ability following glucose challenge and decreased abdominal white adipose tissue accumulation. In white adipose tissue (WAT), CAT upregulated peroxisome proliferator-activated receptor (PPAR) alpha and its responsive genes [i.e., stearoyl-coenzyme A desaturase (SCD1) and enoyl-coenzyme A hydratase (ECH)], increased concentrations of high-density lipoprotein (HDL) cholesterol and decreased plasma triglyceride (TG) levels. CAT decreased abdominal fat deposition, increased HDL cholesterol, decreased TG concentrations, decreased glucose and insulin homeostasis and modulated WAT gene expression in a manner reminiscent of the actions of the PPAR alpha-activating fibrate class of lipid-lowering drugs.

  5. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  6. Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells.

    Science.gov (United States)

    Ambrosio, Maria Rosaria; D'Esposito, Vittoria; Costa, Valerio; Liguoro, Domenico; Collina, Francesca; Cantile, Monica; Prevete, Nella; Passaro, Carmela; Mosca, Giusy; De Laurentiis, Michelino; Di Bonito, Maurizio; Botti, Gerardo; Franco, Renato; Beguinot, Francesco; Ciccodicola, Alfredo; Formisano, Pietro

    2017-12-12

    Type 2 diabetes and obesity are negative prognostic factors in patients with breast cancer (BC). We found that sensitivity to tamoxifen was reduced by 2-fold by 25 mM glucose (High Glucose; HG) compared to 5.5 mM glucose (Low Glucose; LG) in MCF7 BC cells. Shifting from HG to LG ameliorated MCF7 cell responsiveness to tamoxifen. RNA-Sequencing of MCF7 BC cells revealed that cell cycle-related genes were mainly affected by glucose. Connective Tissue Growth Factor (CTGF) was identified as a glucose-induced modulator of cell sensitivity to tamoxifen. Co-culturing MCF7 cells with human adipocytes exposed to HG, enhanced CTGF mRNA levels and reduced tamoxifen responsiveness of BC cells. Inhibition of adipocyte-released IL8 reverted these effects. Interestingly, CTGF immuno-detection in bioptic specimens from women with estrogen receptor positive (ER + ) BC correlated with hormone therapy resistance, distant metastases, reduced overall and disease-free survival. Thus, glucose affects tamoxifen responsiveness directly modulating CTGF in BC cells, and indirectly promoting IL8 release by adipocytes.

  7. Allantoin ameliorates chemically-induced pancreatic β-cell damage through activation of the imidazoline I3 receptors

    Directory of Open Access Journals (Sweden)

    Marie Amitani

    2015-08-01

    Full Text Available Objective. Allantoin is the primary active compound in yams (Dioscorea spp.. Recently, allantoin has been demonstrated to activate imidazoline 3 (I3 receptors located in pancreatic tissues. Thus, the present study aimed to investigate the role of allantoin in the effect to improve damage induced in pancreatic β-cells by streptozotocin (STZ via the I3 receptors.Research Design and Methods. The effect of allantoin on STZ-induced apoptosis in pancreatic β-cells was examined using the ApoTox-Glo triplex assay, live/dead cell double staining assay, flow cytometric analysis, and Western blottings. The potential mechanism was investigated using KU14R: an I3 receptor antagonist, and U73122: a phospholipase C (PLC inhibitor. The effects of allantoin on serum glucose and insulin secretion were measured in STZ-treated rats.Results. Allantoin attenuated apoptosis and cytotoxicity and increased the viability of STZ-induced β-cells in a dose-dependent manner; this effect was suppressed by KU14R and U73112. Allantoin decreased the level of caspase-3 and increased the level of phosphorylated B-cell lymphoma 2 (Bcl-2 expression detected by Western blotting. The improvement in β-cells viability was confirmed using flow cytometry analysis. Daily injection of allantoin for 8 days in STZ-treated rats significantly lowered plasma glucose and increased plasma insulin levels. This action was inhibited by treatment with KU14R.Conclusion. Allantoin ameliorates the damage of β-cells induced by STZ. The blockade by pharmacological inhibitors indicated that allantoin can activate the I3 receptors through a PLC-related pathway to decrease this damage. Therefore, allantoin and related analogs may be effective in the therapy for β-cell damage.

  8. Enhancement of high glucose-induced PINK1 expression by melatonin stimulates neuronal cell survival: Involvement of MT2 /Akt/NF-κB pathway.

    Science.gov (United States)

    Onphachanh, Xaykham; Lee, Hyun Jik; Lim, Jae Ryong; Jung, Young Hyun; Kim, Jun Sung; Chae, Chang Woo; Lee, Sei-Jung; Gabr, Amr Ahmed; Han, Ho Jae

    2017-09-01

    Hyperglycemia is a representative hallmark and risk factor for diabetes mellitus (DM) and is closely linked to DM-associated neuronal cell death. Previous investigators reported on a genome-wide association study and showed relationships between DM and melatonin receptor (MT), highlighting the role of MT signaling by assessing melatonin in DM. However, the role of MT signaling in DM pathogenesis is unclear. Therefore, we investigated the role of mitophagy regulators in high glucose-induced neuronal cell death and the effect of melatonin against high glucose-induced mitophagy regulators in neuronal cells. In our results, high glucose significantly increased PTEN-induced putative kinase 1 (PINK1) and LC-3B expressions; as well it decreased cytochrome c oxidase subunit 4 expression and Mitotracker™ fluorescence intensity. Silencing of PINK1 induced mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential impairment, increased expressions of cleaved caspases, and increased the number of annexin V-positive cells. In addition, high glucose-stimulated melatonin receptor 1B (MTNR1B) mRNA and PINK1 expressions were reversed by ROS scavenger N-acetyl cysteine pretreatment. Upregulation of PINK1 expression in neuronal cells is suppressed by pretreatment with MT 2 receptor-specific inhibitor 4-P-PDOT. We further showed melatonin stimulated Akt phosphorylation, which was followed by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Silencing of PINK1 expression abolished melatonin-regulated mitochondrial ROS production, cleaved caspase-3 and caspase-9 expressions, and the number of annexin V-positive cells. In conclusion, we have demonstrated the melatonin stimulates PINK1 expression via an MT 2 /Akt/NF-κB pathway, and such stimulation is important for the prevention of neuronal cell apoptosis under high glucose conditions. © 2017 The Authors. Journal of Pineal Research

  9. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts.

    Science.gov (United States)

    Zhang, Yu; Yang, Jian-Hong

    2013-11-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture that may be related to hyperglycemia. However, the mechanisms accounting for diabetic bone disorder are unclear. Here, we showed that high glucose significantly promoted the production of reactive oxygen species (ROS) in rat primary osteoblasts. Most importantly, we reported for the first time that ROS induced by high glucose increased alkaline phosphatase activity, inhibited type I collagen (collagen I) protein level and cell mineralization, as well as gene expression of osteogenic markers including runt-related transcription factor 2 (Runx2), collagen I, and osteocalcin, but promoted lipid droplet formation and gene expression of adipogenic markers including peroxisome proliferator-activated receptor gamma, adipocyte fatty acid binding protein (aP2), and adipsin, which were restored by pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, high glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation but stimulated adipogenic differentiation. In contrast, NAC and a PI3K inhibitor, LY-294002, reversed the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of Akt under high glucose. These results indicated that oxidative stress played a key role in high glucose-induced increase of adipogenic differentiation, which contributed to the inhibition of osteogenic differentiation. This process was mediated by PI3K/Akt pathway in rat primary osteoblasts. Hence, suppression of oxidative stress could be a potential therapeutic approach for diabetic osteopenia. © 2013 Wiley Periodicals, Inc.

  10. Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose.

    Science.gov (United States)

    Pomero, F; Molinar Min, A; La Selva, M; Allione, A; Molinatti, G M; Porta, M

    2001-01-01

    We investigated the hypothesis that benfotiamine, a lipophilic derivative of thiamine, affects replication delay and generation of advanced glycosylation end-products (AGE) in human umbilical vein endothelial cells cultured in the presence of high glucose. Cells were grown in physiological (5.6 mM) and high (28.0 mM) concentrations of D-glucose, with and without 150 microM thiamine or benfotiamine. Cell proliferation was measured by mitochondrial dehydrogenase activity. AGE generation after 20 days was assessed fluorimetrically. Cell replication was impaired by high glucose (72.3%+/-5.1% of that in physiological glucose, p=0.001). This was corrected by the addition of either thiamine (80.6%+/-2.4%, p=0.005) or benfotiamine (87.5%+/-8.9%, p=0.006), although it not was completely normalized (p=0.001 and p=0.008, respectively) to that in physiological glucose. Increased AGE production in high glucose (159.7%+/-38.9% of fluorescence in physiological glucose, p=0.003) was reduced by thiamine (113.2%+/-16.3%, p=0.008 vs. high glucose alone) or benfotiamine (135.6%+/-49.8%, p=0.03 vs. high glucose alone) to levels similar to those observed in physiological glucose. Benfotiamine, a derivative of thiamine with better bioavailability, corrects defective replication and increased AGE generation in endothelial cells cultured in high glucose, to a similar extent as thiamine. These effects may result from normalization of accelerated glycolysis and the consequent decrease in metabolites that are extremely active in generating nonenzymatic protein glycation. The potential role of thiamine administration in the prevention or treatment of vascular complications of diabetes deserves further investigation.

  11. Honokiol protects pancreatic β cell against high glucose and intermittent hypoxia-induced injury by activating Nrf2/ARE pathway in vitro and in vivo.

    Science.gov (United States)

    Li, Chen-Guang; Ni, Chang-Lin; Yang, Min; Tang, Yun-Zhao; Li, Zhu; Zhu, Yan-Juan; Jiang, Zhen-Huan; Sun, Bei; Li, Chun-Jun

    2018-01-01

    Obstructive sleep apnea hypopnea syndrome (OSAHS) is associated with glucose intolerance, insulin resistance and type 2 diabetes mellitus (T2DM). Although several studies have revealed that intermittent hypoxia (IH) in OSAHS may further aggravate pancreatic β cell damage and promote the evolution of type 2 diabetes (T2DM) by increasing oxidative stress, the underlying mechanisms are unclear. Honokiol, a potent radical scavenger, has been demonstrated to ameliorate oxidative stress in many cases. The present study aimed to explore the potential mechanism of IH and diabetes synergistically damage and destruct the pancreatic β cell, examine the effects of honokiol on ameliorating pancreatic β cell injury in this context and explore the mechanism of such effects. High glucose (HG) cultured INS-1 cells were exposed to 50 μM of honokiol for 24, 48 and 72 h with or without IH intervention. T2DM rats were treated with honokiol and exposed to 80 s of IH followed by 160 s of normoxia for 8 weeks. The cell proliferation, apoptosis and oxidative stress were measured. Blood glucose, insulin, glucagon and HOMA-IR (Homeostasis model assessment -insulin resistence) were also detected, and the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were detected by immunofluorescence staining and western blotting. Honokiol can reduce oxidative stress, cytotoxicity and apoptosis in the INS-1 cells of rats receiving HG treatment or both HG and IH treatment. IH can further aggravate pancreas dysfunction, cause a marked elevation in fasting blood glucose, glucagon, HOMA-IR and oxidative stress levels in DM rats. In addition, honokiol can effectively activate the Nrf2/ARE pathway and reverse this pancreatic dysfunction in vivo and in vitro. These findings indicate that honokiol acts as a potent ROS scavenger via Nrf2/ARE pathway and effectively attenuates oxidative stress and improves pancreatic β cell function of DM rats under IH

  12. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Tao; Li, Jun; Lu, Qianyi; Han, Changjing; Wang, Na; Qiu, Qinghua; Cao, Hui; Xu, Xun; Chen, Haibing; Zheng, Zhi

    2016-03-01

    The mechanisms underlying the cellular metabolic memory induced by high glucose remain unclear. Here, we sought to determine the effects of microRNAs (miRNAs) on metabolic memory in diabetic retinopathy. The miRNA microarray was used to examine human retinal endothelial cells (HRECs) following exposure to normal glucose (N) or high glucose (H) for 1 week or transient H for 2 days followed by N for another 5 days (H→N). Levels of sirtuin 1 (SIRT1) and acetylated-nuclear factor κB (Ac-NF-κB) were examined following transfection with miR-23b-3p inhibitor or with SIRT1 small interfering (si)RNA in the H→N group, and the apoptotic HRECs were determined by flow cytometry. Retinal tissues from diabetic rats were similarly studied following intravitreal injection of miR-23b-3p inhibitor. Chromatin immunoprecipitation (ChIP) analysis was performed to detect binding of NF-κB p65 to the potential binding site of the miR-23b-27b-24-1 gene promoter in HRECs. High glucose increased miR-23b-3p expression, even after the return to normal glucose. Luciferase assays identified SIRT1 as a target mRNA of miR-23b-3p. Reduced miR-23b-3p expression inhibited Ac-NF-κB expression by rescuing SIRT1 expression and also relieved the effect of metabolic memory induced by high glucose in HRECs. The results were confirmed in the retina using a diabetic rat model of metabolic memory. High glucose facilitated the recruitment of NF-κB p65 and promoted transcription of the miR-23b-27b-24-1 gene, which can be suppressed by decreasing miR-23b-3p expression. These studies identify a novel mechanism whereby miR-23b-3p regulates high-glucose-induced cellular metabolic memory in diabetic retinopathy through a SIRT1-dependent signalling pathway.

  13. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei, E-mail: xmma@bjut.edu.cn; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-10-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo

  14. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    International Nuclear Information System (INIS)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-01-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD 50 ) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo and in

  15. Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway.

    Science.gov (United States)

    Wu, Guozhen; Zhu, Lili; Yuan, Xing; Chen, Hao; Xiong, Rui; Zhang, Shoude; Cheng, Hao; Shen, Yunheng; An, Huazhang; Li, Tiejun; Li, Honglin; Zhang, Weidong

    2017-10-10

    Oxidative stress is considered the major cause of tissue injury after cerebral ischemia. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important defensive mechanisms against oxidative stresses and has been confirmed as a target for stroke treatment. Thus, we desired to find new Nrf2 activators and test their neuronal protective activity both in vivo and in vitro. The herb-derived compound, Britanin, is a potent inducer of the Nrf2 system. Britanin can induce the expression of protective enzymes and reverse oxygen-glucose deprivation, followed by reperfusion (OGD-R)-induced neuronal injury in primary cortical neurons in vitro. Furthermore, the administration of Britanin significantly ameliorated middle cerebral artery occlusion-reperfusion (MCAO-R) insult in vivo. We report here the crystal structure of the complex of Britanin and the BTB domain of Keap1. Britanin selectively binds to a conserved cysteine residue, cysteine 151, of Keap1 and inhibits Keap1-mediated ubiquitination of Nrf2, leading to induction of the Nrf2 pathway. Britanin is a potent inducer of Nrf2. The complex crystal structure of Britanin and the BTB domain of Keap1 help clarify the mechanism of Nrf2 induction. Britanin was proven to protect primary cortical neurons against OGD-R-induced injury in an Nrf2-dependant way. Additionally, Britanin had excellent cerebroprotective effect in an MCAO-R model. Our results demonstrate that the natural product Britanin with potent Nrf2-activating and neural protective activities both in vitro and in vivo could be developed into a cerebroprotective therapeutic agent. Antioxid. Redox Signal. 27, 754-768.

  16. Effect of lycium barbarum polysaccharides on high glucose-induced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Ma

    2017-05-01

    Full Text Available Objective: To study the effect of lycium barbarum polysaccharides (LBP on high glucoseinduced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current. Methods: RGC-5 retinal ganglion cell lines were cultured and divided into control group, high glucose group and LBP group that were treated with normal DMEM, highglucose DMEM as well as high-glucose DMEM containing 500 ng/mL LBP respectively. After treatment, the Annexin V-FITC/PI kits were used to measure the number of apoptotic cells, fluorescence quantitative PCR kits were used to determine the expression of apoptosis genes and antioxidant genes, and patch clamp was used to test delayed rectifier potassium current. Results: 12, 24, 36 and 48 h after intervention, the number of apoptotic cells of high glucose group was significantly higher than that of control group, and the number of apoptotic cells of LBP group was significantly lower than that of high glucose group (P<0.05; 24 and 48 h after intervention, c-fos, c-jun, caspase-3, caspase-9, Nrf-2, NQO1 and HO-1 mRNA expression as well as potassium current amplitude (IK and maximum conductance (Gmax of high glucose group were significantly higher than those of control group while half maximum activation voltage (V1/2 was significantly lower than that of control group (P<0.05; c-fos, c-jun, caspase-3 and caspase-9 mRNA expression as well as IK and Gmax of LBP group were significantly lower than those of high glucose group, while Nrf-2, NQO1 and HO-1 mRNA expression as well as V1/2 of LBP group were significantly higher than those of high glucose group (P<0.05. Conclusions: LBP can reduce the high glucose-induced retinal ganglion cell apoptosis and inhibit the delayed rectifier potassium current amplitude.

  17. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    Science.gov (United States)

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  18. Metformin ameliorates insulitis in STZ-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Guo-Jun Jiang

    2017-04-01

    Full Text Available Background & Aims Metformin is currently the most widely used first-line hypoglycemic agent for diabetes mellitus. Besides glucose-lowering action, there is increasingly interest in the potential anti-inflammatory action of this drug. In the present study, we investigated the actions of metformin on experimental insulitis using STZ-induced diabetic mice. Methods Mice with acute diabetes induced by STZ were administered metformin by gavage. Changes of blood glucose and body weight, and the daily amount of food and water intake were measured. Pancreatic tissues were collected for histologic analyses. Pathological assessment and immunohistochemistry analysis were used to determine the effect of metformin on insulitis. Inflammatory cytokines in the pancreas and insulin levels were measured through ELISA analysis. Results Metformin significantly reduced blood glucose levels and improved aberrant water intake behavior in experimental diabetic mice. No significant differences were observed in terms of body weight and food intake behavior in metformin-treated animals. In the STZ-induced model of diabetes, we found the appearance of pronounced insulitis. However, metformin administration reduced the severity of insulitis assessed by blind pathological scoring. In addition, metformin treatment improved insulin levels in experimental diabetic mice. ELISA assay revealed decreased levels of inflammatory response marker IL-1β and TNF-α in the pancreatic tissues following metformin treatment. Conclusion Metformin attenuated insulitis in the STZ-induced mice model of diabetes. This islet-protective effect might be partly correlated with the anti-inflammatory action of metformin.

  19. Sesamol ameliorates high-fat and high-fructose induced cognitive defects via improving insulin signaling disruption in the central nervous system.

    Science.gov (United States)

    Liu, Zhigang; Sun, Yali; Qiao, Qinglian; Zhao, Tong; Zhang, Wentong; Ren, Bo; Liu, Qian; Liu, Xuebo

    2017-02-22

    Sesamol, a nutritional component from sesame, possesses antioxidant, lipid lowering and antidepressant activities. Nonetheless, few studies report its effects on high-energy-dense diet-induced cognitive loss. The present research aimed to elucidate the action of sesamol on high-fat and high-fructose (HFFD) "western"-diet-induced central nervous system insulin resistance and learning and memory impairment, and further determined the possible underlying mechanism. 3 month-old C57BL/6J mice were divided into 3 groups with/without sesamol in the drinking water (0.05%, w/v) and standard diet, HFFD, and HFFD with sesamol supplementation. Morris water maze tests demonstrated that sesamol improved HFFD-elicited learning and memory loss. Sesamol was also found to attenuate neuron damage in HFFD-fed mice. Importantly, sesamol treatment up-regulated brain insulin signaling by stimulating IRS-1/AKT as well as ERK/CREB/BDNF pathways; meanwhile it down-regulated neuronal death signaling GSK3β and JNK. Moreover, sesamol also normalized mRNA expressions of neurotrophins including BDNF and NT-3, as well as expressions of mitochondrial metabolic and biogenesis related genes Sirt1 and PGC1α. Consistently, sesamol also reversed high-glucose-induced oxidized cellular status, mitochondrial membrane potential loss, insulin signaling inhibition and cell death in SH-SY5Y neuronal cells. Taken together, the current study proved that sesamol reduced western-diet-induced cognitive defects in a mouse model by inhibiting insulin resistance, normalizing mitochondrial function and cell redox status, and improving IRS/AKT cell surviving and energy metabolism regulating signaling. This compelling evidence indicated that sesamol is a potential nutritional supplement to prevent unhealthy-diet-induced learning and memory loss.

  20. Glucose-induced metabolic memory in Schwann cells: prevention by PPAR agonists.

    Science.gov (United States)

    Kim, Esther S; Isoda, Fumiko; Kurland, Irwin; Mobbs, Charles V

    2013-09-01

    A major barrier in reversing diabetic complications is that molecular and pathologic effects of elevated glucose persist despite normalization of glucose, a phenomenon referred to as metabolic memory. In the present studies we have investigated the effects of elevated glucose on Schwann cells, which are implicated in diabetic neuropathy. Using quantitative PCR arrays for glucose and fatty acid metabolism, we have found that chronic (>8 wk) 25 mM high glucose induces a persistent increase in genes that promote glycolysis, while inhibiting those that oppose glycolysis and alternate metabolic pathways such as fatty acid metabolism, the pentose phosphate pathway, and trichloroacetic acid cycle. These sustained effects were associated with decreased peroxisome proliferator-activated receptor (PPAR)γ binding and persistently increased reactive oxygen species, cellular NADH, and altered DNA methylation. Agonists of PPARγ and PPARα prevented select effects of glucose-induced gene expression. These observations suggest that Schwann cells exhibit features of metabolic memory that may be regulated at the transcriptional level. Furthermore, targeting PPAR may prevent metabolic memory and the development of diabetic complications.

  1. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells.

    Science.gov (United States)

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Okumura, Ko; Seko, Yoshinori

    2017-10-18

    We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.

  2. A glucose-caffeine 'energy drink' ameliorates subjective and performance deficits during prolonged cognitive demand.

    Science.gov (United States)

    Kennedy, David O; Scholey, Andrew B

    2004-06-01

    Effects of a combination of caffeine and glucose were assessed in two double-blind, placebo-controlled, cross-over studies during extended performance of cognitively demanding tasks. In the first study, 30 participants received two drinks containing carbohydrate and caffeine (68 g/38 mg; 68 g/46 mg, respectively) and a placebo drink, in counter-balanced order, on separate days. In the second study 26 participants received a drink containing 60 g of carbohydrate and 33 mg of caffeine and a placebo drink. In both studies, participants completed a 10-min battery of tasks comprising 2-min versions of Serial 3s and Serial 7s subtraction tasks and a 5-min version of the Rapid Visual Information Processing task (RVIP), plus a rating of 'mental fatigue', once before the drink and six times in succession commencing 10 min after its consumption. In comparison to placebo, all three active drinks improved the accuracy of RVIP performance and both the drink with the higher level of caffeine in first study and the active drink in the second study resulted in lower ratings of mental fatigue. These results indicate that a combination of caffeine and glucose can ameliorate deficits in cognitive performance and subjective fatigue during extended periods of cognitive demand.

  3. Reduced glucose tolerance and insulin resistance induced by steroid treatment, relative physical inactivity, and high-calorie diet impairs the incretin effect in healthy subjects

    DEFF Research Database (Denmark)

    Hansen, K B; Vilsbøll, T; Bagger, J I

    2010-01-01

    The loss of incretin effect in patients with type 2 diabetes mellitus may be secondary to impaired glucose homeostasis. We investigated whether reduced glucose tolerance and insulin resistance induced by steroid treatment, relative physical inactivity, and high-calorie diet in healthy young males...

  4. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  5. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Science.gov (United States)

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  6. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Directory of Open Access Journals (Sweden)

    Songtao Li

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA, an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD-induced obese non-alcoholic fatty liver disease (NAFLD rat model. METHODOLOGY/PRINCIPAL FINDINGS: Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  7. Glucose is required to maintain high ATP-levels for the energy utilizing steps during PDT-induced apoptosis

    International Nuclear Information System (INIS)

    Oberdanner, C.; Plaetzer, K.; Kiesslich, T.; Krammer, B.

    2003-01-01

    Full text: Photodynamic therapy (PDT) may trigger apoptosis or necrosis in cancer cells. Several steps in the induction and execution of apoptosis require high amounts of adenosine-5'-triphosphate (ATP). Since the mitochondrial membrane potential (ΔΨ) decreases early in apoptosis, we raised the question about the mechanisms of maintaining a sufficiently high ATP-level. We therefore monitored ΔΨ and the intracellular ATP-level of apoptotic human epidermoid carcinoma cells (A431) after photodynamic treatment with aluminium (III) phthalocyanine tetrasulfonate chloride. A maximum of caspase-3 activation and nuclear fragmentation was found at fluences of about 4 J.cm -2 . Under these conditions apoptotic cells reduced ΔΨ rapidly, while the ATP-level remained high for 4 to 6 hours after treatment for cells supplied with glucose. To analyze the contribution of glycolysis to the energy supply during apoptosis experiments were carried out with cells deprivated of glucose. These cells showed a rapid drop of ATP-content and neither caspase-activation nor nuclear fragmentation could be detected. We conclude that the use of glucose as a source of ATP is obligatory for the execution of PDT-induced apoptosis. (author)

  8. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature.

    Science.gov (United States)

    Li, Wei; Maloney, Ronald E; Aw, Tak Yee

    2015-08-01

    We previously demonstrated that in normal glucose (5mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG-occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG-occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-08-01

    Full Text Available We previously demonstrated that in normal glucose (5 mM, methylglyoxal (MG, a model of carbonyl stress induced brain microvascular endothelial cell (IHEC dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC. Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia; moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation. Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes.

  10. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Weerachat Sompong

    Full Text Available Ferulic acid (FA is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM significantly reduced the levels of glycated hemoglobin (HbA1c whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.

  11. Red Yeast Rice Protects Circulating Bone Marrow-Derived Proangiogenic Cells against High-Glucose-Induced Senescence and Oxidative Stress: The Role of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Jung-Tung Liu

    2017-01-01

    Full Text Available The inflammation and oxidative stress of bone marrow-derived proangiogenic cells (PACs, also named endothelial progenitor cells, triggered by hyperglycemia contributes significantly to vascular dysfunction. There is supporting evidence that the consumption of red yeast rice (RYR; Monascus purpureus-fermented rice reduces the vascular complications of diabetes; however, the underlying mechanism remains unclear. This study aimed to elucidate the effects of RYR extract in PACs, focusing particularly on the role of a potent antioxidative enzyme, heme oxygenase-1 (HO-1. We found that treatment with RYR extract induced nuclear factor erythroid-2-related factor nuclear translocation and HO-1 mRNA and protein levels in PACs. RYR extract inhibited high-glucose-induced (30 mM PAC senescence and the development of reactive oxygen species (ROS in a dose-dependent manner. The HO-1 inducer cobalt protoporphyrin IX also decreased high-glucose-induced cell senescence and oxidative stress, whereas the HO-1 enzyme inhibitor zinc protoporphyrin IX and HO-1 small interfering RNA significantly reversed RYR extract-caused inhibition of senescence and reduction of oxidative stress in high-glucose-treated PACs. These results suggest that RYR extract serves as alternative and complementary medicine in the treatment of these diseases, by inducing HO-1, thereby decreasing the vascular complications of diabetes.

  12. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Kim Ji Yeon

    2011-03-01

    Full Text Available Abstract Background Quercetin derivatives in onions have been regarded as the most important flavonoids to improve diabetic status in cells and animal models. The present study was aimed to examine the hypoglycemic and insulin-sensitizing capacity of onion peel extract (OPE containing high quercetin in high fat diet/streptozotocin-induced diabetic rats and to elucidate the mechanism of its insulin-sensitizing effect. Methods Male Sprague-Dawley rats were fed the AIN-93G diet modified to contain 41.2% fat and intraperitoneally injected with a single dose of streptozotocin (40 mg/kg body weight. One week after injection, the rats with fasting blood glucose levels above 126 mg/dL were randomly divided into 4 groups to treat with high fat diet containing 0 (diabetic control, 0.5, or 1% of OPE or 0.1% quercetin (quercetin equivalent to 1% of OPE for 8 weeks. To investigate the mechanism for the effects of OPE, we examined biochemical parameters (insulin sensitivity and oxidative stresses and protein and gene expressions (pro-inflammatory cytokines and receptors. Results Compared to the diabetic control, hypoglycemic and insulin-sensitizing capability of 1% OPE were demonstrated by significant improvement of glucose tolerance as expressed in incremental area under the curve (P = 0.0148. The insulin-sensitizing effect of OPE was further supported by increased glycogen levels in liver and skeletal muscle (P P = 0.0089, respectively. Quantitative RT-PCR analysis showed increased expression of insulin receptor (P = 0.0408 and GLUT4 (P = 0.0346 in muscle tissues. The oxidative stress, as assessed by superoxide dismutase activity and malondialdehyde formation, plasma free fatty acids, and hepatic protein expressions of IL-6 were significantly reduced by 1% OPE administration (P = 0.0393, 0.0237, 0.0148 and 0.0025, respectively. Conclusion OPE might improve glucose response and insulin resistance associated with type 2 diabetes by alleviating metabolic

  13. Nitric oxide synthase inhibition ameliorates nicotine-induced sperm function decline in male rats

    Directory of Open Access Journals (Sweden)

    Ibukun P. Oyeyipo

    2015-09-01

    Conclusion: Taken together, the present data indicate the abilities of l-NAME to ameliorate nicotine-induced spermatotoxic effects in male rats via a mechanism dependent on the circulating testosterone level.

  14. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    Directory of Open Access Journals (Sweden)

    Zhai Hua-Ling

    2012-01-01

    Full Text Available Abstract Background There is a high prevalence of diabetes mellitus (DM and dyslipidemia in women with polycystic ovary syndrome (PCOS. The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C, n = 10; the andronate-treated group (Andronate, n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks; and the andronate-treated and high-fat diet group (Andronate+HFD, n = 10. The rate of glucose appearance (Ra of glucose, gluconeogenesis (GNG, and the rate of glycerol appearance (Ra of glycerol were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P P Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

  15. Oral salmon calcitonin protects against impaired fasting glycemia, glucose intolerance, and obesity induced by high-fat diet and ovariectomy in rats.

    Science.gov (United States)

    Feigh, Michael; Andreassen, Kim V; Hjuler, Sara T; Nielsen, Rasmus H; Christiansen, Claus; Henriksen, Kim; Karsdal, Morten A

    2013-07-01

    Oral salmon calcitonin (sCT) has demonstrated clinical efficacy in treating osteoporosis in postmenopausal women. The postmenopausal state is also associated with obesity-related insulin resistance (IR) and type 2 diabetes. The aim of this study was to investigate the preventive effects of oral sCT on energy and glucose homeostasis in high-fat diet (HFD)- and ovariectomy (OVX)-induced obese rats. Furthermore, the weight-regulatory and gluco-regulatory effects of short-term oral sCT intervention on HFD-induced obese rats were explored. For prevention, female rats exposed to HFD with or without OVX were treated with oral sCT for 5 weeks. As intervention, HFD-induced obese male rats were treated with oral sCT for 4 days. Body weight, food intake, and plasma glucose, insulin, and leptin levels were measured, and the clinical homeostasis model assessment for insulin resistance (HOMA-IR) index was calculated. In addition, oral glucose tolerance was evaluated in the systemic and portal circulations. For prevention, oral sCT reduced body weight by ∼16% to 19% (P fasting glycemia (P obesity. Furthermore, oral sCT significantly reduced the incremental area under the curve for plasma glucose and insulin by ∼40% and ∼70%, respectively, during glucose tolerance testing. As intervention in HFD-induced obese rats, oral sCT reduced body weight, fasting glycemia, and insulinemia in conjunction with HOMA-IR (P obese rats, indicating the clinical usefulness of oral sCT in postmenopausal obesity-related IR and type 2 diabetes.

  16. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    Science.gov (United States)

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Astroglial Pentose Phosphate Pathway Rates in Response to High-Glucose Environments

    Directory of Open Access Journals (Sweden)

    Shinichi Takahashi

    2012-02-01

    Full Text Available ROS (reactive oxygen species play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum stress (presumably through increased hexosamine biosynthetic pathway flux. Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2, which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke.

  18. Astroglial pentose phosphate pathway rates in response to high-glucose environments

    Science.gov (United States)

    Takahashi, Shinichi; Izawa, Yoshikane; Suzuki, Norihiro

    2012-01-01

    ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke. PMID:22300409

  19. Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance.

    Science.gov (United States)

    Benzler, Jonas; Ganjam, Goutham K; Pretz, Dominik; Oelkrug, Rebecca; Koch, Christiane E; Legler, Karen; Stöhr, Sigrid; Culmsee, Carsten; Williams, Lynda M; Tups, Alexander

    2015-06-01

    Metabolic inflammation in the central nervous system might be causative for the development of overnutrition-induced metabolic syndrome and related disorders, such as obesity, leptin and insulin resistance, and type 2 diabetes. Here we investigated whether nutritive and genetic inhibition of the central IκB kinase β (IKKβ)/nuclear factor-κB (NF-κB) pathway in diet-induced obese (DIO) and leptin-deficient mice improves these metabolic impairments. A known prominent inhibitor of IKKβ/NF-κB signaling is the dietary flavonoid butein. We initially determined that oral, intraperitoneal, and intracerebroventricular administration of this flavonoid improved glucose tolerance and hypothalamic insulin signaling. The dose-dependent glucose-lowering capacity was profound regardless of whether obesity was caused by leptin deficiency or high-fat diet (HFD). To confirm the apparent central role of IKKβ/NF-κB signaling in the control of glucose and energy homeostasis, we genetically inhibited this pathway in neurons of the arcuate nucleus, one key center for control of energy homeostasis, via specific adeno-associated virus serotype 2-mediated overexpression of IκBα, which inhibits NF-κB nuclear translocation. This treatment attenuated HFD-induced body weight gain, body fat mass accumulation, increased energy expenditure, and reduced arcuate suppressor of cytokine signaling 3 expression, indicative for enhanced leptin signaling. These results reinforce a specific role of central proinflammatory IKKβ/NF-κB signaling in the development and potential treatment of DIO-induced comorbidities. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Fenugreek Seed Extract Inhibit Fat Accumulation and Ameliorates Dyslipidemia in High Fat Diet-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    2014-01-01

    Full Text Available This study investigated the inhibitory effect of aqueous extract of Trigonella foenum-graecum seeds (AqE-TFG on fat accumulation and dyslipidemia in high fat diet- (HFD- induced obese rats. Female Wistar rats were fed with HFD ad libitum, and the rats on HFD were treated orally with AqE-TFG or orlistat ((HFD for 28 days + AqE-TFG (0.5 and 1.0 g/kg or orlistat (10 mg/kg from day 8 to 28, respectively. Treatment with AqE-TFG produced significant reduction in body weight gain, body mass index (BMI, white adipose tissue (WAT weights, blood glucose, serum insulin, lipids, leptin, lipase, and apolipoprotein-B levels and elevation in adiponectin levels. AqE-TFG improved serum aspartate amino transferase (AST, alanine amino transferase (ALT, and lactate dehydrogenase (LDH levels. AqE-TFG treatment reduced the hepatic and cardiac thiobarbituric acid reactive substances (TBARS and elevated the antioxidant enzyme (glutathione (GSH, superoxide dismutase (SOD, and catalase (CAT levels. In addition, liver and uterine WAT lipogenic enzyme (fatty acid synthetase (FAS and glucose-6-phosphate dehydrogenase (G6PD activities were restored towards normal levels. These findings demonstrated the preventive effect of AqE-TFG on fat accumulation and dyslipidemia, due to inhibition of impaired lipid digestion and absorption, in addition to improvement in glucose and lipid metabolism, enhancement of insulin sensitivity, increased antioxidant defense, and downregulation of lipogenic enzymes.

  1. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Directory of Open Access Journals (Sweden)

    Ken Taro Wakabayashi

    2015-02-01

    Full Text Available The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc, a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6-8 s; ~50 µM or ~5% of baseline followed by a larger, more prolonged tonic elevation (~100 µM or 10% of baseline, peak ~15 min. While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine’s peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine’s action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells.

  2. High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2011-01-01

    Full Text Available Metallothionein (MT is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2 are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.

  3. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats.

    Science.gov (United States)

    Benzer, Fulya; Kandemir, Fatih Mehmet; Ozkaraca, Mustafa; Kucukler, Sefa; Caglayan, Cuneyt

    2018-02-01

    Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR-induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR-induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK-MB, LDH, and cTn-I). Curcumin also attenuated activities of Caspase-3, cyclooxygenase-2, inducible nitric oxide synthase, and levels of nuclear factor kappa-B, tumor necrosis factor-α, and interleukin-1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8-OHdG and 3,3'-dityrosine. This study demonstrated that curcumin has a multi-cardioprotective effect due to its antioxidant, anti-inflammatory, and antiapoptotic properties. © 2018 Wiley Periodicals, Inc.

  4. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1

    Directory of Open Access Journals (Sweden)

    Yinliang Zhang

    2017-01-01

    Full Text Available Objective: Celastrol was recently identified as a potential novel treatment for obesity. However, the effect of Celastrol on nonalcoholic fatty liver disease (NAFLD remains elusive. The aim of this study is to evaluate the role of Celastrol in NAFLD. Methods: Functional studies were performed using wild-type C57BL/6J (WT mice and liver specific Sirt1-deficient (LKO mice. The molecular mechanism was explored in primary mouse liver and primary hepatocytes. Results: When WT mice receiving a high-fat diet (HFD were treated with Celastrol, reductions in body weight, subcutaneous and visceral fat content, and liver lipid droplet formation were observed, along with reduced hepatic intracellular triglyceride and serum triglyceride, free fatty acid, and ALT concentrations. Furthermore, Celastrol decreased hepatic sterol regulatory element binding protein 1c (Srebp-1c expression, enhanced the phosphorylation of hepatic AMP-activated protein kinase α (AMPKα, and increased the expression of hepatic serine–threonine liver kinase B1 (LKB1. Additionally, Celastrol treatment improved glucose tolerance and insulin sensitivity in WT mice fed the HFD. Celastrol administration also improved the anti-inflammatory and anti-oxidative status by inhibiting nuclear factor kappa B (NFκB activity and the mRNA levels of proinflammatory cytokines and increasing mitochondrial DNA copy number and anti-oxidative stress genes expression in WT mice liver, in vivo and in vitro. Moreover, Celastrol induced hepatic Sirt1 expression in WT mice, in vivo and in vitro. These Celastrol-mediated protective effects in WT mice fed a HFD were abolished in LKO mice fed a HFD. It was more interesting that Celastrol aggravated HFD-induced liver damage in LKO mice fed a HFD by inhibiting the phosphorylation of AMPKα and boosting the translocation of NFκB into the nucleus, thereby resulting in the increase of Srebp-1c expression and the mRNA levels of liver proinflammatory cytokines

  5. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    Science.gov (United States)

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-01

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4.

  6. Exenatide improves glucocorticoid-induced glucose intolerance in mice

    Directory of Open Access Journals (Sweden)

    Ruiying Zhao

    2011-01-01

    Full Text Available Ruiying Zhao1,2*, Enrique Fuentes-Mattei1,2*, Guermarie Velazquez-Torres1,3, Chun-Hui Su1,2, Jian Chen1, Mong-Hong Lee1,2, Sai-Ching Jim Yeung4,51Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Program in Genes and Development, 3Program in Cancer Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center in Houston, Houston, TX, USA; 4Department of Endocrine Neoplasia and Hormonal Disorders, 5Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA *Both authors contributed equally.Abstract: Exenatide is an incretin mimetic that is recently available in the US for the treatment of diabetes. There is a paucity of information on the effects of exenatide in glucocorticoid (GC-induced diabetes. Although the effect of continuous intravenous infusion of exenatide on GC-induced glucose intolerance has been investigated before in healthy human males receiving oral prednisolone, we investigated the efficacy of a single subcutaneous dose of exenatide (3 µg/kg in lowering blood glucose in GC-induced glucose intolerance in C57BL/6 mice. In a longitudinal experiment, the area under the curve (AUC of oral glucose tolerance tests (OGTT significantly increased after dexamethasone (P = 0.004, which was subsequently decreased by exenatide (P < 0.001. A cross-sectional experiment showed that exenatide improved glucose tolerance compared with placebo in a mouse model of dexamethasone-induced glucose intolerance. AUC of OGTT in the exenatide group were significantly (P < 0.001 lower than in the placebo group. Insulin tolerance tests (ITT demonstrated that exenatide decreased the ability of the mice to tolerate insulin compared with placebo. The AUC of ITT in the exenatide group were also significantly (P = 0.006 lower than in the placebo group. In conclusion, a single dose of exenatide was able to decrease glucose intolerance and

  7. The effects of chromium complex and level on glucose metabolism and memory acquisition in rats fed high-fat diet.

    Science.gov (United States)

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Agca, Can A; Sahin, Nurhan; Guvenc, Mehmet; Krejpcio, Zbigniew; Staniek, Halina; Hayirli, Armagan

    2011-11-01

    Conditions in which glucose metabolism is impaired due to insulin resistance are associated with memory impairment. It was hypothesized that supplemental chromium (Cr) may alleviate insulin resistance in type 2 diabetes and consequently improve memory acquisition, depending upon its source and level. In a complete randomized design experiment, male Wistar rats (n=60; weighing 200-220 g) were fed either normal (8%, normal diet (ND)) or high-fat (40%, high-fat diet (HFD)) diet and supplemented with Cr as either chromium-glycinate (CrGly) or chromium-acetate (CrAc) at doses of 0, 40, or 80 μg/kg body weight (BW) via drinking water from 8 to 20 weeks of age. Feeding HFD induced type 2 diabetes, as reflected by greater glucose/insulin ratio (2.98 vs. 2.74) comparing to feeding ND. Moreover, HFD rats had greater BW (314 vs. 279 g) and less serum (53 vs. 68 μg/L) and brain (14 vs. 24 ng/g) Cr concentrations than ND rats. High-fat diet caused a 32% reduction in expressions of glucose transporters 1 and 3 (GLUTs) in brain tissue and a 27% reduction in mean percentage time spent in the target quadrant and a 38% increase in spatial memory acquisition phase (SMAP) compared with ND. Compared with supplemental Cr as CrAc, CrGly was more effective to ameliorate response variables (i.e., restoration of tissue Cr concentration, enhancement of cerebral GLUTs expressions, and reduction of the glucose/insulin ratio and SMAP) in a dose-response manner, especially in rats fed HFD. Supplemental Cr as CrGly may have therapeutic potential to enhance insulin action and alleviate memory acquisition in a dose-dependent manner, through restoring tissue Cr reserve and enhancing cerebral GLUTs expressions.

  8. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    Science.gov (United States)

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  9. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose.

    Science.gov (United States)

    Berrone, Elena; Beltramo, Elena; Solimine, Carmela; Ape, Alessandro Ubertalli; Porta, Massimo

    2006-04-07

    Hyperglycemia is a causal factor in the development of the vascular complications of diabetes. One of the biochemical mechanisms activated by excess glucose is the polyol pathway, the key enzyme of which, aldose reductase, transforms d-glucose into d-sorbitol, leading to imbalances of intracellular homeostasis. We aimed at verifying the effects of thiamine and benfotiamine on the polyol pathway, transketolase activity, and intracellular glucose in endothelial cells and pericytes under high ambient glucose. Human umbilical vein endothelial cells and bovine retinal pericytes were cultured in normal (5.6 mmol/liter) or high (28 mmol/liter) glucose, with or without thiamine or benfotiamine 50 or 100 mumol/liter. Transketolase and aldose reductase mRNA expression was determined by reverse transcription-PCR, and their activity was measured spectrophotometrically; sorbitol concentrations were quantified by gas chromatography-mass spectrometry and intracellular glucose concentrations by fluorescent enzyme-linked immunosorbent assay method. Thiamine and benfotiamine reduce aldose reductase mRNA expression, activity, sorbitol concentrations, and intracellular glucose while increasing the expression and activity of transketolase, for which it is a coenzyme, in human endothelial cells and bovine retinal pericytes cultured in high glucose. Thiamine and benfotiamine correct polyol pathway activation induced by high glucose in vascular cells. Activation of transketolase may shift excess glycolytic metabolites into the pentose phosphate cycle, accelerate the glycolytic flux, and reduce intracellular free glucose, thereby preventing its conversion to sorbitol. This effect on the polyol pathway, together with other beneficial effects reported for thiamine in high glucose, could justify testing thiamine as a potential approach to the prevention and/or treatment of diabetic complications.

  10. Long-term exposure to high glucose induces changes in the content and distribution of some exocytotic proteins in cultured hippocampal neurons.

    Science.gov (United States)

    Gaspar, J M; Castilho, Á; Baptista, F I; Liberal, J; Ambrósio, A F

    2010-12-29

    A few studies have reported the existence of depletion of synaptic vesicles, and changes in neurotransmitter release and in the content of exocytotic proteins in the hippocampus of diabetic rats. Recently, we found that diabetes alters the levels of synaptic proteins in hippocampal nerve terminals. Hyperglycemia is considered the main trigger of diabetic complications, although other factors, such as low insulin levels, also contribute to diabetes-induced changes. Thus, the aim of this work was to evaluate whether long-term elevated glucose per se, which mimics prolonged hyperglycemia, induces significant changes in the content and localization of synaptic proteins involved in exocytosis in hippocampal neurons. Hippocampal cell cultures were cultured for 14 days and were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose), for 7 days. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. The protein levels of vesicle-associated membrane protein-2 (VAMP-2), synaptosomal-associated protein-25 (SNAP-25), syntaxin-1, synapsin-1, synaptophysin, synaptotagmin-1, rabphilin 3a, and also of vesicular glutamate and GABA transporters (VGluT-1 and VGAT), were evaluated by immunoblotting, and its localization was analyzed by immunocytochemistry. The majority of the proteins were not affected. However, elevated glucose decreased the content of SNAP-25 and increased the content of synaptotagmin-1 and VGluT-1. Moreover, there was an accumulation of syntaxin-1, synaptotagmin-1 and VGluT-1 in the cell body of some hippocampal neurons exposed to high glucose. No changes were detected in mannitol-treated cells. In conclusion, elevated glucose per se did not induce significant changes in the content of the majority of the synaptic proteins studied in hippocampal cultures, with the exception of SNAP-25, synaptotagmin-1 and VGluT-1. However, there was an accumulation of some proteins in cell bodies of hippocampal

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high blood glucose (blood sugar). High ... We Are Research Leaders We Support Your Doctor Student Resources Patient Access to Research Research Resources Practice ...

  12. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3 and eicosapentaenoic acid (EPA, 20:5 ω-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and α-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed

  13. Paeoniflorin Suppressed High Glucose-Induced Retinal Microglia MMP-9 Expression and Inflammatory Response via Inhibition of TLR4/NF-κB Pathway Through Upregulation of SOCS3 in Diabetic Retinopathy.

    Science.gov (United States)

    Zhu, Su-Hua; Liu, Bing-Qian; Hao, Mao-Juan; Fan, Yi-Xin; Qian, Cheng; Teng, Peng; Zhou, Xiao-Wei; Hu, Liang; Liu, Wen-Tao; Yuan, Zhi-Lan; Li, Qing-Ping

    2017-10-01

    Diabetic retinopathy (DR) is a serious-threatening complication of diabetes and urgently needed to be treated. Evidence has accumulated indicating that microglia inflammation within the retina plays a critical role in DR. Microglial matrix metalloproteinase 9 (MMP-9) has an important role in the destruction of the integrity of the blood-retinal barrier (BRB) associated with the development of DR. MMP-9 was also considered important for regulating inflammatory responses. Paeoniflorin, a monoterpene glucoside, has a potent immunomodulatory effect on microglia. We hypothesized that paeoniflorin could significantly suppress microglial MMP-9 activation induced by high glucose and further relieve DR. BV2 cells were used to investigate the effects and mechanism of paeoniflorin. The activation of MMP-9 was measured by gelatin zymography. Cell signaling was measured by western blot assay and immunofluorescence assay. High glucose increased the activation of MMP-9 in BV2 cells, which was abolished by HMGB1, TLR4, p38 MAPK, and NF-κB inhibition. Phosphorylation of p38 MAPK induced by high glucose was decreased by TLR4 inhibition in BV2 cells. Paeoniflorin induced suppressor of cytokine signaling 3 (SOCS3) expression and reduced MMP-9 activation in BV2 cells. The effect of paeoniflorin on SOCS3 was abolished by the TLR4 inhibitor. In streptozotocin (STZ)-induced diabetes mice, paeoniflorin induced SOCS3 expression and reduced MMP-9 activation. Paeoniflorin suppressed STZ-induced IBA-1 and IL-1β expression and decreased STZ-induced high blood glucose level. In conclusion, paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of the TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy.

  14. The Ameliorative Effects of L-2-Oxothiazolidine-4-Carboxylate on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Jun Ho Shin

    2013-03-01

    Full Text Available The aim of the study was to investigate the ameliorative effects and the mechanism of action of L-2-oxothiazolidine-4-carboxylate (OTC on acetaminophen (APAP-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH production and glutathione peroxidase (GSH-px activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.

  15. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions

    Directory of Open Access Journals (Sweden)

    Huang Po-Hsun

    2012-08-01

    Full Text Available Abstract Background Far infra-red (IFR therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process. Materials and methods Starting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group. The latter mice were placed in an IFR dry sauna at 34°C for 30 min once per day for 5 weeks. Results Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+ mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group. However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. Conclusions Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ-induced

  16. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.

    Science.gov (United States)

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-09-01

    Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

  17. Effects of Ghrelin on Triglyceride Accumulation and Glucose Uptake in Primary Cultured Rat Myoblasts under Palmitic Acid-Induced High Fat Conditions

    Directory of Open Access Journals (Sweden)

    Lingling Han

    2015-01-01

    Full Text Available This study aimed to study the effects of acylated ghrelin on glucose and triglyceride metabolism in rat myoblasts under palmitic acid- (PA- induced high fat conditions. Rat myoblasts were treated with 0, 10−11, 10−9, or 10−7 M acylated ghrelin and 0.3 mM PA for 12 h. Triglyceride accumulation was determined by Oil-Red-O staining and the glycerol phosphate dehydrogenase-peroxidase enzymatic method, and glucose uptake was determined by isotope tracer. The glucose transporter 4 (GLUT4, AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, and uncoupling protein 3 (UCP3 were assessed by RT-PCR and western blot. Compared to 0.3 mM PA, ghrelin at 10−9 and 10−7 M reduced triglyceride content (5.855 ± 0.352 versus 5.030 ± 0.129 and 4.158 ± 0.254 mM, P<0.05 and prevented PA-induced reduction of glucose uptake (1.717 ± 0.264 versus 2.233 ± 0.333 and 2.333 ± 0.273 10−2 pmol/g/min, P<0.05. The relative protein expression of p-AMPKα/AMPKα, UCP3, and p-ACC under 0.3 mM PA was significantly reduced compared to controls (all P<0.05, but those in the 10−9 and 10−7 M ghrelin groups were significantly protected from 0.3 mM PA (all P<0.05. In conclusion, acylated ghrelin reduced PA-induced triglyceride accumulation and prevented the PA-induced decrease in glucose uptake in rat myoblasts. These effects may involve fatty acid oxidation.

  18. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  19. The anti diabetic and anti obesity effect of Memecylon umbellatum extract in high fat diet induced obese mice.

    Science.gov (United States)

    Sunil, V; Shree, Nitya; Venkataranganna, M V; Bhonde, Ramesh R; Majumdar, Mala

    2017-05-01

    In recent years, obesity and diabetes have become the epidemic mainly due to fast food and lifestyle changes. Several herbs have been claimed to control diabetes and obesity. However, there are a few which control both. Our aim was to evaluate the anti-diabetic and anti-obesity activity of methanolic extract of Memecylon umbellatum (MU) in alleviation of insulin resistance (IR). Diet induced obese (DIO) mice model was developed by feeding the mice on high fat diet (HFD) for 10 weeks resulting in hyperglycemia, obesity and IR. 250mg/kg body weight of extract was administered orally daily for 8 weeks. Fasting glucose and body weight were monitored throughout the experiment. At the end of the study, serum parameters, histological examinations and gene expression pattern were analyzed. There was a significant reduction in fasting glucose levels, body weight and triglycerides. Improvement in the glucose tolerance and amelioration of insulin resistance was observed as revealed by reduction in serum IL6, serum oxidised LDL, histological sections of liver and subcutaneous adipose. Gene expression studies demonstrated the anti-inflammatory activity of the extract by down regulating IL6, PAI1 and ApoB gene expression as compared to the untreated HFD control. Our results demonstrate for the first time that oral administration of methanolic extract of MU in DIO mice leads to reduction in hyperglycemia, body weight, triglycerides and ameliorates insulin resistance. Further, mechanism of action of the extract needs to be investigated by purifying the extract and analyzing the active ingredient playing the major role. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Carbohydrate Counting Make Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type ... Checking Your Blood Glucose A1C and eAG Hypoglycemia (Low blood glucose) Hyperglycemia (High blood glucose) Dawn Phenomenon ...

  1. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    Science.gov (United States)

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  2. Benfotiamine prevents increased β-amyloid production in HEK cells induced by high glucose.

    Science.gov (United States)

    Sun, Xiao-Jing; Zhao, Lei; Zhao, Na; Pan, Xiao-Li; Fei, Guo-Qiang; Jin, Li-Rong; Zhong, Chun-Jiu

    2012-10-01

    To determine whether high glucose enhances β-amyloid (Aβ) production in HEK293 Swedish mutant (APPsw) cells with Aβ precursor protein (APP) overexpression, and whether under this condition benfotiamine reduces the increased Aβ production. HEK293 APPsw cells were cultured with different concentrations of glucose for different times. The Aβ content in the supernatant was determined by ELISA. To investigate the mechanism by which benfotiamine reduced Aβ production, glycogen synthase kinase-3 (GSK-3) activity and expression were measured after the cells were cultured with 5.5 g/L glucose for 12 h. With 1.0, 3.0, 4.5, 5.5, 6.5, 7.5, 8.5, or 10.5 g/L glucose, Aβ production by HEK293 APPsw cells was highest in the presence of 5.5 g/L glucose for 6 and 12 h. The difference in Aβ content between 5.5 and 1.0 g/L was most marked after incubation for 12 h. Benfotiamine at 20 and 40 μg/mL significantly reduced Aβ production in cells incubated with 5.5 g/L glucose for 12 h. Moreover, 40 μg/mL benfotiamine significantly enhanced the ratio of phosphorylated GSK-3 to total GSK-3, together with consistent down-regulation of GSK-3 activity. High glucose increases Aβ production by HEK293 APPsw cells while benfotiamine prevents this increase. This is correlated with the modulation of GSK-3 activity.

  3. Effects of high glucose on mesenchymal stem cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Li, Yu-Ming; Schilling, Tatjana; Benisch, Peggy

    2007-01-01

    High glucose (HG) concentrations impair cellular functions and induce apoptosis. Exposition of mesenchymal stem cells (MSC) to HG was reported to reduce colony forming activity and induce premature senescence. We characterized the effects of HG on human MSC in vitro using telomerase-immortalized...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ... you should check and what your blood glucose levels should be. Checking your blood and then treating ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get ... the technical term for high blood glucose (blood sugar). High blood glucose happens when the body has ...

  6. High Glucose Promotes Aβ Production by Inhibiting APP Degradation

    Science.gov (United States)

    Zhang, Shuting; Song, Weihong

    2013-01-01

    Abnormal deposition of neuriticplaques is the uniqueneuropathological hallmark of Alzheimer’s disease (AD).Amyloid β protein (Aβ), the major component of plaques, is generated from sequential cleavage of amyloidβ precursor protein (APP) by β-secretase and γ-secretase complex. Patients with diabetes mellitus (DM), characterized by chronic hyperglycemia,have increased risk of AD development.However, the role of high blood glucose in APP processing and Aβ generation remains elusive. In this study, we investigated the effect of high glucose on APP metabolism and Aβ generation in cultured human cells. We found that high glucose treatment significantly increased APP protein level in both neuronal-like and non-neuronal cells, and promoted Aβ generation. Furthermore, we found that high glucose-induced increase of APP level was not due to enhancement of APP gene transcription but resulted from inhibition of APP protein degradation. Taken together, our data indicated that hyperglycemia could promote AD pathogenesis by inhibiting APP degradation and enhancing Aβ production. More importantly, the elevation of APP level and Aβ generation by high glucose was caused by reduction of APP turnover rate.Thus,our study provides a molecular mechanism of increased risk of developing AD in patients withDMand suggests thatglycemic control might be potentially beneficial for reducing the incidence of AD in diabetic patients and delaying the AD progression. PMID:23894546

  7. Dietary Reversal Ameliorates Short- and Long-Term Memory Deficits Induced by High-fat Diet Early in Life.

    Directory of Open Access Journals (Sweden)

    Catrina Sims-Robinson

    Full Text Available A high-fat diet (HFD, one of the major factors contributing to metabolic syndrome, which is associated with an increased risk of neurodegenerative diseases, leads to insulin resistance and cognitive impairment. It is not known whether these alterations are improved with dietary intervention. To investigate the long-term impact of a HFD on hippocampal insulin signaling and memory, C57BL6 mice were placed into one of three groups based on the diet: a standard diet (control, a HFD, or a HFD for 16 weeks and then the standard diet for 8 weeks (HF16. HFD-induced impairments in glucose tolerance and hippocampal insulin signaling occurred concurrently with deficits in both short- and long-term memory. Furthermore, these conditions were improved with dietary intervention; however, the HFD-induced decrease in insulin receptor expression in the hippocampus was not altered with dietary intervention. Our results demonstrate that memory deficits due to the consumption of a HFD at an early age are reversible.

  8. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats.

    Science.gov (United States)

    Arora, R; Kuhad, A; Kaur, I P; Chopra, K

    2015-08-01

    Rheumatoid arthritis (RA), a chronic and systemic inflammation, results in destruction of joints and cartilages. Effectiveness of curcumin has been established in a wide variety of inflammatory disorders, but its utility as a therapeutic agent is limited by its poor absorption, rapid metabolism and fast systemic elimination. To apprehend these limitations, we propose to use highly bioavailable curcumin loaded solid lipid nanoparticles (C-SLNs) for the treatment of RA. In the present study, the protective effect of curcumin and its SLNs was evaluated in complete Freund's adjuvant (CFA)-induced arthritis in rats. Arthritic rats exhibited marked decrease in paw withdrawal threshold in Randall-Selitto and von Frey hair test along with decreased reaction time in hot plate. Arthritic rats also showed significant joint hyperalgesia, joint stiffness and increased paw volume along with marked decrease in mobility score. Arthritic rats showed a significant increase in blood leukocyte count, oxidative-nitrosative stress, tumour necrosis factor-α, C-reactive protein, cyclic citrullinated peptide antibody levels and radiological alterations in tibiotarsal joint. C-SLN administration (10 and 30 mg/kg), when compared with free curcumin (10 and 30 mg/kg), significantly and dose dependently ameliorated various symptoms of arthritis in rats, improved biochemical markers and preserved radiological alterations in joints of arthritic rats. The current findings suggest the protective potential of curcumin-SLNs in ameliorating CFA-induced arthritis in rats through attenuation of oxido-inflammatory and immunomodulatory cascade. Further, the results emphasize that SLNs are a novel approach to deliver curcumin into the inflamed joints and improve its biopharmaceutical performance. © 2014 European Pain Federation - EFIC®

  9. Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge.

    Directory of Open Access Journals (Sweden)

    Andile Khathi

    Full Text Available PURPOSE: Recent reports suggest that the hypoglycaemic effects of the triterpenes involve inhibition of glucose transport in the small intestine. Therefore, the effects of Syzygium spp-derived triterpenes oleanolic acid (OA and maslinic acid (MA were evaluated on carbohydrate hydrolyzing enzymes in STZ-induced diabetic rats and consequences on postprandial hyperglycaemia after carbohydrate loading. METHODS: We determined using Western blot analysis the expressions of α-amylase and α-glucosidase and glucose transporters SGLT1 and GLUT2 in the small intestine intestines isolated from diabetic rats treated with OA/MA for 5 weeks. In vitro assays were used to assess the inhibitory activities of OA and MA against α-amylase, α-glucosidase and sucrase. RESULTS: OA and MA ameliorated postprandial hyperglycemia in carbohydrate loaded diabetic rats as indicated by the significantly small glucose area under the curve (AUC in treated diabetic animals compared with that in untreated diabetic rats. Western blotting showed that OA and MA treatment not only down-regulated the increase of SGLT1 and GLUT2 expressions in the small intestine of STZ-induced diabetic rats, but also inhibited small intestine α-amylase, sucrase and α-glucosidase activity. IC50 values of OA against α-amylase (3.60 ± 0.18 mmol/L, α-glucosidase (12.40 ± 0.11 mmol/L and sucrase (11.50 ± 0.13 mmol/L did not significantly differ from those of OA and acarbose. CONCLUSIONS: The results of suggest that OA and MA may be used as potential supplements for treating postprandial hyperglycemia. NOVELTY OF THE WORK: The present observations indicate that besides improving glucose homeostasis in diabetes, OA and MA suppress postprandial hyperglycaemia mediated in part via inhibition of carbohydrate hydrolysis and reduction of glucose transporters in the gastrointestinal tract. Inhibition of α-glucosidase and α-amylase can significantly decrease the postprandial hyperglycaemia after a mixed

  10. Proinflammatory Effect of High Glucose Concentrations on HMrSV5 Cells via the Autocrine Effect of HMGB1

    Directory of Open Access Journals (Sweden)

    Yuening Chu

    2017-09-01

    Full Text Available Background: Peritoneal fibrosis, in which inflammation and apoptosis play crucial pathogenic roles, is a severe complication associated with the treatment of kidney failure with peritoneal dialysis (PD using a glucose-based dialysate. Mesothelial cells (MCs take part in the inflammatory processes by producing various cytokines and chemokines, such as monocyte chemoattractant protein 1 (MCP-1 and interleukin 8 (IL-8. The apoptosis of MCs induced by high glucose levels also contributes to complications of PD. High mobility group protein B1 (HMGB1 is an inflammatory factor that has repeatedly been proven to be related to the occurrence of peritoneal dysfunction.Aim: In this study, we aimed to explore the effect and underlying mechanism of endogenous HMGB1 in high-glucose-induced MC injury.Methods: The human peritoneal MC line, HMrSV5 was cultured in high-glucose medium and incubated with recombinant HMGB1. Cellular expression of HMGB1 was blocked using HMGB1 small interfering RNA (siRNA. Apoptosis and production of inflammatory factors as well as the potential intermediary signaling pathways were examined.Results: The major findings of these analyses were: (1 MCs secreted HMGB1 from the nucleus during exposure to high glucose levels; HMGB1 acted in an autocrine fashion on the MCs to promote the production of MCP-1 and IL-8; (2 HMGB1 had little effect on high-glucose-induced apoptosis of the MCs; and (3 HMGB1-mediated MCP-1 and IL-8 production depended on the activation of MAPK signaling pathways. In conclusion, endogenous HMGB1 plays an important role in the inflammatory reaction induced by high glucose on MCs via mitogen-activated protein kinase (MAPK signaling pathways, but it seems to have little effect on high-glucose-induced apoptosis.

  11. A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment

    Science.gov (United States)

    Ackart, David F.; Richardson, Michael A.; DiLisio, James E.; Pulford, Bruce; Basaraba, Randall J.

    2017-01-01

    ABSTRACT Type 2 diabetes is a leading cause of morbidity and mortality among noncommunicable diseases, and additional animal models that more closely replicate the pathogenesis of human type 2 diabetes are needed. The goal of this study was to develop a model of type 2 diabetes in guinea pigs, in which diet-induced glucose intolerance precedes β-cell cytotoxicity, two processes that are crucial to the development of human type 2 diabetes. Guinea pigs developed impaired glucose tolerance after 8 weeks of feeding on a high-fat, high-carbohydrate diet, as determined by oral glucose challenge. Diet-induced glucose intolerance was accompanied by β-cell hyperplasia, compensatory hyperinsulinemia, and dyslipidemia with hepatocellular steatosis. Streptozotocin (STZ) treatment alone was ineffective at inducing diabetic hyperglycemia in guinea pigs, which failed to develop sustained glucose intolerance or fasting hyperglycemia and returned to euglycemia within 21 days after treatment. However, when high-fat, high-carbohydrate diet-fed guinea pigs were treated with STZ, glucose intolerance and fasting hyperglycemia persisted beyond 21 days post-STZ treatment. Guinea pigs with diet-induced glucose intolerance subsequently treated with STZ demonstrated an insulin-secretory capacity consistent with insulin-independent diabetes. This insulin-independent state was confirmed by response to oral antihyperglycemic drugs, metformin and glipizide, which resolved glucose intolerance and extended survival compared with guinea pigs with uncontrolled diabetes. In this study, we have developed a model of sequential glucose intolerance and β-cell loss, through high-fat, high-carbohydrate diet and extensive optimization of STZ treatment in the guinea pig, which closely resembles human type 2 diabetes. This model will prove useful in the study of insulin-independent diabetes pathogenesis with or without comorbidities, where the guinea pig serves as a relevant model species. PMID:28093504

  12. A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment.

    Science.gov (United States)

    Podell, Brendan K; Ackart, David F; Richardson, Michael A; DiLisio, James E; Pulford, Bruce; Basaraba, Randall J

    2017-02-01

    Type 2 diabetes is a leading cause of morbidity and mortality among noncommunicable diseases, and additional animal models that more closely replicate the pathogenesis of human type 2 diabetes are needed. The goal of this study was to develop a model of type 2 diabetes in guinea pigs, in which diet-induced glucose intolerance precedes β-cell cytotoxicity, two processes that are crucial to the development of human type 2 diabetes. Guinea pigs developed impaired glucose tolerance after 8 weeks of feeding on a high-fat, high-carbohydrate diet, as determined by oral glucose challenge. Diet-induced glucose intolerance was accompanied by β-cell hyperplasia, compensatory hyperinsulinemia, and dyslipidemia with hepatocellular steatosis. Streptozotocin (STZ) treatment alone was ineffective at inducing diabetic hyperglycemia in guinea pigs, which failed to develop sustained glucose intolerance or fasting hyperglycemia and returned to euglycemia within 21 days after treatment. However, when high-fat, high-carbohydrate diet-fed guinea pigs were treated with STZ, glucose intolerance and fasting hyperglycemia persisted beyond 21 days post-STZ treatment. Guinea pigs with diet-induced glucose intolerance subsequently treated with STZ demonstrated an insulin-secretory capacity consistent with insulin-independent diabetes. This insulin-independent state was confirmed by response to oral antihyperglycemic drugs, metformin and glipizide, which resolved glucose intolerance and extended survival compared with guinea pigs with uncontrolled diabetes. In this study, we have developed a model of sequential glucose intolerance and β-cell loss, through high-fat, high-carbohydrate diet and extensive optimization of STZ treatment in the guinea pig, which closely resembles human type 2 diabetes. This model will prove useful in the study of insulin-independent diabetes pathogenesis with or without comorbidities, where the guinea pig serves as a relevant model species. © 2017. Published by

  13. Mechanisms and significance of brain glucose signaling in energy balance, glucose homeostasis, and food-induced reward.

    Science.gov (United States)

    Devarakonda, Kavya; Mobbs, Charles V

    2016-12-15

    The concept that hypothalamic glucose signaling plays an important role in regulating energy balance, e.g., as instantiated in the so-called "glucostat" hypothesis, is one of the oldest in the field of metabolism. However the mechanisms by which neurons in the hypothalamus sense glucose, and the function of glucose signaling in the brain, has been difficult to establish. Nevertheless recent studies probing mechanisms of glucose signaling have also strongly supported a role for glucose signaling in regulating energy balance, glucose homeostasis, and food-induced reward. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Ameliorative effect of Asparagus racemosus root extract against pentylenetetrazol-induced kindling and associated depression and memory deficit.

    Science.gov (United States)

    Pahwa, Priyanka; Goel, Rajesh Kumar

    2016-04-01

    Asparagus racemosus (A. racemosus) roots are extensively used in traditional medicine for the management of epilepsy. The aim of the present study was to investigate the ameliorative effect of A. racemosus root extract (ARE) against pentylenetetrazol-induced kindling and associated depression and memory deficit. Kindling was successfully induced by repeated administration of a subconvulsant dose of PTZ (35 mg/kg; i.p.) at an interval of 48 ± 2 h in 43 days (21 injections). Pretreatment with valproate (300 mg/kg; i.p.), a major antiepileptic drug as well as ARE significantly suppressed the progression of kindling. Moreover, ARE also ameliorated the kindling-associated depression and memory deficit as indicated by decreased immobility time and increased step-down latency, respectively, as compared to vehicle control animals. Further, these behavioral observations were complemented with analogous neurochemical changes. In conclusion, the results of the present study showed that ARE treatment has an ameliorative effect against PTZ-induced kindling and associated behavioral comorbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    Science.gov (United States)

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.

  16. Effects of exposure to high glucose on primary cultured hippocampal neurons: involvement of intracellular ROS accumulation.

    Science.gov (United States)

    Liu, Di; Zhang, Hong; Gu, Wenjuan; Zhang, Mengren

    2014-06-01

    Recent studies showed that hyperglycemia is the main trigger of diabetic cognitive impairment and can cause hippocampus abnormalities. The goal of this study is to explore the effects of different concentrations of high glucose for different exposure time on cell viability as well as intracellular reactive oxygen species (ROS) generation of primary cultured hippocampal neurons. Hippocampal neurons were exposed to different concentrations of high glucose (50, 75, 100, 125, and 150 mM) for 24, 48, 72 and 96 h. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. Intracellular ROS were monitored using the fluorescent probe DCFH-DA. The results showed that, compared with control group, the cell viability of all high glucose-treated groups decreased significantly after 72 h and there also was a significant increase of apoptotic nuclei in high glucose-treated groups from 72 to 96 h. Furthermore, 50 mM glucose induced a peak rise in ROS generation at 24 h and the intracellular ROS levels of 50 mM glucose group were significantly higher than the corresponding control group from 6 to 72 h. These results suggest that hippocampal neurons could be injured by high glucose exposure and the neuronal injury induced by high glucose is potentially mediated through intracellular ROS accumulation.

  17. The Aqueous Extract of Gynura divaricata (L. DC. Improves Glucose and Lipid Metabolism and Ameliorates Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Jinnan Li

    2018-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia and dyslipidemia caused by impaired insulin secretion and resistance of the peripheral tissues. A major pathogenesis of T2DM is obesity-associated insulin resistance. Gynura divaricata (L. DC. (GD is a natural plant and has been reported to have numerous health-promoting effects on both animals and humans. In this study, we aimed to elucidate the regulatory mechanism of GD improving glucose and lipid metabolism in an obesity animal model induced by high-fat and high-sugar diet in combination with low dose of streptozocin and an insulin-resistant HepG2 cell model induced by dexamethasone. The study showed that the water extract of GD (GD extract A could significantly reduce fasting serum glucose, reverse dyslipidemia and pancreatic damage, and regulate the body weight of mice. We also found that GD extract A had low toxicity in vivo and in vitro. Furthermore, GD extract A may increase glucose consumption in insulin-resistant HepG2 cells, markedly inhibit NF-κB activation, and decrease the impairment in signaling molecules of insulin pathway, such as IRS-1, AKT, and GLUT1. Overall, the results indicate that GD extract A is a promising candidate for the prevention and treatment of T2DM.

  18. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.

    Science.gov (United States)

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    Diabetes mellitus (DM) is caused by either destruction of pancreatic β-cells (type 1 DM) or unresponsiveness to insulin (type 2 DM). Conventional therapies for diabetes mellitus have been developed but still needs improvement. Many diabetic patients have complemented conventional therapy with alternative methods including oral supplementation of natural products. In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system. For the type 1 DM model, streptozotocin-induced mice were orally administered EGb 761 for 10 days prior to streptozotocin injection and then again administered EGb 761 for an additional 10 days. Streptozotocin-treated mice administered EGb 761 exhibited lower blood triglyceride levels, lower blood glucose levels and higher blood insulin levels compared to streptozotocin-treated mice. Furthermore, liver LPL and liver PPAR-α were increased whereas IL-1β and TNF-α were decreased in streptozotocin-injected mice treated with EGb 761 compared to mice injected with streptozotocin alone. For the type 2 DM model, mice were given high-fat diet for 60 days and then orally administered EGb 761 every other day for 80 days. We found that mice given a high-fat diet and EGb 761 showed decreased blood triglyceride levels, increased liver LPL, increased liver PPAR-α and decreased body weight compared to mice given high-fat diet alone. These results suggest that EGb 761 can exert protective effects in both type 1 and type 2 DM murine models.

  19. A High Fat Diet during Adolescence in Male Rats Negatively Programs Reproductive and Metabolic Function Which Is Partially Ameliorated by Exercise

    Directory of Open Access Journals (Sweden)

    Carlos A. Ibáñez

    2017-11-01

    Full Text Available An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF diet during adolescence. The effect of physical training (Ex in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w for 30 days then subsequently fed a normal fat diet (NF for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se. At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive

  20. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  1. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  2. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice.

    Science.gov (United States)

    Eo, Hyeyoon; Lee, Hea-Ji; Lim, Yunsook

    2016-09-23

    Among the diabetic complications, diabetic foot ulcer due to delayed wound healing is one of the most significant clinical problems. Early inflammatory stage is important for better prognosis during wound healing. Thus, regulation of inflammatory response during early stage of wound healing is main target for complete cutaneous recovery. This study investigated the role of genistein supplementation in inflammation and oxidative stress, which are related to NLRP3 inflammasome, NFκB and Nrf2 activation, during cutaneous wound healing in alloxan-induced diabetic mice. Mice with diabetes with fasting blood glucose (FBG) levels > 250 mg/dl were fed diets with AIN-93G rodent diet containing 0%, 0.025% (LG) or 0.1% (HG) genistein. After 2 weeks of genistein supplementation, excisional wounds were made by biopsy punches (4 mm). Genistein supplementation improved fasting glucose levels and wound closure rate. Moreover, genistein supplementation restored NLRP3 inflammasome (NLRP3, ASC and caspase-1) at the basal level and ameliorated both inflammation (TNFα, iNOS, COX2 and NFκB) and antioxidant defense system (Nrf2, HO-1, GPx, and catalase) during early stage of wound healing in diabetic mice. Taken together, genistein supplementation would be a potential therapeutic nutrient in prevention and treatment of delayed wound healing by modulation of inflammation and oxidative stress during inflammatory stage. Copyright © 2016. Published by Elsevier Inc.

  3. Wheat bran with enriched gamma-aminobutyric acid attenuates glucose intolerance and hyperinsulinemia induced by a high-fat diet.

    Science.gov (United States)

    Shang, Wenting; Si, Xu; Zhou, Zhongkai; Strappe, Padraig; Blanchard, Chris

    2018-05-23

    In this study, the level of gamma-aminobutyric acid (GABA) in wheat bran was increased to be six times higher through the action of endogenous glutamate decarboxylase compared with untreated bran. The process of GABA formation in wheat bran also led to an increased level of phenolic compounds with enhanced antioxidant capacity 2 times higher than the untreated status. The interventional effect of a diet containing GABA-enriched bran on hyperinsulinemia induced by a high-fat diet (HFD) was investigated in a rat model. The results showed that, when compared with animals fed with HFD-containing untreated bran (NB group), the consumption of HFD-containing GABA-enriched bran (GB group) demonstrated a greater improvement of insulin resistance/sensitivity as revealed by the changes in the homeostatic model assessment for insulin resistance index (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). The expression of hepatic genes, cytochrome P450 family 7 subfamily A member 1 (Cyp7a1) and ubiquitin C (Ubc), which are involved in the adipogenesis-associated PPAR signalling pathway, was found to be significantly down-regulated in the GB group compared with the HFD group (P = 0.0055). Meanwhile, changes in the expression of a number of genes associated with lipid metabolism and gluconeogenesis were also noted in the GB group versus the HFD group, but not in the NB group, indicating different regulatory patterns between the two brans in a high-fat diet. More importantly, the analysis of key genes related to glucose metabolism further revealed that the expression of insulin-induced gene 1/2 (Insig-1/2) was increased following GB intervention with a corresponding reduction in phosphoenolpyruvate carboxykinase 1 (Pepck) and glucose-6-phosphatase, catalytic subunit (G6pc) expression, suggesting that glucose homeostasis is greatly improved through the intervention of GABA-enriched bran in the context of a high-fat diet.

  4. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits.

    Science.gov (United States)

    El-Awady, Mohammed S; Suddek, Ghada M

    2014-06-01

    The aim of this work was to explore possible effects of agmatine, an endogenous inhibitor of inducible nitric oxide synthase (iNOS), against hypercholesterolemia-induced lipid profile changes and endothelial dysfunction. Hypercholesterolemia was induced by feeding rabbits with a high-cholesterol diet (HCD, 0.5%) for 8 weeks. Another HCD-fed group was orally administered agmatine (10 mg/kg/day) during weeks 5 through 8. Serum lipid profile, malondialdehyde (MDA), nitric oxide (NO) and lactate dehydrogenase (LDH) were determined. Aorta was isolated to analyse vascular reactivity, atherosclerotic lesions and intima/media (I/M) ratio. HCD induced a significant increase in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides and high-density lipoprotein cholesterol (HDL-C). Agmatine administration significantly decreased HCD-induced elevations in serum TC and LDL-C, MDA, LDH and NO while significantly increased HDL-C levels. Additionally, agmatine significantly protected against HCD-induced attenuation of rabbit aortic endothelium-dependent relaxation to acetylcholine. HCD and agmatine did not significantly influence aortic endothelium-independent relaxation to sodium nitroprusside. Moreover, agmatine significantly reduced the elevation in aortic atherosclerotic lesion area and I/M ratio. This study is the first to reveal that agmatine has the ability to ameliorate hypercholesterolemia-induced lipemic-oxidative and endothelial function injuries possibly by its antioxidant potential and/or iNOS inhibition. © 2014 Royal Pharmaceutical Society.

  5. Characterization of an inducible UDP-glucose:salicylic acid O-glucosyltransferase from oat roots

    International Nuclear Information System (INIS)

    Yalpani, N.; Schulz, M.; Balke, N.E.

    1990-01-01

    Phytotoxicity of salicylic acid (SA), a phenolic acid that inhibits ion absorption in plant roots, is reduced in oat roots by the action of a UDP-glucose:SA glucosyltransferase (GTase). GTase activity, extracted from oat roots and assayed with [ 14 C]SA, was present at low constitutive levels but increased within 1.5 h of incubation of roots in 0.5 mM SA at pH 6.5. This induction was the result of de novo RNA and protein synthesis. Induction was highly specific towards SA as the inducer. The partially purified, soluble enzyme has a M t of about 50,000 and high specificity towards UDP-glucose as the sugar donor (K m = 0.28 mM) and SA as the glucose acceptor (K m = 0.11 mM). 2-D PAGE of [ 35 S]methionine-labeled proteins extracted from induced and uninduced roots revealed a candidate peptide representing the GTase. This peptide was also present on gels of partially purified GTase

  6. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis.

    Science.gov (United States)

    Sarma, Siddhartha Mahadeva; Singh, Dhirendra Pratap; Singh, Paramdeep; Khare, Pragyanshu; Mangal, Priyanka; Singh, Shashank; Bijalwan, Vandana; Kaur, Jaspreet; Mantri, Shrikant; Boparai, Ravneet Kaur; Mazumder, Koushik; Bishnoi, Mahendra; Bhutani, Kamlesh Kumar; Kondepudi, Kanthi Kiran

    2018-01-01

    Arabinoxylan (AX), a non-starch polysaccharide extracted from cereals such as wheat, rice and millets, is known to impart various health promoting effects. Our earlier study suggested that finger millet (FM) could ameliorate high fat diet (HFD)-induced metabolic derangements. The present study is aimed to evaluate the effect of FM-AX supplementation, a key bioactive from finger millet, on HFD-induced metabolic and gut bacterial derangements. Male Swiss albino mice were fed with normal chow diet (NPD) or HFD (60%kcal from fat) for 10 weeks. FM-AX was orally supplemented at doses of 0.5 and 1.0g/kg bodyweight on every alternate day for 10 weeks. Glucose tolerance, serum hormones, hepatic lipid accumulation and inflammation, white adipose tissue marker gene expression, adipocyte size and inflammation; metagenomic alterations in cecal bacteria; cecal short chain fatty acids and colonic tight junction gene expressions were studied. FM-AX supplementation prevented HFD-induced weight gain, alerted glucose tolerance and serum lipid profile, hepatic lipid accumulation and inflammation. Hepatic and white adipose tissue gene expressions were beneficially modulated. Further, AX supplementation prevented metagenomic alterations in cecum; improved ileal and colonic health and overall prevented metabolic endotoxemia. Present work suggests that AX from finger millet can be developed as a nutraceutical for the management of HFD- induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Serum glucose and lipid levels in alloxan-induced diabetic rats ...

    African Journals Online (AJOL)

    Effect of Aloe barbadensis Miller juice extract on serum glucose and lipids in alloxan-induced diabetic rats was investigated. Diabetes was induced by intraperitoneal injection of 150mg/kg alloxan in 5% solution. Diabetes was confirmed 72 hours after alloxan injection, if fasting blood glucose (FBG) was equal to or greater ...

  8. TLQP-21 protects human umbilical vein endothelial cells against high-glucose-induced apoptosis by increasing G6PD expression.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Hyperglycemia causes oxidative stress that could damage vascular endothelial cells, leading to cardiovascular complications. The Vgf gene was identified as a nerve growth factor-responsive gene, and its protein product, VGF, is characterized by the presence of partially cleaved products. One of the VGF-derived peptides is TLQP-21, which is composed of 21 amino acids (residues 556-576. Past studies have reported that TLQP-21 could stimulate insulin secretion in pancreatic cells and protect these cells from apoptosis, which suggests that TLQP-21 has a potential function in diabetes therapy. Here, we explore the protective role of TLQP-21 against the high glucose-mediated injury of vascular endothelial cells. Using human umbilical vascular endothelial cells (HUVECs, we demonstrated that TLQP-21 (10 or 50 nM dose-dependently prevented apoptosis under high-glucose (30 mmol/L conditions (the normal glucose concentration is 5.6 mmol/L. TLQP-21 enhanced the expression of NAPDH, resulting in upregulation of glutathione (GSH and a reduction in the levels of reactive oxygen species (ROS. TLQP-21 also upregulated the expression of glucose-6-phosphate dehydrogenase (G6PD, which is known as the main source of NADPH. Knockdown of G6PD almost completely blocked the increase of NADPH induced by TLQP-21, indicating that TLQP-21 functions mainly through G6PD to promote NADPH generation. In conclusion, TLQP-21 could increase G6PD expression, which in turn may increase the synthesis of NADPH and GSH, thereby partially restoring the redox status of vascular endothelial cells under high glucose injury. We propose that TLQP-21 is a promising drug for diabetes therapy.

  9. Pyrroloquinoline quinone ameliorates l-thyroxine-induced hyperthyroidism and associated problems in rats.

    Science.gov (United States)

    Kumar, Narendra; Kar, Anand; Panda, Sunanda

    2014-08-01

    Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant. In this study, we have evaluated its hitherto unknown role in l-thyroxin (L-T4 )-induced hyperthyroidism considering laboratory rat as a model. Alterations in the serum concentration of thyroxin (T4 ) and triiodothyronine (T3 ); lipid peroxidation (LPO) of liver, kidney, heart, muscles and brain; in the endogenous antioxidants such as superoxide dismutase, catalase and glutathione and in serum total cholesterol, high-density lipoprotien, triglycerides, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and urea were evaluated. Administration of l-T4 (500-µg kg(-1) body weight) enhanced not only the serum T3 and T4 levels but also the tissue LPO, serum SGOT, SGPT and urea with a parallel decrease in the levels of antioxidants and serum lipids. However, on simultaneous administration of PQQ (5 mg kg(-1) for 6 days), all these adverse effects were ameliorated, indicating the potential of PQQ in the amelioration of hyperthyroidism and associated problems. Possibly, the curative effects were mediated through inhibition of oxidative stress. We suggest that PQQ may be considered for therapeutic use for hyperthyroidism after dose standardization. Copyright © 2014 John Wiley & Sons, Ltd.

  10. GARLIC AMELIORATES THE HEPATOTOXIC EFFECT INDUCED BY THIOACETAMIDE IN FEMALE RATS

    International Nuclear Information System (INIS)

    OSMAN, H.F.; TAHA, M.S.

    2008-01-01

    The purpose of this study was to investigate the pretreatment effect of garlic on hepatotoxicity and oxidative stress induced by thioacetamide (TAA) in female albino rats.Sixty female adult albino rats were assigned equally into four groups; control group: animals without treatment, group ?: rats given daily oral dose of 250 mg/ kg garlic for 28 days, group ??: rats injected intraperitonealy by thioacetamide 20 mg ? kg for two weeks and group III: rats given 250 mg / kg garlic orally for 28 day followed by intrapertoneal injection of 20 mg / kg thioacetamide for two weeks. Liver enzymes were evaluated by measurements of AST, ALT and alkaline phosphatase and also trace elements (Cu and Zn) were estimated. Superoxide dismutase, glutathione peroxidase, malondialdehyde and thyroid hormones (T3 and T4) were assessed. Also, histological studies on liver and stomach were carried out. The results indicated that treatment with garlic significantly decreased liver enzymes (AST, ALT and ALP). Cu showed high significant increase in groups treated with garlic and also garlic + TAA, while Zn was increased significantly in TAA group. Superoxide dismutase (SOD) was increased significantly in group I while TAA decreased it significantly. Glutathione peroxidase was decreased significantly in group II while its level in group IV reached near the control value. Similarly, malondialdehyde was decreased significantly in garlic group and garlic ameliorated the thioacetamide effect in garlic + TAA group. The treatment with TAA led to significant increase in T3 and significant decrease in T4 hormones. Garlic ameliorated T3 level to reach the control level. Histologically, pre-treatment with garlic induced a prophylactic activity against the thioacetamide in liver and stomach tissues.According to the obtained results, it could be conclude that garlic treatment may act as antioxidant or pro-oxidant in TAA treated animals besides decreasing the TAA toxic effects on liver enzymes, liver and

  11. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    Science.gov (United States)

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  12. Convergence role of transcriptional coactivator p300 and apparent modification on HMCs metabolic memory induced by high glucose

    Directory of Open Access Journals (Sweden)

    Hong SU

    2013-03-01

    Full Text Available Objective  To investigate the protein expression of transcriptional coactivator p300, acetylated histone H3 (Ac-H3 and Ac-H4 in human renal mesangial cell (HMCs as imitative "metabolic memory" in vitro, and explore the potential role of convergence point of p300. Methods  The HMCs were divided into the following groups: ① High glucose metabolic memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, high glucose group (HG, 25mmol/L D-glucose×2d, memory groups (M1, M2, M3, 25mmol/L D-glucose×2days + 5.5mmol/L D-glucose×3d, 6d or 9d, persisting normal glucose group (NG, 5.5mmol/L D-glucose×9d. ② Advanced glycation end products memory model: normal glucose group (NG, 5.5mmol/ L D-glucose×2d, NG+AGEs group (AGEs, 5.5mmol/L D-glucose+250µg/ml AGEs×2d; AGEs memory group (AGEs-M, 5.5mmol/L D-glucose + 250µg/ml AGEs×2d + 5.5mmol/L D-glucose×3d; BSA control group (NG+BSA, 5.5mmol/L D-glucose + 250µg/ml BSA×2d. ③ H2O2 was used to simulate oxidative stress memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, NG+H2O2 group (H2O2, 5.5mmol/L D-glucose +100µmol/L H2O2×30min; H2O2 memory group [(5.5mmol/ L D-glucose + 100µmol/L H2O2×30min + 5.5mmol/L D-glucose×3d]; normal glucose control group (NG3, 5.5mmol/L D-glucose×3d. ④ Transfection with PKCβ2 memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d; high glucose group (HG, 25mmol/L D-glucose×2d; memory group (M, 25mmol/L D-glucose×2d + 5.5mmol/L D-glucose×3d; Ad5-null memory group (HN, 25mmol/L D-glucose + Ad5-null×2d + 5.5mmol/L D-glucose×3d; PKCβ2 memory group (PO, 25mmol/L D-glucose + Ad5-PKCβ2×2d + 5.5mmol/L D-glucose×3d; inhibitor of PKCβ2 memory group (PI, 25mmol/L D-glucose×2d + 10µmol/L CGP53353 + 5.5mmol/L D-glucose×3d. The expression of intracellular reactive oxygen species (ROS was detected by fluorescence microscope and fluorescence microplate reader. The expression levels of p300, Ac-H3, Ac-H4 and PKCβ2 proteins were

  13. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands.

    Science.gov (United States)

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto

    2018-06-01

    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  14. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  15. 1,8-Cineole ameliorates oxygen-glucose deprivation/reoxygenation-induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia.

    Science.gov (United States)

    Ryu, Sangwoo; Park, Hyeon; Seol, Geun Hee; Choi, In-Young

    2014-12-01

    1,8-Cineole, the main monoterpene in many essential oils, has been used as an ingredient in flavourings and medicine. 1,8-Cineole has been shown to possess pharmacological properties, including anti-oxidative, anti-inflammatory and anti-nociceptive actions. However, to date, no studies have examined the potential of 1,8-cineole to protect against cerebral ischaemic injury. In this study, we investigated the neuroprotective effects of 1,8-cineole against cortical neuronal/glial cell injury caused by oxygen-glucose deprivation/reoxygenation (OGD/R) in an in-vitro model of ischaemia. 1,8-Cineole significantly attenuated OGD/R-induced cortical cell injury, as well as reduced n-methyl-d-aspartate (NMDA)-induced cell injury. However, it did not inhibit NMDA-induced cytosolic calcium overload. Nevertheless, 1,8-cineole significantly reduced the OGD/R- and NMDA-induced overproduction of reactive oxygen species (ROS). These results indicate that 1,8-cineole exerts neuroprotection through its anti-oxidative rather than its anti-excitotoxic, properties. The decrease in OGD/R-induced intracellular superoxide in 1,8-cineole-treated cortical cells was associated with the upregulation of superoxide dismutase activity. Moreover, 1,8-cineole showed direct ROS scavenging activity in an assay of oxygen radical absorbance capacity. Collectively, these results suggest 1,8-cineole as a potentially effective neuroprotective and anti-oxidative candidate for the treatment of patients with ischaemic stroke. © 2014 Royal Pharmaceutical Society.

  16. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature

    Directory of Open Access Journals (Sweden)

    Abbaszadeh A.

    2017-06-01

    Full Text Available Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/ biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses

  17. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Science.gov (United States)

    Tan, Si; Li, Mingxia; Ding, Xiaobo; Fan, Shengjie; Guo, Lu; Gu, Ming; Zhang, Yu; Feng, Li; Jiang, Dong; Li, Yiming; Xi, Wanpeng; Huang, Cheng; Zhou, Zhiqin

    2014-01-01

    Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  18. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Si Tan

    Full Text Available INTRODUCTION: Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle fruit extract (FME on high-fat diet-induced C57BL/6 obese mice. METHODS: The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow, high-fat diet (HF, and high-fat diet with 1% (w/w extract of kumquat (HF+FME for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. RESULTS: In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC, serum low density lipoprotein cholesterol (LDL-c levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG, serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. CONCLUSION: Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  19. Effects of Red Wine Tannat on Oxidative Stress Induced by Glucose and Fructose in Erythrocytes in Vitro

    Science.gov (United States)

    Pazzini, Camila Eliza Fernandes; Colpo, Ana Ceolin; Poetini, Márcia Rósula; Pires, Cauê Ferreira; de Camargo, Vanessa Brum; Mendez, Andreas Sebastian Loureiro; Azevedo, Miriane Lucas; Soares, Júlio César Mendes; Folmer, Vanderlei

    2015-01-01

    The literature indicates that red wine presents in its composition several substances that are beneficial to health. This study has investigated the antioxidant effects of Tannat red wine on oxidative stress induced by glucose and fructose in erythrocytes in vitro, with the purpose to determine some of its majoritarian phenolic compounds and its antioxidant capacity. Erythrocytes were incubated using different concentrations of glucose and fructose in the presence or absence of wine. From these erythrocytes were determined the production of thiobarbituric acid reactive species (TBARS), glucose consumption, and osmotic fragility. Moreover, quantification of total phenolic, gallic acid, caffeic acid, epicatechin, resveratrol, and DPPH scavenging activity in wine were also assessed. Red wine showed high levels of polyphenols analyzed, as well as high antioxidant potential. Erythrocytes incubated with glucose and fructose had an increase in lipid peroxidation and this was prevented by the addition of wine. The wine increased glucose uptake into erythrocytes and was able to decrease the osmotic fragility of erythrocytes incubated with fructose. Altogether, these results suggest that wine leads to a reduction of the oxidative stress induced by high concentrations of glucose and fructose. PMID:26078708

  20. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    Directory of Open Access Journals (Sweden)

    Sandra V Lopez-Quintero

    Full Text Available Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC. After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ... DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ...

  2. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... blood glucose High levels of sugar in the urine Frequent urination Increased thirst Part of managing your ... glucose is above 240 mg/dl, check your urine for ketones. If you have ketones, do not ...

  3. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats.

    Science.gov (United States)

    Yassa, Hanan Dawood; Tohamy, Adel Fathy

    2014-06-01

    Medicinal plants attract growing interest in the therapeutic management of Diabetes mellitus. Moringa oleifera is a remarkably nutritious vegetable with several antioxidant properties. The present study assessed the possible antioxidant and antidiabetic effects of an aqueous extract of M. oleifera leaves in treating streptozotocin-induced diabetic albino rats. The antidiabetic effects of aqueous extract of M. oleifera leaves were assessed histomorphometrically, ultrastructurally and biochemically. Fasting plasma glucose (FPG) was monitored and morphometric measurements of β-cells of islets of Langerhans (modified Gomori's stain) and collagen fibers (Mallory's trichrome stain) were performed. The antioxidant effects of M. oleifera leaves were determined by measuring the reduced glutathione and lipid peroxidation product, malondialdehyde, in pancreatic tissue. M. oleifera treatment significantly ameliorated the altered FPG (from 380% to 145%), reduced glutathione (from 22% to 73%) and malondialdehyde (from 385% to 186%) compared to control levels. The histopathological damage of islet cells was also markedly reversed. Morphometrically, M. oleifera significantly increased the areas of positive purple modified Gomori stained β-cells (from 60% to 91%) and decreased the area percentage of collagen fibers (from 199% to 120%) compared to control values. Experimental findings clearly indicate the potential benefits of using the aqueous extract of M. oleifera leaves as a potent antidiabetic treatment. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Gluten-free diet increases beta-cell volume and improves glucose tolerance in an animal model of type 2 diabetes

    DEFF Research Database (Denmark)

    Haupt-Jørgensen, Martin; Buschard, Karsten; Hansen, Axel Kornerup

    2016-01-01

    Background Gluten-free (GF) diet alleviates type 1 diabetes in animal models and possibly in humans. We recently showed that fatty acid-induced insulin secretion is enhanced by enzymatically digested gluten (gliadin) stimulation in INS-1E insulinoma cells. We therefore hypothesized that GF diet...... would induce beta-cell rest and ameliorate type 2 diabetes. Methods C57BL/6JBomTac (B6) mice were fed a high-fat (HF), gluten-free high-fat (GF–HF), standard (STD) or gluten-free (GF) diet for 42 weeks. Results Short-term (6–24 weeks) GF–HF versus HF feeding impaired glucose tolerance and increased...... capacity controls pancreas volume. Thus, long-term GF diets may be beneficial for obese type 2 diabetes patients and trials should be performed....

  5. Glycated albumin suppresses glucose-induced insulin secretion by impairing glucose metabolism in rat pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Muto Takashi

    2011-04-01

    Full Text Available Abstract Background Glycated albumin (GA is an Amadori product used as a marker of hyperglycemia. In this study, we investigated the effect of GA on insulin secretion from pancreatic β cells. Methods Islets were collected from male Wistar rats by collagenase digestion. Insulin secretion in the presence of non-glycated human albumin (HA and GA was measured under three different glucose concentrations, 3 mM (G3, 7 mM (G7, and 15 mM (G15, with various stimulators. Insulin secretion was measured with antagonists of inducible nitric oxide synthetase (iNOS, and the expression of iNOS-mRNA was investigated by real-time PCR. Results Insulin secretion in the presence of HA and GA was 20.9 ± 3.9 and 21.6 ± 5.5 μU/3 islets/h for G3 (P = 0.920, and 154 ± 9.3 and 126.1 ± 7.3 μU/3 islets/h (P = 0.046, for G15, respectively. High extracellular potassium and 10 mM tolbutamide abrogated the inhibition of insulin secretion by GA. Glyceraldehyde, dihydroxyacetone, methylpyruvate, GLP-1, and forskolin, an activator of adenylate cyclase, did not abrogate the inhibition. Real-time PCR showed that GA did not induce iNOS-mRNA expression. Furthermore, an inhibitor of nitric oxide synthetase, aminoguanidine, and NG-nitro-L-arginine methyl ester did not abrogate the inhibition of insulin secretion. Conclusion GA suppresses glucose-induced insulin secretion from rat pancreatic β-cells through impairment of intracellular glucose metabolism.

  6. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Directory of Open Access Journals (Sweden)

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  7. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    Science.gov (United States)

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured human

  8. Negative Effects of High Glucose Exposure in Human Gonadotropin-Releasing Hormone Neurons

    Directory of Open Access Journals (Sweden)

    Annamaria Morelli

    2013-01-01

    Full Text Available Metabolic disorders are often associated with male hypogonadotropic hypogonadism, suggesting that hypothalamic defects involving GnRH neurons may impair the reproductive function. Among metabolic factors hyperglycemia has been implicated in the control of the reproductive axis at central level, both in humans and in animal models. To date, little is known about the direct effects of pathological high glucose concentrations on human GnRH neurons. In this study, we investigated the high glucose effects in the human GnRH-secreting FNC-B4 cells. Gene expression profiling by qRT-PCR, confirmed that FNC-B4 cells express GnRH and several genes relevant for GnRH neuron function (KISS1R, KISS1, sex steroid and leptin receptors, FGFR1, neuropilin 2, and semaphorins, along with glucose transporters (GLUT1, GLUT3, and GLUT4. High glucose exposure (22 mM; 40 mM significantly reduced gene and protein expression of GnRH, KISS1R, KISS1, and leptin receptor, as compared to normal glucose (5 mM. Consistent with previous studies, leptin treatment significantly induced GnRH mRNA expression at 5 mM glucose, but not in the presence of high glucose concentrations. In conclusion, our findings demonstrate a deleterious direct contribution of high glucose on human GnRH neurons, thus providing new insights into pathogenic mechanisms linking metabolic disorders to reproductive dysfunctions.

  9. Geraniol, alone and in combination with pioglitazone, ameliorates fructose-induced metabolic syndrome in rats via the modulation of both inflammatory and oxidative stress status.

    Directory of Open Access Journals (Sweden)

    Sherehan M Ibrahim

    Full Text Available Geraniol (GO potent antitumor and chemopreventive effects are attributed to its antioxidant and anti-inflammatory properties. In the current study, the potential efficacy of GO (250 mg/kg in ameliorating metabolic syndrome (MetS induced by fructose in drinking water was elucidated. Moreover, the effect of pioglitazone (5 and 10 mg/kg; PIO and the possible interaction of the co-treatment of GO with PIO5 were studied in the MetS model. After 4 weeks of treatment, GO and/or PIO reduced the fasting blood glucose and the glycemic excursion in the intraperitoneal glucose tolerance test. GO and PIO5/10 restrained visceral adiposity and partly the body weight gain. The decreased level of peroxisome proliferator activated receptor (PPAR-γ transcriptional activity in the visceral adipose tissue of MetS rats was increased by single treatment regimens. Though GO did not affect MetS-induced hyperinsulinemia, PIO5/10 lowered it. Additionally, GO and PIO5/10 suppressed glycated hemoglobin and the receptor for advanced glycated end products (RAGE. These single regimens also ameliorated hyperuricemia, the disrupted lipid profile, and the elevated systolic blood pressure evoked by MetS. The rise in serum transaminases, interleukin-1β, and tumor necrosis factor-α, as well as hepatic lipid peroxides and nitric oxide (NO was lowered by the single treatments to different extents. Moreover, hepatic non-protein thiols, as well as serum NO and adiponectin were enhanced by single regimens. Similar effects were reached by the combination of GO with PIO5; however, a potentiative interaction was noted on fasting serum insulin level, while synergistic effects were reflected as improved insulin sensitivity, as well as reduced RAGE and triglycerides. Therefore, GO via the transcriptional activation of PPAR-γ reduces inflammation and free radical injury produced by MetS. Thereby, these effects provide novel mechanistic insights on GO management of MetS associated critical

  10. Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock

    DEFF Research Database (Denmark)

    Widlund, Anne Lykkegaard; Wang, H.; Guan, Y.

    2014-01-01

    for glucose, insulin, corticosterone, total glucagon-like peptide (GLP-1), glucagon, and serum cytokine levels. The Homeostatic Model AssessmentYInsulin Resistance index was used to quantify insulin resistance. Results: RSV supplementation following HS significantly improved mitochondrial function...... resuscitation would ameliorate HS-induced mitochondrial dysfunction and improve hyperglycemia following acute blood loss. Methods: With the use a decompensated HS model, male Long-Evans rats (n = 6 per group) were resuscitated with lactated Ringer's solution with or without RSV (30 mg/kg) and were killed before.......2 mg/dL vs. 359.0 ± 79.5 mg/dL, p Model...

  11. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons.

    Science.gov (United States)

    Zhao, Tian-Zhi; Shi, Fei; Hu, Jun; He, Shi-Ming; Ding, Qian; Ma, Lian-Ting

    2016-07-22

    It is well-known that the neuroprotective effects of estrogen have potential in the prevention and amelioration of ischemic and degenerative neurological disorders, while the underlying mechanisms for estrogen actions are undefined. As an important mediator for the non-genomic functions of estrogen, GPER1 (G Protein-coupled Estrogen Receptor 1) has been suggested to involve in the beneficial roles of estrogen in neural cells. Here our studies on primary hippocampal neurons have focused on GPER1 in an in vitro model of ischemia using oxygen-glucose deprivation (OGD). GPER1 expression in the primary hippocampal neurons was stimulated by the OGD treatments. Both E2 (estradiol) and E2-BSA (membrane impermeable estradiol by covalent conjugation of bovine serum albumin) attenuated OGD-induced cell death in primary cultures of hippocampal neurons. Importantly, this membrane-mediated estrogen function requires GPER1 protein. Knocking down of GPER1 diminished, while overexpression of GPER1 potentiated, the protective roles of E2/E2-BSA following OGD. Additionally, the downstream mechanisms employed by membrane-associated estrogen signaling were found to include PI3K/Akt-dependent Ask1 inhibition in the primary hippocampal neurons. Overall, these research results could enhance our understanding of the neuroprotective actions for estrogen, and provide a new therapeutic target for improving stroke outcome and ameliorating degenerative neurological diseases. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis.

    Science.gov (United States)

    Velmurugan, Ganesan; Ramprasath, Tharmarajan; Swaminathan, Krishnan; Mithieux, Gilles; Rajendhran, Jeyaprakash; Dhivakar, Mani; Parthasarathy, Ayothi; Babu, D D Venkatesh; Thumburaj, Leishman John; Freddy, Allen J; Dinakaran, Vasudevan; Puhari, Shanavas Syed Mohamed; Rekha, Balakrishnan; Christy, Yacob Jenifer; Anusha, Sivakumar; Divya, Ganesan; Suganya, Kannan; Meganathan, Boominathan; Kalyanaraman, Narayanan; Vasudevan, Varadaraj; Kamaraj, Raju; Karthik, Maruthan; Jeyakumar, Balakrishnan; Abhishek, Albert; Paul, Eldho; Pushpanathan, Muthuirulan; Rajmohan, Rajamani Koushick; Velayutham, Kumaravel; Lyon, Alexander R; Ramasamy, Subbiah

    2017-01-24

    Organophosphates are the most frequently and largely applied insecticide in the world due to their biodegradable nature. Gut microbes were shown to degrade organophosphates and cause intestinal dysfunction. The diabetogenic nature of organophosphates was recently reported but the underlying molecular mechanism is unclear. We aimed to understand the role of gut microbiota in organophosphate-induced hyperglycemia and to unravel the molecular mechanism behind this process. Here we demonstrate a high prevalence of diabetes among people directly exposed to organophosphates in rural India (n = 3080). Correlation and linear regression analysis reveal a strong association between plasma organophosphate residues and HbA1c but no association with acetylcholine esterase was noticed. Chronic treatment of mice with organophosphate for 180 days confirms the induction of glucose intolerance with no significant change in acetylcholine esterase. Further fecal transplantation and culture transplantation experiments confirm the involvement of gut microbiota in organophosphate-induced glucose intolerance. Intestinal metatranscriptomic and host metabolomic analyses reveal that gut microbial organophosphate degradation produces short chain fatty acids like acetic acid, which induces gluconeogenesis and thereby accounts for glucose intolerance. Plasma organophosphate residues are positively correlated with fecal esterase activity and acetate level of human diabetes. Collectively, our results implicate gluconeogenesis as the key mechanism behind organophosphate-induced hyperglycemia, mediated by the organophosphate-degrading potential of gut microbiota. This study reveals the gut microbiome-mediated diabetogenic nature of organophosphates and hence that the usage of these insecticides should be reconsidered.

  13. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production.

    Science.gov (United States)

    Shishova, Ekaterina Y; Stoll, Janis M; Ersoy, Baran A; Shrestha, Sudeep; Scapa, Erez F; Li, Yingxia; Niepel, Michele W; Su, Ya; Jelicks, Linda A; Stahl, Gregory L; Glicksman, Marcie A; Gutierrez-Juarez, Roger; Cuny, Gregory D; Cohen, David E

    2011-08-01

    Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) is a highly specific intracellular lipid binding protein that is enriched in liver. Coding region polymorphisms in both humans and mice appear to confer protection against measures of insulin resistance. The current study was designed to test the hypotheses that Pctp-/- mice are protected against diet-induced increases in hepatic glucose production and that small molecule inhibition of PC-TP recapitulates this phenotype. Pctp-/- and wildtype mice were subjected to high-fat feeding and rates of hepatic glucose production and glucose clearance were quantified by hyperinsulinemic euglycemic clamp studies and pyruvate tolerance tests. These studies revealed that high-fat diet-induced increases in hepatic glucose production were markedly attenuated in Pctp-/- mice. Small molecule inhibitors of PC-TP were synthesized and their potencies, as well as mechanism of inhibition, were characterized in vitro. An optimized inhibitor was administered to high-fat-fed mice and used to explore effects on insulin signaling in cell culture systems. Small molecule inhibitors bound PC-TP, displaced phosphatidylcholines from the lipid binding site, and increased the thermal stability of the protein. Administration of the optimized inhibitor to wildtype mice attenuated hepatic glucose production associated with high-fat feeding, but had no activity in Pctp-/- mice. Indicative of a mechanism for reducing glucose intolerance that is distinct from commonly utilized insulin-sensitizing agents, the inhibitor promoted insulin-independent phosphorylation of key insulin signaling molecules. These findings suggest PC-TP inhibition as a novel therapeutic strategy in the management of hepatic insulin resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  14. Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway.

    Science.gov (United States)

    Zhang, Erli; Guo, Qianyun; Gao, Haiyang; Xu, Ruixia; Teng, Siyong; Wu, Yongjian

    2015-01-01

    Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as "metabolic memory." Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how "metabolic memory" would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement of SIRT1 axis as well as the protective effects of resveratrol (RSV) and metformin (MET), two potent SIRT1 activators, during the occurrence of "metabolic memory" of cellular senescence (senescent "memory"). Human umbilical vascular endothelial cells (HUVECs) were cultured in either normal glucose (NG)/high glucose (HG) media for 6 days, or 3 days of HG followed by 3 days of NG (HN), with or without RSV or MET treatment. It was shown that HN incubation triggered persistent downregulation of deacetylase SIRT1 and upregulation of acetyltransferase p300, leading to sustained hyperacetylation (at K382) and activation of p53, and subsequent p53/p21-mediated senescent "memory." In contrast, senescent "memory" was abrogated by overexpression of SIRT1 or knockdown of p300. Interestingly, we found that SIRT1 and p300 could regulate each other in response to HN stimulation, suggesting that a delicate balance between acetyltransferases and deacetylases may be particularly important for sustained acetylation and activation of non-histone proteins (such as p53), and eventually the occurrence of "metabolic memory." Furthermore, we found that RSV or MET treatment prevented senescent "memory" by modulating SIRT1/p300/p53/p21 pathway. Notably, early and continuous treatment of MET, but not RSV, was particularly important for preventing senescent "memory." In conclusion, short-term high glucose stimulation could induce sustained endothelial senescence via SIRT1/p300/p53/p21 pathway. RVS or MET

  15. Long-term dietary supplementation with low-dose nobiletin ameliorates hepatic steatosis, insulin resistance, and inflammation without altering fat mass in diet-induced obesity.

    Science.gov (United States)

    Kim, Young-Je; Choi, Myung-Sook; Woo, Je Tae; Jeong, Mi Ji; Kim, Sang Ryong; Jung, Un Ju

    2017-08-01

    We evaluated the long-term effect of low-dose nobiletin (NOB), a polymethoxylated flavone, on diet-induced obesity and related metabolic disturbances. C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without NOB (0.02%, w/w) for 16 weeks. NOB did not alter food intake or body weight. Despite increases in fatty acid oxidation-related genes expression and enzymes activity in adipose tissue, NOB did not affect adipose tissue weight due to simultaneous increases in lipogenic genes expression and fatty acid synthase activity. However, NOB significantly decreased not only pro-inflammatory genes expression in adipose tissue but also proinflammatory cytokine levels in plasma. NOB-supplemented mice also showed improved glucose tolerance and insulin resistance, along with decreased levels of plasma insulin, free fatty acids, total cholesterol, non-HDL-cholesterol, and apolipoprotein B. In addition, NOB caused significant decreases in hepatic lipid droplet accumulation and triglyceride content by activating hepatic fatty acid oxidation-related enzymes. Hepatic proinflammatory TNF-α mRNA expression, collagen accumulation, and plasma levels of aminotransferases, liver damage indicators, were also significantly lower in NOB-supplemented mice. These findings suggest that long-term supplementation with low-dose NOB can protect against HFD-induced inflammation, insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease, without ameliorating adiposity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Troxerutin and Cerebroprotein Hydrolysate Injection Protects Neurovascular Units from Oxygen-Glucose Deprivation and Reoxygenation-Induced Injury In Vitro

    Directory of Open Access Journals (Sweden)

    Hóngyi Zhào

    2018-01-01

    Full Text Available Cerebral ischemia/reperfusion (I/R injury involves complex events of cellular and molecular processes. Previous studies suggest that a neurovascular unit (NVU acts as an intricate network to maintain the neuronal homeostatic microenvironment. The present study established an NVU model for oxygen-glucose deprivation and reoxygenation (OGD/R damage, trying to target the major components of the NVU using a coculture of rat neurons, astrocytes, and rat brain microvascular endothelial cells (rBMECs to investigate the therapeutic effects of troxerutin and cerebroprotein hydrolysate injections (TCHis. The study observed that OGD/R downregulated the expressions of GAP-43, Claudin-5, and AQP-4 obviously detected by Western blotting and immunocytochemical analysis, respectively, while TCHi ameliorated the effect of OGD/R significantly. Meanwhile, TCHi alleviated the abnormalities of ultrastructure of neurons and rBMECs induced by OGD/R. Furthermore, both levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α and cell adhesion molecules (VCAM-1 and ICAM-1 detected by ELISA in NVU supernatant were found elevated significantly through OGD/R, but TCHi ameliorated the trend. In addition, TCHi also mitigated the increase of proapoptotic factors (Bax, p53, and caspase-3 induced by OGD/R in NVU model statistically. All these findings demonstrated that TCHis played a protective role, which was reflected in anti-inflammation, antiapoptosis, and blood–brain barrier maintenance. The results of the study concluded that the NVU is an ideal target and TCHi acts as a neuroprotective agent against cerebral I/R injuries.

  17. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Basiru Olaitan Ajiboye

    2018-03-01

    Full Text Available Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (p0.05 different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients.

  18. Ameliorative properties of ethyl acetate fraction of Ceiba pentandra on serum glucose, hematological and biochemical parameters of diabetic rats

    Directory of Open Access Journals (Sweden)

    Muhammad Hadiza Lami

    2015-09-01

    standard drug and untreated groups. Total cholesterol, triglyceride increased and high density lipoprotein increased in all groups against the untreated group. Conclusions: Both doses of ethyl acetate fraction of Ceiba pentandra were able to reduce the blood glucose and ameliorate the hematological abnormalities associated with diabetes mellitus.

  19. Inhibitory effects and mechanism of 25-OH-PPD on glomerular mesangial cell proliferation induced by high glucose.

    Science.gov (United States)

    Yu, Junxian; Liu, Chunna; Li, Zhe; Zhang, Chao; Wang, Zheng; Liu, Xinyu

    2016-06-01

    To investigate the protective effects and potential mechanism of the compound 25-OH-PPD (PPD) on the glomerular mesangial cells (GMC) under high glucose condition. The hypertrophic GMC cells were established by DMEM containing glucose and randomly divided into five groups, including the normal control group (Control), the high glucose model group (HG, 25 mmolL(-1)), the PPD low dose group (1μmolL(-1), PPD-L), the PPD middle dose group (5μmolL(-1), PPD -M) and the PPD high dose group (10μmolL(-1), UCN-H). The GMC were incubated for 48h under different treatment factors. Total protein content was determined by Lowry method. The diameter of the single GMC and volume were measured by computer photograph analysis system. The GMC cell viability was analyzed by MTT assay. The level of malondialdehyde (MDA), the content of glutathione (GSH) and superoxide dismutase (SOD) activity were measured by ELISA. [Ca(2+)]і transient was measured by Till image system and by cell-loading Fura-2/AM. The expression of COX-1 and COX-2 were also determined using ELISA method. The viability of GMC and the total protein content were decreased in HG group, different dosage PPD group could increase these indexes (PPPD could reduce the MDA and enhance GSH and SOD (PPPD-L, PPD-M or PPD-H), the [Ca(2+)]і transient was reduced (PPPD groups. The protective effects of PPD on GMC from HG-induced hypertrophy may be associated with the inhibition of [Ca(2+)]і transient and decreasing expression of COX-1 via the oxidative-stress injure pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Astragalus membranaceus-Polysaccharides Ameliorates Obesity, Hepatic Steatosis, Neuroinflammation and Cognition Impairment without Affecting Amyloid Deposition in Metabolically Stressed APPswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Huang

    2017-12-01

    Full Text Available Astragalus membranaceus is commonly used in traditional Chinese medicine for strengthening the host defense system. Astragalus membranaceus-polysaccharides is an effective component with various important bioactivities, such as immunomodulation, antioxidant, anti-diabetes, anti-inflammation and neuroprotection. In the present study, we determine the effects of Astragalus membranaceus-polysaccharides on metabolically stressed transgenic mice in order to develop this macromolecules for treatment of sporadic Alzheimer’s disease, a neurodegenerative disease with metabolic risk factors. Transgenic mice, at 10 weeks old prior to the appearance of senile plaques, were treated in combination of administrating high-fat diet and injecting low-dose streptozotocin to create the metabolically stressed mice model. Astragalus membranaceus-polysaccharides was administrated starting at 14 weeks for 7 weeks. We found that Astragalus membranaceus-polysaccharides reduced metabolic stress-induced increase of body weight, insulin and insulin and leptin level, insulin resistance, and hepatic triglyceride. Astragalus membranaceus-polysaccharides also ameliorated metabolic stress-exacerbated oral glucose intolerance, although the fasting blood glucose was only temporally reduced. In brain, metabolic stress-elicited astrogliosis and microglia activation in the vicinity of plaques was also diminished by Astragalus membranaceus-polysaccharides administration. The plaque deposition, however, was not significantly affected by Astragalus membranaceus-polysaccharides administration. These findings suggest that Astragalus membranaceus-polysaccharides may be used to ameliorate metabolic stress-induced diabesity and the subsequent neuroinflammation, which improved the behavior performance in metabolically stressed transgenic mice.

  1. Combination Treatment of Deep Sea Water and Fucoidan Attenuates High Glucose-Induced Insulin-Resistance in HepG2 Hepatocytes

    OpenAIRE

    Shan He; Wei-Bing Peng; Hong-Lei Zhou

    2018-01-01

    Insulin resistance (IR) plays a central role in the development of several metabolic diseases, which leads to increased morbidity and mortality rates, in addition to soaring health-care costs. Deep sea water (DSW) and fucoidans (FPS) have drawn much attention in recent years because of their potential medical and pharmaceutical applications. This study investigated the effects and mechanisms of combination treatment of DSW and FPS in improving IR in HepG2 hepatocytes induced by a high glucose...

  2. DHEA supplementation in ovariectomized rats reduces impaired glucose-stimulated insulin secretion induced by a high-fat diet

    Directory of Open Access Journals (Sweden)

    Katherine Veras

    2014-01-01

    Full Text Available Dehydroepiandrosterone (DHEA and the dehydroepiandrosterone sulfate (DHEA-S are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX female rats fed a high-fat diet would maintain glucose-induced insulin secretion (GSIS and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations, a phenotype similar to that of the post-menopausal period.

  3. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.

    Science.gov (United States)

    Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun

    2014-04-01

    Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.

  4. BLACK TEA INFUSION AMELIORATES ENZYMATIC CHANGES INDUCED BY SUBCUTANEOUS EXPOSURE OF GASOLINE AND GM-10 IN MICE

    OpenAIRE

    Manjeet Dave; Ramtej Jayram Verma

    2017-01-01

    The present study was carried out to examine the ameliorative effect of black tea infusion on gasoline and GM-10 induced enzymatic changes in kidney of mice. Eighty healthy adult Swiss strain male albino mice weighing 32-35 gm were divided into eight groups including untreated control and various treated groups. Treated groups were subcutaneously administered with gasoline (412 mg/kg/day) and GM-10 low dose (206 mg/kg/day) and high dose (412 mg/kg/day) for 30 days. Black tea infusion (2%) was...

  5. Tracing Fasting Glucose Fluxes with Unstressed Catheter Approach in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shichun Du

    2014-01-01

    Full Text Available Objective. Blood glucose concentrations of type 1 diabetic rats are vulnerable, especially to stress and trauma. The present study aimed to investigate the fasting endogenous glucose production and skeletal muscle glucose uptake of Streptozotocin induced type 1 diabetic rats using an unstressed vein and artery implantation of catheters at the tails of the rats as a platform. Research Design and Methods. Streptozotocin (65 mg·kg−1 was administered to induce type 1 diabetic state. The unstressed approach of catheters of vein and artery at the tails of the rats was established before the isotope tracer injection. Dynamic measurement of fasting endogenous glucose production was assessed by continuously infusing stable isotope [6, 6-2H2] glucose, while skeletal muscle glucose uptake by bolus injecting radioactively labeled [1-14C]-2-deoxy-glucose. Results. Streptozotocin induced type 1 diabetic rats displayed polydipsia, polyphagia, and polyuria along with overt hyperglycemia and hypoinsulinemia. They also had enhanced fasting endogenous glucose production and reduced glucose uptake in skeletal muscle compared to nondiabetic rats. Conclusions. The dual catheters implantation at the tails of the rats together with isotope tracers injection is a save time, unstressed, and feasible approach to explore the glucose metabolism in animal models in vivo.

  6. Glucose detection in a highly scattering medium with diffuse photon-pair density wave

    Directory of Open Access Journals (Sweden)

    Li-Ping Yu

    2017-01-01

    Full Text Available We propose a novel optical method for glucose measurement based on diffuse photon-pair density wave (DPPDW in a multiple scattering medium (MSM where the light scattering of photon-pair is induced by refractive index mismatch between scatters and phantom solution. Experimentally, the DPPDW propagates in MSM via a two-frequency laser (TFL beam wherein highly correlated pairs of linear polarized photons are generated. The reduced scattering coefficient μ2s′ and absorption coefficient μ2a of DPPDW are measured simultaneously in terms of the amplitude and phase measurements of the detected heterodyne signal under arrangement at different distances between the source and detection fibers in MSM. The results show that the sensitivity of glucose detection via glucose-induced change of reduced scattering coefficient (δμ2s′ is 0.049%mM−1 in a 1% intralipid solution. In addition, the linear range of δμ2s′ vs glucose concentration implies that this DPPDW method can be used to monitor glucose concentration continuously and noninvasively subcutaneously.

  7. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    Science.gov (United States)

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway.

    Science.gov (United States)

    Bae, Ju Yong; Shin, Ki Ok; Woo, Jinhee; Woo, Sang Heon; Jang, Ki Soeng; Lee, Yul Hyo; Kang, Sunghwun

    2016-06-01

    The purpose of this study was to investigate the effect of exercise and dietary change on obesity and insulin resistance and mTOR signaling protein levels in skeletal muscles of obese rats. Sixty male Sprague-Dawley rats were divided into CO (Normal diet) and HF (High Fat diet) groups in order to induce obesity for 15 weeks. The rats were then subdivided into CO, COT (CO + Training), HF, HFT (HF + Training), HFND (Dietary change), and HFNDT (HFND + Training) groups (10 rats / group). The training groups underwent moderate-intensity treadmill exercise for 8 weeks, after which soleus muscles were excised and analyzed. Data was statistically analyzed by independent t-test and One-way ANOVA tests with a 0.05 significance level. Fasting blood glucose, plasma insulin, and HOMA-IR in the HF group were significantly higher, as compared with other groups (p continuous high fat intake, regular exercise and dietary change showed a positive effect on insulin resistance and mTOR signaling protein levels.

  9. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota.

    Science.gov (United States)

    Janssen, Aafke W F; Katiraei, Saeed; Bartosinska, Barbara; Eberhard, Daniel; Willems van Dijk, Ko; Kersten, Sander

    2018-06-01

    Angiopoietin-like 4 (ANGPTL4) is an important regulator of triacylglycerol metabolism, carrying out this role by inhibiting the enzymes lipoprotein lipase and pancreatic lipase. ANGPTL4 is a potential target for ameliorating cardiometabolic diseases. Although ANGPTL4 has been implicated in obesity, the study of the direct role of ANGPTL4 in diet-induced obesity and related metabolic dysfunction is hampered by the massive acute-phase response and development of lethal chylous ascites and peritonitis in Angptl4 -/- mice fed a standard high-fat diet. The aim of this study was to better characterise the role of ANGPTL4 in glucose homeostasis and metabolic dysfunction during obesity. We chronically fed wild-type (WT) and Angptl4 -/- mice a diet rich in unsaturated fatty acids and cholesterol, combined with fructose in drinking water, and studied metabolic function. The role of the gut microbiota was investigated by orally administering a mixture of antibiotics (ampicillin, neomycin, metronidazole). Glucose homeostasis was assessed via i.p. glucose and insulin tolerance tests. Mice lacking ANGPTL4 displayed an increase in body weight gain, visceral adipose tissue mass, visceral adipose tissue lipoprotein lipase activity and visceral adipose tissue inflammation compared with WT mice. However, they also unexpectedly had markedly improved glucose tolerance, which was accompanied by elevated insulin levels. Loss of ANGPTL4 did not affect glucose-stimulated insulin secretion in isolated pancreatic islets. Since the gut microbiota have been suggested to influence insulin secretion, and because ANGPTL4 has been proposed to link the gut microbiota to host metabolism, we hypothesised a potential role of the gut microbiota. Gut microbiota composition was significantly different between Angptl4 -/- mice and WT mice. Interestingly, suppression of the gut microbiota using antibiotics largely abolished the differences in glucose tolerance and insulin levels between WT and Angptl4

  10. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-03-01

    Full Text Available Objective: Recently, we have shown that Bezafibrate (BEZ, the pan-PPAR (peroxisome proliferator-activated receptor activator, ameliorated diabetes in insulin deficient streptozotocin treated diabetic mice. In order to study whether BEZ can also improve glucose metabolism in a mouse model for fatty liver and type 2 diabetes, the drug was applied to TallyHo mice. Methods: TallyHo mice were divided into an early (ED and late (LD diabetes progression group and both groups were treated with 0.5% BEZ (BEZ group or standard diet (SD group for 8 weeks. We analyzed plasma parameters, pancreatic beta-cell morphology, and mass as well as glucose metabolism of the BEZ-treated and control mice. Furthermore, liver fat content and composition as well as hepatic gluconeogenesis and mitochondrial mass were determined. Results: Plasma lipid and glucose levels were markedly reduced upon BEZ treatment, which was accompanied by elevated insulin sensitivity index as well as glucose tolerance, respectively. BEZ increased islet area in the pancreas. Furthermore, BEZ treatment improved energy expenditure and metabolic flexibility. In the liver, BEZ ameliorated steatosis, modified lipid composition and increased mitochondrial mass, which was accompanied by reduced hepatic gluconeogenesis. Conclusions: Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism. Keywords: Bezafibrate, Glucose metabolism, Insulin resistance, Lipid metabolism, NAFLD

  11. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats.

    Science.gov (United States)

    Ajiboye, Basiru Olaitan; Adeleke Ojo, Oluwafemi; Adeyonu, Oluwatosin; Imiere, Oluwatosin; Emmanuel Oyinloye, Babatunji; Ogunmodede, Oluwafemi

    2018-03-01

    Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (pArtocarpus heterophyllus stem bark most especially at 150 mg/kg body weight which exhibited no significant (p>0.05) different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients.

  12. Glucose turnover during insulin-induced hypoglycemia in liver-denervated rats

    DEFF Research Database (Denmark)

    Mikines, K J; Sonne, B; Richter, Erik

    1985-01-01

    The role of hepatic autonomic nerves in glucose production during hypoglycemia was studied. Selective, surgical denervation of the liver was performed in rats, which reduced hepatic norepinephrine concentrations by 96%. Hypoglycemia was induced by 250 mU of insulin intra-arterially in anesthetized...... as well as in chronically catheterized, awake rats. Half of the anesthetized denervated or sham-operated rats had previously been adrenodemedullated. Glucose turnover was measured by primed, constant intravenous infusion of [3-3H]glucose. Before as well as during hypoglycemia the arterial glucose...

  13. Properties of a novel thermostable glucose isomerase mined from Thermus oshimai and its application to preparation of high fructose corn syrup.

    Science.gov (United States)

    Jia, Dong-Xu; Zhou, Lin; Zheng, Yu-Guo

    2017-04-01

    Glucose isomerase (GI) is used in vitro to convert d-glucose to d-fructose, which is capable of commercial producing high fructose corn syrup (HFCS). To manufacture HFCS at elevated temperature and reduce the cost of enriching syrups, novel refractory GIs from Thermoanaerobacterium xylanolyticum (TxGI), Thermus oshimai (ToGI), Geobacillus thermocatenulatus (GtGI) and Thermoanaerobacter siderophilus (TsGI) were screened via genome mining approach. The enzymatic characteristics research showed that ToGI had higher catalytic efficiency and superior thermostability toward d-glucose among the screened GIs. Its optimum temperature reached 95°C and could retain more than 80% of initial activity in the presence of 20mM Mn 2+ at 85°C for 48h. The K m and k cat /K m values for ToGI were 81.46mM and 21.77min -1 mM -1 , respectively. Furthermore, the maximum conversion yield of 400g/L d-glucose to d-fructose at 85°C was 52.16%. Considering its excellent high thermostability and ameliorable application performance, ToGI might be promising for realization of future industrial production of HFCS at elevated temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity.

    Science.gov (United States)

    Rungsung, Soya; Khan, Adil Mehraj; Sood, Naresh Kumar; Rampal, Satyavan; Singh Saini, Simrat Pal

    2016-05-25

    The study was designed to assess the ameliorative potential of selenium (Se) on enrofloxacin-induced testicular toxicity in rats. There was a significant decrease in body weight and non-significant decrease in mean testicular weight of enrofloxacin treated rats. In enrofloxacin treated rats, total sperm count and viability decreased where as sperm abnormalities increased. Testicular histopathology revealed dose dependent dysregulation of spermatogenesis and presence of necrotic debris in seminiferous tubules which was marginally improved with Se. Enrofloxacin also produced a dose dependent decrease in testosterone level. The activity of testicular antioxidant enzymes decreased where as lipid peroxidation increased in a dose-dependent manner. Se supplementation partially restored oxidative stress and sperm damage and did not affect the plasma concentrations of enrofloxacin or ciprofloxacain. The results indicate that enrofloxacin produces a dose-dependent testicular toxicity in rats that is moderately ameliorated with supranutritional Se. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    GURPREET KAUR

    2015-03-01

    Full Text Available The present study was designed to investigate the ameliorative potential of Ocimumsanctum and its saponin rich fraction in chronic constriction injury-induced neuropathic pain in rats. The chronic constriction injury was induced by placing four loose ligatures around the sciatic nerve, proximal to its trifurcation. The mechanical hyperalgesia, cold allodynia, paw heat hyperalgesia and cold tail hyperalgesia were assessed by performing the pinprick, acetone, hot plate and cold tail immersion tests, respectively. Biochemically, the tissue thio-barbituric acid reactive species, super-oxide anion content (markers of oxidative stress and total calcium levels were measured. Chronic constriction injury was associated with the development of mechanical hyperalgesia, cold allodynia, heat and cold hyperalgesia along with an increase in oxidative stress and calcium levels. However, administration of Ocimumsanctum (100 and 200 mg/kg p.o. and its saponin rich fraction (100 and 200 mg/kg p.o. for 14 days significantly attenuated chronic constriction injury-induced neuropathic pain as well as decrease the oxidative stress and calcium levels. It may be concluded that saponin rich fraction of Ocimum sanctum has ameliorative potential in attenuating painful neuropathic state, which may be attributed to a decrease in oxidative stress and calcium levels.

  16. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2015-06-01

    Full Text Available Advanced glycation end products (AGEs, the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg and orally treated with sesamin (160 mg/kg for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM and then exposed to AGEs (200 mg/L for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67phox and p22phox, and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  17. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages.

    Science.gov (United States)

    Ueno, Manabu; Maeno, Toshitaka; Nishimura, Satoshi; Ogata, Fusa; Masubuchi, Hiroaki; Hara, Kenichiro; Yamaguchi, Kouichi; Aoki, Fumiaki; Suga, Tatsuo; Nagai, Ryozo; Kurabayashi, Masahiko

    2015-03-10

    Alveolar macrophages play a crucial role in the pathogenesis of emphysema, for which there is currently no effective treatment. Bisphosphonates are widely used to treat osteoclast-mediated bone diseases. Here we show that delivery of the nitrogen-containing bisphosphonate alendronate via aerosol inhalation ameliorates elastase-induced emphysema in mice. Inhaled, but not orally ingested, alendronate inhibits airspace enlargement after elastase instillation, and induces apoptosis of macrophages in bronchoalveolar fluid via caspase-3- and mevalonate-dependent pathways. Cytometric analysis indicates that the F4/80(+)CD11b(high)CD11c(mild) population characterizing inflammatory macrophages, and the F4/80(+)CD11b(mild)CD11c(high) population defining resident alveolar macrophages take up substantial amounts of the bisphosphonate imaging agent OsteoSense680 after aerosol inhalation. We further show that alendronate inhibits macrophage migratory and phagocytotic activities and blunts the inflammatory response of alveolar macrophages by inhibiting nuclear factor-κB signalling. Given that the alendronate inhalation effectively induces apoptosis in both recruited and resident alveolar macrophages, we suggest this strategy may have therapeutic potential for the treatment of emphysema.

  18. Regulatory effects of resveratrol on glucose metabolism and T-lymphocyte subsets in the development of high-fat diet-induced obesity in C57BL/6 mice.

    Science.gov (United States)

    Wang, Bin; Sun, Jin; Li, Longnan; Zheng, Jing; Shi, Yonghui; Le, Guowei

    2014-07-25

    High-fat diet (HFD)-induced obesity is often associated with immune dysfunction. Resveratrol (trans-3,5,4'-trihydroxystilbene), which has well-founded immunity-related beneficial properties, was used to elucidate the regulatory effect on glucose metabolism and T-lymphocyte subsets in the development of HFD-induced obesity. Resveratrol, being associated with decreases of plasma leptin and plasma lipids and the release of oxidative stress, significantly decreased the body weight and fat masses in HF mice after 26 weeks of feeding. Furthermore, resveratrol decreased the fasting blood glucose and fasting plasma insulin and increased the CD3(+)CD4(+)/CD3(+)CD8(+) subsets percentages and the regulatory T cells (Tregs) production after 13 and 26 weeks of feeding. The results indicate that resveratrol, as an effective supplement for HFD, maintained glucose homeostasis by activating the PI3K and SIRT1 signaling pathways. Moreover, resveratrol activated the Nrf2 signaling pathway-mediated antioxidant enzyme expression to alleviate inflammation by protecting against oxidative damage and T-lymphocyte subset-related chronic inflammatory response in the development of HFD-induced obesity.

  19. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats

    Science.gov (United States)

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.

    2013-01-01

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680

  20. Infliximab treatment prevents hyperglycemia and the intensification of hepatic gluconeogenesis in an animal model of high fat diet-induced liver glucose overproduction

    Directory of Open Access Journals (Sweden)

    Karissa Satomi Haida

    2012-06-01

    Full Text Available The effect of infliximab on gluconeogenesis in an animal model of diet-induced liver glucose overproduction was investigated. The mice were treated with standard diet (SD group or high fat diet (HFD group. HFD group were randomly divided and treated either with saline (100 µl/dose, ip, twice a day or infliximab (10 µg in 100 µl saline per dose, ip, twice a day, i.e., 0.5 mg/kg per day. SD group also received saline. The treatment with infliximab or saline started on the first day of the introduction of the HFD and was maintained during two weeks. After this period, the mice were fasted (15 h and anesthetized. After laparotomy, blood was collected for glucose determination followed by liver perfusion in which L-alanine (5 mM was used as gluconeogenic substrate. HFD group treated with saline showed higher (p < 0.05 liver glucose production from L-alanine and fasting hyperglycemia. However, these metabolic changes were prevented by infliximab treatment. Therefore, this study suggested that infliximab could prevent the glucose overproduction and hyperglycemia related with glucose intolerance and type 2 diabetes.

  1. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3β Inhibition-Induced Reduction of VEGF Release

    Directory of Open Access Journals (Sweden)

    Ahmed Alhusban

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i were treated with 50 μg/mL advanced glycation end (AGE products in the presence or absence of silymarin (50, 100 μM. The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p=0.0001. Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p=0.001. This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.

  2. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    International Nuclear Information System (INIS)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-01-01

    deficiency of SIRT2 ameliorates iNOS, NO expression and reactive oxygen species production with suppressing LPS-induced activation of NFκB in macrophages

  3. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    deficiency of SIRT2 ameliorates iNOS, NO expression and reactive oxygen species production with suppressing LPS-induced activation of NFκB in macrophages.

  4. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  5. Small Intestinal Bypass Induces a Persistent Weight-Loss Effect and Improves Glucose Tolerance in Obese Rats.

    Science.gov (United States)

    Cao, Jiaqing; Ren, Quan; Tan, Cai; Duan, Jinyuan

    2017-07-01

    This study investigated the role of proximal small intestinal bypass (PSIB) and distal small intestinal bypass (DSIB) as well as their long-term effects on weight loss and glucose metabolism in high-sugar and high-fat diet-induced obese rats. Sprague-Dawley rats were divided into four groups: PSIB, bypassing 60% of the proximal small intestine length; DSIB, bypassing 60% of the distal small intestine length; sham-operated (Sham) animals; and control animals. All rats were fed a high-sugar and high-fat diet after surgery. The primary outcome measures were body weight, food intake, fasting blood glucose (FBG) levels, oral glucose tolerance test (OGTT), and the insulin tolerance test (ITT). Global body weight (BW) and food intake in the PSIB and DSIB groups were lower than those in the Sham group at postoperative week 2. BW and food intake in the PSIB group were lower than those in the DSIB group at postoperative week 24. The PSIB and DSIB groups exhibited improvement in glucose tolerance at postoperative weeks 4, 8, and 24. The PSIB and DSIB groups exhibited improvement in FBG at postoperative week 24, and only the DSIB group exhibited improvement in insulin sensitivity. This study provides experimental evidence that PSIB surgery induced a better and more persistent weight loss effect than DSIB surgery and that the two types of intestinal bypass surgeries yielded equivalent and stable long-term improvement in glucose tolerance in an obese rat model.

  6. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats.

    Science.gov (United States)

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    Here, we investigated the effect of escitalopram pretreatment on protein kinase A (PKA)-induced tau hyperphosphorylation and spatial memory deficits in rats using western blot and behavioral tests, respectively. We demonstrated that escitalopram effectively ameliorated tau hyperphosphorylation and the spatial memory deficits induced by PKA activation. We measured the total and activity-dependent Ser9-phosphorylated levels of glycogen synthase kinase (GSK)-3β in hippocampal extracts. No significant change in the total level of GSK-3β was observed between the different groups. However, compared with forskolin injection alone, pretreatment with escitalopram increased the level of Ser9-phosphorylated GSK-3β. We also demonstrated that escitalopram increased Akt phosphorylation at Ser473 (the active form of Akt). Furthermore, we identified other important kinases and phosphatases, such as protein phosphatase 2A, extracellular signal-regulated kinases 1 and 2, and MAP kinase kinase-1/2, that have previously been reported to play a crucial role in tau phosphorylation; however, we did not detect any significant change in the activation of these kinases or phosphatases in our study. We unexpectedly demonstrated that forskolin caused anxiety-like behavior in rats, and pretreatment with escitalopram did not significantly ameliorate the anxiety-like behavior induced by forskolin. These data provide the first evidence that escitalopram ameliorates forskolin-induced tau hyperphosphorylation and spatial memory impairment in rats; these effects do not occur via the anti-anxiety activity of escitalopram but may involve the Akt/GSK-3β signaling pathway.

  7. Green tea extracts ameliorate high-fat diet-induced muscle atrophy in senescence-accelerated mouse prone-8 mice.

    Science.gov (United States)

    Onishi, Shintaro; Ishino, Mayu; Kitazawa, Hidefumi; Yoto, Ai; Shimba, Yuki; Mochizuki, Yusuke; Unno, Keiko; Meguro, Shinichi; Tokimitsu, Ichiro; Miura, Shinji

    2018-01-01

    Muscle atrophy (loss of skeletal muscle mass) causes progressive deterioration of skeletal function. Recently, excessive intake of fats was suggested to induce insulin resistance, followed by muscle atrophy. Green tea extracts (GTEs), which contain polyphenols such as epigallocatechin gallate, have beneficial effects on obesity, hyperglycemia, and insulin resistance, but their effects against muscle atrophy are still unclear. Here, we found that GTEs prevented high-fat (HF) diet-induced muscle weight loss in senescence-accelerated mouse prone-8 (SAMP8), a murine model of senescence. SAMP8 mice were fed a control diet, an HF diet, or HF with 0.5% GTEs (HFGT) diet for 4 months. The HF diet induced muscle weight loss with aging (measured as quadriceps muscle weight), whereas GTEs prevented this loss. In HF diet-fed mice, blood glucose and plasma insulin concentrations increased in comparison with the control group, and these mice had insulin resistance as determined by homeostasis model assessment of insulin resistance (HOMA-IR). In these mice, serum concentrations of leukocyte cell-derived chemotaxin 2 (LECT2), which is known to induce insulin resistance in skeletal muscle, were elevated, and insulin signaling in muscle, as determined by the phosphorylation levels of Akt and p70 S6 kinases, tended to be decreased. In HFGT diet-fed mice, these signs of insulin resistance and elevation of serum LECT2 were not observed. Although our study did not directly show the effect of serum LECT2 on muscle weight, insulin resistance examined using HOMA-IR indicated an intervention effect of serum LECT2 on muscle weight, as revealed by partial correlation analysis. Accordingly, GTEs might have beneficial effects on age-related and HF diet-induced muscle weight loss, which correlates with insulin resistance and is accompanied by a change in serum LECT2.

  8. The AT1 Receptor Antagonist, L-158,809, Prevents or Ameliorates Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment

    International Nuclear Information System (INIS)

    Robbins, Mike E.; Payne, Valerie B.S.; Tommasi, Ellen B.S.; Diz, Debra I.; Hsu, Fang-Chi; Brown, William R.; Wheeler, Kenneth T.; Olson, John; Zhao Weiling

    2009-01-01

    Purpose: We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. Materials and Methods: Groups of 80 young adult male Fischer 344 x Brown Norway (F344xBN) rats, 12-14 weeks old, received either: (1) fractionated WBI; 40 Gy of γ rays in 4 weeks, 2 fractions/week, (2) sham-irradiation; (3) WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during, and for 14, 28, or 54 weeks postirradiation; and (4) sham-irradiation plus L-158,809 for 14, 28, or 54 weeks postirradiation. An additional group of rats (n = 20) received L-158,809 before, during, and for 5 weeks postirradiation, after which they received normal drinking water up to 28 weeks postirradiation. Results: Administration of L-158,809 before, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks postirradiation. Moreover, giving L-158,809 before, during, and for only 5 weeks postirradiation ameliorated the significant cognitive impairment observed 26 weeks postirradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks postirradiation, respectively. Conclusions: Administering L-158,809 before, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks postirradiation. These findings offer the promise of improving the quality of life for brain tumor patients

  9. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    Science.gov (United States)

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  10. PP2A contributes to endothelial death in high glucose: inhibition by benfotiamine.

    Science.gov (United States)

    Du, Y; Kowluru, A; Kern, T S

    2010-12-01

    Endothelial death is critical in diabetic vascular diseases, but regulating factors have been only partially elucidated. Phosphatases play important regulatory roles in cell metabolism, but have not previously been implicated in hyperglycemia-induced cell death. We investigated the role of the phosphatase, type 2A protein phosphatase (PP2A), in hyperglycemia-induced changes in signaling and death in bovine aortic endothelial cells (BAEC). We explored also the influence of benfotiamine on this phosphatase. Activation of PP2A was assessed in BAEC by the extent of methylation and measurement of activity, and the enzyme was inhibited using selective pharmacological (okadaic acid, sodium fostriecin) and molecular (small interfering RNA) approaches. BAECs cultured in 30 mM glucose significantly increased PP2A methylation and activity, and PP2A inhibitors blocked these abnormalities. PP2A activity was increased also in aorta and retina from diabetic rats. NF-κB activity and cell death in BAEC were significantly increased in 30 mM glucose and inhibited by PP2A inhibition. NF-κB played a role in the hyperglycemia-induced death of BAEC, since blocking its translocation with SN50 also inhibited cell death. Inhibition of PP2A blocked the hyperglycemia-induced dephosphorylation of NF-κB and Bad, thus favoring cell survival. Incubation of benfotiamine with BAEC inhibited the high glucose-induced activation of PP2A and NF-κB and cell death, as well as several other metabolic defects, which likewise were inhibited by inhibitors of PP2A. Activation of PP2A contributes to endothelial cell death in high glucose, and beneficial actions of benfotiamine are due, at least in part, to inhibition of PP2A activation.

  11. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    International Nuclear Information System (INIS)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-01-01

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  12. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Deng, Yubin, E-mail: dengyub@mail.sysu.edu.cn [Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Zeng, Mian, E-mail: zengmian2004@163.com [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China)

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  13. Ameliorative Effects of Allium sativum Extract on iNOS Gene Expression and NO Production in Liver of Streptozotocin + Nicotinamide-Induced Diabetic Rats.

    Science.gov (United States)

    Ziamajidi, Nasrin; Behrouj, Hamid; Abbasalipourkabir, Roghayeh; Lotfi, Fatemeh

    2018-04-01

    Diabetes mellitus (DM) is one of the most prevalent diseases in the world, which is strongly associated with liver dysfunction. Hyperglycemia, through an oxidative stress pathway, damages various tissues. Herbal medicine is a good candidate to ameliorate hyperglycemia and oxidative stress. In this study, the effects of aqueous Allium sativum (garlic) extract (AGE) on gene expression of inducible nitric oxide synthases (iNOS) and production of nitric oxide (NO) were evaluated in the liver tissue of diabetic rats. Four groups of rats contained normal control rats, garlic control rats (AGE), Streptozotocin (STZ) + nicotinamide-induced diabetic rats (DM), and diabetic rats treated with garlic (DM + AGE). Glucose levels and liver enzymes activities were determined by colorimetric assay in the serum. Gene expression of iNOS by real-time PCR, NO levels by Griess method, oxidative stress parameters by spectrophotometric method and histopathological examination by hematoxylin and eosin staining method were evaluated in the liver tissues. Glucose levels, activities of liver enzymes, oxidative stress markers, iNOS gene expression, and NO production increased significantly in diabetic rats in comparison with control rats, whereas after oral administration of garlic, these parameters decreased significantly, close to the normal levels. Hence, the beneficial effects of garlic on the liver injury of diabetes could be included in the hypoglycaemic and antioxidant properties of garlic via a decrease in gene expression of iNOS and subsequent NO production.

  14. Histamine ameliorates spatial memory deficits induced by MK-801 infusion into ventral hippocampus as evaluated by radial maze task in rats

    Institute of Scientific and Technical Information of China (English)

    Li-sha XU; Li-xia YANG; Wei-wei HU; Xiao YU; Li MA; Lu-ying LIU; Er-qing WEI; Zhong CHEN

    2005-01-01

    Aim: To investigate the role of histamine in memory deficits induced by MK-801 infusion into the ventral hippocampus in rats. Methods: An 8-arm radial maze (4arms baited) was used to assess spatial memory. Results: Bilateral ventral intrahippocampal (ih) infusion of MK-801 (0.3 μg/site), an N-methyl-D-aspartate (NMDA) antagonist, impaired the retrieval process in both working memory and reference memory. Intrahippocampal injection of histamine (25 or 50 ng/site) or intraperitoneal (ip) injection of histidine (25, 50 or 100 mg/kg) markedly ameliorated the spatial memory deficits induced by MK-801. Both the histamine H1 antagonist pyrilamine (0.5 or 1.0 μg/site, ih) and the H2 antagonist cimetidine (2.5 μg/site,ih) abolished the ameliorating effect of histidine (100 mg/kg, ip) on reference memory deficits, but not that on working memory deficits induced by MK-801. Conclusion:The results indicate that histamine in the ventral hippocampus can ameliorate MK-801-induced spatial memory deficits, and that histamine's effect on reference memory is mediated by postsynaptic histamine H1 and H2 receptors.

  15. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Witczak, Carol A; Jessen, Niels; Warro, Daniel M; Toyoda, Taro; Fujii, Nobuharu; Anderson, Mark E; Hirshman, Michael F; Goodyear, Laurie J

    2010-06-01

    Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.

  16. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Lai, Yi-Syuan; Lee, Wan-Ching; Lin, Yu-En; Ho, Chi-Tang; Lu, Kuan-Hung; Lin, Shih-Hang; Panyod, Suraphan; Chu, Yung-Lin; Sheen, Lee-Yan

    2016-03-16

    The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management.

  17. Ameliorative effect of Morus alba leaves extract against developmental retinopathy in pups of diabetic and aluminum intoxicated pregnant albino rats

    Institute of Scientific and Technical Information of China (English)

    Hassan; El-Sayyed; Gamal; Badawy; Sobhy; Hassab; Elnabi; Ibrahim; El-Elaimy; Eman; Al; Shehari

    2015-01-01

    Objective: To investigate the possible ameliorative effect of crude water extract of Morus alba(M. alba) leaves on retinopathy of rat pups maternally subjected to diabetes and/or Al intoxication.Methods: Both control and experimental groups were subjected to certain integrated approaches, namely, biochemical assessments, light microscopic investigation, transmission electron microscopic investigation, single cell gel electrophoresis(comet assay) and determination of DNA fragmentation.Results: The retina of pups of diabetic and/or Al-intoxicated mothers exhibited abnormal alterations in retinal cell layers including retinal pigmented epithelium, photoreceptor inner segment and ganglion cells. Increased incidence of DNA fragmentation and apoptosis were evident in pups of diabetic and/or Al-intoxicated mothers. However, retina of pups maternally received M. alba extract plus diabetes or Al-intoxicated alone or in combination showed marked amelioration. Less degree of ameliorations was seen in retina of pups maternally subjected to combined treatment. Furthermore, application of crude water extract of M.alba resulted in amelioration of the alterations of maternal serum glucose as well as Al concentration.Conclusions: Based on the results of the present study, M. alba extract is effective against experimentally diabetic and Al-induced developmental retinopathy.

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health ...

  19. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    International Nuclear Information System (INIS)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  20. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Pillai, Ayyappan Harikrishna [Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Harikumar, Sankaran Kutty; Mishra, Santosh Kumar [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India)

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  1. Green Tea Polyphenols Ameliorate the Early Renal Damage Induced by a High-Fat Diet via Ketogenesis/SIRT3 Pathway

    Directory of Open Access Journals (Sweden)

    Weijie Yi

    2017-01-01

    Full Text Available Scope. Several reports in the literature have suggested the renoprotective effects of ketone bodies and green tea polyphenols (GTPs. Our previous study found that GTP consumption could elevate the renal expression of the ketogenic rate-limiting enzyme, which was decreased by a high-fat diet (HFD in rats. Here, we investigated whether ketogenesis can mediate renoprotection by GTPs against an HFD. Methods and Results. Wistar rats were fed a standard or HFD with or without GTPs for 18 weeks. The renal oxidative stress level, kidney function, renal expression, and activity levels of mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA synthase 2 (HMGCS2 and sirtuin 3(SIRT3 were detected. The increased renal oxidative stress and the loss of renal function induced by the HFD were ameliorated by GTPs. Renal ketogenesis and SIRT3 expression and activity levels, which were reduced by the HFD, were restored by GTPs. In vitro, HEK293 cells were transfected with the eukaryotic expression plasmid pcDNA HMGCS2. GTP treatment could upregulate HMGCS2 and SIRT3 expression. Although SIRT3 expression was not affected by HMGCS2 transfection, the 4-hydroxy-2-nonenal (4-HNE level and the acetyl-MnSOD (K122/MnSOD ratio were reduced in HMGCS2-transfected cells in the context of H2O2. Conclusion. The ketogenesis/SIRT3 pathway mediates the renoprotection of GTPs against the oxidative stress induced by an HFD.

  2. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Joydeep; Vasan, Vandana; Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  3. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    International Nuclear Information System (INIS)

    Das, Joydeep; Vasan, Vandana; Sil, Parames C.

    2012-01-01

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  4. Bovine α-Lactalbumin Hydrolysates (α-LAH Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Jing Gao

    2018-02-01

    Full Text Available Obesity-induced adipose inflammation has been demonstrated to be a key cause of insulin resistance. Peptides derived from bovine α-lactalbumin have been shown to inhibit the activities of dipeptidyl peptidase IV (DPP-IV and angiotensin converting enzyme (ACE, scavenge 2,2′-azinobis [3-ethylbenzothiazoline-6-sulfonate] (ABTS+ radical and stimulate glucagon-like peptide-2 secretion. In the present study, the effects of bovine α-lactalbumin hydrolysates (α-LAH on adipose insulin resistance and inflammation induced by high-fat diet (HFD were investigated. The insulin resistance model was established by feeding C57BL/6J mice with HFD (60% kcal from fat for eight weeks. Then, the mice were fed with HFD and bovine α-LAH of different doses (100 mg/kg b.w., 200 mg/kg b.w. and 400 mg/kg b.w. for another 12 weeks to evaluate its protective effects against HFD-induced insulin resistance. The oral glucose tolerance test (OGTT and intraperitoneal insulin tolerance test (ipITT were conducted after intervention with α-LAH for 10 weeks and 11 weeks, respectively. Results showed that bovine α-LAH significantly reduced body weight, blood glucose, serum insulin, and HOMA-IR (homeostatic model assessment of insulin resistance levels, lowered the area-under-the-curve (AUC during OGTT and ipITT, and downregulated inflammation-related gene [tumor necrosis factor (TNF-α, interleukin (IL-6, monocyte chemoattractant protein (MCP-1] expression in adipose tissues of HFD-fed C57BL/6J mice. Furthermore, bovine α-LAH also suppressed insulin receptor substrate 1 (IRS-1 serine phosphorylation (Ser307, Ser612, enhanced protein kinase B (known as Akt phosphorylation, and inhibited the activation of inhibitor of kappaB kinase (IKK and mitogen activated protein kinase (MAPK signaling pathways in adipose tissues of HFD-fed C57BL/6J mice. These results suggested that bovine α-LAH could ameliorate adipose insulin resistance and inflammation through IKK and MAPK signaling

  5. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    Science.gov (United States)

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  7. Berberine ameliorates collagen-induced arthritis in rats by suppressing Th17 cell responses via inducing cortistatin in the gut.

    Science.gov (United States)

    Yue, Mengfan; Xia, Yufeng; Shi, Can; Guan, Chunge; Li, Yunfan; Liu, Rui; Wei, Zhifeng; Dai, Yue

    2017-09-01

    Berberine, an isoquinoline alkaloid, has been reported to ameliorate various autoimmune diseases including rheumatoid arthritis by oral administration. However, its mechanism remains mysterious due to an extremely low bioavailability. The fact that berberine readily accumulates in the gut, the largest endocrine organ in the body, attracted us to explore its anti-arthritic mechanism in view of the induction of intestinal immunosuppressive neuropeptides. In this study, berberine (200 mg·kg -1 , i.g.) was shown to ameliorate collagen-induced arthritis in rats, which was manifested by the reduction of clinical signs and joint destruction, as well as marked down-regulation of Th17 cell frequency and interleukin-17 level in blood. In contrast, an intravenous injection of berberine failed to affect arthritis in rats, implying that its anti-arthritic effect was gut-dependent. Further studies revealed that oral berberine selectively elevated the levels of cortistatin, of five gut-derived neuropeptides tested, in the intestines and sera of arthrititic rats. Antagonists of ghrelin/growth hormone secretagogue receptor 1 (a subtype of cortistatin receptor) almost completely abolished the ameliorative effect of berberine on arthritis and Th17 cell responses in rats. In vitro, berberine showed a moderate ability to promote the expression of cortistatin in nerve cells, which was strengthened when the nerve cells were cocultured with enteroendocrine cells to induce an autocrine/paracrine environment. In summary, oral berberine exerted anti-arthritic effect through inhibiting the Th17 cell response, which was closely associated with the induction of cortistatin generation from gut through augmenting autocrine/paracrine action between enteric nerve cells and endocrine cells. © 2017 Federation of European Biochemical Societies.

  8. Amelioration of ultraviolet-B-induced down-regulation of mRNA levels for chloroplast proteins, by high irradiance, is mediated by photosynthesis

    International Nuclear Information System (INIS)

    Mackerness, S.A. H.; Butt, P.J.; Jordan, B.R.; Thomas, B.

    1996-01-01

    The mechanism by which increasing photosynthetically active radiation (PAR) reduces the sensitivity of RNA transcripts to UV-B radiation was studied in pea (Pisum sativum L.). mRNA transcript levels for rbc S, rbc L, cab and psb A were measured over an 8 d experimental period in pea, plants supplemented with UV-B radiation under a range of conditions. Under low light (150 mu-mol m -2 s -1 ), UV-B resulted in a significant decline in the levels of transcripts for all four genes which was prevented by increasing the background irradiance to 350 mu-mol m -2 s -1 (high light) with white light from fluorescent lamps. Increasing CO 2 levels to give photosynthesis rates equivalent to the high light treatment partially protected rbc S and cab transcripts and fully protected rbc L transcripts but did not prevent visible injury. Increasing light with low pressure sodium lamps, which increase photosynthesis but are not effective for activation of the DNA repair enzyme, photolyase, gave results which were not significantly different from white fluorescent high light treatments. Protection by high light was lost in the presence of the photosynthesis inhibitors CCCP and DCMU. The UV-B induced increase in the expression of chalcone synthase (chs) genes was delayed by the treatments which increased photosynthesis rates and conferred protection. The results indicate that photosynthesis plays a key role in the amelioration of UV-B induced decline in mRNA levels for proteins. The minimal role of DNA repair by photolyase indicates that reduction in photosynthesis gene transcripts in response to UV-B represents a specific regulation rather than being a consequence of DNA damage. (author)

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools ...

  10. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma.

    Science.gov (United States)

    Evans, Nicholas P; Misyak, Sarah A; Schmelz, Eva M; Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-03-01

    Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARgamma in immune and epithelial cells and PPARgamma-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARgamma in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARgamma-expressing floxed mice but not in the tissue-specific PPARgamma-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARgamma-expressing, but not in the tissue-specific, PPARgamma-null mice. Colonic tumor necrosis factor-alpha mRNA expression was significantly suppressed in CLA-fed, PPARgamma-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARgamma-dependent mechanism.

  11. Hsp20 Protects against Oxygen-Glucose Deprivation/Reperfusion-Induced Golgi Fragmentation and Apoptosis through Fas/FasL Pathway

    Directory of Open Access Journals (Sweden)

    Bingwu Zhong

    2015-01-01

    Full Text Available Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of Hsp20, a potential cytoprotective agent due to its chaperone-like activity and involvement in regulation of many vital processes, on GA were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR insult. OGDR induces Golgi fragmentation, apoptosis, and p115 cleavage in N2a cells. However, transfection with Hsp20 significantly attenuates OGDR-induced Golgi fragmentation and apoptosis. Hsp20 interacts with Bax, decreases FasL and Bax expression, and inhibits caspases 3 and p115 cleavage in N2a cells exposed to OGDR. Our data demonstrate that increased Hsp20 expression protects against OGDR-induced Golgi fragmentation and apoptosis, likely through interaction with Bax and subsequent amelioration of the OGDR-induced elevation in p115 cleavage via the Fas/FasL signaling pathway. This neuroprotective potential of Hsp20 against OGDR insult and the underlying mechanism will pave the way for its potential clinical application for cerebral ischemia-reperfusion related disorders.

  12. Glucose Stimulation of Transforming Growth Factor-β Bioactivity in Mesangial Cells Is Mediated by Thrombospondin-1

    Science.gov (United States)

    Poczatek, Maria H.; Hugo, Christian; Darley-Usmar, Victor; Murphy-Ullrich, Joanne E.

    2000-01-01

    Glucose is a key factor in the development of diabetic complications, including diabetic nephropathy. The development of diabetic glomerulosclerosis is dependent on the fibrogenic growth factor, transforming growth factor-β (TGF-β). Previously we showed that thrombospondin-1 (TSP-1) activates latent TGF-β both in vitro and in vivo. Activation occurs as the result of specific interactions of latent TGF-β with TSP-1, which potentially alter the conformation of latent TGF-β. As glucose also up-regulates TSP-1 expression, we hypothesized that the increased TGF-β bioactivity observed in rat and human mesangial cells cultured with high glucose concentrations is the result of latent TGF-β activation by autocrine TSP-1. Glucose-induced bioactivity of TGF-β in mesangial cell cultures was reduced to basal levels by peptides from two different sequences that antagonize activation of latent TGF-β by TSP, but not by the plasmin inhibitor, aprotinin. Furthermore, glucose-dependent stimulation of matrix protein synthesis was inhibited by these antagonist peptides. These studies demonstrate that glucose stimulation of TGF-β activity and the resultant matrix protein synthesis are dependent on the action of autocrine TSP-1 to convert latent TGF-β to its biologically active form. These data suggest that antagonists of TSP-dependent TGF-β activation may be the basis of novel therapeutic approaches for ameliorating diabetic renal fibrosis. PMID:11021838

  13. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Mei-Hsing Chen

    2014-01-01

    Full Text Available The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract of Clitocybe nuda (CNE, in high-fat- (HF- fed mice. C57BL/6J was randomly divided into two groups: the control (CON group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts or rosiglitazone (Rosi or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P<0.001, P<0.01, P<0.05, resp. and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4 were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.

  14. Impaired glucose-induced glucagon suppression after partial pancreatectomy

    DEFF Research Database (Denmark)

    Schrader, Henning; Menge, Bjoern A; Breuer, Thomas G K

    2009-01-01

    INTRODUCTION: The glucose-induced decline in glucagon levels is often lost in patients with type 2 diabetes. It is unclear whether this is due to an independent defect in alpha-cell function or secondary to the impairment in insulin secretion. We examined whether a partial pancreatectomy in humans...... would also impair postchallenge glucagon concentrations and, if so, whether this could be attributed to the reduction in insulin levels. PATIENTS AND METHODS: Thirty-six patients with pancreatic tumours or chronic pancreatitis were studied before and after approximately 50% pancreatectomy with a 240-min...... oral glucose challenge, and the plasma concentrations of glucose, insulin, C-peptide, and glucagon were determined. RESULTS: Fasting and postchallenge insulin and C-peptide levels were significantly lower after partial pancreatectomy (P

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ...

  16. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    Directory of Open Access Journals (Sweden)

    Minjiang Chen

    2016-01-01

    Full Text Available Objective. High glucose- (HG- induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM or control (25 mM groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.

  17. Arginase Inhibition Ameliorates Hepatic Metabolic Abnormalities in Obese Mice

    Science.gov (United States)

    Moon, Jiyoung; Do, Hyun Ju; Cho, Yoonsu; Shin, Min-Jeong

    2014-01-01

    Objectives We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity. Methods and Results After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells. Conclusions Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function. PMID:25057910

  18. The Major Chromophore Arising from Glucose Degradation and Oxidative Stress Occurrence during Lens Proteins Glycation Induced by Glucose

    Directory of Open Access Journals (Sweden)

    Felipe Ávila

    2017-12-01

    Full Text Available Glucose autoxidation has been proposed as a key reaction associated with deleterious effects induced by hyperglycemia in the eye lens. Little is known about chromophores generated during glucose autoxidation. In this study, we analyzed the effect of oxidative and dicarbonyl stress in the generation of a major chromophore arising from glucose degradation (GDC and its association with oxidative damage in lens proteins. Glucose (5 mM was incubated with H2O2 (0.5–5 mM, Cu2+ (5–50 μM, glyoxal (0.5–5 mM or methylglyoxal (0.5–5 mM at pH 7.4, 5% O2, 37 °C, from 0 to 30 days. GDC concentration increased with incubation time, as well as when incubated in the presence of H2O2 and/or Cu2+, which were effective even at the lowest concentrations. Dicarbonylic compounds did not increase the levels of GDC during incubations. 1H, 13C and FT-IR spectra from the purified fraction containing the chromophore (detected by UV/vis spectroscopy showed oxidation products of glucose, including gluconic acid. Lens proteins solutions (10 mg/mL incubated with glucose (30 mM presented increased levels of carboxymethyl-lysine and hydrogen peroxide that were associated with GDC increase. Our results suggest a possible use of GDC as a marker of autoxidative reactions occurring during lens proteins glycation induced by glucose.

  19. High fat diet drives obesity regardless the composition of gut microbiota in mice.

    Science.gov (United States)

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L; Chou, Chieh Jason

    2016-08-31

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1(st) week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.

  20. The Cytotoxic Role of Intermittent High Glucose on Apoptosis and Cell Viability in Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-01-01

    Full Text Available Objectives. Glucose fluctuations are both strong predictor of diabetic complications and crucial factor for beta cell damages. Here we investigated the effect of intermittent high glucose (IHG on both cell apoptosis and proliferation activity in INS-1 cells and the potential mechanisms. Methods. Cells were treated with normal glucose (5.5 mmol/L, constant high glucose (CHG (25 mmol/L, and IHG (rotation per 24 h in 11.1 or 25 mmol/L for 7 days. Reactive oxygen species (ROS, xanthine oxidase (XOD level, apoptosis, cell viability, cell cycle, and expression of cyclinD1, p21, p27, and Skp2 were determined. Results. We found that IHG induced more significant apoptosis than CHG and normal glucose; intracellular ROS and XOD levels were more markedly increased in cells exposed to IHG. Cells treated with IHG showed significant decreased cell viability and increased cell proportion in G0/G1 phase. Cell cycle related proteins such as cyclinD1 and Skp2 were decreased significantly, but expressions of p27 and p21 were increased markedly. Conclusions. This study suggested that IHG plays a more toxic effect including both apoptosis-inducing and antiproliferative effects on INS-1 cells. Excessive activation of cellular stress and regulation of cyclins might be potential mechanism of impairment in INS-1 cells induced by IHG.

  1. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    International Nuclear Information System (INIS)

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-01-01

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-α-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

  2. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Bidya Dhar [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Tatireddy, Srujana [National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037 (India); Koneru, Meghana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Borkar, Roshan M. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Kumar, Jerald Mahesh [CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500 007 (India); Kuncha, Madhusudana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Srinivas, R. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Shyam Sunder, R. [Faculty of Pharmacy, Osmania University, Hyderabad 500 007 (India); Sistla, Ramakrishna, E-mail: sistla@iict.res.in [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India)

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in

  3. Edaravone ameliorates compression-induced damage in rat nucleus pulposus cells.

    Science.gov (United States)

    Lin, Hui; Ma, Xuan; Wang, Bai-Chuan; Zhao, Lei; Liu, Jian-Xiang; Pu, Fei-Fei; Hu, Yi-Qiang; Hu, Hong-Zhi; Shao, Zeng-Wu

    2017-11-15

    Edaravone is a strong free radical scavenger most used for treating acute ischemic stroke. In this study we investigated the protective effects and underlying mechanisms of edaravone on compression-induced damage in rat nucleus pulposus (NP) cells. Cell viability was determined using MTT assay methods. NP cell apoptosis was measured by Hoechst 33,258 staining and Annexin V/PI double staining. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and intracellular calcium ([Ca 2+ ] i ) were determined by fluorescent probes DCFH-DA, JC-1 and Fluo-3/AM, respectively. Apoptosis-related proteins (cleaved caspase-3, cytosolic cytochrome c, Bax and Bcl-2) and extracellular matrix proteins (aggrecan and collagen II) were analyzed by western blot. Edaravone attenuated the compression-induced decrease in viability of NP cells in a dose-dependent manner. 33,258 and Annexin V/PI double staining showed that edaravone protected NP cells from compression-induced apoptosis. Further studies confirmed that edaravone protected NP cells against compression-induced mitochondrial pathway of apoptosis by inhibiting overproduction of ROS, collapse of MMP and overload of [Ca 2+ ] i . In addition, edaravone promoted the expression of aggrecan and collagen II in compression-treated NP cells. These results strongly indicate that edaravone ameliorates compression-induced damage in rat nucleus pulposus cells. Edaravone could be a potential new drug for treatment of IDD. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Zingiber officinale Roscoe ameliorates anticancer antibiotic doxorubicin-induced acute cardiotoxicity in rat.

    Science.gov (United States)

    Ajith, Thekkuttuparambil Ananthanarayanan; Hema, Unnikrishnan; Aswathi, Sreedharan

    2016-07-01

    Oxidative stress (OS) has been suggested in the cardiotoxicity induced by anticancer antibiotic doxorubicin (DXN). The cardioprotective effects of aqueous ethanol extract of Zingiber officinale was evaluated against DXN-induced acute cardiac damage in rat. The results of the study demonstrated that Z. officinale significantly and dose dependently protected the cardiotoxicity induced by DXN. The activities of serum glutamate oxaloacetate transaminase and serum lactate dehydrogenase activity in the DXN alone treated group of animals were significantly (pofficinale (200 and 400 mg/kg, p.o) plus DXN treated groups. The cardiac malondialdehyde was elevated in the DXN alone treated group and declined significantly in the Z. officinale (400 mg/kg) plus DXN treated group. The results concluded that aqueous ethanol extract of Z. officinale ameliorated DXN-induced cardiotoxicity. The protection can be ascribed to the free radical scavenging activity of Z. officinale. This protective effect may suggest the adjuvant role of Z. officinale against OS induced by cancer chemotherapeutants, which warrant further research. © 2016 Old City Publishing, Inc.

  5. Flow-induced immobilization of glucose oxidase in nonionic micellar nanogels for glucose sensing.

    Science.gov (United States)

    Cardiel, Joshua J; Zhao, Ya; Tonggu, Lige; Wang, Liguo; Chung, Jae-Hyun; Shen, Amy Q

    2014-10-21

    A simple microfluidic platform was utilized to immobilize glucose oxidase (GOx) in a nonionic micellar scaffold. The immobilization of GOx was verified by using a combination of cryogenic electron microscopy (cryo-EM), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV) techniques. Chronoamperometric measurements were conducted on nanogel-GOx scaffolds under different glucose concentrations, exhibiting linear amperometric responses. Without impacting the lifetime and denaturation of GOx, the nonionic nanogel provides a favorable microenvironment for GOx in biological media. This flow-induced immobilization method in a nonionic nanogel host matrix opens up new pathways for designing a simple, fast, biocompatible, and cost-effective process to immobilize biomolecules that are averse to ionic environments.

  6. Silymarin and Nigella sativa extract ameliorate paracetamol induced oxidative stress and renal dysfunction in male mice

    Directory of Open Access Journals (Sweden)

    Reham Zakaria Hamza

    2015-06-01

    Full Text Available Objective: To evaluate the ameliorative role of silymarin or/and Nigella sativa (N. sativa water extract against N-acetyl-p-aminophenol (APAP-induced renal function deterioration in male mice at the biochemical levels. Methods: The mice were divided into seven groups (10/group. The first group was served as control. The second group was treated with dose of APAP. The third and fourth groups were treated with silymarin alone and N. sativa water extract alone, respectively. The fifth and sixth groups were treated with combination of APAP with silymarin and APAP with N. sativa water extract, respectively. The seventh group was treated with a combination of both ameliorative compounds (silymarin and N. sativa water extract with APAP and all animals were treated for a period of 30 days. Results: Exposure to APAP at the treated dose for mice led to an alteration of kidney function parameters, increase in the level of serum urea and creatinine. Also, paracetamol administration induced oxidative stress in kidney homogenates by increasing malondialdhyde level and decreasing superoxide dismutase and catalase activities and this stress was ameliorated by administration of either silymarin or N. sativa water extract. Conclusions: Administration of silymarin or/and N. sativa water extract to APAP-treated mice alleviate the toxicity of APAP, and this appeared clearly by biochemical improvement of kidney function parameters and antioxidant parameters. But, the alleviation is more pronounced with the both antioxidants. Thus, the pronounce effect of silymarin and N. sativa water extract is most effective in reducing the toxicity induced by APAP and improving the kidney function parameters and antioxidant status of kidney of male mice.

  7. Riboflavin ameliorates cisplatin induced toxicities under photoillumination.

    Directory of Open Access Journals (Sweden)

    Iftekhar Hassan

    Full Text Available BACKGROUND: Cisplatin is an effective anticancer drug that elicits many side effects mainly due to induction of oxidative and nitrosative stresses during prolonged chemotherapy. The severity of these side effects consequently restricts its clinical use under long term treatment. Riboflavin is an essential vitamin used in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Besides, it has excellent photosensitizing property that can be used to ameliorate these toxicities in mice under photodynamic therapy. METHODS AND FINDINGS: Riboflavin, cisplatin and their combinations were given to the separate groups of mice under photoilluminated condition under specific treatment regime. Their kidney and liver were excised for comet assay and histopathological studies. Furthermore, Fourier Transform Infrared Spectroscopy of riboflavin-cisplatin combination in vitro was also conducted to investigate any possible interaction between the two compounds. Their comet assay and histopathological examination revealed that riboflavin in combination with cisplatin was able to protect the tissues from cisplatin induced toxicities and damages. Moreover, Fourier Transform Infrared Spectroscopy analysis of the combination indicated a strong molecular interaction among their constituent groups that may be assigned for the protective effect of the combination in the treated animals. CONCLUSION: Inclusion of riboflavin diminishes cisplatin induced toxicities which may possibly make the cisplatin-riboflavin combination, an effective treatment strategy under chemoradiotherapy in pronouncing its antineoplastic activity and sensitivity towards the cancer cells as compared to cisplatin alone.

  8. Garlic Supplementation Ameliorates UV-Induced Photoaging in Hairless Mice by Regulating Antioxidative Activity and MMPs Expression.

    Science.gov (United States)

    Kim, Hye Kyung

    2016-01-08

    UV exposure is associated with oxidative stress and is the primary factor in skin photoaging. UV-induced reactive oxygen species (ROS) cause the up-regulation of metalloproteinase (MMPs) and the degradation of dermal collagen and elastic fibers. Garlic and its components have been reported to exert antioxidative effects. The present study investigated the protective effect of garlic on UV-induced photoaging and MMPs regulation in hairless mice. Garlic was supplemented in the diet, and Skh-1 hairless mice were exposed to UV irradiation five days/week for eight weeks. Mice were divided into four groups; Non-UV, UV-irradiated control, UV+1% garlic powder diet group, and UV+2% garlic powder diet group. Chronic UV irradiation induced rough wrinkling of the skin with hyperkeratosis, and administration of garlic diminished the coarse wrinkle formation. UV-induced dorsal skin and epidermal thickness were also ameliorated by garlic supplementation. ROS generation, skin and serum malondialdehyde levels were significantly increased by UV exposure and were ameliorated by garlic administration although the effects were not dose-dependent. Antioxidant enzymes such as superoxide dismutase and catalase activities in skin tissues were markedly reduced by UV irradiation and garlic treatment increased these enzyme activities. UV-induced MMP-1 and MMP-2 protein levels were suppressed by garlic administration. Furthermore, garlic supplementation prevented the UV-induced increase of MMP-1 mRNA expression and the UV-induced decrease of procollagen mRNA expression. These results suggest that garlic may be effective for preventing skin photoaging accelerated by UV irradiation through the antioxidative system and MMP regulation.

  9. Davallialactone reduces inflammation and repairs dentinogenesis on glucose oxidase-induced stress in dental pulp cells.

    Science.gov (United States)

    Lee, Young-Hee; Kim, Go-Eun; Song, Yong-Beom; Paudel, Usha; Lee, Nan-Hee; Yun, Bong-Sik; Yu, Mi-Kyung; Yi, Ho-Keun

    2013-11-01

    The chronic nature of diabetes mellitus (DM) raises the risk of oral complication diseases. In general, DM causes oxidative stress to organs. This study aimed to evaluate the cellular change of dental pulp cells against glucose oxidative stress by glucose oxidase with a high glucose state. The purpose of this study was to test the antioxidant character of davallialactone and to reduce the pathogenesis of dental pulp cells against glucose oxidative stress. The glucose oxidase with a high glucose concentration was tested for hydroxy peroxide (H2O2) production, cellular toxicity, reactive oxygen species (ROS) formation, induction of inflammatory molecules and disturbance of dentin mineralization in human dental pulp cells. The anti-oxidant effect of Davallilactone was investigated to restore dental pulp cells' vitality and dentin mineralization via reduction of H2O2 production, cellular toxicity, ROS formation and inflammatory molecules. The treatment of glucose oxidase with a high glucose concentration increased H2O2 production, cellular toxicity, and inflammatory molecules and disturbed dentin mineralization by reducing pulp cell activity. However, davallialactone reduced H2O2 production, cellular toxicity, ROS formation, inflammatory molecules, and dentin mineralization disturbances even with a long-term glucose oxidative stress state. The results of this study imply that the development of oral complications is related to the irreversible damage of dental pulp cells by DM-induced oxidative stress. Davallialactone, a natural antioxidant, may be useful to treat complicated oral disease, representing an improvement for pulp vital therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight

    Directory of Open Access Journals (Sweden)

    Xiaorui Wu

    2017-05-01

    Full Text Available Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE, which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS, alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Clinical Practice Guidelines Patient Education Materials Scientific Sessions Journals for Professionals Professional Books Patient Access to Research ...

  14. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Day in the Life of Diabetes Famous People Working to Stop Diabetes Common Terms Diabetes Statistics Infographics ...

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & Fitness Home ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ...

  16. Vitamin D Can Ameliorate Chlorhexidine Gluconate-Induced Peritoneal Fibrosis and Functional Deterioration through the Inhibition of Epithelial-to-Mesenchymal Transition of Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-Che Lee

    2015-01-01

    Full Text Available Background. Peritoneal dialysis (PD can induce fibrosis and functional alterations in PD patients’ peritoneal membranes, due to long-term unphysiological dialysate exposure, partially occurring via triggering of epithelial-to-mesenchymal transition (EMT in peritoneal mesothelial cells (MCs. Vitamin D can ameliorate these negative effects; however, the mechanism remains unexplored. Therefore, we investigated its possible links to MCs EMT inhibition. Methods. Peritoneal fibrosis was established in Sprague-Dawley rats by chlorhexidine gluconate (CG intraperitoneal injection for 21 days, with and without 1α,25(OH2D3 treatment. Morphological and functional evaluation and western blot analysis of EMT marker were performed upon peritoneum tissue. In vitro study was also performed in a primary human peritoneal MC culture system; MCs were incubated with transforming growth factor-β1 (TGF-β1 in the absence or presence of 1α,25(OH2D3. EMT marker expression, migration activities, and cytoskeleton redistribution of MCs were determined. Results. 1α,25(OH2D3 ameliorated CG-induced morphological and functional deterioration in animal model, along with CG-induced upregulation of α-SMA and downregulation of E-cadherin expression. Meanwhile, 1α,25(OH2D3 also ameliorated TGF-β1-induced decrease in E-cadherin expression, increase in Snai1 and α-SMA expression, intracellular F-actin redistribution, and migration activity in vitro. Conclusion. 1α,25(OH2D3 can ameliorate CG-induced peritoneal fibrosis and attenuate functional deterioration through inhibiting MC EMT.

  17. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2017-07-01

    Full Text Available The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD, we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2L−/− mice. Paradoxically, Cpt2L−/− mice were resistant to HFD-induced obesity and glucose intolerance with an absence of liver damage, although they exhibited serum dyslipidemia, hepatic oxidative stress, and systemic carnitine deficiency. Feeding an HFD induced hepatokines in mice, with a loss of hepatic fatty acid oxidation that enhanced systemic energy expenditure and suppressed adiposity. Additionally, the suppression in hepatic gluconeogenesis was sufficient to improve HFD-induced glucose intolerance. These data show that inhibiting hepatic fatty acid oxidation results in a systemic hormetic response that protects mice from HFD-induced obesity and glucose intolerance.

  18. Cognitive Ameliorating Effect of Acanthopanax koreanum Against Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Lee, Sunhee; Park, Ho Jae; Jeon, Se Jin; Kim, Eunji; Lee, Hyung Eun; Kim, Haneul; Kwon, Yubeen; Zhang, Jiabao; Jung, In Ho; Ryu, Jong Hoon

    2017-03-01

    Acanthopanax koreanum Nakai (Araliaceae) is one of the most widely cultivated medicinal plants in Jeju Island, Korea, and the roots and stem bark of A. koreanum have been traditionally used as a tonic agent for general weakness. However, the use of A. koreanum for general weakness observed in the elderly, including those with declined cognitive function, has not been intensively investigated. This study was performed to investigate the effect of the ethanol extract of A. koreanum (EEAK) on cholinergic blockade-induced memory impairment in mice. To evaluate the ameliorating effects of EEAK against scopolamine-induced memory impairment, mice were orally administered EEAK (25, 50, 100, or 200 mg/kg), and several behavioral tasks, including a passive avoidance task, the Y-maze, and a novel object recognition task, were employed. Besides, western blot analysis was conducted to examine whether EEAK affected memory-associated signaling molecules, such as protein kinase B (Akt), Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB). The administration of EEAK (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in the passive avoidance task, the Y-maze, and the novel object recognition task. The phosphorylation levels of both Akt and CaMKII were significantly increased by approximately two-fold compared with the control group because of the administration of EEAK (100 or 200 mg/kg) (p cognitive dysfunction induced by the cholinergic blockade, in part, via several memory-associated signaling molecules and may hold therapeutic potential against cognitive dysfunction, such as that presented in neurodegenerative diseases, for example, Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type ...

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To ... Email: Sign Up Thank you for signing up ' + ' '); $('.survey-form').show(); }, success: function (data) { $('#survey-errors').remove(); $('. ...

  1. Rho-Kinase Inhibition Ameliorates Dasatinib-Induced Endothelial Dysfunction and Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Csilla Fazakas

    2018-05-01

    Full Text Available The multi-kinase inhibitor dasatinib is used for treatment of imatinib-resistant chronic myeloid leukemia, but is prone to induce microvascular dysfunction. In lung this can manifest as capillary leakage with pleural effusion, pulmonary edema or even pulmonary arterial hypertension. To understand how dasatinib causes endothelial dysfunction we examined the effects of clinically relevant concentrations of dasatinib on both human pulmonary arterial macro- and microvascular endothelial cells (ECs. The effects of dasatinib was compared to imatinib and nilotinib, two other clinically used BCR/Abl kinase inhibitors that do not inhibit Src. Real three-dimensional morphology and high resolution stiffness mapping revealed softening of both macro- and microvascular ECs upon dasatinib treatment, which was not observed in response to imatinib. In a dose-dependent manner, dasatinib decreased transendothelial electrical resistance/impedance and caused a permeability increase as well as disruption of tight adherens junctions in both cell types. In isolated perfused and ventilated rat lungs, dasatinib increased mean pulmonary arterial pressure, which was accompanied by a gain in lung weight. The Rho-kinase inhibitor Y27632 partly reversed the dasatinib-induced changes in vitro and ex vivo, presumably by acting downstream of Src. Co-administration of the Rho-kinase inhibitor Y27632 completely blunted the increased pulmonary pressure in response to dasatinib. In conclusion, a dasatinib-induced permeability increase in human pulmonary arterial macro- and microvascular ECs might explain many of the adverse effects of dasatinib in patients. Rho-kinase inhibition might be suitable to ameliorate these effects.

  2. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows.

    Science.gov (United States)

    Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M

    2015-08-01

    In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. Journal of Animal Physiology and Animal

  3. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice

    Directory of Open Access Journals (Sweden)

    Joo Wan Kim

    2015-01-01

    Full Text Available The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF on sciatic neurectomy- (NTX- induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation.

  4. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice

    Science.gov (United States)

    Kim, Joo Wan; Ku, Sae-Kwang; Kim, Ki Young; Kim, Sung Goo; Han, Min Ho; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min

    2015-01-01

    The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation. PMID:26064425

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... around 4:00 a.m. to 5:00 a.m.). What are the Symptoms of Hyperglycemia? The signs and symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ...

  6. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Suzuki Kenji

    2011-06-01

    Full Text Available Abstract Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52% as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.

  7. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ... Chat Closed engagement en -- Have Type 2 Diabetes? - 2017-03-lwt2d-en.html Have Type 2 Diabetes? ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high ... function (data) { $('#survey-errors').remove(); $('.survey-form .form-group .survey-alert-wrap').remove(); if (data.submitSurveyResponse.success == ' ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Research & Practice Ways to Give Close Are You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ...

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type 1 Type 2 Facts About Type 2 Enroll ...

  12. Ameliorative potential of Vernonia cinerea on chronic constriction injury of sciatic nerve induced neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    VENKATA R.K. THIAGARAJAN

    2014-09-01

    Full Text Available The aim of the present study is to investigate the ameliorative potential of ethanolic extract of whole plant of Vernonia cinerea in the chronic constriction injury (CCI of sciatic nerve induced neuropathic pain in rats. Behavioral parameters such as a hot plate, acetone drop, paw pressure, Von Frey hair and tail immersion tests were performed to assess the degree of thermal, chemical and mechanical hyperalgesia and allodynia. Biochemical changes in sciatic nerve tissue were ruled out by estimating thiobarbituric acid reactive substances (TBARS, reduced glutathione (GSH and total calcium levels. Ethanolic extract of Vernonia cinerea and pregabalin were administered for 14 consecutive days starting from the day of surgery. CCI of sciatic nerve has been shown to induce significant changes in behavioral, biochemical and histopathological assessments when compared to the sham control group. Vernonia cinerea attenuated in a dose dependent manner the above pathological changes induced by CCI of the sciatic nerve, which is similar to attenuation of the pregabalin pretreated group. The ameliorating effect of ethanolic extract of Vernonia cinerea against CCI of sciatic nerve induced neuropathic pain may be due to the presence of flavonoids and this effect is attributed to anti-oxidative, neuroprotective and calcium channel modulator actions of these compounds.

  13. Hypoglycemic of Cajanus scarabaeoides in glucose overloaded and streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Suman Pattanayak, Siva Shankar Nayak, Durgaprasad Panda and Vikas Shende

    2009-12-01

    Full Text Available In light of traditional claim of Cajanus scarabaeoides (L in the treatment of diabetes, we studied the effects of different solvent extracts in normal, glucose over loaded normal rats and streptozotocin-induced diabetic rats. The methanolic extract (500 mg/kg orally was produce significantly reduce blood glucose level at normal, glucose over loaded normal rats, and streptozotocin-induced diabetic rats after 15 days treatment; whereas petroleum ether and chloroform extract (500 mg/kg orally did not exhibit any significant effect on three groups of rats. Histopathology studies on pancreas of streptozotocin-induced diabetic rats shows inflammatory changes in pancreatic islets, results from selective destroy of insulin producing β-cells. These changes are inhibited by C. scarabaeoides methanolic extract and gliclazide. The antidiabetic activity of methanolic extract may be due to the presence of flavonoids.

  14. Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure.

    Science.gov (United States)

    Lu, Yonghui; Xu, Shangcheng; He, Mindi; Chen, Chunhai; Zhang, Lei; Liu, Chuan; Chu, Fang; Yu, Zhengping; Zhou, Zhou; Zhong, Min

    2012-07-16

    Extensive evidence indicates that glucose administration attenuates memory deficits in rodents and humans, and cognitive impairment has been associated with reduced glucose metabolism and uptake in certain brain regions including the hippocampus. In the present study, we investigated whether glucose treatment attenuated memory deficits caused by chronic low-power-density microwave (MW) exposure, and the effect of MW exposure on hippocampal glucose uptake. We exposed Wistar rats to 2.45 GHz pulsed MW irradiation at a power density of 1 mW/cm(2) for 3 h/day, for up to 30 days. MW exposure induced spatial learning and memory impairments in rats. Hippocampal glucose uptake was also reduced by MW exposure in the absence or presence of insulin, but the levels of blood glucose and insulin were not affected. However, these spatial memory deficits were reversed by systemic glucose treatment. Our results indicate that glucose administration attenuates the spatial memory deficits induced by chronic low-power-density MW exposure, and reduced hippocampal glucose uptake may be associated with cognitive impairment caused by MW exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Tetrahydrobiopterin Has a Glucose-Lowering Effect by Suppressing Hepatic Gluconeogenesis in an Endothelial Nitric Oxide Synthase–Dependent Manner in Diabetic Mice

    Science.gov (United States)

    Abudukadier, Abulizi; Fujita, Yoshihito; Obara, Akio; Ohashi, Akiko; Fukushima, Toru; Sato, Yuichi; Ogura, Masahito; Nakamura, Yasuhiko; Fujimoto, Shimpei; Hosokawa, Masaya; Hasegawa, Hiroyuki; Inagaki, Nobuya

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) dysfunction induces insulin resistance and glucose intolerance. Tetrahydrobiopterin (BH4) is an essential cofactor of eNOS that regulates eNOS activity. In the diabetic state, BH4 is oxidized to 7,8-dihydrobiopterin, which leads to eNOS dysfunction owing to eNOS uncoupling. The current study investigates the effects of BH4 on glucose metabolism and insulin sensitivity in diabetic mice. Single administration of BH4 lowered fasting blood glucose levels in wild-type mice with streptozotocin (STZ)-induced diabetes and alleviated eNOS dysfunction by increasing eNOS dimerization in the liver of these mice. Liver has a critical role in glucose-lowering effects of BH4 through suppression of hepatic gluconeogenesis. BH4 activated AMP kinase (AMPK), and the suppressing effect of BH4 on gluconeogenesis was AMPK-dependent. In addition, the glucose-lowering effect and activation of AMPK by BH4 did not appear in mice with STZ-induced diabetes lacking eNOS. Consecutive administration of BH4 in ob/ob mice ameliorated glucose intolerance and insulin resistance. Taken together, BH4 suppresses hepatic gluconeogenesis in an eNOS-dependent manner, and BH4 has a glucose-lowering effect as well as an insulin-sensitizing effect in diabetic mice. BH4 has potential in the treatment of type 2 diabetes. PMID:23649519

  16. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.

    Science.gov (United States)

    Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-08-06

    Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  17. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    Directory of Open Access Journals (Sweden)

    Lee Yun

    2012-08-01

    Full Text Available Abstract Background Arctium lappa L. (Asteraceae, burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD. Method EAL-I (100 mg·kg−1/day, EAL-II (200 mg·kg−1/day, and fluvastatin (3 mg·kg−1/day groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM-1, vascular cell adhesion molecule (VCAM-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  18. Metabonomic Analysis Reveals Efficient Ameliorating Effects of Acupoint Stimulations on the Menopause-caused Alterations in Mammalian Metabolism

    Science.gov (United States)

    Zhang, Limin; Wang, Yulan; Xu, Yunxiang; Lei, Hehua; Zhao, Ying; Li, Huihui; Lin, Xiaosheng; Chen, Guizhen; Tang, Huiru

    2014-01-01

    Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.

  19. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  20. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    International Nuclear Information System (INIS)

    Ackermann, R.F.; Lear, J.L.

    1989-01-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14 C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14 C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum

  1. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Park, Mi-Kyung; Kang, Shin Ae; Choi, Jun-Ho; Kang, Seok-Jung; Lee, Jeong-Yeol; Yu, Hak Sun

    2016-01-01

    Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.

  2. Probiotic BIFICO cocktail ameliorates Helicobacter pylori induced gastritis.

    Science.gov (United States)

    Yu, Hong-Jing; Liu, Wei; Chang, Zhen; Shen, Hui; He, Li-Juan; Wang, Sha-Sha; Liu, Lu; Jiang, Yuan-Ying; Xu, Guo-Tong; An, Mao-Mao; Zhang, Jun-Dong

    2015-06-07

    To determine the protective effect of triple viable probiotics on gastritis induced by Helicobacter pylori (H. pylori) and elucidate the possible mechanisms of protection. Colonization of BIFICO strains in the mouse stomach was determined by counting colony-forming units per gram of stomach tissue. After treatment with or without BIFICO, inflammation and H. pylori colonization in the mouse stomach were analyzed by hematoxylin and eosin and Giemsa staining, respectively. Cytokine levels were determined by enzyme-linked immunosorbent assay and Milliplex. The activation of nuclear factor (NF)-κB and MAPK signaling in human gastric epithelial cells was evaluated by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was used to quantify TLR2, TLR4 and MyD88 mRNA expression in the mouse stomach. We demonstrated that BIFICO, which contains a