WorldWideScience

Sample records for ameliorates cognition deficits

  1. Electroacupuncture Ameliorates Cognitive Deficit and Improves Hippocampal Synaptic Plasticity in Adult Rat with Neonatal Maternal Separation

    Directory of Open Access Journals (Sweden)

    Lili Guo

    2018-01-01

    Full Text Available Exposure to adverse early-life events is thought to be the risk factors for the development of psychiatric and altered cognitive function in adulthood. The purpose of this study was to investigate whether electroacupuncture (EA treatment in young adult rat would improve impaired cognitive function and synaptic plasticity in adult rat with neonatal maternal separation (MS. Wistar rats were randomly divided into four groups: control group, MS group, MS with EA treatment (MS + EA group, and MS with Sham-EA treatment (MS + Sham-EA group. We evaluated the cognitive function by using Morris water maze and fear conditioning tests. Electrophysiology experiment used in vivo long-term potentiation (LTP at Schaffer Collateral-CA1 synapses was detected to assess extent of synaptic plasticity. Repeated EA stimulation at Baihui (GV 20 and Yintang (GV 29 during postnatal 9 to 11 weeks was identified to significantly ameliorate poor performance in behavior tests and improve the impaired LTP induction detected at Schaffer Collateral-CA1 synapse in hippocampus. Collectively, the findings suggested that early-life stress due to MS may induce adult cognitive deficit associated with hippocampus, and EA in young adult demonstrated that its therapeutic efficacy may be via ameliorating deficit of hippocampal synaptic plasticity.

  2. Smart Soup, a traditional Chinese medicine formula, ameliorates amyloid pathology and related cognitive deficits.

    Directory of Open Access Journals (Sweden)

    Yujun Hou

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease that causes substantial public health care burdens. Intensive efforts have been made to find effective and safe disease-modifying treatment and symptomatic intervention alternatives against AD. Smart Soup (SS, a Chinese medicine formula composed of Rhizoma Acori Tatarinowii (AT, Poria cum Radix Pini (PRP and Radix Polygalae (RP, is a typical prescription against memory deficits. Here, we assessed the efficacy of SS against AD. Oral administration of SS ameliorated the cognitive impairment of AD transgenic mice, with reduced Aβ levels, retarded Aβ amyloidosis and reduced Aβ-induced gliosis and neuronal loss in the brains of AD mice. Consistently, SS treatment reduced amyloid-related locomotor dysfunctions and premature death of AD transgenic Drosophila. Mechanistic studies showed that RP reduced Aβ generation, whereas AT and PRP exerted neuroprotective effects against Aβ. Taken together, our study indicates that SS could be effective against AD, providing a practical therapeutic strategy against the disease.

  3. Uncaria rhynchophylla ameliorates cognitive deficits induced by D-galactose in mice.

    Science.gov (United States)

    Xian, Yan-Fang; Lin, Zhi-Xiu; Zhao, Ming; Mao, Qing-Qiu; Ip, Siu-Po; Che, Chun-Tao

    2011-12-01

    The stem with hooks of Uncaria rhynchophylla is a component herb of many traditional formulae for the treatment of neurodegenerative diseases. However, scientific evidence of the efficacy of Uncaria rhynchophylla in the treatment of Alzheimer's disease (AD) in animal models is lacking. Thus, in the present study, we investigated whether the 70 % aqueous ethanol extract of Uncaria rhynchophylla (EUR) could protect against D-galactose (D-gal)-induced cognitive deficits in mice. Mice were given a subcutaneous injection of D-gal (50 mg/kg) and orally administered EUR (100, 200, or 400 mg/kg) daily for 8 weeks. The effect of EUR on D-gal-induced cognitive deficits was evaluated by measuring behavioral and neurochemical parameters of AD and the antioxidant status of brain tissue. The results showed that EUR (200 or 400 mg/kg) significantly increased exploratory behavior (assessed by an open-field test) and improved spatial learning and memory function (assessed by the Morris water maze test) in D-gal-treated mice. In addition, EUR (200 or 400 mg/kg) significantly increased the levels of acetylcholine and glutathione and decreased the activity of acetylcholinesterase and the level of malondialdehyde in the brains of D-gal-treated mice. These results indicate that EUR ameliorates cognitive deficits induced by D-gal in mice, and that this action may be mediated, at least in part, by the inhibition of acetylcholinesterase activity and the enhancement of the antioxidant status of brain tissue. © Georg Thieme Verlag KG Stuttgart · New York.

  4. A glucose-caffeine 'energy drink' ameliorates subjective and performance deficits during prolonged cognitive demand.

    Science.gov (United States)

    Kennedy, David O; Scholey, Andrew B

    2004-06-01

    Effects of a combination of caffeine and glucose were assessed in two double-blind, placebo-controlled, cross-over studies during extended performance of cognitively demanding tasks. In the first study, 30 participants received two drinks containing carbohydrate and caffeine (68 g/38 mg; 68 g/46 mg, respectively) and a placebo drink, in counter-balanced order, on separate days. In the second study 26 participants received a drink containing 60 g of carbohydrate and 33 mg of caffeine and a placebo drink. In both studies, participants completed a 10-min battery of tasks comprising 2-min versions of Serial 3s and Serial 7s subtraction tasks and a 5-min version of the Rapid Visual Information Processing task (RVIP), plus a rating of 'mental fatigue', once before the drink and six times in succession commencing 10 min after its consumption. In comparison to placebo, all three active drinks improved the accuracy of RVIP performance and both the drink with the higher level of caffeine in first study and the active drink in the second study resulted in lower ratings of mental fatigue. These results indicate that a combination of caffeine and glucose can ameliorate deficits in cognitive performance and subjective fatigue during extended periods of cognitive demand.

  5. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    Directory of Open Access Journals (Sweden)

    Uta Waterhouse

    2016-10-01

    Full Text Available Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg at one of three neurodevelopmental time periods [gestation days (GD 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND 60] and included: prepulse inhibition (PPI, latent inhibition (LI and delayed non-matching to sample (DNMTS. Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously were administered, and animals were re-tested in the same tasks (PND 110. Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11 resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI and selective (LI improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI and induced a global enhancement of sensorimotor gating (PPI.

  6. Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity.

    Science.gov (United States)

    Mahati, K; Bhagya, V; Christofer, T; Sneha, A; Shankaranarayana Rao, B S

    2016-10-01

    Severe depression compromises structural and functional integrity of the brain and results in impaired learning and memory, maladaptive synaptic plasticity as well as degenerative changes in the hippocampus and amygdala. The precise mechanisms underlying cognitive dysfunctions in depression remain largely unknown. On the other hand, enriched environment (EE) offers beneficial effects on cognitive functions, synaptic plasticity in the hippocampus. However, the effect of EE on endogenous depression associated cognitive dysfunction has not been explored. Accordingly, we have attempted to address this issue by investigating behavioural, structural and synaptic plasticity mechanisms in an animal model of endogenous depression after exposure to enriched environment. Our results demonstrate that depression is associated with impaired spatial learning and enhanced anxiety-like behaviour which is correlated with hypotrophy of the dentate gyrus and amygdalar hypertrophy. We also observed a gross reduction in the hippocampal long-term potentiation (LTP). We report a complete behavioural recovery with reduced indices of anhedonia and behavioural despair, reduced anxiety-like behaviour and improved spatial learning along with a complete restoration of dentate gyrus and amygdalar volumes in depressive rats subjected to EE. Enrichment also facilitated CA3-Schaffer collateral LTP. Our study convincingly proves that depression-induces learning deficits and impairs hippocampal synaptic plasticity. It also highlights the role of environmental stimuli in restoring depression-induced cognitive deficits which might prove vital in outlining more effective strategies to treat major depressive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Edaravone injection ameliorates cognitive deficits in rat model of Alzheimer's disease.

    Science.gov (United States)

    Yang, Rui; Wang, Qingjun; Li, Fang; Li, Jian; Liu, Xuewen

    2015-11-01

    Oxidative stress plays important role in the pathogenesis of Alzheimer's disease (AD). Edaravone is a potent free radical scavenger that exerts antioxidant effects. Therefore, in this study we aimed to investigate neuroprotective effects of edaravone for AD. Wistar rats were randomly divided into three groups (n = 15): control group, model group, and treatment group, which were injected with phosphate buffered saline, Aβ1-40, and Aβ1-40 together with 5 mg/kg edaravone, respectively, into the right hippocampal dentate gyrus. Spatial learning and memory of the rats were examined by Morris water maze test. 4-Hydroxynonenal (4-HNE) level in rat hippocampus was analyzed by immunohistochemistry. Acetylcholinesterase (AChE) and choline acetylase (ChAT) activities were assayed by commercial kits. We found that edaravone ameliorated spatial learning and memory deficits in the rats. 4-HNE level in the hippocampus as well as AChE and ChAT activities in the hippocampus was significantly lower in treatment group than in model group. In conclusion, edaravone may be developed as a novel agent for the treatment of AD for improving cholinergic system and protecting neurons from oxidative toxicity.

  8. Huperzine A Ameliorates Cognitive Deficits in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Xiao-Yuan Mao

    2014-05-01

    Full Text Available The present study was designed to probe the effects of Huperzine A (HupA on diabetes-associated cognitive decline (DACD using a streptozotocin (STZ-injected rat model. Diabetic rats were treated with HupA (0.05 and 0.1 mg/kg for seven weeks. Memory functions were evaluated by the water maze test. Nissl staining was selected for detecting neuronal loss. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF were analyzed by ELISA and real-time PCR, respectively. The activities of choline acetylase (ChAT, Acetylcholinesterase (AChE, malondialdehyde (MDA, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px, catalase (CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 were measured using corresponding kits. After seven weeks, diabetic rats exhibited remarkable reductions in: body weight, percentage of time spent in target quadrant, number of times crossing the platform, ChAT and BDNF levels, SOD, GSH-Px and CAT accompanied with increases in neuronal damage, plasma glucose levels, escape latency, mean path length, AChE, MDA level as well as CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 in cerebral cortex and hippocampus. Supplementation with HupA significantly and dose-dependently reversed the corresponding values in diabetes. It is concluded that HupA ameliorates DACD via modulating BDNF, oxidative stress, inflammation and apoptosis.

  9. Huperzine A Ameliorates Cognitive Deficits in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Mao, Xiao-Yuan; Cao, Dan-Feng; Li, Xi; Yin, Ji-Ye; Wang, Zhi-Bin; Zhang, Ying; Mao, Chen-Xue; Zhou, Hong-Hao; Liu, Zhao-Qian

    2014-01-01

    The present study was designed to probe the effects of Huperzine A (HupA) on diabetes-associated cognitive decline (DACD) using a streptozotocin (STZ)-injected rat model. Diabetic rats were treated with HupA (0.05 and 0.1 mg/kg) for seven weeks. Memory functions were evaluated by the water maze test. Nissl staining was selected for detecting neuronal loss. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) were analyzed by ELISA and real-time PCR, respectively. The activities of choline acetylase (ChAT), Acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 were measured using corresponding kits. After seven weeks, diabetic rats exhibited remarkable reductions in: body weight, percentage of time spent in target quadrant, number of times crossing the platform, ChAT and BDNF levels, SOD, GSH-Px and CAT accompanied with increases in neuronal damage, plasma glucose levels, escape latency, mean path length, AChE, MDA level as well as CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 in cerebral cortex and hippocampus. Supplementation with HupA significantly and dose-dependently reversed the corresponding values in diabetes. It is concluded that HupA ameliorates DACD via modulating BDNF, oxidative stress, inflammation and apoptosis. PMID:24857910

  10. Activation of PPARγ Ameliorates Spatial Cognitive Deficits through Restoring Expression of AMPA Receptors in Seipin Knock-Out Mice.

    Science.gov (United States)

    Zhou, Libin; Chen, Tingting; Li, Guoxi; Wu, Chaoming; Wang, Conghui; Li, Lin; Sha, Sha; Chen, Lei; Liu, George; Chen, Ling

    2016-01-27

    A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Here, we show that seipin deficiency in hippocampal CA1 pyramidal cells caused the reduction of peroxisome proliferator-activated receptor gamma (PPARγ). Twelve-week-old systemic seipin knock-out mice and neuronal seipin knock-out (seipin-nKO) mice, but not adipose seipin knock-out mice, exhibited spatial cognitive deficits as assessed by the Morris water maze and Y-maze, which were ameliorated by the treatment with the PPARγ agonist rosiglitazone (rosi). In addition, seipin-nKO mice showed the synaptic dysfunction and the impairment of NMDA receptor-dependent LTP in hippocampal CA1 regions. The density of AMPA-induced current (IAMPA) in CA1 pyramidal cells and GluR1/GluR2 expression were significantly reduced in seipin-nKO mice, whereas the NMDA-induced current (INMDA) and NR1/NR2 expression were not altered. Rosi treatment in seipin-nKO mice could correct the decrease in expression and activity of AMPA receptor (AMPAR) and was accompanied by recovered synaptic function and LTP induction. Furthermore, hippocampal ERK2 and CREB phosphorylation in seipin-nKO mice were reduced and this could be rescued by rosi treatment. Rosi treatment in seipin-nKO mice elevated BDNF concentration. The MEK inhibitor U0126 blocked rosi-restored AMPAR expression and LTP induction in seipin-nKO mice, but the Trk family inhibitor K252a did not. These findings indicate that the neuronal seipin deficiency selectively suppresses AMPAR expression through reducing ERK-CREB activities, leading to the impairment of LTP and spatial memory, which can be rescued by PPARγ activation. Congenital generalized lipodystrophy 2 (CGL2), caused by loss-of-function mutation of seipin gene, is characterized by mental retardation. By the generation of systemic or neuronal seipin knock-out mice, the present study provides in vivo evidence that neuronal seipin

  11. Glucose-Dependent Insulinotropic Polypeptide Ameliorates Mild Traumatic Brain Injury-Induced Cognitive and Sensorimotor Deficits and Neuroinflammation in Rats

    Science.gov (United States)

    Yu, Yu-Wen; Hsieh, Tsung-Hsun; Chen, Kai-Yun; Wu, John Chung-Che; Hoffer, Barry J.; Greig, Nigel H.; Li, Yazhou; Lai, Jing-Huei; Chang, Cheng-Fu; Lin, Jia-Wei; Chen, Yu-Hsin

    2016-01-01

    Abstract Mild traumatic brain injury (mTBI) is a major public health issue, representing 75–90% of all cases of TBI. In clinical settings, mTBI, which is defined as a Glascow Coma Scale (GCS) score of 13–15, can lead to various physical, cognitive, emotional, and psychological-related symptoms. To date, there are no pharmaceutical-based therapies to manage the development of the pathological deficits associated with mTBI. In this study, the neurotrophic and neuroprotective properties of glucose-dependent insulinotropic polypeptide (GIP), an incretin similar to glucagon-like peptide-1 (GLP-1), was investigated after its steady-state subcutaneous administration, focusing on behavior after mTBI in an in vivo animal model. The mTBI rat model was generated by a mild controlled cortical impact (mCCI) and used to evaluate the therapeutic potential of GIP. We used the Morris water maze and novel object recognition tests, which are tasks for spatial and recognition memory, respectively, to identify the putative therapeutic effects of GIP on cognitive function. Further, beam walking and the adhesive removal tests were used to evaluate locomotor activity and somatosensory functions in rats with and without GIP administration after mCCI lesion. Lastly, we used immunohistochemical (IHC) staining and Western blot analyses to evaluate the inflammatory markers, glial fibrillary acidic protein (GFAP), amyloid-β precursor protein (APP), and bone marrow tyrosine kinase gene in chromosome X (BMX) in animals with mTBI. GIP was well tolerated and ameliorated mTBI-induced memory impairments, poor balance, and sensorimotor deficits after initiation in the post-injury period. In addition, GIP mitigated mTBI-induced neuroinflammatory changes on GFAP, APP, and BMX protein levels. These findings suggest GIP has significant benefits in managing mTBI-related symptoms and represents a novel strategy for mTBI treatment. PMID:26972789

  12. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model.

    Science.gov (United States)

    Ricobaraza, Ana; Cuadrado-Tejedor, Mar; Pérez-Mediavilla, Alberto; Frechilla, Diana; Del Río, Joaquin; García-Osta, Ana

    2009-06-01

    Chromatin modification through histone acetylation is a molecular pathway involved in the regulation of transcription underlying memory storage. Sodium 4-phenylbutyrate (4-PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. In this study, we report that administration of 4-PBA reversed spatial learning and memory deficits in an established mouse model of Alzheimer's disease (AD) without altering beta-amyloid burden. We also observed that the phosphorylated form of tau was decreased in the AD mouse brain after 4-PBA treatment, an effect probably due to an increase in the inactive form of the glycogen synthase kinase 3beta (GSK3beta). Interestingly, we found a dramatic decrease in brain histone acetylation in the transgenic mice that may reflect an indirect transcriptional repression underlying memory impairment. The administration of 4-PBA restored brain histone acetylation levels and, as a most likely consequence, activated the transcription of synaptic plasticity markers such as the GluR1 subunit of the AMPA receptor, PSD95, and microtubule-associated protein-2. The results suggest that 4-PBA, a drug already approved for clinical use, may provide a novel approach for the treatment of AD.

  13. Naringin Dihydrochalcone Ameliorates Cognitive Deficits and Neuropathology in APP/PS1 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Wenjuan Yang

    2018-06-01

    Full Text Available Alzheimer’s disease (AD is a multi-factorial neurodegenerative disorder with abnormal accumulation of amyloid-β (Aβ plaques, neuroinflammation and impaired neurogenesis. Mounting evidences suggest that single-target drugs have limited effects on clinical treatment and alternative or multiple targets are required. In recent decades, natural compounds and their derivatives have gained increasing attention in AD drug discovery due to their inherently enormous chemical and structural diversity. In this study, we demonstrated that naringin dihydrochalcone (NDC, a widely used dietary sweetener with strong antioxidant activity, improved the cognitive function of transgenic AD mice. Pathologically, NDC attenuated Aβ deposition in AD mouse brain. Furthermore, NDC reduced periplaque activated microglia and astrocytes, indicating the inhibition of neuroinflammation. It also enhanced neurogenesis as investigated by BrdU/NeuN double labeling. Additionally, the inhibition of Aβ level and neuroinflammation by NDC treatment was also observed in an AD cell model or a microglia cell line. Taken together, our study indicated that NDC might be a potential therapeutic agent for the treatment of AD against multiple targets that include Aβ pathology, neuroinflammation and neurogenesis.

  14. Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats.

    Science.gov (United States)

    Gong, Wei-Gang; Wang, Yan-Juan; Zhou, Hong; Li, Xiao-Li; Bai, Feng; Ren, Qing-Guo; Zhang, Zhi-Jun

    2017-04-01

    Our previous experiments demonstrated that social isolation (SI) caused AD-like tau hyperphosphorylation and spatial memory deficits in middle-aged rats. However, the underlying mechanisms of SI-induced spatial memory deficits remain elusive. Middle-aged rats (10 months) were group or isolation reared for 8 weeks. Following the initial 4-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Then, pathophysiological changes were assessed by performing behavioral, biochemical, and pathological analyses. We found that SI could cause cognitive dysfunction and decrease synaptic protein (synaptophysin or PSD93) expression in different brain regions associated with cognition, such as the prefrontal cortex, dorsal hippocampus, ventral hippocampus, amygdala, and caudal putamen, but not in the entorhinal cortex or posterior cingulate. Citalopram could significantly improve learning and memory and partially restore synaptophysin or PSD93 expression in the prefrontal cortex, hippocampus, and amygdala in SI rats. Moreover, SI decreased the number of dendritic spines in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus, which could be reversed by citalopram. Furthermore, SI reduced the levels of BDNF, serine-473-phosphorylated Akt (active form), and serine-9-phosphorylated GSK-3β (inactive form) with no significant changes in the levels of total GSK-3β and Akt in the dorsal hippocampus, but not in the posterior cingulate. Our results suggest that decreased synaptic plasticity in cognition-associated regions might contribute to SI-induced cognitive deficits, and citalopram could ameliorate these deficits by promoting synaptic plasticity mainly in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus. The BDNF/Akt/GSK-3β pathway plays an important role in regulating synaptic plasticity in SI rats.

  15. Biochanin-A ameliorates behavioural and neurochemical derangements in cognitive-deficit mice for the betterment of Alzheimer's disease.

    Science.gov (United States)

    Biradar, S M; Joshi, H; Chheda, T K

    2014-04-01

    Biochanin-A (BCA), a potent phytoconstituent, has been previously used as an antitumour, a dopaminergic neuron protective agent, an antioxidant, an anticholinergic and on other pharmacological activities including neuroprotection. The present study was aimed to evaluate the behavioural and neurochemical evidence of BCA in cognitive-deficit mice in scopolamine challenged and natural aged-induced amnesia models in young and aged mice, respectively. BCA has exhibited decrease in the transfer latency and increase in step through latency significantly (p 0.05), BCA 10 mg kg(-1) (p betterment of Alzheimer's disease.

  16. Long-term Ameliorative Effects of the Antidepressant Fluoxetine Exposure on Cognitive Deficits in 3 × TgAD Mice.

    Science.gov (United States)

    Jin, Li; Gao, Li-Feng; Sun, Dong-Sheng; Wu, Hao; Wang, Qun; Ke, Dan; Lei, Hao; Wang, Jian-Zhi; Liu, Gong-Ping

    2017-08-01

    Fluoxetine, a selective serotonin reuptake inhibitor, is neuroprotective; therefore, it has been applied to treat some neurodegenerative disorders. For instance, chronic fluoxetine exposure has short-term effects on Alzheimer's disease (AD). However, the long-term ameliorative effects of fluoxetine exposure on AD have not been reported. In the present study, 6-month-old 3 × TgAD mice were treated with fluoxetine for 15 days, and then the influence of fluoxetine was detected at 20 days after the drug withdrawal. We found that chronic fluoxetine treatment ameliorated cognitive deficits of 3 × TgAD mice and increased the volume of the hippocampal CA1 and dentate gyrus (DG) with increased neuron number and dendritic spine density. Meanwhile, fluoxetine exposure also stimulated the long-term potentiation (LTP) in hippocampal DG. The synaptic-related protein expression increased via activation of the cyclic AMP response element binding (CREB) protein/brain-derived neurotrophic factor (BDNF) signaling pathway induced by fluoxetine exposure. Lastly, we found that fluoxetine treatment decreased beta-amyloid (Aβ) levels. These results further certified that fluoxetine may be a potent effective drug for AD.

  17. Betacyanins from Portulaca oleracea L. ameliorate cognition deficits and attenuate oxidative damage induced by D-galactose in the brains of senescent mice.

    Science.gov (United States)

    Wang, Chang-Quan; Yang, Gui-Qin

    2010-06-01

    This experiment was designed to assess the protective effect of betacyanins from Portulaca oleracea L. against the D-galactose (D-gal)-induced neurotoxicity in mice. Betacyanins from Portulaca oleracea markedly reversed the D-gal-induced learning and memory impairments, as measured by behavioral tests. The activities of superoxide dismutases (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in D-gal-treated mice were enhanced, while the content of the lipid peroxidation product malondialdehyde (MDA) was decreased by betacyanin administration. Furthermore, significant negative correlations were found between mouse latency in finding the platform and the activities of SOD, CAT GR and GPx in the mouse brain, but the level of MDA correlated positively with the latency. These results suggest that the neuroprotective effect of betacyanins against D-gal-induced neurotoxicity might be caused, at least in part, by an increase in the activities of antioxidant enzymes with a reduction in lipid peroxidation. In comparison with vitamin C (VC), the betacyanins had a more pronounced effect on ameliorating cognition deficits in mice.

  18. Upregulation of TREM2 Ameliorates Neuroinflammatory Responses and Improves Cognitive Deficits Triggered by Surgical Trauma in Appswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yanhua Jiang

    2018-04-01

    Full Text Available Background/Aims: TREM2 plays a crucial role in modulating microglial function through interaction with DAP12, the adapter for TREM2. Emerging evidence has demonstrated that TREM2 could suppress neuroinflammatory responses by repression of microglia-mediated cytokine production. This study investigated the potential role of TREM2 in surgery-induced cognitive deficits and neuroinflammatory responses in wild-type (WT and APPswe/PS1dE9 mice. Methods: Adult APPswe/PS1dE9 transgenic male mice (a classic transgenic model of Alzheimer’s disease, 3 months old and their age-matched WT mice received intracerebral lentiviral particles encoding the mouse TREM2 gene and then were subjected to partial hepatectomy at 1 month after the lentiviral particle injection. The behavioral changes were evaluated with an open-field test and Morris water maze test on postoperative days 3, 7, and 14. Hippocampal TREM2, DAP12, and interleukin (IL-1β were measured at each time point. Ionized calcium-binding adapter molecule 1 (Iba-1, microglial M2 phenotype marker Arg1, synaptophysin, tau hyperphosphorylation (T396, and glycogen synthase kinase-3β (GSK-3β were also examined in the hippocampus. Results: Surgical trauma induced an exacerbated cognitive impairment and enhanced hippocampal IL-1β expression in the transgenic mice on postoperative days 3 and 7. A corresponding decline in the levels of TREM2 was also found on postoperative days 3, 7, and 14. Overexpression of TREM2 downregulated the levels of IL-1β, ameliorated T396 expression, inhibited the activity of GSK-3β, and improved sickness behavior. Increased Arg1 expression and a high level of synaptophysin were also observed in the transgenic mice following TREM2 overexpression. Conclusion: The downregulation of TREM2 exacerbated surgery-induced cognitive deficits and exaggerated neuroinflammatory responses in this rodent model. Overexpression of TREM2 potentially attenuated these effects by decreasing the

  19. Danshen-Chuanxiong-Honghua Ameliorates Cerebral Impairment and Improves Spatial Cognitive Deficits after Transient Focal Ischemia and Identification of Active Compounds

    Directory of Open Access Journals (Sweden)

    Xianhua Zhang

    2017-07-01

    Full Text Available Previously, we only apply a traditional Chinese medicine (TCM Danshen-Chuanxiong-Honghua (DCH for cardioprotection via anti-inflammation in rats of acute myocardial infarction by occluding coronary artery. Presently, we select not only DCH but also its main absorbed compound ferulic acid (FA for cerebra protection via similar action of mechanism above in animals of the transient middle cerebral artery occlusion (tMCAO. We investigated whether oral administration of DCH and FA could ameliorate MCAO-induced brain lesions in animals. By using liquid chromatography-tandem mass spectrometry (LC-MS/MS, we analyzed four compounds, including tanshinol, salvianolic acid B, hydroxysafflor yellow A and especially FA as the putative active components of DCH extract in the plasma, cerebrospinal fluid and injured hippocampus of rats with MCAO. In our study, it was assumed that FA played a similar neuroprotective role to DCH. We found that oral pretreatment with DCH (10 or 20 g/kg and FA (100 mg/kg improved neurological function and alleviated the infarct volume as well as brain edema in a dose-dependent manner. These changes were accompanied by improved ischemia-induced apoptosis and decreased the inflammatory response. Additionally, chronic treatment with DCH reversed MCAO-induced spatial cognitive deficits in a manner associated with enhanced neurogenesis and increased the expression of brain-derived neurotrophic factor in lesions of the hippocampus. These findings suggest that DCH has the ability to recover cognitive impairment and offer neuroprotection against cerebral ischemic injury via inhibiting microenvironmental inflammation and triggering of neurogenesis in the hippocampus. FA could be one of the potential active compounds.

  20. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    Science.gov (United States)

    Yu, Xiao-Wen

    Age-related cognitive deficits are observed in both humans and animals. Yet, the molecular mechanisms underlying these deficits are not yet fully elucidated. In aged animals, a decrease in intrinsic excitability of pyramidal neurons from the CA1 sub-region of hippocampus is believed to contribute to age-related cognitive impairments, but the molecular mechanism(s) that modulate both these factors has yet to be identified. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents has been shown to facilitate cognition, and increase intrinsic excitability of their neurons. However, how CREB changes with age, and how that impacts cognition in aged animals, is not clear. Therefore, we first systematically characterized age- and training-related changes in CREB levels in dorsal hippocampus. At a remote time point after undergoing behavioral training, levels of total CREB and activated CREB (phosphorylated at S133, pCREB) were measured in both young and aged rats. We found that pCREB, but not total CREB was significantly reduced in dorsal CA1 of aged rats. Importantly, levels of pCREB were found to be positively correlated with short-term spatial memory in both young and aged rats i.e. higher pCREB in dorsal CA1 was associated with better spatial memory. These findings indicate that an age-related deficit in CREB activity may contribute to the development of age-related cognitive deficits. However, it was still unclear if increasing CREB activity would be sufficient to ameliorate age-related cognitive, and biophysical deficits. To address this question, we virally overexpressed CREB in CA1, where we found the age-related deficit. Young and aged rats received control or CREB virus, and underwent water maze training. While control aged animals exhibited deficits in long-term spatial memory, aged animals with CREB overexpression performed at levels comparable to young animals. Concurrently, aged neurons

  1. Acetylcholinesterase inhibition ameliorates deficits in motivational drive

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2012-03-01

    Full Text Available Abstract Background Apathy is frequently observed in numerous neurological disorders, including Alzheimer's and Parkinson's, as well as neuropsychiatric disorders including schizophrenia. Apathy is defined as a lack of motivation characterized by diminished goal-oriented behavior and self-initiated activity. This study evaluated a chronic restraint stress (CRS protocol in modeling apathetic behavior, and determined whether administration of an anticholinesterase had utility in attenuating CRS-induced phenotypes. Methods We assessed behavior as well as regional neuronal activity patterns using FosB immunohistochemistry after exposure to CRS for 6 h/d for a minimum of 21 d. Based on our FosB findings and recent clinical trials, we administered an anticholinesterase to evaluate attenuation of CRS-induced phenotypes. Results CRS resulted in behaviors that reflect motivational loss and diminished emotional responsiveness. CRS-exposed mice showed differences in FosB accumulation, including changes in the cholinergic basal forebrain system. Facilitating cholinergic signaling ameliorated CRS-induced deficits in initiation and motivational drive and rescued immediate early gene activation in the medial septum and nucleus accumbens. Conclusions Some CRS protocols may be useful for studying deficits in motivation and apathetic behavior. Amelioration of CRS-induced behaviors with an anticholinesterase supports a role for the cholinergic system in remediation of deficits in motivational drive.

  2. Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-07-01

    Full Text Available Carbon ion therapy is a promising modality in radiotherapy to treat tumors, however, a potential risk of induction of late normal tissue damage should still be investigated and protected. The aim of the present study was to explore the long-term cognitive deficits provoked by a high-linear energy transfer (high-LET carbon ions in mice by targeting to hippocampus which plays a crucial role in memory and learning. Our data showed that, one month after 4 Gy carbon ion exposure, carbon ion irradiation conspicuously resulted in the impaired cognitive performance, neurodegeneration and neuronal cell death, as well as the reduced mitochondrial integrity, the disrupted activities of tricarboxylic acid cycle flux and electron transport chain, and the depressed antioxidant defense system, consequently leading to a decline of ATP production and persistent oxidative damage in the hippocampus region. Mechanistically, we demonstrated the disruptions of mitochondrial homeostasis and redox balance typically characterized by the disordered mitochondrial dynamics, mitophagy and glutathione redox couple, which is closely associated with the inhibitions of PINK1 and NRF2 signaling pathway as the key regulators of molecular responses in the context of neurotoxicity and neurodegenerative disorders. Most importantly, we found that administration with melatonin as a mitochondria-targeted antioxidant promoted the PINK1 accumulation on the mitochondrial membrane, and augmented the NRF2 accumulation and translocation. Moreover, melatonin pronouncedly enhanced the molecular interplay between NRF2 and PINK1. Furthermore, in the mouse hippocampal neuronal cells, overexpression of NRF2/PINK1 strikingly protected the hippocampal neurons from carbon ion-elicited toxic insults. Thus, these data suggest that alleviation of the sustained mitochondrial dysfunction and oxidative stress through co-modulation of NRF2 and PINK1 may be in charge of restoration of the cognitive

  3. Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: role of buspirone and risperidone in ameliorating these cognitive deficits.

    Science.gov (United States)

    Rapanelli, Maximiliano; Frick, Luciana Romina; Bernardez-Vidal, Micaela; Zanutto, Bonifacio Silvano

    2013-11-15

    Blockade of N-methyl-d-aspartate receptor (NMDA) by the noncompetitive NMDA receptor (NMDAR) antagonist MK-801 produces behavioral abnormalities and alterations in prefrontal cortex (PFC) functioning. Due to the critical role of the PFC in operant conditioning task learning, we evaluated the effects of acute, repeated postnatal injections of MK-801 (0.1mg/kg) on learning performance. We injected Long-Evans rats i.p. with MK-801 (0.1mg/kg) using three different administration schedules: injection 40 min before beginning the task (during) (n=12); injection twice daily for six consecutive days prior to beginning the experimental procedures (prior) (n=12); or twice daily subcutaneous injections from postnatal day 7 to 11 (postnatal) (n=12). Next, we orally administered risperidone (serotonin receptor 2A and dopamine receptor 2 antagonist, 1mg/kg) or buspirone (serotonin receptor 1A partial agonist, 10mg/kg) to animals treated with the MK-801 schedule described above. The postnatal and prior administration schedules produced severe learning deficits, whereas injection of MK-801 just before training sessions had only mild effects on acquisition of an operant conditioning. Risperidone was able to reverse the detrimental effect of MK-801 in the animals that were treated with MK-801 during and prior training sessions. In contrast, buspirone was only effective at mitigating the cognitive deficits induced by MK-801 when administered during the training procedures. The data demonstrates that NMDA antagonism disrupts basic mechanisms of learning in a simple PFC-mediated operant conditioning task, and that buspirone and risperidone failed to attenuate the learning deficits when NMDA neurotransmission was blocked in the early stages of the postnatal period. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway.

    Science.gov (United States)

    Liu, Yang; Yan, Jiawei; Sun, Cao; Li, Guo; Li, Sirui; Zhang, Luwei; Di, Cuixia; Gan, Lu; Wang, Yupei; Zhou, Rong; Si, Jing; Zhang, Hong

    2018-07-01

    Carbon ion therapy is a promising modality in radiotherapy to treat tumors, however, a potential risk of induction of late normal tissue damage should still be investigated and protected. The aim of the present study was to explore the long-term cognitive deficits provoked by a high-linear energy transfer (high-LET) carbon ions in mice by targeting to hippocampus which plays a crucial role in memory and learning. Our data showed that, one month after 4 Gy carbon ion exposure, carbon ion irradiation conspicuously resulted in the impaired cognitive performance, neurodegeneration and neuronal cell death, as well as the reduced mitochondrial integrity, the disrupted activities of tricarboxylic acid cycle flux and electron transport chain, and the depressed antioxidant defense system, consequently leading to a decline of ATP production and persistent oxidative damage in the hippocampus region. Mechanistically, we demonstrated the disruptions of mitochondrial homeostasis and redox balance typically characterized by the disordered mitochondrial dynamics, mitophagy and glutathione redox couple, which is closely associated with the inhibitions of PINK1 and NRF2 signaling pathway as the key regulators of molecular responses in the context of neurotoxicity and neurodegenerative disorders. Most importantly, we found that administration with melatonin as a mitochondria-targeted antioxidant promoted the PINK1 accumulation on the mitochondrial membrane, and augmented the NRF2 accumulation and translocation. Moreover, melatonin pronouncedly enhanced the molecular interplay between NRF2 and PINK1. Furthermore, in the mouse hippocampal neuronal cells, overexpression of NRF2/PINK1 strikingly protected the hippocampal neurons from carbon ion-elicited toxic insults. Thus, these data suggest that alleviation of the sustained mitochondrial dysfunction and oxidative stress through co-modulation of NRF2 and PINK1 may be in charge of restoration of the cognitive impairments in a mouse

  5. Chronic Treatment with Squid Phosphatidylserine Activates Glucose Uptake and Ameliorates TMT-Induced Cognitive Deficit in Rats via Activation of Cholinergic Systems

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Park

    2012-01-01

    Full Text Available The present study examined the effects of squid phosphatidylserine (Squid-PS on the learning and memory function and the neural activity in rats with TMT-induced memory deficits. The rats were administered saline or squid derived Squid-PS (Squid-PS 50 mg kg−1, p.o. daily for 21 days. The cognitive improving efficacy of Squid-PS on the amnesic rats, which was induced by TMT, was investigated by assessing the passive avoidance task and by performing choline acetyltransferase (ChAT and acetylcholinesterase (AchE immunohistochemistry. 18F-Fluorodeoxyglucose and performed a positron emission tomography (PET scan was also performed. In the passive avoidance test, the control group which were injected with TMT showed a markedly lower latency time than the non-treated normal group (P<0.05. However, treatment of Squid-PS significantly recovered the impairment of memory compared to the control group (P<0.05. Consistent with the behavioral data, Squid-PS significantly alleviated the loss of ChAT immunoreactive neurons in the hippocampal CA3 compared to that of the control group (P<0.01. Also, Squid-PS significantly increased the AchE positive neurons in the hippocampal CA1 and CA3. In the PET analysis, Squid-PS treatment increased the glucose uptake more than twofold in the frontal lobe and the hippocampus (P<0.05, resp.. These results suggest that Squid-PS may be useful for improving the cognitive function via regulation of cholinergic enzyme activity and neural activity.

  6. [Postoperative cognitive deficits].

    Science.gov (United States)

    Kalezić, Nevena; Dimitrijević, Ivan; Leposavić, Ljubica; Kocica, Mladen; Bumbasirević, Vesna; Vucetić, Cedomir; Paunović, Ivan; Slavković, Nemanja; Filimonović, Jelena

    2006-01-01

    Cognitive dysfunctions are relatively common in postoperative and critically ill patients. This complication not only compromises recovery after surgery, but, if persistent, it minimizes and compromises surgery itself. Risk factors of postoperative cognitive disorders can be divided into age and comorbidity dependent, and those related to anesthesia and surgery. Cardiovascular, orthopedic and urologic surgery carries high risk of postoperative cognitive dysfunction. It can also occur in other types of surgical treatment, especially in elderly. Among risk factors of cognitive disorders, associated with comorbidity, underlying psychiatric and neurological disorders, substance abuse and conditions with elevation of intracranial pressure are in the first place in postoperative patients. Preoperative and perioperative predisposing conditions for cognitive dysfunction and their incidence were described in our paper. These are: geriatric patients, patients with substance abuse, preexisting psychiatric or cognitive disorders, neurologic disease with high intracranial pressure, cerebrovascular insufficiency, epilepsia, preeclampsia, acute intermittent porphyria, operation type, brain hypoxia, changes in blood glucose level, electrolyte imbalance, anesthetic agents, adjuvant medication and intraoperative awareness. For each of these factors, evaluation, prevention and treatment strategies were suggested, with special regard on anesthetic technique.

  7. Purple Sweet Potato Color Ameliorates Cognition Deficits and Attenuates Oxidative Damage and Inflammation in Aging Mouse Brain Induced by D-Galactose

    Directory of Open Access Journals (Sweden)

    Qun Shan

    2009-01-01

    Full Text Available Purple sweet potato color (PSPC, a naturally occurring anthocyanin, has a powerful antioxidant activity in vitro and in vivo. This study explores whether PSPC has the neuroprotective effect on the aging mouse brain induced by D-galactose (D-gal. The mice administrated with PSPC (100 mg/kg.day, 4 weeks, from 9th week via oral gavage showed significantly improved behavior performance in the open field and passive avoidance test compared with D-gal-treated mice (500 mg/kg.day, 8 weeks. We further investigate the mechanism involved in neuroprotective effects of PSPC on mouse brain. Interestingly, we found, PSPC decreased the expression level of glial fibrillary acidic protein (GFAP, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2, inhibited nuclear translocation of nuclear factor-kappaB (NF-κB, increased the activity of copper/zinc superoxide dismutase (Cu/Zn-SOD and catalase (CAT, and reduced the content of malondialdehyde (MDA, respectively. Our data suggested that PSPC attenuated D-gal-induced cognitive impairment partly via enhancing the antioxidant and anti-inflammatory capacity.

  8. Amelioration of amyloid β-induced cognitive deficits by Zataria multiflora Boiss. essential oil in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Majlessi, Nahid; Choopani, Samira; Kamalinejad, Mohammad; Azizi, Zahra

    2012-04-01

    The limitations of current Alzheimer's disease (AD) therapeutics have prompted investigation into innovative therapeutics focused on antiinflammatory, antioxidant, and neuroprotective agents including those from medicinal plants. Numerous plants have been tested for their potential for alleviating symptoms of AD. Zataria multiflora Boiss. (ZM) a member of Lamiaceae family has been used in Iranian traditional medicine for its beneficial effects on mental abilities. Therefore, the effect of its essential oil was evaluated in a rat model of AD. Amyloid β-protein (Aβ) fragment 25-35 was injected bilaterally in the CA1 region of rats hippocampus and the effect of different doses of ZM essential oil (50, 100, or 200 μL/kg) on cognitive function was investigated in the Morris water maze. Acute toxicity of the essential oil was also studied. The results showed increases in escape latency, traveled distance, heading angle, and decreases in target quadrant entries in Aβ-received groups as compared to the control group. This impairment was reversed by ZM essential oil. The results of acute toxicity testing revealed that the calculated LD50 (1264.9 μL/kg) is much higher than the therapeutic dose (100 μL/kg). It seems that antioxidant, antiinflammatory, and anticholinesterase activities of ZM or its main constituents might contribute to its beneficial effects in this model. Our findings suggest that ZM may be a potentially valuable source of natural therapeutic agents for the treatment of AD. However, further investigations are necessary to establish its clinical efficacy and potential toxicity, before any recommendations concerning its use as a medication in the treatment of AD. © 2011 Blackwell Publishing Ltd.

  9. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Science.gov (United States)

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc. © 2017 The British Pharmacological Society.

  10. Cognitive deficits in the remitted state of unipolar depressive disorder

    DEFF Research Database (Denmark)

    Hasselbalch, Bo Jacob; Knorr, Ulla Benedichte Søsted; Hasselbalch, Steen

    2012-01-01

    Patients with unipolar depressive disorder may present with cognitive deficits in the remitted state, and the aim of the present study was to investigate whether cognitive deficits within specific cognitive domains are present.......Patients with unipolar depressive disorder may present with cognitive deficits in the remitted state, and the aim of the present study was to investigate whether cognitive deficits within specific cognitive domains are present....

  11. Flos Puerariae Extract Ameliorates Cognitive Impairment in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhong-he Liu

    2015-01-01

    Full Text Available Objective. The effects of Flos Puerariae extract (FPE on cognitive impairment associated with diabetes were assessed in C57BL/6J mice. Methods. Experimental diabetic mice model was induced by one injection of 50 mg/kg streptozotocin (STZ for 5 days consecutively. FPE was orally administrated at the dosages of 50, 100, or 200 mg/kg/day, respectively. The learning and memory ability was assessed by Morris water maze test. Body weight, blood glucose, free fatty acid (FFA and total cholesterol (TCH in serum, malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, and acetylcholinesterase (AChE activities in cerebral cortex and hippocampus were also measured. Results. Oral administration of FPE significantly improved cognitive deficits in STZ-induced diabetic mice. FPE treatment also maintained body weight and ameliorated hyperglycemia and dyslipidemia in diabetic mice. Additionally, decreased MDA level, enhanced CAT, and GSH-Px activities in cerebral cortex or hippocampus, as well as alleviated AChE activity in cerebral cortex, were found in diabetic mice supplemented with FPE. Conclusion. This study suggests that FPE ameliorates memory deficits in experimental diabetic mice, at least partly through the normalization of metabolic abnormalities, ameliorated oxidative stress, and AChE activity in brain.

  12. Cognitive deficits in multiple sclerosis

    DEFF Research Database (Denmark)

    Lund, H; Jønsson, A; Andresen, Jesper Graubæk

    2012-01-01

    of the cognitive impairment seen in MS and constitute a supplement to traditional measurement of T2 lesion volume. Materials and Methods - Fifty patients with clinically definite MS were included (38 women, 12 men). Patients were MR scanned, neuropsychologically tested, and evaluated clinically with the Kurtzke......Objectives - Although disease load in multiple sclerosis (MS) often is based on T2 lesion volumes, the changes in T2 of normal appearing brain tissue (NABT) are rarely considered. By means of magnetic resonance, (MR) we retrospectively investigated whether T2 changes in NABT explain part...... Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Impairment Scale (MSIS). Voxel-wise T2 estimates and total T2 lesion volume were tested for correlations with eight cognitive domains, a general cognitive dysfunction factor (CDF), and the two clinical scales. Results - We found distinct...

  13. Perceived Cognitive Deficits, Emotional Distress and Disability following Whiplash Injury

    Directory of Open Access Journals (Sweden)

    Michael JL Sullivan

    2002-01-01

    Full Text Available OBJECTIVES: To describe the pattern of perceived cognitive deficits in patients with whiplash injury, to examine the relation between perceived cognitive deficits and disability, and to examine the determinants of perceived cognitive deficits in patients with whiplash injury.

  14. The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats

    Directory of Open Access Journals (Sweden)

    Nermin Eissa

    2018-02-01

    Full Text Available The role of Histamine H3 receptors (H3Rs in memory, and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD is well-accepted. For that reason, the procognitive effects of the H3R antagonist DL77 on cognitive impairments induced with MK801 were tested in an inhibitory passive avoidance paradigm (PAP and novel object recognition (NOR task in adult male rats, using donepezil (DOZ as a standard drug. Acute systemic pretreatment with DL77 (2.5, 5, and 10 mg/kg, i.p. significantly ameliorated memory deficits induced with MK801 in PAP (all P < 0.05, n = 7. The ameliorative effect of most promising dose of DL77 (5 mg/kg, i.p. was reversed when rats were co-injected with the H3R agonist R-(α-methylhistamine (RAMH, 10 mg/kg, i.p. (p = 0.701 for MK801-amnesic group vs. MK801+DL77+RAMH group, n = 6. In the NOR paradigm, DL77 (5 mg/kg, i.p. counteracted long-term memory (LTM deficits induced with MK801 (P < 0.05, n = 6–8, and the DL77-provided effect was similar to that of DOZ (p = 0.788, n = 6–8, and was reversed when rats were co-injected with RAMH (10 mg/kg, i.p. (p = 0.877, n = 6, as compared to the (MK801-amnesic group. However, DL77 (5 mg/kg, i.p. did not alter short-term memory (STM impairment in NOR test (p = 0.772, n = 6–8, as compared to (MK801-amnesic group. Moreover, DL77 (5 mg/kg failed to modify anxiety and locomotor behaviors of animals innate to elevated-plus maze (EPM (p = 0.67 for percentage of time spent exploring the open arms, p = 0.52 for number of entries into the open arms, p = 0.76 for percentage of entries into the open arms, and p = 0.73 number of closed arm entries as compared to saline-treated groups, all n = 6, demonstrating that the procognitive effects observed in PAP or NOR tests were unconnected to alterations in emotions or in natural locomotion of tested animals. These results signify the potential involvement of H3Rs in modulating

  15. Cognitive deficits in post-stroke aphasia

    Directory of Open Access Journals (Sweden)

    Milena V. Bonini

    2015-10-01

    Full Text Available The assessment of aphasics’ cognitive performance is challenging and such patients are generally excluded from studies that describe cognitive deficits after stroke. We evaluated aphasics’ performance in cognitive tasks compared to non-aphasic subjects. A sample of 47 patients (21 aphasics, 17 non-aphasics with left hemisphere lesions and 9 non-aphasics with right hemisphere lesions performed cognitive tasks (attention, verbal and visual memory, executive functions, visuospatial skills and praxis. Aphasic patients performed poorer than all non-aphasics in Digit Span (p < 0.001, Clock-Drawing Test (p = 0.006, Verbal memory (p = 0.002, Visual Memory (p < 0.01, Verbal Fluency (p < 0.001, and Gesture Praxis (p < 0.001. Aphasia severity correlated with performance in Trail Making test part B (p = 0.004, Digit Span forward (p < 0.001 and backwards (p = 0.011, and Gesture Praxis (p = 0.002. Aphasia is accompanied by deficits not always easy to be evaluated by cognitive tests due to speech production and motor impairments. Assessment of cognitive functions in aphasics might contribute to optimize therapeutic intervention.

  16. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats

    Directory of Open Access Journals (Sweden)

    Ramalingayya GV

    2017-03-01

    Full Text Available Grandhi Venkata Ramalingayya, Sri Pragnya Cheruku, Pawan G Nayak, Anoop Kishore, Rekha Shenoy, Chamallamudi Mallikarjuna Rao, Nandakumar Krishnadas Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India Abstract: Doxorubicin (DOX is the most widely used broad-spectrum anticancer agent, either alone or in combination, for most cancers including breast cancer. Long-term use of chemotherapeutic agents to treat breast cancer patients results in cognitive complications with a negative impact on survivors’ quality of life. The study objective was to evaluate rutin (RUT for its neuroprotective effect against DOX in human neuroblastoma (IMR32 cells in vitro and study its potential to ameliorate DOX-induced cognitive dysfunction in Wistar rats. Cell viability assay (3-[4,5 dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide, neurite growth assay, detection of apoptosis by (acridine orange/ethidium bromide staining, intracellular reactive oxygen species (ROS assay, and flowcytometric analysis were carried out to assess neuroprotective potential against DOX. An in vivo study was conducted for assessing protective effect of RUT against memory deficit associated with DOX-induced chemobrain using object recognition task (ORT. Locomotion was assessed using open field test. Serum biochemistry, acetylcholinesterase, oxidative stress markers in hippocampus, and frontal cortex were assessed. Histopathological analysis of major organ systems was also carried out. Prior exposure to RUT at 100 µM protected IMR32 cells from DOX (1 µM neurotoxicity. DOX exposure resulted in increased cellular death, apoptosis, and intracellular ROS generation with inhibition of neurite growth in differentiated IMR32 cells, which was significantly ameliorated by RUT. Cognitive dysfunction was induced in Wistar rats by administering ten cycles of DOX (2.5 mg/kg, intraperitoneal, once in 5 days, as we observed

  17. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  18. Can we predict cognitive deficits based on cognitive complaints?

    Directory of Open Access Journals (Sweden)

    Ewa Małgorzata Szepietowska

    2017-03-01

    Full Text Available Objective: The aim of the study was to determine whether the intensity of cognitive complaints can, in conjunction with other selected variables, predict the general level of cognitive functions evaluated with the Montreal Cognitive Assessment (MoCA test. Current reports do not show clear conclusions on this subject. Some data indicate that cognitive complaints have a predictive value for low scores in standardised tasks, suggesting cognitive dysfunction (e.g. mild cognitive impairment. Other data, however, do not support the predictive role of complaints, and show no relationship to exist between the complaints and the results of cognitive tests. Material and methods: The study included 118 adults (58 women and 60 men. We used the MoCA test, a self-report questionnaire assessing the intensity of cognitive complaints (Patient-Reported Outcomes in Cognitive Impairment – PROCOG and Dysexecutive Questionnaire/Self – DEX-S, and selected subtests of the Wechsler Adult Intelligence Scale-Revised (WAIS-R PL. On the basis of the results from the MoCA test, two separate groups were created, one comprising respondents with lower results, and one – those who obtained scores indicating a normal level of cognitive function. We compared these groups according to the severity of the complaints and the results obtained with the other methods. Logistic regression analysis was performed taking into account the independent variables (gender, age, result in PROCOG, DEX-S, and neurological condition and the dependent variable (dichotomized result in MoCA. Results: Groups with different levels of performance in MoCA differed in regards of some cognitive abilities and the severity of complaints related to semantic memory, anxiety associated with a sense of deficit and loss of skills, but provided similar self-assessments regarding the efficiency of episodic memory, long-term memory, social skills and executive functions. The severity of complaints does not allow

  19. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice.

    Science.gov (United States)

    Lee, In-Ah; Joh, Eun-Ha; Kim, Dong-Hyun

    2011-09-01

    The seeds of Arctium lappa L. (AL, family Asteraceae), the main constituents of which are arctiin and arctigenin, have been used as an herbal medicine or functional food to treat inflammatory diseases. These main constituents were shown to inhibit acetylcholinesterase (AChE) activity. Arctigenin more potently inhibited AChE activity than arctiin. Arctigenin at doses of 30 and 60 mg/kg (p. o.) potently reversed scopolamine-induced memory deficits by 62 % and 73 %, respectively, in a passive avoidance test. This finding is comparable with that of tacrine (10 mg/kg p. o.). Arctigenin also significantly reversed scopolamine-induced memory deficits in the Y-maze and Morris water maze tests. On the basis of these findings, arctigenin may ameliorate memory deficits by inhibiting AChE. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates age-related deficits in water maze performance, especially in male rats.

    Science.gov (United States)

    Kougias, Daniel G; Hankosky, Emily R; Gulley, Joshua M; Juraska, Janice M

    2017-03-01

    Beta-hydroxy-beta-methylbutyrate (HMB) is commonly supplemented to maintain muscle in elderly and clinical populations and has potential as a nootropic. Previously, we have shown that in both male and female rats, long-term HMB supplementation prevents age-related dendritic shrinkage within the medial prefrontal cortex (mPFC) and improves cognitive flexibility and working memory performance that are both age- and sex-specific. In this study, we further explore the cognitive effects by assessing visuospatial learning and memory with the Morris water maze. Female rats were ovariectomized at 11months of age to model human menopause. At 12months of age, male and female rats received relatively short- or long-term (1- or 7-month) dietary HMB (450mg/kg/dose) supplementation twice a day prior to testing. Spatial reference learning and memory was assessed across four days in the water maze with four trials daily and a probe trial on the last day. Consistent with previous work, there were age-related deficits in water maze performance in both sexes. However, these deficits were ameliorated in HMB-treated males during training and in both sexes during probe trial performance. Thus, HMB supplementation prevented the age-related decrement in water maze performance, especially in male rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Dl-3-n-Butylphthalide Treatment Enhances Hemodynamics and Ameliorates Memory Deficits in Rats with Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Zhilin Xiong

    2017-07-01

    Full Text Available Our previous study has revealed that chronic cerebral hypoperfusion (CCH activates a compensatory vascular mechanism attempting to maintain an optimal cerebral blood flow (CBF. However, this compensation fails to prevent neuronal death and cognitive impairment because neurons die prior to the restoration of normal CBF. Therefore, pharmacological invention may be critical to enhance the CBF for reducing neurodegeneration and memory deficit. Dl-3-n-butylphthalide (NBP is a compound isolated from the seeds of Chinese celery and has been proven to be able to prevent neuronal loss, reduce inflammation and ameliorate memory deficits in acute ischemic animal models and stroke patients. In the present study, we used magnetic resonance imaging (MRI techniques, immunohistochemistry and Morris water maze (MWM to investigate whether NBP can accelerate CBF recovery, reduce neuronal death and improve cognitive deficits in CCH rats after permanent bilateral common carotid artery occlusion (BCCAO. Rats were intravenously injected with NBP (5 mg/kg daily for 14 days beginning the first day after BCCAO. The results showed that NBP shortened recovery time of CBF to pre-occlusion levels at 2 weeks following BCCAO, compared to 4 weeks in the vehicle group, and enhanced hemodynamic compensation through dilation of the vertebral arteries (VAs and increase in angiogenesis. NBP treatment also markedly reduced reactive astrogliosis and cell apoptosis and protected hippocampal neurons against ischemic injury. The escape latency of CCH rats in the MWM was also reduced in response to NBP treatment. These findings demonstrate that NBP can accelerate the recovery of CBF and improve cognitive function in a rat model of CCH, suggesting that NBP is a promising therapy for CCH patients or vascular dementia.

  2. A Cognitive Distortions and Deficits Model of Suicide Ideation

    Directory of Open Access Journals (Sweden)

    Laura L. Fazakas-DeHoog

    2017-05-01

    Full Text Available Although cognitive distortions and deficits are known risk factors for the development and escalation of suicide ideation and behaviour, no empirical work has examined how these variables interact to predict suicide ideation. The current study proposes an integrative model of cognitive distortions (hopelessness and negative evaluations of self and future and deficits (problem solving deficits, problem solving avoidance, and cognitive rigidity. To test the integrity of this model, a sample of 397 undergraduate students completed measures of deficits, distortions, and current suicide ideation. A structural equation model demonstrated excellent fit, and findings indicated that only distortions have a direct effect on suicidal thinking, whereas cognitive deficits may exert their effects on suicide ideation via their reciprocal relation with distortions. Findings underscore the importance of both cognitive distortions and deficits for understanding suicidality, which may have implications for preventative efforts and treatment.

  3. Profiles of Cognitive Deficits in Paranoid Schizophrenia and Schizotypal Disorder

    Directory of Open Access Journals (Sweden)

    Lebedeva G.

    2017-03-01

    Full Text Available The article is devoted to the search for more accurate psycho-diagnostic methods and assessment tools for determining the degree of cognitive deficits in patients with schizophrenic disorders. The concepts of "cognitive deficits" and "cognitive profile", understood as the ratio of intact and damaged components of cognitive processes and their schematic representation are discussed. The authors substantiate the need for a clear gradation of cognitive impairments in schizophrenia, development of universal translation algorithms of traditional qualitative results (meaningful analysis of violations of cognitive activity in quantitative indicators. The article is based on the results of experimental psychological study. The investigation involved 128 patients: 76 people with Paranoid schizophrenia (F20 according to ICD-10 and 52 persons with Schizotypal disorder (F21 according to ICD-10. To assess the cognitive deficit, both traditional domestic methods and foreign tests, rarely used in the practice of a medical psychologist were conducted. The study analyzed the difference in cognitive tests performance between groups of patients with several types of schizophrenia and with different disease duration (up to 5 years and more. On the basis of quantitative data, a "cognitive profile" was lined for each disease. As a result, different variants of cognitive deficits, depending on the shape and course of the disease have been identified. The structure and dynamics of the cognitive deficits associated with schizophrenia and various forms depending on the different duration of the disease is described in detail. Also cognitive profiles compiled on this basis.

  4. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress.

    Science.gov (United States)

    Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad

    2011-10-31

    Due to anti-diabetic and antioxidant activity of green tea epigallocatechin gallate (EGCG) and the existence of evidence for its beneficial effect on cognition and memory, this research study was conducted to evaluate, for the first time, the efficacy of chronic EGCG on alleviation of learning and memory deficits in streptozotocin (STZ)-diabetic rats. Male Wistar rats were divided into control, diabetic, EGCG-treated-control and -diabetic groups. EGCG was administered at a dose of 20 and 40 mg/kg/day for 7 weeks. Learning and memory was evaluated using Y maze, passive avoidance, and radial 8-arm maze (RAM) tests. Oxidative stress markers and involvement of nitric oxide system were also evaluated. Alternation score of the diabetic rats in Y maze was lower than that of control and a significant impairment was observed in retention and recall in passive avoidance test (pRAM task and EGCG (40 mg/kg) significantly ameliorated these changes (pmemory respectively. Meanwhile, increased levels of malondialdehyde (MDA) and nitrite in diabetic rats significantly reduced due to EGCG treatment (pmemory deficits in STZ-diabetic rats through attenuation of oxidative stress and modulation of NO. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Mazindol attenuates ketamine-induced cognitive deficit in the attentional set shifting task in rats.

    Science.gov (United States)

    Nikiforuk, Agnieszka; Gołembiowska, Krystyna; Popik, Piotr

    2010-01-01

    Cognitive impairments associated with schizophrenia await an effective treatment. In order to model schizophrenia-like cognitive deficits in rats, we evaluated the effects of ketamine, a dissociative anesthetic NMDA/glutamate receptor channel blocker in the attentional set-shifting task (ASST). Acute administration of ketamine (10 but not 3mg/kg) selectively impaired solving of the extradimensional (ED) set-shifting component. Next, we investigated whether the co-administration of mazindol, a dopamine and norepinephrine reuptake inhibitor would protect rats from ketamine-induced deficits. Mazindol dose-dependently and selectively alleviated ketamine-induced ED deficit with a minimal effective dose of 0.5mg/kg. The ED component improvement was noted primarily in ketamine - but not in vehicle co-treated rats, in which the drug facilitated ED shift solving at the dose as high as 5mg/kg. A "positive control", sertindole (2.5mg/kg) also ameliorated ketamine-induced ED deficit. Microdialysis of the prefrontal cortex in a separate group of animals revealed that 2-3h after the administration of 5mg/kg of mazindol and ketamine (i.e., at the time of ED component solving), the extracellular concentrations of dopamine were enhanced by ~300% as compared to the baseline and were intermediate between the mazindol- and ketamine-treated reference groups. However, at that time the levels of norepinephrine, serotonin and glutamate appeared unaffected. We conclude that ketamine may be useful in mimicking deficits specifically related to cognitive inflexibility observed in schizophrenia, and suggest that these anomalies could be ameliorated by mazindol. The beneficial effects of mazindol on ASST performance may have therapeutic implications for the treatment of schizophrenia.

  6. Cognitive mapping deficits in schizophrenia: a critical overview.

    Science.gov (United States)

    Bose, Anushree; Agarwal, Sri Mahavir; Kalmady, Sunil V; Venkatasubramanian, Ganesan

    2014-01-01

    Hippocampal deficits are an established feature of schizophrenia and are complementary with recent evidences of marked allocentric processing deficits being reported in this disorder. By "Cognitive mapping" we intend to refer to the concepts from the seminal works of O'Keefe and Nadel (1978) that led to the development of cognitive map theory of hippocampal function. In this review, we summarize emerging evidences and issues that indicate that "Cognitive mapping deficits" form one of the important cognitive aberrations in schizophrenia. The importance has been placed upon hippocampally mediated allocentric processing deficits and their role in pathology of schizophrenia, for spatial/representational cognitive deficits and positive symptoms in particular. It is modestly summarized that emerging evidences point toward a web of spatial and cognitive representation errors concurrent with pronounced hippocampal dysfunction. In general, it can be stated that there are clear and consistent evidences that favor the cognitive mapping theory in explaining certain deficits of schizophrenia and for drawing out a possible and promising endophenotype/biomarkers. Further research in this regard demands attention.

  7. Common Cognitive Deficits in Children with Attention-Deficit/Hyperactivity Disorder and Autism: Working Memory and Visual-Motor Integration

    Science.gov (United States)

    Englund, Julia A.; Decker, Scott L.; Allen, Ryan A.; Roberts, Alycia M.

    2014-01-01

    Cognitive deficits in working memory (WM) are characteristic features of Attention-Deficit/Hyperactivity Disorder (ADHD) and autism. However, few studies have investigated cognitive deficits using a wide range of cognitive measures. We compared children with ADHD ("n" = 49) and autism ("n" = 33) with a demographically matched…

  8. Social cognition and neurocognitive deficits in first-episode schizophrenia

    DEFF Research Database (Denmark)

    Bliksted, Vibeke Fuglsang; Fagerlund, Birgitte; Weed, Ethan

    2014-01-01

    BACKGROUND: Recent research has shown a significant impact of social cognitive domains on real world functioning and prognosis in schizophrenia. However, the correlations between specific aspects of social cognition, neurocognition, IQ and clinical symptoms remain unclear in first-episode schizop...... are comparable to the implicit and explicit mentalising discussed in the developmental literature. The two forms of social cognitive deficits are likely to require quite different social cognitive interventions.......BACKGROUND: Recent research has shown a significant impact of social cognitive domains on real world functioning and prognosis in schizophrenia. However, the correlations between specific aspects of social cognition, neurocognition, IQ and clinical symptoms remain unclear in first...

  9. Amusia and cognitive deficits after stroke: is there a relationship?

    Science.gov (United States)

    Särkämö, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M; Laine, Matti; Hietanen, Marja

    2009-07-01

    We studied the relationship between musical and cognitive deficits by testing middle cerebral arterial (MCA) stroke patients (n= 53) with a shortened version of the Montreal Battery of Evaluation of Amusia (MBEA) and an extensive neuropsychological test battery. Results showed that amusic patients (n= 32) had more severe cognitive deficits, especially in working memory and executive functioning, than did non-amusic patients (n= 21), and the severity of amusia also correlated with attention deficits. These findings thus suggest that domain-general attention, executive, and working memory processes are associated with amusia after stroke.

  10. Minocycline ameliorates cognitive impairment induced by whole-brain irradiation: an animal study

    International Nuclear Information System (INIS)

    Zhang, Liyuan; Li, Kun; Sun, Rui; Zhang, Yuan; Ji, JianFeng; Huang, Peigeng; Yang, Hongying; Tian, Ye

    2014-01-01

    It has been long recognized that cranial irradiation used for the treatment of primary and metastatic brain tumor often causes neurological side-effects such as intellectual impairment, memory loss and dementia, especially in children patients. Our previous study has demonstrated that whole-brain irradiation (WBI) can cause cognitive decline in rats. Minocycline is an antibiotic that has shown neuroprotective properties in a variety of experimental models of neurological diseases. However, whether minocycline can ameliorate cognitive impairment induced by ionizing radiation (IR) has not been tested. Thus this study aimed to demonstrate the potential implication of minocycline in the treatment of WBI-induced cognitive deficits by using a rat model. Sprague Dawley rats were cranial irradiated with electron beams delivered by a linear accelerator with a single dose of 20 Gy. Minocycline was administered via oral gavages directly into the stomach before and after irradiation. The open field test was used to assess the anxiety level of rats. The Morris water maze (MWM) was used to assess the spatial learning and memory of rats. The level of apoptosis in hippocampal neurons was measured using immunohistochemistry for caspase-3 and relative markers for mature neurons (NeuN) or for newborn neurons (Doublecortin (DCX)). Neurogenesis was determined by BrdU incorporation method. Neither WBI nor minocycline affected the locomotor activity and anxiety level of rats. However, compared with the sham-irradiated controls, WBI caused a significant loss of learning and memory manifest as longer latency to reach the hidden platform in the MWM task. Minocycline intervention significantly improved the memory retention of irradiated rats. Although minocycline did not rescue neurogenesis deficit caused by WBI 2 months post-IR, it did significantly decreased WBI-induced apoptosis in the DCX positive neurons, thereby resulting in less newborn neuron depletion 12 h after irradiation

  11. Awareness of deficits in mild cognitive impairment and Alzheimer's disease

    DEFF Research Database (Denmark)

    Vogel, Asmus; Stokholm, Jette; Gade, Anders

    2004-01-01

    In this study we investigated impaired awareness of cognitive deficits in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Very few studies have addressed this topic, and methodological inconsistencies make the comparison of previous studies difficult. From a prospective...

  12. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer's disease.

    Science.gov (United States)

    Olajide, Olayemi Joseph; Yawson, Emmanuel Olusola; Gbadamosi, Ismail Temitayo; Arogundade, Tolulope Timothy; Lambe, Ezra; Obasi, Kosisochukwu; Lawal, Ismail Tayo; Ibrahim, Abdulmumin; Ogunrinola, Kehinde Yomi

    2017-03-01

    Exploring the links between neural pathobiology and behavioural deficits in Alzheimer's disease (AD), and investigating substances with known therapeutic advantages over subcellular mechanisms underlying these dysfunctions could advance the development of potent therapeutic molecules for AD treatment. Here we investigated the efficacy of ascorbic acid (AA) in reversing aluminium chloride (AlCl 3 )-induced behavioural deficits and neurotoxic cascades within prefrontal cortex (PFC) and hippocampus of rats. A group of rats administered oral AlCl 3 (100mg/kg) daily for 15days showed degenerative changes characterised by significant weight loss, reduced exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety during behavioural assessments compared to control. Subsequent analysis showed that oxidative impairment-indicated by depleted superoxide dismutase and lipid peroxidation (related to glutathione-S-transferase activity), cholinergic deficits seen by increased neural acetylcholinesterase (AChE) expression and elevated lactate dehydrogenase underlie behavioural alterations. Furthermore, evidences of proteolysis were seen by reduced Nissl profiles in neuronal axons and dendrites which correspond to apoptotic changes observed in H&E staining of PFC and hippocampal sections. Interestingly, AA (100mg/kg daily for 15days) significantly attenuated behavioural deficits in rats through inhibition of molecular and cellular stressor proteins activated by AlCl 3. Our results showed that the primary mechanisms underlying AA therapeutic advantages relates closely with its abilities to scavenge free radicals, prevent membrane lipid peroxidation, modulate neuronal bioenergetics, act as AChE inhibitor and through its anti-proteolytic properties. These findings suggest that supplementing endogenous AA capacity through its pharmacological intake may inhibit progression of AD-related neurodegenerative processes and behavioural

  13. Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine.

    Science.gov (United States)

    Ando, Susumu; Kobayashi, Satoru; Waki, Hatsue; Kon, Kazuo; Fukui, Fumiko; Tadenuma, Tomoko; Iwamoto, Machiko; Takeda, Yasuo; Izumiyama, Naotaka; Watanabe, Kazutada; Nakamura, Hiroaki

    2002-11-01

    A rat dementia model with cognitive deficits was generated by synapse-specific lesions using botulinum neurotoxin (BoNTx) type B in the entorhinal cortex. To detect cognitive deficits, different tasks were needed depending upon the age of the model animals. Impaired learning and memory with lesions were observed in adult rats using the Hebb-Williams maze, AKON-1 maze and a continuous alternation task in T-maze. Cognitive deficits in lesioned aged rats were detected by a continuous alternation and delayed non-matching-to-sample tasks in T-maze. Adenovirus-mediated BDNF gene expression enhanced neuronal plasticity, as revealed by behavioral tests and LTP formation. Chronic administration of carnitine over time pre- and post-lesions seemed to partially ameliorate the cognitive deficits caused by the synaptic lesion. The carnitine-accelerated recovery from synaptic damage was observed by electron microscopy. These results demonstrate that the BoNTx-lesioned rat can be used as a model for dementia and that cognitive deficits can be alleviated in part by BDNF gene transfer or carnitine administration. Copyright 2002 Wiley-Liss, Inc.

  14. Cognitive control deficits associated with antisocial personality disorder and psychopathy.

    Science.gov (United States)

    Zeier, Joshua D; Baskin-Sommers, Arielle R; Hiatt Racer, Kristina D; Newman, Joseph P

    2012-07-01

    Antisociality has been linked to a variety of executive functioning deficits, including poor cognitive control. Surprisingly, cognitive control deficits are rarely found in psychopathic individuals, despite their notoriously severe and persistent antisocial behavior. In fact, primary (low-anxious) psychopathic individuals display superior performance on cognitive control-type tasks under certain circumstances. To clarify these seemingly contradictory findings, we administered a response competition (i.e., flanker) task to incarcerated offenders, who were assessed for Antisocial Personality Disorder (APD) symptoms and psychopathy. As hypothesized, APD related to poorer accuracy, especially on incongruent trials. Contrary to expectation, however, the same pattern of results was found in psychopathy. Additional analyses indicated that these effects of APD and psychopathy were associated with overlapping variance. The findings suggest that psychopathy and APD symptoms are both associated with deficits in cognitive control, and that this deficit relates to general antisociality as opposed to a specific antisocial syndrome. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  15. Fluoxetine Ameliorates Behavioral and Neuropathological Deficits in a Transgenic Model Mouse of α-synucleinopathy

    Science.gov (United States)

    Ubhi, Kiren; Inglis, Chandra; Mante, Michael; Patrick, Christina; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; May, Verena; Winkler, Juergen; Masliah, Eliezer

    2013-01-01

    The term α-synucleinopathies refers to a group of age-related neurological disorders including Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA) that display an abnormal accumulation of alpha-synuclein (α-syn). In contrast to the neuronal α-syn accumulation observed in PD and DLB, MSA is characterized by a widespread oligodendrocytic α-syn accumulation. Transgenic mice expressing human α-syn under the oligodendrocyte-specific myelin basic protein promoter (MBP1-hαsyn tg mice) model many of the behavioral and neuropathological alterations observed in MSA. Fluoxetine, a selective serotonin reuptake inhibitor, has been shown to be protective in toxin-induced models of PD, however its effects in an in vivo transgenic model of α-synucleinopathy remain unclear. In this context, this study examined the effect of fluoxetine in the MBP1-hαsyn tg mice, a model of MSA. Fluoxetine adminstration ameliorated motor deficits in the MBP1-hαsyn tg mice, with a concomitant decrease in neurodegenerative pathology in the basal ganglia, neocortex and hippocampus. Fluoxetine adminstration also increased levels of the neurotrophic factors, GDNF (glial-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) in the MBP1-hαsyn tg mice compared to vehicle-treated tg mice. This fluoxetine-induced increase in GDNF and BDNF protein levels was accompanied by activation of the ERK signaling pathway. The effects of fluoxetine adminstration on myelin and serotonin markers were also examined. Collectively these results indicate that fluoxetine may represent a novel therapeutic intervention for MSA and other neurodegenerative disorders. PMID:22281106

  16. Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of α-synucleinopathy.

    Science.gov (United States)

    Ubhi, Kiren; Inglis, Chandra; Mante, Michael; Patrick, Christina; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; May, Verena; Winkler, Juergen; Masliah, Eliezer

    2012-04-01

    The term α-synucleinopathies refers to a group of age-related neurological disorders including Parkinson's disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA) that display an abnormal accumulation of alpha-synuclein (α-syn). In contrast to the neuronal α-syn accumulation observed in PD and DLB, MSA is characterized by a widespread oligodendrocytic α-syn accumulation. Transgenic mice expressing human α-syn under the oligodendrocyte-specific myelin basic protein promoter (MBP1-hαsyn tg mice) model many of the behavioral and neuropathological alterations observed in MSA. Fluoxetine, a selective serotonin reuptake inhibitor, has been shown to be protective in toxin-induced models of PD, however its effects in an in vivo transgenic model of α-synucleinopathy remain unclear. In this context, this study examined the effect of fluoxetine in the MBP1-hαsyn tg mice, a model of MSA. Fluoxetine administration ameliorated motor deficits in the MBP1-hαsyn tg mice, with a concomitant decrease in neurodegenerative pathology in the basal ganglia, neocortex and hippocampus. Fluoxetine administration also increased levels of the neurotrophic factors, GDNF (glial-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) in the MBP1-hαsyn tg mice compared to vehicle-treated tg mice. This fluoxetine-induced increase in GDNF and BDNF protein levels was accompanied by activation of the ERK signaling pathway. The effects of fluoxetine administration on myelin and serotonin markers were also examined. Collectively these results indicate that fluoxetine may represent a novel therapeutic intervention for MSA and other neurodegenerative disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Cognitive rehabilitation for attention deficits following stroke.

    Science.gov (United States)

    Loetscher, Tobias; Lincoln, Nadina B

    2013-05-31

    Many survivors of stroke complain about attentional impairments, such as diminished concentration and mental slowness. However, the effectiveness of cognitive rehabilitation for improving these impairments is uncertain. To determine whether (1) people receiving attentional treatment show better outcomes in their attentional functions than those given no treatment or treatment as usual, and (2) people receiving attentional treatment techniques have a better functional recovery, in terms of independence in activities of daily living, mood and quality of life, than those given no treatment or treatment as usual. We searched the Cochrane Stroke Group Trials Register (October 2012), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library October 2012), MEDLINE (1948 to October 2012), EMBASE (1947 to October 2012), CINAHL (1981 to October 2012), PsycINFO (1806 to October 2012), PsycBITE and REHABDATA (searched October 2012) and ongoing trials registers. We screened reference lists and tracked citations using Scopus. We included randomised controlled trials (RCTs) of cognitive rehabilitation for impairments of attention for people with stroke. The primary outcome was measures of global attentional functions, and secondary outcomes were measures of attention domains, functional abilities, mood and quality of life. Two review authors independently selected trials, extracted data and assessed trial quality. We included six RCTs with 223 participants. All six RCTs compared cognitive rehabilitation with a usual care control. Meta-analyses demonstrated no statistically significant effect of cognitive rehabilitation for persisting effects on global measures of attention (two studies, 99 participants; standardised mean difference (SMD) 0.16, 95% confidence interval (CI) -0.23 to 0.56; P value = 0.41), standardised attention assessments (two studies, 99 participants; P value ≥ 0.08) or functional outcomes (two studies, 99 participants; P value ≥ 0

  18. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    Science.gov (United States)

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Mitigation of postnatal ethanol-induced neuroinflammation ameliorates trace fear memory deficits in juvenile rats.

    Science.gov (United States)

    Goodfellow, Molly J; Shin, Youn Ju; Lindquist, Derick H

    2018-02-15

    Impairments in behavior and cognition are common in individuals diagnosed with fetal alcohol spectrum disorders (FASD). In this study, FASD model rats were intragastrically intubated with ethanol (5g/kg/day; 5E), sham-intubated (SI), or maintained as naïve controls (NC) over postnatal days (PD) 4-9. Ethanol exposure during this human third trimester-equivalent period induces persistent impairments in hippocampus-dependent learning and memory. The ability of ibuprofen (IBU), a non-steroidal anti-inflammatory drug, to diminish ethanol-induced neuroinflammation and rescue deficits in hippocampus-dependent trace fear conditioning (TFC) was investigated in 5E rats. Phosphate buffered saline vehicle (VEH) or IBU was injected 2h following ethanol exposure over PD4-9, followed by quantification of inflammation-related genes in the dorsal hippocampus of PD10 rats. The 5E-VEH rats exhibited significant increases in Il1b and Tnf, but not Itgam or Gfap, relative to NC, SI-VEH, and 5E-IBU rats. In separate groups of PD31-33 rats, conditioned fear (freezing) was significantly reduced in 5E-VEH rats during TFC testing, but not acquisition, compared to SI-VEH and, critically, 5E-IBU rats. Results suggest neuroimmune activation in response to ethanol within the neonate hippocampus contributes to later-life cognitive dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats.

    Science.gov (United States)

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    Here, we investigated the effect of escitalopram pretreatment on protein kinase A (PKA)-induced tau hyperphosphorylation and spatial memory deficits in rats using western blot and behavioral tests, respectively. We demonstrated that escitalopram effectively ameliorated tau hyperphosphorylation and the spatial memory deficits induced by PKA activation. We measured the total and activity-dependent Ser9-phosphorylated levels of glycogen synthase kinase (GSK)-3β in hippocampal extracts. No significant change in the total level of GSK-3β was observed between the different groups. However, compared with forskolin injection alone, pretreatment with escitalopram increased the level of Ser9-phosphorylated GSK-3β. We also demonstrated that escitalopram increased Akt phosphorylation at Ser473 (the active form of Akt). Furthermore, we identified other important kinases and phosphatases, such as protein phosphatase 2A, extracellular signal-regulated kinases 1 and 2, and MAP kinase kinase-1/2, that have previously been reported to play a crucial role in tau phosphorylation; however, we did not detect any significant change in the activation of these kinases or phosphatases in our study. We unexpectedly demonstrated that forskolin caused anxiety-like behavior in rats, and pretreatment with escitalopram did not significantly ameliorate the anxiety-like behavior induced by forskolin. These data provide the first evidence that escitalopram ameliorates forskolin-induced tau hyperphosphorylation and spatial memory impairment in rats; these effects do not occur via the anti-anxiety activity of escitalopram but may involve the Akt/GSK-3β signaling pathway.

  1. Ameliorative effect of Asparagus racemosus root extract against pentylenetetrazol-induced kindling and associated depression and memory deficit.

    Science.gov (United States)

    Pahwa, Priyanka; Goel, Rajesh Kumar

    2016-04-01

    Asparagus racemosus (A. racemosus) roots are extensively used in traditional medicine for the management of epilepsy. The aim of the present study was to investigate the ameliorative effect of A. racemosus root extract (ARE) against pentylenetetrazol-induced kindling and associated depression and memory deficit. Kindling was successfully induced by repeated administration of a subconvulsant dose of PTZ (35 mg/kg; i.p.) at an interval of 48 ± 2 h in 43 days (21 injections). Pretreatment with valproate (300 mg/kg; i.p.), a major antiepileptic drug as well as ARE significantly suppressed the progression of kindling. Moreover, ARE also ameliorated the kindling-associated depression and memory deficit as indicated by decreased immobility time and increased step-down latency, respectively, as compared to vehicle control animals. Further, these behavioral observations were complemented with analogous neurochemical changes. In conclusion, the results of the present study showed that ARE treatment has an ameliorative effect against PTZ-induced kindling and associated behavioral comorbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Motivational deficits and cognitive test performance in schizophrenia.

    Science.gov (United States)

    Fervaha, Gagan; Zakzanis, Konstantine K; Foussias, George; Graff-Guerrero, Ariel; Agid, Ofer; Remington, Gary

    2014-09-01

    Motivational and cognitive deficits are core features of schizophrenia, both closely linked with functional outcomes. Although poor effort and decreased motivation are known to affect performance on cognitive tests, the extent of this relationship is unclear in patients with schizophrenia. To evaluate the association between intrinsic motivation and cognitive test performance in patients with schizophrenia. Cross-sectional and 6-month prospective follow-up study performed at 57 sites in the United States, including academic and community medical treatment centers, participating in the Clinical Antipsychotic Trials of Intervention Effectiveness study. The primary sample included 431 stable patients with a DSM-IV diagnosis of schizophrenia currently receiving a stable medication regimen. Cognitive performance and intrinsic motivation were evaluated using a comprehensive neuropsychological test battery and a derived measure from the Heinrichs-Carpenter Quality of Life Scale, respectively. Symptom severity and functional status were also assessed. The primary outcome variable was global neurocognition. Individual domains of cognition were also evaluated for their association with motivation. Level of intrinsic motivation was significantly and positively correlated with global cognitive test performance, a relationship that held for each domain of cognition evaluated (correlation range, 0.20-0.34; P motivation and cognitive performance also remained significant after controlling for antipsychotic dose (P motivation during the 6-month follow-up was also found to be significantly related to improvement in global cognitive performance (P motivation and cognitive performance and suggest that test performance is not purely a measure of ability. Future studies assessing cognition in patients with schizophrenia should consider potential moderating variables such as effort and motivation. Implications for the assessment and interpretation of cognitive impairment based on

  3. Gypenosides ameliorate memory deficits in MPTP-lesioned mouse model of Parkinson's disease treated with L-DOPA.

    Science.gov (United States)

    Zhao, Ting Ting; Kim, Kyung Sook; Shin, Keon Sung; Park, Hyun Jin; Kim, Hyun Jeong; Lee, Kyung Eun; Lee, Myung Koo

    2017-09-06

    Previous studies have revealed that gypenosides (GPS) improve the symptoms of anxiety disorders in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rat model of Parkinson's disease (PD). The present study aimed to investigate the effects of GPS on memory deficits in an MPTP-lesioned mouse model of PD treated with L-3,4-dihydroxyphenylalanine (L-DOPA). MPTP (30 mg/kg/day, 5 days)-lesioned mice were treated with GPS (50 mg/kg) and/or L-DOPA (10 and 25 mg/kg) for 21 days. After the final treatments, behavioral changes were assessed in all mice using passive avoidance and elevated plus-maze tests. We then evaluated the biochemical influences of GPS treatment on levels of tyrosine hydroxylase (TH), dopamine, N-methyl-D-aspartate (NMDA) receptors, extracellular signal-regulated kinase (ERK1/2), and cyclic AMP-response element binding protein (CREB) phosphorylation. MPTP-lesioned mice exhibited deficits associated with habit learning and spatial memory, which were further aggravated by treatment with L-DOPA (25 mg/kg). However, treatment with GPS (50 mg/kg) ameliorated memory deficits. Treatment with GPS (50 mg/kg) also improved L-DOPA (25 mg/kg)-treated MPTP lesion-induced decreases in retention latency on the passive avoidance test, as well as levels of TH-immunopositive cells and dopamine in the substantia nigra and striatum. GPS treatment also attenuated increases in retention transfer latency on the elevated plus-maze test and in NMDA receptor expression, as well as decreases in the phosphorylation of ERK1/2 and CREB in the hippocampus. Treatment with L-DOPA (10 mg/kg) also ameliorated deficits in habit learning and spatial memory in MPTP-lesioned mice, and this effect was further enhanced by treatment with GPS (50 mg/kg). GPS ameliorate deficits in habit learning and spatial memory by modulating the dopaminergic neuronal and N-methyl-D-aspartate receptor-mediated signaling systems in MPTP-lesioned mice treated with L-DOPA. GPS may serve as an adjuvant

  4. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice.

    Science.gov (United States)

    Qu, Wenhui; Johnson, Andrea; Kim, Joo Hyun; Lukowicz, Abigail; Svedberg, Daniel; Cvetanovic, Marija

    2017-05-25

    Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1. Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age. PLX treatment resulted in the elimination of 70-80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function. A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice.

  5. 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice

    Directory of Open Access Journals (Sweden)

    Yang Tan

    2016-11-01

    Full Text Available 7,8-Dihydroxyflavone (7,8-DHF, a tyrosine kinase B (TrkB agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE-KO mouse was associated with cognitive alteration via various mechanisms. Our present study investigated the possible mechanisms of cognitive impairment of ApoE-KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving spatial learning and memory in ApoE-KO mouse. 5-weeks-old ApoE-KO mice and C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5mg/kg or vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of 30 weeks to evaluate the cognitive performances. Afterwards, histology analysis and western blotting were performed. Spatial learning and memory deficits were observed in ApoE-KO mice, which were consistent with higher expression of active-asparaginyl endopeptidase (active-AEP as well as AEP-derived truncated tauN368 compared with normal group. In addition to that, long-term treatment of 7,8-DHF dramatically ameliorated cognitive decline in ApoE-KO mice, accompanied by the activation in phosphorylated protein kinase B (Akt/glycogen synthase kinase-3β (GSK-3β pathway and down-regulated expression of tau S396 and PHF-tau (phosphorylated tau at ser396 and ser404 epitope. These findings suggested that cognitive impairment of ApoE-KO mouse might associate with tau pathology and 7,8-DHF could activate AKT and then phosphorylate its downstream molecule to inhibit expression of abnormal tau, meanwhile, 7,8-DHF could reduce the expression of active-AEP and then inhibit production of truncated tauN368.

  6. How social cognition deficits affect psychopathology: A neuroscientific approach

    Directory of Open Access Journals (Sweden)

    Andrić Sanja

    2015-01-01

    Full Text Available Humans are substantially a social species. Effective mental treatment cannot be obtained without addressing social behavior. Social cognition refers to the mental processes underlying social interactions, which allow individuals to make sense of the other peoples' behavior, to decipher emotions on their faces, and to draw conclusions about their intentions. The core domains of this multifaceted concept are theory of mind, social cue perception, attributional style and emotion perception/ processing. The amygdala, orbital frontal cortex and temporal cortex areas are typically activated during the processing of information within social-emotional context. The aforementioned brain areas are recognized as the major components of the so-called 'social brain'- specialized for the social interactions in humans. Adequate perceiving and processing of the social information is essential for an effective social functioning, which becomes obvious when it goes awry. Various psychiatric disorders are characterized by social cognitive deficits, among which schizophrenias, depression-anxiety and autism spectrum disorders were most broadly studied to date. Growing evidence suggest that these deficits underlie poor functional outcomes in patients with mental health impairments and have an important role in the initiation and maintenance of the disorders' symptoms. One of the most important goals of social neuroscience research is to provide a treatment intervention that will improve patients' social cognitive skills and the functional outcome. All together, the present review aims to provide a contemporary overview of the concept of social cognition, to outline its relation to psychopathology, and to discuss the implications for clinical practice and treatment.

  7. Neurally dissociable cognitive components of reading deficits in subacute stroke.

    Science.gov (United States)

    Boukrina, Olga; Barrett, A M; Alexander, Edward J; Yao, Bing; Graves, William W

    2015-01-01

    According to cognitive models of reading, words are processed by interacting orthographic (spelling), phonological (sound), and semantic (meaning) information. Despite extensive study of the neural basis of reading in healthy participants, little group data exist on patients with reading deficits from focal brain damage pointing to critical neural systems for reading. Here, we report on one such study. We have performed neuropsychological testing and magnetic resonance imaging on 11 patients with left-hemisphere stroke (picture or word choices to a target based on meaning), phonology (matching word choices to a target based on rhyming), and orthography (a two-alternative forced choice of the most plausible non-word). They also read aloud pseudowords and words with high or low levels of usage frequency, imageability, and spelling-sound consistency. As predicted by the cognitive model, when averaged across patients, the influence of semantics was most salient for low-frequency, low-consistency words, when phonological decoding is especially difficult. Qualitative subtraction analyses revealed lesion sites specific to phonological processing. These areas were consistent with those shown previously to activate for phonology in healthy participants, including supramarginal, posterior superior temporal, middle temporal, inferior frontal gyri, and underlying white matter. Notable divergence between this analysis and previous functional imaging is the association of lesions in the mid-fusiform gyrus and anterior temporal lobe with phonological reading deficits. This study represents progress toward identifying brain lesion-deficit relationships in the cognitive components of reading. Such correspondences are expected to help not only better understand the neural mechanisms of reading, but may also help tailor reading therapy to individual neurocognitive deficit profiles.

  8. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits.

    Science.gov (United States)

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-04-21

    Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.

  9. Cognitive control in adults with attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Dramsdahl, Margaretha; Westerhausen, René; Haavik, Jan

    2011-01-01

    The objective of the present study was to investigate the ability of adults with Attention-Deficit/Hyperactivity Disorder (ADHD) to direct their attention and exert cognitive control in a forced instruction dichotic listening (DL) task. The performance of 29 adults with ADHD was compared with 58......-forced condition), or to focus and report either the right- or left-ear syllable (forced-right and forced-left condition). This procedure is presumed to tap distinct cognitive processes: perception (non-forced condition), orienting of attention (forced-right condition), and cognitive control (forced-left condition......). Adults with ADHD did not show significant impairment in the conditions tapping perception and attention orientation, but were significantly impaired in their ability to report the left-ear syllable during the forced-left instruction condition, whereas the control group showed the expected left...

  10. Diet-induced obesity attenuates endotoxin-induced cognitive deficits.

    Science.gov (United States)

    Setti, Sharay E; Littlefield, Alyssa M; Johnson, Samantha W; Kohman, Rachel A

    2015-03-15

    Activation of the immune system can impair cognitive function, particularly on hippocampus dependent tasks. Several factors such as normal aging and prenatal experiences can modify the severity of these cognitive deficits. One additional factor that may modulate the behavioral response to immune activation is obesity. Prior work has shown that obesity alters the activity of the immune system. Whether diet-induced obesity (DIO) influences the cognitive deficits associated with inflammation is currently unknown. The present study explored whether DIO alters the behavioral response to the bacterial endotoxin, lipopolysaccharide (LPS). Female C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for a total of five months. After consuming their respective diets for four months, mice received an LPS or saline injection and were assessed for alterations in spatial learning. One month later, mice received a second injection of LPS or saline and tissue samples were collected to assess the inflammatory response within the periphery and central nervous system. Results showed that LPS administration impaired spatial learning in the control diet mice, but had no effect in DIO mice. This lack of a cognitive deficit in the DIO female mice is likely due to a blunted inflammatory response within the brain. While cytokine production within the periphery (i.e., plasma, adipose, and spleen) was similar between the DIO and control mice, the DIO mice failed to show an increase in IL-6 and CD74 in the brain following LPS administration. Collectively, these data indicate that DIO can reduce aspects of the neuroinflammatory response as well as blunt the behavioral reaction to an immune challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Mild cognitive deficits in patients with primary adrenal insufficiency.

    Science.gov (United States)

    Tiemensma, Jitske; Andela, Cornelie D; Biermasz, Nienke R; Romijn, Johannes A; Pereira, Alberto M

    2016-01-01

    The brain is a major target organ for cortisol considering its high density of glucocorticoid receptors. Several states of hypothalamus-pituitary-adrenal dysregulation point towards impairments in cognitive functioning. However, there is a very limited body of research on the effects of hypocortisolism on cognitive functioning. To evaluate cognitive functioning in patients with hypocortisolism (i.e., primary adrenal insufficiency (PAI)) and to examine the possible effect of postponing early-morning hydrocortisone intake on cognitive functioning. Thirty-one patients with PAI on regular morning hydrocortisone intake and 31 healthy matched controls underwent nine neuropsychological tests, evaluating memory and executive functioning. In addition, the effect of normal timing and postponement of morning hydrocortisone intake on neuropsychological tests were assessed in an additional 29 patients with PAI. Compared to controls, patients with PAI performed worse on auditory and visual memory tasks (all P ≤ 0.024) and executive functioning tasks (all P ≤ 0.012). In contrast, patients performed better on a concentration and an attention task (both Paffect the outcomes of neuropsychological tests. Patients on long-term hydrocortisone replacement for PAI show mild cognitive deficits compared to controls. There was no effect of postponement of regular hydrocortisone intake on cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Apelin-13 ameliorates cognitive impairments in 6-hydroxydopamine-induced substantia nigra lesion in rats.

    Science.gov (United States)

    Haghparast, Elham; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi; Sheibani, Vahid

    2018-04-01

    Although Parkinson's disease (PD) is well known with its motor deficits, the patients often suffer from cognitive dysfunction. Apelin, as the endogenous ligand of the APJ receptor, is found in several brain regions such as substantia nigra and mesolimbic pathway. However, the role of apelin in cognition and cognitive disorders has not been fully clarified. In this study the effects of apelin-13 were investigated on cognitive disorders in rat Parkinsonism experimental model. 6-hydroxydopamine (6-OHDA) was administrated into the substantia nigra. Apelin-13 (1, 2 and 3μg/rat) was administered into the substantia nigra one week after the 6-OHDA injection. Morris water maze (MWM), object location and novel object recognition tests were performed one month after the apelin injection. 6-OHDA-treated animals showed a significant impairment in cognitive functions which was revealed by the increased in the escape latency and traveled distance in MWM test and decreased in the exploration index in novel object recognition and object location tasks. Apelin-13 (3μg/rat) significantly attenuates the mentioned cognitive impairments in 6-OHDA-treated animals. In conclusion, the data support the pro-cognitive property of apelin-13 in 6-OHDA-induced cognitive deficit and provided a new pharmacological aspect of the neuropeptide apelin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.

    Science.gov (United States)

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-09-01

    Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

  14. Cognitive Deficits as a Mediator of Poor Occupational Function in Remitted Major Depressive Disorder Patients

    Science.gov (United States)

    Woo, Young Sup; Rosenblat, Joshua D.; Kakar, Ron; Bahk, Won-Myong; McIntyre, Roger S.

    2016-01-01

    Cognitive deficits in major depressive disorder (MDD) patients have been described in numerous studies. However, few reports have aimed to describe cognitive deficits in the remitted state of MDD and the mediational effect of cognitive deficits on occupational outcome. The aim of the current review is to synthesize the literature on the mediating and moderating effects of specific domains of cognition on occupational impairment among people with remitted MDD. In addition, predictors of cognitive deficits found to be vocationally important will be examined. Upon examination of the extant literature, attention, executive function and verbal memory are areas of consistent impairment in remitted MDD patients. Cognitive domains shown to have considerable impact on vocational functioning include deficits in memory, attention, learning and executive function. Factors that adversely affect cognitive function related to occupational accommodation include higher age, late age at onset, residual depressive symptoms, history of melancholic/psychotic depression, and physical/psychiatric comorbidity, whereas higher levels of education showed a protective effect against cognitive deficit. Cognitive deficits are a principal mediator of occupational impairment in remitted MDD patients. Therapeutic interventions specifically targeting cognitive deficits in MDD are needed, even in the remitted state, to improve functional recovery, especially in patients who have a higher risk of cognitive deficit. PMID:26792035

  15. Cognitive deficits in heart failure: Re-cognition of vulnerability as a strange new world.

    Science.gov (United States)

    Sloan, Rebecca S; Pressler, Susan J

    2009-01-01

    Patients with chronic heart failure (HF) have impairment in memory, psychomotor speed, and executive function. The aim of this study was to describe how individuals with HF and cognitive deficits manage self-care in their daily lives. Using an interpretive phenomenology method, HF patients completed unstructured face-to-face interviews about their ability to manage complex health regimens and maintain their health-related quality of life. Analysis of data was aided by use of Atlas.ti computer software. The sample consisted of 12 patients (10 men; aged 43-81 years) who had previously undergone neuropsychological testing and were found to have deficits in 3 or more cognitive domains. Patients confirmed that they followed the advice of healthcare providers by adherence to medication regimens, dietary sodium restrictions, and HF self-care. One overarching theme was identified: "Re-cognition of Vulnerability: A Strange New World." This theme was further differentiated into 3 components: (1) not recognizing cognitive deficits; (2) recognizing cognitive deficits, described as (a) never could remember anything, (b) just old age, (c) HF-related change, and (d) making normal accommodations; and (3) recognizing vulnerability, explained by perception of (a) cognitive, (b) physical, and (c) social vulnerabilities, as well as perception of (d) the nearness of death. Although the study was designed to focus on the cognitive changes in HF patients, it was difficult to separate cognitive, physical, and social challenges. These changes are most useful when taken as a constellation. Healthcare professionals can use the knowledge to identify problems and interventions for HF patients.

  16. Cognitive deficits in bipolar disorders: Implications for emotion.

    Science.gov (United States)

    Lima, Isabela M M; Peckham, Andrew D; Johnson, Sheri L

    2018-02-01

    Prominent cognitive deficits have been documented in bipolar disorder, and multiple studies suggest that these deficits can be observed among non-affected first-degree relatives of those with bipolar disorder. Although there is variability in the degree of cognitive deficits, these deficits are robustly relevant for functional outcomes. A separate literature documents clear difficulties in emotionality, emotion regulation, and emotion-relevant impulsivity within bipolar disorder, and demonstrates that these emotion-relevant variables are also central to outcome. Although cognitive and emotion domains are typically studied independently, basic research and emergent findings in bipolar disorder suggest that there are important ties between cognitive deficits and the emotion disturbances observed in bipolar disorder. Understanding these relationships has relevance for fostering more integrative research, for clarifying relevant aspects related to functionality and vulnerability within bipolar disorder, and for the development of novel treatment interventions. Bipolar disorder (BD) is a severe psychiatric illness that has been ranked as one of the 20 leading medical causes of disability (WHO, 2011). BD has been shown to be the psychiatric disorder with the highest rates of completed suicide across two major cohort studies (Ilgen et al., 2010; Nordentoft, Mortensen, & Pedersen, 2011). In a cross-national representative sample, one in four persons diagnosed with bipolar I disorder reported a suicide attempt (Merikangas et al., 2011). Rates of relapse remain high despite available treatments (Gitlin, Swendsen, Heller, & Hammen, 1995), and in the year after hospitalization for manic episode, two-thirds of patients do not return to work (Strakowski et al., 1998). Poverty, homelessness, and incarceration are all too common (Copeland et al., 2009). Despite the often poor outcomes, there is also evidence for outstanding accomplishments and creativity among those with milder

  17. Disrupted white matter structure underlies cognitive deficit in hypertensive patients

    International Nuclear Information System (INIS)

    Li, Xin; Ma, Chao; Zhang, Junying; Chen, Yaojing; Zhang, Zhanjun; Sun, Xuan; Chen, Kewei

    2016-01-01

    Hypertension is considered a risk factor of cognitive impairments and could result in white matter changes. Current studies on hypertension-related white matter (WM) changes focus only on regional changes, and the information about global changes in WM structure network is limited. We assessed the cognitive function in 39 hypertensive patients and 37 healthy controls with a battery of neuropsychological tests. The WM structural networks were constructed by utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. The direct and indirect correlations among cognitive impairments, brain WM network disruptions and hypertension were analyzed with structural equation modelling (SEM). Hypertensive patients showed deficits in executive function, memory and attention compared with controls. An aberrant connectivity of WM networks was found in the hypertensive patients (P Eglob = 0.005, P Lp = 0.005), especially in the frontal and parietal regions. Importantly, SEM analysis showed that the decline of executive function resulted from aberrant WM networks in hypertensive patients (p = 0.3788, CFI = 0.99). These results suggest that the cognitive decline in hypertensive patients was due to frontal and parietal WM disconnections. Our findings highlight the importance of brain protection in hypertension patients. (orig.)

  18. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer's Disease.

    Science.gov (United States)

    Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai

    2018-01-01

    Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer's disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD.

  19. Effect of herbal medicine on Poststroke cognitive deficit

    Directory of Open Access Journals (Sweden)

    Jae-kyu Kim

    2008-12-01

    Full Text Available Objectives : The aim of study was to evaluate the effect of Herbal medicine on post stroke cognitive deficit. Methods : All groups were treated with acupunture treatment, moxa treatment, herbal medicines, physical and occupational therapy for 4 weeks, additionally cardiotonic pills(CP were taken in the cardiotonic pills group. The effect of treatment was assessed using Verval fluency, MMSE-KC, Word List Immediate Recall test. Statistical significance was achived if the probability was less than 5%(p,0.05. Results : Verval fluency, MMSE-KC, Word List Immediate Recall test scores increased in both group. MMSEKC, Word List Immediate Recall test scores were significantly increased in the CP group. Verval fluency, MMSE-KC, Word List Immediate Recall test scores were significantly increased in the control group. In the Verval fluency, MMSE-KC, Word List Immediate Recall test of the CP group more increased compared to the control group. There were no significant differences between two groups. In the CP group, the scores of the infarction group more increased compared to the hemorrhage group. Conclusions : According to the these results, herbal medicines are effective to improve post stroke cognitive-deficit. Futher studies are needed to know cardiotonic pills in the ischemic stroke.

  20. Dietary supplementation with fruit polyphenolics ameliorates age-related deficits in behavior and neuronal markers of inflammation and oxidative stress.

    Science.gov (United States)

    Shukitt-Hale, Barbara; Galli, Rachel L; Meterko, Vanessa; Carey, Amanda; Bielinski, Donna F; McGhie, Tony; Joseph, James A

    2005-03-01

    Dietary supplementation with fruit or vegetable extracts can ameliorate age-related declines in measures of learning, memory, motor performance, and neuronal signal transduction in a rat model. To date, blueberries have proved most effective at improving measures of motor performance, spatial learning and memory, and neuronal functioning in old rats. In an effort to further characterize the bioactive properties of fruits rich in color and correspondingly high in anthocyanins and other polyphenolics, 19-month-old male Fischer rats were fed a well-balanced control diet, or the diet supplemented with 2% extract from either blueberry, cranberry, blackcurrant, or Boysenberry fruit for eight weeks before testing began. The blackcurrant and cranberry diets enhanced neuronal signal transduction as measured by striatal dopamine release, while the blueberry and cranberry diets were effective in ameliorating deficits in motor performance and hippocampal HSP70 neuroprotection; these changes in HSP70 were positively correlated with performance on the inclined screen. It appears that the polyphenols in blueberries and cranberries have the ability to improve muscle tone, strength and balance in aging rats, whereas polyphenols in blueberries, cranberries and blackcurrants have the ability to enhance neuronal functioning and restore the brain's ability to generate a neuroprotective response to stress.

  1. Cognitive Deficits in Breast Cancer Survivors After Chemotherapy and Hormonal Therapy.

    Science.gov (United States)

    Frank, Jennifer Sandson; Vance, David E; Triebel, Kristen L; Meneses, Karen M

    2015-12-01

    Adjuvant treatments, specifically chemotherapy and hormonal therapy, have dramatically increased breast cancer survival, resulting in increased attention to the residual effects of treatment. Breast cancer survivors (BCS) frequently report that cognitive deficits are a particular source of distress, interfering with many aspects of quality of life. The literature on neuropsychological performance measures in BCS supports the reality of subtle cognitive deficits after both chemotherapy and hormonal therapy. This premise is supported by recent imaging studies, which reveal anatomical changes after chemotherapy as well as changes in patterns of neural activation while performing cognitive tasks. This review suggests that, even when performance on neuropsychological performance measures is within normal limits, BCS may be using increased cognitive resources in the face of reduced cognitive reserve. Potential interventions for cognitive deficits after adjuvant therapy include prescriptions for healthy living, pharmacotherapy, complementary therapy, and cognitive remediation therapy directed toward specific cognitive deficits or a combination of several strategies.

  2. Cognitive Ameliorating Effect of Acanthopanax koreanum Against Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Lee, Sunhee; Park, Ho Jae; Jeon, Se Jin; Kim, Eunji; Lee, Hyung Eun; Kim, Haneul; Kwon, Yubeen; Zhang, Jiabao; Jung, In Ho; Ryu, Jong Hoon

    2017-03-01

    Acanthopanax koreanum Nakai (Araliaceae) is one of the most widely cultivated medicinal plants in Jeju Island, Korea, and the roots and stem bark of A. koreanum have been traditionally used as a tonic agent for general weakness. However, the use of A. koreanum for general weakness observed in the elderly, including those with declined cognitive function, has not been intensively investigated. This study was performed to investigate the effect of the ethanol extract of A. koreanum (EEAK) on cholinergic blockade-induced memory impairment in mice. To evaluate the ameliorating effects of EEAK against scopolamine-induced memory impairment, mice were orally administered EEAK (25, 50, 100, or 200 mg/kg), and several behavioral tasks, including a passive avoidance task, the Y-maze, and a novel object recognition task, were employed. Besides, western blot analysis was conducted to examine whether EEAK affected memory-associated signaling molecules, such as protein kinase B (Akt), Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB). The administration of EEAK (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in the passive avoidance task, the Y-maze, and the novel object recognition task. The phosphorylation levels of both Akt and CaMKII were significantly increased by approximately two-fold compared with the control group because of the administration of EEAK (100 or 200 mg/kg) (p cognitive dysfunction induced by the cholinergic blockade, in part, via several memory-associated signaling molecules and may hold therapeutic potential against cognitive dysfunction, such as that presented in neurodegenerative diseases, for example, Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Electroacupuncture ameliorates cognitive impairment through inhibition of NF-κB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats.

    Science.gov (United States)

    Feng, Xiaodong; Yang, Shanli; Liu, Jiao; Huang, Jia; Peng, Jun; Lin, Jiumao; Tao, Jing; Chen, Lidian

    2013-05-01

    Cognitive impairment is a serious mental deficit following stroke that severely affects the quality of life of stroke survivors. Nuclear factor‑κB (NF-κB)-mediated neuronal cell apoptosis is involved in the development of post-stroke cognitive impairment; therefore, it has become a promising target for the treatment of impaired cognition. Acupuncture at the Baihui (DU20) and Shenting (DU24) acupoints is commonly used in China to clinically treat post‑stroke cognitive impairment; however, the precise mechanism of its action is largely unknown. In the present study, we evaluated the therapeutic efficacy of electroacupuncture against post-stroke cognitive impairment and investigated the underlying molecular mechanisms using a rat model of focal cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture at Baihui and Shenting was identified to significantly ameliorate neurological deficits and reduce cerebral infarct volume. Additionally, electroacupuncture improved learning and memory ability in cerebral I/R injured rats, demonstrating its therapeutic efficacy against post-stroke cognitive impairment. Furthermore, electroacupuncture significantly suppressed the I/R-induced activation of NF-κB signaling in ischemic cerebral tissues. The inhibitory effect of electroacupuncture on NF-κB activation led to the inhibition of cerebral cell apoptosis. Finally, electroacupuncture markedly downregulated the expression of pro-apoptotic Bax and Fas, two critical downstream target genes of the NF-κB pathway. Collectively, our findings suggest that inhibition of NF-κB‑mediated neuronal cell apoptosis may be one mechanism via which electroacupuncture at Baihui and Shenting exerts a therapeutic effect on post-stroke cognitive impairment.

  4. Histamine ameliorates spatial memory deficits induced by MK-801 infusion into ventral hippocampus as evaluated by radial maze task in rats

    Institute of Scientific and Technical Information of China (English)

    Li-sha XU; Li-xia YANG; Wei-wei HU; Xiao YU; Li MA; Lu-ying LIU; Er-qing WEI; Zhong CHEN

    2005-01-01

    Aim: To investigate the role of histamine in memory deficits induced by MK-801 infusion into the ventral hippocampus in rats. Methods: An 8-arm radial maze (4arms baited) was used to assess spatial memory. Results: Bilateral ventral intrahippocampal (ih) infusion of MK-801 (0.3 μg/site), an N-methyl-D-aspartate (NMDA) antagonist, impaired the retrieval process in both working memory and reference memory. Intrahippocampal injection of histamine (25 or 50 ng/site) or intraperitoneal (ip) injection of histidine (25, 50 or 100 mg/kg) markedly ameliorated the spatial memory deficits induced by MK-801. Both the histamine H1 antagonist pyrilamine (0.5 or 1.0 μg/site, ih) and the H2 antagonist cimetidine (2.5 μg/site,ih) abolished the ameliorating effect of histidine (100 mg/kg, ip) on reference memory deficits, but not that on working memory deficits induced by MK-801. Conclusion:The results indicate that histamine in the ventral hippocampus can ameliorate MK-801-induced spatial memory deficits, and that histamine's effect on reference memory is mediated by postsynaptic histamine H1 and H2 receptors.

  5. Attention and Other Cognitive Deficits in Aphasia: Presence and Relation to Language and Communication Measures

    Science.gov (United States)

    Murray, Laura L.

    2012-01-01

    Purpose: This study was designed to further elucidate the relationship between cognition and aphasia, with a focus on attention. It was hypothesized that individuals with aphasia would display variable deficit patterns on tests of attention and other cognitive functions and that their attention deficits, particularly those of complex attention…

  6. Cognitive computer training in children with attention deficit hyperactivity disorder (ADHD) versus no intervention

    DEFF Research Database (Denmark)

    Bikic, Aida; Leckman, J. F.; Lindschou, Jane

    2015-01-01

    BACKGROUND: Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder characterized by symptoms of inattention and impulsivity and/or hyperactivity and a range of cognitive dysfunctions. Pharmacological treatment may be beneficial; however, many affected individuals...... of cognition, mostly on the working memory or attention but with poor generalization of training on other cognitive functions and functional outcome. Children with ADHD have a variety of cognitive dysfunctions, and it is important that cognitive training target multiple cognitive functions. METHODS...

  7. Spinocerebellar ataxia: a critical review of cognitive and socio-cognitive deficits.

    Science.gov (United States)

    Giocondo, Flora; Curcio, Giuseppe

    2018-02-01

    The primary aim of this contribution is to provide a critical discussion on cognitive and sociocognitive implications of spinocerebellar ataxias (SCAs) subtypes. The term SCA refers to a group of neurodegenerative disorders that have been increasingly investigated in the last years, sharing the characteristic of progressive ataxia resulting from degeneration of cerebellum and its connections. In past decades only involvement of cerebellum in behaviour and timing has been investigated, bringing to the belief about its central role in timing of movement and sensation, particularly for short intervals of time. Only very recently the cerebellum has been considered as a potentially important centre for cognitive processing and related spheres of social cognition, so that several studies with SCA patients have been carried out on these topics: as a consequence a section of this review will be dedicated to this important aspect. After a brief discussion on most commonly used methods to assess cognitive and socio-cognitive abilities in SCAs, cognitive and socio-cognitive profiles of principal SCA subtypes have been thoroughly reviewed and critically discussed. Due to the very poor literature in this field the most common SCA variants have been fully included (i.e. SCA1, SCA2, SCA3, SCA6 and SCA7). A comparative summary of the main characteristics of cognitive and social cognition deficit in SCA subtypes has been proposed together with a research agenda for future investigation in this field principally aimed at using measures of cognition and/or social cognition as potential predictors of the extent and progression of disease.

  8. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  9. Self-Instructional Cognitive Training to Reduce Impulsive Cognitive Style in Children with Attention Deficit with Hyperactivity Disorder

    Science.gov (United States)

    Rivera-Flores, Gladys Wilma

    2015-01-01

    Introduction: Children with attention deficit with hyperactivity disorder (ADHD) have an impulsive, rigid and field-dependent cognitive style. This study examines whether self-instructional cognitive training reduces impulsive cognitive style in children diagnosed with this disorder. Method: The subjects were 10 children between the ages of 6 and…

  10. The use of listening devices to ameliorate auditory deficit in children with autism.

    Science.gov (United States)

    Rance, Gary; Saunders, Kerryn; Carew, Peter; Johansson, Marlin; Tan, Johanna

    2014-02-01

    To evaluate both monaural and binaural processing skills in a group of children with autism spectrum disorder (ASD) and to determine the degree to which personal frequency modulation (radio transmission) (FM) listening systems could ameliorate their listening difficulties. Auditory temporal processing (amplitude modulation detection), spatial listening (integration of binaural difference cues), and functional hearing (speech perception in background noise) were evaluated in 20 children with ASD. Ten of these subsequently underwent a 6-week device trial in which they wore the FM system for up to 7 hours per day. Auditory temporal processing and spatial listening ability were poorer in subjects with ASD than in matched controls (temporal: P = .014 [95% CI -6.4 to -0.8 dB], spatial: P = .003 [1.0 to 4.4 dB]), and performance on both of these basic processing measures was correlated with speech perception ability (temporal: r = -0.44, P = .022; spatial: r = -0.50, P = .015). The provision of FM listening systems resulted in improved discrimination of speech in noise (P listening devices can enhance speech perception in noise, aid social interaction, and improve educational outcomes in children with ASD. Copyright © 2014 Mosby, Inc. All rights reserved.

  11. Selective cognitive empathy deficit in adolescents with restrictive anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Calderoni S

    2013-10-01

    Full Text Available Sara Calderoni,1 Pamela Fantozzi,1 Sandra Maestro,1 Elena Brunori,1 Antonio Narzisi,1 Giulia Balboni,2 Filippo Muratori1,31Department of Child Neurology and Psychiatry, IRCCS Stella Maris Foundation, 2Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 3Department of Developmental Medicine, University of Pisa, Pisa, ItalyBackground: A growing, but conflicting body of literature suggests altered empathic abilities in subjects with anorexia nervosa-restricting type (AN-R. This study aims to characterize the cognitive and affective empathic profiles of adolescents with purely AN-R.Methods: As part of a standardized clinical and research protocol, the Interpersonal Reactivity Index (IRI, a valid and reliable self-reported instrument to measure empathy, was administered to 32 female adolescents with AN-R and in 41 healthy controls (HC comparisons, matched for age and gender. Correlational analyses were performed to evaluate the links between empathy scores and psychopathological measures.Results: Patients scored significantly lower than HC on cognitive empathy (CE, while they did not differ from controls on affective empathy (AE. The deficit in CE was not related to either disease severity nor was it related to associated psychopathology.Conclusion: These results, albeit preliminary, suggest that a dysfunctional pattern of CE capacity may be a stable trait of AN-R that should be taken into account not only for the clinical management, but also in preventive and therapeutic intervention.Keywords: anorexia nervosa-restricting type, cognitive empathy, affective empathy, female adolescents, Interpersonal Reactivity Index

  12. Cerebrolysin Ameloriates Cognitive Deficits in Type III Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Gehan S Georgy

    Full Text Available Cerebrolysin (CBL, a mixture of several active peptide fragments and neurotrophic factors including brain-derived neurotrophic factor (BDNF, is currently used in the management of cognitive alterations in patients with dementia. Since Cognitive decline as well as increased dementia are strongly associated with diabetes and previous studies addressed the protective effect of BDNF in metabolic syndrome and type 2 diabetes; hence this work aimed to evaluate the potential neuroprotective effect of CBL in modulating the complications of hyperglycaemia experimentally induced by streptozotocin (STZ on the rat brain hippocampus. To this end, male adult Sprague Dawley rats were divided into (i vehicle- (ii CBL- and (iii STZ diabetic-control as well as (iv STZ+CBL groups. Diabetes was confirmed by hyperglycemia and elevated glycated haemoglobin (HbA1c%, which were associated by weight loss, elevated tumor necrosis factor (TNF-α and decreased insulin growth factor (IGF-1β in the serum. Uncontrolled hyperglycemia caused learning and memory impairments that corroborated degenerative changes, neuronal loss and expression of caspase (Casp-3 in the hippocampal area of STZ-diabetic rats. Behavioral deficits were associated by decreased hippocampal glutamate (GLU, glycine, serotonin (5-HT and dopamine. Moreover, diabetic rats showed an increase in hippocampal nitric oxide and thiobarbituric acid reactive substances versus decreased non-protein sulfhydryls. Though CBL did not affect STZ-induced hyperglycemia, it partly improved body weight as well as HbA1c%. Such effects were associated by enhancement in both learning and memory as well as apparent normal cellularity in CA1and CA3 areas and reduced Casp-3 expression. CBL improved serum TNF-α and IGF-1β, GLU and 5-HT as well as hampering oxidative biomarkers. In conclusion, CBL possesses neuroprotection against diabetes-associated cerebral neurodegeneration and cognitive decline via anti

  13. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model.

    Science.gov (United States)

    Monyak, R E; Emerson, D; Schoenfeld, B P; Zheng, X; Chambers, D B; Rosenfelt, C; Langer, S; Hinchey, P; Choi, C H; McDonald, T V; Bolduc, F V; Sehgal, A; McBride, S M J; Jongens, T A

    2017-08-01

    Fragile X syndrome (FXS) is an undertreated neurodevelopmental disorder characterized by low intelligence quotent and a wide range of other symptoms including disordered sleep and autism. Although FXS is the most prevalent inherited cause of intellectual disability, its mechanistic underpinnings are not well understood. Using Drosophila as a model of FXS, we showed that select expression of dfmr1 in the insulin-producing cells (IPCs) of the brain was sufficient to restore normal circadian behavior and to rescue the memory deficits in the fragile X mutant fly. Examination of the insulin signaling (IS) pathway revealed elevated levels of Drosophila insulin-like peptide 2 (Dilp2) in the IPCs and elevated IS in the dfmr1 mutant brain. Consistent with a causal role for elevated IS in dfmr1 mutant phenotypes, the expression of dfmr1 specifically in the IPCs reduced IS, and genetic reduction of the insulin pathway also led to amelioration of circadian and memory defects. Furthermore, we showed that treatment with the FDA-approved drug metformin also rescued memory. Finally, we showed that reduction of IS is required at different time points to rescue circadian behavior and memory. Our results indicate that insulin misregulation underlies the circadian and cognitive phenotypes displayed by the Drosophila fragile X model, and thus reveal a metabolic pathway that can be targeted by new and already approved drugs to treat fragile X patients.

  14. How to Cheat and Not Feel Guilty: Cognitive Dissonance and Its Amelioration in the Domain of Academic Dishonesty

    Science.gov (United States)

    Stephens, Jason M.

    2017-01-01

    The belief that cheating is wrong doesn't prevent its enactment. For example, many students cheat despite believing that is wrong or unjustifiable. The question taken up in this article concerns how the resulting cognitive dissonance is ameliorated; that is, how do students cheat and not feel guilty? This article will describe two "good"…

  15. Deficits in latent inhibition induced by estradiol replacement are ameliorated by haloperidol treatment

    Directory of Open Access Journals (Sweden)

    Anne eAlmey

    2013-10-01

    Full Text Available There are sex differences in the symptomatology of schizophrenia, and in the response to antipsychotic treatments. One hallmark symptom of schizophrenia is a deficit in selective attention. Selective attention can be measured using a latent inhibition (LI paradigm in humans; LI can be measured in rodents, and is used as an animal model of the selective attention deficits observed in schizophrenia. In the current experiments LI was used to clarify whether selective attention differs between male rats and ovariectomized (OVX female rats receiving different estradiol (E2 replacement regimens. An additional aim was to determine whether haloperidol's facilitation of LI is enhanced by E2. Males and OVX female rats were trained in a conditioned emotional response LI paradigm. Females received no E2 replacement, a chronic low dose of E2 via silastic capsule, or a high phasic dose of E2 via silastic capsule accompanied by E2 (10 ug/kg SC injections every fourth day. Actual plasma levels of E2 were determined using an enzyme linked immunosorbent assay. Rats were also administered a vehicle treatment, a 0.05mg/kg, or a 0.1mg/kg IP injection of haloperidol. Males and OVX females that did not receive E2 replacement both exhibited LI, but LI was not observed in the low and high E2 replacement groups. Haloperidol restored LI at a lower dose in the females receiving high E2 replacement compared to females receiving low E2 replacement, indicating that E2 replacement facilitates haloperidol in restoring LI.

  16. Effects of caffeine on behavioural and cognitive deficits in rats.

    Science.gov (United States)

    Assis, Melissa S; Soares, Aluízio C; de Sousa, Dircilei N; Eudes-Filho, João; Faro, Lilian Rosana F; Carneiro, Fabiana P; da Silva, Mônica V; Motoyama, Andrea B; de Souza, Greice Maria R; Marchiori, Stéphanie; de Lima, Nadyelle T; Boëchat-Barros, Raphael; Ferreira, Vania M

    2018-05-07

    There are many studies that have sought to find drug therapies to prevent harm arising from sepsis. Such studies have represented a progress in the support to septic patients and also in the development of new pharmacological alternatives. Our interest was to investigate the caffeine effect on sepsis behavioural and memory impairments. Male rats were anaesthetized and the surgery was made to allow exposure of the cecum, which was then squeezed to extrude a small amount of faeces from the perforation site, which was later placed back into the peritoneal cavity. This procedure, which served to generate experimental sepsis, is herein referred to as ceccum ligation and perforation (CLP). The caffeine (10 mg/kg) was administered by gavage route, once daily, during 7 or 14 consecutive days to investigate the effects of acute or subchronic caffeine treatment on long-term behavioural and cognitive deficits induced by CLP. On the last day, one hour after caffeine administration, the animals were submitted to open-field, elevated plus-maze (EPM), forced swimming, and step-down inhibitory avoidance tests. The results showed that caffeine increased the percentage of open arm entries and open arm time in the EPM test, and reduced the immobility time when compared to the sham-operated group. The caffeine also increased the latency in the inhibitory avoidance test platform. Our results demonstrated that the caffeine improved behavioural changes and improved the neurocognitive deficits of sepsis-surviving animals. It is possible that blockage of the adenosine receptors may be responsible for the results here observed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Subjective deficits of attention, cognition and depression in patients with narcolepsy.

    Science.gov (United States)

    Zamarian, Laura; Högl, Birgit; Delazer, Margarete; Hingerl, Katharina; Gabelia, David; Mitterling, Thomas; Brandauer, Elisabeth; Frauscher, Birgit

    2015-01-01

    Patients with narcolepsy often complain about attention deficits in everyday situations. In comparison with these subjective complaints, deficits in objective testing are subtler. The present study assessed the relationships between subjective complaints, objectively measured cognitive performance, disease-related variables, and mood. A total of 51 patients with narcolepsy and 35 healthy controls responded to questionnaires regarding subjectively perceived attention deficits, sleepiness, anxiety and depression. Moreover, they performed an extensive neuropsychological assessment tapping into attention, executive functions, and memory. Patients rated their level of attention in everyday situations to be relatively poor. In an objective assessment of cognitive functioning, they showed only slight attention and executive function deficits. The subjective ratings of attention deficits significantly correlated with ratings of momentary sleepiness, anxiety, and depression, but not with objectively measured cognitive performance. Momentary sleepiness and depression predicted almost 39% of the variance in the ratings of subjectively perceived attention deficits. The present study showed that sleepiness and depression, more than objective cognitive deficits, might play a role in the subjectively perceived attention deficits of patients with narcolepsy. The results suggested that when counselling and treating patients with narcolepsy, clinicians should pay attention to potential depression because subjective cognitive complaints may not relate to objective cognitive impairments. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Comparison of montreal cognitive assessment and mini-mental state examination in evaluating cognitive domain deficit following aneurysmal subarachnoid haemorrhage.

    Directory of Open Access Journals (Sweden)

    George Kwok Chu Wong

    Full Text Available Cognitive deficits are common after aneurysmal subarachnoid haemorrhage (aSAH, and clinical evaluation is important for their management. Our hypothesis was that the Montreal Cognitive Assessment (MoCa is superior to the Mini-Mental State Examination (MMSE in screening for cognitive domain deficit in aSAH patients.We carried out a prospective observational and diagnostic accuracy study on Hong Kong aSAH patients aged 21 to 75 years who had been admitted within 96 hours of ictus. The domain-specific neuropsychological assessment battery, the MoCA and MMSE were administered 2-4 weeks and 1 year after ictus. A cognitive domain deficit was defined as a cognitive domain z score <-1.65 (below the fifth percentile. Cognitive impairment was defined as two or more cognitive domain deficits. The study is registered at ClinicalTrials.gov of the US National Institutes of Health (NCT01038193.Both the MoCA and the MMSE were successful in differentiating between patients with and without cognitive domain deficits and cognitive impairment at both assessment periods. At 1 year post-ictus, the MoCA produced higher area under the curve scores for cognitive impairment than the MMSE (MoCA, 0.92; 95% CI, 0.83 to 0.97 versus MMSE, 0.77; 95% CI, 0.66 to 0.83, p = 0.009.Cognitive domain deficits and cognitive impairment in patients with aSAH can be screened with the MoCA in both the subacute and chronic phases.

  19. Vagus nerve stimulation ameliorated deficits in one-way active avoidance learning and stimulated hippocampal neurogenesis in bulbectomized rats.

    Science.gov (United States)

    Gebhardt, Nils; Bär, Karl-Jürgen; Boettger, Michael K; Grecksch, Gisela; Keilhoff, Gerburg; Reichart, Rupert; Becker, Axel

    2013-01-01

    Vagus nerve stimulation (VNS) has been introduced as a therapeutic option for treatment-resistant depression. The neural and chemical mechanisms responsible for the effects of VNS are largely unclear. Bilateral removal of the olfactory bulbs (OBX) is a validated animal model in depression research. We studied the effects of vagus nerve stimulation (VNS) on disturbed one-way active avoidance learning and neurogenesis in the hippocampal dentate gyrus of rats. After a stimulation period of 3 weeks, OBX rats acquired the learning task as controls. In addition, the OBX-related decrease of neuronal differentiated BrdU positive cells in the dentate gyrus was prevented by VNS. This suggests that chronic VNS and changes in hippocampal neurogenesis induced by VNS may also account for the amelioration of behavioral deficits in OBX rats. To the best of our knowledge, this is the first report on the restorative effects of VNS on behavioral function in an animal model of depression that can be compared with the effects of antidepressants. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Cognitive Deficits in Schizophrenia: Understanding the Biological Correlates and Remediation Strategies

    Science.gov (United States)

    Tripathi, Adarsh; Shukla, Rashmi

    2018-01-01

    Cognitive deficits are one of the core symptoms of schizophrenia that evolve during the course of schizophrenia, after being originated even before the onset of illness. Existing pharmacological and biological treatment modalities fall short to meet the needs to improve the cognitive symptoms; hence, various cognitive remediation strategies have been adopted to address these deficits. Research evidences suggest that cognitive remediation measures improve the functioning, limit disability bettering the quality of life. The functional outcomes of cognitive remediation in schizophrenia are resultant of neurobiological changes in specific brain areas. Recent years witnessed significant innovations in cognitive remediation strategies in schizophrenia. This comprehensive review highlights the biological correlates of cognitive deficits in schizophrenia and the remedial measures with evidence base. PMID:29397662

  1. Atomoxetine ameliorates nocturnal enuresis with subclinical attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Ohtomo, Yoshiyuki

    2017-02-01

    Recent studies have shown that incontinence and attention-deficit/hyperactivity disorder (ADHD) coexist and there is an interaction between them. The treatment for nocturnal enuresis (NE) and ADHD, however, has not been established. At the first visit to the outpatient clinic, physical examination and history taking were carried out in 265 new patients with NE. After excluding the possibility of comorbid ADHD and related disorders, patients with monosymptomatic NE (MNE) were treated with desmopressin and/or alarm, and those with non-monosymptomatic NE (NMNE) were treated with anti-cholinergics and/or alarm. This 12 week treatment did not work in 65 patients, and they were re-assessed for comorbid ADHD. A total of 24 were diagnosed with ADHD, and they were treated with atomoxetine (1.8 mg/kg/day) in addition to ongoing therapy for NE. After 8 weeks of atomoxetine, the average wet nights per months was significantly decreased: 18.5-4.6 in the MNE group (P = 0.001), and 22.1-12.4 in the NMNE group (P = 0.0251). Overall, atomoxetine was beneficial in 19 of 24 patients. Atomoxetine may be a suitable option for refractory NE with comorbid ADHD. © 2016 Japan Pediatric Society.

  2. Reinforcement and stimulant medication ameliorate deficient response inhibition in children with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Rosch, Keri S.; Fosco, Whitney D.; Pelham, William E.; Waxmonsky, James G.; Bubnik, Michelle G.; Hawk, Larry W.

    2015-01-01

    This study examined the degree to which reinforcement, stimulant medication, and their combination impact response inhibition in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Across three studies, participants with ADHD (n=111, 25 girls) and typically-developing (TD) controls (n=33, 6 girls) completed a standard version of the stop signal task (SST) and/or a reinforcement-manipulation SST with performance-contingent points. In two of these studies, these tasks were performed under placebo or 0.3 and 0.6 mg/kg methylphenidate (MPH) conditions. Cross-study comparisons were conducted to test hypotheses regarding the separate and combined effects of reinforcement and methylphenidate on response inhibition among children with ADHD relative to TD controls. Baseline response inhibition was worse among children with ADHD compared to controls. MPH produced dose-related improvements in response inhibition in children with ADHD; compared to non-medicated TD controls, 0.3 mg/kg MPH normalized deficient response inhibition, and 0.6 mg/kg MPH resulted in better inhibition in children with ADHD. Reinforcement improved response inhibition to a greater extent for children with ADHD than for TD children, normalizing response inhibition. The combination of MPH and reinforcement improved response inhibition among children with ADHD compared to reinforcement alone and MPH alone, also resulting in normalization of response inhibition despite repeated task exposure. Deficient response inhibition commonly observed in children with ADHD is significantly improved with MPH and/or reinforcement, normalizing inhibition relative to TD children tested under standard conditions. PMID:25985978

  3. Resveratrol ameliorated the behavioral deficits in a mouse model of post-traumatic stress disorder.

    Science.gov (United States)

    Zhang, Ze-Shun; Qiu, Zhi-Kun; He, Jia-Li; Liu, Xu; Chen, Ji-Sheng; Wang, Yu-Lu

    2017-10-01

    Post-traumatic stress disorder (PTSD) has become a major psychiatric and neurological issue. Resveratrol is shown to be effective on depression and anxiety. However, the mechanism of anti-PTSD-like effects of resveratrol remains unknown. The present study aimed to explore the possible molecular and cellular mechanisms underlying the anti-PTSD-like effects of resveratrol. Following a 2-day exposure to inescapable electric foot shocks, animals were administered resveratrol (10, 20, and 40mg/kg, i.g.) during the behavioral tests, which included contextual freezing measurement, elevated plus maze test, staircase test, and open field test. Similar to the positive control drug sertraline (15mg/kg, i.g.), the behavioral deficits of stressed mice were blocked by resveratrol (20 and 40mg/kg, i.g.), which reversed the increased freezing time in contextual freezing measurement and the number of rears in the staircase test and blocked the decrease in time and number of entries in open arms in the elevated plus maze test without affecting the locomotor activity in the open field test. In addition, resveratrol (20 and 40mg/kg, i.g.) antagonized the decrease in the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus. Furthermore, long-term resveratrol attenuated the dysfunctions of hypothalamic-pituitary-adrenal axis simultaneously. Collectively, the evidence indicated that the anti-PTSD-like effects of resveratrol were associated with the normalization of biosynthesis of neurosteroids in the brain and prevention of the hypothalamic-pituitary-adrenal axis dysfunction. Copyright © 2017. Published by Elsevier Inc.

  4. Pharmacological Cognitive Enhancement in Healthy Individuals: A Compensation for Cognitive Deficits or a Question of Personality?

    Directory of Open Access Journals (Sweden)

    Larissa J Maier

    Full Text Available The ongoing bioethical debate on pharmacological cognitive enhancement (PCE in healthy individuals is often legitimated by the assumption that PCE will widely spread and become desirable for the general public in the near future. This assumption was questioned as PCE is not equally save and effective in everyone. Additionally, it was supposed that the willingness to use PCE is strongly personality-dependent likely preventing a broad PCE epidemic. Thus, we investigated whether the cognitive performance and personality of healthy individuals with regular nonmedical methylphenidate (MPH use for PCE differ from stimulant-naïve controls. Twenty-five healthy individuals using MPH for PCE were compared with 39 age-, sex-, and education-matched healthy controls regarding cognitive performance and personality assessed by a comprehensive neuropsychological test battery including social cognition, prosocial behavior, decision-making, impulsivity, and personality questionnaires. Substance use was assessed through self-report in an interview and quantitative hair and urine analyses. Recently abstinent PCE users showed no cognitive impairment but superior strategic thinking and decision-making. Furthermore, PCE users displayed higher levels of trait impulsivity, novelty seeking, and Machiavellianism combined with lower levels of social reward dependence and cognitive empathy. Finally, PCE users reported a smaller social network and exhibited less prosocial behavior in social interaction tasks. In conclusion, the assumption that PCE use will soon become epidemic is not supported by the present findings as PCE users showed a highly specific personality profile that shares a number of features with illegal stimulant users. Lastly, regular MPH use for PCE is not necessarily associated with cognitive deficits.

  5. Dietary Reversal Ameliorates Short- and Long-Term Memory Deficits Induced by High-fat Diet Early in Life.

    Directory of Open Access Journals (Sweden)

    Catrina Sims-Robinson

    Full Text Available A high-fat diet (HFD, one of the major factors contributing to metabolic syndrome, which is associated with an increased risk of neurodegenerative diseases, leads to insulin resistance and cognitive impairment. It is not known whether these alterations are improved with dietary intervention. To investigate the long-term impact of a HFD on hippocampal insulin signaling and memory, C57BL6 mice were placed into one of three groups based on the diet: a standard diet (control, a HFD, or a HFD for 16 weeks and then the standard diet for 8 weeks (HF16. HFD-induced impairments in glucose tolerance and hippocampal insulin signaling occurred concurrently with deficits in both short- and long-term memory. Furthermore, these conditions were improved with dietary intervention; however, the HFD-induced decrease in insulin receptor expression in the hippocampus was not altered with dietary intervention. Our results demonstrate that memory deficits due to the consumption of a HFD at an early age are reversible.

  6. Number Processing and Heterogeneity of Developmental Dyscalculia: Subtypes with Different Cognitive Profiles and Deficits

    Science.gov (United States)

    Skagerlund, Kenny; Träff, Ulf

    2016-01-01

    This study investigated if developmental dyscalculia (DD) in children with different profiles of mathematical deficits has the same or different cognitive origins. The defective approximate number system hypothesis and the access deficit hypothesis were tested using two different groups of children with DD (11-13 years old): a group with…

  7. Downregulation of RBO-PI4KIIIα Facilitates Aβ42 Secretion and Ameliorates Neural Deficits in Aβ42-Expressing Drosophila.

    Science.gov (United States)

    Zhang, Xiao; Wang, Wen-An; Jiang, Li-Xiang; Liu, Hai-Yan; Zhang, Bao-Zhu; Lim, Nastasia; Li, Qing-Yi; Huang, Fu-De

    2017-05-10

    Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI 4 P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ 42 -expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ 42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ 42 release and that PI4P facilitated the assembly or oligomerization of Aβ 42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ 42 release and consequently reduces neuronal Aβ 42 accumulation likely via decreasing Aβ 42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment. SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ 42 -expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI 4 P-against the defects caused by Aβ 42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ 42 accumulation, and interestingly increased neuronal Aβ 42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates. Copyright

  8. Musical, visual and cognitive deficits after middle cerebral artery infarction

    Directory of Open Access Journals (Sweden)

    Stephanie Rosemann

    2017-03-01

    Full Text Available The perception of music can be impaired after a stroke. This dysfunction is called amusia and amusia patients often also show deficits in visual abilities, language, memory, learning, and attention. The current study investigated whether deficits in music perception are selective for musical input or generalize to other perceptual abilities. Additionally, we tested the hypothesis that deficits in working memory or attention account for impairments in music perception. Twenty stroke patients with small infarctions in the supply area of the middle cerebral artery were investigated with tests for music and visual perception, categorization, neglect, working memory and attention. Two amusia patients with selective deficits in music perception and pronounced lesions were identified. Working memory and attention deficits were highly correlated across the patient group but no correlation with musical abilities was obtained. Lesion analysis revealed that lesions in small areas of the putamen and globus pallidus were connected to a rhythm perception deficit. We conclude that neither a general perceptual deficit nor a minor domain general deficit can account for impairments in the music perception task. But we find support for the modular organization of the music perception network with brain areas specialized for musical functions as musical deficits were not correlated to any other impairment.

  9. Musical, visual and cognitive deficits after middle cerebral artery infarction.

    Science.gov (United States)

    Rosemann, Stephanie; Brunner, Freimuth; Kastrup, Andreas; Fahle, Manfred

    2017-03-01

    The perception of music can be impaired after a stroke. This dysfunction is called amusia and amusia patients often also show deficits in visual abilities, language, memory, learning, and attention. The current study investigated whether deficits in music perception are selective for musical input or generalize to other perceptual abilities. Additionally, we tested the hypothesis that deficits in working memory or attention account for impairments in music perception. Twenty stroke patients with small infarctions in the supply area of the middle cerebral artery were investigated with tests for music and visual perception, categorization, neglect, working memory and attention. Two amusia patients with selective deficits in music perception and pronounced lesions were identified. Working memory and attention deficits were highly correlated across the patient group but no correlation with musical abilities was obtained. Lesion analysis revealed that lesions in small areas of the putamen and globus pallidus were connected to a rhythm perception deficit. We conclude that neither a general perceptual deficit nor a minor domain general deficit can account for impairments in the music perception task. But we find support for the modular organization of the music perception network with brain areas specialized for musical functions as musical deficits were not correlated to any other impairment.

  10. Effect of Treating Anxiety Disorders on Cognitive Deficits and Behaviors Associated with Attention Deficit Hyperactivity Disorder: A Preliminary Study.

    Science.gov (United States)

    Denis, Isabelle; Guay, Marie-Claude; Foldes-Busque, Guillaume; BenAmor, Leila

    2016-06-01

    Twenty-five percent of children with ADHD also have an anxiety disorder (AD). As per Quay and in light of Barkley's model, anxiety may have a protective effect on cognitive deficits and behaviors associated with ADHD. This study aimed to evaluate the effect of treating AD on cognitive deficits and behaviors associated with ADHD in children with both disorders. Twenty-four children with ADHD and AD were divided into two groups: treatment for AD, and wait list. Participants were assessed at pre-treatment, post-treatment, and 6-month follow-up with the ADIS-C, the CBCL, and neuropsychological measures. The results revealed a significant improvement in automatic response inhibition and flexibility, and a decrease in inattention/hyperactivity behaviors following the treatment for AD. No significant differences were observed in motor response inhibition, working memory, or attention deficits. The results do not seem to support Quay's hypothesis: treating AD did not exacerbate cognitive deficits and behaviors associated with ADHD in our sample.

  11. Antioxidant Treatment with N-acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits that Result from Perinatal Ketamine Treatment

    Directory of Open Access Journals (Sweden)

    Aarron Phensy

    2017-06-01

    Full Text Available Alterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia. Here we tested whether antioxidant treatment with the glutathione (GSH precursor N-acetyl-cysteine (NAC can prevent the development of these behavioral deficits. On postnatal days (PND 7, 9 and 11, we treated mice with subanesthetic doses (30 mg/kg of ketamine or saline. Two groups (either ketamine or saline treated also received NAC throughout development. In adult animals (PND 70–120 we then assessed behavioral alterations in a battery of cognitive and psychomotor tasks. Ketamine-treated animals showed deficits in a task of cognitive flexibility, abnormal patterns of spontaneous alternation, deficits in novel-object recognition, as well as social interaction. Developmental ketamine treatment also induced behavioral stereotypy in response to an acute amphetamine challenge, and it impaired sensorimotor gating, measured as reduced prepulse inhibition (PPI of the startle response. All of these behavioral abnormalities were either prevented or strongly ameliorated by NAC co-treatment. These results suggest that oxidative stress is a major factor for the development of the ketamine-induced behavioral dysfunctions, and that restoring oxidative balance during the prodromal stage of schizophrenia might be able to ameliorate the development of several major symptoms of the disease.

  12. Face-Name Associative Recognition Deficits in Subjective Cognitive Decline and Mild Cognitive Impairment.

    Science.gov (United States)

    Polcher, Alexandra; Frommann, Ingo; Koppara, Alexander; Wolfsgruber, Steffen; Jessen, Frank; Wagner, Michael

    2017-01-01

    There is a need for more sensitive neuropsychological tests to detect subtle cognitive deficits emerging in the preclinical stage of Alzheimer's disease (AD). Associative memory is a cognitive function supported by the hippocampus and affected early in the process of AD. We developed a short computerized face-name associative recognition test (FNART) and tested whether it would detect memory impairment in memory clinic patients with mild cognitive impairment (MCI) and subjective cognitive decline (SCD). We recruited 61 elderly patients with either SCD (n = 32) or MCI (n = 29) and 28 healthy controls (HC) and compared performance on FNART, self-reported cognitive deterioration in different domains (ECog-39), and, in a reduced sample (n = 46), performance on the visual Paired Associates Learning of the CANTAB battery. A significant effect of group on FNART test performance in the total sample was found (p < 0.001). Planned contrasts indicated a significantly lower associative memory performance in the SCD (p = 0.001, d = 0.82) and MCI group (p < 0.001, d = 1.54), as compared to HCs, respectively. The CANTAB-PAL discriminated only between HC and MCI, possibly because of reduced statistical power. Adjusted for depression, performance on FNART was significantly related to ECog-39 Memory in SCD patients (p = 0.024) but not in MCI patients. Associative memory is substantially impaired in memory clinic patients with SCD and correlates specifically with memory complaints at this putative preclinical stage of AD. Further studies will need to examine the predictive validity of the FNART in SCD patients with regard to longitudinal (i.e., conversion to MCI/AD) and biomarker outcomes.

  13. Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult.

    Science.gov (United States)

    O'Reilly, Kally C; Perica, Maria I; Fenton, André A

    2016-10-01

    Cognitive impairments are amongst the most debilitating deficits of schizophrenia and the best predictor of functional outcome. Schizophrenia is hypothesized to have a neurodevelopmental origin, making animal models of neurodevelopmental insult important for testing predictions that early insults will impair cognitive function. Rats exposed to methylazoxymethanol acetate (MAM) at gestational day 17 display morphological, physiological and behavioral abnormalities relevant to schizophrenia. Here we investigate the cognitive abilities of adult MAM rats. We examined brain activity in MAM rats by histochemically assessing cytochrome oxidase enzyme activity, a metabolic marker of neuronal activity. To assess cognition, we used a hippocampus-dependent two-frame active place avoidance paradigm to examine learning and spatial memory, as well as cognitive control and flexibility using the same environment and evaluating the same set of behaviors. We confirmed that adult MAM rats have altered hippocampal morphology and brain function, and that they are hyperactive in an open field. The latter likely indicates MAM rats have a sensorimotor gating deficit that is common to many animal models used for schizophrenia research. On first inspection, cognitive control seems impaired in MAM rats, indicated by more errors during the two-frame active place avoidance task. Because MAM rats are hyperactive throughout place avoidance training, we considered the possibility that the hyperlocomotion may account for the apparent cognitive deficits. These deficits were reduced on the basis of measures of cognitive performance that account for motor activity differences. However, though other aspects of memory are intact, the ability of MAM rats to express trial-to-trial memory is delayed compared to control rats. These findings suggest that spatial learning and cognitive abilities are largely intact, that the most prominent cognitive deficit is specific to acquiring memory in the MAM

  14. Social Cognition Deficits: Current Position and Future Directions for Neuropsychological Interventions in Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Progress Njomboro

    2017-01-01

    Full Text Available Neuropsychological assessments of cognitive dysfunction in cerebrovascular illness commonly target basic cognitive functions involving aspects of memory, attention, language, praxis, and number processing. Here, I highlight the clinical importance of often-neglected social cognition functions. These functions recruit a widely distributed neural network, making them vulnerable in most cerebrovascular diseases. Sociocognitive deficits underlie most of the problematic social conduct observed in patients and are associated with more negative clinical outcomes (compared to nonsocial cognitive deficits. In clinical settings, social cognition deficits are normally gleaned from collateral information from caregivers or from indirect inferences made from patients’ performance on standard nonsocial cognitive tests. Information from these sources is however inadequate. I discuss key social cognition functions, focusing initially on deficits in emotion perception and theory of mind, two areas that have gained sizeable attention in neuroscientific research, and then extend the discussion into relatively new, less covered but crucial functions involving empathic behaviour, social awareness, social judgements, and social decision making. These functions are frequently impaired following neurological change. At present, a wide range of psychometrically robust social cognition tests is available, and this review also makes the case for their inclusion in neuropsychological assessments.

  15. Cognitive-Linguistic Deficit and Speech Intelligibility in Chronic Progressive Multiple Sclerosis

    Science.gov (United States)

    Mackenzie, Catherine; Green, Jan

    2009-01-01

    Background: Multiple sclerosis is a disabling neurological disease with varied symptoms, including dysarthria and cognitive and linguistic impairments. Association between dysarthria and cognitive-linguistic deficit has not been explored in clinical multiple sclerosis studies. Aims: In patients with chronic progressive multiple sclerosis, the…

  16. Motor and cognitive impairment after stroke : A common bond or a simultaneous deficit?

    NARCIS (Netherlands)

    Verstraeten, S.M.M.; Mark, R.E.; Sitskoorn, M.M.

    2016-01-01

    Background: The prevalence of both motor deficit and cognitive impairment after stroke is high and persistent. Motor impairment, especially paresis, is often ore obvious to both patients and their carers while cognitive problems can also have devastating effects on quality of life. The current

  17. Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder.

    Science.gov (United States)

    Gong, Liang; Yin, Yingying; He, Cancan; Ye, Qing; Bai, Feng; Yuan, Yonggui; Zhang, Haisan; Lv, Luxian; Zhang, Hongxing; Xie, Chunming; Zhang, Zhijun

    2017-01-01

    Neuroimaging studies have demonstrated that major depressive disorder (MDD) patients show blunted activity responses to reward-related tasks. However, whether abnormal reward circuits affect cognition and depression in MDD patients remains unclear. Seventy-five drug-naive MDD patients and 42 cognitively normal (CN) subjects underwent a resting-state functional magnetic resonance imaging scan. The bilateral nucleus accumbens (NAc) were selected as seeds to construct reward circuits across all subjects. A multivariate linear regression analysis was employed to investigate the neural substrates of cognitive function and depression severity on the reward circuits in MDD patients. The common pathway underlying cognitive deficits and depression was identified with conjunction analysis. Compared with CN subjects, MDD patients showed decreased reward network connectivity that was primarily located in the prefrontal-striatal regions. Importantly, distinct and common neural pathways underlying cognition and depression were identified, implying the independent and synergistic effects of cognitive deficits and depression severity on reward circuits. This study demonstrated that disrupted topological organization within reward circuits was significantly associated with cognitive deficits and depression severity in MDD patients. These findings suggest that in addition to antidepressant treatment, normalized reward circuits should be a focus and a target for improving depression and cognitive deficits in MDD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Guillermo Gonzalez-Burgos

    2011-01-01

    Full Text Available Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  19. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Fish, Kenneth N; Lewis, David A

    2011-01-01

    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  20. Oxytocin, Dopamine, and the Amygdala: A Neurofunctional Model of Social Cognitive Deficits in Schizophrenia

    OpenAIRE

    Rosenfeld, Andrew J.; Lieberman, Jeffrey A.; Jarskog, L. Fredrik

    2010-01-01

    Until recently, the social cognitive impairment in schizophrenia has been underappreciated and remains essentially untreated. Deficits in emotional processing, social perception and knowledge, theory of mind, and attributional bias may contribute to functional social cognitive impairments in schizophrenia. The amygdala has been implicated as a key component of social cognitive circuitry in both animal and human studies. In addition, structural and functional studies of schizophrenia reproduci...

  1. Uncovering the Neural Bases of Cognitive and Affective Empathy Deficits in Alzheimer's Disease and the Behavioral-Variant of Frontotemporal Dementia.

    Science.gov (United States)

    Dermody, Nadene; Wong, Stephanie; Ahmed, Rebekah; Piguet, Olivier; Hodges, John R; Irish, Muireann

    2016-05-30

    Loss of empathy is a core presenting feature of the behavioral-variant of frontotemporal dementia (bvFTD), resulting in socioemotional difficulties and behavioral transgressions. In contrast, interpersonal functioning remains relatively intact in Alzheimer's disease (AD), despite marked cognitive decline. The neural substrates mediating these patterns of loss and sparing in social functioning remain unclear, yet are relevant for our understanding of the social brain. We investigated cognitive versus affective aspects of empathy using the Interpersonal Reactivity Index (IRI) in 25 AD and 24 bvFTD patients and contrasted their performance with 22 age- and education-matched controls. Cognitive empathy was comparably compromised in AD and bvFTD, whereas affective empathy was impaired exclusively in bvFTD. While controlling for overall cognitive dysfunction ameliorated perspective-taking deficits in AD, empathy loss persisted across cognitive and affective domains in bvFTD. Voxel-based morphometry analyses revealed divergent neural substrates of empathy loss in each patient group. Perspective-taking deficits correlated with predominantly left-sided temporoparietal atrophy in AD, whereas widespread bilateral frontoinsular, temporal, parietal, and occipital atrophy was implicated in bvFTD. Reduced empathic concern in bvFTD was associated with atrophy in the left orbitofrontal, inferior frontal, and insular cortices, and the bilateral mid-cingulate gyrus. Our findings suggest that social cognitive deficits in AD arise largely as a consequence of global cognitive dysfunction, rather than a loss of empathy per se. In contrast, loss of empathy in bvFTD reflects the deterioration of a distributed network of frontoinsular and temporal structures that appear crucial for monitoring and processing social information.

  2. A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits.

    Science.gov (United States)

    Leiser, Steven C; Bowlby, Mark R; Comery, Thomas A; Dunlop, John

    2009-06-01

    Cognition, memory, and attention and arousal have been linked to nicotinic acetylcholine receptors (nAChRs). Thus it is not surprising that nAChRs have been strongly implicated as therapeutic targets for treating cognitive deficits in disorders such as schizophrenia and Alzheimer's disease (AD). In particular the alpha7 (alpha7) nAChR has been closely linked with normalization of P50 auditory evoked potential (AEP) gating deficits, and to a lesser extent improvements in pre-pulse inhibition (PPI) of the acoustic startle response. These two brain phenomena can be considered as pre-attentive, occurring while sensory information is being processed, and are important endophenotypes in schizophrenia with deficits likely contributing to the cognitive fragmentation associated with the disease. In addition alpha7 nAChRs have been implicated in attention, in particular under high attentional demand, and in more demanding working memory tasks such as long delays in delayed matching tasks. Efficacy of alpha7 nAChR agonists across a range of cognitive processes ranging from pre-attentive to attentive states and working and recognition memory provides a solid basis for their pro-cognitive effects. This review will focus on the recent work highlighting the role of alpha7 in cognition and cognitive processes.

  3. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment

    Science.gov (United States)

    2013-01-01

    Background In vitro antioxidant activities and neuron-like PC12 cell protective effects of solvent fractions from aged garlic extracts were investigated to evaluate their anti-amnesic functions. Ethyl acetate fractions of aged garlic had higher total phenolics than other fractions. Methods Antioxidant activities of ethyl acetate fractions from aged garlic were examined using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and malondialdehyde (MDA) inhibitory effect using mouse whole brain homogenates. Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate (DCF-DA). PC12 cell viability was investigated by 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydtrogenase (LDH) assay. The learning and memory impairment in institute of cancer research (ICR) mice was induced by neurotoxic amyloid beta protein (Aβ) to investigate in vivo anti-amnesic effects of aged garlic extracts by using Y-maze and passive avoidance tests. Results We discovered that ethyl acetate fractions showed the highest ABTS radical scavenging activity and MDA inhibitory effect. Intracellular ROS accumulation resulting from Aβ treatment in PC12 cells was significantly reduced when ethyl acetate fractions were presented in the medium compare to PC12 cells which was only treated with Aβ only. Ethyl acetate fractions from aged garlic extracts showed protection against Aβ-induced neurotoxicity. Pre-administration with aged garlic extracts attenuated Aβ-induced learning and memory deficits in both in vivo tests. Conclusions Our findings suggest that aged garlic extracts with antioxidant activities may improve cognitive impairment against Aβ-induced neuronal deficit, and possess a wide range of beneficial activities for neurodegenerative disorders, notably Alzheimer's disease (AD). PMID:24134394

  4. Low-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Function and Synaptic Plasticity in APP23/PS45 Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Zhilin Huang

    2017-09-01

    Full Text Available Alzheimer’s disease (AD is a chronic neurodegenerative disease leading to dementia, which is characterized by progressive memory loss and other cognitive dysfunctions. Recent studies have attested that noninvasive repetitive transcranial magnetic stimulation (rTMS may help improve cognitive function in patients with AD. However, the majority of these studies have focused on the effects of high-frequency rTMS on cognitive function, and little is known about low-frequency rTMS in AD treatment. Furthermore, the potential mechanisms of rTMS on the improvement of learning and memory also remain poorly understood. In the present study, we reported that severe deficits in spatial learning and memory were observed in APP23/PS45 double transgenic mice, a well known mouse model of AD. Furthermore, these behavioral changes were accompanied by the impairment of long-term potentiation (LTP in the CA1 region of hippocampus, a brain region vital to spatial learning and memory. More importantly, 2-week low-frequency rTMS treatment markedly reversed the impairment of spatial learning and memory as well as hippocampal CA1 LTP. In addition, low-frequency rTMS dramatically reduced amyloid-β precursor protein (APP and its C-terminal fragments (CTFs including C99 and C89, as well as β-site APP-cleaving enzyme 1 (BACE1 in the hippocampus. These results indicate that low-frequency rTMS noninvasively and effectively ameliorates cognitive and synaptic functions in a mouse model of AD, and the potential mechanisms may be attributed to rTMS-induced reduction in Aβ neuropathology.

  5. Using upper limb kinematics to assess cognitive deficits in people living with both HIV and stroke.

    Science.gov (United States)

    Bui, Kevin D; Rai, Roshan; Johnson, Michelle J

    2017-07-01

    In this study, we aim to explore ways to objectively assess cognitive deficits in the stroke and HIV/stroke populations, where cognitive and motor impairments can be hard to separate. Using an upper limb rehabilitation robot called the Haptic TheraDrive, we collect performance error scores and motor learning data on the impaired and unimpaired limb during a trajectory tracking task. We compare these data to clinical cognitive scores. The preliminary results suggest a possible relationship between unimpaired upper limb performance error and visuospatial/executive function cognitive domains, but more work needs to be done to further investigate this. The potential of using robot-assisted technologies to measure unimpaired limb kinematics as a tool to assess cognitive deficits would be useful to inform more effective rehabilitation strategies for HIV, stroke, and HIV/stroke populations.

  6. THE ORIGINS OF COGNITIVE DEFICITS IN VICTIMIZED CHILDREN: IMPLICATIONS FOR NEUROSCIENTISTS AND CLINICIANS

    Science.gov (United States)

    Danese, Andrea; Moffitt, Terrie E; Arseneault, Louise; Bleiberg, Ben A; Dinardo, Perry B; Gandelman, Stephanie B; Houts, Renate; Ambler, Antony; Fisher, Helen; Poulton, Richie; Caspi, Avshalom

    2016-01-01

    OBJECTIVE Individuals reporting a history of childhood violence victimization have impaired brain function. However, the clinical significance, reproducibility, and causality of these findings are disputed. We directly tested these research gaps. METHOD We tested the association between prospectively-collected measures of childhood violence victimization and cognitive functions in childhood, adolescence, and adulthood among 2,232 members of the UK E-Risk Study and 1,037 members of the New Zealand Dunedin Study, who were followed-up from birth until ages 18 and 38 years, respectively. We used multiple measures of victimization and cognition, and included comparisons of cognitive scores for twins discordant for victimization. RESULTS We found that individuals exposed to childhood victimization had pervasive impairments in clinically-relevant cognitive functions including general intelligence, executive function, processing speed, memory, perceptual reasoning, and verbal comprehension in adolescence and adulthood. However, the observed cognitive deficits in victimized individuals were largely explained by cognitive deficits that predated childhood victimization and by confounding genetic and environmental risks. CONCLUSIONS Findings from two population-representative birth cohorts totaling more than 3,000 individuals and born 20 years and 20,000 kilometers apart suggest that the association between childhood violence victimization and later cognition is largely non-causal, in contrast to conventional interpretations. These findings urge adopting a more circumspect approach to causal inference in the neuroscience of stress. Clinically, cognitive deficits should be conceptualized as individual risk factors for victimization as well as potential complicating features during treatment. PMID:27794691

  7. BDNF (brain-derived neurotrophic factor) serum levels in schizophrenic patients with cognitive deficits

    Science.gov (United States)

    Utami, N.; Effendy, E.; Amin, M. M.

    2018-03-01

    Schizophrenia is a complex neurodevelopmental disorder with cognitive impairment as the main part. BDNF regulates aspects of developmental plasticity in the brain and is involved in cognitive function. Cognitive functions include capabilities such as attention, executive functioning, assessing, monitoring and evaluating. The aim of the study was to know the BDNF levels in schizophrenic patients with cognitive deficits. The study was held in October 2016 - March 2017, and was the first in Indonesia, especially in North Sumatra. The study was approved by the medical ethics committee of the University of North Sumatera. The study is descriptive based on a retrospective method with cross-sectional approach. The subject is 40 male schizophrenia. Cognitive deficits were assessed by MoCA-Ina. BDNF serum levels were analyzed using the quantitative sandwich enzyme immunoassay. The average MoCA-Ina score is 21.03±5.21. This suggests that there is a cognitive function deficit in schizophrenic patients. The mean serum BDNF level was 26629±6762. MoCA-Ina scores in schizophrenic patients <26 who experienced a deficit of 77.5% and serum BDNF levels with normal values ranging from 6.186 to 42.580pg/ml.

  8. Olanzapine Reverses MK-801-Induced Cognitive Deficits and Region-Specific Alterations of NMDA Receptor Subunits

    Science.gov (United States)

    Liu, Xiao; Li, Jitao; Guo, Chunmei; Wang, Hongli; Sun, Yaxin; Wang, Han; Su, Yun-Ai; Li, Keqing; Si, Tianmei

    2018-01-01

    Cognitive dysfunction constitutes an essential component in schizophrenia for its early presence in the pathophysiology of the disease and close relatedness to life quality of patients. To develop effective treatment of cognitive deficits, it is important to understand their neurobiological causes and to identify potential therapeutic targets. In this study, adopting repeated MK-801 treatment as an animal model of schizophrenia, we investigated whether antipsychotic drugs, olanzapine and haloperidol, can reverse MK-801-induced cognitive deficits and how the reversal processes recruited proteins involved in glutamate neurotransmission in rat medial prefrontal cortex (mPFC) and hippocampus. We found that low-dose chronic MK-801 treatment impaired object-in-context recognition memory and reversal learning in the Morris water maze, leaving reference memory relatively unaffected, and that these cognitive deficits can be partially reversed by olanzapine, not haloperidol, treatment. At the molecular level, chronic MK-801 treatment resulted in the reduction of multiple N-methyl-D-aspartate (NMDA) receptor subunits in rat mPFC and olanzapine, not haloperidol, treatment restored the levels of GluN1 and phosphorylated GluN2B in this region. Taken together, MK-801-induced cognitive deficits may be associated with region-specific changes in NMDA receptor subunits and the reversal of specific NMDA receptor subunits may underlie the cognition-enhancing effects of olanzapine. PMID:29375333

  9. Melatonin reverses type 2 diabetes-induced cognitive deficits via ...

    African Journals Online (AJOL)

    Purpose: To evaluate the protective effect of melatonin on diabetes-induced cognitive dysfunction. Methods: Rats ... suggests that melatonin may be useful for the management of cognitive dysfunction in patients suffering ... as amyotrophic lateral sclerosis, Alzheimer's disease ..... with the inhibitory kappa beta (Iκβ) family.

  10. Potential Ameliorative Effects of Qing Ye Dan Against Cadmium Induced Prostatic Deficits via Regulating Nrf-2/HO-1 and TGF-β1/Smad Pathways.

    Science.gov (United States)

    Du, Lifen; Lei, Yongfang; Chen, Jinglou; Song, Hongping; Wu, Xinying

    2017-01-01

    Cadmium (Cd) is an environmental pollutant with reproductive toxicity. Swertia mileensis is used in Chinese medicine for the treatment of prostatic deficits and named as Qing Ye Dan (QYD). This study was undertaken to investigate the potential protective effects of QYD against Cd-induced prostatic deficits. Rat model of prostatic deficits was induced by 0.2 mg/kg/d CdCl2 subcutaneous injection for 15 days. The prostatic oxidative stress was evaluated by detecting the levels of malondialdehyde, nitric oxide, reduced/ oxidized glutathione, total sulfhydryl groups and enzymatic antioxidant status. The prostatic inflammation was estimated by testing the levels of pro-inflammatory cytokines. The levels of epithelial-mesenchymal transition (EMT) markers E-cadherin, fibronectin, vimentin and α-smooth muscle actin were measured by qPCR analysis. Additionally, the prostatic expressions of transforming growth factor-β1 (TGF-β1), type I TGF-β receptor (TGF-βRI), Smad2, phosphorylation-Smad2 (p-Smad2), Smad3, p-Smad3, Smad7, nuclear related factor-2 (Nrf-2), heme oxygenase-1 (HO-1), B-cell CLL/lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax) were measured by western blot assay. It was found that QYD ameliorated the Cd-induced prostatic oxidative stress and inflammation, attenuated prostatic EMT, inhibited the TGF-β1/Smad pathway, increased Bcl-2/Bax ratio and enhanced the activity of Nrf-2/HO-1 pathway. These results showed that QYD could ameliorate Cd-induced prostatic deficits via modulating Nrf-2/HO-1 and TGF-β1/Smad pathways. © 2017 The Author(s). Published by S. Karger AG, Basel.

  11. Cognitive deficits in problematic drinkers with and without mild to borderline intellectual disability.

    Science.gov (United States)

    van Duijvenbode, Neomi; Didden, Robert; VanDerNagel, Joanne El; Korzilius, Hubert Plm; Engels, Rutger Cme

    2018-03-01

    We examined cognitive deficits in problematic drinkers with and without mild to borderline intellectual disability (MBID). Problematic drinkers were expected to show a significantly lower estimated performance IQ (PIQ), but not a lower estimated verbal IQ (VIQ), compared to light drinkers. Participants ( N = 474) were divided into four groups based on IQ and severity of alcohol use-related problems. IQ was estimated using (a short form of) the Wechsler Adult Intelligence Scale third edition. Severity of alcohol use-related problems was assessed using the Alcohol Use Disorder Identification Test. Overall, there were no significant differences between light and problematic drinkers on estimated VIQ. Within the group without MBID, estimated PIQ was significantly lower. Estimated PIQ was not lower in problematic drinkers with MBID compared to light drinkers with MBID. The results are indicative of cognitive deficits in problematic drinkers without MBID. Screening for cognitive deficits with additional instruments is advised.

  12. Frequent mild cognitive deficits in several functional domains in elderly patients with heart failure without known cognitive disorders.

    Science.gov (United States)

    Nordlund, Arto; Berggren, Jens; Holmström, Alexandra; Fu, Michael; Wallin, Anders

    2015-09-01

    The objective of the present study was to investigate whether mild cognitive deficits are present in patients with heart failure (HF) despite absence of any known cognitive disorder. A well defined group of patients (n = 40) with heart failure completed a cognitive screening check list, a depression screening questionnaire, and a battery consisting of neuropsychological tests assessing 5 different cognitive domains: speed/attention, episodic memory, visuospatial functions, language, and executive functions. The neuropsychological results were compared with those from a group of healthy control subjects (n = 41). The patients with HF displayed cognitive impairment compared with the control group within the domains speed and attention, episodic memory, visuospatial functions, and language. Among them, 34 HF patients (85%) could be classified with mild cognitive impairment (MCI), the majority as nonamnestic MCI, ie, with no memory impairment. Considering the high occurrence of mild cognitive deficits among HF patients without known cognitive disorders, closer attention should be paid to their self-care and compliance. Inadequate self-care and compliance could lead to more frequent hospitalizations. Furthermore, the HF patients may be at increased risk of dementia. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  14. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    International Nuclear Information System (INIS)

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-01-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders

  15. Cognitive deficits and levels of IQ in adolescent onset schizophrenia and other psychotic disorders

    DEFF Research Database (Denmark)

    Fagerlund, Birgitte; Pagsberg, A Katrine; Hemmingsen, Ralf

    2006-01-01

    Cognitive deficits have been found to be prevalent in early onset schizophrenia. Whether these deficits also characterise other early onset psychotic disorders to a similar degree is unclear, as very few comparative studies have been done. The primary purpose of this study was to compare the prof......Cognitive deficits have been found to be prevalent in early onset schizophrenia. Whether these deficits also characterise other early onset psychotic disorders to a similar degree is unclear, as very few comparative studies have been done. The primary purpose of this study was to compare...... the profile and severity of cognitive impairments in first-episode early onset psychotic patients who received the schizophrenia diagnosis to those diagnosed with other non-organic, non-affective psychotic disorders. The secondary purpose was to examine whether the profile of cognitive deficits, in terms...... of intelligence, executive functions, memory, attention and processing speed was global or specific. First-episode psychotic adolescents (N = 39) between the ages 11 and 17 years were included, 18 of whom were diagnosed with schizophrenia, and 21 with other non-organic, non-affective psychoses, using ICD-10...

  16. Ages and Stages Questionnaire used to measure cognitive deficit in children born extremely preterm

    DEFF Research Database (Denmark)

    Klamer, Anja; Lando, Ane; Pinborg, Anja

    2005-01-01

    AIM: To validate the Ages and Stages Questionnaire (ASQ) and to measure average cognitive deficit in children born extremely preterm. METHODS: Parents of 30 term children aged 36-42 mo completed the ASQ and the children underwent the Wechsler Preschool and Primary Scales of Intelligence--Revised.......AIM: To validate the Ages and Stages Questionnaire (ASQ) and to measure average cognitive deficit in children born extremely preterm. METHODS: Parents of 30 term children aged 36-42 mo completed the ASQ and the children underwent the Wechsler Preschool and Primary Scales of Intelligence...

  17. Cognitive deficits in Parkinson’s disease: current perspectives

    Directory of Open Access Journals (Sweden)

    Cosgrove J

    2018-01-01

    Full Text Available Jeremy Cosgrove, Jane Elizabeth Alty Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds, UK Abstract: Cognitive dysfunction is a common and significant non-motor symptom of Parkinson’s disease (PD. PD mild cognitive impairment (PD-MCI is evident in approximately one-quarter of patients at the time of PD diagnosis, and half of PD patients have progressed to PD dementia (PDD after 10 years. The transition to PDD from PD-MCI is not linear and may depend on the facets of cognition affected. Despite increased understanding of pathological, neurotransmitter and genetic drivers, there are no proven pharmacological treatments for PD-MCI and those licensed for PDD are of modest benefit only. Biomarkers to predict those most at risk of developing PDD are under investigation and are likely to be essential so that early and individualized treatment can be provided. Keywords: Parkinson’s disease, mild cognitive impairment, dementia

  18. Cognitive computer training in children with attention deficit hyperactivity disorder (ADHD) versus no intervention

    DEFF Research Database (Denmark)

    Bikic, Aida; Leckman, James F; Lindschou, Jane

    2015-01-01

    BACKGROUND: Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder characterized by symptoms of inattention and impulsivity and/or hyperactivity and a range of cognitive dysfunctions. Pharmacological treatment may be beneficial; however, many affected individuals...... of cognition, mostly on the working memory or attention but with poor generalization of training on other cognitive functions and functional outcome. Children with ADHD have a variety of cognitive dysfunctions, and it is important that cognitive training target multiple cognitive functions. METHODS...... continue to have difficulties with cognitive functions despite medical treatment, and up to 30 % do not respond to pharmacological treatment. Inadequate medical compliance and the long-term effects of treatment make it necessary to explore nonpharmacological and supplementary treatments for ADHD. Treatment...

  19. The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kanouchi

    Full Text Available Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, a solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence-accelerated P8 mouse. Senescence-accelerated P8 mice were fed 0.25% (w/w concentrated Kurozu or 0.5% (w/w Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect; however, the level of lipid peroxidation in the brain did not differ in senescence-accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. The suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons.

  20. Gray matter morphological anomalies in the cerebellar vermis in first-episode schizophrenia patients with cognitive deficits.

    Science.gov (United States)

    Wang, Jingjuan; Zhou, Li; Cui, Chunlei; Liu, Zhening; Lu, Jie

    2017-11-22

    Cognitive deficits are a core feature of early schizophrenia. However, the pathological foundations underlying cognitive deficits are still unknown. The present study examined the association between gray matter density and cognitive deficits in first-episode schizophrenia. Structural magnetic resonance imaging of the brain was performed in 34 first-episode schizophrenia patients and 21 healthy controls. Patients were divided into two subgroups according to working memory task performance. The three groups were well matched for age, gender, and education, and the two patient groups were also further matched for diagnosis, duration of illness, and antipsychotic treatment. Voxel-based morphometric analysis was performed to estimate changes in gray matter density in first-episode schizophrenia patients with cognitive deficits. The relationships between gray matter density and clinical outcomes were explored. Patients with cognitive deficits were found to have reduced gray matter density in the vermis and tonsil of cerebellum compared with patients without cognitive deficits and healthy controls, decreased gray matter density in left supplementary motor area, bilateral precentral gyrus compared with patients without cognitive deficits. Classifier results showed GMD in cerebellar vermis tonsil cluster could differentiate SZ-CD from controls, left supplementary motor area cluster could differentiate SZ-CD from SZ-NCD. Gray matter density values of the cerebellar vermis cluster in patients groups were positively correlated with cognitive severity. Decreased gray matter density in the vermis and tonsil of cerebellum may underlie early psychosis and serve as a candidate biomarker for schizophrenia with cognitive deficits.

  1. Deficits in social cognition and response flexibility in pediatric bipolar disorder.

    Science.gov (United States)

    McClure, Erin B; Treland, Julia E; Snow, Joseph; Schmajuk, Mariana; Dickstein, Daniel P; Towbin, Kenneth E; Charney, Dennis S; Pine, Daniel S; Leibenluft, Ellen

    2005-09-01

    Little is known about neuropsychological and social-cognitive function in patients with pediatric bipolar disorder. Identification of specific deficits and strengths that characterize pediatric bipolar disorder would facilitate advances in diagnosis, treatment, and research on pathophysiology. The purpose of this study was to test the hypothesis that youths with bipolar disorder would perform more poorly than matched healthy comparison subjects on measures of social cognition, motor inhibition, and response flexibility. Forty outpatients with pediatric bipolar disorder and 22 comparison subjects (no differences in age, gender, and IQ) completed measures of social cognition (the pragmatic judgment subtest of the Comprehensive Assessment of Spoken Language, facial expression recognition subtests of the Diagnostic Analysis of Nonverbal Accuracy Scale, the oral expression subtest of the Test of Language Competence), inhibition and response flexibility (stop and stop-change tasks), and motor inhibition (continuous performance tasks). Pediatric bipolar disorder patients performed more poorly than comparison subjects on social-cognitive measures (pragmatic judgment of language, facial expression recognition) and on a task requiring response flexibility. These deficits were present in euthymic patients. Differences between patients and comparison subjects could not be attributed to comorbid attention deficit hyperactivity disorder. Findings of impaired social cognition and response flexibility in youths with pediatric bipolar disorder suggest continuity between pediatric bipolar disorder and adult bipolar disorder. These findings provide a foundation for neurocognitive research designed to identify the neural mechanisms underlying these deficits.

  2. Depression and helplessness-induced cognitive deficits in the aged.

    Science.gov (United States)

    Kennelly, K J; Hayslip, B; Richardson, S K

    1985-01-01

    Sixty-six community-residing elderly (mean age = 72.5) were categorized as depressed (mean = 11.3) or nondepressed (mean = 3.9) based on Beck Depression Inventory scores. After a pre-test battery measuring short-term memory and crystallized/fluid intelligence, the subjects responded to a word association task, disguised as a test of interpersonal empathy, under response dependent or response independent reinforcement conditions, or were assigned to a no treatment control. A post-test battery of alternate forms followed. Four of seven measures showed significant pre- to post-test declines in performance. For two of these four, response dependent reinforcement prevented otherwise significant declines. With pre-test differences statistically controlled, depression produced significant post-test deficits in three measures. Response dependent reinforcement eliminated this depression deficit in one measure. The results indicate that depression may exacerbate fatigue effects for the elderly and response dependent reinforcement may prevent fatigue-caused deficits in short-term memory.

  3. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer’s Disease

    Science.gov (United States)

    Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai

    2018-01-01

    Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer’s disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD. PMID:29636677

  4. Elamipretide (SS-31 Ameliorates Isoflurane-Induced Long-Term Impairments of Mitochondrial Morphogenesis and Cognition in Developing Rats

    Directory of Open Access Journals (Sweden)

    Jian-Jun Yang

    2017-04-01

    Full Text Available Mitochondria are supposed to be involved in the early pathogenesis of general anesthesia (GA-induced neurotoxicity and long-term cognitive deficits in developing brains. However, effective pharmacologic agents targeted on mitochondria during GA exposure are lacking. This study explores the protective effects of mitochondrion-targeted antioxidant elamipretide (SS-31 on mitochondrial morphogenesis and cognition in developing rats exposed to isoflurane. Rat pups at postnatal day (PND 7 were exposed to 1.5% isoflurane for 6 h following intraperitoneal administration of elamipretide or vehicle with 30 min interval. The hippocampus was immediately removed for biochemical assays. Histopathological studies were conducted at PND 21, and behavioral tests were performed at PND 40 or 60. We found that early exposure to isoflurane caused remarkable reactive oxygen species (ROS accumulation, mitochondrial deformation and neuronal apoptosis in hippocampus. The injury occurrence ultimately gave rise to long-term cognitive deficits in developing rats. Interestingly, pretreatment with elamipretide not only provided protective effect against oxidative stress and mitochondrial damages, but also attenuated isoflurane-induced cognitive deficits. Our data support the notion that mitochondrial damage is an early and long lasting event of GA-induced injury and suggest that elamipretide might have clinically therapeutic benefits for pediatric patients undertaking GA.

  5. Awareness of deficits in mild cognitive impairment and Alzheimer's disease: do MCI patients have impaired insight

    DEFF Research Database (Denmark)

    Vogel, Asmus; Stokholm, Jette; Gade, Anders

    2004-01-01

    In this study we investigated impaired awareness of cognitive deficits in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Very few studies have addressed this topic, and methodological inconsistencies make the comparison of previous studies difficult. From a prospective...... heterogeneity in the clinical presentation of awareness. The results demonstrate that subjective memory problems should not be a mandatory prerequisite in suspected dementia or MCI, which makes reports from informants together with thorough clinical interview and observation central when assessing suspected...

  6. THE CORRELATION OF PARENTING STYLE WITH COGNITIVE DEVELOPMENT IN CHILDREN WITH ATTENTION DEFICIT HYPERACTIVITY DISORDER

    OpenAIRE

    Fitri Genisti; Ni Komang Sukra Andini; Ni Luh Gede Puspita Yanti

    2018-01-01

    Background: Child development is a very important phase, which children learn various skills as future generations in the future. Disorders that can impede child development process of Attention Deficit Hyperactivity Disorder (ADHD). Children with ADHD have problems with cognitive abilities, of which about 20-60% of them have learning disorders. The efforts to support cognitive development in ADHD children is to approach the child's environment through parenting parents. Objective: This s...

  7. The cognitive complexity of concurrent cognitive-motor tasks reveals age-related deficits in motor performance

    DEFF Research Database (Denmark)

    Oliveira, Anderson Souza; Reiche, Mikkel Staall; Vinescu, Cristina Ioana

    2018-01-01

    Aging reduces cognitive functions, and such impairments have implications in mental and motor performance. Cognitive function has been recently linked to the risk of falls in older adults. Physical activities have been used to attenuate the declines in cognitive functions and reduce fall incidence......, but little is known whether a physically active lifestyle can maintain physical performance under cognitively demanding conditions. The aim of this study was to verify whether physically active older adults present similar performance deficits during upper limb response time and precision stepping walking...... tasks when compared to younger adults. Both upper limb and walking tasks involved simple and complex cognitive demands through decision-making. For both tasks, decision-making was assessed by including a distracting factor to the execution. The results showed that older adults were substantially slower...

  8. Citalopram restores short-term memory deficit and non-cognitive behaviors in APP/PS1 mice while halting the advance of Alzheimer's disease-like pathology.

    Science.gov (United States)

    Zhang, Qin; Yang, Chen; Liu, Tianyao; Liu, Liang; Li, Fen; Cai, Yulong; Lv, Keyi; Li, Xin; Gao, Junwei; Sun, Dayu; Xu, Haiwei; Yang, Qingwu; Fan, Xiaotang

    2018-03-15

    Alzheimer's disease (AD) is the most common cause of dementia. In addition to cognitive impairments, deficits in non-cognitive behaviors are also common neurological sequelae in AD. Here, we show that complex behavioral deficits in 7-month-old APPswe/PSEN1dE9 (APP/PS1) mice include impairments in object recognition, deficient social interaction, increased depression and buried marbles. Citalopram, one of the selective serotonin reuptake inhibitors (SSRIs), ameliorated the amyloid deposition in AD patients and transgenic animal models. After treatment for 4 weeks, citalopram rescued the deficits in short-term memory, sociability and depression in these mice. Further immunohistochemical analysis showed chronic citalopram treatment significantly attenuated β-amyloid deposition and microglial activation in the brains of APP/PS1 mice as demonstrated previously. Parvalbumin (PV) interneurons, which are the primary cellular subtype of GABAergic neurons and considered indispensable for short-term memory and social interaction, also contributed to the progress of depression. Additionally, we found the citalopram could significantly increase the PV-positive neurons in the cortex of APP/PS1 mice without alteration in the hippocampus, which might contribute to the improvement of behavioral performance. Our findings suggest that citalopram might be a potential candidate for the early treatment of AD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Amusia and cognitive deficits in schizophrenia: is there a relationship?

    Science.gov (United States)

    Wen, Yi; Nie, Xueqing; Wu, Daxing; Liu, Hong; Zhang, Pin; Lu, Xuejing

    2014-08-01

    The current study explored the music perception ability of individuals diagnosed with schizophrenia and its relationship with other cognitive abilities and psychotic symptom severity. The persons with schizophrenia performed significantly worse than the control group on the Montreal Battery of Evaluation of Amusia (MBEA) (p<0.001). The music perception ability of persons with schizophrenia was related to other cognitive abilities (attention, verbal memory, spatial memory, and executive function) and the severity of psychotic symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Memory deficits for facial identity in patients with amnestic mild cognitive impairment (MCI).

    Science.gov (United States)

    Savaskan, Egemen; Summermatter, Daniel; Schroeder, Clemens; Schächinger, Hartmut

    2018-01-01

    Faces are among the most relevant social stimuli revealing an encounter's identity and actual emotional state. Deficits in facial recognition may be an early sign of cognitive decline leading to social deficits. The main objective of the present study is to investigate if individuals with amnestic mild cognitive impairment show recognition deficits in facial identity. Thirty-seven individuals with amnestic mild cognitive impairment, multiple-domain (15 female; age: 75±8 yrs.) and forty-one healthy volunteers (24 female; age 71±6 yrs.) participated. All participants completed a human portrait memory test presenting unfamiliar faces with happy and angry emotional expressions. Five and thirty minutes later, old and new neutral faces were presented, and discrimination sensitivity (d') and response bias (C) were assessed as signal detection parameters of cued facial identity recognition. Memory performance was lower in amnestic mild cognitive impairment as compared to control subjects, mainly because of an altered response bias towards an increased false alarm rate (favoring false OLD ascription of NEW items). In both groups, memory performance declined between the early and later testing session, and was always better for acquired happy than angry faces. Facial identity memory is impaired in patients with amnestic mild cognitive impairment. Liberalization of the response bias may reflect a socially motivated compensatory mechanism maintaining an almost identical recognition hit rate of OLD faces in individuals with amnestic mild cognitive impairment.

  11. Battery for ECT Related Cognitive Deficits (B4ECT-ReCoDe): development and validation.

    Science.gov (United States)

    Viswanath, Biju; Harihara, Shashidhara N; Nahar, Abhinav; Phutane, Vivek Haridas; Taksal, Aarati; Thirthalli, Jagadisha; Gangadhar, Bangalore N

    2013-06-01

    The use of electroconvulsive therapy (ECT) in treatment of psychiatric disorders is associated with adverse cognitive effects. There is a need to develop a short assessment tool of cognitive functions during the course of ECT. This study aimed at developing and validating a short, sensitive battery to assess cognitive deficits associated with ECT in India. Battery for ECT Related Cognitive Deficits (B4ECT-ReCoDe), a brief cognitive battery (20-30 min) to assess verbal, visual, working and autobiographic memory, sustained attention, psychomotor speed and subjective memory impairment, was administered to 30 in-patients receiving bilateral ECT, one day after the 1st, 3rd and 6th ECT. Data was analysed using repeated measures analysis of variance and Pearson's correlation. Significant deficits were found in verbal, visual and autobiographic memory, psychomotor speed. Subjective experience of memory loss correlated positively with verbal memory impairment. B4ECT-ReCoDe, a brief, sensitive measure of cognitive impairments associated with ECT can be used in routine clinical practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Do informal caregivers of people with dementia mirror the cognitive deficits of their demented patients? : A pilot study

    NARCIS (Netherlands)

    Jütten, L.H.; Mark, R.E.; Sitskoorn, M.M.

    2017-01-01

    Recent research suggests that informal caregivers of people with dementia (ICs) experience more cognitive deficits than noncaregivers. The reason for this is not yet clear. Objective: to test the hypothesis that ICs ‘mirror' the cognitive deficits of the demented people they care for. Participants

  13. Cognitive deficits in the euthymic phase of unipolar depression

    Czech Academy of Sciences Publication Activity Database

    Preiss, M.; Kučerová, H.; Lukavský, Jiří; Štěpánková, H.; Šóš, P.; Kawaciuková, R.

    2009-01-01

    Roč. 169, č. 3 (2009), s. 235-239 ISSN 0165-1781 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z70250504 Keywords : major depressive episode * remission * cognitive function Subject RIV: AN - Psychology Impact factor: 2.373, year: 2009

  14. The Turner Syndrome: Cognitive Deficits, Affective Discrimination, and Behavior Problems.

    Science.gov (United States)

    McCauley, Elizabeth; And Others

    1987-01-01

    The study attemped to link cognitive and social problems seen in girls with Turner syndrome by assessing the girls' ability to process affective cues. Seventeen 9- to 17-year-old girls diagnosed with Turner syndrome were compared to a matched control group on a task which required interpretation of affective intention from facial expression.…

  15. Cognitive deficits in adult patients with brain tumours.

    NARCIS (Netherlands)

    Taphoorn, M.J.B.; Klein, M.

    2004-01-01

    Cognitive function, with survival and response on brain imaging, is increasingly regarded as an important outcome measure in patients with brain tumours. This measure provides us with information on a patient's clinical situation and adverse treatment effects. Radiotherapy has been regarded as the

  16. Mild cognitive impairment and deficits in instrumental activities of daily living: a systematic review

    NARCIS (Netherlands)

    Jekel, K.; Damian, M.; Wattmo, C.; Hausner, L.; Bullock, R.; Connelly, P.J.; Dubois, B.; Eriksdotter, M.; Ewers, M.; Graessel, E.; Kramberger, M.G.; Law, E.; Mecocci, P.; Molinuevo, J.L.; Nygard, L.; Olde Rikkert, M.G.M.; Orgogozo, J.M.; Pasquier, F.; Peres, K.; Salmon, E.; Sikkes, S.A.; Sobow, T.; Spiegel, R.; Tsolaki, M.; Winblad, B.; Frolich, L.

    2015-01-01

    INTRODUCTION: There is a growing body of evidence that subtle deficits in instrumental activities of daily living (IADL) may be present in mild cognitive impairment (MCI). However, it is not clear if there are IADL domains that are consistently affected across patients with MCI. In this systematic

  17. Motor, emotional and cognitive deficits in adult BACHD mice : A model for Huntington's disease

    NARCIS (Netherlands)

    Abada, Yah-se K.; Schreiber, Rudy; Ellenbroek, Bart

    2013-01-01

    Rationale: Huntington's disease (HD) is characterized by progressive motor dysfunction, emotional disturbances and cognitive deficits. It is a genetic disease caused by an elongation of the polyglutamine repeats in the huntingtin gene. Whereas HD is a complex disorder, previous studies in mice

  18. How Effectively Do Parents Discern Their Children's Cognitive Deficits at a Preschool Age?

    Directory of Open Access Journals (Sweden)

    I-Chun Chen

    2007-10-01

    Conclusion: The results indicate that parents' initial concerns about their children's multiple or speech developmental problems were relatively highly correlated with cognitive deficits. It is recommended that clinicians should guide parents to voice and organize their concerns regarding the perception of their children's developmental progress, and further precisely analyze and utilize significant information.

  19. Long-term cognitive deficits accompanied by reduced neurogenesis after soman poisoning

    NARCIS (Netherlands)

    Joosen, M.J.A.; Jousma, E.; van den Boom, T.M.; Kuijpers, W.C.; Smit, A.B.; Lucassen, P.J.; van Helden, H.P.M.

    2009-01-01

    To date, treatment of organophosphate (OP) poisoning shows several shortcomings, and OP-victims might suffer from lasting cognitive deficits and sleep-wake disturbances. In the present study, long-term effects of soman poisoning on learning ability, memory and neurogenesis were investigated in rats,

  20. Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Carmona, Susana; Hoekzema, E; Castellanos, Francisco X; García-García, David; Lage-Castellanos, Agustín; Van Dijk, Koene R A; Navas-Sánchez, Francisco J; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge

    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120

  1. Attention deficits in children with intellectual and developmental disabilities: evaluating the potential of computerised cognitive training

    OpenAIRE

    Kirk, Hannah

    2017-01-01

    Attention skills are strongly associated with academic attainment, social inclusion, peer relationships and mental health. Attention difficulties are commonly reported in children with intellectual and developmental disabilities (IDD), consequently increasing the already heightened risk of cognitive difficulties, behavioural problems and learning impairments. Despite acknowledgement of the core deficits in attention that characterise children with IDD, limited research has attempted to stre...

  2. Ages and Stages Questionnaire used to measure cognitive deficit in children born extremely preterm

    DEFF Research Database (Denmark)

    Klamer, Anja; Lando, Ane; Pinborg, Anja

    2005-01-01

    AIM: To validate the Ages and Stages Questionnaire (ASQ) and to measure average cognitive deficit in children born extremely preterm. METHODS: Parents of 30 term children aged 36-42 mo completed the ASQ and the children underwent the Wechsler Preschool and Primary Scales of Intelligence...

  3. Cognitive deficits in problematic drinkers with and without mild to borderline intellectual disability

    NARCIS (Netherlands)

    Duijvenbode, N. van; Didden, H.C.M.; Nagel, J.E.L. van der; Korzilius, H.P.L.M.; Engels, R.C.M.E.

    2018-01-01

    We examined cognitive deficits in problematic drinkers with and without mild to borderline intellectual disability (MBID). Problematic drinkers were expected to show a significantly lower estimated performance IQ (PIQ), but not a lower estimated verbal IQ (VIQ), compared to light drinkers.

  4. [Progressive ataxia and cognitive deficits caused by premutation in the fragile-X-mental retardation gene

    NARCIS (Netherlands)

    Roks, G.; Sistermans, E.A.; Vries, L.B.A. de; Nijssen, P.C.

    2005-01-01

    A 75-year-old man had progressive difficulty with walking, intention tremor, ataxia, and mild cognitive deficits. MRI scan ofthe brain showed symmetrical hyperintensities in the middle cerebellar peduncles. DNA analysis ofthe fragile-X gene revealed an expansion of 150-200 repetitions in the

  5. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia.

    Science.gov (United States)

    Nakashima, Masato; Imada, Haruka; Shiraishi, Eri; Ito, Yuki; Suzuki, Noriko; Miyamoto, Maki; Taniguchi, Takahiko; Iwashita, Hiroki

    2018-04-01

    The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N -methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, ( N -{(1 S )-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3- b ]pyrazine-4(1 H )-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α -amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Finger agnosia and cognitive deficits in patients with Alzheimer's disease.

    Science.gov (United States)

    Davis, Andrew S; Trotter, Jeffrey S; Hertza, Jeremy; Bell, Christopher D; Dean, Raymond S

    2012-01-01

    The purpose of this study was to examine the presence of finger agnosia in patients with Alzheimer's disease (AD) and to determine if level of finger agnosia was related to cognitive impairment. Finger agnosia is a sensitive measure of cerebral impairment and is associated with neurofunctional areas implicated in AD. Using a standardized and norm-referenced approach, results indicated that patients with AD evidenced significantly decreased performance on tests of bilateral finger agnosia compared with healthy age-matched controls. Finger agnosia was predictive of cognitive dysfunction on four of seven domains, including: Crystallized Language, Fluid Processing, Associative Learning, and Processing Speed. Results suggest that measures of finger agnosia, a short and simple test, may be useful in the early detection of AD.

  7. Spatial navigation deficit in amnestic mild cognitive impairment

    Czech Academy of Sciences Publication Activity Database

    Hort, J.; Laczó, J.; Vyhnálek, M.; Bojar, M.; Bureš, Jan; Vlček, Kamil

    2007-01-01

    Roč. 104, č. 10 (2007), s. 4042-4047 ISSN 0027-8424 R&D Projects: GA ČR(CZ) GA309/06/1231; GA MŠk(CZ) 1M0517; GA ČR(CZ) GA309/05/0693 Institutional research plan: CEZ:AV0Z50110509 Keywords : Mild cognitive impairment * spatial navigation * Alzheimer’s Disease Subject RIV: FH - Neuro logy Impact factor: 9.598, year: 2007

  8. Cognitive deficits associated with combined HIV gp120 expression and chronic methamphetamine exposure in mice

    Science.gov (United States)

    Kesby, James P.; Markou, Athina; Semenova, Svetlana

    2014-01-01

    Methamphetamine abuse is common among individuals infected by human immunodeficiency virus (HIV). Neurocognitive outcomes tend to be worse in methamphetamine users with HIV. However, it is unclear whether discrete cognitive domains are susceptible to impairment after combined HIV infection and methamphetamine abuse. The expression of HIV/gp120 protein induces neuropathology in mice similar to HIV-induced pathology in humans. We investigated the separate and combined effects of methamphetamine exposure and gp120 expression on cognitive function in transgenic (gp120-tg) and control mice. The mice underwent an escalating methamphetamine binge regimen and were tested in novel object/location recognition, object-in-place recognition, and Barnes maze tests. gp120 expression disrupted performance in the object-in-place test (i.e., similar time spent with all objects, regardless of location), indicating deficits in associative recognition memory. gp120 expression also altered reversal learning in the Barnes maze, suggesting impairments in executive function. Methamphetamine exposure impaired spatial strategy in the Barnes maze, indicating deficits in spatial learning. Methamphetamine-exposed gp120-tg mice had the lowest spatial strategy scores in the final acquisition trials in the Barnes maze, suggesting greater deficits in spatial learning than all of the other groups. Although HIV infection involves interactions between multiple proteins and processes, in addition to gp120, our findings in gp120-tg mice suggest that humans with the dual insult of HIV infection and methamphetamine abuse may exhibit a broader spectrum of cognitive deficits than those with either factor alone. Depending on the cognitive domain, the combination of both insults may exacerbate deficits in cognitive performance compared with each individual insult. PMID:25476577

  9. Cognitive Deficits and Memory Disturbances in Patients with Chronic Post-Traumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Fayyazi-Bordbar

    2012-10-01

    Full Text Available Background: Some studies have demonstrated high cognitive deficits in patients with post-traumatic stress disorder (PTSD. Considering the limited available information about this issue, we decided to assess the cognitive deficits and memory disturbances in these patients.Materials and Methods: The present study is a case control research conducted on 50 patients with post-traumatic stress disorder who were admitted to Ibn-e-Sina psychiatric hospital in Mashhad, in north-eastern part of Iran in 2008. The control group included 50 people of first degree relatives of these patients who met the inclusion criteria of the study. Case and control groups were selected by simple sampling method; and for all of them, a questionnaire of demographic information, Wechsler memory scale, and mini mental status examination (MMSE were completed. The gathered data were analyzed using SPSS 14th edition by chi square, t-test, and analyze of variance.Results: The mean score of Wechsler memory scale in patients with PTSD (80.78±18.39 was significantly higher than control group (67.92±7.38 (p=0.001. The mean score of MMSE was significantly lower in patients with PTSD compared to control group (p=0.001. The determined disability level assessed by Iranian veterans’ organization and also comorbidity of other psychiatric disorders with PTSD did not have a significant relationship with cognitive deficits, but the duration of PTSD and age of patients were significantly related to the level of cognitive deficits.Conclusion: Cognitive deficits and memory disturbances are higher in patients with PTSD than general population.

  10. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    Science.gov (United States)

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  11. Effects of mindfulness-based cognitive therapy on neurophysiological correlates of performance monitoring in adult attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Schoenberg, Poppy L A; Hepark, Sevket; Kan, Cornelis C; Barendregt, Henk P; Buitelaar, Jan K; Speckens, Anne E M

    2014-07-01

    To examine whether mindfulness-based cognitive therapy (MBCT) would enhance attenuated amplitudes of event-related potentials (ERPs) indexing performance monitoring biomarkers of attention-deficit/hyperactivity disorder (ADHD). Fifty adult ADHD patients took part in a randomised controlled study investigating ERP and clinical measures pre-to-post MBCT. Twenty-six patients were randomly allocated to MBCT, 24 to a wait-list control. Main outcome measures included error processing (ERN, Pe), conflict monitoring (NoGo-N2), and inhibitory control (NoGo-P3) ERPs concomitant to a continuous performance task (CPT-X). Inattention and hyperactivity-impulsivity ADHD symptoms, psychological distress and social functioning, and mindfulness skills were also assessed. MBCT was associated with increased Pe and NoGo-P3 amplitudes, coinciding with reduced 'hyperactivity/impulsivity' and 'inattention' symptomatology. Specific to the MBCT; enhanced Pe amplitudes correlated with a decrease in hyperactivity/impulsivity symptoms and increased 'act-with-awareness' mindfulness skill, whereas, enhanced P3 correlated with amelioration in inattention symptoms. MBCT enhanced ERP amplitudes associated with motivational saliency and error awareness, leading to improved inhibitory regulation. MBCT suggests having comparable modulation on performance monitoring ERP amplitudes as pharmacological treatments. Further study and development of MBCT as a treatment for ADHD is warranted, in addition to its potential scope for clinical applicability to broader defined externalising disorders and clinical problems associated with impairments of the prefrontal cortex. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. A study of the cerebral blood flow pattern and cognitive deficit in Parkinson's disease

    International Nuclear Information System (INIS)

    Tamaru, Fuyuhiko

    1997-01-01

    Cerebral blood flow pattern in Parkinson's disease was examined by 123 I-IMP SPECT to determine whether the deficit in cognitive function is reflected in it. The patient group with Parkinson's disease showed deterioration in intelligence (Minimental state examination, Raven's Colored Progressive Matrices) and frontal lobe test (the Wisconsin Card Sorting Test). Though the uptake ratio of prefrontal area/occipital area in 123 I-IMP SPECT study varied widely in the Parkinson's disease group compared to the normal control group, there was no significant difference in the mean. Selective depletion of frontal lobe blood flow was not confirmed in this study. There was no correlation between cerebral blood flow pattern and cognitive functions including frontal lobe function and intelligence. We concluded that the deficit in cognitive function was not reflected in the cerebral blood flow pattern in Parkinson's disease. (author)

  13. Mentalization deficit in bipolar patients during an acute depressive and manic episode: association with cognitive functions.

    Science.gov (United States)

    Bodnar, Anna; Rybakowski, Janusz K

    2017-12-06

    A number of studies in bipolar patients have shown a deficit in mentalization (theory of mind), one of the main aspects of social cognition. The aim of current study was to assess both cognitive and affective mentalization in well-defined groups of depressed and manic bipolar patients, compared to healthy control subjects, using a battery of tests measuring mentalization processes. The second aim was to investigate a possible relationship between cognitive and affective mentalization and cognitive functions in bipolar patients during a depressive and manic episode. The study involved 25 bipolar disorder type I patients (10 male, 15 female) during a depressive episode (mean 24 ± 2 points in the 17-item Hamilton Depression Rating Scale) and 25 patients (10 male, 15 female) during a manic episode (mean 27 ± 4 points in the Young Mania Rating Scale). The control group consisted of 25 healthy subjects (10 male, 15 female) without psychiatric disorders. To measure mentalization, a revised version of the Reading the Mind in the Eyes (R-MET), the Strange Stories (SS), the Faux Pas Recognition (FPR), and the Moving Shapes Paradigm (MSP) tests were used. Assessment of cognitive functioning was made using the Digit Span, Trail Making, and Wisconsin Card Sorting Tests. In bipolar patients significant deficits in both cognitive and affective mentalization were demonstrated during both acute depressive and manic episodes. The impairment in FPR in manic patients was more severe than that in the depressive ones. On the other hand, in MSP, manic patients showed significantly increased intentionality for non-mentalization animations, compared with depressive patients and for "cause and effect" animations compared with control subjects. A significant relationship was found between the decrease in cognitive and affective mentalization and deficits of cognitive functions during both the depressive and manic episodes. The results obtained confirm the deficits of mentalization in

  14. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    Full Text Available Lignan compounds extracted from Schisandra chinensis (Turcz. Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC, as well as the level of malondialdehyde (MDA both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP, change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway. Moreover, TLS also decreased the activity of β-secretase 1 (BACE1, crucial protease contributes to the hydrolysis of amyloid precursor protein (APP, and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  15. Subclinical naming errors in mild cognitive impairment: A semantic deficit?

    Directory of Open Access Journals (Sweden)

    Indra F. Willers

    Full Text Available Abstract Mild cognitive impairment (MCI is the transitional stage between normal aging and Alzheimer's disease (AD. Impairments in semantic memory have been demonstrated to be a critical factor in early AD. The Boston Naming Test (BNT is a straightforward method of examining semantic or visuo-perceptual processing and therefore represents a potential diagnostic tool. The objective of this study was to examine naming ability and identify error types in patients with amnestic mild cognitive impairment (aMCI. Methods: Twenty aMCI patients, twenty AD patients and twenty-one normal controls, matched by age, sex and education level were evaluated. As part of a further neuropsychological evaluation, all subjects performed the BNT. A comprehensive classification of error types was devised in order to compare performance and ascertain semantic or perceptual origin of errors. Results: AD patients obtained significantly lower total scores on the BNT than aMCI patients and controls. aMCI patients did not obtain significant differences in total scores, but showed significantly higher semantic errors compared to controls. Conclusion: This study reveals that semantic processing is impaired during confrontation naming in aMCI.

  16. Cognitive deficits of men and women with Alzheimer's disease.

    Science.gov (United States)

    Henderson, V W; Buckwalter, J G

    1994-01-01

    We performed two studies of cognitive abilities among men and women who met clinical criteria for Alzheimer's disease (AD). Among 46 AD patients, performance of women on a composite neuropsychological battery was more impaired than that of men when the potentially confounding effects of demographic variables were controlled; the largest group differences were due to significantly worse performance by women with AD on a naming task. Based on these initial findings, we next analyzed an independent data set of 647 demented subjects enrolled in the multicenter Consortium to Establish a Registry for Alzheimer's Disease, hypothesizing that the naming performance of women with AD would be significantly worse than that of men with this illness. Analyses controlling for demographic variables, or separately controlling for dementia severity, confirmed that women with AD performed significantly less well on the naming task and on verbal fluency. Women also performed less well on delayed recall, but there were no significant differences on other tasks. Factor analysis confirmed significant differences on a language factor, implying that men retain verbal skills better than women do during the initial stages of AD. Elderly nondemented women performed as well as or better than nondemented men on all comparisons. We conclude that there are modest differences in how men and women with AD perform on cognitive tasks and that differences may be discrete rather than global in nature.

  17. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Towards the therapeutics of cognitive impairment of schizophrenia

    Directory of Open Access Journals (Sweden)

    Takashi eUehara

    2014-09-01

    Full Text Available Rationale Augmentation therapy with serotonin-1A (5-HT1A receptor partial agonists has been suggested to improve cognitive deficits in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production.Objectives and methods The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days of tandospirone (0.05 and 5 mg/kg on brain energy metabolism, as represented by extracellular lactate concentration (eLAC in the medial prefrontal cortex (mPFC of young adult rats..Results Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot shock stress (FS. Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment.Conclusions These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism based on brain energy metabolism by which 5-HT1A agonism improve cognitive impairment in schizophrenia and related disorders.

  18. Effectiveness of Memantine in Improvement of Cognitive Deficits in Specific Learning Disorder

    Directory of Open Access Journals (Sweden)

    Elham Ahmadi Zahrani

    2016-12-01

    Full Text Available Abstract Background: Specific learning disorder is a neurodevelopmental disorder characterized by persistent difficulties in learning academic skills in reading, written expression, or mathematics. This study was performed to investigate the effectiveness of memantine in the relief of cognitive deficits (selective attention, sustained attention, and working memory in specific learning disorder. Materials and Methods: This study is a clinical trial. Of all children 8-12 years referred to Amir Kabir Hospital 94 patients diagnosed with specific learning disorder based on DSMV diagnostic interview referred by specialist and randomly divided by two groups, memantine and placebo. Cognitive deficits before and after treatment were measured with continuous performance test, Stroop test and Wechsler Digit Span forward and reverse and Corsi test. Results: Multivariate analysis of variance showed a significant difference in error when answering, omission answer and corrected answer in continuous performance test, but this difference is not significant in response time. Difference in forward, reverse and collected auditory was significant and not significant in the auditory span. In active visual working memory at corsi cube test, difference was significant (p <0.05. Conclusion: The results showed that memantine in improvement of sustained attention, auditory working memory and visual working memory, is effective, while in selective attention is not effective and according to similarities of learning disorder and Attention deficit / Hyperactivity disorder (ADHD and the effectiveness of memantine in improvement of symptoms of ADHD, we can also use this drug in improvement of cognitive deficits of specific learning disorder.

  19. Social cognition deficits and the 'ultra high risk' for psychosis population: a review of literature.

    Science.gov (United States)

    Thompson, Andrew D; Bartholomeusz, Cali; Yung, Alison R

    2011-08-01

    A number of risk factors for developing a psychotic disorder have been investigated in the 'ultra high risk' (UHR) population, including neurocognitive abilities, social functioning and, more recently, social cognition. We aimed to review the literature on social cognition in the UHR population. Literature was restricted to English articles and identified using Pubmed, Medline, PsychINFO and CINAHLplus, as well as the reference lists of published studies and reviews. Search terms included social cognition, theory of mind, emotion recognition, attributional style, social knowledge, social perception, 'at risk mental state', psychosis prodrome 'clinical high risk' and 'ultra high risk'. Inclusion criteria were an outcome measure of a social cognition task and an UHR population defined by a structured validated instrument. Seven original research articles met the inclusion criteria, one of which was a conference abstract. One of the two studies that assessed theory of mind, two of the four studies that assessed emotion recognition and both the two studies that assessed social perception/knowledge found significant deficits in UHR patients. The single study that assessed attributional bias also reported differences in UHR patients compared with healthy controls. There is limited published literature on social cognitive performance in the UHR population. Despite this, deficits in certain social cognitive abilities do appear to be present, but further research with more reliable cross-cultural measures is needed. The characterization of social cognitive deficits in the UHR populations may aid in the identification of potential markers for development of a subsequent psychotic disorder, as well as targets for early intervention. © 2011 Blackwell Publishing Asia Pty Ltd.

  20. A cognitive psychometric model for the psychodiagnostic assessment of memory-related deficits.

    Science.gov (United States)

    Alexander, Gregory E; Satalich, Timothy A; Shankle, W Rodman; Batchelder, William H

    2016-03-01

    Clinical tests used for psychodiagnostic purposes, such as the well-known Alzheimer's Disease Assessment Scale: Cognitive subscale (ADAS-Cog), include a free-recall task. The free-recall task taps into latent cognitive processes associated with learning and memory components of human cognition, any of which might be impaired with the progression of Alzheimer's disease (AD). A Hidden Markov model of free recall is developed to measure latent cognitive processes used during the free-recall task. In return, these cognitive measurements give us insight into the degree to which normal cognitive functions are differentially impaired by medical conditions, such as AD and related disorders. The model is used to analyze the free-recall data obtained from healthy elderly participants, participants diagnosed as having mild cognitive impairment, and participants diagnosed with early AD. The model is specified hierarchically to handle item differences because of the serial position curve in free recall, as well as within-group individual differences in participants' recall abilities. Bayesian hierarchical inference is used to estimate the model. The model analysis suggests that the impaired patients have the following: (1) long-term memory encoding deficits, (2) short-term memory (STM) retrieval deficits for all but very short time intervals, (3) poorer transfer into long-term memory for items successfully retrieved from STM, and (4) poorer retention of items encoded into long-term memory after longer delays. Yet, impaired patients appear to have no deficit in immediate recall of encoded words in long-term memory or for very short time intervals in STM. (c) 2016 APA, all rights reserved).

  1. No lower cognitive functioning in older adults with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Semeijn, E J; Korten, N C M; Comijs, H C; Michielsen, M; Deeg, D J H; Beekman, A T F; Kooij, J J S

    2015-09-01

    Research illustrates cognitive deficits in children and younger adults with attention-deficit/hyperactivity disorder (ADHD). Few studies have focused on the cognitive functioning in older adults. This study investigates the association between ADHD and cognitive functioning in older adults. Data were collected in a cross-sectional side study of the Longitudinal Aging Study Amsterdam (LASA). A diagnostic interview to diagnose ADHD was administered among a subsample (N = 231, age 60-94). ADHD symptoms and diagnosis were assessed with the Diagnostic Interview for ADHD in Adults (DIVA) 2.0. Cognitive functioning was assessed with tests in the domains of executive functioning, information processing speed, memory, and attention/working memory. Regression analyses indicate that ADHD diagnosis and ADHD severity were only negatively associated with cognitive functioning in the attention/working memory domain. When adjusting for depression, these associations were no longer significant. The study shows that ADHD in older adults is associated with lower cognitive functioning in the attention/working memory domain. However, this was partly explained by depressive symptoms.

  2. Pattern of social cognition deficits in individuals with borderline personality disorder.

    Science.gov (United States)

    Anupama V; Bhola, Poornima; Thirthalli, Jagadisha; Mehta, Urvakhsh Meherwan

    2018-03-01

    Social cognition deficits have been implicated in the affect regulation and interpersonal difficulties seen in borderline personality disorder (BPD). The study examined patterns of social cognition abilities, using self-report and task-based measures, among individuals diagnosed with BPD. The sample included a clinical group of 20 patients diagnosed with BPD and 20 age and gender-matched control group participants from the community with no psychiatric diagnosis. The measures included the Mentalization Questionnaire, the Reading the Mind in the Eyes Test and the Social Cognition Rating Tool in Indian Setting. Results indicated that the clinical group had lower self-reported mentalizing ability. Facial emotion recognition ability was significantly lower for the clinical group, particularly for photographs of the eye region with positive and neutral valences. The clinical group had significantly higher personalizing bias, and greater difficulties in social perception. The two groups did not differ on first and second order theory of mind, recognition of faux pas and externalizing bias. The results point to the links between social cognition deficits and interpersonal difficulties among persons with BPD. Implications include the need for pre-therapy assessment of the magnitude and patterns of social cognition difficulties in BPD, the development of culturally and ecologically valid assessments and the evaluation of interventions for social cognition vulnerabilities among individuals with BPD. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Select cognitive deficits in Vasoactive Intestinal Peptide deficient mice

    Directory of Open Access Journals (Sweden)

    Hagopian Arkady

    2008-07-01

    Full Text Available Abstract Background The neuropeptide vasoactive intestinal peptide (VIP is widely distributed in the adult central nervous system where this peptide functions to regulate synaptic transmission and neural excitability. The expression of VIP and its receptors in brain regions implicated in learning and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has a profound effect on circadian timing and may specifically influence the temporal regulation of learning and memory functions. Results In the present study, we utilized transgenic VIP-deficient mice and the contextual fear conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2 continue in the hippocampus of VIP-deficient mice. Conclusion Together these data suggest that the neuropeptide VIP regulates the recall of at least one learned behavior but does not impact the circadian regulation of this behavior.

  4. Environmental enrichment restores cognitive deficits induced by experimental childhood meningitis

    Directory of Open Access Journals (Sweden)

    Tatiana Barichello

    2014-12-01

    Full Text Available Objective: To evaluate the influence of environmental enrichment (EE on memory, cytokines, and brain-derived neurotrophic factor (BDNF in the brain of adult rats subjected to experimental pneumococcal meningitis during infancy. Methods: On postnatal day 11, the animals received either artificial cerebrospinal fluid (CSF or Streptococcus pneumoniae suspension intracisternally at 1 × 106 CFU/mL and remained with their mothers until age 21 days. Animals were divided into the following groups: control, control + EE, meningitis, and meningitis + EE. EE began at 21 days and continued until 60 days of age (adulthood. EE consisted of a large cage with three floors, ramps, running wheels, and objects of different shapes and textures. At 60 days, animals were randomized and subjected to habituation to the open-field task and the step-down inhibitory avoidance task. After the tasks, the hippocampus and CSF were isolated for analysis. Results: The meningitis group showed no difference in performance between training and test sessions of the open-field task, suggesting habituation memory impairment; in the meningitis + EE group, performance was significantly different, showing preservation of habituation memory. In the step-down inhibitory avoidance task, there were no differences in behavior between training and test sessions in the meningitis group, showing aversive memory impairment; conversely, differences were observed in the meningitis + EE group, demonstrating aversive memory preservation. In the two meningitis groups, IL-4, IL-10, and BDNF levels were increased in the hippocampus, and BDNF levels in the CSF. Conclusions: The data presented suggest that EE, a non-invasive therapy, enables recovery from memory deficits caused by neonatal meningitis.

  5. Fronto-temporal connectivity predicts cognitive empathy deficits and experiential negative symptoms in schizophrenia.

    Science.gov (United States)

    Abram, Samantha V; Wisner, Krista M; Fox, Jaclyn M; Barch, Deanna M; Wang, Lei; Csernansky, John G; MacDonald, Angus W; Smith, Matthew J

    2017-03-01

    Impaired cognitive empathy is a core social cognitive deficit in schizophrenia associated with negative symptoms and social functioning. Cognitive empathy and negative symptoms have also been linked to medial prefrontal and temporal brain networks. While shared behavioral and neural underpinnings are suspected for cognitive empathy and negative symptoms, research is needed to test these hypotheses. In two studies, we evaluated whether resting-state functional connectivity between data-driven networks, or components (referred to as, inter-component connectivity), predicted cognitive empathy and experiential and expressive negative symptoms in schizophrenia subjects. Study 1: We examined associations between cognitive empathy and medial prefrontal and temporal inter-component connectivity at rest using a group-matched schizophrenia and control sample. We then assessed whether inter-component connectivity metrics associated with cognitive empathy were also related to negative symptoms. Study 2: We sought to replicate the connectivity-symptom associations observed in Study 1 using an independent schizophrenia sample. Study 1 results revealed that while the groups did not differ in average inter-component connectivity, a medial-fronto-temporal metric and an orbito-fronto-temporal metric were related to cognitive empathy. Moreover, the medial-fronto-temporal metric was associated with experiential negative symptoms in both schizophrenia samples. These findings support recent models that link social cognition and negative symptoms in schizophrenia. Hum Brain Mapp 38:1111-1124, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Ginsenoside Re Ameliorates Brain Insulin Resistance and Cognitive Dysfunction in High Fat Diet-Induced C57BL/6 Mice.

    Science.gov (United States)

    Kim, Jong Min; Park, Chang Hyeon; Park, Seon Kyeong; Seung, Tae Wan; Kang, Jin Yong; Ha, Jeong Su; Lee, Du Sang; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2017-04-05

    The ameliorating effects of ginsenoside Re (G Re) on high fat diet (HFD)-induced insulin resistance in C57BL/6 mice were investigated to assess its physiological function. In the results of behavioral tests, G Re improved cognitive dysfunction in diabetic mice using Y-maze, passive avoidance, and Morris water maze tests. G Re also significantly recovered hyperglycemia and fasting blood glucose level. In the results of serum analysis, G Re decreased triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDLC), glutamic-oxaloacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) and increased the ratio of high-density lipoprotein cholesterol (HDLC). G Re regulated acetylcholine (ACh), acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), and oxidized glutathione (GSH)/total GSH by regulating the c-Jun N-terminal protein kinase (JNK) pathway. These findings suggest that G Re could be used to improve HFD-induced insulin resistance condition by ameliorating hyperglycemia via protecting the cholinergic and antioxidant systems in the mouse brains.

  7. Cognitive rehabilitation training in patients with brain tumor-related epilepsy and cognitive deficits: a pilot study.

    Science.gov (United States)

    Maschio, Marta; Dinapoli, Loredana; Fabi, Alessandra; Giannarelli, Diana; Cantelmi, Tonino

    2015-11-01

    The aim of this pilot observational study was to evaluate effect of cognitive rehabilitation training (RehabTr) on cognitive performances in patients with brain tumor-related epilepsy (BTRE) and cognitive disturbances. Medical inclusion criteria: patients (M/F) ≥ 18 years ≤ 75 with symptomatic seizures due to primary brain tumors or brain metastases in stable treatment with antiepileptic drugs; previous surgical resection or biopsy; >70 Karnofsky Performance Status; stable oncological disease. Eligible patients recruited from 100 consecutive patients with BTRE at first visit to our Center from 2011 to 2012. All recruited patients were administered battery of neuropsychological tests exploring various cognitive domains. Patients considered to have a neuropsychological deficit were those with at least one test score for a given domain indicative of impairment. Thirty patients out of 100 showed cognitive deficits, and were offered participation in RehabTr, of which 16 accepted (5 low grade glioma, 4 high grade glioma, 2 glioblastoma, 2 meningioma and 3 metastases) and 14 declined for various reasons. The RehabTr consisted of one weekly individual session of 1 h, for a total of 10 weeks, carried out by a trained psychologist. The functions trained were: memory, attention, visuo-spatial functions, language and reasoning by means of Training NeuroPsicologico (TNP(®)) software. To evaluate the effect of the RehabTr, the same battery of tests was administered directly after cognitive rehabilitation (T1), and at six-month follow-up (T2). Statistical analysis with Student T test for paired data showed that short-term verbal memory, episodic memory, fluency and long term visuo-spatial memory improved immediately after the T1 and remained stable at T2. At final follow-up all patients showed an improvement in at least one domain that had been lower than normal at baseline. Our results demonstrated a positive effect of rehabilitative training at different times, and, for

  8. Cognitive deficits at age 22 years associated with prenatal exposure to methylmercury

    DEFF Research Database (Denmark)

    Debes, Frodi; Weihe, Pál; Grandjean, Philippe

    2016-01-01

    methylmercury exposure was assessed in terms of the mercury concentration in cord blood and maternal hair. Clinical examinations of 847 cohort members at age 22 years were carried out in 2008-2009 using a panel of neuropsychological tests that reflected major functional domains. Subjects with neurological...... and psychiatric diagnoses were excluded from the data analysis, thus leaving 814 subjects. Multiple regression analysis included covariates previously identified for adjustment. Deficits in Boston Naming Test (BNT) and other tests of verbal performance were significantly associated with the cord-blood mercury...... to about 2.2 IQ points at a 10-fold increased prenatal methylmercury exposure. Thus, although the cognitive deficits observed were smaller than at examinations at younger ages, maternal diets with contaminated seafood were associated with adverse effects in this birth cohort at age 22 years. The deficits...

  9. How culture shapes social cognition deficits in mental disorders: A review.

    Science.gov (United States)

    Koelkebeck, Katja; Uwatoko, Teruhisa; Tanaka, Jiro; Kret, Mariska Esther

    2017-04-01

    Social cognitive skills are indispensable for successful communication with others. Substantial research has determined deficits in these abilities in patients with mental disorders. In neurobiological development and continuing into adulthood, cross-cultural differences in social cognition have been demonstrated. Moreover, symptomatic patterns in mental disorders may vary according to the cultural background of an individual. Cross-cultural studies can thus help in understanding underlying (biological) mechanisms and factors that influence behavior in health and disease. In addition, studies that apply novel paradigms assessing the impact of culture on cognition may benefit and advance neuroscience research. In this review, the authors give an overview of cross-cultural research in the field of social cognition in health and in mental disorders and provide an outlook on future research directions, taking a neuroscience perspective.

  10. Variability in Depressive Symptoms of Cognitive Deficit and Cognitive Bias During the First 2 Years After Diagnosis in Australian Men With Prostate Cancer.

    Science.gov (United States)

    Sharpley, Christopher F; Bitsika, Vicki; Christie, David R H

    2016-01-01

    The incidence and contribution to total depression of the depressive symptoms of cognitive deficit and cognitive bias in prostate cancer (PCa) patients were compared from cohorts sampled during the first 2 years after diagnosis. Survey data were collected from 394 patients with PCa, including background information, treatments, and disease status, plus total scores of depression and scores for subscales of the depressive symptoms of cognitive bias and cognitive deficit via the Zung Self-Rating Depression Scale. The sample was divided into eight 3-monthly time-since-diagnosis cohorts and according to depression severity. Mean scores for the depressive symptoms of cognitive deficit were significantly higher than those for cognitive bias for the whole sample, but the contribution of cognitive bias to total depression was stronger than that for cognitive deficit. When divided according to overall depression severity, patients with clinically significant depression showed reversed patterns of association between the two subsets of cognitive symptoms of depression and total depression compared with those patients who reported less severe depression. Differences in the incidence and contribution of these two different aspects of the cognitive symptoms of depression for patients with more severe depression argue for consideration of them when assessing and diagnosing depression in patients with PCa. Treatment requirements are also different between the two types of cognitive symptoms of depression, and several suggestions for matching treatment to illness via a personalized medicine approach are discussed. © The Author(s) 2014.

  11. Cognitive deficits and levels of IQ in adolescent onset schizophrenia and other psychotic disorders

    DEFF Research Database (Denmark)

    Fagerlund, Birgitte; Pagsberg, A Katrine; Hemmingsen, Ralf

    2006-01-01

    of intelligence, executive functions, memory, attention and processing speed was global or specific. First-episode psychotic adolescents (N = 39) between the ages 11 and 17 years were included, 18 of whom were diagnosed with schizophrenia, and 21 with other non-organic, non-affective psychoses, using ICD-10...... of attention, executive functions, reaction time, and memory in the schizophrenic and psychotic adolescent groups. However, analyses of WISC-III factor profiles suggested that early onset schizophrenia patients may have more global IQ deficits than non-organic, non-affective psychoses when examined recently...... the profile and severity of cognitive impairments in first-episode early onset psychotic patients who received the schizophrenia diagnosis to those diagnosed with other non-organic, non-affective psychotic disorders. The secondary purpose was to examine whether the profile of cognitive deficits, in terms...

  12. Resting fMRI measures are associated with cognitive deficits in schizophrenia assessed by the MATRICS consensus cognitive battery

    Science.gov (United States)

    He, Hao; Bustillo, Juan; Du, Yuhui; Yu, Qingbao; Jones, Thomas R.; Jiang, Tianzi; Calhoun, Vince D.; Sui, Jing

    2015-03-01

    The cognitive deficits of schizophrenia are largely resistant to current treatment, and are thus a life-long burden to patients. The MATRICS consensus cognitive battery (MCCB) provides a reliable and valid assessment of cognition across a comprehensive set of cognitive domains for schizophrenia. In resting-state fMRI, functional connectivity associated with MCCB has not yet been examined. In this paper, the interrelationships between MCCB and the abnormalities seen in two types of functional measures from resting-state fMRI—fractional amplitude of low frequency fluctuations (fALFF) and functional network connectivity (FNC) maps were investigated in data from 47 schizophrenia patients and 50 age-matched healthy controls. First, the fALFF maps were generated and decomposed by independent component analysis (ICA), and then the component showing the highest correlation with MCCB composite scores was selected. Second, the whole brain was separated into functional networks by group ICA, and the FNC maps were calculated. The FNC strengths with most significant correlations with MCCB were displayed and spatially overlapped with the fALFF component of interest. It demonstrated increased cognitive performance associated with higher fALFF values (intensity of regional spontaneous brain activity) in prefrontal regions, inferior parietal lobe (IPL) but lower ALFF values in thalamus, striatum, and superior temporal gyrus (STG). Interestingly, the FNC showing significant correlations with MCCB were in well agreement with the activated regions with highest z-values in fALFF component. Our results support the view that functional deficits in distributed cortico-striato-thalamic circuits and inferior parietal lobe may account for several aspects of cognitive impairment in schizophrenia.

  13. Executive Functions, Memory, and Social Cognitive Deficits and Recovery in Chronic Alcoholism: A Critical Review to Inform Future Research.

    Science.gov (United States)

    Le Berre, Anne-Pascale; Fama, Rosemary; Sullivan, Edith V

    2017-08-01

    Alcoholism is a complex and dynamic disease, punctuated by periods of abstinence and relapse, and influenced by a multitude of vulnerability factors. Chronic excessive alcohol consumption is associated with cognitive deficits, ranging from mild to severe, in executive functions, memory, and metacognitive abilities, with associated impairment in emotional processes and social cognition. These deficits can compromise efforts in initiating and sustaining abstinence by hampering efficacy of clinical treatment and can obstruct efforts in enabling good decision making success in interpersonal/social interactions, and awareness of cognitive and behavioral dysfunctions. Despite evidence for differences in recovery levels of selective cognitive processes, certain deficits can persist even with prolonged sobriety. Herein is presented a review of alcohol-related cognitive impairments affecting component processes of executive functioning, memory, and the recently investigated cognitive domains of metamemory, social cognition, and emotional processing; also considered are trajectories of cognitive recovery with abstinence. Finally, in the spirit of critical review, limitations of current knowledge are noted and avenues for new research efforts are proposed that focus on (i) the interaction among emotion-cognition processes and identification of vulnerability factors contributing to the development of emotional and social processing deficits and (ii) the time line of cognitive recovery by tracking alcoholism's dynamic course of sobriety and relapse. Knowledge about the heterochronicity of cognitive recovery in alcoholism has the potential of indicating at which points during recovery intervention may be most beneficial. Copyright © 2017 by the Research Society on Alcoholism.

  14. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize ( Zea mays l.) in subtropical northeastern Himalayas

    Science.gov (United States)

    Marwein, M. A.; Choudhury, B. U.; Chakraborty, D.; Kumar, M.; Das, A.; Rajkhowa, D. J.

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ETc) of maize crop under controlled condition (pot experiment) of water deficit (W25-25 % and W50-50 % of field capacity soil moistures) and well watered (W100 = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ETc losses and water use efficiency was also studied. The measured seasonal ETc loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant ( p < 0.05) reduction (by 33-50 %) of seasonal ETc losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha-1 significantly ( p < 0.05) increased ETc losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W25) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W100) while seasonal ETc loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ETc losses while weekly crop ETc loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ETc losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg-1 water and 4.21 to 8.56 g dry matter kg-1, respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ETc loss, growth duration, grain formation, and water use efficiency of maize.

  15. Neurally-dissociable cognitive components of reading deficits in subacute stroke

    Directory of Open Access Journals (Sweden)

    Olga eBoukrina

    2015-05-01

    Full Text Available According to cognitive models of reading, words are processed by interacting orthographic (spelling, phonological (sound and semantic (meaning information. Despite extensive study of the neural basis of reading in healthy participants, little group data exist on patients with reading deficits from focal brain damage pointing to critical neural systems for reading. Here we report on one such study. We have performed neuropsychological testing and MRI on 11 patients with left-hemisphere stroke (<= 5 weeks post stroke. Patients completed tasks assessing cognitive components of reading such as semantics (matching picture or word choices to a target based on meaning, phonology (matching word choices to a target based on rhyming, and orthography (a two-alternative forced choice of the most plausible nonword. They also read aloud pseudowords and words with high or low levels of usage frequency, imageability, and spelling-sound consistency. As predicted by the cognitive model, when averaged across patients, the influence of semantics was most salient for low-frequency, low-consistency words, when phonological decoding is especially difficult. Qualitative subtraction analyses revealed lesion sites specific to phonological processing. These areas were consistent with those shown previously to activate for phonology in healthy participants, including supramarginal, posterior superior temporal, middle temporal, inferior frontal gyri, and underlying white matter. Notable divergence between this analysis and previous functional imaging is the association of lesions in the mid-fusiform gyrus and anterior temporal lobe with phonological reading deficits. This study represents progress toward identifying brain lesion-deficit relationships in the cognitive components of reading. Such correspondences are expected to help not only better understand the neural mechanisms of reading, but may also help tailor reading therapy to individual neurocognitive deficit

  16. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: a review

    OpenAIRE

    Colucci, Luisa; Bosco,; Amenta,; Fasanaro,Angiola Maria; Ziello,Antonio; Rea,

    2012-01-01

    Luisa Colucci,1,2 Massimiliano Bosco,2 Antonio Rosario Ziello,1,2 Raffaele Rea,1,2 Francesco Amenta,1 Angiola Maria Fasanaro21Centro di Ricerche Cliniche, Telemedicina e Telefarmacia, Università di Camerino, Camerino, 2Unità Valutazione Alzheimer, Naples, ItalyAbstract: Nootropics represent probably the first “smart drugs” used for the treatment of cognitive deficits. The aim of this paper is to verify, by a systematic analysis of the literature, the ...

  17. A Metacognitive Perspective on the Cognitive Deficits Experienced in Intellectually Threatening Environments

    OpenAIRE

    Schmader, Toni; Forbes, Chad E.; Zhang, Shen; Mendes, Wendy Berry

    2009-01-01

    Three studies tested the hypothesis that negative metacognitive interpretations of anxious arousal under stereotype threat create cognitive deficits in intellectually threatening environments. Study 1 showed that among minority and White undergraduates, anxiety about an intelligence test predicted lower working memory when participants were primed with doubt as compared to confidence. Study 2 replicated this pattern with women and showed it to be unique to intellectually threatening environme...

  18. Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks.

    Science.gov (United States)

    Lusch, Bethany; Weholt, Jake; Maia, Pedro D; Kutz, J Nathan

    2018-06-01

    The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Berberine Ameliorates Diabetes-Associated Cognitive Decline through Modulation of Aberrant Inflammation Response and Insulin Signaling Pathway in DM Rats

    Directory of Open Access Journals (Sweden)

    Qingjie Chen

    2017-06-01

    Full Text Available Background: Memory-impairment was one of the common characteristics in patients with diabetes mellitus. The release of chronic inflammation mediators and insulin resistance in diabetic brain gave rise to the generation of toxic factor Aβ42 which was the marker of Alzheimer’s disease. In addition, the impairment of memory in diabetes mellitus was also correlated predominantly with uptake/metabolism of glucose in medial prefrontal cortex (mPFC. Previously, anti-inflammation and hypoglycemic effects of berberine (BBr have been described in peripheral tissues. For better understanding the effects of BBr on cognitive action in diabetics, we investigated the functions of BBr involved in anti-inflammation and ameliorating insulin resistance in prefrontal cortex of diabetic rats.Methods: Intragastric administration of BBr (187.5 mg/Kg/d was used in diabetic rats. Fear-condition assay was applied for cognitive assessment, and relative protein expressions were detected by western-blot. The glucose uptake in prefrontal cortex of diabetic rats was tested by Positron-Emission Tomography imaging. The levels of inflammation mediators were determined by commercial ELISA kits.Results: The inflammation mediator release and insulin resistance in the mPFC of diabetic rats was inhibited by BBr. The activation of PI3K/Akt/mTOR and MAPK signaling pathway, as well as two novel isoforms PKCη and PKC and the translocation of NF-κB in neuron were also down-regulated by BBr; furthermore, the neuron specific glucose transporter GLUT3 was remarkably augmented by 2–3 times when compared with diabetic group; meanwhile, BBr also promoted glucose uptake in the brain. Additionally BBr decreased the expressions of amyloid precursor protein and BACE-1, and the production of oligomeric Aβ42. Finally, it accelerates the reinforcement of the information and ameliorates cognitive impairment.Conclusion: BBr inhibited the activation of inflammation pathway and insulin resistance

  20. Parsing cognitive and emotional empathy deficits for negative and positive stimuli in frontotemporal dementia.

    Science.gov (United States)

    Oliver, Lindsay D; Mitchell, Derek G V; Dziobek, Isabel; MacKinley, Julia; Coleman, Kristy; Rankin, Katherine P; Finger, Elizabeth C

    2015-01-01

    Behavioural variant frontotemporal dementia (bvFTD) is a debilitating neurodegenerative disorder characterized by frontal and temporal lobe atrophy primarily affecting social cognition and emotion, including loss of empathy. Many consider empathy to be a multidimensional construct, including cognitive empathy (the ability to adopt and understand another's perspective) and emotional empathy (the capacity to share another's emotional experience). Cognitive and emotional empathy deficits have been associated with bvFTD; however, little is known regarding the performance of patients with bvFTD on behavioural measures of emotional empathy, and whether empathic responses differ for negative versus positive stimuli. 24 patients with bvFTD and 24 healthy controls completed the Multifaceted Empathy Test (MET; Dziobek et al., 2008), a performance-based task that taps both cognitive and emotional facets of empathy, and allows for the discrimination of responses to negative versus positive realistic images. MET scores were also compared with caregiver ratings of patient behaviour on the Interpersonal Reactivity Index, which assesses patients' everyday demonstrations of perspective taking and empathic concern. Patients with bvFTD were less accurate than controls at inferring mental states for negative and positive stimuli. They also demonstrated lower levels of shared emotional experience, more positive emotional reactions, and diminished arousal to negative social stimuli relative to controls. Patients showed reduced emotional reactions to negative non-social stimuli as well. Lastly, the MET and IRI measures of emotional empathy were found to be significantly correlated within the bvFTD group. The results suggest that patients with bvFTD show a global deficit in cognitive empathy, and deficient emotional empathy for negative, but not positive, experiences. Further, a generalized emotional processing impairment for negative stimuli was observed, which could contribute to the

  1. Cognitive deficits of executive functions and decision-making in obsessive-compulsive disorder.

    Science.gov (United States)

    Dittrich, Winand H; Johansen, Thomas

    2013-10-01

    The nature of cognitive deficits in obsessive-compulsive disorder (OCD) is characterized by contradictory findings in terms of specific neuropsychological deficits. Selective impairments have been suggested to involve visuospatial memory, set shifting, decision-making and response inhibition. The aim of this study was to investigate cognitive deficits in decision-making and executive functioning in OCD. It was hypothesized that the OCD patients would be less accurate in their responses compared to the healthy controls in rational decision-making on a version of the Cambridge gambling task (CGT) and on the color-word interference test and on a version of the Tower of Hanoi test (tower test) of executive functioning. Thirteen participants with OCD were compared to a group of healthy controls (n = 13) matched for age, gender, education and verbal IQ. Results revealed significant differences between the OCD group and the healthy control group on quality of decision-making on the CGT and for achievement score on the tower test. On these two tasks the OCD group performed worse than the healthy control group. The symptom-dimension analysis revealed performance differences where safety checking patients were impaired on the tower test compared to contamination patients. Results are discussed in the framework of cognition and emotion processing and findings implicate that OCD models should address, specifically, the interaction between cognition and emotion. Here the emotional disruption hypothesis is forwarded to account for the dysfunctional behaviors in OCD. Further implications regarding methodological and inhibitory factors affecting cognitive information processing are highlighted. © 2013 The Scandinavian Psychological Associations.

  2. Cognitive-perceptual deficits and symptom correlates in first-episode schizophrenia

    Directory of Open Access Journals (Sweden)

    Riaan M. Olivier

    2017-08-01

    Full Text Available Background: Thought disorder and visual-perceptual deficits have been well documented, but their relationships with clinical symptoms and cognitive function remain unclear. Cognitive-perceptual deficits may underscore clinical symptoms in schizophrenia patients. Aim: This study aimed to explore how thought disorder and form perception are related with clinical symptoms and cognitive dysfunction in first-episode schizophrenia. Setting: Forty-two patients with a first-episode of schizophrenia, schizophreniform or schizoaffective disorder were recruited from community clinics and state hospitals in the Cape Town area. Methods: Patients were assessed at baseline with the Rorschach Perceptual Thinking Index (PTI, the Positive and Negative Syndrome Scale (PANSS and the MATRICS Cognitive Consensus Battery (MCCB. Spearman correlational analyses were conducted to investigate relationships between PTI scores, PANSS factor analysis-derived domain scores and MCCB composite and subscale scores. Multiple regression models explored these relationships further. Results: Unexpectedly, poor form perception (X- % was inversely correlated with the severity of PANSS positive symptoms (r = -0.42, p = 0.02. Good form perception (XA% correlated significantly with speed of processing (r = 0.59, p < 0.01, working memory (r = 0.48, p < 0.01 and visual learning (r = 0.55, p < 0.01. PTI measures of thought disorder did not correlate significantly with PANSS symptom scores or cognitive performance. Conclusions: Form perception is associated with positive symptoms and impairment in executive function during acute psychosis. These findings suggest that there may be clinical value in including sensory-perceptual processing tasks in cognitive remediation and social cognitive training programmes for schizophrenia patients.

  3. Emotional bias of cognitive control in adults with childhood attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Kurt P. Schulz

    2014-01-01

    Full Text Available Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD.

  4. Emotional bias of cognitive control in adults with childhood attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Schulz, Kurt P; Bédard, Anne-Claude V; Fan, Jin; Clerkin, Suzanne M; Dima, Danai; Newcorn, Jeffrey H; Halperin, Jeffrey M

    2014-01-01

    Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD) across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD.

  5. Cognitive Training for Attention-Deficit/Hyperactivity Disorder: Meta-Analysis of Clinical and Neuropsychological Outcomes From Randomized Controlled Trials

    NARCIS (Netherlands)

    Cortese, S.; Ferrin, M.; Brandeis, D.; Buitelaar, J.K.; Daley, D.; Dittmann, R.W.; Holtmann, M.; Santosh, P.; Stevenson, J.; Stringaris, A.; Zuddas, A.; Sonuga-Barke, E.J.

    2015-01-01

    OBJECTIVE: The authors performed meta-analyses of randomized controlled trials to examine the effects of cognitive training on attention-deficit/hyperactivity disorder (ADHD) symptoms, neuropsychological deficits, and academic skills in children/adolescents with ADHD. METHOD: The authors searched

  6. Postconditioning with sevoflurane ameliorates spatial learning and memory deficit via attenuating endoplasmic reticulum stress induced neuron apoptosis in a rat model of hemorrhage shock and resuscitation.

    Science.gov (United States)

    Hu, Xianwen; Wang, Jingxian; Zhang, Li; Zhang, Qiquan; Duan, Xiaowen; Zhang, Ye

    2018-06-02

    Hemorrhage shock could initiate endoplasmic reticulum stress (ERS) and then induce neuronal apoptosis. The aim of this study was to investigate whether sevoflurane postconditioning could attenuate brain injury via suppressing apoptosis induced by ERS. Seventy male rats were randomized into five groups: sham, shock, low concentration (sevo1, 1.2%), middle concentration (sevo2, 2.4%) and high concentration (sevo3, 3.6%) of sevoflurane postconditioning. Hemorrhage shock was induced by removing 40% of the total blood volume during an interval of 30 min. 1h after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The spatial learning and memory ability of rats were measured by Morris water maze (MWM) test three days after the operation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region were assessed after the MWM test. The expression of C/EBP-homologousprotein (CHOP) and glucose-regulated protein 78 (GRP78) in the hippocampus were measured at 24h after reperfusion. We found that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% significantly ameliorated the spatial learning and memory ability, decreased the TUNEL-positive cells, and reduced the GRP78 and CHOP expression compared with the shock group. These results suggested that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% could ameliorate spatial learning and memory deficit after hemorrhage shock and resuscitation injury via suppressing apoptosis induced by ERS. Copyright © 2018. Published by Elsevier B.V.

  7. Therapies for Cognitive Deficits Associated With Chemotherapy for Breast Cancer: A Systematic Review of Objective Outcomes.

    Science.gov (United States)

    Morean, Diane F; O'Dwyer, Linda; Cherney, Leora R

    2015-10-01

    To systematically review evidence of treatments for cognitive impairments experienced by at least 20% of all women who undergo chemotherapy for breast cancer. Searches of 5 databases (PubMed, Embase, Cochrane CENTRAL, PsycINFO, CINAHL), with no date or language restrictions, identified 1701 unique results. Search terms included breast cancer, chemotherapy, chemobrain, chemofog, and terms on cognition and language deficits. Included only peer-reviewed journal articles that described therapies for cognitive dysfunction in women undergoing (or who had undergone) chemotherapy for breast cancer and provided objective measurements of cognition or language. Data were extracted according to Cochrane recommendations, including characteristics of participants, interventions, outcomes, and studies. Quality assessment of all 12 eligible studies was performed using the Physiotherapy Evidence Database scale and treatment fidelity criteria. Screening, data extraction, and quality assessment reliability were performed. Six articles described interventions for cognition that took place during cancer treatment; 6, afterward. Five interventions were medical (including a strength-training program), 2 were restorative, and 5 were cognitive. Medicinal treatments were ineffective; restorative and exercise treatments had mixed results; cognitive therapy had success in varying cognitive domains. The domains most tested and most successfully treated were verbal memory, attention, and processing speed. Cognitive therapy protocols delivered after chemotherapy and aimed at improving verbal memory, attention, and processing speed hold the most promise. Future research is needed to clarify whether computerized cognitive training can be effective in treating this population, and to identify objective assessment tools that are sensitive to this disorder. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Cognitive rehabilitation of neuropsychological deficits and mild cognitive impairment: A review of the literature

    Directory of Open Access Journals (Sweden)

    Eliane Correa Miotto

    Full Text Available Abstract Neuropsychological rehabilitation is related to the treatment or optimization of disabilities, handicaps and cognitive deficiencies including emotional, behavioral and personality alterations, aiming at the best cognitive, neurobiological and social re-adaptation. Objective: The main aim of this paper is to review scientific studies published over the last five years on cognitive training with rehabilitation, focusing on elderly subjects with cognitive complaints and patients diagnosed with MCI. Methods: Data were generated from Medline, PsychoInfo and EMBASE including publications from 2002 to 2007 using the search terms "Mild Cognitive Impairment", "Cognitive Complaints", "Rehabilitation" and "Intervention Studies". Data collection criteria were restricted to the quality of evidence Class I. Results: Eight articles out of sixty eight previously selected were chosen because of their randomized studies, including techniques of cognitive rehabilitation in patients with cognitive complaints, MCI and neuropsychological training. Conclusions: The studies showing generalization of rehabilitation techniques to practical real life situations and use of an errorless learning approach were considered more effective in terms of maintaining treatment follow up, although further studies are recommended.

  9. Cognitive deficits in marijuana users: effects on motivational enhancement therapy plus cognitive behavioral therapy treatment outcome

    Science.gov (United States)

    Aharonovich, Efrat; Brooks, Adam C; Nunes, Edward V; Hasin, Deborah S

    2008-01-01

    Clinical variables that affect treatment outcome for marijuana dependent individuals are not yet well understood, including the effects of cognitive functioning. To address this, level of cognitive functioning and treatment outcome were investigated. Twenty marijuana-dependent outpatients were administered a neuropsychological battery at treatment entry. All patients received 12 weekly individual sessions of combined motivational enhancement therapy and cognitive behavioral therapy. The Wilcoxon Exact Test was used to compare cognitive functioning test scores between completers and dropouts, and the Fisher Exact Test was used to compare proportion of negative urines between those with higher and lower scores on the cognitive tests. Marijuana abstinence was unrelated to cognitive functioning. However, dropouts scored significantly lower than completers on measures of abstract reasoning and processing accuracy, providing initial evidence that cognitive functioning plays a role in treatment retention of adult marijuana dependent patients. If supported by further studies, the findings may help inform the development of interventions tailored for cognitively impaired marijuana dependent patients. PMID:18329188

  10. Performances on a cognitive theory of mind task: specific decline or general cognitive deficits? Evidence from normal aging.

    Science.gov (United States)

    Fliss, Rafika; Lemerre, Marion; Mollard, Audrey

    2016-06-01

    Compromised theory of mind (ToM) can be explained either by a failure to implement specific representational capacities (mental state representations) or by more general executive selection demands. In older adult populations, evidence supporting affected executive functioning and cognitive ToM in normal aging are reported. However, links between these two functions remain unclear. In the present paper, we address these shortcomings by using a specific task of ToM and classical executive tasks. We studied, using an original cognitive ToM task, the effect of age on ToM performances, in link with the progressive executive decline. 96 elderly participants were recruited. They were asked to perform a cognitive ToM task, and 5 executive tests (Stroop test and Hayling Sentence Completion Test to appreciate inhibitory process, Trail Making Test and Verbal Fluency for shifting assessment and backward span dedicated to estimate working memory capacity). The results show changes in cognitive ToM performance according to executive demands. Correlational studies indicate a significant relationship between ToM performance and the selected executive measures. Regression analyzes demonstrates that level of vocabulary and age as the best predictors of ToM performance. The results are consistent with the hypothesis that ToM deficits are related to age-related domain-general decline rather than as to a breakdown in specialized representational system. The implications of these findings for the nature of social cognition tests in normal aging are also discussed.

  11. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Ontiveros, Esperanza; Gómez-Garza, Gilberto; Barragán-Mejía, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R; Henríquez-Roldán, Carlos; Pérez-Guillé, Beatriz; Torres-Jardón, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C; Engle, Randall W

    2008-11-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n: 55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic resonance imaging MRI. Seven healthy young dogs with similar exposure to Mexico City air pollution had brain MRI, measurement of mRNA abundance of two inflammatory genes cyclooxygenase-2, and interleukin 1 beta in target brain areas, and histopathological evaluation of brain tissue. Children with no known risk factors for neurological or cognitive disorders residing in a polluted urban environment exhibited significant deficits in a combination of fluid and crystallized cognition tasks. Fifty-six percent of Mexico City children tested showed prefrontal white matter hyperintense lesions and similar lesions were observed in dogs (57%). Exposed dogs had frontal lesions with vascular subcortical pathology associated with neuroinflammation, enlarged Virchow-Robin spaces, gliosis, and ultrafine particulate matter deposition. Based on the MRI findings, the prefrontal cortex was a target anatomical region in Mexico City children and its damage could have contributed to their cognitive dysfunction. The present work presents a groundbreaking, interdisciplinary methodology for addressing relationships between environmental pollution, structural brain alterations by MRI, and cognitive deficits/delays in healthy children.

  12. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia.

    Science.gov (United States)

    Nakagawa, Yutaka; Chiba, Kenji

    2016-09-01

    Development of social cognition, a unique and high-order function, depends on brain maturation from childhood to adulthood in humans. Autism spectrum disorder (ASD) and schizophrenia have similar social cognitive deficits, although age of onset in each disorder is different. Pathogenesis of these disorders is complex and contains several features, including genetic risk factors, environmental risk factors, and sites of abnormalities in the brain. Although several hypotheses have been postulated, they seem to be insufficient to explain how brain alterations associated with symptoms in these disorders develop at distinct developmental stages. Development of ASD appears to be related to cerebellar dysfunction and subsequent thalamic hyperactivation in early childhood. By contrast, schizophrenia seems to be triggered by thalamic hyperactivation in late adolescence, whereas hippocampal aberration has been possibly initiated in childhood. One of the possible culprits is metal homeostasis disturbances that can induce dysfunction of blood-cerebrospinal fluid barrier. Thalamic hyperactivation is thought to be induced by microglia-mediated neuroinflammation and abnormalities of intracerebral environment. Consequently, it is likely that the thalamic hyperactivation triggers dysregulation of the dorsolateral prefrontal cortex for lower brain regions related to social cognition. In this review, we summarize the brain aberration in ASD and schizophrenia and provide a possible mechanism underlying social cognitive deficits in these disorders based on their distinct ages of onset. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. [Cognitive deficits in first episode psychosis patients and people at risk for psychosis: from diagnosis to treatment].

    Science.gov (United States)

    Lecardeur, L; Meunier-Cussac, S; Dollfus, S

    2013-05-01

    Up to now, studies have not demonstrated significant efficacy of antipsychotics on cognitive impairments in patients with psychotic disorders. These cognitive deficits are of particular interest since they traditionally start early before the diagnosis of psychosis. They are observed during premorbid and prodromal stages, and during the first episode of psychosis. Moreover, cognitive impairments may be detected without any psychotic symptoms (such as positive symptoms) suggesting their development independently of the psychotic symptoms. Cognitive disturbances consist of impairments of episodic and working memories, intellectual functioning, executive functions (planning, inhibition, and cognitive flexibility), selective and sustained attentions and social cognition (emotion, recognition, theory of mind). The altered cognitive functions observed in schizophrenia are the same as in earlier stages but at a lower level of severity. Data suggest that cognitive deficits can be considered as vulnerability markers of psychosis since they have been described in healthy relatives of psychotic patients with high genetic risk. Cognitive deficits might also be considered as predictive of the occurrence of the disease after the first episode of psychosis. Indeed, retrospective studies suggest cognitive impairments in patients with schizophrenia during premorbid and prodromal phases but not in bipolar patients. Cognitive assessment might be of particular interest in people at risk for psychosis, in order to differentiate diagnostic outcomes. Cognitive functioning impairs until the diagnosis of first episode psychosis, even though cognitive profiles are quite heterogeneous in these patients. Once the diagnosis of schizophrenia is considered, cognitive deficits may be stable, although the literature is still controversial. Several factors such as symptoms and gender can contribute in diversifying the cognitive profiles. Moreover, age of onset might worsen the prognosis because of

  14. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer's disease.

    Science.gov (United States)

    Bagheri, Maryam; Joghataei, Mohammad-Taghi; Mohseni, Simin; Roghani, Mehrdad

    2011-03-01

    Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by increased β-amyloid (Aβ) deposition and neuronal dysfunction leading to impaired learning and recall. Ageing, heredity, and induced oxidative stress are among proposed risk factors. The increased frequency of the disease in women also suggests a role for estrogen in development of AD. In the present study, effects of the phytoestrogen genistein (10mg/kg) on learning and memory impairments was assessed in intrahippocampal Aβ(1-40)-injected rats. The estrogen receptor antagonist fulvestrant was injected intracerebroventricularly in a group of Aβ-lesioned rats. The Aβ-injected animals exhibited the following: lower spontaneous alternation score in Y-maze tasks, impaired retention and recall capability in the passive avoidance test, and fewer correct choices and more errors in the RAM task. Genistein, but not genistein and fulvestrant, significantly improved most of these parameters. Measurements of oxidative stress markers in hippocampal tissue of Aβ-injected rats showed an elevation of malondialdehyde (MDA) and nitrite content, and a reduction of superoxide dismutase (SOD) activity. Genistein significantly attenuated the increased MDA content but did not affect the nitrite content or SOD activity. These results indicate that genistein pretreatment ameliorates Aβ-induced impairment of short-term spatial memory in rats through an estrogenic pathway and by inducing attenuation of oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. A Cross-Sectional Study of the Relationship of Physical Activity with Depression and Cognitive Deficit in Older Adults.

    Science.gov (United States)

    Paulo T, R S; Tribess, Sheilla; Sasaki, Jeffer Eidi; Meneguci, Joilson; Martins, Cristiane A; Freitas, Ismael F; Romo-Perez, Vicente; Virtuoso, Jair S

    2016-04-01

    The aim of this study was to examine the association of physical activity with depression and cognition deficit, separately and combined, in Brazilian older adults. We analyzed data from 622 older adults. Physical activity was assessed using the International Physical Activity Questionnaire. Depressive symptoms were assessed using the Geriatric Depression Scale, while cognitive deficit was assessed using the Mini-Mental State Examination. Multinomial logistic regressions were used to assess associations of depression and cognitive deficit with sociodemographic, health, and behavioral variables. Prevalence of physical inactivity (physical activity/ week), depression, and cognitive deficit were 35.7%, 37.4%, and 16.7%. Physical inactivity was associated with depression (OR: 1.83, 95% CI: 1.14-2.94) and with depression and cognitive deficit combined (OR: 4.23, 95% CI: 2.01-8.91). Physically inactive participants were also more likely to present limitations in orientation and language functions. Physical inactivity was associated with depression and also with depression and cognitive deficit combined in older adults.

  16. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits

    Science.gov (United States)

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-01-01

    Alzheimer’s disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis. PMID:25847999

  17. Understanding the effects of stimulant medications on cognition in individuals with attention-deficit hyperactivity disorder: a decade of progress.

    Science.gov (United States)

    Swanson, James; Baler, Ruben D; Volkow, Nora D

    2011-01-01

    The use of stimulant drugs for the treatment of children with attention-deficit hyperactivity disorder (ADHD) is one of the most widespread pharmacological interventions in child psychiatry and behavioral pediatrics. This treatment is well grounded on controlled studies showing efficacy of low oral doses of methylphenidate and amphetamine in reducing the behavioral symptoms of the disorder as reported by parents and teachers, both for the cognitive (inattention and impulsivity) and non-cognitive (hyperactivity) domains. Our main aim is to review the objectively measured cognitive effects that accompany the subjectively assessed clinical responses to stimulant medications. Recently, methods from the cognitive neurosciences have been used to provide information about brain processes that underlie the cognitive deficits of ADHD and the cognitive effects of stimulant medications. We will review some key findings from the recent literature, and then offer interpretations of the progress that has been made over the past decade in understanding the cognitive effects of stimulant medication on individuals with ADHD.

  18. Aprotinin decreases the incidence of cognitive deficit following CABG and cardiopulmonary bypass: a pilot randomized controlled study.

    LENUS (Irish Health Repository)

    Harmon, Dominic C

    2012-02-03

    PURPOSE: Cognitive deficit after coronary artery bypass surgery (CABG) has a high prevalence and is persistent. Meta-analysis of clinical trials demonstrates a decreased incidence of stroke after CABG when aprotinin is administrated perioperatively. We hypothesized that aprotinin administration would decrease the incidence of cognitive deficit after CABG. METHODS: Thirty-six ASA III-IV patients undergoing elective CABG were included in a prospective, randomized, single-blinded pilot study. Eighteen patients received aprotinin 2 x 10(6) KIU (loading dose), 2 x 10(6) KIU (added to circuit prime) and a continuous infusion of 5 x 10(5) KIU.hr(-1). A battery of cognitive tests was administered to patients and spouses (n = 18) the day before surgery, four days and six weeks postoperatively. RESULTS: Four days postoperatively new cognitive deficit (defined by a change in one or more cognitive domains using the Reliable Change Index method) was present in ten (58%) patients in the aprotinin group compared to 17 (94%) in the placebo group [95% confidence interval (CI) 0.10-0.62, P = 0.005); (P = 0.01)]. Six weeks postoperatively, four (23%) patients in the aprotinin group had cognitive deficit compared to ten (55%) in the placebo group (95% CI 0.80-0.16, P = 0.005); (P = 0.05). CONCLUSION: In this prospective pilot study, the incidence of cognitive deficit after CABG and cardiopulmonary bypass is decreased by the administration of high-dose aprotinin.

  19. Executive functions and cognitive deficits in schizophrenia: Comparisons between probands, parents and controls in India

    Directory of Open Access Journals (Sweden)

    Bhatia T

    2009-01-01

    Full Text Available Background: Cognitive impairment is said to be a core feature of schizophrenia. Executive function is an important cognitive domain. Aim: This study was undertaken to assess cognitive impairment among Indian patients with schizophrenia (Sz or schizoaffective disorder (SzA, compared with their parents and unaffected individuals (controls. Settings and Design: Executive functions as measured by Trail-making Test (TMT, of patients and their parents were compared with controls. The patients were recruited from the Outpatients′ Department (OPD of a government hospital. Materials and Methods: Patients diagnosed as Sz or SzA (n=172 and their parents (n=196: families n=132, 119 fathers and 77 mothers participated. We also included 120 persons with no history of psychiatric illness. Cognitive function was assessed with the TMT. The Information Score of the Post Graduate Institute Battery of Brain Dysfunction test, developed in India for Indian subjects was used as a proxy for general fixed knowledge. Statistical Analysis: Logistic and linear regression was used to compare cognitive deficits of cases, parents and controls. Results: Cases and their parents took significantly more time than controls on Part B of the TMT. There were no statistically significant differences between cases and parents on any of the TMT parameters. Using regression analysis, the most significant correlates of all TMT parameters among cases were with occurrence of auditory hallucinations and current age. Conclusion: Cases, as well as their parents showed more cognitive impairment than controls on the TMT.

  20. Bee Venom Ameliorates Cognitive Dysfunction Caused by Neuroinflammation in an Animal Model of Vascular Dementia.

    Science.gov (United States)

    Cai, Mudan; Lee, Jun Hwan; Yang, Eun Jin

    2017-10-01

    Vascular dementia (VaD) is caused by the reduction of blood supply by vessel occlusion and is characterized by progressive cognitive decline. VaD incidence has been growing due to the aging population, placing greater strain on social and economic resources. However, the pathological mechanisms underlying VaD remain unclear. Many studies have used the bilateral common carotid artery occlusion (BCCAO) animal model to investigate potential therapeutics for VaD. In this study, we investigated whether bee venom (BV) improves cognitive function and reduces neuroinflammation in the hippocampus of BCCAO animals. Animals were randomly divided into three groups: a sham group (n = 15), BCCAO control group (n = 15), and BV-treated BCCAO group (n = 15). BCCAO animals were treated with 0.1 μg/g BV at ST36 ("Joksamli" acupoint) four times every other day. In order to investigate the effect of BV treatment on cognitive function, we performed a Y-maze test. In order to uncover any potential relationship between these results and neuroinflammation, we also performed Western blotting in the BCCAO group. Animals that had been treated with BV showed an improved cognitive function and a reduced expression of neuroinflammatory proteins in the hippocampus, including Iba-1, TLR4, CD14, and TNF-α. Furthermore, we demonstrated that BV treatment increased pERK and BDNF in the hippocampus. The present study thus underlines the neuroprotective effect of BV treatment against BCCAO-induced cognitive impairment and neuroinflammation. Our findings suggest that BV may be an effective complementary treatment for VaD, as it may improve cognitive function and attenuate neuroinflammation associated with dementia.

  1. Ellagic acid ameliorates learning and memory deficits in a rat model of Alzheimer's disease: an exploration of underlying mechanisms.

    Science.gov (United States)

    Kiasalari, Zahra; Heydarifard, Rana; Khalili, Mohsen; Afshin-Majd, Siamak; Baluchnejadmojarad, Tourandokht; Zahedi, Elham; Sanaierad, Ashkan; Roghani, Mehrdad

    2017-06-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with irreversible loss of intellectual abilities. Current therapies for AD are still insufficient. In this study, the effect of ellagic acid on learning and memory deficits was evaluated in intrahippocampal amyloid beta (Aβ 25-35 )-microinjected rats and its modes of action were also explored. AD rat model was induced by bilateral intrahippocampal microinjection of Aβ 25-35 and ellagic acid was daily administered (10, 50, and 100 mg/kg), and learning, recognition memory, and spatial memory were evaluated in addition to histochemical assessment, oxidative stress, cholinesterases activity, and level of nuclear factor-kappaB (NF-κB), Toll-like receptor 4 (TLR4), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The amyloid beta-microinjected rats showed a lower discrimination ratio in novel object and alternation score in Y maze tasks and exhibited an impairment of retention and recall capability in passive avoidance paradigm and higher working and reference memory errors in radial arm maze (RAM). In addition, amyloid beta group showed a lower number of Nissl-stained neurons in CA1 area in addition to enhanced oxidative stress, higher activity of cholinesterases, greater level of NF-κB and TLR4, and lower level of nuclear/cytoplasmic ratio for Nrf2 and ellagic acid at a dose of 100 mg/kg significantly prevented most of these abnormal alterations. Ellagic acid pretreatment of intrahippocampal amyloid beta-microinjected rats could dose-dependently improve learning and memory deficits via neuronal protection and at molecular level through mitigation of oxidative stress and acetylcholinesterase (AChE) activity and modulation of NF-κB/Nrf2/TLR4 signaling pathway.

  2. Deficit of entropy modulation of the EEG in schizophrenia associated to cognitive performance and symptoms. A replication study.

    Science.gov (United States)

    Molina, Vicente; Bachiller, Alejandro; Gomez-Pilar, Javier; Lubeiro, Alba; Hornero, Roberto; Cea-Cañas, Benjamín; Valcárcel, César; Haidar, Mahmoun-Karim; Poza, Jesús

    2017-09-05

    Spectral entropy (SE) is a measurement from information theory field that provides an estimation of EEG regularity and may be useful as a summary of its spectral properties. Previous studies using small samples reported a deficit of EEG entropy modulation in schizophrenia during cognitive activity. The present study is aimed at replicating this finding in a larger sample, to explore its cognitive and clinical correlates and to discard antipsychotic treatment as the main source of that deficit. We included 64 schizophrenia patients (21 first episodes, FE) and 65 healthy controls. We computed SE during performance of an odd-ball paradigm, at the windows prior (-300 to 0ms) and following (150 to 450ms) stimulus presentation. Modulation of SE was defined as the difference between post- and pre-stimulus windows. In comparison to controls, patients showed a deficit of SE modulation over frontal and central regions, also shown by FE patients. Baseline SE did not differ between patients and controls. Modulation deficit was directly associated with cognitive deficits and negative symptoms, and inversely with positive symptoms. SE modulation was not related to antipsychotic doses. Patients also showed a smaller change of median frequency (i.e., smaller slowing of oscillatory activity) of the EEG from pre- to post-stimulus windows. These results support that a deficit of fast modulation contributes to cognitive deficits and symptoms in schizophrenia patients. Copyright © 2017. Published by Elsevier B.V.

  3. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    Science.gov (United States)

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  4. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder (ADHD and Its Clinical Translation

    Directory of Open Access Journals (Sweden)

    Katya Rubia

    2018-03-01

    Full Text Available This review focuses on the cognitive neuroscience of Attention Deficit Hyperactivity Disorder (ADHD based on functional magnetic resonance imaging (fMRI studies and on recent clinically relevant applications such as fMRI-based diagnostic classification or neuromodulation therapies targeting fMRI deficits with neurofeedback (NF or brain stimulation. Meta-analyses of fMRI studies of executive functions (EFs show that ADHD patients have cognitive-domain dissociated complex multisystem impairments in several right and left hemispheric dorsal, ventral and medial fronto-cingulo-striato-thalamic and fronto-parieto-cerebellar networks that mediate cognitive control, attention, timing and working memory (WM. There is furthermore emerging evidence for abnormalities in orbital and ventromedial prefrontal and limbic areas that mediate motivation and emotion control. In addition, poor deactivation of the default mode network (DMN suggests an abnormal interrelationship between hypo-engaged task-positive and poorly “switched off” hyper-engaged task-negative networks, both of which are related to impaired cognition. Translational cognitive neuroscience in ADHD is still in its infancy. Pattern recognition analyses have attempted to provide diagnostic classification of ADHD using fMRI data with respectable classification accuracies of over 80%. Necessary replication studies, however, are still outstanding. Brain stimulation has been tested in heterogeneously designed, small numbered proof of concept studies targeting key frontal functional impairments in ADHD. Transcranial direct current stimulation (tDCS appears to be promising to improve ADHD symptoms and cognitive functions based on some studies, but larger clinical trials of repeated stimulation with and without cognitive training are needed to test clinical efficacy and potential costs on non-targeted functions. Only three studies have piloted NF of fMRI-based frontal dysfunctions in ADHD using fMRI or

  5. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) and Its Clinical Translation

    Science.gov (United States)

    Rubia, Katya

    2018-01-01

    This review focuses on the cognitive neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) based on functional magnetic resonance imaging (fMRI) studies and on recent clinically relevant applications such as fMRI-based diagnostic classification or neuromodulation therapies targeting fMRI deficits with neurofeedback (NF) or brain stimulation. Meta-analyses of fMRI studies of executive functions (EFs) show that ADHD patients have cognitive-domain dissociated complex multisystem impairments in several right and left hemispheric dorsal, ventral and medial fronto-cingulo-striato-thalamic and fronto-parieto-cerebellar networks that mediate cognitive control, attention, timing and working memory (WM). There is furthermore emerging evidence for abnormalities in orbital and ventromedial prefrontal and limbic areas that mediate motivation and emotion control. In addition, poor deactivation of the default mode network (DMN) suggests an abnormal interrelationship between hypo-engaged task-positive and poorly “switched off” hyper-engaged task-negative networks, both of which are related to impaired cognition. Translational cognitive neuroscience in ADHD is still in its infancy. Pattern recognition analyses have attempted to provide diagnostic classification of ADHD using fMRI data with respectable classification accuracies of over 80%. Necessary replication studies, however, are still outstanding. Brain stimulation has been tested in heterogeneously designed, small numbered proof of concept studies targeting key frontal functional impairments in ADHD. Transcranial direct current stimulation (tDCS) appears to be promising to improve ADHD symptoms and cognitive functions based on some studies, but larger clinical trials of repeated stimulation with and without cognitive training are needed to test clinical efficacy and potential costs on non-targeted functions. Only three studies have piloted NF of fMRI-based frontal dysfunctions in ADHD using fMRI or near

  6. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-01-01

    Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.

  7. Emotion recognition and cognitive empathy deficits in adolescent offenders revealed by context-sensitive tasks

    Directory of Open Access Journals (Sweden)

    Maria Luz eGonzalez-Gadea

    2014-10-01

    Full Text Available Emotion recognition and empathy abilities require the integration of contextual information in real-life scenarios. Previous reports have explored these domains in adolescent offenders (AOs but have not used tasks that replicate everyday situations. In this study we included ecological measures with different levels of contextual dependence to evaluate emotion recognition and empathy in AOs relative to non-offenders, controlling for the effect of demographic variables. We also explored the influence of fluid intelligence (FI and executive functions (EFs in the prediction of relevant deficits in these domains. Our results showed that AOs exhibit deficits in context-sensitive measures of emotion recognition and cognitive empathy. Difficulties in these tasks were neither explained by demographic variables nor predicted by FI or EFs. However, performance on measures that included simpler stimuli or could be solved by explicit knowledge was either only partially affected by demographic variables or preserved in AOs. These findings indicate that AOs show contextual social-cognition impairments which are relatively independent of basic cognitive functioning and demographic variables.

  8. Cognitive Deficits Associated with Nav1.1 Alterations: Involvement of Neuronal Firing Dynamics and Oscillations.

    Directory of Open Access Journals (Sweden)

    Alex C Bender

    Full Text Available Brain oscillations play a critical role in information processing and may, therefore, be essential to uncovering the mechanisms of cognitive impairment in neurological disease. In Dravet syndrome (DS, a mutation in SCN1A, coding for the voltage-gated sodium channel Nav1.1, is associated with severe cognitive impairment and seizures. While seizure frequency and severity do not correlate with the extent of impairment, the slowing of brain rhythms may be involved. Here we investigate the role of Nav1.1 on brain rhythms and cognition using RNA interference. We demonstrate that knockdown of Nav1.1 impairs fast- and burst-firing properties of neurons in the medial septum in vivo. The proportion of neurons that fired phase-locked to hippocampal theta oscillations was reduced, and medial septal regulation of theta rhythm was disrupted. During a working memory task, this deficit was characterized by a decrease in theta frequency and was negatively correlated with performance. These findings suggest a fundamental role for Nav1.1 in facilitating fast-firing properties in neurons, highlight the importance of precise temporal control of theta frequency for working memory, and imply that Nav1.1 deficits may disrupt information processing in DS via a dysregulation of brain rhythms.

  9. Cognitive deficit and depressive symptoms in a community group of elderly people: a preliminary study

    Directory of Open Access Journals (Sweden)

    Silberman Claudia

    1995-01-01

    Full Text Available Since the number and proportion of old people increases worldwide, health professionals and systems should be made aware and prepared to deal with their problems. Cognitive deficit and symptoms of depression are commom among the elderly, and may occur in relation to various risk factors such as health conditions and psychosocial variables. In order to study cognitive deficit and the presence of signs and symptoms of depression, 62 elderly community subjects enrolled at a Community Health Unit in Porto Alegre, southern Brazil, were interviewed. They were evaluated by means of the Mini Mental State Exam, the Montgomery-Asberg Depression rating scale, and a questionnaire on health conditions, living arrangements and social variables. Higher levels of symptoms of depression were observed among subjects exposed to major risk factors for cerebrovascular diseases (diabetes and coronary disease, while impaired cognitive performance was seen among individuals who could not count on the presence of a confidant (social network variable. The results suggest that the early identification of major risk groups among old people can help to prevent institutionalization and keep individuals in the community.

  10. Association of Social Frailty With Both Cognitive and Physical Deficits Among Older People.

    Science.gov (United States)

    Tsutsumimoto, Kota; Doi, Takehiko; Makizako, Hyuma; Hotta, Ryo; Nakakubo, Sho; Makino, Keitaro; Suzuki, Takao; Shimada, Hiroyuki

    2017-07-01

    Our objective was to investigate the association between social frailty and cognitive and physical function among older adults. This was a cross-sectional study. We examined community-dwelling adults in Japan. Participants comprised 4425 older Japanese people from the National Center for Geriatrics and Gerontology-Study of Geriatric Syndromes. Social frailty was defined by using responses to 5 questions (going out less frequently, rarely visiting friends, feeling unhelpful to friends or family, living alone, and not talking with someone every day). Participants showing none of these components were considered nonfrail; those showing 1 component were considered prefrail; and those showing 2 or more components were considered frail. To screen for cognitive deficits, we assessed memory, attention, executive function, and processing speed. Having 2 or more tests with age-adjusted scores of at least 1.5 standard deviations below the reference threshold was sufficient to be characterized as cognitively deficient. To screen for physical function deficits, we assessed walking speed (physically deficient. The prevalence of social frailty was the following: nonfrailty, 64.1% (N = 2835); social prefrailty, 24.8% (N = 1097); social frailty, 11.1% (N = 493; P for trend physical function (gait speed and grip strength) also varied between social frailty groups (all Ps for trend physical function (odds ratio = 1.99, 95% confidence interval 1.57-2.52) after adjusting for covariates. This study revealed that social frailty is associated with both cognitive and physical function among Japanese older adults. And social frailty status was also negatively associated with physical function. Further studies are needed to elucidate if a casual association exists between social frailty and cognitive and physical function. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  11. The AT1 Receptor Antagonist, L-158,809, Prevents or Ameliorates Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment

    International Nuclear Information System (INIS)

    Robbins, Mike E.; Payne, Valerie B.S.; Tommasi, Ellen B.S.; Diz, Debra I.; Hsu, Fang-Chi; Brown, William R.; Wheeler, Kenneth T.; Olson, John; Zhao Weiling

    2009-01-01

    Purpose: We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. Materials and Methods: Groups of 80 young adult male Fischer 344 x Brown Norway (F344xBN) rats, 12-14 weeks old, received either: (1) fractionated WBI; 40 Gy of γ rays in 4 weeks, 2 fractions/week, (2) sham-irradiation; (3) WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during, and for 14, 28, or 54 weeks postirradiation; and (4) sham-irradiation plus L-158,809 for 14, 28, or 54 weeks postirradiation. An additional group of rats (n = 20) received L-158,809 before, during, and for 5 weeks postirradiation, after which they received normal drinking water up to 28 weeks postirradiation. Results: Administration of L-158,809 before, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks postirradiation. Moreover, giving L-158,809 before, during, and for only 5 weeks postirradiation ameliorated the significant cognitive impairment observed 26 weeks postirradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks postirradiation, respectively. Conclusions: Administering L-158,809 before, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks postirradiation. These findings offer the promise of improving the quality of life for brain tumor patients

  12. Pharmacologic blockade of 12/15-lipoxygenase ameliorates memory deficits, Aβ and tau neuropathology in the triple-transgenic mice.

    Science.gov (United States)

    Chu, J; Li, J-G; Giannopoulos, P F; Blass, B E; Childers, W; Abou-Gharbia, M; Praticò, D

    2015-11-01

    The 12/15-lipoxygenase (12/15LO) enzyme is widely distributed within the central nervous system. Previous work showed that this protein is upregulated in Alzheimer's disease (AD), and plays an active role in the development of brain amyloidosis in amyloid beta (Aβ)-precursor protein transgenic mice (Tg2576). In the present paper, we studied the effect of its pharmacologic inhibition on the AD-like phenotype of a mouse model with plaques and tangles, the triple-transgenic mice. Compared with mice receiving placebo, the group treated with PD146176, a specific 12/15LO inhibitor, manifested a significant improvement of their memory deficits. The same animals had a significant reduction in Aβ levels and deposition, which was secondary to a decrease in the β-secretase pathway. In addition, while total tau-soluble levels were unchanged for both groups, PD146176-treated mice had a significant reduction in its phosphorylation state and insoluble fraction, which specifically associated with decrease in stress-activated protein kinase/c-Jun N-terminal kinase activity. In vitro study showed that the effect on tau and Aβ were independent from each other. These data establish a functional role for 12/15LO in the pathogenesis of the full spectrum of the AD-like phenotype and represent the successful completion of the initial step for the preclinical development of 12/15LO inhibitors as novel therapeutic agents for AD.

  13. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize (Zea mays l.) in subtropical northeastern Himalayas.

    Science.gov (United States)

    Marwein, M A; Choudhury, B U; Chakraborty, D; Kumar, M; Das, A; Rajkhowa, D J

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ET c ) of maize crop under controlled condition (pot experiment) of water deficit (W 25 -25 % and W 50 -50 % of field capacity soil moistures) and well watered (W 100  = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ET c losses and water use efficiency was also studied. The measured seasonal ET c loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant (p losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha -1 significantly (p losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W 25 ) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W 100 ) while seasonal ET c loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ET c losses while weekly crop ET c loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ET c losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg -1  water and 4.21 to 8.56 g dry matter kg -1 , respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ET c loss, growth duration, grain formation, and water use efficiency of maize.

  14. Smaller than expected cognitive deficits in schizophrenia patients from the population-representative ABC catchment cohort.

    Science.gov (United States)

    Lennertz, Leonhard; An der Heiden, Wolfram; Kronacher, Regina; Schulze-Rauschenbach, Svenja; Maier, Wolfgang; Häfner, Heinz; Wagner, Michael

    2016-08-01

    Most neuropsychological studies on schizophrenia suffer from sample selection bias, with male and chronic patients being overrepresented. This probably leads to an overestimation of cognitive impairments. The present study aimed to provide a less biased estimate of cognitive functions in schizophrenia using a population-representative catchment area sample. Schizophrenia patients (N = 89) from the prospective Mannheim ABC cohort were assessed 14 years after disease onset and first diagnosis, using a comprehensive neuropsychological test battery. A healthy control group (N = 90) was carefully matched according to age, gender, and geographic region (city, rural surrounds). The present sample was representative for the initial ABC cohort. In the comprehensive neuropsychological assessment, the schizophrenia patients were only moderately impaired as compared to the healthy control group (d = 0.56 for a general cognitive index, d = 0.42 for verbal memory, d = 0.61 for executive functions, d = 0.69 for attention). Only 33 % of the schizophrenia patients scored one standard deviation unit below the healthy control group in the general cognitive index. Neuropsychological performance did not correlate with measures of the clinical course including age at onset, number of hospital admissions, and time in paid work. Thus, in this population-representative sample of schizophrenia patients, neuropsychological deficits were less pronounced than expected from meta-analyses. In agreement with other epidemiological studies, this suggests a less devastating picture of cognition in schizophrenia.

  15. THE CORRELATION OF PARENTING STYLE WITH COGNITIVE DEVELOPMENT IN CHILDREN WITH ATTENTION DEFICIT HYPERACTIVITY DISORDER

    Directory of Open Access Journals (Sweden)

    Fitri Genisti

    2018-05-01

    Full Text Available Background: Child development is a very important phase, which children learn various skills as future generations in the future. Disorders that can impede child development process of Attention Deficit Hyperactivity Disorder (ADHD. Children with ADHD have problems with cognitive abilities, of which about 20-60% of them have learning disorders. The efforts to support cognitive development in ADHD children is to approach the child's environment through parenting parents. Objective: This study aimed to determine the correlation of parenting style with cognitive development in the children with ADHD in SLB Negeri 1 Denpasar. Methods: This study used correlational design with cross sectional approach. The sample size of 30 respondents were taken by purposive sampling technique. Data were collected using parenting style questionnaire (PSQ and the average value of odd semester report of 2016/2017 academic year. Results: The result of this research was found that most parents with democratic parenting type were 19 people (63.3%, authoritarian parenting type were 7 people (23.3% and permissive parenting were 4 people (13.3%. The result of contingency coefficient test with p-value = 0.039 (p <0.05 and correlation value of 0.501, which mean there was high correlation between parenting style with cognitive development in children with ADHD. Conclusion: It is suggested for parents with ADHD children to be able to provide good parenting for the child's development, especially for the child's cognitive development.

  16. Manganese exposure and cognitive deficits: a growing concern for manganese neurotoxicity.

    Science.gov (United States)

    Roels, H A; Bowler, R M; Kim, Y; Claus Henn, B; Mergler, D; Hoet, P; Gocheva, V V; Bellinger, D C; Wright, R O; Harris, M G; Chang, Y; Bouchard, M F; Riojas-Rodriguez, H; Menezes-Filho, J A; Téllez-Rojo, Martha Maria

    2012-08-01

    This symposium comprised five oral presentations dealing with recent findings on Mn-related cognitive and motor changes from epidemiological studies across the life span. The first contribution highlighted the usefulness of functional neuroimaging of the central nervous system (CNS) to evaluate cognitive as well as motor deficits in Mn-exposed welders. The second dealt with results of two prospective studies in Mn-exposed workers or welders showing that after decrease of Mn exposure the outcome of reversibility in adverse CNS effects may differ for motor and cognitive function and, in addition the issue of plasma Mn as a reliable biomarker for Mn exposure in welders has been addressed. The third presentation showed a brief overview of the results of an ongoing study assessing the relationship between environmental airborne Mn exposure and neurological or neuropsychological effects in adult Ohio residents living near a Mn point source. The fourth paper focused on the association between blood Mn and neurodevelopment in early childhood which seems to be sensitive to both low and high Mn concentrations. The fifth contribution gave an overview of six studies indicating a negative impact of excess environmental Mn exposure from air and drinking water on children's cognitive performance, with special attention to hair Mn as a potential biomarker of exposure. These studies highlight a series of questions about Mn neurotoxicity with respect to cognitive processes, forms and routes of exposure, adequate biomarkers of exposure, gender differences, susceptibility and exposure limits with regard to age. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Cognitive deficits in amyotrophic lateral sclerosis evaluated by event-related potentials.

    Science.gov (United States)

    Ogawa, Tomohiro; Tanaka, Hideaki; Hirata, Koichi

    2009-04-01

    To determine the cognitive profiles in non-demented, relatively less handicapped patients with early-stage sporadic amyotrophic lateral sclerosis (ALS) by using neuropsychological tests, event-related potentials (ERPs) and clinical scale. We recruited 19 patients with sporadic ALS (eight with limb-onset, 11 with bulbar-onset) and 19 controls. In addition to the mini-mental state examination and the Wechsler adult intelligence scale-revised, we assessed the frontal lobe function with Wisconsin card sorting test, Stroop test and trail making test. We used auditory 'oddball' counting paradigm for the ERPs under 20-channel electroencephalogram (EEG) recording. Global field power (GFP) was computed, and its peak amplitudes and latencies of N1/N2/P3 were determined. The results of ERP and neuropsychological tests were correlated with respiratory function and clinical scale. No global cognitive impairment except for subtle frontal dysfunction was detected, although N1/N2/P3 GFP latencies were significantly prolonged in ALS patients than in the controls. Vital capacity correlated with P3 GFP amplitude, and the relative bulbar functional rating scale correlated with P3 GFP latency. Our findings indicated the presence of sub-clinical cognitive deficits in non-demented, sporadic ALS patients. In addition, clinical sub-types and respiratory function dependently influenced cognitive function in patients with sporadic ALS. ERP confirmed cognitive impairment in patients with sporadic ALS.

  18. Mild cognitive impairment and deficits in instrumental activities of daily living: a systematic review.

    Science.gov (United States)

    Jekel, Katrin; Damian, Marinella; Wattmo, Carina; Hausner, Lucrezia; Bullock, Roger; Connelly, Peter J; Dubois, Bruno; Eriksdotter, Maria; Ewers, Michael; Graessel, Elmar; Kramberger, Milica G; Law, Emma; Mecocci, Patrizia; Molinuevo, José L; Nygård, Louise; Olde-Rikkert, Marcel Gm; Orgogozo, Jean-Marc; Pasquier, Florence; Peres, Karine; Salmon, Eric; Sikkes, Sietske Am; Sobow, Tomasz; Spiegel, René; Tsolaki, Magda; Winblad, Bengt; Frölich, Lutz

    2015-01-01

    There is a growing body of evidence that subtle deficits in instrumental activities of daily living (IADL) may be present in mild cognitive impairment (MCI). However, it is not clear if there are IADL domains that are consistently affected across patients with MCI. In this systematic review, therefore, we aimed to summarize research results regarding the performance of MCI patients in specific IADL (sub)domains compared with persons who are cognitively normal and/or patients with dementia. The databases PsycINFO, PubMed and Web of Science were searched for relevant literature in December 2013. Publications from 1999 onward were considered for inclusion. Altogether, 497 articles were retrieved. Reference lists of selected articles were searched for potentially relevant articles. After screening the abstracts of these 497 articles, 37 articles were included in this review. In 35 studies, IADL deficits (such as problems with medication intake, telephone use, keeping appointments, finding things at home and using everyday technology) were documented in patients with MCI. Financial capacity in patients with MCI was affected in the majority of studies. Effect sizes for group differences between patients with MCI and healthy controls were predominantly moderate to large. Performance-based instruments showed slight advantages (in terms of effect sizes) in detecting group differences in IADL functioning between patients with MCI, patients with Alzheimer's disease and healthy controls. IADL requiring higher neuropsychological functioning seem to be most severely affected in patients with MCI. A reliable identification of such deficits is necessary, as patients with MCI with IADL deficits seem to have a higher risk of converting to dementia than patients with MCI without IADL deficits. The use of assessment tools specifically designed and validated for patients with MCI is therefore strongly recommended. Furthermore, the development of performance-based assessment instruments

  19. Self-perceived cognitive deficits and their relationship with internalized stigma and quality of life in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Shin YJ

    2016-06-01

    Full Text Available Yeon-Jeong Shin,1,2 Yo-Han Joo,1 Jong-Hoon Kim1–3 1Neuroscience Research Institute, 2Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, 3Department of Psychiatry, Gil Medical Center, Gachon University School of Medicine, Gachon University, Incheon, Republic of Korea Background: We investigated self-perceived cognitive deficits and their relationship with internalized stigma and quality of life in patients with schizophrenia in order to shed light on the clinical correlates of subjective cognitive deficits in schizophrenia.Methods: Seventy outpatients with schizophrenia were evaluated. Patients’ self-perceived cognitive deficits, internalized stigma, and subjective quality of life were assessed using the Scale to Investigate Cognition in Schizophrenia (SSTICS, the Internalized Stigma of Mental Illness Scale (ISMI, and the Schizophrenia Quality of Life Scale Revision 4 (SQLS-R4, respectively. Correlation and regression analyses controlling for the severity of symptoms of schizophrenia were performed, and a mediation analysis was conducted to examine the hypothesis that internalized stigma mediates the relationship between self-perceived cognitive deficits and subjective quality of life.Results: Pearson’s partial correlation analysis showed significant correlations among the SSTICS, ISMI, and SQLS-R4 scores (P<0.01. Multiple regression analysis showed that the SSTICS and ISMI scores significantly predicted the SQLS-R4 score (P<0.01. Mediation analysis revealed that the strength of the association between the SSTICS and SQLS-R4 scores decreased from β=0.74 (P<0.01 to β=0.56 (P<0.01, when the ISMI score was statistically controlled. The Sobel test revealed that this difference was significant (P<0.01, indicating that internalized stigma partially mediated the relationship between self-perceived cognitive deficits and quality of life.Conclusion: The present study indicates that self

  20. Cortical hemorrhage-associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine.

    Science.gov (United States)

    Anan, Junpei; Hijioka, Masanori; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Katsuki, Hiroshi

    2017-09-01

    Intracerebral hemorrhage (ICH) is associated with diverse sets of neurological symptoms and prognosis, depending on the site of bleeding. Relative rate of hemorrhage occurring in the cerebral cortex (lobar hemorrhage) has been increasing, but there is no report on effective pharmacotherapeutic approaches for cortical hemorrhage either in preclinical or clinical studies. The present study aimed to establish an experimental model of cortical hemorrhage in mice for evaluation of effects of therapeutic drug candidates. Type VII collagenase at 0.015 U, injected into the parietal cortex, induced hemorrhage expanding into the whole layer of the posterior parts of the sensorimotor cortex in male C57BL/6 mice. Mice with ICH under these conditions exhibited significant motor deficits as revealed by beam-walking test. Daily administration of nicotine (1 and 2 mg/kg), with the first injection given at 3 hr after induction of ICH, improved motor performance of mice in a dose-dependent manner, although nicotine did not alter the volume of hematoma. Immunohistochemical examinations revealed that the number of neurons was drastically decreased within the hematoma region. Nicotine at 2 mg/kg partially but significantly increased the number of remaining neurons within the hematoma at 3 days after induction of ICH. ICH also resulted in inflammatory activation of microglia/macrophages in the perihematoma region, and nicotine (1 and 2 mg/kg) significantly attenuated the increase of microglia. These results suggest that nicotine can provide a therapeutic effect on cortical hemorrhage, possibly via its neuroprotective and anti-inflammatory actions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Emotional Intelligence deficits in schizophrenia: The impact of non-social cognition.

    Science.gov (United States)

    Frajo-Apor, Beatrice; Pardeller, Silvia; Kemmler, Georg; Welte, Anna-Sophia; Hofer, Alex

    2016-04-01

    Previous studies using the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) revealed significant performance deficits across all areas of Emotional Intelligence (EI) in schizophrenia patients compared to healthy controls. However, none of these studies has investigated a potential influence of non-social cognition on these findings. 56 schizophrenia outpatients and 84 control subjects were investigated using the MSCEIT and the Brief Assessment of Cognition in Schizophrenia (BACS). Analyses of covariance were performed with adjustment for the BACS composite score and education. To investigate this issue in more detail, a mediation analysis was conducted. Patients showed significantly lower EI and non-social cognition levels compared to healthy controls. After adjustment for BACS composite score and education, only the group difference in the "managing emotions" branch and thus in the "strategic" EI part of the MSCEIT remained statistically significant, whereas for all other MSCEIT branches (perceiving, using, understanding emotions) statistical significance was lost. The mediation analysis revealed that the difference between schizophrenia patients and controls regarding the MSCEIT total score was almost fully attributable to the mediating effect of non-social cognition. Our findings suggest that in schizophrenia patients EI is largely influenced by non-social cognitive functioning. Only the "managing emotions" branch was found to be independent of non-social cognition. Consequently, non-social cognitive performance was mainly responsible for the observed differences in EI between schizophrenia patients and controls. This has to be taken into account when interpreting MSCEIT data in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cognitive deficits following exposure to pneumococcal meningitis: an event-related potential study

    Directory of Open Access Journals (Sweden)

    Kihara Michael

    2012-03-01

    Full Text Available Abstract Background Pneumococcal meningitis (PM is a severe and life-threatening disease that is associated with cognitive impairment including learning difficulties, cognitive slowness, short-term memory deficits and poor academic performance. There are limited data on cognitive outcomes following exposure to PM from Africa mainly due to lack of culturally appropriate tools. We report cognitive processes of exposed children as measured by auditory and visual event-related potentials. Methods Sixty-five children (32 male, mean 8.4 years, SD 3.0 years aged between 4-15 years with a history of PM and an age-matched control group of 93 children (46 male; mean 8.4 years, SD 2.7 years were recruited from a well-demarcated study area in Kilifi. In the present study, both baseline to peak and peak-to-peak amplitude differences are reported. Results Children with a history of pneumococcal meningitis had significantly longer auditory P1 and P3a latencies and smaller P1 amplitudes compared to unexposed children. In the visual paradigm, children with PM seemingly lacked a novelty P3a component around 350 ms where control children had a maximum, and showed a lack of stimulus differentiation at Nc. Further, children with exposure to PM had smaller peak to peak amplitude (N2-P1 compared to unexposed children. Conclusion The results suggest that children with a history of PM process novelty differently than do unexposed children, with slower latencies and reduced or absent components. This pattern suggests poorer auditory attention and/or cognitive slowness and poorer visual attention orienting, possibly due to disruption in the functions of the lateral prefrontal and superior temporal cortices. ERPs may be useful for assessment of the development of perceptual-cognitive functions in post brain-injury in African children by providing an alternate way of assessing cognitive development in patient groups for whom more typical standardized neuropsychological

  3. Intermittent fasting could ameliorate cognitive function against distress by regulation of inflammatory response pathway

    Directory of Open Access Journals (Sweden)

    Marjan Shojaie

    2017-11-01

    Full Text Available Undesirable and desirable effects of stressors on the body are assigned to distress and eustress, respectively. Immune system and brain are the most susceptible parts to stressful conditions, whereas long-lasting alterations in putative immune proteins involved in tension such as corticosterone (CORT, interleukin 6 (IL-6, and tumor necrosis factor-alpha (TNF-α can impact learning and memory. Intermittent fasting (IF is a repeated regular cycle of dietary restriction with well-known beneficial properties on the body. The aim of this study was to identify the eustress effects of IF on cognitive function by assessing the critical inflammatory factors in chronic distress. Forty male mice were divided into four groups (n = 10/group. Distress and control normally received food and water, whereas IF and IF with distress groups were daily deprived of food and water for two hours. In the second week, the electrical foot shock was induced to distress and IF with distress groups. Finally, the cognitive functions of all mice were evaluated by Barnes maze, their blood samples were taken to determine the plasma level of CORT, IL-6 and TNF-α, and the removed brain and adrenal glands were weighed in the third week. A significant gain in plasma level of CORT, IL-6 and TNF-α with a considerable brain hypotrophy and adrenal hypertrophy was found in distress group, whereas IF caused a remarkable reduction of the plasma inflammatory factors, especially in IF with distress mice (P ≤ 0.05. In conclusion, IF could improve cognitive function and preserve the brain against distress by regulation of inflammatory response pathway.

  4. Intermittent fasting could ameliorate cognitive function against distress by regulation of inflammatory response pathway.

    Science.gov (United States)

    Shojaie, Marjan; Ghanbari, Farzane; Shojaie, Nasrin

    2017-11-01

    Undesirable and desirable effects of stressors on the body are assigned to distress and eustress, respectively. Immune system and brain are the most susceptible parts to stressful conditions, whereas long-lasting alterations in putative immune proteins involved in tension such as corticosterone (CORT), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) can impact learning and memory. Intermittent fasting (IF) is a repeated regular cycle of dietary restriction with well-known beneficial properties on the body. The aim of this study was to identify the eustress effects of IF on cognitive function by assessing the critical inflammatory factors in chronic distress. Forty male mice were divided into four groups (n = 10/group). Distress and control normally received food and water, whereas IF and IF with distress groups were daily deprived of food and water for two hours. In the second week, the electrical foot shock was induced to distress and IF with distress groups. Finally, the cognitive functions of all mice were evaluated by Barnes maze, their blood samples were taken to determine the plasma level of CORT, IL-6 and TNF-α, and the removed brain and adrenal glands were weighed in the third week. A significant gain in plasma level of CORT, IL-6 and TNF-α with a considerable brain hypotrophy and adrenal hypertrophy was found in distress group, whereas IF caused a remarkable reduction of the plasma inflammatory factors, especially in IF with distress mice ( P  ≤ 0.05). In conclusion, IF could improve cognitive function and preserve the brain against distress by regulation of inflammatory response pathway.

  5. A metacognitive perspective on the cognitive deficits experienced in intellectually threatening environments.

    Science.gov (United States)

    Schmader, Toni; Forbes, Chad E; Zhang, Shen; Mendes, Wendy Berry

    2009-05-01

    Three studies tested the hypothesis that negative metacognitive interpretations of anxious arousal under stereotype threat create cognitive deficits in intellectually threatening environments. Study 1 showed that among minority and White undergraduates, anxiety about an intelligence test predicted lower working memory when participants were primed with doubt as compared to confidence. Study 2 replicated this pattern with women and showed it to be unique to intellectually threatening environments. Study 3 used emotional reappraisal as an individual difference measure of the tendency to metacognitively reinterpret negative emotions and found that when sympathetic activation was high (indexed by salivary alpha-amylase), women who tended to reappraise negative feelings performed better in math and felt less self-doubt than those low in reappraisal. Overall, findings highlight how metacognitive interpretations of affect can undermine cognitive efficiency under stereotype threat and offer implications for the situational and individual difference variables that buffer people from these effects.

  6. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer's disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling.

    Science.gov (United States)

    Zheng, Jin-Yu; Sun, Jian; Ji, Chun-Mei; Shen, Lin; Chen, Zhong-Jun; Xie, Peng; Sun, Yuan-Zhao; Yu, Ru-Tong

    2017-06-01

    Astrocytes and apolipoprotein E (apoE) play critical roles in cognitive function, not only under physiological conditions but also in some pathological situations, particularly in the pathological progression of Alzheimer's disease (AD). The regulatory mechanisms underlying the effect of apoE, derived from astrocytes, on cognitive deficits during AD pathology development are unclear. In this study, we generated amyloid precursor protein/apoE knockout (APP/apoE KO ) and APP/glial fibrillary acidic protein (GFAP)-apoE KO mice (the AD mice model used in this study was based on the APP-familial Alzheimer disease overexpression) to investigate the role of apoE, derived from astrocytes, in AD pathology and cognitive function. To explore the mechanism, we investigated the amyloidogenic process related transforming growth factor β/mothers against decapentaplegic homolog 2/signal transducer and activator of transcription 3 (TGF-β/Smad2/STAT3) signaling pathway and further confirmed by administering TGF-β-overexpression adeno-associated virus (specific to astrocytes) to APP/GFAP-apoE KO mice and TGF-β-inhibition adeno-associated virus (specific to astrocytes) to APP/WT mice. Whole body deletion of apoE significantly ameliorated the spatial learning and memory impairment, reduced amyloid β-protein production and inhibited astrogliosis in APP/apoE KO mice, as well as specific deletion apoE in astrocytes in APP/GFAP-apoE KO mice. Moreover, amyloid β-protein accumulation was increased due to promotion of amyloidogenesis of APP, and astrogliosis was upregulated by activation of TGF-β/Smad2/STAT3 signaling. Furthermore, the overexpression of TGF-β in astrocytes in APP/GFAP-apoE KO mice abrogated the effects of apoE knockout. In contrast, repression of TGF-β in astrocytes of APP/WT mice exerted a therapeutic effect similar to apoE knockout. These data suggested that apoE derived from astrocytes contributes to the risk of AD through TGF-β/Smad2/STAT3 signaling activation

  7. Neuroprotective effects of phytosterol esters against high cholesterol-induced cognitive deficits in aged rat.

    Science.gov (United States)

    Rui, Xu; Wenfang, Li; Jing, Cheng; Meng, Chen; Chengcheng, Ding; Jiqu, Xu; Shuang, Rong

    2017-03-22

    Accumulating epidemiological and experimental studies have confirmed that a high-cholesterol diet is detrimental to cognitive performance in animal models. Phytosterols, a class of naturally occurring structural components in plant foods, have been demonstrated to possess cholesterol-lowering and antioxidant effects. Phytosterol esters (PSE) are esters of phytosterol. The aim of this study was to evaluate the neuroprotective effects of PSE on cognitive deficit induced by a cholesterol-enriched diet in aged rats, and to explore their underlying mechanisms for these effects. Based on their Morris water maze performance, the latencies differed by <1.5 standard deviations (SDs) on days 3-5 of testing, 60 rats were chosen from 12-month-old female Sprague Dawley aged rats and were randomized into three groups, which were fed either a control diet, a high cholesterol diet (HCD) or a high-cholesterol diet supplemented with 2% PSE (HCD + PSE) for 6 months. In our study, we found that PSE treatment maintained the body weight balance, reduced the serum lipid levels, and improved the cognitive performance of aged rats in the Morris water maze test, as evaluated by shortened escape latencies. Importantly, histological and immunohistochemical results in the brain showed that PSE supplementation may have a neuroprotective effect that alleviates neuroinflammation in aged rats. This neuroprotective effect significantly inhibited degeneration, resulting in a significant increase in the number of pyramidal cells and an apparent decrease in the number of astrocytes compared to rats that were fed only a HCD. Furthermore, PSE improved cholinergic activities by restoring the acetylcholine (ACh) content and decreasing acetylcholinesterase (AChE) activity in the cerebral cortex, as well as by elevating choline acetyl transferase (ChAT) activity in the hippocampus and the cerebral cortex. These results suggest that PSE can play a useful role in alleviating cognitive deficit induced by a

  8. Microstructural white matter alterations and hippocampal volumes are associated with cognitive deficits in craniopharyngioma.

    Science.gov (United States)

    Fjalldal, S; Follin, C; Svärd, D; Rylander, L; Gabery, S; Petersén, Å; van Westen, D; Sundgren, P C; Björkman-Burtscher, I M; Lätt, J; Ekman, B; Johanson, A; Erfurth, E M

    2018-06-01

    Patients with craniopharyngioma (CP) and hypothalamic lesions (HL) have cognitive deficits. Which neural pathways are affected is unknown. To determine whether there is a relationship between microstructural white matter (WM) alterations detected with diffusion tensor imaging (DTI) and cognition in adults with childhood-onset CP. A cross-sectional study with a median follow-up time of 22 (6-49) years after operation. The South Medical Region of Sweden (2.5 million inhabitants). Included were 41 patients (24 women, ≥17 years) surgically treated for childhood-onset CP between 1958-2010 and 32 controls with similar age and gender distributions. HL was found in 23 patients. Subjects performed cognitive tests and magnetic resonance imaging, and images were analyzed using DTI of uncinate fasciculus, fornix, cingulum, hippocampus and hypothalamus as well as hippocampal volumetry. Right uncinate fasciculus was significantly altered ( P  ≤ 0.01). Microstructural WM alterations in left ventral cingulum were significantly associated with worse performance in visual episodic memory, explaining approximately 50% of the variation. Alterations in dorsal cingulum were associated with worse performance in immediate, delayed recall and recognition, explaining 26-38% of the variation, and with visuospatial ability and executive function, explaining 19-29%. Patients who had smaller hippocampal volume had worse general knowledge ( P  = 0.028), and microstructural WM alterations in hippocampus were associated with a decline in general knowledge and episodic visual memory. A structure to function relationship is suggested between microstructural WM alterations in cingulum and in hippocampus with cognitive deficits in CP. © 2018 The authors.

  9. Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis.

    Science.gov (United States)

    Stampanoni Bassi, Mario; Garofalo, Sara; Marfia, Girolama A; Gilio, Luana; Simonelli, Ilaria; Finardi, Annamaria; Furlan, Roberto; Sancesario, Giulia M; Di Giandomenico, Jonny; Storto, Marianna; Mori, Francesco; Centonze, Diego; Iezzi, Ennio

    2017-01-01

    Cognitive deficits are frequently observed in multiple sclerosis (MS), mainly involving processing speed and episodic memory. Both demyelination and gray matter atrophy can contribute to cognitive deficits in MS. In recent years, neuroinflammation is emerging as a new factor influencing clinical course in MS. Inflammatory cytokines induce synaptic dysfunction in MS. Synaptic plasticity occurring within hippocampal structures is considered as one of the basic physiological mechanisms of learning and memory. In experimental models of MS, hippocampal plasticity is profoundly altered by proinflammatory cytokines. Although mechanisms of inflammation-induced hippocampal pathology in MS are not completely understood, alteration of Amyloid-β (Aβ) metabolism is emerging as a key factor linking together inflammation, synaptic plasticity and neurodegeneration in different neurological diseases. We explored the correlation between concentrations of Aβ 1-42 and the levels of some proinflammatory and anti-inflammatory cytokines (interleukin-1β (IL-1β), IL1-ra, IL-8, IL-10, IL-12, tumor necrosis factor α (TNFα), interferon γ (IFNγ)) in the cerebrospinal fluid (CSF) of 103 remitting MS patients. CSF levels of Aβ 1-42 were negatively correlated with the proinflammatory cytokine IL-8 and positively correlated with the anti-inflammatory molecules IL-10 and interleukin-1 receptor antagonist (IL-1ra). Other correlations, although noticeable, were either borderline or not significant. Our data show that an imbalance between proinflammatory and anti-inflammatory cytokines may lead to altered Aβ homeostasis, representing a key factor linking together inflammation, synaptic plasticity and cognitive dysfunction in MS. This could be relevant to identify novel therapeutic approaches to hinder the progression of cognitive dysfunction in MS.

  10. Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Mario Stampanoni Bassi

    2017-11-01

    Full Text Available Cognitive deficits are frequently observed in multiple sclerosis (MS, mainly involving processing speed and episodic memory. Both demyelination and gray matter atrophy can contribute to cognitive deficits in MS. In recent years, neuroinflammation is emerging as a new factor influencing clinical course in MS. Inflammatory cytokines induce synaptic dysfunction in MS. Synaptic plasticity occurring within hippocampal structures is considered as one of the basic physiological mechanisms of learning and memory. In experimental models of MS, hippocampal plasticity is profoundly altered by proinflammatory cytokines. Although mechanisms of inflammation-induced hippocampal pathology in MS are not completely understood, alteration of Amyloid-β (Aβ metabolism is emerging as a key factor linking together inflammation, synaptic plasticity and neurodegeneration in different neurological diseases. We explored the correlation between concentrations of Aβ1–42 and the levels of some proinflammatory and anti-inflammatory cytokines (interleukin-1β (IL-1β, IL1-ra, IL-8, IL-10, IL-12, tumor necrosis factor α (TNFα, interferon γ (IFNγ in the cerebrospinal fluid (CSF of 103 remitting MS patients. CSF levels of Aβ1–42 were negatively correlated with the proinflammatory cytokine IL-8 and positively correlated with the anti-inflammatory molecules IL-10 and interleukin-1 receptor antagonist (IL-1ra. Other correlations, although noticeable, were either borderline or not significant. Our data show that an imbalance between proinflammatory and anti-inflammatory cytokines may lead to altered Aβ homeostasis, representing a key factor linking together inflammation, synaptic plasticity and cognitive dysfunction in MS. This could be relevant to identify novel therapeutic approaches to hinder the progression of cognitive dysfunction in MS.

  11. Forebrain CRF1 Modulates Early-Life Stress-Programmed Cognitive Deficits

    Science.gov (United States)

    Wang, Xiao-Dong; Rammes, Gerhard; Kraev, Igor; Wolf, Miriam; Liebl, Claudia; Scharf, Sebastian H.; Rice, Courtney J.; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M.; Baram, Tallie Z.; Stewart, Michael G.; Müller, Marianne B.; Schmidt, Mathias V.

    2012-01-01

    Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF1), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF1 knock-out (CRF1-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF1 in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF1 deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF1-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF1 signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity. PMID:21940453

  12. Blue-yellow colour vision impairment and cognitive deficits in occasional and dependent stimulant users.

    Science.gov (United States)

    Hulka, Lea M; Wagner, Michael; Preller, Katrin H; Jenni, Daniela; Quednow, Boris B

    2013-04-01

    Specific blue-yellow colour vision impairment has been reported in dependent cocaine users and it was postulated that drug-induced changes in retinal dopamine neurotransmission are responsible. However, it is unclear whether these changes are confined to chronic cocaine users, whether they are specific for dopaminergic stimulants such as cocaine and amphetamine and whether they are related to cognitive functions such as working memory, encoding and consolidation. In 47 occasional and 29 dependent cocaine users, 23 MDMA (commonly known as 'ecstasy') users and 47 stimulant-naive controls, colour vision discrimination was measured with the Lanthony Desaturated Panel D-15 Test and memory performance with the Auditory Verbal Learning Test. Both occasional and dependent cocaine users showed higher colour confusion indices than controls. Users of the serotonergic stimulant MDMA (26%), occasional (30%) and dependent cocaine users (34%) exhibited more frequent blue-yellow colour vision disorders compared to controls (9%). Inferior performance of MDMA users was caused by a subgroup with high amphetamine co-use (55%), while MDMA use alone was not associated with decreased blue-yellow discrimination (0%). Cognitive performance was worse in cocaine users with colour vision disorder compared to users and controls with intact colour vision and both colour vision impairment and cognitive deficits were related to cocaine use. Occasional cocaine and amphetamine use might induce blue-yellow colour vision impairment, whereas the serotonergic stimulant MDMA does not impair colour vision. The association between colour vision impairment and cognitive deficits in cocaine users may reflect that retinal and cerebral dopamine alterations are linked to a certain degree.

  13. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat

    Science.gov (United States)

    Hanlon, Lauren A.; Huh, Jimmy W.

    2016-01-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  14. High frequency of silent brain infarcts associated with cognitive deficits in an economically disadvantaged population.

    Science.gov (United States)

    Squarzoni, Paula; Tamashiro-Duran, Jaqueline H; Duran, Fabio L S; Leite, Claudia C; Wajngarten, Mauricio; Scazufca, Marcia; Menezes, Paulo R; Lotufo, Paulo A; Alves, Tania C T F; Busatto, Geraldo F

    2017-08-01

    Using magnetic resonance imaging, we aimed to assess the presence of silent brain vascular lesions in a sample of apparently healthy elderly individuals who were recruited from an economically disadvantaged urban region (São Paulo, Brazil). We also wished to investigate whether the findings were associated with worse cognitive performance. A sample of 250 elderly subjects (66-75 years) without dementia or neuropsychiatric disorders were recruited from predefined census sectors of an economically disadvantaged area of Sao Paulo and received structural magnetic resonance imaging scans and cognitive testing. A high proportion of individuals had very low levels of education (4 years or less, n=185; 21 with no formal education). The prevalence of at least one silent vascular-related cortical or subcortical lesion was 22.8% (95% confidence interval, 17.7-28.5), and the basal ganglia was the most frequently affected site (63.14% of cases). The subgroup with brain infarcts presented significantly lower levels of education than the subgroup with no brain lesions as well as significantly worse current performance in cognitive test domains, including memory and attention (pcognitive deficits, and in the absence of magnetic resonance imaging data, this cognitive impairment may be considered simply related to ageing. Emphatic attention should be paid to potentially deleterious effects of vascular brain lesions in poorly educated elderly individuals from economically disadvantaged environments.

  15. Coherence training in children with attention-deficit hyperactivity disorder: cognitive functions and behavioral changes.

    Science.gov (United States)

    Lloyd, Anthony; Brett, David; Wesnes, Keith

    2010-01-01

    Attention-deficit hyperactivity disorder (ADHD) is the most prevalent behavioral diagnosis in children, with an estimated 500 000 children affected in the United Kingdom alone. The need for an appropriate and effective intervention for children with ADHD is a growing concern for educators and childcare agencies. This randomized controlled clinical trial evaluated the impact of the HeartMath self-regulation skills and coherence training program (Institute of HeartMath, Boulder Creek, California) on a population of 38 children with ADHD in academic year groups 6, 7, and 8. Learning of the skills was supported with heart rhythm coherence monitoring and feedback technology designed to facilitate self-induced shifts in cardiac coherence. The cognitive drug research system was used to assess cognitive functioning as the primary outcome measure. Secondary outcome measures assessed teacher and student reposted changes in behavior. Participants demonstrated significant improvements in various aspects of cognitive functioning such as delayed word recall, immediate word recall, word recognition, and episodic secondary memory. Significant improvements in behavior were also found. The results suggest that the intervention offers a physiologically based program to improve cognitive functioning in children with ADHD and improve behaviors that is appropriate to implement in a school environment.

  16. Behavioral and Brain Activity Indices of Cognitive Control Deficits in Binge Drinkers

    Directory of Open Access Journals (Sweden)

    Sean M. Molnar

    2018-01-01

    Full Text Available Heavy episodic drinking is prevalent among young adults and is a public issue of increasing importance. Its initiation and maintenance are associated with deficits in the capacity to inhibit automatic processing in favor of non-habitual responses. This study used functional magnetic resonance imaging (fMRI to examine behavioral and brain activity indices of cognitive control during the Stroop task as a function of binge drinking. Heavy episodic drinkers (HED reported consuming 5+/6+ drinks in two hours at least five times in the past six months and were compared to light drinkers (LED who reported two or fewer binge episodes but were matched on demographics, intelligence and family history of alcoholism. Greater conflict-induced activity in the ventrolateral prefrontal cortex (VLPFC and thalamus was observed in HED participants and it was positively correlated with alcohol intake and alcohol-related harmful consequences. HEDs maintained intact accuracy but at a cost of prolonged reaction times to high-conflict trials and increased ratings of task difficulty. Greater activation of the areas implicated in cognitive control is consistent with compensatory network expansion to meet higher cognitive demands. These results provide further insight into degradation of cognitive control in HEDs which may benefit development of detection and prevention strategies.

  17. The effect of genistein on intracerebroventricular streptozotocin-induced cognitive deficits in male rat

    Directory of Open Access Journals (Sweden)

    Tourandokht Balouchnejadmojarad

    2009-01-01

    Full Text Available Abstract  Introduction: Intracerebroventricular (ICV injection of streptozotocin (STZ causes cognitive impairment in rats. The beneficial effect of genistein (GEN was investigated on ICV STZ-induced learning, memory, and cognitive impairment in male rats. Methods: For this purpose, rats were injected with ICV STZ bilaterally, on days 1 and 3 (3 mg/kg. The STZ-injected rats received GEN (1 mg/kg/day, p.o. starting one day pre-surgery for two weeks. The learning and memory performance was assessed using passive avoidance paradigm, and for spatial cognition evaluation, radial eight-arm maze (RAM task was used.  Results: It was found out that GEN-treated STZ-injected rats show higher correct choices and lower errors in RAM than vehicle-treated STZ-injected rats. In addition, GEN administration significantly attenuated learning and memory impairment in treated STZ-injected group in passive avoidance test.Discussion: These results demonstrate the effectiveness of GEN in preventing the cognitive deficits caused by ICV STZ in rats and its potential in the treatment of neurodegenerative diseases such as Alzheimer's disease (AD.

  18. The effect of genistein on intracerebroventricular streptozotocin-induced cognitive deficits in male rat

    Directory of Open Access Journals (Sweden)

    Tourandokht Balouchnejadmojarad

    2009-01-01

    Full Text Available   Abstract  Introduction: Intracerebroventricular (ICV injection of streptozotocin (STZ causes cognitive impairment in rats. The beneficial effect of genistein (GEN was investigated on ICV STZ-induced learning, memory, and cognitive impairment in male rats. Methods: For this purpose, rats were injected with ICV STZ bilaterally, on days 1 and 3 (3 mg/kg. The STZ-injected rats received GEN (1 mg/kg/day, p.o. starting one day pre-surgery for two weeks. The learning and memory performance was assessed using passive avoidance paradigm, and for spatial cognition evaluation, radial eight-arm maze (RAM task was used.  Results: It was found out that GEN-treated STZ-injected rats show higher correct choices and lower errors in RAM than vehicle-treated STZ-injected rats. In addition, GEN administration significantly attenuated learning and memory impairment in treated STZ-injected group in passive avoidance test.Discussion: These results demonstrate the effectiveness of GEN in preventing the cognitive deficits caused by ICV STZ in rats and its potential in the treatment of neurodegenerative diseases such as Alzheimer's disease (AD.  

  19. Canonical correlation analysis of synchronous neural interactions and cognitive deficits in Alzheimer's dementia

    Science.gov (United States)

    Karageorgiou, Elissaios; Lewis, Scott M.; Riley McCarten, J.; Leuthold, Arthur C.; Hemmy, Laura S.; McPherson, Susan E.; Rottunda, Susan J.; Rubins, David M.; Georgopoulos, Apostolos P.

    2012-10-01

    In previous work (Georgopoulos et al 2007 J. Neural Eng. 4 349-55) we reported on the use of magnetoencephalographic (MEG) synchronous neural interactions (SNI) as a functional biomarker in Alzheimer's dementia (AD) diagnosis. Here we report on the application of canonical correlation analysis to investigate the relations between SNI and cognitive neuropsychological (NP) domains in AD patients. First, we performed individual correlations between each SNI and each NP, which provided an initial link between SNI and specific cognitive tests. Next, we performed factor analysis on each set, followed by a canonical correlation analysis between the derived SNI and NP factors. This last analysis optimally associated the entire MEG signal with cognitive function. The results revealed that SNI as a whole were mostly associated with memory and language, and, slightly less, executive function, processing speed and visuospatial abilities, thus differentiating functions subserved by the frontoparietal and the temporal cortices. These findings provide a direct interpretation of the information carried by the SNI and set the basis for identifying specific neural disease phenotypes according to cognitive deficits.

  20. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy.

    Science.gov (United States)

    Hashemian, Mona; Anissian, Diana; Ghasemi-Kasman, Maryam; Akbari, Atefeh; Khalili-Fomeshi, Mohsen; Ghasemi, Shahram; Ahmadi, Fatemeh; Moghadamnia, Ali Akbar; Ebrahimpour, Anahita

    2017-10-03

    Despite several beneficial effects of curcumin, its medical application has been hampered due to low water solubility. To improve the aqueous solubility of curcumin, it has been loaded on chitosan (CS)-alginate (ALG) - sodium tripolyphosphate (STPP) nanoparticles (NPs). Then, the effect of curcumin NPs on memory improvement and glial activation was investigated in pentylenetetrazol (PTZ)-induced kindling model. Male NMRI mice have received the daily injection of curcumin NPs at dose of 12.5 or 25mg/kg. All interventions were injected intraperitoneally (i.p), 10days before PTZ administration and the injections were continued until 1h before each PTZ injection. Spatial learning and memory was evaluated using Morris water maze test after the 7th PTZ injection. Animals have received 10 injections of PTZ and then, brain tissues were removed for histological evaluation. Nissl staining was used to determine the level of cell death in hippocampus and immunostaining method was performed against NeuN and GFAP/Iba1 for assessment of neuronal density and glial activation respectively. Behavioral results showed that curcumin NPs exhibit anticonvulsant activity and prevent cognitive impairment in fully kindled animals. The level of cell death and glial activation reduced in animals which have received curcumin NPs compared to those received free curcumin. To conclude, these findings suggest that curcumin NPs effectively ameliorate memory impairment and attenuate the level of activated glial cells in a mice model of chronic epilepsy. Copyright © 2017. Published by Elsevier Inc.

  1. Stable cognitive deficits in schizophrenia patients with comorbid obsessive-compulsive symptoms: a 12-month longitudinal study.

    Science.gov (United States)

    Schirmbeck, Frederike; Rausch, Franziska; Englisch, Susanne; Eifler, Sarah; Esslinger, Christine; Meyer-Lindenberg, Andreas; Zink, Mathias

    2013-11-01

    Amongst schizophrenia patients, a large subgroup of up to 25% also suffers from comorbid obsessive-compulsive symptoms (OCSs). The association between comorbid OCSs in these patients and neuropsychological impairment remains unclear and somewhat contradictory. Longitudinal approaches investigating the stability of OCS-associated cognitive deficits are missing. Thirty-seven patients with schizophrenia and comorbid OCSs and 43 schizophrenia patients without OCS were assessed with a comprehensive cognitive test battery and compared at baseline and, again, 12 months later. Schizophrenia patients with comorbid OCSs showed significant pronounced deficits, with increasing effect sizes over the 12-month assessment period in specific cognitive areas such as visuospatial perception and visual memory (WAIS-R block design, Rey-Osterrieth Complex Figure Test), executive functioning (perseveration in the Wisconsin Card Sorting test), and cognitive flexibility (Trail Making test B). These cognitive domains are correlated with OCS severity and are known to be candidate cognitive domains in obsessive-compulsive disorder (OCD). OCSs in schizophrenia is associated with specific and longitudinally stable cognitive deficits, strongly arguing for at least partially overlapping neurobiological mechanisms with OCD. Prospective studies involving patients with at-risk mental states for psychosis are necessary to decipher the interaction of cognitive impairment and the clinical manifestations of schizophrenia and OCSs. This might facilitate the definition of patients at high risk for OCSs, an early detection of subclinical levels, therapeutic interventions, and clinical monitoring.

  2. Prevalence and profile of cognitive deficits in a cohort of first-episode antipsychotic-naïve schizophrenia patients

    DEFF Research Database (Denmark)

    Jensen, Maria Høj; Glenthøj, Birte Yding; Nielsen, Mette Ødegaard

    2014-01-01

    first-episode antipsychotic-naïve schizophrenia patients and 60 matched healthy controls have been examined at baseline. The study uses several instruments, including BACS (Brief Assessment of Cognition in Schizophrenia) and CANTAB (Cambridge Neuropsychological Test Automated Battery). Premorbid......Background and Aims: Cognitive deficits are considered a core feature of schizophrenia with prevalence estimates ranging from ca. 75-85 %. These deficits are present in the early phase of the illness; however in most first-episode schizophrenia studies the patients are receiving antipsychotic...... medication, which can affect the results on specific domains such as processing speed. As part of the PECANS project (Pan European Collaboration on Antipsychotic Naïve Schizophrenia) the aim of the present study is to establish the prevalence and profile of cognitive deficits in a cohort of first...

  3. Chronic Tobacco-Smoking on Psychopathological Symptoms, Impulsivity and Cognitive Deficits in HIV-Infected Individuals.

    Science.gov (United States)

    Chang, Linda; Lim, Ahnate; Lau, Eric; Alicata, Daniel

    2017-09-01

    HIV-infected individuals (HIV+) has 2-3 times the rate of tobacco smoking than the general population, and whether smoking may lead to greater psychiatric symptoms or cognitive deficits remains unclear. We evaluated the independent and combined effects of being HIV+ and chronic tobacco-smoking on impulsivity, psychopathological symptoms and cognition. 104 participants [27 seronegative (SN)-non-Smokers, 26 SN-Smokers, 29 HIV+ non-Smokers, 22 HIV+ Smokers] were assessed for psychopathology symptoms (Symptom Checklist-90, SCL-90), depressive symptoms (Center for Epidemiologic Studies-Depression Scale, CES-D), impulsivity (Barratt Impulsiveness Scale, BIS), decision-making (The Iowa Gambling Task, IGT, and Wisconsin Card Sorting Test, WCST), and cognition (seven neurocognitive domains). Both HIV+ and Smoker groups had higher SCL-90 and CES-D scores, with highest scores in HIV+ Smokers. On BIS, both HIV+ and Smokers had higher Total Impulsiveness scores, with higher behavioral impulsivity in Smokers, highest in HIV+ Smokers. Furthermore, across the four groups, HIV+ Smokers lost most money and made fewest advantageous choices on the IGT, and had highest percent errors on WCST. Lastly, HIV+ had lower z-scores on all cognitive domains, with the lowest scores in HIV+ Smokers. These findings suggest that HIV-infection and chronic tobacco smoking may lead to additive deleterious effects on impulsivity, psychopathological (especially depressive) symptoms and cognitive dysfunction. Although greater impulsivity may be premorbid in HIV+ and Smokers, the lack of benefits of nicotine in chronic Smokers on attention and psychopathology, especially those with HIV-infection, may be due to the negative effects of chronic smoking on dopaminergic and cardio-neurovascular systems. Tobacco smoking may contribute to psychopathology and neurocognitive disorders in HIV+ individuals.

  4. Cognition in anxious children with attention deficit hyperactivity disorder: a comparison with clinical and normal children

    Directory of Open Access Journals (Sweden)

    Young Arlene

    2007-01-01

    Full Text Available Abstract Background Cognition in children with anxiety disorders (ANX and comorbid Attention Deficit Disorder (ADHD has received little attention, potentially impacting clinical and academic interventions in this highly disabled group. This study examined several cognitive features relative to children with either pure condition and to normal controls. Methods One hundred and eight children ages 8–12 and parents were diagnosed by semi-structured parent interview and teacher report as having: ANX (any anxiety disorder except OCD or PTSD; n = 52, ADHD (n = 21, or ANX + ADHD (n = 35. All completed measures of academic ability, emotional perception, and working memory. Clinical subjects were compared to 35 normal controls from local schools. Results Groups did not differ significantly on age, gender, or estimated IQ. On analyses of variance, groups differed on academic functioning (Wide Range Achievement Test, p Conclusion Though requiring replication, findings suggest that ANX + ADHD relates to greater cognitive and academic vulnerability than ANX, but may relate to reduced perception of anger.

  5. Electroencephalogram complexity analysis in children with attention-deficit/hyperactivity disorder during a visual cognitive task.

    Science.gov (United States)

    Zarafshan, Hadi; Khaleghi, Ali; Mohammadi, Mohammad Reza; Moeini, Mahdi; Malmir, Nastaran

    2016-01-01

    The aim of this study was to investigate electroencephalogram (EEG) dynamics using complexity analysis in children with attention-deficit/hyperactivity disorder (ADHD) compared with healthy control children when performing a cognitive task. Thirty 7-12-year-old children meeting Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) criteria for ADHD and 30 healthy control children underwent an EEG evaluation during a cognitive task, and Lempel-Ziv complexity (LZC) values were computed. There were no significant differences between ADHD and control groups on age and gender. The mean LZC of the ADHD children was significantly larger than healthy children over the right anterior and right posterior regions during the cognitive performance. In the ADHD group, complexity of the right hemisphere was higher than that of the left hemisphere, but the complexity of the left hemisphere was higher than that of the right hemisphere in the normal group. Although fronto-striatal dysfunction is considered conclusive evidence for the pathophysiology of ADHD, our arithmetic mental task has provided evidence of structural and functional changes in the posterior regions and probably cerebellum in ADHD.

  6. Awake craniotomy in a developmentally delayed blind man with cognitive deficits.

    Science.gov (United States)

    Burbridge, Mark; Raazi, Mateen

    2013-04-01

    To describe the complex perioperative considerations and anesthetic management of a cognitively delayed blind adult male who underwent awake craniotomy to remove a left anterior temporal lobe epileptic focus. A 28-yr-old left-handed blind cognitively delayed man was scheduled for awake craniotomy to resect a left anterior temporal lobe epileptic focus due to intractable epilepsy despite multiple medications. His medical history was also significant for retinopathy of prematurity that rendered him legally blind in both eyes and an intracerebral hemorrhage shortly after birth that resulted in a chronic brain injury and developmental delay. His cognitive capacity was comparable with that of an eight year old. Since patient cooperation was the primary concern during the awake electrocorticography phase of surgery, careful assessment of the patient's ability to tolerate the procedure was undertaken. There was extensive planning between surgeons and anesthesiologists, and a patient-specific pharmacological strategy was devised to facilitate surgery. The operation proceeded without complication, the patient has remained seizure-free since the procedure, and his quality of life has improved dramatically. This case shows that careful patient assessment, effective interdisciplinary communication, and a carefully tailored anesthetic strategy can facilitate an awake craniotomy in a potentially uncooperative adult patient with diminished mental capacity and sensory deficits.

  7. Meta-analysis of social cognition in attention-deficit/hyperactivity disorder (ADHD): comparison with healthy controls and autistic spectrum disorder.

    Science.gov (United States)

    Bora, E; Pantelis, C

    2016-03-01

    Impairment in social cognition is an established finding in autism spectrum disorders (ASD). Emerging evidence suggests that attention-deficit/hyperactivity disorder (ADHD) might be also associated with deficits in theory of mind (ToM) and emotion recognition. However, there are inconsistent findings, and it has been debatable whether such deficits persist beyond childhood and how similar social cognitive deficits are in ADHD v. ASD. We conducted a meta-analysis of social cognition, including emotion recognition and ToM, studies in ADHD compared with healthy controls and ASD. The current meta-analysis involved 44 studies comparing ADHD (n = 1999) with healthy controls (n = 1725) and 17 studies comparing ADHD (n = 772) with ASD (n = 710). Facial and vocal emotion recognition (d = 0.40-0.44) and ToM (d = 0.43) abilities were significantly impaired in ADHD. The most robust facial emotion recognition deficits were evident in anger and fear. Social cognitive deficits were either very subtle (emotion recognition) or non-significant (ToM) in adults with ADHD. Deficits in social cognition, especially ToM, were significantly more pronounced in ASD compared with ADHD. General cognitive impairment has contributed to social cognitive deficits in ADHD. Performance of individuals with ADHD on social cognition lies intermediate between ASD and healthy controls. However, developmental trajectories of social cognition probably differ between ADHD and ASD as social cognitive deficits in ADHD might be improving with age in most individuals. There is a need for studies investigating a potential subtype of ADHD with persistent social cognitive deficits and exploring longitudinal changes in social cognition during development.

  8. Sleep and cognitive problems in patients with attention-deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Lee HK

    2014-09-01

    Full Text Available Hae Kook Lee, Jong-Hyun Jeong, Na-Young Kim, Min-hyeon Park, Tae-Won Kim, Ho-Jun Seo, Hyun-Kook Lim, Seung-Chul Hong, Jin-Hee Han Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea Objectives: Attention-deficit hyperactivity disorder (ADHD is characterized by inattentive and impulsive behavior. Many ADHD patients reportedly have cognitive dysfunction and sleep problems, including longer sleep latency, lower sleep efficiency, and shorter total sleep time. The purpose of this study was to examine neurocognitive functions and nocturnal sleep parameters in patients with ADHD, using a cognitive function test and actigraphy.Methods: Subjects included 37 male patients with ADHD and 32 controls (7–12 years of age. For each participant, we determined intelligence quotient (IQ and administered the Matching Familiar Figures Test (MFFT and 72-hour actigraphy. The relationships between sleep parameters and cognitive functions were assessed.Results: ADHD patients significantly differed from controls in several cognitive functions and sleep variables. In the MFFT, response error rate (P<0.001 and error counts (P=0.003 were significantly increased in ADHD patients compared with control children. MFFT response latency was significantly shorter in ADHD patients than in controls (P<0.001. In addition, sleep latency (P=0.01, wake after sleep onset (WASO (P<0.001, and fragmentation index (P<0.001 were evaluated by actigraphy and found to be significantly increased in patients with ADHD compared with controls. However, no significant differences in total sleep time or sleep efficiency were observed. WASO and response error rates were positively correlated in patients with ADHD (rho =0.52, P=0.012. Furthermore, fragmentation index sleep variables were significantly positively correlated with response error (rho =0.44, P=0.008 and response latency rates (rho =0.4, P=0.018 in the MFFT. Reaction error rate was significantly

  9. Cognitive Training and Work Therapy for the Treatment of Verbal Learning and Memory Deficits in Veterans With Alcohol Use Disorders.

    Science.gov (United States)

    Bell, Morris D; Vissicchio, Nicholas A; Weinstein, Andrea J

    2016-01-01

    This study focused on the efficacy of cognitive training for verbal learning and memory deficits in a population of older veterans with alcohol use disorders. Veterans with alcohol use disorders, who were in outpatient treatment at VA facilities and in early-phase recovery (N = 31), were randomized to receive a three-month trial of daily cognitive training plus work therapy (n = 15) or work therapy alone (n = 16), along with treatment as usual. Participants completed assessments at baseline and at three- and six-month follow-ups; the Hopkins Verbal Learning Task (HVLT) was the primary outcome measure. Participants were primarily male (97%) and in their mid-50s (M = 55.16, SD = 5.16) and had been sober for 1.64 (SD = 2.81) months. Study retention was excellent (91% at three-month follow-up) and adherence to treatment in both conditions was very good. On average, participants in the cognitive training condition had more than 41 hours of cognitive training, and both conditions had more than 230 hours of productive activity. HVLT results at three-month follow-up revealed significant condition effects favoring cognitive training for verbal learning (HVLT Trial-3 T-score, p cognitive training condition with clinically significant verbal memory deficits (p therapy alone condition and a trend toward significance for verbal learning deficits, which was not sustained at six-month follow-up. This National Institute on Drug Abuse-funded pilot study demonstrates that cognitive training within the context of another activating intervention (work therapy) may have efficacy in remediating verbal learning and memory deficits in patients with alcohol use disorder. Findings indicate a large effect for cognitive training in this pilot study, which suggests that further research is warranted. This study is registered on ClinicalTrials.gov (NCT 01410110).

  10. Cognitive deficits and educational loss in children with schistosome infection-A systematic review and meta-analysis.

    OpenAIRE

    Ezeamama, AE; Bustinduy, AL; Nkwata, AK; Martinez, L; Pabalan, N; Boivin, MJ; King, CH

    2018-01-01

    By means of meta-analysis of information from all relevant epidemiologic studies, we examined the hypothesis that Schistosoma infection in school-aged children (SAC) is associated with educational loss and cognitive deficits. This review was prospectively registered in the PROSPERO database (CRD42016040052). Medline, Biosis, and Web of Science were searched for studies published before August 2016 that evaluated associations between Schistosoma infection and cognitive or educational outcomes....

  11. Negative attention bias and processing deficits during the cognitive reappraisal of unpleasant emotions in HIV+ women.

    Science.gov (United States)

    McIntosh, Roger C; Tartar, Jaime L; Widmayer, Susan; Rosselli, Monica

    2015-01-01

    Deficits in emotional processing may be attributed to HIV disease or comorbid psychiatric disorders. Electrocortical markers of emotional attention, i.e., amplitude of the P2 and late positive potential (LPP), were compared between 26 HIV+ women and 25 healthy controls during an emotional regulation paradigm. HIV+ women showed early attention bias to negative stimuli indexed by greater P2 amplitude. In contrast, compared with the passive viewing of unpleasant images, HIV+ women demonstrated attenuation of the early and late LPP during positive reappraisal. This interaction remained significant after adjusting for individual differences in apathy, anxiety, and depression. Post hoc analyses implicated time since HIV diagnosis with LPP attenuation during positive reappraisal. Advancing HIV disease may disrupt neural generators associated with the cognitive reappraisal of emotions independent of psychiatric function.

  12. Cognitive Training in Children and Adolescents with Attention Deficit/Hyperactivity Disorder (ADHD)

    DEFF Research Database (Denmark)

    Bikic, Aida

    Background: Many individuals with attention deficit hyperactivity disorder (ADHD) continue to experience impaired cognitive functions despite medical treatment. Inadequate medical compliance and uncertain long-term effects of treatment make it necessary to explore supplementary treatments for ADHD...... on the feasibility of the intervention. The first trial was exploratory and based on the results, the primary outcome measure in the second trial was sustained attention. Results: In the pilot trial with adolescents with ADHD, we found that it was feasible to use the intervention at home, but that the adolescents...... attention, while the active placebo had significant, beneficial effects on working memory, both with large effect sizes. In the second trial, we found no significant differences on our primary or secondary outcome measures indicating no effects on sustained attention, ADHD symptoms or executive functions...

  13. Cognitive rehabilitation of attention deficits in traumatic brain injury using action video games: A controlled trial

    Directory of Open Access Journals (Sweden)

    Alexandra Vakili

    2016-12-01

    Full Text Available This paper investigates the utility and efficacy of a novel eight-week cognitive rehabilitation programme developed to remediate attention deficits in adults who have sustained a traumatic brain injury (TBI, incorporating the use of both action video game playing and a compensatory skills programme. Thirty-one male TBI patients, aged 18–65 years, were recruited from 2 Australian brain injury units and allocated to either a treatment or waitlist (treatment as usual control group. Results showed improvements in the treatment group, but not the waitlist control group, for performance on the immediate trained task (i.e. the video game and in non-trained measures of attention and quality of life. Neither group showed changes to executive behaviours or self-efficacy. The strengths and limitations of the study are discussed, as are the potential applications and future implications of the research.

  14. On-road driving impairments and associated cognitive deficits after stroke.

    Science.gov (United States)

    Devos, Hannes; Tant, Mark; Akinwuntan, Abiodun E

    2014-01-01

    Little is known about the critical on-road driving skills that get affected after a stroke. The purpose of this study was to investigate the key on-road driving impairments and their associated cognitive deficits after a stroke. A second aim was to investigate if lateralization of stroke impacts results of the cognitive and on-road driving tests. In this cross-sectional study, 99 participants with a first-ever stroke who were actively driving prior to stroke underwent a cognitive battery and a standardized road test that evaluated 13 specific on-road driving skills. These on-road driving skills were mapped onto an existing, theoretical framework that categorized the on-road items into hierarchic clusters of operational, tactical, visuo-integrative, and mixed driving skills. The total score on the road test and the on-road decision, made by a certified fitness-to-drive expert, decided the main outcome. The critical on-road driving skills predicting the on-road decision were identified using logistic regression analysis. Linear regression analysis was employed to determine the cognitive impairments leading to poor total on-road scores. Analyses were repeated for right- and left-sided strokes. In all, 37 persons scored poorly on the road test. These participants performed worse in all hierarchic clusters of on-road driving. Performances on the operational cluster and the visuo-integrative cluster best predicted on-road decisions (R(2) = 0.60). 'Lane changing' and 'understanding, insight, and quality of traffic participation' were the critical skill deficits leading to poor performance on the road test (R(2) = 0.65). Divided attention was the main determinant of on-road scores in the total group (R(2) = 0.06). Participants with right-sided stroke performed worse on visual field, visual neglect, visual scanning, visuo-constructive skills, and divided attention compared with those with left-sided stroke. Divided attention was the main determinant of total on-road scores

  15. Separation of cognitive impairments in attention-deficit/hyperactivity disorder into 2 familial factors.

    Science.gov (United States)

    Kuntsi, Jonna; Wood, Alexis C; Rijsdijk, Frühling; Johnson, Katherine A; Andreou, Penelope; Albrecht, Björn; Arias-Vasquez, Alejandro; Buitelaar, Jan K; McLoughlin, Gráinne; Rommelse, Nanda N J; Sergeant, Joseph A; Sonuga-Barke, Edmund J; Uebel, Henrik; van der Meere, Jaap J; Banaschewski, Tobias; Gill, Michael; Manor, Iris; Miranda, Ana; Mulas, Fernando; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Steinhausen, Hans-Christoph; Faraone, Stephen V; Asherson, Philip

    2010-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with widespread cognitive impairments, but it is not known whether the apparent multiple impairments share etiological roots or separate etiological pathways exist. A better understanding of the etiological pathways is important for the development of targeted interventions and for identification of suitable intermediate phenotypes for molecular genetic investigations. To determine, by using a multivariate familial factor analysis approach, whether 1 or more familial factors underlie the slow and variable reaction times, impaired response inhibition, and choice impulsivity associated with ADHD. An ADHD and control sibling-pair design. Belgium, Germany, Ireland, Israel, Spain, Switzerland, and the United Kingdom. A total of 1265 participants, aged 6 to 18 years: 464 probands with ADHD and 456 of their siblings (524 with combined-subtype ADHD), and 345 control participants. Performance on a 4-choice reaction time task, a go/no-go inhibition task, and a choice-delay task. The final model consisted of 2 familial factors. The larger factor, reflecting 85% of the familial variance of ADHD, captured 98% to 100% of the familial influences on mean reaction time and reaction time variability. The second, smaller factor, reflecting 13% of the familial variance of ADHD, captured 62% to 82% of the familial influences on commission and omission errors on the go/no-go task. Choice impulsivity was excluded in the final model because of poor fit. The findings suggest the existence of 2 familial pathways to cognitive impairments in ADHD and indicate promising cognitive targets for future molecular genetic investigations. The familial distinction between the 2 cognitive impairments is consistent with recent theoretical models--a developmental model and an arousal-attention model--of 2 separable underlying processes in ADHD. Future research that tests the familial model within a developmental framework may inform

  16. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons. Copyright © 2012 Wiley Periodicals, Inc.

  17. Piracetam improves cognitive deficits caused by chronic cerebral hypoperfusion in rats.

    Science.gov (United States)

    He, Zhi; Liao, Yun; Zheng, Min; Zeng, Fan-Dian; Guo, Lian-Jun

    2008-06-01

    Piracetam is the derivate of gamma-aminobutyric acid, which improves the cognition,memory,consciousness, and is widely applied in the clinical treatment of brain dysfunction. In the present experiments, we study the effects of piracetam on chronic cerebral hypoperfused rats and observe its influence on amino acids, synaptic plasticity in the Perforant path-CA3 pathway and apoptosis in vivo. Cerebral hypoperfusion for 30 days by occlusion of bilateral common carotid arteries induced marked amnesic effects along with neuron damage, including: (1) spatial learning and memory deficits shown by longer escape latency and shorter time spent in the target quadrant; (2) significant neuronal loss and nuclei condensation in the cortex and hippocampus especially in CA1 region; (3) lower induction rate of long term potentiation, overexpression of BAX and P53 protein, and lower content of excitatory and inhibitory amino acids in hippocampus. Oral administration of piracetam (600 mg/kg, once per day for 30 days) markedly improved the memory impairment, increased the amino acid content in hippocampus, and attenuated neuronal damage. The ability of piracetam to attenuate memory deficits and neuronal damage after hypoperfusion may be beneficial in cerebrovascular type dementia.

  18. Impulsive behavior in adults with attention deficit/ hyperactivity disorder: characterization of attentional, motor and cognitive impulsiveness.

    Science.gov (United States)

    Malloy-Diniz, L; Fuentes, D; Leite, W Borges; Correa, H; Bechara, A

    2007-07-01

    Attention-deficit/hyperactivity disorder (ADHD) is characterized by inattention and/or hyperactivity/impulsivity. Impulsivity persists in adults with ADHD and might be the basis of much of the impairment observed in the daily lives of such individuals. The objective of this study was to address the presence, and more importantly, the three dimensions of impulsivity: attentional, non-planning and motor, in how they may relate to neuropsychological mechanisms of impulse control. We studied a sample of 50 adults with ADHD and 51 healthy comparison controls using the Barratt Impulsivity Scale Version 11 (BIS), and neuropsychological tasks, namely the Continuous Performance Task (CPT-II) and the Iowa Gambling Task (IGT). The ADHD group showed more signs of impulsivity on the three dimensions of BIS, committed more errors of omission and commission on the CPT-II, and made more disadvantageous choices on the IGT. These results support the existence of deficits related to three components of impulsivity: motor, cognitive, and attentional among adults with ADHD. Most importantly, this study also highlights the complementary nature of self-report questionnaires and neuropsychological tasks in the assessment of impulsivity in ADHD adults.

  19. Cognitive Decline in Patients with Chronic Hydrocephalus and Normal Aging: ‘Growing into Deficits'

    Directory of Open Access Journals (Sweden)

    Marlijn H. de Beer

    2016-10-01

    Full Text Available Background/Aim: To explore the theory of ‘growing into deficits', a concept known from developmental neurology, in a series of cases with chronic hydrocephalus (CH. Methods: Patients were selected from the Amsterdam Dementia Cohort and underwent extensive dementia screening. Results: Twelve patients with CH were selected, in whom Alzheimer's disease was considered unlikely, based on biomarker information and follow-up. Mean Mini-Mental State Examination score was 24 (range 7-30. Most patients were functioning on a level of mild dementia [Clinical Dementia Rating score of 0.5 in 8/11 (66.7% patients]. On neuropsychological examination, memory and executive functions, as well as processing speed were most frequently impaired. Conclusion: In our opinion, the theory of ‘growing into deficits' shows a parallel with the clinical course of CH and normal aging when Alzheimer's disease was considered very unlikely, because most of these patients were functioning well for a very large part of their lives. The altered cerebrospinal fluid dynamics might make the brain more vulnerable to aging-related changes, leading to a faster cognitive decline in CH patients compared to healthy subjects, especially in case of concomitant brain damage such as traumatic brain injury or meningitis.

  20. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice.

    Directory of Open Access Journals (Sweden)

    Jennifer Brielmaier

    Full Text Available ENGRAILED 2 (En2, a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders.

  1. 16p11.2 Deletion Mice Display Cognitive Deficits in Touchscreen Learning and Novelty Recognition Tasks

    Science.gov (United States)

    Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…

  2. High Suicide Risk after the Development of Cognitive and Working Memory Deficits Caused by Cannabis, Cocaine and Ecstasy Use

    Science.gov (United States)

    Pompili, Maurizio; Lester, David; Girardi, Paolo; Tatarelli, Roberto

    2007-01-01

    We report the case of attempted suicide by a 30-year-old man who had significant cognitive deficits that developed after at least three years of polysubstance use with cannabis, methylenedioxymethamphetamine (MDMA, "ecstasy") and cocaine. The patient reported increasing difficulties in his professional and interpersonal life which may have been…

  3. Spelling Difficulties in School-Aged Girls with Attention-Deficit/Hyperactivity Disorder: Behavioral, Psycholinguistic, Cognitive, and Graphomotor Correlates

    Science.gov (United States)

    Åsberg Johnels, Jakob; Kopp, Svenny; Gillberg, Christopher

    2014-01-01

    Writing difficulties are common among children with attention-deficit/hyperactivity disorder (ADHD), but the nature of these difficulties has not been well studied. Here we relate behavioral, psycholinguistic, cognitive (memory/executive), and graphomotor measures to spelling skills in school-age girls with ADHD (n = 30) and an age-matched group…

  4. Do cognitive measures of response inhibition differentiate between attention deficit/hyperactivity disorder and borderline personality disorder?

    NARCIS (Netherlands)

    Dijk, F.E. van; Schellekens, A.F.A.; Broek, P.J.A. van den; Kan, C.C.; Verkes, R.J.; Buitelaar, J.K.

    2014-01-01

    This study examined whether cognitive measures of response inhibition derived from the AX-CPT are able to differentiate between adult attention deficit/hyperactivity disorder (ADHD), borderline personality disorder (BPD), and healthy controls (HC). Current DSM-IV-TR symptoms of ADHD and BPD were

  5. An Integrative, Cognitive-Behavioral, Systemic Approach to Working with Students Diagnosed with Attention Deficit Hyperactive Disorder

    Science.gov (United States)

    Shillingford, Margaret Ann; Lambie, Glenn W.; Walter, Sara Meghan

    2007-01-01

    Attention deficit hyperactive disorder (ADHD) is a prevalent diagnostic disorder for many students, which correlates with negative academic, social, and personal consequences. This article presents an integrative, cognitive-behavioral, systemic approach that offers behaviorally based interventions for professional school counselors to support…

  6. Effects of mindfulness-based cognitive therapy on neurophysiological correlates of performance monitoring in adult attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Schoenberg, P.L.; Hepark, S.; Kan, C.C.; Barendregt, H.P.; Buitelaar, J.K.; Speckens, A.E.M.

    2014-01-01

    OBJECTIVE: To examine whether mindfulness-based cognitive therapy (MBCT) would enhance attenuated amplitudes of event-related potentials (ERPs) indexing performance monitoring biomarkers of attention-deficit/hyperactivity disorder (ADHD). METHODS: Fifty adult ADHD patients took part in a randomised

  7. Profiling Cognitive Deficits in Intra-Axial and Extra-Axial Tumors Using Addenbrooke's Cognitive Examination as a Screening Tool: An Indian Experience.

    Science.gov (United States)

    Cherkil, Sandhya; Panikar, Dilip; Soman, Deepak Kuttikkattu

    2017-01-01

    Tumors of the brain, whether intra- or extra-axial, results in cognitive deficits. The aim of the present study was to profile cognitive deficits using Addenbrooke's Cognitive Examination-Malayalam (ACE-M) as a screen and to determine the sensitivity and specificity of the same. Seventy-four drug naïve patients diagnosed to have brain tumors were assessed for cognitive functioning using ACE-M before surgery. Patients with high-grade intra-axial tumors showed a significant association on the cognitive domains of registration (0.04), recall (0.01), and visuospatial functioning (0.02). Gender showed an association between registration (0.02) and verbal fluency (0.02) with females performing better while education was significantly associated with retrograde or remote memory (0.00) with college-educated sample performing better. Significance was assumed at P cognitive decline on the cognitive domains of attention (0.02), recall (0.05), naming (0.02), and language functions (0.01). College educated group performed better on registration (0.01), recall (0.09), naming (0.00), and visuospatial functioning (0.00). The area under the receiver operating characteristic curve was estimated as 0.75, which indicates fairly good discriminative ability with a cut off of 71/100; sensitivity at 77.3 and specificity fixed at 67. ACE-M is capable of bringing out cognitive deficits along with a number of cognitive domains in patients with intra- and extra-axial tumors in the capacity of a screen, with fairly good levels of sensitivity and specificity.

  8. Contribution of Interpersonal Cognitive Problem-Solving Strategy to Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Selahattin Ogulmus

    2010-08-01

    Full Text Available Attention-Deficit Hyperactivity Disorder (ADHD is a neuropsychiatric disorder characterized by inattention, distractibility, and impulsivity. Scholastic competence, social acceptance, and behavioral conduct were problem areas for children with ADHD. These children have difficulties in regulating their emotions and maintaining good relations. Lack of these skills hinders the development of healthy peer relationships and positive interaction with adults. It is important for children with ADHD to receive interventions as early as possible so that their social and emotional development can be achieved. Some social skills training programs for school-ages children with ADHD have shown positive results. The research findings in the literature demonstrate that interpersonal problem-solving skills are teachable and learnable through properly structured education programmes. Social problem solving training for children with ADHD has positive effects on the academic, behavioral and cognitive impairment. The Interpersonal Cognitive Problem-Solving (ICPS Program can have a significant effect on the behaviors of children with ADHD and can generalize to settings outside of the one in which the child was initially trained. The positive effectiveness of ICPS also known as I Can Problem Solve in developing problem-solving skills and reducing problem behaviors of children with ADHD is known. [TAF Prev Med Bull 2010; 9(4.000: 391-398

  9. Effects of Concord grape juice on cognitive and motor deficits in aging.

    Science.gov (United States)

    Shukitt-Hale, Barbara; Carey, Amanda; Simon, Laura; Mark, David A; Joseph, James A

    2006-03-01

    Animals and humans show increased motor and cognitive declines with aging that are thought to be due to increased susceptibility to the long-term effects of oxidative stress and inflammation. Previous findings have suggested that reversals in these age-related declines might be accomplished by increasing the dietary intake of polyphenolics found in fruits and vegetables, especially those identified as being high in antioxidant and anti-inflammatory activities. We investigated the beneficial effects of two concentrations of Concord grape juice (10% and 50%) compared with a calorically matched placebo for their effectiveness in reversing age-related deficits in behavioral and neuronal functions in aged Fischer 344 rats. Rats that drank the 10% grape juice from age 19 to 21 mo had improvements in oxotremorine enhancement of K+-evoked release of dopamine from striatal slices and in cognitive performance on the Morris water maze, and the 50% grape juice produced improvements in motor function. These findings suggest that, in addition to their known beneficial effects on cancer and heart disease, polyphenolics in foods may be beneficial in reversing the course of neuronal and behavioral aging, possibly through a multiplicity of direct and indirect effects that can affect a variety of neuronal parameters.

  10. Examining the interplay among negative emotionality, cognitive functioning, and attention deficit/hyperactivity disorder symptom severity.

    Science.gov (United States)

    Healey, Dione M; Marks, David J; Halperin, Jeffrey M

    2011-05-01

    Cognition and emotion, traditionally thought of as largely distinct, have recently begun to be conceptualized as dynamically linked processes that interact to influence functioning. This study investigated the moderating effects of cognitive functioning on the relationship between negative emotionality and attention deficit/hyperactivity disorder (ADHD) symptom severity. A total of 216 (140 hyperactive/inattentive; 76 typically developing) preschoolers aged 3-4 years were administered a neuropsychological test battery (i.e., NEPSY). To avoid method bias, child negative emotionality was rated by teachers (Temperament Assessment Battery for Children-Revised), and parents rated symptom severity on the ADHD Rating Scale (ADHD-RS-IV). Hierarchical Linear Regression analyses revealed that both negative emotionality and Perceptual-Motor & Executive Functions accounted for significant unique variance in ADHD symptom severity. Significant interactions indicated that when negative emotionality is low, but not high, neuropsychological functioning accounts for significant variability in ADHD symptoms, with lower functioning predicting more symptoms. Emotional and neuropsychological functioning, both individually and in combination, play a significant role in the expression of ADHD symptom severity.

  11. Adjunctive huperzine A for cognitive deficits in schizophrenia: a systematic review and meta-analysis.

    Science.gov (United States)

    Zheng, Wei; Xiang, Ying-Qiang; Li, Xian-Bin; Ungvari, Gabor S; Chiu, Helen F K; Sun, Feng; D'Arcy, Carl; Meng, Xiangfei; Xiang, Yu-Tao

    2016-07-01

    The aim of this study was to examine the efficacy of huperzine A (HupA), an isolate of Huperzine serrata, in the treatment of cognitive deficits in schizophrenia spectrum disorders. PubMed, PsycINFO, Embase, Cochrane Library, Cochrane Controlled Trials Register, WanFang, Chinese Biomedical, and China Journal Net databases were searched from inception to 15 July 2015 for randomized controlled trials (RCTs) in English or Chinese of HupA augmentation of antipsychotic drug therapy versus placebo or ongoing antipsychotic treatment. Twelve RCTs (n = 1117) lasting 11.7 ± 6.0 weeks met inclusion criteria. All had been conducted in China. HupA outperformed comparators on the following outcome measures: the Wechsler Memory Scale-Revised including memory quotient (weighted mean difference (WMD: 10.59; 95% confidence interval (CI): 5.65, 15.53; p HupA is an effective choice for improving cognitive function for patients with schizophrenia spectrum disorders. More well-designed RCTs are needed to further confirm HupA's efficacy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Attention Deficit/Hyperactivity Disorder (ADHD) symptoms and cognitive skills of preschool children.

    Science.gov (United States)

    Thomaidis, L; Choleva, A; Janikian, M; Bertou, G; Tsitsika, A; Giannakopoulos, G; Anagnostopoulos, D C

    2017-01-01

    Attention deficit/hyperactivity disorder (ADHD) constitutes a neurobehavioral disorder which may potentially adversely affect children's wellbeing and academic achievement. The onset of symptoms is present prior to 12 years of age, and often the symptoms are evident in the preschool years. In fact, it has been suggested that screening for ADHD symptoms may be initiated as early as four years of age. Preschool children with ADHD have been shown to present with poor pre-academic skills and might be at increased risk for numerous school-related problems, including functional impairment during elementary school years and persistent poor academic performance thereafter. Although preschool years are characterized by rapid cognitive growth, preschoolers with ADHD may present with poorer cognitive and neuropsychological functioning. Due to the early onset of ADHD symptoms, exploring the cognitive correlates of this condition among preschool children is thought to be of notable importance. The aim of the present study was to evaluate any association between ADHD symptoms and cognitive skills among preschool children. A cross-sectional study was conducted among a nationwide random sample of 4,480 preschool children. ADHD symptoms were assessed though interviews with parents and teachers based on DSM-IV-TR criteria. Cognitive skills were assessed through a standardized school readiness test (A' TEST). Among participants, the occurrence of ADHD symptoms was 4.6% (boys/girls: 3.4/1). The presence of ADHD symptoms among children was inversely associated with non-verbal and verbal cognitive skills; specifically, with abstract thinking (aOR 1.97, 95% CI 1.30-3.00), language (2.36, 1.55-3.59), critical reasoning (2.58, 1.84-3.62), visual perception (2.42, 1.38- 4.24), and visual motor skills (2.61, 1.91-3.55). Children with ADHD symptoms were five times as likely to have compromised organizational skills (4.92, 3.04-7.97). Abstract thinking was the least affected domain

  13. Pharmacotherapy of attention deficit in neurofibromatosis type 1: effects on cognition.

    Science.gov (United States)

    Lidzba, Karen; Granstroem, Sofia; Leark, Robert A; Kraegeloh-Mann, Inge; Mautner, Victor-Felix

    2014-08-01

     Attention deficit with or without hyperactivity (AD[H]D) is a common comorbidity of neurofibromatosis type 1 (NF 1). We tested the hypothesis that permanent medication with methylphenidate can improve cognitive functioning in children with NF 1 and comorbid AD(H)D.  We retrospectively analyzed data of a clinical sample of patients with NF 1 with or without AD(H)D, who underwent standardized neuropsychological diagnostics twice (age range: T1, 6-14 years; T2, 7-16 years; mean interval, 49.09 months). A total of 16 children without AD(H)D (nine females) were compared with 14 unmedicated children with AD(H)D (eight females) and to 13 medicated children with AD(H)D (two females). Effects of medication and attention on cognitive outcome (IQ) were tested by repeated measures analysis of covariance (rmANCOVA).  Medicated children with NF 1 improved significantly in full-scale IQ from T1 to T2 (IQ[T1] = 80.38, IQ[T2] = 98.38, confidence interval [diff]: -25.59 to -10.40, p attention measures as covariates, the effect remained marginally significant.  Children and adolescents with NF 1 and comorbid AD(H)D may profit from MPH medication regarding general cognition. This effect could be specific for the group of patients with NF 1, and cannot be explained solely by improvements in attention. Controlled, prospective studies are warranted to corroborate our findings. Georg Thieme Verlag KG Stuttgart · New York.

  14. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation.

    Science.gov (United States)

    Husain, I; Akhtar, M; Abdin, M Zainul; Islamuddin, M; Shaharyar, M; Najmi, A K

    2018-04-01

    Amyloid beta (Aβ) peptide aggregation and cholinergic neurodegeneration are involved in the development of cognitive impairment. Therefore, in this article, we examined rosuvastatin (RSV), an oral hypolipidemic drug, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for the treatment of cognitive impairment. Molecular docking study was done to examine the affinity of RSV with Aβ 1-42 and AChE in silico. We also employed neurobehavioral activity tests, biochemical estimation, and histopathology to study the anti-Aβ 1-42 aggregation capability of RSV in vivo. Molecular docking study provided evidence that RSV has the best binding conformer at its receptor site or active site of an enzyme. The cognitive impairment in female Wistar rats was induced by high-salt and cholesterol diet (HSCD) ad libitum for 8 weeks. RSV ameliorated serum cholesterol level, AChE activity, and Aβ 1-42 peptide aggregations in HSCD induced cognitive impairment. In addition, RSV-treated rats showed greater scores in the open field (locomotor activity) test. Moreover, the histopathological studies in the hippocampus and cortex of rat brain also supported that RSV markedly reduced the cognitive impairment and preserved the normal histoarchitectural pattern of the hippocampus and cortex. Taken together, these data indicate that RSV may act as a dual inhibitor of AChE and Aβ 1-42 peptide aggregation, therefore suggesting a therapeutic strategy for cognitive impairment treatment.

  15. Choline and Working Memory Training Improve Cognitive Deficits Caused by Prenatal Exposure to Ethanol

    Directory of Open Access Journals (Sweden)

    Jaylyn Waddell

    2017-09-01

    Full Text Available Prenatal ethanol exposure is associated with deficits in executive function such as working memory, reversal learning and attentional set shifting in humans and animals. These behaviors are dependent on normal structure and function in cholinergic brain regions. Supplementation with choline can improve many behaviors in rodent models of fetal alcohol spectrum disorders and also improves working memory function in normal rats. We tested the hypothesis that supplementation with choline in the postnatal period will improve working memory during adolescence in normal and ethanol-exposed animals, and that working memory engagement during adolescence will transfer to other cognitive domains and have lasting effects on executive function in adulthood. Male and female offspring of rats fed an ethanol-containing liquid diet (ET; 3% v/v or control dams given a non-ethanol liquid diet (CT were injected with choline (Cho; 100 mg/kg or saline (Sal once per day from postnatal day (P 16–P30. Animals were trained/tested on a working memory test in adolescence and then underwent attentional set shifting and reversal learning in young adulthood. In adolescence, ET rats required more training to reach criterion than CT-Sal. Choline improved working memory performance for both CT and ET animals. In young adulthood, ET animals also performed poorly on the set shifting and reversal tasks. Deficits were more robust in ET male rats than female ET rats, but Cho improved performance in both sexes. ET male rats given a combination of Cho and working memory training in adolescence required significantly fewer trials to achieve criterion than any other ET group, suggesting that early interventions can cause a persistent improvement.

  16. Cognition and the compassion deficit: the social psychology of helping behaviour in nursing.

    Science.gov (United States)

    Paley, John

    2014-10-01

    This paper discusses compassion failure and compassion deficits in health care, using two major reports by Robert Francis in the UK as a point of reference. Francis enquired into events at the Mid Staffordshire Hospital between 2005 and 2009, events that unequivocally warrant the description 'appalling care'. These events prompted an intense national debate, along with proposals for significant changes in the regulation of nursing and nurse education. The circumstances are specific to the UK, but the issues are international. I suggest that social psychology provides numerous hints about the mechanisms that might have been involved at Mid Staffs and about the reasons why outsiders are blind to these mechanisms. However, there have been few references to social psychology in the post-Francis debate (the Francis Report itself makes no reference to it at all). It is an enormously valuable resource, and it has been overlooked. Drawing on the social psychology literature, I express scepticism about the idea that there was a compassion deficit among the Mid Staff nurses - the assumption that the appalling care had something to do with the character, attitudes, and values of nurses - and argue that the Francis Report's emphasis on a 'culture of compassion and caring in nurse recruitment, training and education' is misconceived. It was not a 'failure of compassion' that led to the events in Mid Staffs but an interlocking set of contextual factors that are known to affect social cognition. These factors cannot be corrected or compensated for by teaching ethics, empathy, and compassion to student nurses. © 2014 John Wiley & Sons Ltd.

  17. Attention-Deficit/Hyperactivity Disorder in Childhood Is Associated with Cognitive Test Profiles in the Geriatric Population but Not with Mild Cognitive Impairment or Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    N. Ivanchak

    2011-01-01

    Full Text Available The frequency of ADHD in the aging population and its relationship to late-life cognitive decline has not been studied previously. To address this gap in our understanding, the Wender-Utah ADHD Rating scale (WURS was administered to 310 geriatric subjects with cognitive status ranging from normal cognition to mild cognitive impairment to overt dementia. The frequency of WURS-positive ADHD in this sample was 4.4%. WURS scores were not related to cognitive diagnoses, but did show nonlinear associations with tasks requiring sustained attention. The frequency of ADHD appears stable across generations and does not appear to be associated with MCI or dementia diagnoses. The association of attentional processing deficits and WURS scores in geriatric subjects could suggest that such traits remain stable throughout life. Caution should be considered when interpreting cognitive test profiles in the aging population that exhibit signs and symptoms of ADHD, as attentional deficits may not necessarily imply the existence of an underlying neurodegenerative disease state.

  18. A continuum of executive function deficits in early subcortical vascular cognitive impairment: A systematic review and meta-analysis.

    Science.gov (United States)

    Sudo, Felipe Kenji; Amado, Patricia; Alves, Gilberto Sousa; Laks, Jerson; Engelhardt, Eliasz

    2017-01-01

    Subcortical Vascular Cognitive Impairment (SVCI) is a clinical continuum of vascular-related cognitive impairment, including Vascular Mild Cognitive Impairment (VaMCI) and Vascular Dementia. Deficits in Executive Function (EF) are hallmarks of the disorder, but the best methods to assess this function have yet to be determined. The insidious and almost predictable course of SVCI and the multidimensional concept of EF suggest that a temporal dissociation of impairments in EF domains exists early in the disorder. This study aims to review and analyze data from the literature about performance of VaMCI patients on the most used EF tests through a meta-analytic approach. Medline, Web of Knowledge and PsycINFO were searched, using the terms: "vascular mild cognitive impairment" OR "vascular cognitive impairment no dementia" OR "vascular mild neurocognitive disorder" AND "dysexecutive" OR "executive function". Meta-analyses were conducted for each of the selected tests, using random-effect models. Systematic review showed major discrepancies among the results of the studies included. Meta-analyses evidenced poorer performance on the Trail-Making Test part B and the Stroop color test by VaMCI patients compared to controls. A continuum of EF impairments has been proposed in SVCI. Early deficits appear to occur in cognitive flexibility and inhibitory control.

  19. Social Cognition Deficits: The Key to Discriminate Behavioral Variant Frontotemporal Dementia from Alzheimer's Disease Regardless of Amnesia?

    Science.gov (United States)

    Bertoux, Maxime; de Souza, Leonardo Cruz; O'Callaghan, Claire; Greve, Andrea; Sarazin, Marie; Dubois, Bruno; Hornberger, Michael

    2016-01-01

    Relative sparing of episodic memory is a diagnostic criterion of behavioral variant frontotemporal dementia (bvFTD). However, increasing evidence suggests that bvFTD patients can show episodic memory deficits at a similar level as Alzheimer's disease (AD). Social cognition tasks have been proposed to distinguish bvFTD, but no study to date has explored the utility of such tasks for the diagnosis of amnestic bvFTD. Here, we contrasted social cognition performance of amnestic and non-amnestic bvFTD from AD, with a subgroup having confirmed in vivo pathology markers. Ninety-six participants (38 bvFTD and 28 AD patients as well as 30 controls) performed the short Social-cognition and Emotional Assessment (mini-SEA). BvFTD patients were divided into amnestic versus non-amnestic presentation using the validated Free and Cued Selective Reminding Test (FCSRT) assessing episodic memory. As expected, the accuracy of the FCSRT to distinguish the overall bvFTD group from AD was low (69.7% ) with ∼50% of bvFTD patients being amnestic. By contrast, the diagnostic accuracy of the mini-SEA was high (87.9% ). When bvFTD patients were split on the level of amnesia, mini-SEA diagnostic accuracy remained high (85.1% ) for amnestic bvFTD versus AD and increased to very high (93.9% ) for non-amnestic bvFTD versus AD. Social cognition deficits can distinguish bvFTD and AD regardless of amnesia to a high degree and provide a simple way to distinguish both diseases at presentation. These findings have clear implications for the diagnostic criteria of bvFTD. They suggest that the emphasis should be on social cognition deficits with episodic memory deficits not being a helpful diagnostic criterion in bvFTD.

  20. Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Carmona, Susana; Hoekzema, Elseline; Castellanos, Francisco X; García-García, David; Lage-Castellanos, Agustín; Van Dijk, Koene R A; Navas-Sánchez, Francisco J; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge

    2015-07-01

    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex-visual, auditory, and somatosensory-we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. © 2015 Wiley Periodicals, Inc.

  1. Attention deficit/hyperactivity disorder symptoms moderate cognition and behavior in children with autism spectrum disorders.

    Science.gov (United States)

    Yerys, Benjamin E; Wallace, Gregory L; Sokoloff, Jennifer L; Shook, Devon A; James, Joette D; Kenworthy, Lauren

    2009-12-01

    Recent estimates suggest that 31% of children with autism spectrum disorders (ASD) meet diagnostic criteria for attention deficit/hyperactivity disorder (ADHD), and another 24% of children with ASD exhibit subthreshold clinical ADHD symptoms. Presence of ADHD symptoms in the context of ASD could have a variety of effects on cognition, autistic traits, and adaptive/maladaptive behaviors including: exacerbating core ASD impairments; adding unique impairments specific to ADHD; producing new problems unreported in ASD or ADHD; having no clear impact; or producing some combination of these scenarios. Children with ASD and co-morbid ADHD symptoms (ASD+ADHD; n = 21), children with ASD without ADHD (ASD; n = 28), and a typically developing control group (n = 21) were included in the study; all groups were matched on age, gender-ratio, IQ, and socioeconomic status. Data were collected on verbal and spatial working memory, response inhibition, global executive control (EC), autistic traits, adaptive functioning, and maladaptive behavior problems. In this sample, the presence of ADHD symptoms in ASD exacerbated impairments in EC and adaptive behavior and resulted in higher autistic trait, and externalizing behavior ratings. ADHD symptoms were also associated with greater impairments on a lab measure of verbal working memory. These findings suggest that children with ASD+ADHD symptoms present with exacerbated impairments in some but not all domains of functioning relative to children with ASD, most notably in adaptive behavior and working memory. Therefore, ADHD may moderate the expression of components of the ASD cognitive and behavioral phenotype, but ASD+ADHD may not represent an etiologically distinct phenotype from ASD alone.

  2. Cognitive-motivational deficits in ADHD: development of a classification system.

    Science.gov (United States)

    Gupta, Rashmi; Kar, Bhoomika R; Srinivasan, Narayanan

    2011-01-01

    The classification systems developed so far to detect attention deficit/hyperactivity disorder (ADHD) do not have high sensitivity and specificity. We have developed a classification system based on several neuropsychological tests that measure cognitive-motivational functions that are specifically impaired in ADHD children. A total of 240 (120 ADHD children and 120 healthy controls) children in the age range of 6-9 years and 32 Oppositional Defiant Disorder (ODD) children (aged 9 years) participated in the study. Stop-Signal, Task-Switching, Attentional Network, and Choice Delay tests were administered to all the participants. Receiver operating characteristic (ROC) analysis indicated that percentage choice of long-delay reward best classified the ADHD children from healthy controls. Single parameters were not helpful in making a differential classification of ADHD with ODD. Multinominal logistic regression (MLR) was performed with multiple parameters (data fusion) that produced improved overall classification accuracy. A combination of stop-signal reaction time, posterror-slowing, mean delay, switch cost, and percentage choice of long-delay reward produced an overall classification accuracy of 97.8%; with internal validation, the overall accuracy was 92.2%. Combining parameters from different tests of control functions not only enabled us to accurately classify ADHD children from healthy controls but also in making a differential classification with ODD. These results have implications for the theories of ADHD.

  3. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson's disease.

    Science.gov (United States)

    Obeso, Ignacio; Wilkinson, Leonora; Casabona, Enrique; Bringas, Maria Luisa; Álvarez, Mario; Álvarez, Lázaro; Pavón, Nancy; Rodríguez-Oroz, Maria-Cruz; Macías, Raúl; Obeso, Jose A; Jahanshahi, Marjan

    2011-07-01

    Recent imaging studies in healthy controls with a conditional stop signal reaction time (RT) task have implicated the subthalamic nucleus (STN) in response inhibition and the pre-supplementary motor area (pre-SMA) in conflict resolution. Parkinson's disease (PD) is characterized by striatal dopamine deficiency and overactivity of the STN and underactivation of the pre-SMA during movement. We used the conditional stop signal RT task to investigate whether PD produced similar or dissociable effects on response initiation, response inhibition and response initiation under conflict. In addition, we also examined inhibition of prepotent responses on three cognitive tasks: the Stroop, random number generation and Hayling sentence completion. PD patients were impaired on the conditional stop signal reaction time task, with response initiation both in situations with or without conflict and response inhibition all being significantly delayed, and had significantly greater difficulty in suppressing prepotent or habitual responses on the Stroop, Hayling and random number generation tasks relative to controls. These results demonstrate the existence of a generalized inhibitory deficit in PD, which suggest that PD is a disorder of inhibition as well as activation and that in situations of conflict, executive control over responses is compromised.

  4. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Li, Yue; Stockton, Michael E; Bhuiyan, Ismat; Eisinger, Brian E; Gao, Yu; Miller, Jessica L; Bhattacharyya, Anita; Zhao, Xinyu

    2016-04-27

    Fragile X syndrome, the most common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). However, the mechanism remains unclear, and effective treatment is lacking. We show that loss of FMRP leads to activation of adult mouse neural stem cells (NSCs) and a subsequent reduction in the production of neurons. We identified the ubiquitin ligase mouse double minute 2 homolog (MDM2) as a target of FMRP. FMRP regulates Mdm2 mRNA stability, and loss of FMRP resulted in elevated MDM2 mRNA and protein. Further, we found that increased MDM2 expression led to reduced P53 expression in adult mouse NSCs, leading to alterations in NSC proliferation and differentiation. Treatment with Nutlin-3, a small molecule undergoing clinical trials for treating cancer, specifically inhibited the interaction of MDM2 with P53, and rescued neurogenic and cognitive deficits in FMRP-deficient mice. Our data reveal a potential regulatory role for FMRP in the balance between adult NSC activation and quiescence, and identify a potential new treatment for fragile X syndrome. Copyright © 2016, American Association for the Advancement of Science.

  5. Mindfulness based cognitive therapy versus treatment as usual in adults with attention deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    Janssen, Lotte; Kan, Cornelis C; Carpentier, Pieter J; Sizoo, Bram; Hepark, Sevket; Grutters, Janneke; Donders, Rogier; Buitelaar, Jan K; Speckens, Anne E M

    2015-09-15

    Adults with attention deficit hyperactivity disorder (ADHD) often present with a lifelong pattern of core symptoms that is associated with impairments of functioning in daily life. This has a substantial personal and economic impact. In clinical practice there is a high need for additional or alternative interventions for existing treatments, usually consisting of pharmacotherapy and/or psycho-education. Although previous studies show preliminary evidence for the effectiveness of mindfulness-based interventions in reducing ADHD symptoms and improving executive functioning, these studies have methodological limitations. This study will take account of these limitations and will examine the effectiveness of Mindfulness Based Cognitive Therapy (MBCT) in further detail. A multi-centre, parallel-group, randomised controlled trial will be conducted in N = 120 adults with ADHD. Patients will be randomised to MBCT in addition to treatment as usual (TAU) or TAU alone. Assessments will take place at baseline and at three, six and nine months after baseline. Primary outcome measure will be severity of ADHD symptoms rated by a blinded clinician. Secondary outcome measures will be self-reported ADHD symptoms, executive functioning, mindfulness skills, self-compassion, positive mental health and general functioning. In addition, a cost-effectiveness analysis will be conducted. This trial will offer valuable information about the clinical and cost-effectiveness of MBCT in addition to TAU compared to TAU alone in adults swith ADHD. ClinicalTrials.gov NCT02463396. Registered 8 June 2015.

  6. Unrealistic representations of "the self": A cognitive neuroscience assessment of anosognosia for memory deficit.

    Science.gov (United States)

    Berlingeri, Manuela; Ravasio, Alessandra; Cranna, Silvia; Basilico, Stefania; Sberna, Maurizio; Bottini, Gabriella; Paulesu, Eraldo

    2015-12-01

    Three cognitive components may play a crucial role in both memory awareness and in anosognosia for memory deficit (AMD): (1) a personal data base (PDB), i.e., a memory store that contains "semantic" representations about the self, (2) monitoring processes (MPs) and (3) an explicit evaluation system (EES), or comparator, that assesses and binds the representations stored in the PDB with information obtained from the environment. We compared both the behavior and the functional connectivity (as assessed by resting-state fMRI) of AMD patients with aware patients and healthy controls. We found that AMD is associated with an impoverished PDB, while MPs are necessary to successfully update the PDB. AMD was associated with reduced functional connectivity within both the default-mode network and in a network that includes the left lateral temporal cortex, the hippocampus and the insula. The reduced connectivity between the hippocampus and the insular cortex was correlated with AMD severity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cognitive deficits and educational loss in children with schistosome infection-A systematic review and meta-analysis.

    Science.gov (United States)

    Ezeamama, Amara E; Bustinduy, Amaya L; Nkwata, Allan K; Martinez, Leonardo; Pabalan, Noel; Boivin, Michael J; King, Charles H

    2018-01-01

    By means of meta-analysis of information from all relevant epidemiologic studies, we examined the hypothesis that Schistosoma infection in school-aged children (SAC) is associated with educational loss and cognitive deficits. This review was prospectively registered in the PROSPERO database (CRD42016040052). Medline, Biosis, and Web of Science were searched for studies published before August 2016 that evaluated associations between Schistosoma infection and cognitive or educational outcomes. Cognitive function was defined in four domains-learning, memory, reaction time, and innate intelligence. Educational outcome measures were defined as attendance and scholastic achievement. Risk of bias (ROB) was evaluated using the Newcastle-Ottawa quality assessment scale. Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated to compare cognitive and educational measures for Schistosoma infected /not dewormed vs. uninfected/dewormed children. Sensitivity analyses by study design, ROB, and sequential exclusion of individual studies were implemented. Thirty studies from 14 countries, including 38,992 SAC between 5-19 years old, were identified. Compared to uninfected children and children dewormed with praziquantel, the presence of Schistosoma infection and/or non-dewormed status was associated with deficits in school attendance (SMD = -0.36, 95%CI: -0.60, -0.12), scholastic achievement (SMD = -0.58, 95%CI: -0.96, -0.20), learning (SMD = -0.39, 95%CI: -0.70, -0.09) and memory (SMD = -0.28, 95%CI: -0.52, -0.04) tests. By contrast, Schistosoma-infected/non-dewormed and uninfected/dewormed children were similar with respect to performance in tests of reaction time (SMD = -0.06, 95%CI: -0.42, 0.30) and intelligence (SMD = -0.25, 95%CI: -0.57, 0.06). Schistosoma infection-associated deficits in educational measures were robust among observational studies, but not among interventional studies. The significance of infection-associated deficits in

  8. Cognitive deficits and educational loss in children with schistosome infection-A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Amara E Ezeamama

    2018-01-01

    Full Text Available By means of meta-analysis of information from all relevant epidemiologic studies, we examined the hypothesis that Schistosoma infection in school-aged children (SAC is associated with educational loss and cognitive deficits.This review was prospectively registered in the PROSPERO database (CRD42016040052. Medline, Biosis, and Web of Science were searched for studies published before August 2016 that evaluated associations between Schistosoma infection and cognitive or educational outcomes. Cognitive function was defined in four domains-learning, memory, reaction time, and innate intelligence. Educational outcome measures were defined as attendance and scholastic achievement. Risk of bias (ROB was evaluated using the Newcastle-Ottawa quality assessment scale. Standardized mean differences (SMD and 95% confidence intervals (CI were calculated to compare cognitive and educational measures for Schistosoma infected /not dewormed vs. uninfected/dewormed children. Sensitivity analyses by study design, ROB, and sequential exclusion of individual studies were implemented. Thirty studies from 14 countries, including 38,992 SAC between 5-19 years old, were identified. Compared to uninfected children and children dewormed with praziquantel, the presence of Schistosoma infection and/or non-dewormed status was associated with deficits in school attendance (SMD = -0.36, 95%CI: -0.60, -0.12, scholastic achievement (SMD = -0.58, 95%CI: -0.96, -0.20, learning (SMD = -0.39, 95%CI: -0.70, -0.09 and memory (SMD = -0.28, 95%CI: -0.52, -0.04 tests. By contrast, Schistosoma-infected/non-dewormed and uninfected/dewormed children were similar with respect to performance in tests of reaction time (SMD = -0.06, 95%CI: -0.42, 0.30 and intelligence (SMD = -0.25, 95%CI: -0.57, 0.06. Schistosoma infection-associated deficits in educational measures were robust among observational studies, but not among interventional studies. The significance of infection-associated deficits

  9. Cognitive deficits and educational loss in children with schistosome infection—A systematic review and meta-analysis

    Science.gov (United States)

    Bustinduy, Amaya L.; Nkwata, Allan K.; Martinez, Leonardo; Pabalan, Noel; Boivin, Michael J.; King, Charles H.

    2018-01-01

    Background By means of meta-analysis of information from all relevant epidemiologic studies, we examined the hypothesis that Schistosoma infection in school-aged children (SAC) is associated with educational loss and cognitive deficits. Methodology/Principal findings This review was prospectively registered in the PROSPERO database (CRD42016040052). Medline, Biosis, and Web of Science were searched for studies published before August 2016 that evaluated associations between Schistosoma infection and cognitive or educational outcomes. Cognitive function was defined in four domains—learning, memory, reaction time, and innate intelligence. Educational outcome measures were defined as attendance and scholastic achievement. Risk of bias (ROB) was evaluated using the Newcastle-Ottawa quality assessment scale. Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated to compare cognitive and educational measures for Schistosoma infected /not dewormed vs. uninfected/dewormed children. Sensitivity analyses by study design, ROB, and sequential exclusion of individual studies were implemented. Thirty studies from 14 countries, including 38,992 SAC between 5–19 years old, were identified. Compared to uninfected children and children dewormed with praziquantel, the presence of Schistosoma infection and/or non-dewormed status was associated with deficits in school attendance (SMD = -0.36, 95%CI: -0.60, -0.12), scholastic achievement (SMD = -0.58, 95%CI: -0.96, -0.20), learning (SMD = -0.39, 95%CI: -0.70, -0.09) and memory (SMD = -0.28, 95%CI: -0.52, -0.04) tests. By contrast, Schistosoma-infected/non-dewormed and uninfected/dewormed children were similar with respect to performance in tests of reaction time (SMD = -0.06, 95%CI: -0.42, 0.30) and intelligence (SMD = -0.25, 95%CI: -0.57, 0.06). Schistosoma infection-associated deficits in educational measures were robust among observational studies, but not among interventional studies. The

  10. Interval Timing Deficits Assessed by Time Reproduction Dual Tasks as Cognitive Endophenotypes for Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Hwang-Gu, Shoou-Lian; Gau, Susan Shur-Fen

    2015-01-01

    The literature has suggested timing processing as a potential endophenotype for attention deficit/hyperactivity disorder (ADHD); however, whether the subjective internal clock speed presented by verbal estimation and limited attention capacity presented by time reproduction could be endophenotypes for ADHD is still unknown. We assessed 223 youths with DSM-IV ADHD (age range: 10-17 years), 105 unaffected siblings, and 84 typically developing (TD) youths using psychiatric interviews, intelligence tests, verbal estimation and time reproduction tasks (single task and simple and difficult dual tasks) at 5-second, 12-second, and 17-second intervals. We found that youths with ADHD tended to overestimate time in verbal estimation more than their unaffected siblings and TD youths, implying that fast subjective internal clock speed might be a characteristic of ADHD, rather than an endophenotype for ADHD. Youths with ADHD and their unaffected siblings were less precise in time reproduction dual tasks than TD youths. The magnitude of estimated errors in time reproduction was greater in youths with ADHD and their unaffected siblings than in TD youths, with an increased time interval at the 17-second interval and with increased task demands on both simple and difficult dual tasks versus the single task. Increased impaired time reproduction in dual tasks with increased intervals and task demands were shown in youths with ADHD and their unaffected siblings, suggesting that time reproduction deficits explained by limited attention capacity might be a useful endophenotype of ADHD. PMID:25992899

  11. Functional MRI in schizophrenia. Diagnostics and therapy monitoring of cognitive deficits of schizophrenic patients by functional MRI

    International Nuclear Information System (INIS)

    Furtner, J.; Prayer, D.; Sachs, G.

    2010-01-01

    Cognitive impairments are core psychopathological components of the symptomatic of schizophrenic patients. These dysfunctions are generally related to attention, executive functions and memory. This report provides information on the importance of using functional magnetic resonance imaging (fMRI) for the diagnostics and therapy monitoring of the different subtypes of cognitive dysfunctions. Furthermore, it describes the typical differences in the activation of individual brain regions between schizophrenic patients and healthy control persons. This information should be helpful in identifying the deficit profile of each patient and create an individual therapy plan. (orig.) [de

  12. Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats.

    Science.gov (United States)

    Luo, Pan; Zhang, Xiaoxue; Lu, Yun; Chen, Cheng; Li, Changjun; Zhou, Mei; Lu, Qing; Xu, Xulin; Shen, Guanxin; Guo, Lianjun

    2016-01-01

    Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A Quick Test of Cognitive Speed for Comparing Processing Speed to Differentiate Adult Psychiatric Referrals With and Without Attention-Deficit/Hyperactivity Disorders

    OpenAIRE

    Wiig, Elisabeth Hemmersam; Nielsen, Niels Peter

    2012-01-01

    Objective: This retrospective study used A Quick Test of Cognitive Speed (AQT) to compare processing speed and efficiency measures by adults with attention-deficit/hyperactivity disorder (ADHD) or non-ADHD psychiatric disorders and healthy controls.

  14. SLC2A3 single-nucleotide polymorphism and duplication influence cognitive processing and population-specific risk for attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Merker, S.; Reif, A.; Ziegler, G.C.; Weber, H.; Mayer, U.; Ehlis, A.C.; Conzelmann, A.; Johansson, S.; Muller-Reible, C.; Nanda, I.; Haaf, T.; Ullmann, R.; Romanos, M.; Fallgatter, A.J.; Pauli, P.; Strekalova, T.; Jansch, C.; Arias Vasquez, A.; Haavik, J.; Ribases, M.; Ramos-Quiroga, J.A.; Buitelaar, J.K.; Franke, B.; Lesch, K.P.

    2017-01-01

    BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder with profound cognitive, behavioral, and psychosocial impairments with persistence across the life cycle. Our initial genome-wide screening approach for copy number variants (CNVs)

  15. Depression in Adults with Attention-Deficit/Hyperactivity Disorder (ADHD): The Mediating Role of Cognitive-Behavioral Factors

    Science.gov (United States)

    Zvorsky, Ivori; Safren, Steven A.

    2015-01-01

    Adults with Attention-Deficit/Hyperactivity Disorder (ADHD) are at increased risk for depressive disorders but little is known about the potential cognitive and behavioral mechanisms of risk that could shape treatment. This study evaluated the degree to which cognitive-behavioral constructs associated with depression and its treatment—dysfunctional attitudes and cognitive-behavioral avoidance—accounted for variance in depressive symptoms and disorder in adults with ADHD. 77 adults clinically diagnosed with ADHD completed self-report questionnaires, diagnostic interviews, and clinician-administered symptom rating scales. Statistical mediation analysis was employed and indirect effects assessed using bootstrap analysis and bias-corrected confidence intervals. Controlling for recent negative life events, dysfunctional attitudes and cognitive-behavioral avoidance fully accounted for the variance between ADHD symptoms and depressive symptoms. Each independent variable partially mediated the other in accounting for depression symptoms suggesting overlapping and unique variance. Cognitive-behavioral avoidance, however, was more strongly related to meeting diagnostic criteria for a depressive disorder than were dysfunctional attitudes. Processes that are targeted in cognitive behavior therapy (CBT) for depression were associated with symptoms in adults with ADHD. Current CBT approaches for ADHD incorporate active coping skills and cognitive restructuring and such approaches could be further tailored to address the ADHD-depression comorbidity. PMID:26089578

  16. A miRNA Signature for Cognitive Deficits and Alcohol Use Disorder in Persons Living with HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Dorota Wyczechowska

    2017-11-01

    Full Text Available HIV-associated neurocognitive disorders (HAND affects more than half of persons living with HIV-1/AIDS (PLWHA. Identification of biomarkers representing the cognitive status of PLWHA is a critical step for implementation of successful cognitive, behavioral and pharmacological strategies to prevent onset and progression of HAND. However, the presence of co-morbidity factors in PLWHA, the most common being substance abuse, can prevent the identification of such biomarkers. We have optimized a protocol to profile plasma miRNAs using quantitative RT-qPCR and found a miRNA signature with very good discriminatory ability to distinguish PLWHA with cognitive impairment from those without cognitive impairment. Here, we have evaluated this miRNA signature in PLWHA with alcohol use disorder (AUD at LSU Health Sciences Center (LSUHSC. The results show that AUD is a potential confounding factor for the miRNAs associated with cognitive impairment in PLWHA. Furthermore, we have investigated the miRNA signature associated with cognitive impairment in an independent cohort of PLWHA using plasma samples from the CNS HIV Antiretroviral Therapy Effects Research (CHARTER program. Despite differences between the two cohorts in socioeconomic status, AUD, and likely misuse of illicit or prescription drugs, we validated a miRNA signature for cognitive deficits found at LSUHSC in the CHARTER samples.

  17. Comparison of the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke.

    Science.gov (United States)

    Vukovic, Mile; Vuksanovic, Jasmina; Vukovic, Irena

    2008-01-01

    In this study we investigated the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. The correlation of specific language functions and cognitive functions was analyzed in the acute phase and 6 months later. Significant recovery of the tested functions was observed in both groups. However, in patients with post-traumatic language processing deficits the degree of recovery of most language functions and some cognitive functions was higher. A significantly greater correlation was revealed within language and cognitive functions, as well as between language functions and other aspects of cognition in patients with post-traumatic language processing deficits than in patients with aphasia following a stroke. Our results show that patients with post-traumatic language processing deficits have a different recovery pattern and a different pattern of correlation between language and cognitive functions compared to patients with aphasia following a stroke. (1) Better understanding of the differences in recovery of language and cognitive functions in patients who have suffered strokes and those who have experienced traumatic brain injury. (2) Better understanding of the relationship between language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. (3) Better understanding of the factors influencing recovery.

  18. Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma

    Directory of Open Access Journals (Sweden)

    Lance A. Johnson

    2016-01-01

    Full Text Available Obesity, metabolic syndrome (MetS and type 2 diabetes (T2D are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D, multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV, a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.

  19. Emotional face recognition deficit in amnestic patients with mild cognitive impairment: behavioral and electrophysiological evidence

    Directory of Open Access Journals (Sweden)

    Yang L

    2015-08-01

    Full Text Available Linlin Yang, Xiaochuan Zhao, Lan Wang, Lulu Yu, Mei Song, Xueyi Wang Department of Mental Health, The First Hospital of Hebei Medical University, Hebei Medical University Institute of Mental Health, Shijiazhuang, People’s Republic of China Abstract: Amnestic mild cognitive impairment (MCI has been conceptualized as a transitional stage between healthy aging and Alzheimer’s disease. Thus, understanding emotional face recognition deficit in patients with amnestic MCI could be useful in determining progression of amnestic MCI. The purpose of this study was to investigate the features of emotional face processing in amnestic MCI by using event-related potentials (ERPs. Patients with amnestic MCI and healthy controls performed a face recognition task, giving old/new responses to previously studied and novel faces with different emotional messages as the stimulus material. Using the learning-recognition paradigm, the experiments were divided into two steps, ie, a learning phase and a test phase. ERPs were analyzed on electroencephalographic recordings. The behavior data indicated high emotion classification accuracy for patients with amnestic MCI and for healthy controls. The mean percentage of correct classifications was 81.19% for patients with amnestic MCI and 96.46% for controls. Our ERP data suggest that patients with amnestic MCI were still be able to undertake personalizing processing for negative faces, but not for neutral or positive faces, in the early frontal processing stage. In the early time window, no differences in frontal old/new effect were found between patients with amnestic MCI and normal controls. However, in the late time window, the three types of stimuli did not elicit any old/new parietal effects in patients with amnestic MCI, suggesting their recollection was impaired. This impairment may be closely associated with amnestic MCI disease. We conclude from our data that face recognition processing and emotional memory is

  20. Neurofeedback and cognitive attention training for children with attention-deficit hyperactivity disorder in schools.

    Science.gov (United States)

    Steiner, Naomi J; Frenette, Elizabeth C; Rene, Kirsten M; Brennan, Robert T; Perrin, Ellen C

    2014-01-01

    To evaluate the efficacy of 2 computer attention training systems administered in school for children with attention-deficit hyperactivity disorder (ADHD). Children in second and fourth grade with a diagnosis of ADHD (n = 104) were randomly assigned to neurofeedback (NF) (n = 34), cognitive training (CT) (n = 34), or control (n = 36) conditions. A 2-point growth model assessed change from pre-post intervention on parent reports (Conners 3-Parent [Conners 3-P]; Behavior Rating Inventory of Executive Function [BRIEF] rating scale), teacher reports (Swanson, Kotkin, Agler, M-Flynn and Pelham scale [SKAMP]; Conners 3-Teacher [Conners 3-T]), and systematic classroom observations (Behavioral Observation of Students in Schools [BOSS]). Paired t tests and an analysis of covariance assessed change in medication. Children who received NF showed significant improvement compared with those in the control condition on the Conners 3-P Attention, Executive Functioning and Global Index, on all BRIEF summary indices, and on BOSS motor/verbal off-task behavior. Children who received CT showed no improvement compared to the control condition. Children in the NF condition showed significant improvements compared to those in the CT condition on Conners 3-P Executive Functioning, all BRIEF summary indices, SKAMP Attention, and Conners 3-T Inattention subscales. Stimulant medication dosage in methylphenidate equivalencies significantly increased for children in the CT (8.54 mg) and control (7.05 mg) conditions but not for those in the NF condition (0.29 mg). Neurofeedback made greater improvements in ADHD symptoms compared to both the control and CT conditions. Thus, NF is a promising attention training treatment intervention for children with ADHD.

  1. Cognitive-motor integration deficits in young adult athletes following concussion.

    Science.gov (United States)

    Brown, Jeffrey A; Dalecki, Marc; Hughes, Cindy; Macpherson, Alison K; Sergio, Lauren E

    2015-01-01

    The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. Participants displaced a cursor from a central to peripheral targets on a vertical display by sliding their finger along a touch sensitive screen in one of two spatial planes. The addition of a memory component, along with variations in cursor feedback increased task complexity across conditions. Significant main effects between participants with concussion history and healthy controls without concussion history were observed in timing and accuracy measures. Importantly, the deficits were distinctly more pronounced for participants with concussion history compared to healthy controls, especially when the brain had to control movements having two levels of decoupling between vision and action. A discriminant analysis correctly classified athletes with a history of concussion based on task performance with an accuracy of 94 %, despite the majority of these athletes being rated asymptomatic by current standards. These findings correspond to our previous work with adults at risk of developing dementia, and support the use of cognitive motor integration as an enhanced assessment tool for those who may have mild brain dysfunction. Such a task may provide a more sensitive metric of performance relevant to daily function than what is currently in use, to assist in return to play/work/learn decisions.

  2. A comparison of the mini mental state exam to the Montreal cognitive assessment in identifying cognitive deficits in Parkinson's disease

    NARCIS (Netherlands)

    Zadikoff, Cindy; Fox, Susan H.; Tang-Wai, David F.; Thomsen, Teri; de Bie, Rob M. A.; Wadia, Pettarusup; Miyasaki, Janis; Duff-Canning, Sarah; Lang, Anthony E.; Marras, Connie

    2008-01-01

    Dementia is an important and increasingly recognized problem in Parkinson's disease (PD). The mini-mental state examination (MMSE) often fails to detect early cognitive decline. The Montreal cognitive assessment (MoCA) is a brief tool developed to detect mild cognitive impairment that assesses a

  3. Translational aspects of the novel object recognition task in rats abstinent following sub-chronic treatment with phencyclidine (PCP: effects of modafinil and relevance to cognitive deficits in schizophrenia?

    Directory of Open Access Journals (Sweden)

    John P Redrobe

    2010-11-01

    Full Text Available Phencyclidine (PCP induces a behavioural syndrome in rodents that bears remarkable similarities to some of the core symptoms observed in schizophrenic patients, among those cognitive deficits. The successful alleviation of cognitive impairments associated with schizophrenia (CIAS has become a major focus of research efforts as they remain largely untreated. The aim of the present study was to investigate the effects of selected antipsychotic and cognition enhancing drugs, namely haloperidol, risperidone, donepezil, and modafinil in an animal model widely used in preclinical schizophrenia research. To this end, the novel object recognition (NOR task was applied to rats abstinent following sub-chronic treatment with PCP. Rats were administered either PCP (5 mg/kg, i.p. or vehicle twice a day for 7 days, followed by a 7-day washout period, before testing in NOR. Upon testing, vehicle-treated rats successfully discriminated between novel and familiar objects, an effect abolished in rats that had previously been exposed to PCP-treatment. Acute treatment with modafinil (64 mg/kg, p.o. ameliorated the PCP-induced deficit in novel object exploration, whereas haloperidol (0.1 mg/kg, s.c., risperidone (0.2 mg/kg, i.p. and donepezil (3 mg/kg, p.o. were without significant effect. Given the negligible efficacy of haloperidol and risperidone, and the contradictory data with donepezil to treat CIAS in the clinic, together with the promising preliminary pro-cognitive effects of modafinil in certain subsets of schizophrenic patients, the sub-chronic PCP-NOR abstinence paradigm may represent an attractive option for the identification of potential novel treatments for CIAS.

  4. Do complaints of everyday cognitive failures in high schizotypy relate to emotional working memory deficits in the lab?

    Science.gov (United States)

    Carrigan, Nicole; Barkus, Emma; Ong, Adriel; Wei, Maryann

    2017-10-01

    Individuals high on schizotypy complain of increased cognitive failures in everyday life. However, the neuropsychological performance of this group does not consistently indicate underlying ability deficits. It is possible that current neuropsychological tests lack ecological validity. Given the increased affective reactivity of high schizotypes, they may be more sensitive to emotional content interfering with cognitive ability. This study sought to explore whether an affective n-back working memory task would elicit impaired performance in schizotypy, echoing complaints concerning real world cognition. 127 healthy participants completed self-report measures of schizotypy and cognitive failures and an affective n-back working memory task. This task was varied across three levels of load (1- to 3-back) and four types of stimulus emotion (neutral, fearful, happy, sad). Differences between high (n=39) and low (n=48) schizotypy groups on performance outcomes of hits and false alarms were examined, with emotion and load as within-groups variables. As expected, high schizotypes reported heightened vulnerability to cognitive failures. They also demonstrated a relative working memory impairment for emotional versus neutral stimuli, whereas low schizotypes did not. High schizotypes performed most poorly in response to fearful stimuli. For false alarms, there was an interaction between schizotypy, load, and emotion, such that high schizotypy was associated with deficits in response to fearful stimuli only at higher levels of task difficulty. Inclusion of self-reported cognitive failures did not account for this. These findings suggest that the "gap" between subjective and objective cognition in schizotypy may reflect the heightened emotional demands associated with cognitive functioning in the real world, although other factors also seem to play a role. There is a need to improve the ecological validity of objective assessments, whilst also recognizing that self

  5. Mori Folium and Mori Fructus Mixture Attenuates High-Fat Diet-Induced Cognitive Deficits in Mice

    Directory of Open Access Journals (Sweden)

    Hyo Geun Kim

    2015-01-01

    Full Text Available Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities.

  6. Effects of cariprazine, a novel antipsychotic, on cognitive deficit and negative symptoms in a rodent model of schizophrenia symptomatology.

    Science.gov (United States)

    Neill, Jo C; Grayson, Ben; Kiss, Béla; Gyertyán, István; Ferguson, Paul; Adham, Nika

    2016-01-01

    Negative symptoms and cognitive impairment associated with schizophrenia are strongly associated with poor functional outcome and reduced quality of life and remain an unmet clinical need. Cariprazine is a dopamine D3/D2 receptor partial agonist with preferential binding to D3 receptors, recently approved by the FDA for the treatment of schizophrenia and manic or mixed episodes associated with bipolar I disorder. The aim of this study is to evaluate effects of cariprazine in an animal model of cognitive deficit and negative symptoms of schizophrenia. Following sub-chronic PCP administration (2mg/kg, IP for 7 days followed by 7 days drug-free), female Lister Hooded rats were administered cariprazine (0.05, 0.1, or 0.25mg/kg, PO) or risperidone (0.16 or 0.1mg/kg, IP) before testing in novel object recognition (NOR), reversal learning (RL), and social interaction (SI) paradigms. As we have consistently demonstrated, sub-chronic PCP significantly impaired behavior in these tests. Deficits were significantly improved by cariprazine, in a dose dependent manner in the operant RL test with efficacy at lower doses in the NOR and SI tests. Locomotor activity was reduced at the highest doses of 0.1mg/kg and 0.25mg/kg in NOR and SI. Risperidone also reversed the PCP-induced deficit in all tests. In conclusion, cariprazine was effective to overcome PCP-induced deficits in cognition and social behavior in a thoroughly validated rat model in tests representing specific symptom domains in schizophrenia patients. These findings support very recent results showing efficacy of cariprazine in the treatment of negative symptoms in schizophrenia patients. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  7. Cognitive deficits in long-term survivors of childhood brain tumors: Identification of predictive factors

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Ehrenfels, Susanne; Mortensen, Erik Lykke

    2003-01-01

    To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors.......To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors....

  8. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    Science.gov (United States)

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  9. Association between cognitive deficits and suicidal ideation in patients with major depressive disorder

    OpenAIRE

    Pu, Shenghong; Setoyama, Shiori; Noda, Takamasa

    2017-01-01

    The role of cognitive function in suicidal ideation in patients with major depressive disorder (MDD) has not been adequately explored. This research sought to measure the relationship between suicidal ideation and cognitive function. Therefore, in this study, the association between cognitive function and suicidal ideation in patients with MDD was assessed. Cognitive function was evaluated in 233 patients with MDD using the Japanese version of the Brief Assessment of Cognition in Schizophreni...

  10. Cognitive-behavioural interventions for attention deficit hyperactivity disorder (ADHD) in adults.

    Science.gov (United States)

    Lopez, Pablo Luis; Torrente, Fernando Manuel; Ciapponi, Agustín; Lischinsky, Alicia Graciela; Cetkovich-Bakmas, Marcelo; Rojas, Juan Ignacio; Romano, Marina; Manes, Facundo F

    2018-03-23

    Attention deficit hyperactivity disorder (ADHD) is a developmental condition characterised by symptoms of inattention, hyperactivity and impulsivity, along with deficits in executive function, emotional regulation and motivation. The persistence of ADHD in adulthood is a serious clinical problem.ADHD significantly affects social interactions, study and employment performance.Previous studies suggest that cognitive-behavioural therapy (CBT) could be effective in treating adults with ADHD, especially when combined with pharmacological treatment. CBT aims to change the thoughts and behaviours that reinforce harmful effects of the disorder by teaching people techniques to control the core symptoms. CBT also aims to help people cope with emotions, such as anxiety and depression, and to improve self-esteem. To assess the effects of cognitive-behavioural-based therapy for ADHD in adults. In June 2017, we searched CENTRAL, MEDLINE, Embase, seven other databases and three trials registries. We also checked reference lists, handsearched congress abstracts, and contacted experts and researchers in the field. Randomised controlled trials (RCTs) evaluating any form of CBT for adults with ADHD, either as a monotherapy or in conjunction with another treatment, versus one of the following: unspecific control conditions (comprising supportive psychotherapies, no treatment or waiting list) or other specific interventions. We used the standard methodological procedures suggested by Cochrane. We included 14 RCTs (700 participants), 13 of which were conducted in the northern hemisphere and 1 in Australia.Primary outcomes: ADHD symptomsCBT versus unspecific control conditions (supportive psychotherapies, waiting list or no treatment)- CBT versus supportive psychotherapies: CBT was more effective than supportive therapy for improving clinician-reported ADHD symptoms (1 study, 81 participants; low-quality evidence) but not for self-reported ADHD symptoms (SMD -0.16, 95% CI -0.52 to 0

  11. Comparison of the Recovery Patterns of Language and Cognitive Functions in Patients with Post-Traumatic Language Processing Deficits and in Patients with Aphasia Following a Stroke

    Science.gov (United States)

    Vukovic, Mile; Vuksanovic, Jasmina; Vukovic, Irena

    2008-01-01

    In this study we investigated the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. The correlation of specific language functions and cognitive functions was analyzed in the acute phase and 6 months later. Significant recovery of the…

  12. Acupuncture attenuates cognitive deficits and increases pyramidal neuron number in hippocampal CA1 area of vascular dementia rats.

    Science.gov (United States)

    Li, Fang; Yan, Chao-Qun; Lin, Li-Ting; Li, Hui; Zeng, Xiang-Hong; Liu, Yi; Du, Si-Qi; Zhu, Wen; Liu, Cun-Zhi

    2015-04-28

    Decreased cognition is recognized as one of the most severe and consistent behavioral impairments in dementia. Experimental studies have reported that acupuncture may improve cognitive deficits, relieve vascular dementia (VD) symptoms, and increase cerebral perfusion and electrical activity. Multi-infarction dementia was modeled in rats with 3% microemboli saline suspension. Two weeks after acupuncture at Zusanli (ST36), all rats were subjected to a hidden platform trial to test their 3-day spatial memory using the Morris water maze test. To estimate the numbers of pyramidal neuron, astrocytes, and synaptic boutons in hippocampal CA1 area, we adopted an unbiased stereology method to accurately sample and measure the size of cells. We found that acupuncture at ST36 significantly decreased the escape latency of VD rats. In addition, acupuncture significantly increased the pyramidal neuron number in hippocampal CA1 area (P area in any of the groups (P > 0.05). These findings suggest that acupuncture may improve cognitive deficits and increase pyramidal neuron number of hippocampal CA1 area in VD rats.

  13. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Directory of Open Access Journals (Sweden)

    Teppo Särkämö

    2010-12-01

    Full Text Available Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm recordings. Fifty-three patients with a left (n = 24 or right (n = 29 hemisphere MCA stroke (MRI verified were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA. We found that amusia caused by right hemisphere damage (RHD, especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD. Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.

  14. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Science.gov (United States)

    Särkämö, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M; Laine, Matti; Hietanen, Marja; Pihko, Elina

    2010-12-02

    Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA) territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG) measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm) recordings. Fifty-three patients with a left (n = 24) or right (n = 29) hemisphere MCA stroke (MRI verified) were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA). We found that amusia caused by right hemisphere damage (RHD), especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD). Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC) showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.

  15. Cognitive and functional deficits in bipolar disorder and schizophrenia as a function of the presence and history of psychosis.

    Science.gov (United States)

    Bowie, Christopher R; Best, Michael W; Depp, Colin; Mausbach, Brent T; Patterson, Thomas L; Pulver, Ann E; Harvey, Philip D

    2018-05-18

    Schizophrenia and bipolar disorder overlap considerably. Schizophrenia is a primary psychotic disorder, whereas approximately half of people with bipolar disorder will experience psychosis. In this study, we examined the extent to which cognitive and functional impairments are related to the presence and history of psychosis across the two disorders. A total of 633 participants with bipolar disorder I, schizophrenia, and schizoaffective disorder were recruited for a study on the genetics of cognition and functioning in bipolar disorder and schizophrenia. Participants were classified into five groups: bipolar disorder with current psychosis (N = 30), bipolar disorder with a history of psychosis (N = 162), bipolar disorder with no history of psychosis (N = 92), schizophrenia with current psychosis (N = 245), and schizophrenia with past psychosis (N = 104). Cognitive profiles of all groups were similar in pattern; however, both current psychosis (P bipolar disorder and schizophrenia experienced similar impairments in real-world functioning if they were experiencing current psychosis (P = .32). The presence of active psychosis is an important cross-diagnostic factor in cognition and functioning in both schizophrenia and bipolar disorder. Characterization and treatment of cognition and functional deficits in bipolar disorder should consider the effects of both current and history of psychosis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. mTOR drives cerebral blood flow and memory deficits in LDLR-/- mice modeling atherosclerosis and vascular cognitive impairment.

    Science.gov (United States)

    Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica

    2018-01-01

    We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.

  17. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    Science.gov (United States)

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep. © 2013 International Society for Neurochemistry.

  18. A diet containing grape powder ameliorates the cognitive decline in aged rats with a long-term high-fructose-high-fat dietary pattern.

    Science.gov (United States)

    Chou, Liang-Mao; Lin, Ching-I; Chen, Yue-Hwa; Liao, Hsiang; Lin, Shyh-Hsiang

    2016-08-01

    Research has suggested that the consumption of foods rich in polyphenols is beneficial to the cognitive functions of the elderly. We investigated the effects of grape consumption on spatial learning, memory performance and neurodegeneration-related protein expression in aged rats fed a high-fructose-high-fat (HFHF) diet. Six-week-old Wistar rats were fed an HFHF diet to 66 weeks of age to establish a model of an HFHF dietary pattern, before receiving intervention diets containing different amounts of grape powder for another 12 weeks in the second part of the experiment. Spatial learning, memory performance and cortical and hippocampal protein expression levels were assessed. After consuming the HFHF diet for a year, results showed that the rats fed a high grape powder-containing diet had significantly better spatial learning and memory performance, lower expression of β-amyloid and β-secretase and higher expression of α-secretase than the rats fed a low grape powder-containing diet. Therefore, long-term consumption of an HFHF diet caused a decline in cognitive functions and increased the risk factors for neurodegeneration, which could subsequently be ameliorated by the consumption of a polyphenol-rich diet. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cognitive deficits in the rat chronic mild stress model for depression: relation to anhedonic-like responses

    DEFF Research Database (Denmark)

    Henningsen, Kim; Andreasen T., Jesper; Bouzinova, Elena V.

    2009-01-01

    in the spontaneous alternation test, possibly reflecting a deficit in working memory. This effect was independent of whether the stressed rats were anhedonic-like or stress-resilient as measured by their sucrose intake. CMS did not influence performance in passive avoidance and auditory cued fear conditioning......The chronic mild stress (CMS) protocol is widely used to evoke depressive-like behaviours in laboratory rats. The aim of the present study was to examine the effects of chronic stress on cognitive performance. About 70% of rats exposed to 7 weeks of chronic mild stress showed a gradual reduction...... in consumption of a sucrose solution, indicating an anhedonic-like state. The remaining rats did not reduce their sucrose intake, but appeared resilient to the stress-induced effects on sucrose intake. Cognitive profiling of the CMS rats revealed that chronic stress had a negative effect on performance...

  20. Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Md Shahaduzzaman

    Full Text Available The protein α-synuclein (α-Syn has a central role in the pathogenesis of Parkinson's disease (PD and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN, while control rats received an AAV vector expressing green fluorescent protein (GFP. Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1, or central region (AB2 of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2 significantly inhibited α-Syn-induced dopaminergic cell (DA and NeuN+ cell loss (one-way ANOVA (F (3, 30 = 5.8, p = 0.002 and (F (3, 29 = 7.92, p = 0.002 respectively, as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003. Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37 = 9.786; p = 0.0001 and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.

  1. Social cognition in patients at ultra-high risk for psychosis: What is the relation to social skills and functioning?

    Directory of Open Access Journals (Sweden)

    Louise B. Glenthøj

    2016-09-01

    Conclusion: Significant impairments in social cognition and social skills were found in UHR patients. The patients' social cognitive function was associated with overall functioning and social skills. Negative symptoms appear to play an important role for functioning. Research is needed to investigate how the relations between social cognition, social skills and functioning develop from the UHR state to the stage of manifest illness. Research into how deficits in social cognition and social skills can be ameliorated in UHR patients is warranted.

  2. Episodic memory deficits slow down the dynamics of cognitive procedural learning in normal ageing

    Science.gov (United States)

    Beaunieux, Hélène; Hubert, Valérie; Pitel, Anne Lise; Desgranges, Béatrice; Eustache, Francis

    2009-01-01

    Cognitive procedural learning is characterized by three phases, each involving distinct processes. Considering the implication of the episodic memory in the first cognitive stage, the impairment of this memory system might be responsible for a slowing down of the cognitive procedural learning dynamics in the course of aging. Performances of massed cognitive procedural learning were evaluated in older and younger participants using the Tower of Toronto task. Nonverbal intelligence and psychomotor abilities were used to analyze procedural dynamics, while episodic memory and working memory were assessed to measure their respective contributions to learning strategies. This experiment showed that older participants did not spontaneously invoke episodic memory and presented a slowdown in the cognitive procedural learning associated with a late involvement of working memory. These findings suggest that the slowdown in the cognitive procedural learning may be linked with the implementation of different learning strategies less involving episodic memory in older subjects. PMID:18654928

  3. Analogous β-Carboline Alkaloids Harmaline and Harmine Ameliorate Scopolamine-Induced Cognition Dysfunction by Attenuating Acetylcholinesterase Activity, Oxidative Stress, and Inflammation in Mice

    Science.gov (United States)

    Li, Shu-Ping; Wang, Yu-Wen; Qi, Sheng-Lan; Zhang, Yun-Peng; Deng, Gang; Ding, Wen-Zheng; Ma, Chao; Lin, Qi-Yan; Guan, Hui-Da; Liu, Wei; Cheng, Xue-Mei; Wang, Chang-Hong

    2018-01-01

    The analogous β-carboline alkaloids, harmaline (HAL) and harmine (HAR), possess a variety of biological properties, including acetylcholinesterase (AChE) inhibitory activity, antioxidant, anti-inflammatory, and many others, and have great potential for treating Alzheimer’s disease (AD). However, studies have showed that the two compounds have similar structures and in vitro AChE inhibitory activities but with significant difference in bioavailability. The objective of this study was to comparatively investigate the effects of HAL and HAR in memory deficits of scopolamine-induced mice. In the present study, mice were pretreated with HAL (2, 5, and 10 mg/kg), HAR (10, 20, and 30 mg/kg) and donepezil (5 mg/kg) by intragastrically for 7 days, and were daily intraperitoneal injected with scopolamine (1 mg/kg) to induce memory deficits and then subjected to behavioral evaluation by Morris water maze. To further elucidate the underlying mechanisms of HAL and HAR in improving learning and memory, the levels of various biochemical factors and protein expressions related to cholinergic function, oxidative stress, and inflammation were examined. The results showed that HAL and HAR could effectively ameliorate memory deficits in scopolamine-induced mice. Both of them exhibited an enhancement in cholinergic function by inhibiting AChE and inducing choline acetyltransferase (ChAT) activities, and antioxidant defense via increasing the antioxidant enzymes activities of superoxide dismutase and glutathione peroxidase, and reducing maleic diadehyde production, and anti-inflammatory effects through suppressing myeloperoxidase, tumor necrosis factor α, and nitric oxide as well as modulation of critical neurotransmitters such as acetylcholine (ACh), choline (Ch), L-tryptophan (L-Trp), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (γ-GABA), and L-glutamic acid (L-Glu). Furthermore, the regulations of HAL on cholinergic function, inflammation, and neurotransmitters were more

  4. A Comparison of the Relation of Depression, and Cognitive, Motor and Functional Deficits in Chronic Stroke Patients: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Amin Ghaffari

    2017-10-01

    Full Text Available Aim and background: One of the most important psychological disorders after stroke is depression, which leads to reduced quality of life, optimal rehabilitation failure, loss of cognitive tasks and decrease in the recovery process. In this research, relation between patterns of depression and cognitive, motor and function deficits in people with chronic stroke was studied. Methods and materials: In a pilot cross-sectional study, 40 patients with chronic stroke (more than 6 months were enrolled. Depression (Beck Depression Inventory, cognition (attention test TMT-A & B and Wechsler memory, motor (Motorcity index, basic activities of daily living (Barthel scale and instrumental activities of daily living (Lawton scale were evaluated. Results: The results of the study revealed a significant positive correlation between post stroke depression and verbal memory (r=0.440،P<.05, attention (r=0.615،P<.05, motor function(r-0.368،P<.05, independence in basic activities of daily living (r=0.781،P<.05 and instrumental activities of daily living (r=0.741, P<.05. Conclusion: According to the findings, further studies of factors affecting post stroke depression (PSD clinical and practical aspects are necessary. Cognitive rehabilitation programs with motor rehabilitation can decrease depression and gain independence in activities of daily living and more participation in society activities.

  5. Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: brief report.

    Science.gov (United States)

    Shema-Shiratzky, Shirley; Brozgol, Marina; Cornejo-Thumm, Pablo; Geva-Dayan, Karen; Rotstein, Michael; Leitner, Yael; Hausdorff, Jeffrey M; Mirelman, Anat

    2018-05-17

    To examine the feasibility and efficacy of a combined motor-cognitive training using virtual reality to enhance behavior, cognitive function and dual-tasking in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Fourteen non-medicated school-aged children with ADHD, received 18 training sessions during 6 weeks. Training included walking on a treadmill while negotiating virtual obstacles. Behavioral symptoms, cognition and gait were tested before and after the training and at 6-weeks follow-up. Based on parental report, there was a significant improvement in children's social problems and psychosomatic behavior after the training. Executive function and memory were improved post-training while attention was unchanged. Gait regularity significantly increased during dual-task walking. Long-term training effects were maintained in memory and executive function. Treadmill-training augmented with virtual-reality is feasible and may be an effective treatment to enhance behavior, cognitive function and dual-tasking in children with ADHD.

  6. Dynamic balance in children with attention-deficit hyperactivity disorder and its relationship with cognitive functions and cerebellum

    Directory of Open Access Journals (Sweden)

    Goetz M

    2017-03-01

    Full Text Available Michal Goetz,1 Jaroslava Paulasova Schwabova,2 Zdenek Hlavka,3 Radek Ptacek,4 Craig BH Surman5 1Department of Child Psychiatry, Second Faculty of Medicine, Motol University Hospital, 2Department of Neurology, 3Department of Statistics, 4Department of Psychiatry, Charles University, Prague, Czech Republic; 5Department of Psychiatry, Harvard Medical School, Boston, MA, USA Background: Attention-deficit hyperactivity disorder (ADHD is linked to the presence of motor deficiencies, including balance deficits. The cerebellum serves as an integrative structure for balance control and is also involved in cognition, including timing and anticipatory regulation. Cerebellar development may be delayed in children and adolescents with ADHD, and inconsistent reaction time is commonly seen in ADHD. We hypothesized that dynamic balance deficits would be present in children with ADHD and they would correlate with attention and cerebellar functions. Methods: Sixty-two children with ADHD and no other neurological conditions and 62 typically developing (TD children were examined with five trials of the Phyaction Balance Board, an electronic balancing platform. Cerebellar clinical symptoms were evaluated using an international ataxia rating scale. Conners’ Continuous Performance Test was used to evaluate patterns of reaction. Results: Children with ADHD had poorer performance on balancing tasks, compared to TD children (P<0.001. They exhibited significantly greater sway amplitudes than TD children (P<0.001 in all of the five balancing trials. The effect size of the difference between the groups increased continuously from the first to the last trial. Balance score in both groups was related to the variation in the reaction time, including reaction time standard error (r =0.25; P=0.0409, respectively, r =0.31; P=0.0131 and Variability of Standard Error (r =0.28; P=0.0252, respectively, r =0.41; P<0.001. The burden of cerebellar symptoms was strongly related to

  7. Cognitive Training for Attention-Deficit/Hyperactivity Disorder: Meta-Analysis of Clinical and Neuropsychological Outcomes From Randomized Controlled Trials

    Science.gov (United States)

    Cortese, Samuele; Ferrin, Maite; Brandeis, Daniel; Buitelaar, Jan; Daley, David; Dittmann, Ralf W.; Holtmann, Martin; Santosh, Paramala; Stevenson, Jim; Stringaris, Argyris; Zuddas, Alessandro; Sonuga-Barke, Edmund J.S.

    2015-01-01

    Objective The authors performed meta-analyses of randomized controlled trials to examine the effects of cognitive training on attention-deficit/hyperactivity disorder (ADHD) symptoms, neuropsychological deficits, and academic skills in children/adolescents with ADHD. Method The authors searched Pubmed, Ovid, Web of Science, ERIC, and CINAHAL databases through May 18, 2014. Data were aggregated using random-effects models. Studies were evaluated with the Cochrane risk of bias tool. Results Sixteen of 695 nonduplicate records were analyzed (759 children with ADHD). When all types of training were considered together, there were significant effects on total ADHD (standardized mean difference [SMD] = 0.37, 95% CI = 0.09–0.66) and inattentive symptoms (SMD = 0.47, 95% CI = 0.14–0.80) for reports by raters most proximal to the treatment setting (i.e., typically unblinded). These figures decreased substantially when the outcomes were provided by probably blinded raters (ADHD total: SMD = 0.20, 95% CI = 0.01–0.40; inattention: SMD = 0.32, 95% CI = −0.01 to 0.66). Effects on hyperactivity/impulsivity symptoms were not significant. There were significant effects on laboratory tests of working memory (verbal: SMD = 0.52, 95% CI = 0.24–0.80; visual: SMD = 0.47, 95% CI = 0.23–0.70) and parent ratings of executive function (SMD = 0.35, 95% CI = 0.08–0.61). Effects on academic performance were not statistically significant. There were no effects of working memory training, specifically on ADHD symptoms. Interventions targeting multiple neuropsychological deficits had large effects on ADHD symptoms rated by most proximal assessors (SMD = 0.79, 95% CI = 0.46–1.12). Conclusion Despite improving working memory performance, cognitive training had limited effects on ADHD symptoms according to assessments based on blinded measures. Approaches targeting multiple neuropsychological processes may optimize the transfer of effects from cognitive deficits to

  8. Scientific biography, cognitive deficits, and laboratory practice. James McKeen Cattell and early American experimental psychology, 1880-1904.

    Science.gov (United States)

    Sokal, Michael M

    2010-09-01

    Despite widespread interest in individual life histories, few biographies of scientists make use of insights derived from psychology, another discipline that studies people, their thoughts, and their actions. This essay argues that recent theoretical work in psychology and tools developed for clinical psychological practice can help biographical historians of science create and present fuller portraits of their subjects' characters and temperaments and more nuanced analyses of how these traits helped shape their subjects' scientific work. To illustrate this thesis, the essay examines the early career of James McKeen Cattell--an influential late nineteenth- and early twentieth-century experimental psychologist--through a lens offered by psychology and argues that Cattell's actual laboratory practices derived from an "accommodation" to a long-standing "cognitive deficit." These practices in turn enabled Cattell to achieve more precise experimental results than could any of his contemporaries; and their students readily adopted them, along with their behavioral implications. The essay concludes that, in some ways, American psychology's early twentieth-century move toward a behavioral understanding of psychological phenomena can be traced to Cattell's personal cognitive deficit. It closes by reviewing several "remaining general questions" that this thesis suggests.

  9. Cognition and impulsivity in adults with attention deficit hyperactivity disorder with and without cocaine and/or crack dependence.

    Science.gov (United States)

    Miguel, Carmen S; Martins, Paula A; Moleda, Nathalya; Klein, Margarete; Chaim-Avancini, Tiffany; Gobbo, Maria A; Alves, Tania M; Silva, Maria A; Louzã, Mario R

    2016-03-01

    Substance use disorder (SUD) is a common comorbidity in adults with attention deficit-hyperactivity disorder (ADHD). However,there have been few studies on cognitive profiles of these patients. Impulsivity is also commonly increased in both disorders. The central aim of this study was to compare cognition and impulsivity in subjects who had ADHD and cocaine dependence (ADHD+COC group) to those with ADHD only (ADHD-noSUD group). We hypothesized that the ADHD+COC group would show more marked cognitive dysfunction and greater impulsivity than their counterparts with ADHD only. A total of 70 adult patients diagnosed with ADHD according to (DSM-IV-TR) criteria were enrolled; 36 with ADHD+COC and 34 with ADHD-noSUD. All study participants were evaluated with a sociodemographic questionnaire; the Mini International Neuropsychiatric Interview; the Adult ADHD Self-Report Scale; the Addiction Severity Index; the Alcohol, Smoking and Substance Involvement Screening Test; the Barratt Impulsiveness Scale; and a comprehensive neurocognitive battery. Compared to individuals with ADHD-noSUD, ADHD+COC individuals had significantly lower mean IQ and higher motor impulsivity. On average, the ADHD+COC group also performed more poorly on tasks assessing verbal skills, vigilance, implicit learning during decision making, and ADHD-noSUD performed more poorly on selective attention, information processing, and visual search. Our results support the integrative theory of ADHD based on the cognitive and affective neuroscience model, and suggests that ADHD-noSUD patients have impairments in cognitive regulation, while ADHD+COC patients have impairments in both cognitive and affective regulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Combined Treatment With Environmental Enrichment and (-)-Epigallocatechin-3-Gallate Ameliorates Learning Deficits and Hippocampal Alterations in a Mouse Model of Down Syndrome.

    Science.gov (United States)

    Catuara-Solarz, Silvina; Espinosa-Carrasco, Jose; Erb, Ionas; Langohr, Klaus; Gonzalez, Juan Ramon; Notredame, Cedric; Dierssen, Mara

    2016-01-01

    Intellectual disability in Down syndrome (DS) is accompanied by altered neuro-architecture, deficient synaptic plasticity, and excitation-inhibition imbalance in critical brain regions for learning and memory. Recently, we have demonstrated beneficial effects of a combined treatment with green tea extract containing (-)-epigallocatechin-3-gallate (EGCG) and cognitive stimulation in young adult DS individuals. Although we could reproduce the cognitive-enhancing effects in mouse models, the underlying mechanisms of these beneficial effects are unknown. Here, we explored the effects of a combined therapy with environmental enrichment (EE) and EGCG in the Ts65Dn mouse model of DS at young age. Our results show that combined EE-EGCG treatment improved corticohippocampal-dependent learning and memory. Cognitive improvements were accompanied by a rescue of cornu ammonis 1 (CA1) dendritic spine density and a normalization of the proportion of excitatory and inhibitory synaptic markers in CA1 and dentate gyrus.

  11. Cortical deficits of emotional face processing in adults with ADHD: its relation to social cognition and executive function.

    Science.gov (United States)

    Ibáñez, Agustin; Petroni, Agustin; Urquina, Hugo; Torrente, Fernando; Torralva, Teresa; Hurtado, Esteban; Guex, Raphael; Blenkmann, Alejandro; Beltrachini, Leandro; Muravchik, Carlos; Baez, Sandra; Cetkovich, Marcelo; Sigman, Mariano; Lischinsky, Alicia; Manes, Facundo

    2011-01-01

    Although it has been shown that adults with attention-deficit hyperactivity disorder (ADHD) have impaired social cognition, no previous study has reported the brain correlates of face valence processing. This study looked for behavioral, neuropsychological, and electrophysiological markers of emotion processing for faces (N170) in adult ADHD compared to controls matched by age, gender, educational level, and handedness. We designed an event-related potential (ERP) study based on a dual valence task (DVT), in which faces and words were presented to test the effects of stimulus type (faces, words, or face-word stimuli) and valence (positive versus negative). Individual signatures of cognitive functioning in participants with ADHD and controls were assessed with a comprehensive neuropsychological evaluation, including executive functioning (EF) and theory of mind (ToM). Compared to controls, the adult ADHD group showed deficits in N170 emotion modulation for facial stimuli. These N170 impairments were observed in the absence of any deficit in facial structural processing, suggesting a specific ADHD impairment in early facial emotion modulation. The cortical current density mapping of N170 yielded a main neural source of N170 at posterior section of fusiform gyrus (maximum at left hemisphere for words and right hemisphere for faces and simultaneous stimuli). Neural generators of N170 (fusiform gyrus) were reduced in ADHD. In those patients, N170 emotion processing was associated with performance on an emotional inference ToM task, and N170 from simultaneous stimuli was associated with EF, especially working memory. This is the first report to reveal an adult ADHD-specific impairment in the cortical modulation of emotion for faces and an association between N170 cortical measures and ToM and EF.

  12. Cognitive deficits after aneurysmal and angiographically negative subarachnoid hemorrhage : Memory, attention, executive functioning, and emotion recognition

    NARCIS (Netherlands)

    Buunk, Anne M; Groen, Rob J M; Veenstra, Wencke S; Metzemaekers, Joannes; van der Hoeven, Johannes H; van Dijk, J Marc C; Spikman, Jacoba M

    2016-01-01

    OBJECTIVE: The authors' aim was to investigate cognitive outcome in patients with aneurysmal and angiographically negative subarachnoid hemorrhage (aSAH and anSAH), by comparing them to healthy controls and to each other. Besides investigating cognitive functions as memory and attention, they

  13. Development of a Cognitive-Behavioral Intervention Program to Treat Anxiety and Social Deficits in Teens with High-Functioning Autism

    OpenAIRE

    White, Susan W.; Albano, Anne Marie; Johnson, Cynthia R.; Kasari, Connie; Ollendick, Thomas; Klin, Ami; Oswald, Donald; Scahill, Lawrence

    2010-01-01

    Anxiety is a common co-occurring problem among young people with autism spectrum disorders (ASD). Characterized by deficits in social interaction, communication problems, and stereotyped behavior and restricted interests, this group of disorders is more prevalent than previously realized. When present, anxiety may compound the social deficits of young people with ASD. Given the additional disability and common co-occurrence of anxiety in ASD, we developed a manual-based cognitive-behavioral t...

  14. Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment

    OpenAIRE

    Machts, Judith; Bittner, Verena; Kasper, Elisabeth; Schuster, Christina; Prudlo, Johannes; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Schoenfeld, Mircea A; Bittner, Daniel M

    2014-01-01

    Background Recent work suggests that ALS and frontotemporal dementia can occur together and share at least in part the same underlying pathophysiology. However, it is unclear at present whether memory deficits in ALS stem from a temporal lobe dysfunction, or are rather driven by frontal executive dysfunction. In this study we sought to investigate the nature of memory deficits by analyzing the neuropsychological performance of 40 ALS patients in comparison to 39 amnestic mild cognitive impair...

  15. Social Cognition Impairments in Relation to General Cognitive Deficits, Injury Severity, and Prefrontal Lesions in Traumatic Brain Injury Patients

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Timmerman, Marieke E.; Milders, Maarten V.; Veenstra, Wencke S.; van der Naalt, Joukje

    2012-01-01

    Impairments in social behavior are frequently found in moderate to severe traumatic brain injury (TBI) patients and are associated with an unfavorable outcome with regard to return to work and social reintegration. Neuropsychological tests measuring aspects of social cognition are thought to be

  16. A description of a cognitive rehabilitation programme evaluated in brain tumour patients with mild to moderate cognitive deficits

    NARCIS (Netherlands)

    Gehring, K.; Aaronson, N.K.; Taphoorn, M.J.B.; Sitskoorn, M.M.

    2011-01-01

    This series of articles for rehabilitation in practice aims to cover a knowledge element of the rehabilitation medicine curriculum. Nevertheless they are intended to be of interest to a multidisciplinary audience. The competency addressed in this article is cognitive rehabilitation.Background: There

  17. Green Tea Extract Ameliorates Learning and Memory Deficits in Ischemic Rats via Its Active Component Polyphenol Epigallocatechin-3-gallate by Modulation of Oxidative Stress and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kuo-Jen Wu

    2012-01-01

    Full Text Available Ischemic stroke results in brain damage and behavioral deficits including memory impairment. Protective effects of green tea extract (GTex and its major functional polyphenol (−-epigallocatechin gallate (EGCG on memory were examined in cerebral ischemic rats. GTex and EGCG were administered 1 hr before middle cerebral artery ligation in rats. GTex, EGCG, and pentoxifylline (PTX significantly improved ishemic-induced memory impairment in a Morris water maze test. Malondialdehyde (MDA levels, glutathione (GSH, and superoxide dismutase (SOD activity in the cerebral cortex and hippocampus were increased by long-term treatment with GTex and EGCG. Both compounds were also associated with reduced cerebral infraction breakdown of MDA and GSH in the hippocampus. In in vitro experiments, EGCG had anti-inflammatory effects in BV-2 microglia cells. EGCG inhibited lipopolysaccharide- (LPS- induced nitric oxide production and reduced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV-2 cells. GTex and its active polyphenol EGCG improved learning and memory deficits in a cerebral ischemia animal model and such protection may be due to the reduction of oxidative stress and neuroinflammation.

  18. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda

    Full Text Available We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ concentration. A single injection of Aβ (25 pmol into the dentate gyrus affected dentate gyrus long-term potentiation (LTP 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  19. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Science.gov (United States)

    Takeda, Atsushi; Nakamura, Masatoshi; Fujii, Hiroaki; Uematsu, Chihiro; Minamino, Tatsuya; Adlard, Paul A; Bush, Ashley I; Tamano, Haruna

    2014-01-01

    We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  20. Season-independent cognitive deficits in seasonal affective disorder and their relation to depressive symptoms

    DEFF Research Database (Denmark)

    Hjordt, Liv Vadskjær; Stenbæk, Dea Siggaard; Ozenne, Brice

    2017-01-01

    Modalities Test (SDMT) and the Simple Reaction Time (SRT) twice; in summer and in winter. Compared to controls, SAD individuals showed significant season-independent impairments in tasks measuring working memory (LNS), cognitive processing speed (SDMT) and motor speed (SRT). In SAD individuals, cognitive...... processing speed was significantly negatively associated with the seasonal change in SAD depressive symptoms. We present novel evidence that in SAD individuals, working memory, cognitive processing- and motor speed is not only impaired in the winter but also in the summer. This suggests that certain...

  1. Subthreshold social cognitive deficits may be a key to distinguish 22q11.2DS from schizophrenia.

    Science.gov (United States)

    Peyroux, Elodie; Rigard, Caroline; Saucourt, Guillaume; Poisson, Alice; Plasse, Julien; Franck, Nicolas; Demily, Caroline

    2018-03-25

    Social cognitive impairments are core features in 22q11.2 deletion syndrome (22q11.2DS) and schizophrenia (SCZ). Indeed, adults with 22q.11.2 DS often have poorer social competence as well as poorer performance on measures of social cognitive skills (emotion recognition and theory of mind, ToM) compared with typically developing people. However, studies comparing specific social cognitive components in 22q11.2DS and SCZ have not yet been widely conducted. In this study we compared performances of 22q11.2DS and SCZ on both facial emotion recognition and ToM. Patients with 22q11.2DS (n = 18) and matched SCZ patients were recruited. After neuropsychological testing, the facial emotion recognition test assessed the patients' ability to recognize six basic, universal emotions (joy, anger, sadness, fear, disgust, and contempt). The Versailles-situational intentional reading evaluated ToM with six scenes from movies showing characters in complex interactions (involving hints, lies, and indirect speech). We show that 22q11.2DS exhibited significantly lower performance in emotion recognition than SCZ patients did, especially for disgust, contempt, and fear. This impairment seems to be a core cognitive phenotype in 22q11.2DS, regardless of the presence of SCZ symptoms. Concerning ToM, our results may highlight the same impairment level in 22q11.2DS and SCZ but require to be replicated in a larger cohort. Our results document the existence of threshold social cognitive deficits distinguishing 22q11.2DS from SCZ. © 2018 John Wiley & Sons Australia, Ltd.

  2. Sleeping, TV, Cognitively Stimulating Activities, Physical Activity, and Attention-Deficit Hyperactivity Disorder Symptom Incidence in Children: A Prospective Study.

    Science.gov (United States)

    Peralta, Gabriela P; Forns, Joan; García de la Hera, Manuela; González, Llúcia; Guxens, Mònica; López-Vicente, Mónica; Sunyer, Jordi; Garcia-Aymerich, Judith

    2018-04-01

    To analyze associations between time spent sleeping, watching TV, engaging in cognitively stimulating activities, and engaging in physical activity, all at 4 years, and (1) attention-deficit/hyperactivity disorder (ADHD) symptoms and (2) behavior problems, both assessed at 7 years, in ADHD-free children at baseline. In total, 817 participants of the Infancia y Medio Ambiente birth cohort, without ADHD at baseline, were included. At the 4-year follow-up, parents reported the time that their children spent sleeping, watching TV, engaging in cognitively stimulating activities, and engaging in physical activity. At the 7-year follow-up, parents completed the Conners' Parent Rating Scales and the Strengths and Difficulties Questionnaire, which measure ADHD symptoms and behavior problems, respectively. Negative binomial regression models were used to assess associations between the activities at 4 years and ADHD symptoms and behavior problems at 7 years. Children (48% girls) spent a median (p25-p75) of 10 (10-11) hours per day sleeping, 1.5 (0.9-2) hours per day watching TV, 1.4 (0.9-1.9) hours per day engaging in cognitively stimulating activities, and 1.5 (0.4-2.3) hours per day engaging in physical activity. Longer sleep duration (>10 hours per day) was associated with a lower ADHD symptom score (adjusted incidence rate ratio = 0.97, 95% confidence interval, 0.95-1.00). Longer time spent in cognitively stimulating activities (>1 hours per day) was associated with lower scores of both ADHD symptoms (0.96, 0.94-0.98) and behavior problems (0.89, 0.83-0.97). Time spent watching TV and engaging in physical activity were not associated with either outcomes. A shorter sleep duration and less time spent in cognitively stimulating activities were associated with an increased risk of developing ADHD symptoms and behavior problems.

  3. Cognitive biases toward Internet game-related pictures and executive deficits in individuals with an Internet game addiction.

    Directory of Open Access Journals (Sweden)

    Zhenhe Zhou

    Full Text Available The cue-related go/no-go switching task provides an experimental approach to study individual's flexibility in changing situations. Because Internet addiction disorder (IAD belongs to the compulsive-impulsive spectrum of disorders, it should present cognitive bias and executive functioning deficit characteristics of some of these types of disorders. Until now, no studies have been reported on cognitive bias and executive function involving mental flexibility and response inhibition in IAD.A total of 46 subjects who met the criteria of the modified Young's Diagnostic Questionnaire for Internet addiction (YDQ were recruited as an Internet game addiction (IGA group, along with 46 healthy control individuals. All participants performed the Internet game-shifting task. Using hit rate, RT, d' and C as the dependent measures, a three-way ANOVA (group × target × condition was performed. For hit rate, a significant effect of group, type of target and condition were found. The group-target interaction effect was significant. For RT, significant effects were revealed for group and type of target. The group-target interaction effect was significant. Comparisons of the means revealed that the slowing down of IGA relative to NIA was more pronounced when the target stimuli were neutral as opposed to Internet game-related pictures. In addition, the group-condition interaction effect was significant. For d', significant effects of group, type of target and condition were found. The group-target interaction effect was significant. For C, the type of target produced a significant effect. There was a positive correlation between the length of the addiction (number of years and the severity of the cognitive bias.IGA present cognitive biases towards information related to Internet gaming. These biases, as well as poor executive functioning skills (lower mental flexibility and response inhibition, might be responsible for Internet game addiction. The assessment of

  4. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes.

    Science.gov (United States)

    Schleiger, Emma; Sheikh, Nabeel; Rowland, Tennille; Wong, Andrew; Read, Stephen; Finnigan, Simon

    2014-10-01

    This study analysed correlations between post-stroke, quantitative electroencephalographic (QEEG) indices, and cognition-specific, functional outcome measures. Results were compared between QEEG indices calculated from the standard 19 versus 4 frontal (or 4 posterior) electrodes to assess the feasibility and efficacy of employing a reduced electrode montage. Resting-state EEG was recorded at the bedside within 62-101 h after onset of symptoms of middle cerebral artery, ischaemic stroke (confirmed radiologically). Relative power for delta, theta, alpha and beta, delta/alpha ratio (DAR) and pairwise-derived brain symmetry index (pdBSI) were averaged; over all electrodes (global), over F3, F4, F7, F8 (frontal) and P3, P4, T5, T6 (posterior). The functional independence measure and functional assessment measure (FIM-FAM) was administered at mean 105 days post-stroke. Total (30 items) and cognition-specific (5 items) FIM-FAM scores were correlated with QEEG indices using Spearman's coefficient, with a Bonferroni correction. Twenty-five patients were recruited, 4 died within 3 months and 1 was lost to follow-up. Hence 20 cases (10 female; 9 left hemisphere; mean age 68 years, range 38-84) were analysed. Two QEEG indices demonstrated highly-significant correlations with cognitive outcomes: frontal DAR (ρ = -0.664, p ≤ 0.001) and global, relative alpha power (ρ = 0.67, p ≤ 0.001). After correction there were no other significant correlations. Alpha activity - particularly frontally - may index post-stroke attentional capacity, which appears to be a key determinant of functional and cognitive outcomes. Likewise frontal delta pathophysiology influences such outcomes. Pending further studies, DAR from 4 frontal electrodes may inform early screening for post-MCA stroke cognitive deficits, and thereby, clinical decisions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Odor identification deficits identify Parkinson’s disease patients with poor cognitive performance

    DEFF Research Database (Denmark)

    Damholdt, Malene Flensborg; Borghammer, Per; Larsen, Lars

    2011-01-01

    Olfactory dysfunction is a prodromal and prevalent nonmotor symptom of Parkinson's disease. Unlike olfactory dysfunction in Alzheimer's disease, it is believed to be unrelated to cognitive impairment. However, recent research has implicated cholinergic denervation in Parkinson's disease hyposmia ...

  6. Use of the Cognitive Performance Test for Identifying Deficits in Hospitalized Older Adults

    Directory of Open Access Journals (Sweden)

    Alison Douglas

    2012-01-01

    Full Text Available Objectives. The Cognitive Performance Test (CPT is a functional assessment for persons with dementia. The study purpose was to evaluate the reliability, discriminant, and concurrent validity of the CPT. Method. The CPT was tested against other measures of cognition (Standardized Mini Mental Status Exam (SMMSE and Assessment of Motor and Process Skills-Process scale (AMPS-Process. Participants were persons 65 years and older admitted to a geriatric rehabilitation unit (n=47. Results. The CPT correlated moderately with measures of cognition (SMMSE r=0.47, AMPS-Process r=0.53, P<0.01, and ADL burden of care (FIM r=0.32, P<0.05. Scores were not affected by age, sex, years of education, motor skills, or comorbidities. The CPT differentiated between impaired and unimpaired individuals differently from other measures. Conclusion. While CPT appears related to other measures of cognition, test interpretation requires noting the variability between CPT scores and those measures.

  7. Human adipose-derived stem cells ameliorate repetitive behavior, social deficit and anxiety in a VPA-induced autism mouse model.

    Science.gov (United States)

    Ha, Sungji; Park, Hyunjun; Mahmood, Usman; Ra, Jeong Chan; Suh, Yoo-Hun; Chang, Keun-A

    2017-01-15

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication, and patients often display co-occurring repetitive behaviors. Although the global prevalence of ASD has increased over time, the etiology and treatments for ASD are poorly understood. Recently, some researchers have suggested that stem cells have therapeutic potential for ASD. Thus, in the present study, we investigated the therapeutic effects of human adipose-derived stem cells (hASCs), a kind of autologous mesenchymal stem cells (MSCs) isolated from adipose tissue, on valproic acid (VPA)-induced autism model mice. Human ASCs were injected into the neonatal pups (P2 or P3) intraventricularly and then we evaluated major behavior symptoms of ASD. VPA-treated mice showed increased repetitive behaviors, decreased social interactions and increased anxiety but these autistic behaviors were ameliorated through transplantation of hASCs. In addition, hASCs transplantation restored the alteration of phosphatase and tensin homolog (PTEN) expression and p-AKT/AKT ratio in the brains of VPA-induced ASD model mice. The decreased level of vascular endothelial growth factor (VEGF) and interleukin 10 (IL-10) by VPA were rescued in the brains of the hASC-injected VPA mice. With these results, we experimentally found hASCs' therapeutic effects on autistic phenotypes in a ASD model mice for the first time. This animal model system can be used to elucidate further mechanisms of therapeutic effects of hASCs in ASD. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cognitive Deficit in Heart Failure and the Benefits of Aerobic Physical Activity

    Directory of Open Access Journals (Sweden)

    Maria Luíza de Medeiros Rêgo

    Full Text Available Abstract Heart Failure is a clinical syndrome prevalent throughout the world and a major contribution to mortality of cardiac patients in Brazil. In addition, this pathology is strongly related to cerebral dysfunction, with a high prevalence of cognitive impairment. Many mechanisms may be related to cognitive loss, such as cerebral hypoperfusion, atrophy and loss of gray matter of the brain, and dysfunction of the autonomic nervous system. The literature is clear regarding the benefits of aerobic physical activity in healthy populations in the modulation of the autonomic nervous system and in brain functions. Studies have shown that in the population of patients with heart failure, exercise is associated with an improvement in cognitive function, as well as in cardiac autonomic regulation. However, little emphasis has been given to the mechanisms by which aerobic physical activity can benefit brain functioning, the autonomic nervous system and result in better cognitive performance, particularly in patients with heart failure. Therefore, the present work presents the ways in which brain areas responsible for cognition also act in the modulation of the autonomic nervous system, and emphasizes its importance for the understanding of cognitive impairment in relation to the pathophysiology of heart failure. It is also described the way in which aerobic physical activity can promote benefits when it is integrated into the therapy, associated to a better prognosis of the clinical picture of these patients.

  9. Body mass index, cognitive deficit and depressive symptoms in high cardiovascular risk patients

    Directory of Open Access Journals (Sweden)

    Amanda Lucas da Costa

    Full Text Available Abstract To evaluate the relationship of obesity, cognitive impairment and depressive symptoms in patients with high cardiovascular risk. Methods: A sample of 93 patients aged 50 years or older was selected from the Center of Dyslipidemia and High Cardiovascular Risk from Hospital de Clínicas de Porto Alegre (HCPA. Patients with stroke were excluded. For cognitive evaluation, the MMSE (Mini Mental State Examination was used. A score of 24 or less was considered as cognitive impairment, and for those who had 4 years or less of education, the cutoff point was 17. The GDS-15 (Geriatric Depression Scale was also used, with the cutoff of 6 for presence of depressive symptoms. Results: Obese patients showed lower mean MMSE scores compared to non-obese patients (p=0.0012. Additionally, for every one point increase in BMI above 30 there was a 27% increase in the chances of the patient having cognitive impairment. The obese patients presented 31% chance of having cognitive impairment compared with overweight subjects. Conclusions: Our findings corroborated the association between obesity and cognitive impairment in high cardiovascular risk patients. This association however, was not observed for depressive symptoms.

  10. Late-Life Depressive Symptoms and Lifetime History of Major Depression: Cognitive Deficits are Largely Due to Incipient Dementia rather than Depression.

    Science.gov (United States)

    Heser, Kathrin; Bleckwenn, Markus; Wiese, Birgitt; Mamone, Silke; Riedel-Heller, Steffi G; Stein, Janine; Lühmann, Dagmar; Posselt, Tina; Fuchs, Angela; Pentzek, Michael; Weyerer, Siegfried; Werle, Jochen; Weeg, Dagmar; Bickel, Horst; Brettschneider, Christian; König, Hans-Helmut; Maier, Wolfgang; Scherer, Martin; Wagner, Michael

    2016-08-01

    Late-life depression is frequently accompanied by cognitive impairments. Whether these impairments indicate a prodromal state of dementia, or are a symptomatic expression of depression per se is not well-studied. In a cohort of very old initially non-demented primary care patients (n = 2,709, mean age = 81.1 y), cognitive performance was compared between groups of participants with or without elevated depressive symptoms and with or without subsequent dementia using ANCOVA (adjusted for age, sex, and education). Logistic regression analyses were computed to predict subsequent dementia over up to six years of follow-up. The same analytical approach was performed for lifetime major depression. Participants with elevated depressive symptoms without subsequent dementia showed only small to medium cognitive deficits. In contrast, participants with depressive symptoms with subsequent dementia showed medium to very large cognitive deficits. In adjusted logistic regression models, learning and memory deficits predicted the risk for subsequent dementia in participants with depressive symptoms. Participants with a lifetime history of major depression without subsequent dementia showed no cognitive deficits. However, in adjusted logistic regression models, learning and orientation deficits predicted the risk for subsequent dementia also in participants with lifetime major depression. Marked cognitive impairments in old age depression should not be dismissed as "depressive pseudodementia", but require clinical attention as a possible sign of incipient dementia. Non-depressed elderly with a lifetime history of major depression, who remained free of dementia during follow-up, had largely normal cognitive performance.

  11. Persistent cognitive deficits after whiplash injury: a comparative study with mild traumatic brain injury patients and healthy volunteers.

    Science.gov (United States)

    Beeckmans, Kurt; Crunelle, Cleo; Van Ingelgom, Silke; Michiels, Karla; Dierckx, Eva; Vancoillie, Patrick; Hauman, Henri; Sabbe, Bernard

    2017-06-01

    In this study, we evaluated persistent cognitive deficits in whiplash injury (WI) patients and compared these to cognitive functioning in mild traumatic brain injury (MTBI) patients and healthy controls (HC). Sixty-one patients suffering from a WI were compared with 57 patients suffering from a MTBI and with 30 HC. They were examined with an extensive neuropsychological test battery assessing attention, memory, and visuospatial and executive functions. In both patient groups, participants showed persistent cognitive symptoms (more than 6 months post-injury). The two patient groups did not differ significantly with regard to measurements of attention, memory, and visuospatial and executive functions. The WI group, as compared to the HC group, was found to be significantly more deficient in speed of performance during sustained and divided attention, focused attention, alternating attention, the storage of new auditory-verbal unrelated information into memory, the long-term delayed recall of stored auditory-verbal related information from memory, abstract reasoning and accuracy of performance during planning and problem solving. No differences could be found between both groups concerning speed of information processing, visuospatial abilities and verbal fluency.

  12. The heterogeneity of attention-deficit/hyperactivity disorder symptoms and conduct problems: Cognitive inhibition, emotion regulation, emotionality, and disorganized attachment.

    Science.gov (United States)

    Forslund, Tommie; Brocki, Karin C; Bohlin, Gunilla; Granqvist, Pehr; Eninger, Lilianne

    2016-09-01

    This study examined the contributions of several important domains of functioning to attention-deficit/hyperactivity disorder (ADHD) symptoms and conduct problems. Specifically, we investigated whether cognitive inhibition, emotion regulation, emotionality, and disorganized attachment made independent and specific contributions to these externalizing behaviour problems from a multiple pathways perspective. The study included laboratory measures of cognitive inhibition and disorganized attachment in 184 typically developing children (M age = 6 years, 10 months, SD = 1.7). Parental ratings provided measures of emotion regulation, emotionality, and externalizing behaviour problems. Results revealed that cognitive inhibition, regulation of positive emotion, and positive emotionality were independently and specifically related to ADHD symptoms. Disorganized attachment and negative emotionality formed independent and specific relations to conduct problems. Our findings support the multiple pathways perspective on ADHD, with poor regulation of positive emotion and high positive emotionality making distinct contributions to ADHD symptoms. More specifically, our results support the proposal of a temperamentally based pathway to ADHD symptoms. The findings also indicate that disorganized attachment and negative emotionality constitute pathways specific to conduct problems rather than to ADHD symptoms. © 2016 The British Psychological Society.

  13. Cognitive deficits are a matter of emotional context: inflexible strategy use mediates context-specific learning impairments in OCD.

    Science.gov (United States)

    Zetsche, Ulrike; Rief, Winfried; Westermann, Stefan; Exner, Cornelia

    2015-01-01

    The present study examines the interplay between cognitive deficits and emotional context in obsessive-compulsive disorder (OCD) and social phobia (SP). Specifically, this study examines whether the inflexible use of efficient learning strategies in an emotional context underlies impairments in probabilistic classification learning (PCL) in OCD, and whether PCL impairments are specific to OCD. Twenty-three participants with OCD, 30 participants with SP and 30 healthy controls completed a neutral and an OCD-specific PCL task. OCD participants failed to adopt efficient learning strategies and showed fewer beneficial strategy switches than controls only in an OCD-specific context, but not in a neutral context. Additionally, OCD participants did not show any explicit memory impairments. Number of beneficial strategy switches in the OCD-specific task mediated the difference in PCL performance between OCD and control participants. Individuals with SP were impaired in both PCL tasks. In contrast to neuropsychological models postulating general cognitive impairments in OCD, the present findings suggest that it is the interaction between cognition and emotion that is impaired in OCD. Specifically, activated disorder-specific fears may impair the flexible adoption of efficient learning strategies and compromise otherwise unimpaired PCL. Impairments in PCL are not specific to OCD.

  14. Blind rats are not profoundly impaired in the reference memory Morris water maze and cannot be clearly discriminated from rats with cognitive deficits in the cued platform task.

    Science.gov (United States)

    Lindner, M D; Plone, M A; Schallert, T; Emerich, D F

    1997-06-01

    The Morris water maze is commonly used to test cognitive function in rodent models of neurological disorders including age-related cognitive deficits. It is often assumed that the most profoundly impaired aged rats may be blind due to retinal degeneration, and it has been reported that animals with visual sensory deficits can be identified based on their performance in a cued platform task. The results of the present study demonstrate that blind rats can perform surprisingly well in the reference memory version of the Morris water maze, and that blind rats cannot be selectively excluded based on performance in the cued platform task since atropine-treated rats also perform poorly in the cued platform task. Future studies may be able to develop screening procedures that help to eliminate subjects with non-cognitive deficits, but the present results do not support the use of the cued platform or straight swim task as screening procedures. Experimenters must be careful to consider the role that visual sensory function and other non-cognitive factors may have in performance of the spatial learning Morris water maze, and also the role that severe cognitive deficits may have in performance of the cued platform task.

  15. Motor-cognitive dual-task deficits in individuals with early-mid stage Huntington disease.

    Science.gov (United States)

    Fritz, Nora E; Hamana, Katy; Kelson, Mark; Rosser, Anne; Busse, Monica; Quinn, Lori

    2016-09-01

    Huntington disease (HD) results in a range of cognitive and motor impairments that progress throughout the disease stages; however, little research has evaluated specific dual-task abilities in this population, and the degree to which they may be related to functional ability. The purpose of this study was to a) examine simple and complex motor-cognitive dual-task performance in individuals with HD, b) determine relationships between dual-task walking ability and disease-specific measures of motor, cognitive and functional ability, and c) examine the relationship of dual-task measures to falls in individuals with HD. Thirty-two individuals with HD were evaluated for simple and complex dual-task ability using the Walking While Talking Test. Demographics and disease-specific measures of motor, cognitive and functional ability were also obtained. Individuals with HD had impairments in simple and complex dual-task ability. Simple dual-task walking was correlated to disease-specific motor scores as well as cognitive performance, but complex dual-task walking was correlated with total functional capacity, as well as a range of cognitive measures. Number of prospective falls was moderately-strongly correlated to dual-task measures. Our results suggest that individuals with HD have impairments in cognitive-motor dual-task ability that are related to disease progression and specifically functional ability. Dual-task measures appear to evaluate a unique construct in individuals with early to mid-stage HD, and may have value in improving the prediction of falls risk in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer's disease mice.

    Science.gov (United States)

    Xie, Yongli; Tan, Yibin; Zheng, Youbiao; Du, Xiubo; Liu, Qiong

    2017-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease which is clinically characterized by memory loss and cognitive decline caused by protein misfolding and aggregation. Imbalance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of AD. Selenium (Se), a vital trace element with excellent antioxidant potential, is preferentially retained in the brain in Se-limited conditions and has been reported to provide neuroprotection through resisting oxidative damage. In this paper, we studied for the first time the potential of Ebselen, a lipid-soluble selenium compound with GPx-like activity, in the treatment of cognitive dysfunction and neuropathology of triple-transgenic AD (3 × Tg-AD) mice, AD model cell, and primary culture. We demonstrated that Ebselen inhibited oxidative stress in both AD model cells and mouse brains with increasing GPx and SOD activities and meanwhile reduced p38 mitogen-activated protein kinases activities. By decreasing the expression of amyloid precursor protein and β-secretase, Ebselen reduced the levels of Aβ in AD neurons and mouse brains, especially the most toxic oligomeric form. Besides, mislocation of phosphorylated tau in neurons and phosphorylation levels of tau protein at Thr231, Ser396, and Ser404 residues were also inhibited by Ebselen, probably by its regulatory roles in glycogen synthase kinase 3β and protein phosphatase 2A activity. In addition, Ebselen mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in AD model cells and neurons. Consequently, the spatial learning and memory of 3 × Tg-AD mice were significantly improved upon Ebselen treatment. This study provides a potential novel therapeutic approach for the prevention of AD.

  17. Multiple cognitive capabilities/deficits in children with an autism spectrum disorder: 'Weak' central coherence and its relationship to theory of mind and executive control

    OpenAIRE

    Pellicano, E.; Maybery, M.; Durkin, K.; Maley, A.

    2006-01-01

    This study examined the validity of “weak” central coherence (CC) in the context of multiple cognitive capabilities/deficits in autism. Children with an autism spectrum disorder (ASD) and matched typically developing children were administered tasks tapping visuospatial coherence, false-belief understanding and aspects of executive control. Significant group differences were found in all three cognitive domains. Evidence of local processing on coherence tasks was widespread in the ASD group, ...

  18. Are There Any Connections between Language Deficits and Cognitive Slowing in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Michael Schecker

    2014-11-01

    Full Text Available Background: Speech disorders already occur in the early phases of Alzheimer's disease (AD. As a possible cause, problems of executive processes are discussed. Cognitive slowing is also repeatedly addressed. Aims: Are there any connections between cognitive slowing and speech disorders in AD? And is there a relationship between cognitive slowing and executive processes? Methods: The data of 72 healthy controls and 52 AD patients were examined with regard to their language performance and their response times in a computerized Stroop paradigm. Results: The AD patients showed significantly worse results in all language tests as well as much longer reaction times in all Stroop conditions, especially in the interference condition (Stroop 3. Speech errors and response times correlated with severity (MMSE, and the speech errors correlated with the reaction times in Stroop 3 (interference condition, which reflects the processing time of executive processes. Conclusion: The most interesting question now is: How are language processing and executive processing time (Stroop 3 related?

  19. Preadolescent girls with attention-deficit/hyperactivity disorder: I. Background characteristics, comorbidity, cognitive and social functioning, and parenting practices.

    Science.gov (United States)

    Hinshaw, Stephen P

    2002-10-01

    This study investigated a diverse sample of girls (6-12 years of age) with attention-deficit/hyperactivity disorder (ADHD), combined type (n = 93) and inattentive type (n = 47), plus age- and ethnicity-matched comparison girls (n = 88), who participated in research summer programs. Speech and language problems, grade retention, and adoption characterized the ADHD sample; documented abuse characterized the combined type. Girls with ADHD showed dysfunction in terms of externalizing and internalizing behaviors and comorbidities, cognitive and academic performance, authoritarian parenting, and peer status. The inattentive type was more socially isolated but less rejected by peers than the combined type. ADHD-related impairment was independent of age and disruptive comorbidity. Further examination of processes related to psychopathology and competencies in girls with ADHD is needed.

  20. Does Sluggish Cognitive Tempo Fit within a Bi-factor Model of Attention-Deficit/Hyperactivity Disorder?

    Science.gov (United States)

    Garner, Annie A.; Peugh, James; Becker, Stephen P.; Kingery, Kathleen M.; Tamm, Leanne; Vaughn, Aaron J.; Ciesielski, Heather; Simon, John O.; Loren, Richard E. A.; Epstein, Jeffery N.

    2014-01-01

    Objective Studies demonstrate sluggish cognitive tempo (SCT) symptoms to be distinct from inattentive and hyperactive-impulsive dimensions of Attention-Deficit/Hyperactivity Disorder (ADHD). No study has examined SCT within a bi-factor model of ADHD whereby SCT may form a specific factor distinct from inattention and hyperactivity/impulsivity while still fitting within a general ADHD factor, which was the purpose of the current study. Method 168 children were recruited from an ADHD clinic. Most (92%) met diagnostic criteria for ADHD. Parents and teachers completed measures of ADHD and SCT. Results Although SCT symptoms were strongly associated with inattention they loaded onto a factor independent of ADHD ‘g’. Results were consistent across parent and teacher ratings. Conclusions SCT is structurally distinct from inattention as well as from the general ADHD latent symptom structure. Findings support a growing body of research suggesting SCT to be distinct and separate from ADHD. PMID:25005039

  1. Social cognitive and neurocognitive deficits in inpatients with unilateral thalamic lesions — pilot study

    Directory of Open Access Journals (Sweden)

    Wilkos E

    2015-04-01

    criteria was a minimum score of 23/30 in MMSE. Results: Compared with the healthy controls, patients revealed significantly lower scores in CVLT, GML-DR, and VFT. Furthermore, compared to healthy controls, patients showed significantly delayed recognition of “happiness” in EmoDiff40 and significantly worse performance on Reading the Mind in the Eyes Test, revised version II. Neuropsychological assessment demonstrated some statistically significant deficits in learning and remembering both verbal and visual material, long-term information storing, problem solving, and executive functions such as verbal fluency. Conclusion: Patients at early stage of unilateral thalamic stroke showed both neurocognitive and social cognitive deficits. Further research is needed to increase understanding about diagnosis, early treatment, and prognosis of patients with thalamic lesions. Keywords: social cognitive deficits, neurocognitive deficits, thalamic stroke, posterior, inferolateral, paramedian

  2. [Deficits in reading acquisition in primary school: cognitive, social and behavioral factors studied in a sample of 1062 children].

    Science.gov (United States)

    Billard, C; Fluss, J; Ducot, B; Bricout, L; Richard, G; Ecalle, J; Magnan, A; Warszawski, J; Ziegler, J

    2009-06-01

    Reading impairment is the major learning disability in children. While research on illiteracy has mainly been conducted from a sociological perspective, research on dyslexia has typically been studied from a cognitive-linguistic perspective. Studies that jointly investigate sociological, behavioral and cognitive factors in predicting reading outcome are rare and limited to English-speaking populations. The goal of the present study was to screen second grade children with reading impairment in French urban elementary schools and to pin down the factors that explain the various facets of reading failure and success. A total of 1062 children from 20 different schools in the city of Paris participated in the study. Different aspects of reading were assessed individually for children with a suspected impairment in reading acquisition. Subsequently, 131 poor readers and 50 typically developing readers were matched for sex, age, and school. For these children, medical, cognitive, behavioral and individual socioeconomic data were obtained. Group differences were examined and multiple regression analyses were conducted to examine how much variance in reading was explained by the various variables. The prevalence of poor reading skills in grade 2 was highly influenced by neighborhood socioeconomic status (SES) (ranging from 3.3% in high SES to 20.5% in low SES areas). Among the SES variables, employment of the father was a significant predictor of poor reading. Among the cognitive variables, phonological awareness and rapid naming were the most significant factors, much more than verbal or nonverbal intelligence. Among the behavioral variables, attention was an important factor but not externalized symptoms. Multiple regression analyses showed that reading outcome was best predicted by phonological awareness skills and attention deficits. The majority of children with reading disability come from low SES areas. As in the English literature, the most robust predictor for

  3. The inulin-type oligosaccharides extract from morinda officinalis, a traditional Chinese herb, ameliorated behavioral deficits in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Qiu, Zhi-Kun; Liu, Chun-Hui; Gao, Zhuo-Wei; He, Jia-Li; Liu, Xu; Wei, Qing-Lan; Chen, Ji-Sheng

    2016-10-01

    Post-traumatic stress disorder (PTSD) is a severe psychiatric condition. The allopregnanolone biosynthesis has been implicated as one of the possible contributors to PTSD. Inulin-type oligosaccharides of morinda officinalis (IOMO) had been shown to be effective in the therapy of depression. However, few studies concern the anti-PTSD-like effects of IOMO. To evaluate this, the single prolonged stress (SPS) model was used in the present study. It had been shown that the behavioral deficits of SPS-treated rats were reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), which reversed the increased freezing time in contextual fear paradigm (CFP) and the decreased time and entries in open arms in the elevated plus maze (EPM) test without affecting the locomotor activity in the open field (OF) test. In addition, the decreased allopregnanolone in the prefrontal cortex, hippocampus, and amygdala was reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), respectively. In summary, the present study indicated that the IOMO exert anti-PTSD-like behaviors, which maybe associated with the brain allopregnanolone biosynthesis.

  4. Cysteine-rich whey protein isolate (Immunocal®) ameliorates deficits in the GFAP.HMOX1 mouse model of schizophrenia.

    Science.gov (United States)

    Song, Wei; Tavitian, Ayda; Cressatti, Marisa; Galindez, Carmela; Liberman, Adrienne; Schipper, Hyman M

    2017-09-01

    Schizophrenia is a neuropsychiatric disorder that features neural oxidative stress and glutathione (GSH) deficits. Oxidative stress is augmented in brain tissue of GFAP.HMOX1 transgenic mice which exhibit schizophrenia-relevant characteristics. The whey protein isolate, Immunocal® serves as a GSH precursor upon oral administration. In this study, we treated GFAP.HMOX1 transgenic mice daily with either Immunocal (33mg/ml drinking water) or equivalent concentrations of casein (control) between the ages of 5 and 6.5 months. Immunocal attenuated many of the behavioral, neurochemical and redox abnormalities observed in GFAP.HMOX1 mice. In addition to restoring GSH homeostasis in the CNS of the transgenic mice, the whey protein isolate augmented GSH reserves in the brains of wild-type animals. These results demonstrate that consumption of whey protein isolate augments GSH stores and antioxidant defenses in the healthy and diseased mammalian brain. Whey protein isolate supplementation (Immunocal) may constitute a safe and effective modality for the management of schizophrenia, an unmet clinical imperative. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a Huntington’s disease model

    KAUST Repository

    Giralt, Albert; Brito, Veronica; Chevy, Quentin; Simonnet, Clé mence; Otsu, Yo; Cifuentes-Dí az, Carmen; Pins, Benoit de; Coura, Renata; Alberch, Jordi; Giné s, Sí lvia; Poncer, Jean-Christophe; Girault, Jean-Antoine

    2017-01-01

    The structure and function of spines and excitatory synapses are under the dynamic control of multiple signalling networks. Although tyrosine phosphorylation is involved, its regulation and importance are not well understood. Here we study the role of Pyk2, a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the hippocampus. Hippocampal-related learning and CA1 long-term potentiation are severely impaired in Pyk2-deficient mice and are associated with alterations in NMDA receptors, PSD-95 and dendritic spines. In cultured hippocampal neurons, Pyk2 has autophosphorylation-dependent and -independent roles in determining PSD-95 enrichment and spines density. Pyk2 levels are decreased in the hippocampus of individuals with Huntington and in the R6/1 mouse model of the disease. Normalizing Pyk2 levels in the hippocampus of R6/1 mice rescues memory deficits, spines pathology and PSD-95 localization. Our results reveal a role for Pyk2 in spine structure and synaptic function, and suggest that its deficit contributes to Huntington’s disease cognitive impairments.

  6. Parental history of moderate to severe infantile malnutrition is associated with cognitive deficits in their adult offspring.

    Science.gov (United States)

    Waber, Deborah P; Bryce, Cyralene P; Girard, Jonathan M; Fischer, Laura K; Fitzmaurice, Garrett M; Galler, Janina R

    2018-04-01

    We compared the IQ and academic achievement of the young adult offspring of parents malnourished in infancy and those of a healthy control group in order to test the hypothesis that the offspring of previously malnourished individuals would show IQ and academic deficits that could be related to reduced parental socioeconomic status. We conducted a group comparison study based on a community sample in Barbados (Barbados Nutrition Study). Participants were adult children ≥16 years of age whose parents had been malnourished during the first year of life (n = 64; Mean age 19.3 years; 42% male) or whose parents were healthy community controls (n = 50; Mean age 19.7 years; 48% male). The primary outcome was estimated IQ (Wechsler Abbreviated Scale of Intelligence); a secondary outcome was academic achievement (Wide Range Achievement Test - Third Edition). Data were analyzed using PROC MIXED with and without adjusting for parental socioeconomic status (Hollingshead Index of Social Position). IQ was reduced in the offspring of previously malnourished parents relative to the offspring of controls (9.8 point deficit; P malnutrition on cognitive function may be transmitted to the next generation; however, this intergenerational effect does not appear to be explained by the reduced socioeconomic status or IQ of the parent generation.

  7. Uncovering a clinical portrait of sluggish cognitive tempo within an evaluation for attention-deficit/hyperactivity disorder: A case study.

    Science.gov (United States)

    Becker, Stephen P; Ciesielski, Heather A; Rood, Jennifer E; Froehlich, Tanya E; Garner, Annie A; Tamm, Leanne; Epstein, Jeffery N

    2016-01-01

    Despite the burgeoning scientific literature examining the sluggish cognitive tempo (SCT) construct, very little is known about the clinical presentation of SCT. In clinical cases where SCT is suspected, it is critical to carefully assess not only for attention-deficit/hyperactivity disorder (ADHD) but also for other comorbidities that may account for the SCT-related behaviors, especially internalizing symptoms and sleep problems. The current case study provides a clinical description of SCT in a 7-year-old girl, offering a real-life portrait of SCT while also providing an opportunity to qualitatively differentiate between SCT and ADHD, other psychopathologies (e.g. depression, anxiety), and potentially related domains of functioning (e.g. sleep, executive functioning [EF]). "Jessica" was described by herself, parents, and teacher as being much slower than her peers in completing schoolwork, despite standardized testing showing Jessica to have above average intelligence and academic achievement. Jessica's parents completed rating scales indicating high levels of SCT symptoms and daytime sleepiness, as well as mildly elevated EF deficits. More research is needed to determine how to best conceptualize, assess, and treat SCT, and Jessica's case underscores the importance of further work in this area. © The Author(s) 2014.

  8. Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a Huntington’s disease model

    KAUST Repository

    Giralt, Albert

    2017-05-30

    The structure and function of spines and excitatory synapses are under the dynamic control of multiple signalling networks. Although tyrosine phosphorylation is involved, its regulation and importance are not well understood. Here we study the role of Pyk2, a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the hippocampus. Hippocampal-related learning and CA1 long-term potentiation are severely impaired in Pyk2-deficient mice and are associated with alterations in NMDA receptors, PSD-95 and dendritic spines. In cultured hippocampal neurons, Pyk2 has autophosphorylation-dependent and -independent roles in determining PSD-95 enrichment and spines density. Pyk2 levels are decreased in the hippocampus of individuals with Huntington and in the R6/1 mouse model of the disease. Normalizing Pyk2 levels in the hippocampus of R6/1 mice rescues memory deficits, spines pathology and PSD-95 localization. Our results reveal a role for Pyk2 in spine structure and synaptic function, and suggest that its deficit contributes to Huntington’s disease cognitive impairments.

  9. Dopamine dysregulation in the prefrontal cortex relates to cognitive deficits in the sub-chronic PCP-model for schizophrenia: A preliminary investigation.

    Science.gov (United States)

    McLean, Samantha L; Harte, Michael K; Neill, Joanna C; Young, Andrew Mj

    2017-06-01

    Dopamine dysregulation in the prefrontal cortex (PFC) plays an important role in cognitive dysfunction in schizophrenia. Sub-chronic phencyclidine (scPCP) treatment produces cognitive impairments in rodents and is a thoroughly validated animal model for cognitive deficits in schizophrenia. The aim of our study was to investigate the role of PFC dopamine in scPCP-induced deficits in a cognitive task of relevance to the disorder, novel object recognition (NOR). Twelve adult female Lister Hooded rats received scPCP (2 mg/kg) or vehicle via the intraperitoneal route twice daily for 7 days, followed by 7 days washout. In vivo microdialysis was carried out prior to, during and following the NOR task. Vehicle rats successfully discriminated between novel and familiar objects and this was accompanied by a significant increase in dopamine in the PFC during the retention trial ( p dopamine increase was observed. These data demonstrate an increase in dopamine during the retention trial in vehicle rats that was not observed in scPCP-treated rats accompanied by cognitive disruption in the scPCP group. This novel finding suggests a mechanism by which cognitive deficits are produced in this animal model and support its use for investigating disorders in which PFC dopamine is central to the pathophysiology.

  10. "I Know that You Know that I Know": Neural Substrates Associated with Social Cognition Deficits in DM1 Patients.

    Directory of Open Access Journals (Sweden)

    Laura Serra

    Full Text Available Myotonic dystrophy type-1 (DM1 is a genetic multi-systemic disorder involving several organs including the brain. Despite the heterogeneity of this condition, some patients with non-congenital DM1 can present with minimal cognitive impairment on formal testing but with severe difficulties in daily-living activities including social interactions. One explanation for this paradoxical mismatch can be found in patients' dysfunctional social cognition, which can be assessed in the framework of the Theory of Mind (ToM. We hypothesize here that specific disease driven abnormalities in DM1 brains may result in ToM impairments. We recruited 20 DM1 patients who underwent the "Reading the Mind in the Eyes" and the ToM-story tests. These patients, together with 18 healthy controls, also underwent resting-state functional MRI. A composite Theory of Mind score was computed for all recruited patients and correlated with their brain functional connectivity. This analysis provided the patients' "Theory of Mind-network", which was compared, for its topological properties, with that of healthy controls. We found that DM1 patients showed deficits in both tests assessing ToM. These deficits were associated with specific patterns of abnormal connectivity between the left inferior temporal and fronto-cerebellar nodes in DM1 brains. The results confirm the previous suggestions of ToM dysfunctions in patients with DM1 and support the hypothesis that difficulties in social interactions and personal relationships are a direct consequence of brain abnormalities, and not a reaction symptom. This is relevant not only for a better pathophysiological comprehension of DM1, but also for non-pharmacological interventions to improve clinical aspects and impact on patients' success in life.

  11. Baduk (the Game of Go) Improved Cognitive Function and Brain Activity in Children with Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Kim, Se Hee; Han, Doug Hyun; Lee, Young Sik; Kim, Bung-Nyun; Cheong, Jae Hoon; Han, Sang Ho

    2014-04-01

    Attention deficit hyperactivity disorder (ADHD) symptoms are associated with the deficit in executive functions. Playing Go involves many aspect of cognitive function and we hypothesized that it would be effective for children with ADHD. Seventeen drug naïve children with ADHD and seventeen age and sex matched comparison subjects were participated. Participants played Go under the instructor's education for 2 hours/day, 5 days/week. Before and at the end of Go period, clinical symptoms, cognitive functions, and brain EEG were assessed with Dupaul's ADHD scale (ARS), Child depression inventory (CDI), digit span, the Children's Color Trails Test (CCTT), and 8-channel QEEG system (LXE3208, Laxtha Inc., Daejeon, Korea). There were significant improvements of ARS total score (z=2.93, p<0.01) and inattentive score (z=2.94, p<0.01) in children with ADHD. However, there was no significant change in hyperactivity score (z=1.33, p=0.18). There were improvement of digit total score (z=2.60, p<0.01; z=2.06, p=0.03), digit forward score (z=2.21, p=0.02; z=2.02, p=0.04) in both ADHD and healthy comparisons. In addition, ADHD children showed decreased time of CCTT-2 (z=2.21, p=0.03). The change of theta/beta right of prefrontal cortex during 16 weeks was greater in children with ADHD than in healthy comparisons (F=4.45, p=0.04). The change of right theta/beta in prefrontal cortex has a positive correlation with ARS-inattention score in children with ADHD (r=0.44, p=0.03). We suggest that playing Go would be effective for children with ADHD by activating hypoarousal prefrontal function and enhancing executive function.

  12. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-11-01

    Full Text Available Degeneration of basal forebrain cholinergic neurons (BFCNs is associated with cognitive impairments of Alzheimer’s disease (AD, implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD.

  13. Cognitive impairment as a central cholinergic deficit in patients with Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Antonia Kaltsatou

    2015-06-01

    Conclusions: VCmax and ACmax are governed mainly by the action of the Parasympathetic Nervous System, through acetylcholine. The results of this study demonstrate that the CNS may be affected in MG and support the hypothesis that MG has central cholinergic effects manifested by cognitive dysfunction.

  14. Neural Correlates for Intrinsic Motivational Deficits of Schizophrenia; Implications for Therapeutics of Cognitive Impairment

    Science.gov (United States)

    Takeda, Kazuyoshi; Sumiyoshi, Tomiki; Matsumoto, Madoka; Murayama, Kou; Ikezawa, Satoru; Matsumoto, Kenji; Nakagome, Kazuyuki

    2018-01-01

    The ultimate goal of the treatment of schizophrenia is recovery, a notion related to improvement of cognitive and social functioning. Cognitive remediation therapies (CRT), one of the most effective cognition enhancing methods, have been shown to moderately improve social functioning. For this purpose, intrinsic motivation, related to internal values such as interest and enjoyment, has been shown to play a key role. Although the impairment of intrinsic motivation is one of the characteristics of schizophrenia, its neural mechanisms remain unclear. This is related to the lack of feasible measures of intrinsic motivation, and its response to treatment. According to the self-determination theory (SDT), not only intrinsic motivation, but extrinsic motivation has been reported to enhance learning and memory in healthy subjects to some extent. This finding suggests the contribution of different types of motivation to potentiate the ability of the CRT to treat cognitive impairment of schizophrenia. In this paper, we provide a review of psychological characteristics, assessment methods, and neural correlates of intrinsic motivation in healthy subjects and patients with schizophrenia. Particularly, we focus on neuroimaging studies of intrinsic motivation, including our own. These considerations are relevant to enhancement of functional outcomes of schizophrenia. PMID:29922185

  15. Cognitive deficits in unipolar depression during remission-Auditory Verbal Learning test findings

    Czech Academy of Sciences Publication Activity Database

    Preiss, M.; Kučerová, H.; Štěpánková, H.; Sos, P.; Lukavský, Jiří; Kawaciuková, R.

    2007-01-01

    Roč. 11, Suppl. 3 (2007), s. 79-83 ISSN 1211-7579 Institutional research plan: CEZ:AV0Z70250504 Keywords : major depressive episode * remission * cognitive function Subject RIV: AN - Psychology http://www.tigis.cz/PSYCHIAT/Psych_suppl_3_07/21Preiss_suppl_3_07.pdf)

  16. Neural Correlates for Intrinsic Motivational Deficits of Schizophrenia; Implications for Therapeutics of Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2018-06-01

    Full Text Available The ultimate goal of the treatment of schizophrenia is recovery, a notion related to improvement of cognitive and social functioning. Cognitive remediation therapies (CRT, one of the most effective cognition enhancing methods, have been shown to moderately improve social functioning. For this purpose, intrinsic motivation, related to internal values such as interest and enjoyment, has been shown to play a key role. Although the impairment of intrinsic motivation is one of the characteristics of schizophrenia, its neural mechanisms remain unclear. This is related to the lack of feasible measures of intrinsic motivation, and its response to treatment. According to the self-determination theory (SDT, not only intrinsic motivation, but extrinsic motivation has been reported to enhance learning and memory in healthy subjects to some extent. This finding suggests the contribution of different types of motivation to potentiate the ability of the CRT to treat cognitive impairment of schizophrenia. In this paper, we provide a review of psychological characteristics, assessment methods, and neural correlates of intrinsic motivation in healthy subjects and patients with schizophrenia. Particularly, we focus on neuroimaging studies of intrinsic motivation, including our own. These considerations are relevant to enhancement of functional outcomes of schizophrenia.

  17. Catechol-O-methyltransferase genotype modulates cancer treatment-related cognitive deficits in breast cancer survivors.

    Science.gov (United States)

    Small, Brent J; Rawson, Kerri Sharp; Walsh, Erin; Jim, Heather S L; Hughes, Tiffany F; Iser, Lindsay; Andrykowski, Michael A; Jacobsen, Paul B

    2011-04-01

    Recent attention has focused on the negative effects of chemotherapy on the cognitive performance of cancer survivors. The current study examined modification of this risk by catechol-O-methyltransferase (COMT) genotype based on evidence in adult populations that the presence of a Val allele is associated with poorer cognitive performance. Breast cancer survivors treated with radiotherapy (n = 58), and/or chemotherapy (n = 72), and 204 healthy controls (HCs) completed tests of cognitive performance and provided saliva for COMT genotyping. COMT genotype was divided into Val carriers (Val+; Val/Val, Val/Met) or COMT-Met homozygote carriers (Met; Met/Met). COMT-Val+ carriers performed more poorly on tests of attention, verbal fluency, and motor speed relative to COMT-Met homozygotes. Moreover, COMT-Val+ carriers treated with chemotherapy performed more poorly on tests of attention relative to HC group members who were also Val+ carriers. The results suggest that persons treated with chemotherapy for breast cancer who also possess the COMT-Val gene are susceptible to negative effects on their cognitive health. This research is important because it strives to understand the factors that predispose some cancer survivors to more negative quality-of-life outcomes. Copyright © 2010 American Cancer Society.

  18. Prefrontal Cortex Cognitive Deficits in Children Treated Early and Continuously for PKU.

    Science.gov (United States)

    Diamond, Adele; Prevor, Meredith B.; Druin, Donald P.; Callender, Glenda

    1997-01-01

    Hypothesized that elevated ratio of phenylalanine to tyrosine in blood of children with phenylketonuria uniquely affects cognitive functions dependent on prefrontal cortex because of the special sensitivity of prefrontally projecting dopamine neurons to small decreases in tyrosine. Found that children whose phenylalanine levels were three to five…

  19. Cognitive mediational deficits and the role of coping styles in pedophile and ephebophile Roman Catholic clergy.

    Science.gov (United States)

    Ryan, Gregory P; Baerwald, Jeffrey P; McGlone, Gerard

    2008-01-01

    This study was designed to examine hypothesized differences between sex offending and nonoffending Roman Catholic clergy on cognitive mediation abilities as measured by the Rorschach Inkblot Test (H. Rorschach, 1921/1942). This study compared 78 priest pedophiles and 77 priest ephebophiles with 80 nonoffending priest controls on the Inkblot test using J. E. Exner's (2003) Comprehensive System. The three groups were compared on seven variables that constitute Exner's Cognitive Mediation cluster. Additionally, the groups' coping styles were compared to examine the interaction of coping style and cognitive mediational abilities. We found interactions between coping style and offending status across most of the cognitive variables indicating impairment in the mild to pathological ranges. Moreover, significantly higher unusual thinking styles (Xu%) and significantly lower conventional thinking styles (X+%) in offenders compared to nonoffenders. Those with an Extratensive style (n=31) showed significantly higher distorted thinking when compared to the Introversive (n=81), Ambitent (n=73), and Avoidant (n=50) coping styles. This study suggests that offenders display significantly higher distorted thinking styles than do nonoffenders. Possible reasons for these discrepancies and the role of coping styles in abusive behaviors were discussed. (c) 2007 Wiley Periodicals, Inc.

  20. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    Science.gov (United States)

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  1. Cognitive deficit in patients with paranoid schizophrenia: Its clinical and laboratory correlates.

    Science.gov (United States)

    Dorofeikova, Mariia; Neznanov, Nikolay; Petrova, Nataliia

    2018-04-01

    The aim of this study was to search for correlates of cognitive impairment in patients with paranoid schizophrenia among clinical, demographic, anamnestic and biochemical markers (NSE, S100B protein, BDNF, hs-CRP). Patients with paranoid schizophrenia (n=125) were examined using the Brief Assessment of Cognitive Function in Schizophrenia, the Rey-Osterrieth Complex Figure task, and a number of clinical scales including the Positive and Negative Syndrome Scale. The majority of patients demonstrated cognitive impairment. The type of impairment was highly heterogeneous and individual. Relationships were found between the degree of executive functioning and family history of mental illness; working memory and age of onset of schizophrenia; and visual memory and psychopathological symptomatology. Negative and affective symptoms were not significantly associated with cognitive functioning. Treatment with first generation antipsychotics was associated with a more frequent impairment of motor skills, and concomitant anticholinergic drugs, with reduced accuracy. Use of second-generation antipsychotics only was associated with better accuracy, working memory and speech fluency. Among the patients, 21.4% had signs of a systemic inflammatory response, indicating a possible role of inflammatory response in the development of schizophrenia. CRP, S100B and NSE levels reflected features of the course of illness and therapeutic response. Patients with lower concentrations of BDNF were characterized by lower processing speeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cognitive Deficits Associated with Acquired Amusia after Stroke: A Neuropsychological Follow-Up Study

    Science.gov (United States)

    Sarkamo, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M.; Laine, Matti; Hietanen, Marja

    2009-01-01

    Recent evidence on amusia suggests that our ability to perceive music might be based on the same neural resources that underlie other higher cognitive functions, such as speech perception and spatial processing. We studied the neural correlates of acquired amusia by performing extensive neuropsychological assessments on 53 stroke patients with a…

  3. Cholesteryl Ester Transfer Protein Intimately Involved in Dyslipidemia-Related Susceptibility to Cognitive Deficits in Type 2 Diabetic Patients.

    Science.gov (United States)

    Sun, Jie; Cai, Rongrong; Huang, Rong; Wang, Pin; Tian, Sai; Sun, Haixia; Xia, Wenqing; Wang, Shaohua

    2016-08-01

    Cholesteryl ester transfer protein (CETP) is involved in diabetic dyslipidemia. We aim to test the hypothesis that CETP might be of importance in mediating dyslipidemia-related susceptibility to cognitive deficits in diabetic patients. We recruited 190 type 2 diabetic patients and divided them into two groups according to the Montreal Cognitive Assessment (MoCA) score. The association between CETP and cognitive decline was analyzed with logistic regression and stratification. There were 110 diabetic patients with mild cognition impairment (MCI) and 80 healthy cognition subjects as controls. Dyslipidemia is more common among diabetic patients with MCI; they had a significant increase of serum CETP concentrations, which was negatively correlated with MoCA (r = -0.638; p dyslipidemia-related susceptibility to cognitive decline, especially memory function in type 2 diabetic patients.

  4. The NeuroIMAGE study : a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives

    NARCIS (Netherlands)

    von Rhein, Daniel; Mennes, Maarten; van Ewijk, Hanneke; Groenman, Annabeth P.; Zwiers, Marcel P.; Oosterlaan, Jaap; Heslenfeld, Dirk; Franke, Barbara; Hoekstra, Pieter J.; Faraone, Stephen V.; Hartman, Catharina; Buitelaar, Jan

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of

  5. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives.

    NARCIS (Netherlands)

    von Rhein, D; Mennes, M.; van Ewijk, H.; Groenman, A.P.; Zwiers, M.P.; Oosterlaan, J.; Heslenfeld, D.J.; Franke, B.; Hoekstra, P.J.; Faraone, S.V.; Hartman, C.A.; Buitelaar, J.K.

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of

  6. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives

    NARCIS (Netherlands)

    Rhein, D.T. von; Mennes, M.; Ewijk, H. van; Groenman, A.P.; Zwiers, M.P.; Oosterlaan, J.; Heslenfeld, D.; Franke, B.; Hoekstra, P.J.; Faraone, S.V; Hartman, C.; Buitelaar, J.K.

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of

  7. Clinic Attenders with Autism or Attention-Deficit/Hyperactivity Disorder: Cognitive Profile at School Age and Its Relationship to Preschool Indicators of Language Delay

    Science.gov (United States)

    Hagberg, Bibbi S.; Miniscalco, Carmela; Gillberg, Christopher

    2010-01-01

    Many studies have shown that children with autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) have had early indicators of language delay. The aim of the present study was to examine the cognitive profile of school age children referred to a specialist clinic for ASD, ADHD, or both, and relate this profile…

  8. Effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type

    NARCIS (Netherlands)

    Jonsdottir, S; Bouma, A; Sergeant, JA; Scherder, EJA; Bouma, J.M.

    2004-01-01

    Objective. The aim of this study was to examine the effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type (ADHD-CT). Methods. Twenty-two children diagnosed with

  9. Effects of transcutaneous electrical nerve stimulation on cognition, behavior, and rest-activity rhythm in children with Attention Deficit Hyperactivity Disorder, combined type

    NARCIS (Netherlands)

    Jonsdottir, S.; Bouma, A.; Sergeant, J.A.; Scherder, E.J.A.

    2004-01-01

    Objective. The aim of this study was to examine the effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type (ADHD-CT). Methods. Twenty-two children diagnosed with

  10. Randomized Controlled Trial of Osmotic-Release Methylphenidate with Cognitive-Behavioral Therapy in Adolescents with Attention-Deficit/Hyperactivity Disorder and Substance Use Disorders

    Science.gov (United States)

    Riggs, Paula D.; Winhusen, Theresa; Davies, Robert D.; Leimberger, Jeffrey D.; Mikulich-Gilbertson, Susan; Klein, Constance; Macdonald, Marilyn; Lohman, Michelle; Bailey, Genie L.; Haynes, Louise; Jaffee, William B.; Haminton, Nancy; Hodgkins, Candace; Whitmore, Elizabeth; Trello-Rishel, Kathlene; Tamm, Leanne; Acosta, Michelle C.; Royer-Malvestuto, Charlotte; Subramaniam, Geetha; Fishman, Marc; Holmes, Beverly W.; Kaye, Mary Elyse; Vargo, Mark A.; Woody, George E.; Nunes, Edward V.; Liu, David

    2011-01-01

    Objective: To evaluate the efficacy and safety of osmotic-release methylphenidate (OROS-MPH) compared with placebo for attention-deficit/hyperactivity disorder (ADHD), and the impact on substance treatment outcomes in adolescents concurrently receiving cognitive-behavioral therapy (CBT) for substance use disorders (SUD). Method: This was a…

  11. Cognitive and Technical Skill Assessment in Surgical Education: a Changing Horizon.

    Science.gov (United States)

    Vergis, Ashley; Hardy, Krista

    2017-04-01

    Assessment is an integral component of training and credentialing surgeons for practice. Traditional methods of cognitive and technical appraisal are well established but have clear shortcomings. This review outlines the components of the surgical care assessment model, identifies the deficits of current evaluation techniques, and discusses novel and emerging technologies that attempt to ameliorate this educational void.

  12. Characterizing adult attention-deficit/hyperactivity-disorder and comorbid borderline personality disorder: ADHD symptoms, psychopathology, cognitive functioning and psychosocial factors.

    Science.gov (United States)

    O'Malley, G K; McHugh, L; Mac Giollabhui, N; Bramham, J

    2016-01-01

    To characterize adults with comorbid attention-deficit/hyperactivity-disorder (ADHD) and borderline personality disorder (BPD) with regard to ADHD symptoms, psychopathology, cognitive functioning and psychosocial factors. A between-group design compared a group of individuals diagnosed with ADHD (n=40) with a group diagnosed with BPD and who also met the criteria for ADHD (ADHD+BPD) (n=20). Significant differences were observed for both childhood and current impulsivity symptoms, whereby ADHD+BPD exhibited increased impulsivity; no differences on self-report and cognitive measures of impulsivity were reported. The ADHD+BPD group scored significantly higher on measures of depression, anxiety and numerous other axis I and II conditions. The ADHD+BPD group scored significantly lower on most measures of intellectual functioning and attention, however largely not on those relating to response inhibition. Furthermore, group differences were observed for psychosocial factors, including education, substance use and criminal record. Comorbid ADHD and BPD is characterized by more symptoms of impulsivity, additional psychopathology, comparatively lower intellectual and attentional functioning and increased psychosocial difficulties. Copyright © 2015. Published by Elsevier Masson SAS.

  13. Ablating ErbB4 in PV neurons attenuates synaptic and cognitive deficits in an animal model of Alzheimer's disease.

    Science.gov (United States)

    Zhang, Heng; Zhang, Ling; Zhou, Dongming; He, Xiao; Wang, Dongpi; Pan, Hongyu; Zhang, Xiaoqin; Mei, Yufei; Qian, Qi; Zheng, Tingting; Jones, Frank E; Sun, Binggui

    2017-10-01

    Accumulation of amyloid β (Aβ) induces neuronal, synaptic, and cognitive deficits in patients and animal models of Alzheimer's disease (AD). The underlying mechanisms, however, remain to be fully elucidated. In the present study, we found that Aβ interacted with ErbB4, a member of the receptor tyrosine kinase family and mainly expressed in GABAergic interneurons. Deleting ErbB4 in parvalbumin-expressing neurons (PV neurons) significantly attenuated oligomeric Aβ-induced suppression of long term potentiation (LTP). Furthermore, specific ablation of ErbB4 in PV neurons via Cre/loxP system greatly improved spatial memory and synaptic plasticity in the hippocampus of hAPP-J20 mice. The deposition of Aβ detected by 3D6 and Thioflavin S staining and the proteolytic processing of hAPP analyzed by western blotting were not affected in the hippocampus of hAPP-J20 mice by deleting ErbB4 in PV neurons. Our data suggested that ErbB4 in PV neurons mediated Aβ-induced synaptic and cognitive dysfunctions without affecting Aβ levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Toxoplasmosis infection and cognitive deficit after electroconvulsive treatment (ECT), is there a connection?

    OpenAIRE

    Berg, John Erik

    2012-01-01

    Electroconvulsive treatment (ECT) has developed over 70 years to a modern, effective way of lifting depressive moods. Memory loss and visual acuity after electroconvulsive treatment is the only remaining relevant criticism of the treatment modality when considering the overall rate of remission from this treatment compared to all other treatment modalities. A depressive state impedes memory, and memory improves on several qualities of cognition after treatment. However, the comparison of a pe...

  15. Cognitive and behavioural deficits associated with the orbitomedial prefrontal cortex in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Meier, Sandra L; Charleston, Alison J; Tippett, Lynette J

    2010-11-01

    Amyotrophic lateral sclerosis, a progressive disease affecting motor neurons, may variably affect cognition and behaviour. We tested the hypothesis that functions associated with orbitomedial prefrontal cortex are affected by evaluating the behavioural and cognitive performance of 18 participants with amyotrophic lateral sclerosis without dementia and 18 healthy, matched controls. We measured Theory of Mind (Faux Pas Task), emotional prosody recognition (Aprosodia Battery), reversal of behaviour in response to changes in reward (Probabilistic Reversal Learning Task), decision making without risk (Holiday Apartment Task) and aberrant behaviour (Neuropsychiatric Inventory). We also assessed dorsolateral prefrontal function, using verbal and written fluency and planning (One-touch Stockings of Cambridge), to determine whether impairments in tasks sensitive to these two prefrontal regions co-occur. The patient group was significantly impaired at identifying social faux pas, recognizing emotions and decision-making, indicating mild, but consistent impairment on most measures sensitive to orbitomedial prefrontal cortex. Significant levels of aberrant behaviour were present in 50% of patients. Patients were also impaired on verbal fluency and planning. Individual subject analyses involved computing classical dissociations between tasks sensitive to different prefrontal regions. These revealed heterogeneous patterns of impaired and spared cognitive abilities: 33% of participants had classical dissociations involving orbitomedial prefrontal tasks, 17% had classical dissociations involving dorsolateral prefrontal tasks, 22% had classical dissociations between tasks of both regions, and 28% had no classical dissociations. These data indicate subtle changes in behaviour, emotional processing, decision-making and altered social awareness, associated with orbitomedial prefrontal cortex, may be present in a significant proportion of individuals with amyotrophic lateral sclerosis

  16. The role of abnormalities in the corpus callosum in social cognition deficits after Traumatic Brain Injury.

    Science.gov (United States)

    McDonald, Skye; Rushby, Jacqueline A; Dalton, Katie I; Allen, Samantha K; Parks, Nicklas

    2018-08-01

    The corpus callosum (CC) is vulnerable to severe traumatic brain injury (TBI). Social cognition requires integration of non-verbal and verbal information in order to understand social behaviour and may be compromised if the CC is damaged. 17 adults with severe, chronic TBI and 17 control participants underwent structural MRI and Diffusion Tensor Imaging. A region of interest analysis examined fractional anisotropy (FA) and mean diffusivity (MD) across regions of the CC. Performance on The Awareness of Social Inference Test (TASIT): part 1 (emotion recognition) and parts 2 and 3 (social inference), was examined in relation to FA and MD. Across participants, higher genu FA values were related to higher TASIT part 3 scores. Increased splenium FA was associated with better performance for TASIT parts 1-3. There was no association between DTI values and TASIT in the controls alone. In the TBI group, FA of the genu and splenium was correlated with TASIT part 3. The pattern of performance was similar when controlling for non-social cognitive ability. In conclusion, social information is complex and multi-modal requiring inter-hemispheric connection. People with TBI, regardless of focal grey matter injury, may lose social cognitive ability due to trauma related changes to the corpus callosum.

  17. Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an alzheimer's disease model mouse

    Directory of Open Access Journals (Sweden)

    Strittmatter Stephen M

    2010-10-01

    Full Text Available Abstract Background Alzheimer's Disease (AD is the most common of the conformational neurodegenerative disorders characterized by the conversion of a normal biological protein into a β-sheet-rich pathological isoform. In AD the normal soluble Aβ (sAβ forms oligomers and fibrils which assemble into neuritic plaques. The most toxic form of Aβ is thought to be oligomeric. A recent study reveals the cellular prion protein, PrPC, to be a receptor for Aβ oligomers. Aβ oligomers suppress LTP signal in murine hippocampal slices but activity remains when pretreated with the PrP monoclonal anti-PrP antibody, 6D11. We hypothesized that targeting of PrPC to prevent Aβ oligomer-related cognitive deficits is a potentially novel therapeutic approach. APP/PS1 transgenic mice aged 8 months were intraperitoneally (i.p. injected with 1 mg 6D11 for 5 days/week for 2 weeks. Two wild-type control groups were given either the same 6D11 injections or vehicle solution. Additional groups of APP/PS1 transgenic mice were given either i.p. injections of vehicle solution or the same dose of mouse IgG over the same period. The mice were then subjected to cognitive behavioral testing using a radial arm maze, over a period of 10 days. At the conclusion of behavioral testing, animals were sacrificed and brain tissue was analyzed biochemically or immunohistochemically for the levels of amyloid plaques, PrPC, synaptophysin, Aβ40/42 and Aβ oligomers. Results Behavioral testing showed a marked decrease in errors in 6D11 treated APP/PS1 Tg mice compared with the non-6D11 treated Tg groups (p C or Aβ oligomer levels. 6D11 treated APP/PS1 Tg mice had significantly greater synaptophysin immunoreactivity in the dentate gyrus molecular layer of the hippocampus compared to vehicle treated APP/PS1 Tg mice (p Conclusions Even short term treatment with monoclonal antibodies such as 6D11 or other compounds which block the binding of Aβ oligomers to PrPC can be used to treat

  18. [Immune dysfunction and cognitive deficit in stress and physiological aging. Part II: New approaches to cognitive disorder prevention and treatment ].

    Science.gov (United States)

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    Long-term stress as well as physiological aging result in similar immunological and hormonal disturbances including hypothalamic-pituitary-adrenal) axis depletion, aberrant immune response (regulatory T-cells, Tregs, and T(h17)-lymphocyte accumulation) and decreased dehydroepian-drosterone synthesis both in the brain and in the adrenal glands. Since the main mechanisms of inflammation control, "prompt" (stress hormones) and "delayed" (Tregs), are broken, serum cytokine levels increase and become sufficient for blood-brain-barrier disruption. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Structural and functional alterations of blood-brain-barrier as well as stress- (or age-) induced neuroinflammation promote influx of bone marrow derived dendritic cells and lymphocyte effectors into the brain parenchyma. Thereafter, mass intrusion ofpro-inflammatory mediators and immune cells having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets: 1) reduction of excessive Treg accumulation; 2) supporting hypothalamic-pituitary-adrenal axis and inflammatory reaction attenuation; 3) recovery of dehydroepiandrosterone level; 4) improvement of blood-brain-barrier function.

  19. Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals.

    Science.gov (United States)

    Singh, Tanveer; Bagga, Neetu; Kaur, Anureet; Kaur, Navjot; Gawande, Dinesh Yugraj; Goel, Rajesh Kumar

    2017-08-01

    Epilepsy is fourth most common neurological disorders associated with depression and cognitive deficits. As per present scenario, none of the antiseizure drugs have been reported successful to have ameliorative effect on epilepsy associated depression and cognitive deficits. Thus, the study was envisioned to assess an ameliorative potential of agmatine on epilepsy and its efficacy and safety for management of associated depression and cognitive deficits. The animals were made epileptic employing pentylenetetrazole (35mg/kg i.p. every 48±2h) kindling model of epilepsy and subsequently were treated with vehicle, valproic acid (300mg/kg/day i.p.) and agmatine (2.5, 5, and 10mg/kg)/day/i.p. for 15days. Except naïve, all the groups were challenged with same pentylenetetrazole dose as employed during kindling on days 5, 10, and 15 to evaluate seizure severity. Two hours after seizure severity test, tail suspension test and passive shock avoidance paradigm was employed to evaluate depression and cognitive behavior respectively. Results suggested that epileptic animals were significantly associated with depression and cognitive impairment. Chronic valproate treatment significantly reduced seizure severity, but was found unable to mitigate depression and cognitive deficits. However, agmatine treatment dose dependently ameliorated seizure severity as well as associated depression and cognitive deficits. On 15th day, animals were euthanized and pertinent neurochemical estimations were carried out in cortical and hippocampal areas of the mice brain. Thus, study concluded that agmatine ameliorated seizure severity, depression and cognitive impairment in epileptic animals, possibly via restoring glutamate-GABA neurotransmission and serotonin synthesis with decreased nitrosative stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Measuring specific, rather than generalized, cognitive deficits and maximizing between-group effect size in studies of cognition and cognitive change.

    Science.gov (United States)

    Silverstein, Steven M

    2008-07-01

    While cognitive impairment in schizophrenia is easy to demonstrate, it has been much more difficult to measure a specific cognitive process unconfounded by the influence of other cognitive processes and noncognitive factors (eg, sedation, low motivation) that affect test scores. With the recent interest in the identification of neurophysiology-linked cognitive probes for clinical trials, the issue of isolating specific cognitive processes has taken on increased importance. Recent advances in research design and psychometric theory regarding cognition research in schizophrenia demonstrate the importance of (1) maximizing between-group differences via reduction of measurement error during both test development and subsequent research and (2) the development and use of process-specific tasks in which theory-driven performance indices are derived across multiple conditions. Use of these 2 strategies can significantly advance both our understanding of schizophrenia and measurement sensitivity for clinical trials. Novel data-analytic strategies for analyzing change across multiple conditions and/or multiple time points also allow for increased reliability and greater measurement sensitivity than traditional strategies. Following discussion of these issues, trade-offs inherent to attempts to address psychometric issues in schizophrenia research are reviewed. Finally, additional considerations for maximizing sensitivity and real-world significance in clinical trials are discussed.

  1. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation

    Directory of Open Access Journals (Sweden)

    Belarbi Karim

    2012-01-01

    Full Text Available Abstract Background Chronic neuroinflammation is a hallmark of several neurological disorders associated with cognitive loss. Activated microglia and secreted factors such as tumor necrosis factor (TNF-α are key mediators of neuroinflammation and may contribute to neuronal dysfunction. Our study was aimed to evaluate the therapeutic potential of a novel analog of thalidomide, 3,6'-dithiothalidomide (DT, an agent with anti-TNF-α activity, in a model of chronic neuroinflammation. Methods Lipopolysaccharide or artificial cerebrospinal fluid was infused into the fourth ventricle of three-month-old rats for 28 days. Starting on day 29, animals received daily intraperitoneal injections of DT (56 mg/kg/day or vehicle for 14 days. Thereafter, cognitive function was assessed by novel object recognition, novel place recognition and Morris water maze, and animals were euthanized 25 min following water maze probe test evaluation. Results Chronic LPS-infusion was characterized by increased gene expression of the proinflammatory cytokines TNF-α and IL-1β in the hippocampus. Treatment with DT normalized TNF-α levels back to control levels but not IL-1β. Treatment with DT attenuated the expression of TLR2, TLR4, IRAK1 and Hmgb1, all genes involved in the TLR-mediated signaling pathway associated with classical microglia activation. However DT did not impact the numbers of MHC Class II immunoreactive cells. Chronic neuroinflammation impaired novel place recognition, spatial learning and memory function; but it did not impact novel object recognition. Importantly, treatment with DT restored cognitive function in LPS-infused animals and normalized the fraction of hippocampal neurons expressing the plasticity-related immediate-early gene Arc. Conclusion Our data demonstrate that the TNF-α synthesis inhibitor DT can significantly reverse hippocampus-dependent cognitive deficits induced by chronic neuroinflammation. These results suggest that TNF-α is a

  2. Cognitive Function of Children and Adolescents with Attention Deficit Hyperactivity Disorder and Learning Difficulties: A Developmental Perspective

    Science.gov (United States)

    Huang, Fang; Sun, Li; Qian, Ying; Liu, Lu; Ma, Quan-Gang; Yang, Li; Cheng, Jia; Cao, Qing-Jiu; Su, Yi; Gao, Qian; Wu, Zhao-Min; Li, Hai-Mei; Qian, Qiu-Jin; Wang, Yu-Feng

    2016-01-01

    Background: The cognitive function of children with either attention deficit hyperactivity disorder (ADHD) or learning disabilities (LDs) is known to be impaired. However, little is known about the cognitive function of children with comorbid ADHD and LD. The present study aimed to explore the cognitive function of children and adolescents with ADHD and learning difficulties in comparison with children with ADHD and healthy controls in different age groups in a large Chinese sample. Methods: Totally, 1043 participants with ADHD and learning difficulties (the ADHD + learning difficulties group), 870 with pure ADHD (the pure ADHD group), and 496 healthy controls were recruited. To investigate the difference in cognitive impairment using a developmental approach, all participants were divided into three age groups (6–8, 9–11, and 12–14 years old). Measurements were the Chinese-Wechsler Intelligence Scale for Children, the Stroop Color-Word Test, the Trail-Making Test, and the Behavior Rating Inventory of Executive Function-Parents (BRIEF). Multivariate analysis of variance was used. Results: The results showed that after controlling for the effect of ADHD symptoms, the ADHD + learning difficulties group was still significantly worse than the pure ADHD group, which was, in turn, worse than the control group on full intelligence quotient (98.66 ± 13.87 vs. 105.17 ± 14.36 vs. 112.93 ± 13.87, P ADHD symptoms, intelligence quotient, age, and gender. As for the age groups, the differences among groups became nonsignificant in the 12–14 years old group for inhibition (meaning interference of the Stroop Color-Word Test, 18.00 [13.00, 25.00] s vs. 17.00 [15.00, 26.00] s vs. 17.00 [10.50, 20.00] s, P = 0.704) and shift function (shifting time of the Trail-Making Test, 62.00 [43.00, 97.00] s vs. 53.00 [38.00, 81.00] s vs. 101.00 [88.00, 114.00] s, P = 0.778). Conclusions: Children and adolescents with ADHD and learning difficulties have more severe cognitive

  3. Sweet Dream Liquid Chinese Medicine Ameliorates Learning and Memory Deficit in a Rat Model of Paradoxical Sleep Deprivation through the ERK/CREB Signaling Pathway.

    Science.gov (United States)

    Su, Xinyun; Wang, Chunhua; Wang, Xiuhua; Han, Fang; Lv, Changjun; Zhang, Xiuli

    2016-05-01

    Sweet dream oral liquid (SDOL), a traditional Chinese herbal compound contains 17 traditional Chinese medicines. It has various pharmacological effects, such as improving brain dysfunction and increasing sleeping quality. This study investigated the neuroprotective effect and the underlying mechanisms of SDOL-impaired hippocampus learning and memory-induced paradoxical sleep deprivation (PSD) in rats. Sixty Male Wistar rats were randomly divided into six groups. Before PSD, SDOL treatment group rats were intragastrically administered SDOL for 25 days at dose of 2.1, 4.2, and 8.4 mL/kg body weight per day. Normal control group, large platform control group, and PSD groups were treated with normal saline instead of SDOL. After 25 days treatment, PSD and SDOL groups were deprived of paradoxical sleep for 72 h. Then two behavioral studies were conducted to test the spatial learning and memory ability using the open field test and Morris water maze test. Expression of the c-fos, c-jun, cyclic AMP response element binding protein (CREB), extracellular signal-regulated protein kinase (ERK), mitogen-activated protein kinases (MAPK)/ERK kinase (MEK), and p-CREB, p-ERK, and p-MEK in the hippocampus were also assayed by western blot. In this study, PSD decreased the levels of p-CREB, p-ERK, p-MEK, c-fos, and c-jun. However, SDOL treatment increased expressions of these proteins. Our results showed that SDOL improved 72-h PSD-induced cognitive impairment. These affects may be mediated by increasing the contents of c-fos, c-jun, and p-CREB/ERK signaling.

  4. Diagnosis and treatment of cognitive deficits caused by radiation in patients with brain tumours

    International Nuclear Information System (INIS)

    Ishiuchi, Shogo

    2011-01-01

    This paper discusses about the diagnosis and evaluation of brain higher functions, feature of their impairment induced by radiotherapy for brain tumor, and association of the impairment and neurogenesis in hippocampus (H). Radiation is one of important causes of cognitive impairment in patients with brain tumor: exempli gratia (e.g.) single irradiation of 2 Gy increases its risk. The impairment is usually diagnosed and evaluated with neuropsychological tests like mini-mental state examination (MMSE), authors' Ryudai version of the brief neuropsychological test battery, etc. The neurotoxicity of radiation is classified in acute effect caused by destruction of the blood brain barrier (BBB) appearing within 2 weeks after irradiation, early-late one of demyelination as a result of BBB rupture within 1-6 months after radiotherapy and late-late effect accompanying serious symptoms like necrosis of irradiated region at later than a few months to several years. Lowered neurogenic function in H and invasion of microglia cells are observed in autopsy specimen of the irradiated brain, and single X-irradiation at 5 or 10 Gy is known to result in the arrest of neurogenesis in the mouse H dentate gyrus. Lowered cognition by irradiation of H in clinical cases is particularly reported in children. Inflammatory biomarkers like cytokines are detected in the serum of irradiated patients as well as of animals. Although fMRI alone is not satisfactory to diagnose and evaluate the radiation-induced impairment, the imaging reveals the association of anatomically different regions in cognition through neural network. It has been recently shown that the impairment can be partially protected by planning the irradiation field so as to avoid H, by medication with donepezil, memantine, erythropoietin and indomethacin, and by hyperbaric oxygen therapy. (T.T.)

  5. Cognitive Deficits in Schizophrenia and Other Neuropsychiatric Disorders: Convergence of Preclinical and Clinical Evidence

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Sumiyoshi, T.

    2014-01-01

    Roč. 8, - (2014), s. 444 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GA14-03627S; GA ČR(CZ) GBP304/12/G069; GA MZd(CZ) NT13386; GA MŠk(CZ) LH14053 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional support: RVO:67985823 Keywords : cognition * neuropsychiatric disorders * animal models * clinical studies * preclinical studies Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  6. Implicit learning deficit in children with Duchenne muscular dystrophy: Evidence for a cerebellar cognitive impairment?

    Science.gov (United States)

    Vicari, Stefano; Piccini, Giorgia; Mercuri, Eugenio; Battini, Roberta; Chieffo, Daniela; Bulgheroni, Sara; Pecini, Chiara; Lucibello, Simona; Lenzi, Sara; Moriconi, Federica; Pane, Marika; D'Amico, Adele; Astrea, Guja; Baranello, Giovanni; Riva, Daria; Cioni, Giovanni; Alfieri, Paolo

    2018-01-01

    This study aimed at comparing implicit sequence learning in individuals affected by Duchenne Muscular Dystrophy without intellectual disability and age-matched typically developing children. A modified version of the Serial Reaction Time task was administered to 32 Duchenne children and 37 controls of comparable chronological age. The Duchenne group showed a reduced rate of implicit learning even if in the absence of global intellectual disability. This finding provides further evidence of the involvement of specific aspects of cognitive function in Duchenne muscular dystrophy and on its possible neurobiological substrate.

  7. Cognitive Deficits in Healthy Elderly Population With "Normal" Scores on the Mini-Mental State Examination.

    Science.gov (United States)

    Votruba, Kristen L; Persad, Carol; Giordani, Bruno

    2016-05-01

    This study investigated whether healthy older adults with Mini-Mental State Examination (MMSE) scores above 23 exhibit cognitive impairment on neuropsychological tests. Participants completed the MMSE and a neuropsychological battery including tests of 10 domains. Results were compared to published normative data. On neuropsychological testing, participants performed well on measures of naming and recall but showed mild to moderate impairment in working memory and processing speed and marked impairment in inhibition, sustained attention, and executive functioning. Almost everyone (91%) scored at least 1 standard deviation (SD) below the mean in at least 1 domain. The median number of domains in which individuals scored below 1 SD was 3.0 of 10.0, whereas over 21% scored below 1 SD in 5 domains or more. With the strictest of definitions for impairment, 20% of this population scored below 2.0 SDs below the norm in at least 2 domains, a necessary condition for a diagnosis of dementia. The finding that cognitive impairment, particularly in attention and executive functioning, is found in healthy older persons who perform well on the MMSE has clinical and research implications in terms of emphasizing normal variability in performance and early identification of possible impairment. © The Author(s) 2016.

  8. A comparative study of cognitive deficits in patients with delusional disorder and paranoid schizophrenia

    Directory of Open Access Journals (Sweden)

    Sandeep Grover

    2011-01-01

    Full Text Available Background: Very few studies have evaluated the neurocognitive functions of patients with persistent delusional disorder. Aim: To study the neurocognitive profile of patients with delusional disorder and compare it with those of patients with paranoid schizophrenia and healthy control subjects. Materials and Methods: Attention concentration, executive functions, memory, and IQ were assessed in 20 patients with delusional disorder and were compared with 20 patients with paranoid schizophrenia and 20 healthy controls. All three groups were matched on age, sex, and level of education. The two patient groups were also matched on duration of illness. Results: In general, patients with delusional disorder performed worst than healthy controls and patients with paranoid schizophrenia performed in between the other two groups. Compared with healthy controls, both patients with delusional disorder and patients with paranoid schizophrenia were significantly impaired on different tests of attention and visual learning and memory. Compared with patients with paranoid schizophrenia, patients with delusional disorder had more impairment different tests of attention, visual learning and memory, verbal working memory, and executive functions. Conclusion: Patients with delusional disorder exhibit cognitive dysfunctions that are very similar to schizophrenia, but are more severe in intensity. The resemblance of cognitive profiles suggests that the two disorders may have similar etiological basis.

  9. Deficits of spatial and task-related attentional selection in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Redel, P; Bublak, P; Sorg, C; Kurz, A; Förstl, H; Müller, H J; Schneider, W X; Perneczky, R; Finke, K

    2012-01-01

    Visual selective attention was assessed with a partial-report task in patients with probable Alzheimer's disease (AD), amnestic mild cognitive impairment (MCI), and healthy elderly controls. Based on Bundesen's "theory of visual attention" (TVA), two parameters were derived: top-down control of attentional selection, representing task-related attentional weighting for prioritizing relevant visual objects, and spatial distribution of attentional weights across the left and the right hemifield. Compared with controls, MCI patients showed significantly reduced top-down controlled selection, which was further deteriorated in AD subjects. Moreover, attentional weighting was significantly unbalanced across hemifields in MCI and tended to be more lateralized in AD. Across MCI and AD patients, carriers of the apolipoprotein E ε4 allele (ApoE4) displayed a leftward spatial bias, which was the more pronounced the younger the ApoE4-positive patients and the earlier disease onset. These results indicate that impaired top-down control may be linked to early dysfunction of fronto-parietal networks. An early temporo-parietal interhemispheric asymmetry might cause a pathological spatial bias which is associated with ApoE4 genotype and may therefore function as early cognitive marker of upcoming AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    Science.gov (United States)

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  11. Overexpression of Grain Amaranth (Amaranthus hypochondriacus AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms.

    Directory of Open Access Journals (Sweden)

    Julio A Massange-Sánchez

    Full Text Available Two grain amaranth transcription factor (TF genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII conferred tolerance to water-deficit stress (WS in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS. WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI provided salt-stress (SS tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.

  12. THE EXPERIENCE OF HOPANTENIC ACID APPLICATION IN THE SYRUP FOR THE CHILDREN, SUFFERING FROM EPILEPSY WITH COGNITIVE DISORDERS AND ATTENTION DEFICIT AND HYPERACTIVITY DISORDER

    Directory of Open Access Journals (Sweden)

    V.I. Guzeva

    2007-01-01

    Full Text Available The search for nootropic medications, which don't aggravate the implications of the hyperactivity disorder and sleep disturbances, is an urgent issue in the children's neurology. For the purpose of pantohamium sirupus appraisal, the researchers examined 20 patient aged between 3 years old and 4 years 11 months old, suffering from epilepsy with cognitive disorders and attention deficit and hyperactivity disorder. All the patients underwent interviewing with the composite questionnaire, oddball tasks, mechanical memory tests (memorizing 3–4 words, dynamic memory tests (repeating 2 groups of words, colour test (for the children of 4 years old, as well as electroencephalography and by indications clinical and biochemical examination. After the course of panto hamium sirupus treatment the researchers discovered the general improvement of attention, mechanical and dynamic memory, anxiety reduction and compensation boost based on the colour test conducted among the children, suffering from epilepsy with attention deficit and hyperactivity disorder. Most patients showed the improvement indices of the EEG background rhythm structure and normalization of background zone differences. The analysis of the obtained results allowed the researchers to conclude that pantohamium sirupus was safe and efficient in the complex therapy among the children, suffering from epilepsy with cognitive disorders and attention deficit and hyperactivity disorder.Key words: hopantenic acid, pantohamium, epilepsy, attention deficit, hyperactivity, cognitive disorders.

  13. Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment.

    Science.gov (United States)

    Machts, Judith; Bittner, Verena; Kasper, Elisabeth; Schuster, Christina; Prudlo, Johannes; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Schoenfeld, Mircea A; Bittner, Daniel M

    2014-06-30

    Recent work suggests that ALS and frontotemporal dementia can occur together and share at least in part the same underlying pathophysiology. However, it is unclear at present whether memory deficits in ALS stem from a temporal lobe dysfunction, or are rather driven by frontal executive dysfunction. In this study we sought to investigate the nature of memory deficits by analyzing the neuropsychological performance of 40 ALS patients in comparison to 39 amnestic mild cognitive impairment (aMCI) patients and 40 healthy controls (HC). The neuropsychological battery tested for impairment in executive functions, as well as memory and visuo-spatial skills, the results of which were compared across study groups. In addition, we calculated composite scores for memory (learning, recall, recognition) and executive functions (verbal fluency, cognitive flexibility, working memory). We hypothesized that the nature of memory impairment in ALS will be different from those exhibited by aMCI patients. Patient groups exhibited significant differences in their type of memory deficit, with the ALS group showing impairment only in recognition, whereas aMCI patients showed short and delayed recall performance deficits as well as reduced short-term capacity. Regression analysis revealed a significant impact of executive function on memory performance exclusively for the ALS group, accounting for one fifth of their memory performance. Interestingly, merging all sub scores into a single memory and an executive function score obscured these differences. The presented results indicate that the interpretation of neuropsychological scores needs to take the distinct cognitive profiles in ALS and aMCI into consideration. Importantly, the observed memory deficits in ALS were distinctly different from those observed in aMCI and can be explained only to some extent in the context of comorbid (coexisting) executive dysfunction. These findings highlight the qualitative differences in temporal lobe

  14. Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders.

    Science.gov (United States)

    Knapman, A; Heinzmann, J-M; Hellweg, R; Holsboer, F; Landgraf, R; Touma, C

    2010-07-01

    Cognitive deficits are a common feature of major depression (MD), with largely unknown biological underpinnings. In addition to the affective and cognitive symptoms of MD, a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is commonly observed in these patients. Increased plasma glucocorticoid levels are known to render the hippocampus susceptible to neuronal damage. This structure is important for learning and memory, creating a potential link between HPA axis dysregulation and cognitive deficits in depression. In order to further elucidate how altered stress responsiveness may contribute to the etiology of MD, three mouse lines with high (HR), intermediate (IR), or low (LR) stress reactivity were generated by selective breeding. The aim of the present study was to investigate whether increased stress reactivity is associated with deficits in hippocampus-dependent memory tests. To this end, we subjected mice from the HR, IR, and LR breeding lines to tests of recognition memory, spatial memory, and depression-like behavior. In addition, measurements of brain-derived neurotrophic factor (BDNF) in the hippocampus and plasma of these animals were conducted. Our results demonstrate that HR mice exhibit hippocampus-dependent memory deficits along with decreased hippocampal, but not plasma, BDNF levels. Thus, the stress reactivity mouse lines are a promising animal model of the cognitive deficits in MD with the unique feature of a genetic predisposition for an altered HPA axis reactivity, which provides the opportunity to explore the progression of the symptoms of MD, predisposing genetic factors as well as new treatment strategies. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Anosognosia for memory deficits in mild cognitive impairment: Insight into the neural mechanism using functional and molecular imaging

    Directory of Open Access Journals (Sweden)

    Patrizia Vannini

    2017-01-01

    Full Text Available Anosognosia, or loss of insight of memory deficits, is a common and striking symptom in Alzheimer's disease (AD. Previous findings in AD dementia patients suggest that anosognosia is due to both functional metabolic changes within cortical midline structures involved in self-referential processes, as well as functional disconnection between these regions. The present study aims to extend these findings by investigating the neural correlates of anosognosia in the prodromal stage of AD. Here, we used regional brain metabolism (resting state 18-F fluorodeoxyglucose positron emission tomography (FDG-PET to unravel the metabolic correlates of anosognosia in subjects with amnestic mild cognitive impairment (aMCI and subsequently resting state functional magnetic resonance imaging (rs-fMRI to investigate the intrinsic connectivity disruption between brain regions. Thirty-one subjects (mean age: 74.1; Clinical Dementia Rating (CDR global score: 0.5 with aMCI, and 251 cognitively normal (CN older adults (mean age: 73.3; CDR: 0 were included as a reference group for behavioral and FDG data. An anosognosia index was obtained by calculating a discrepancy score between subjective and objective memory scores. All subjects underwent FDG-PET for glucose metabolism measurement, and aMCI subjects underwent additional rs-fMRI for intrinsic connectivity measurement. Voxel-wise correlations between anosognosia and neuroimaging data were conducted in the aMCI subjects. Subjects with aMCI had significantly decreased memory awareness as compared to the CN older adults. Greater anosognosia in aMCI subjects was associated with reduced glucose metabolism in the posterior cingulate (PCC cortices and hippocampus. Intrinsic connectivity analyses revealed a significant association between anosognosia and attenuated functional connectivity between the PCC seed region and orbitofrontal cortex (OFC as well as bilateral inferior parietal lobes (IPL. These findings provide further

  16. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid

    Directory of Open Access Journals (Sweden)

    Liu X

    2014-02-01

    Full Text Available Xudong Liu,1,* Yuchao Zhang,1,* Jinquan Li,1 Dong Wang,1 Yang Wu,1 Yan Li,2 Zhisong Lu,3 Samuel CT Yu,4 Rui Li,1 Xu Yang1 1Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, People's Republic of China; 2Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region; 3Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, People's Republic of China; 4Division of Environment, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region *These authors contributed equally to this work Abstract: Single-walled carbon nanotubes (SWCNTs have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test, brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH], inflammation (nuclear factor κB, tumor necrosis factor a, interleukin-1β, and apoptosis (cysteine-aspartic acid protease 3 in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of

  17. An analysis of the cognitive deficit of schizophrenia based on the Piaget developmental theory.

    Science.gov (United States)

    Torres, Alejandro; Olivares, Jose M; Rodriguez, Angel; Vaamonde, Antonio; Berrios, German E

    2007-01-01

    The objective of the study was to evaluate from the perspective of the Piaget developmental model the cognitive functioning of a sample of patients diagnosed with schizophrenia. Fifty patients with schizophrenia (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) and 40 healthy matched controls were evaluated by means of the Longeot Logical Thought Evaluation Scale. Only 6% of the subjects with schizophrenia reached the "formal period," and 70% remained at the "concrete operations" stage. The corresponding figures for the control sample were 25% and 15%, respectively. These differences were statistically significant. The samples were specifically differentiable on the permutation, probabilities, and pendulum tests of the scale. The Longeot Logical Thought Evaluation Scale can discriminate between subjects with schizophrenia and healthy controls.

  18. Toxoplasmosis Infection and Cognitive Deficit after Electroconvulsive Treatment (ECT), Is There a Connection?

    Science.gov (United States)

    E Berg, John

    2012-01-01

    Electroconvulsive treatment (ECT) has developed over 70 years to a modern, effective way of lifting depressive moods. Memory loss and visual acuity after electroconvulsive treatment is the only remaining relevant criticism of the treatment modality when considering the overall rate of remission from this treatment compared to all other treatment modalities. A depressive state impedes memory, and memory improves on several qualities of cognition after treatment. However, the comparison of a person's memory ability from the months before depression started to the level after a course of ECT is never performed, for obvious reasons. Some infectious diseases are known to influence memory negatively through effects on the dopamine receptors. More specifically, former toxoplasmosis infection may be a factor. Preliminary data on titres of toxoplasma IgG may indicate a connection to the development of long-standing memory problems after ECT.

  19. Prevention of Hippocampal Neuronal Damage and Cognitive Function Deficits in Vascular Dementia by Dextromethorphan.

    Science.gov (United States)

    Xu, Xiaofeng; Zhang, Bin; Lu, Kaili; Deng, Jiangshan; Zhao, Fei; Zhao, Bing-Qiao; Zhao, Yuwu

    2016-07-01

    Dextromethorphan (DM) is a non-competitive antagonist of NMDA receptors and a widely used component of cough medicine. Recently, its indication has been extended experimentally to a wide range of disorders including inflammation-mediated central nervous system disorders such as Parkinson disease (PD) and multiple sclerosis (MS). In this study, we investigate whether DM treatment has protective effects on the hippocampal neuron damage induced by bilateral occlusion of the common carotid arteries (two-vessel occlusion [2VO]), an animal model of vascular dementia (VaD). Sprague-Dawley (SD) (10 weeks of age) rats were subjected to the 2VO, and DM was injected intraperitoneally once per day for 37 days. Neuron death, glial activation, and cognitive function were assessed at 37 days after 2VO (0.2 mg/kg, i.p., "DM-0.2" and 2 mg/kg, i.p., "DM-2"). DM-2 treatment provided protection against neuronal death and glial activation in the hippocampal CA1 subfield and reduced cognitive impairment induced by 2VO in rats. The study also demonstrates that activation of the Nrf2-HO-1 pathway and upregulation of superoxide dismutase (SOD) play important roles in these effects. These results suggest that DM is effective in treating VaD and protecting against oxidative stress, which is strongly implicated in the pathogenesis of VaD. Therefore, the present study suggests that DM treatment may represent a new and promising protective strategy for treating VaD.

  20. Dietary Intake of Sulforaphane-Rich Broccoli Sprout Extracts during Juvenile and Adolescence Can Prevent Phencyclidine-Induced Cognitive Deficits at Adulthood.

    Directory of Open Access Journals (Sweden)

    Yumi Shirai

    Full Text Available Oxidative stress and inflammation play a role in cognitive impairment, which is a core symptom of schizophrenia. Furthermore, a hallmark of the pathophysiology of this disease is the dysfunction of cortical inhibitory γ-aminobutyric acid (GABA neurons expressing parvalbumin (PV, which is also involved in cognitive impairment. Sulforaphane (SFN, an isothiocyanate derived from broccoli, is a potent activator of the transcription factor Nrf2, which plays a central role in the inducible expressions of many cytoprotective genes in response to oxidative stress. Keap1 is a cytoplasmic protein that is essential for the regulation of Nrf2 activity. Here, we found that pretreatment with SFN attenuated cognitive deficits, the increase in 8-oxo-dG-positive cells, and the decrease in PV-positive cells in the medial prefrontal cortex and hippocampus after repeated administration of phencyclidine (PCP. Furthermore, PCP-induced cognitive deficits were improved by the subsequent subchronic administration of SFN. Interestingly, the dietary intake of glucoraphanin (a glucosinolate precursor of SFN during the juvenile and adolescence prevented the onset of PCP-induced cognitive deficits as well as the increase in 8-oxo-dG-positive cells and the decrease in PV-positive cells in the brain at adulthood. Moreover, the NRF2 gene and the KEAP1 gene had an epistatic effect on cognitive impairment (e.g., working memory and processing speed in patients with schizophrenia. These findings suggest that SFN may have prophylactic and therapeutic effects on cognitive impairment in schizophrenia. Therefore, the dietary intake of SFN-rich broccoli sprouts during the juvenile and adolescence may prevent the onset of psychosis at adulthood.

  1. Clearing the fog: a review of the effects of dietary omega-3 fatty acids and added sugars on chemotherapy-induced cognitive deficits.

    Science.gov (United States)

    Orchard, Tonya S; Gaudier-Diaz, Monica M; Weinhold, Kellie R; Courtney DeVries, A

    2017-02-01

    Cancer treatments such as chemotherapy have been an important part of extending survival in women diagnosed with breast cancer. However, chemotherapy can cause potentially toxic side effects in the brain that impair memory, verbal fluency, and processing speed in up to 30% of women treated. Women report that post-chemotherapy cognitive deficits negatively impact quality of life and may last up to ten years after treatment. Mechanisms underlying these cognitive impairments are not fully understood, but emerging evidence suggests that chemotherapy induces structural changes in the brain, produces neuroinflammation, and reduces adult hippocampal neurogenesis. Dietary approaches that modify inflammation and neurogenesis are promising strategies for reducing chemotherapy-induced cognitive deficits in breast cancer survivors. In this review, we describe the cognitive and neuronal side effects associated with commonly used chemotherapy treatments for breast cancer, and we focus on the often opposing actions of omega-3 fatty acids and added sugars on cognitive function, neuroinflammation, and adult hippocampal neurogenesis. Omega-3 fatty acids administered concurrently with doxorubicin chemotherapy have been shown to prevent depressive-like behaviors and reduce neuroinflammation, oxidative stress, and neural apoptosis in rodent models. In contrast, diets high in added sugars may interact with n-3 FAs to diminish their anti-inflammatory activity or act independently to increase neuroinflammation, reduce adult hippocampal neurogenesis, and promote cognitive deficits. We propose that a diet rich in long-chain, marine-derived omega-3 fatty acids and low in added sugars may be an ideal pattern for preventing or alleviating neuroinflammation and oxidative stress, thereby protecting neurons from the toxic effects of chemotherapy. Research testing this hypothesis could lead to the identification of modifiable dietary choices to reduce the long-term impact of chemotherapy on the

  2. Transitions in cognitive test scores over 5 and 10 years in elderly people: Evidence for a model of age-related deficit accumulation

    Directory of Open Access Journals (Sweden)

    Rockwood Kenneth

    2008-02-01

    Full Text Available Abstract Background On average, health worsens with age, but many people have periods of improvement. A stochastic model provides an excellent description of how such changes occur. Given that cognition also changes with age, we wondered whether the same model might also describe the accumulation of errors in cognitive test scores in community-dwelling older adults. Methods In this prospective cohort study, 8954 older people (aged 65+ at baseline from the Canadian Study of Health and Aging were followed for 10 years. Cognitive status was defined by the number of errors on the 100-point Modified Min-Mental State Examination. The error count was chosen to parallel the deficit count in the general model of aging, which is based on deficit accumulation. As with the deficit count, a Markov chain transition model was employed, with 4 parameters. Results On average, the chance of making errors increased linearly with the number of errors present at each time interval. Changes in cognitive states were described with high accuracy (R2 = 0.96 by a modified Poisson distribution, using four parameters: the background chance of accumulating additional errors, the chance of incurring more or fewer errors, given the existing number, and the corresponding background and incremental chances of dying. Conclusion The change in the number of errors in a cognitive test corresponded to a general model that also summarizes age-related changes in deficits. The model accounts for both improvement and deterioration and appears to represent a clinically relevant means of quantifying how various aspects of health status change with age.

  3. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice.

    Science.gov (United States)

    Jeon, Se Jin; Kim, Eunji; Lee, Jin Su; Oh, Hee Kyong; Zhang, Jiabao; Kwon, Yubeen; Jang, Dae Sik; Ryu, Jong Hoon

    2017-11-01

    Schizophrenia is a chronic psychotic disorder characterized by positive, negative, and cognitive symptoms. Primary treatments for schizophrenia relieve the positive symptoms but are less effective against the negative and cognitive symptoms. In the present study, we investigated whether maslinic acid, isolated from Syzygium aromaticum (clove), can ameliorate schizophrenia-like behaviors in mice induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. After maslinic acid treatment in the MK-801 model, we examined the behavioral alteration and signaling pathways in the prefrontal cortex. Mice were treated with maslinic acid (30 mg/kg), and their behaviors were evaluated through an array of behavioral tests. The effects of maslinic acid were also examined in the signaling pathways in the prefrontal cortex. A single administration of maslinic acid blocked the MK-801-induced hyperlocomotion and reversed the MK-801-induced sensorimotor gating deficit in the acoustic startle response test. In the social novelty preference test, maslinic acid ameliorated the social behavior deficits induced by MK-801. The MK-801-induced attention and recognition memory impairments were also alleviated by a single administration of maslinic acid. Furthermore, maslinic acid normalized the phosphorylation levels of Akt-GSK-3β and ERK-CREB in the prefrontal cortex. Overall, maslinic acid ameliorated the schizophrenia-like symptoms induced by MK-801, and these effects may be partly mediated through Akt-GSK-3β and ERK-CREB activation. These findings suggest that maslinic acid could be a candidate for the treatment of several symptoms of schizophrenia, including positive symptoms, sensorimotor gating disruption, social interaction deficits, and cognitive impairments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation.

    Science.gov (United States)

    Zagreda, L; Goodman, J; Druin, D P; McDonald, D; Diamond, A

    1999-07-15

    Phenylalanine hydroxylase (Pah)-deficient "PKU mice" have a mutation in the Pah gene that causes phenylketonuria (PKU) in humans. PKU produces cognitive deficits in humans if it is untreated. We report here the first evidence that the genetic mouse model of PKU (Pah(enu2)) also produces cognitive impairments. PKU mice were impaired on both odor discrimination reversal and latent learning compared with heterozygote littermates and with wild-type mice of the same BTBR strain. A small container of cinnamon-scented sand was presented on the right or left, and nutmeg-scented sand was presented on the other side; left-right location varied over trials. Digging in sand of the correct scent was rewarded by finding phenylalanine-free chocolate. To prevent scent cuing, new containers were used on every trial, and both containers always contained chocolate. Digging in the incorrect choice was stopped before the chocolate was uncovered. Once criterion was reached, the other scent was rewarded. PKU mice were impaired on reversals 2, 3, and 4. They were also impaired in latent learning. On day 1, half the mice were allowed to explore a maze and discover the location of water. On day 2, all mice were water-deprived and were placed in the maze. Whereas pre-exposed wild-type and heterozygous mice showed evidence that they remembered the location of the water and hence could find the water faster on day 2, pre-exposed PKU mice showed no significant benefit from their pre-exposure on day 1.

  5. Promoter polymorphisms in two overlapping 6p25 genes implicate mitochondrial proteins in cognitive deficit in schizophrenia.

    LENUS (Irish Health Repository)

    Jablensky, A

    2011-10-04

    In a previous study, we detected a 6p25-p24 region linked to schizophrenia in families with high composite cognitive deficit (CD) scores, a quantitative trait integrating multiple cognitive measures. Association mapping of a 10 Mb interval identified a 260 kb region with a cluster of single-nucleotide polymorphisms (SNPs) significantly associated with CD scores and memory performance. The region contains two colocalising genes, LYRM4 and FARS2, both encoding mitochondrial proteins. The two tagging SNPs with strongest evidence of association were located around the overlapping putative promoters, with rs2224391 predicted to alter a transcription factor binding site (TFBS). Sequencing the promoter region identified 22 SNPs, many predicted to affect TFBSs, in a tight linkage disequilibrium block. Luciferase reporter assays confirmed promoter activity in the predicted promoter region, and demonstrated marked downregulation of expression in the LYRM4 direction under the haplotype comprising the minor alleles of promoter SNPs, which however is not driven by rs2224391. Experimental evidence from LYRM4 expression in lymphoblasts, gel-shift assays and modelling of DNA breathing dynamics pointed to two adjacent promoter SNPs, rs7752203-rs4141761, as the functional variants affecting expression. Their C-G alleles were associated with higher transcriptional activity and preferential binding of nuclear proteins, whereas the G-A combination had opposite effects and was associated with poor memory and high CD scores. LYRM4 is a eukaryote-specific component of the mitochondrial biogenesis of Fe-S clusters, essential cofactors in multiple processes, including oxidative phosphorylation. LYRM4 downregulation may be one of the mechanisms involved in inefficient oxidative phosphorylation and oxidative stress, increasingly recognised as contributors to schizophrenia pathogenesis.Molecular Psychiatry advance online publication, 4 October 2011; doi:10.1038\\/mp.2011.129.

  6. Mismatch negativity (MMN amplitude as a biomarker of sensory memory deficit in amnestic mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Mónica eLindín

    2013-11-01

    Full Text Available It has been suggested that changes in some event-related potential (ERP parameters associated with controlled processing of stimuli could be used as biomarkers of amnestic mild cognitive impairment (aMCI. However, data regarding the suitability of ERP components associated with automatic and involuntary processing of stimuli for this purpose are not conclusive. In the present study, we studied the Mismatch Negativity (MMN component, a correlate of the automatic detection of changes in the acoustic environment, in healthy adults and adults with aMCI (age range: 50-87 years. An auditory-visual attention-distraction task, in two evaluations separated by an interval of between 18 and 24 months, was used. In both evaluations, the MMN amplitude was significantly smaller in the aMCI adults than in the control adults. In the first evaluation, such differences were observed for the subgroup of adults between 50 and 64 years of age, but not for the subgroup of 65 years and over. In the aMCI adults, the MMN amplitude was significantly smaller in the second evaluation than in the first evaluation, but no significant changes were observed in the control adult group. The MMN amplitude was found to be a sensitive and specific biomarker of aMCI, in both the first and second evaluation.

  7. [Immune dysfunction and cognitive deficit in stress and physiological aging (Part I): Pathogenesis and risk factors].

    Science.gov (United States)

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets. The brain, immune and endocrine systems being the principal adaptive systems in the body permanently share information both in the form of neural impulses and soluble mediators. The CNS differs from other organs due to several peculiarities that affect local immune surveillance. The brain cells secluded from the blood flow by a specialized blood-brain-barrier (BBB) can endogenously express pro- and anti-inflammatory cytokines without the intervention of the immune system. In normal brain the cytokine signaling rather contributes to exclusive brain function (e.g. long-term potentiation, synaptic plasticity, adult neurogenesis) than serves as immune communicator. The stress of different origin increases the serum cytokine levels and disrupts BBB. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Mass intrusion of biologically active peptides having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. In addition owing to BBB disruption dendritic cells and T cells also penetrate into the brain where they take up a perivascular position. The changes observed in stressed subject may accumulate during repeated episodes of stress forming a picture typical of the aging brain. Moreover long-term stress as well as physiological aging result in hormonal and immunological disturbances including hypothalamic-pituitary-adrenal axis depletion, regulatory T-cell accumulation and dehydroepiandrosterone decrease.