WorldWideScience

Sample records for ameliorates cisplatin-induced acute

  1. Ameliorative effects of pine bark extract on cisplatin-induced acute kidney injury in rats.

    Science.gov (United States)

    Lee, In-Chul; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Shin, In-Sik; Kim, Yun-Bae; Kim, Jong-Choon

    2017-11-01

    This study investigated the dose-response effects of pine bark extract (PBE, pycnogenol ® ) on oxidative stress-mediated apoptotic changes induced by cisplatin (Csp) in rats. The ameliorating potential of PBE was evaluated after orally administering PBE at doses of 10 or 20 mg/kg for 10 days. Acute kidney injury was induced by a single intraperitoneal injection of Csp at 7 mg/kg on test day 5. Csp treatment caused acute kidney injury manifested by elevated levels of serum blood urea nitrogen (BUN) and creatinine (CRE) with corresponding histopathological changes, including degeneration of tubular epithelial cells, hyaline casts in the tubular lumen, and inflammatory cell infiltration (interstitial nephritis). Csp also induced significant apoptotic changes in renal tubular cells. In addition, Csp treatment induced high levels of oxidative stress, as evidenced by an increased level of malondialdehyde, depletion of the reduced glutathione (GSH) content, and decreased activities of glutathione S-transferase, superoxide dismutase, and catalase in kidney tissues. On the contrary, PBE treatment lowered BUN and CRE levels and effectively attenuated histopathological alterations and apoptotic changes induced by Csp. Additionally, treatment with PBE suppressed lipid peroxidation, prevented depletion of GSH, and enhanced activities of the antioxidant enzymes in kidney tissue. These results indicate that PBE has a cytoprotective effect against oxidative stress-mediated apoptotic changes caused by Csp in the rat kidney, which may be attributed to both increase of antioxidant enzyme activities and inhibition of lipid peroxidation.

  2. Riboflavin ameliorates cisplatin induced toxicities under photoillumination.

    Directory of Open Access Journals (Sweden)

    Iftekhar Hassan

    Full Text Available BACKGROUND: Cisplatin is an effective anticancer drug that elicits many side effects mainly due to induction of oxidative and nitrosative stresses during prolonged chemotherapy. The severity of these side effects consequently restricts its clinical use under long term treatment. Riboflavin is an essential vitamin used in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Besides, it has excellent photosensitizing property that can be used to ameliorate these toxicities in mice under photodynamic therapy. METHODS AND FINDINGS: Riboflavin, cisplatin and their combinations were given to the separate groups of mice under photoilluminated condition under specific treatment regime. Their kidney and liver were excised for comet assay and histopathological studies. Furthermore, Fourier Transform Infrared Spectroscopy of riboflavin-cisplatin combination in vitro was also conducted to investigate any possible interaction between the two compounds. Their comet assay and histopathological examination revealed that riboflavin in combination with cisplatin was able to protect the tissues from cisplatin induced toxicities and damages. Moreover, Fourier Transform Infrared Spectroscopy analysis of the combination indicated a strong molecular interaction among their constituent groups that may be assigned for the protective effect of the combination in the treated animals. CONCLUSION: Inclusion of riboflavin diminishes cisplatin induced toxicities which may possibly make the cisplatin-riboflavin combination, an effective treatment strategy under chemoradiotherapy in pronouncing its antineoplastic activity and sensitivity towards the cancer cells as compared to cisplatin alone.

  3. Suramin protects from cisplatin-induced acute kidney injury

    Science.gov (United States)

    Dupre, Tess V.; Doll, Mark A.; Shah, Parag P.; Sharp, Cierra N.; Kiefer, Alex; Scherzer, Michael T.; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E.; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G.; Beverly, Levi J.

    2015-01-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  4. Protective Activity of Dendropanax Morbifera Against Cisplatin-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Eun-Sun Kim

    2015-01-01

    Full Text Available Background/Aims: Drug-induced acute kidney injury (AKI has been a severe threat to hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We investigated the protective activity of Dendropanax morbifera (DP, a medicinal plant which has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI using cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF was found to be most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute kidney damage.

  5. Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine.

    Science.gov (United States)

    Banerjee, Sharmistha; Sinha, Krishnendu; Chowdhury, Sayantani; Sil, Parames C

    2018-01-05

    cis-Diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic and is widely used for the treatment of various types of solid tumors. Bio-distribution of cisplatin to other organs due to poor targeting towards only cancer cells constitutes the backbone of cisplatin-induced toxicity. The adverse effect of this drug on spleen is not well characterized so far. Therefore, we have set our goal to explore the mechanism of the cisplatin-induced pathophysiology of the spleen and would also like to evaluate whether carnosine, an endogenous neurotransmitter and antioxidant, can ameliorate this pathophysiological response. We found a dose and time-dependent increase of the pro-inflammatory cytokine, TNF-α, in the spleen tissue of the experimental mice exposed to 10 and 20 mg/kg body weight of cisplatin. The increase in inflammatory cytokine can be attributed to the activation of the transcription factor, NF-ĸB. This also aids in the transcription of other pro-inflammatory cytokines and cellular adhesion molecules. Exposure of animals to cisplatin at both the doses resulted in ROS and NO production leading to oxidative stress. The MAP Kinase pathway, especially JNK activation, was also triggered by cisplatin. Eventually, the persistence of inflammatory response and oxidative stress lead to apoptosis through extrinsic pathway. Carnosine has been found to restore the expression of inflammatory molecules and catalase to normal levels through inhibition of pro-inflammatory cytokines, oxidative stress, NF-ĸB and JNK. Carnosine also protected the splenic cells from apoptosis. Our study elucidated the detailed mechanism of cisplatin-induced spleen toxicity and use of carnosine as a protective agent against this cytotoxic response. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Di [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Wang, Chuangyuan [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Duan, Yingjie [General hospital of Fuxin mining (Group) Co., Ltd (China); Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Liu, Kexin, E-mail: kexinliu@dlmedu.edu.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China)

    2017-07-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  7. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Huang, Di; Wang, Chuangyuan; Duan, Yingjie; Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong; Liu, Kexin

    2017-01-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  8. Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice

    Science.gov (United States)

    Ahmed, Lamiaa A.; Shehata, Nagwa I.; Abdelkader, Noha F.; Khattab, Mahmoud M.

    2014-01-01

    Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction

  9. Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice.

    Directory of Open Access Journals (Sweden)

    Lamiaa A Ahmed

    Full Text Available Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg with or without oral administration of tempol (100 mg/kg/day. Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I-IV activities and mitochondrial nitric oxide synthase (mNOS protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma.This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.

  10. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young [Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwon, Kang-Beom [Department of Oriental Medical Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwak, Tae Hwan [PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon 305-500 (Korea, Republic of); Choe, Seong-Kyu; Park, Raekil [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.

  11. QiShenYiQi Pills, a Compound Chinese Medicine, Prevented Cisplatin Induced Acute Kidney Injury via Regulating Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2017-12-01

    Full Text Available Nephrotoxicity is a serious adverse effect of cisplatin chemotherapy that limits its clinical application, to deal with which no effective management is available so far. The present study was to investigate the potential protective effect of QiShenYiQi Pills (QSYQ, a compound Chinese medicine, against cisplatin induced nephrotoxicity in mice. Pretreatment with QSYQ significantly attenuated the cisplatin induced increase in plasma urea and creatinine, along with the histological damage, such as tubular necrosis, protein cast, and desquamation of epithelial cells, improved the renal microcirculation disturbance as indicated by renal blood flow, microvascular flow velocity, and the number of adherent leukocytes. Additionally, QSYQ prevented mitochondrial dysfunction by preventing the cisplatin induced downregulation of mitochondrial complex activity and the expression of NDUFA10, ATP5D, and Sirt3. Meanwhile, the cisplatin-increased renal thiobarbituric acid-reactive substances, caspase9, cleaved-caspase9, and cleaved-caspase3 were all diminished by QSYQ pretreatment. In summary, the pretreatment with QSYQ remarkably ameliorated the cisplatin induced nephrotoxicity in mice, possibly via the regulation of mitochondrial function, oxidative stress, and apoptosis.

  12. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation

    Directory of Open Access Journals (Sweden)

    Li Gao

    2016-12-01

    Full Text Available Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress and programmed cell death of renal tubular epithelial cells. All of which lead to higher mortality rates in patients. In this study we examined the protective effect of protocatechuic aldehyde (PA in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza. Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA largely blocked cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients with cisplatin treatment.

  13. Estrogen-related receptor α is essential for maintaining mitochondrial integrity in cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Tsushida, Keigo; Tanabe, Katsuyuki; Masuda, Kana; Tanimura, Satoshi; Miyake, Hiromasa; Arata, Yuka; Sugiyama, Hitoshi; Wada, Jun

    2018-04-15

    Acute kidney injury (AKI) has been associated with not only higher in-hospital mortality but also the subsequent development of chronic kidney disease (CKD). Recent evidence has suggested the involvement of mitochondrial dysfunction and impaired dynamics in the pathogenesis of AKI. Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that acts as a transcription factor to regulate the transcription of genes required for mitochondrial biogenesis and oxidative phosphorylation. In the present study, we examined the effects of ERRα deficiency on the progression of AKI induced by cisplatin. Male C57BL/6 J wild-type and ERRα -/- mice received a single intraperitoneal injection of 20 mg/kg cisplatin. Seventy-two hours after the injection, kidney function and morphology were evaluated. ERRα expression was observed in renal tubules, and cisplatin inhibited its translocation into nuclei. ERRα deficiency exacerbated cisplatin-induced renal dysfunction and tubular injury, as well as oxidative stress and apoptosis. ERRα -/- mice kidneys revealed lower mitochondrial DNA content and swollen mitochondria with reduced cristae. In addition, these mice had lower expression of the mitochondrial fusion protein mitofusin-2. The cisplatin-induced decrease in mitochondrial DNA and altered mitochondrial structure were more severe in ERRα -/- mice. In cultured mouse proximal tubular epithelial cells, the ERRα inverse agonist XCT-790 significantly inhibited mitofusin-2 expression and induced mitochondrial fragmentation. Taken together, our findings suggest the involvement of ERRα in the progression of cisplatin-induced AKI probably through impaired mitochondrial dynamics. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat, E-mail: sarwat786@rediffmail.com

    2012-02-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  15. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    International Nuclear Information System (INIS)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  16. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Aburto, Andrés [Program of M.Sc., Faculty of Medicine, Universidad Austral de Chile, Valdivia (Chile); Barría, Agustín [School of Biochemistry, Faculty of Sciences, Universidad Austral de Chile, Valdivia (Chile); Cárdenas, Areli [Ph.D. Program, Faculty of Sciences, Universidad Austral de Chile, Valdivia (Chile); Carpio, Daniel; Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia (Chile); Burgos, Maria E. [Department of Nephrology, Faculty of Medicine, Universidad Austral de Chile, Valdivia (Chile); Ardiles, Leopoldo, E-mail: leopoldoardiles@gmail.com [Department of Nephrology, Faculty of Medicine, Universidad Austral de Chile, Valdivia (Chile)

    2014-10-15

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.

  17. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    International Nuclear Information System (INIS)

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli; Carpio, Daniel; Figueroa, Carlos D.; Burgos, Maria E.; Ardiles, Leopoldo

    2014-01-01

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity

  18. Amelioration of cisplatin-induced nephrotoxicity by ethanolic extract of Bauhinia purpurea: An in vivo study in rats.

    Science.gov (United States)

    Rana, Md Azmat; Khan, Rahat Ali; Nasiruddin, Mohammad; Khan, Aijaz Ahmed

    2016-01-01

    Our objective is to study the nephroprotective activity and antioxidant potential of Bauhinia purpurea unripe pods and bark against cisplatin-induced nephrotoxicity. Healthy adult albino rats of either sex (150-200 g) were randomly divided into six groups of six animals each Group I (vehicle control) and Group II (negative control). Group III (BBE200) and Group IV (BBE400) were administered the ethanolic extract of Bauhinia purpurea bark in doses of 200 and 400 mg/kg/day p.o., respectively, and Group V (BPE200) and Group VI (BPE400) were administered the ethanolic extract of Bauhinia purpurea unripe pods at doses of 200 and 400 mg/kg/day p.o., respectively. All the treatments were given for nine days. Cisplatin in a single dose of 6 mg/kg i.p. was given on the 4 th day to all groups, except the vehicle control group. On the 10 th day, blood and urine were collected for biochemical tests and the rats were sacrificed. The kidney was removed for histology and lipid peroxidation-antioxidant test. Cisplatin caused nephrotoxicity as evidenced by elevated blood urea, serum creatinine and urine glucose, and there was decreased creatinine clearance in Group II as compared with Group I. Administration of BBE and BPE at doses of 200 and 400 mg/kg in Group III and Group VI caused a dose-dependant reduction in the rise of blood urea, serum creatinine and urine glucose, and there was a dose-dependant increase in creatinine clearance compared with Group II. There was increased catalase and glutathione and decreased malondialdehyde levels in Group II, while BBE 400 (Group IV) and BPE 400 (Group VI) treatments significantly reversed the changes toward normal values. Histological examination of the kidney revealed protection in Group IV and Group VI compared with Group II. The ethanolic extract of Bauhinia purpurea unripe pods and bark has a nephroprotective activity against cisplatin-induced nephrotoxicity in rats.

  19. The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Sung Min Ju

    2015-01-01

    Full Text Available Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables. Apigenin has long been considered to have various biological activities, such as antioxidant, anti-inflammatory, and antitumorigenic properties, in various cell types. Cisplatin was known to exhibit cytotoxic effect to renal cells by inducing apoptosis through activation of p53. The present study investigated the antiapoptotic effects of apigenin on the cisplatin-treated human renal proximal tubular epithelial (HK-2 cells. HK-2 cells were pretreated with apigenin (5, 10, 20 μM for 1 h and then treated with 40 μM cisplatin for various times. Apigenin inhibited the cisplatin-induced apoptosis of HK-2 cells. Interestingly, apigenin itself exerted cytostatic activity because of its ability to induce cell cycle arrest. Apigenin inhibited caspase-3 activity and PARP cleavage in cisplatin-treated cells. Apigenin reduced cisplatin-induced phosphorylation and expression of p53, with no significant influence on production of ROS that is known to induce p53 activation. Furthermore, apigenin promoted cisplatin-induced Akt phosphorylation, suggesting that enhanced Akt activation may be involved in cytoprotection. Taken together, these results suggest that apigenin ameliorates cisplatin-induced apoptosis through reduction of p53 activation and promotion of PI3K/Akt pathway in HK-2 cells.

  20. Sip-jeon-dea-bo-tang, a traditional herbal medicine, ameliorates cisplatin-induced anorexia via the activation of JAK1/STAT3-mediated leptin and IL-6 production in the fat tissue of mice.

    Science.gov (United States)

    Woo, Sang-Mi; Choi, Youn Kyung; Kim, Ah-Jeong; Yun, Yee Jin; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong Gyu

    2016-04-01

    Despite its therapeutic advantages, chemotherapy can also cause adverse effects, including anorexia and loss of appetite. Although numerous patients with cancer have been reported to suffer from anorexia during or following chemotherapy, treatment options for anorexia remain to be determined. In Asian countries, traditional medicines are widely used to treat problems with appetite; sip-jeon-dea-bo-tang (SJDBT) is one of those medicines used for the treatment of anorexia. The present study demonstrated that SJDBT ameliorated cisplatin-induced anorexia. In a mouse model of chemotherapy-induced anorexia, oral administration of SJDBT prevented the cisplatin-induced reduction of food intake, inhibiting weight loss. The results of multiplex assays showed that SJDBT only altered the levels of interleukin (IL)-6 and leptin in the serum and fat tissue. In addition, SJDBT maintained the serum leptin level and increased the serum IL-6 level, whereas cisplatin reduced the levels of both serum leptin and IL‑6. Furthermore, SJDBT was revealed to increase the levels of leptin and IL-6 in the fat tissue by activating the JAK1/STAT3 signaling pathway. In conclusion, the present results revealed that SJDBT ameliorated cisplatin-induced anorexia, suggesting its usefulness in the prevention of anorexia during chemotherapy.

  1. Mitochondrial Modulation by Epigallocatechin 3-Gallate Ameliorates Cisplatin Induced Renal Injury through Decreasing Oxidative/Nitrative Stress, Inflammation and NF-kB in Mice

    Science.gov (United States)

    Wang, Xueping; Wang, Ping; Fu, Guanghou; Meng, Hongzhou; Wang, Yimin; Jin, Baiye

    2015-01-01

    Cancer chemotherapy drug cisplatin is known for its nephrotoxicity. The aim of this study is to investigate whether Epigallocatechin 3-Gallate (EGCG) can reduce cisplatin mediated side effect in kidney and to understand its mechanism of protection against tissue injury. We used a well-established 3-day cisplatin induced nephrotoxicity mice model where EGCG were administered. EGCG is a major active compound in Green Tea and have strong anti-oxidant and anti-inflammatory properties. EGCG protected against cisplatin induced renal dysfunction as measured by serum creatinine and blood urea nitrogen (BUN). EGCG improved cisplatin induced kidney structural damages such as tubular dilatation, cast formation, granulovaculoar degeneration and tubular cell necrosis as evident by PAS staining. Cisplatin induced kidney specific mitochondrial oxidative stress, impaired activities of mitochondrial electron transport chain enzyme complexes, impaired anti-oxidant defense enzyme activities such as glutathione peroxidase (GPX) and manganese superoxide dismutase (MnSOD) in mitochondria, inflammation (tumor necrosis factor α and interleukin 1β), increased accumulation of NF-κB in nuclear fraction, p53 induction, and apoptotic cell death (caspase 3 activity and DNA fragmentation). Treatment of mice with EGCG markedly attenuated cisplatin induced mitochondrial oxidative/nitrative stress, mitochondrial damages to electron transport chain activities and antioxidant defense enzyme activities in mitochondria. These mitochondrial modulations by EGCG led to protection mechanism against cisplatin induced inflammation and apoptotic cell death in mice kidney. As a result, EGCG improved renal function in cisplatin mediated kidney damage. In addition to that, EGCG attenuated cisplatin induced apoptotic cell death and mitochondrial reactive oxygen species (ROS) generation in human kidney tubular cell line HK-2. Thus, our data suggest that EGCG may represent new promising adjunct candidate for

  2. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney

    International Nuclear Information System (INIS)

    Domitrović, Robert; Cvijanović, Olga; Pugel, Ester Pernjak; Zagorac, Gordana Blagojević; Mahmutefendić, Hana; Škoda, Marko

    2013-01-01

    The aim of this study was to investigate the effects of flavone luteolin against cisplatin (CP)-induced kidney injury in mice. Luteolin at doses of 10 mg/kg was administered intraperitoneally (ip) once daily for 3 days following single CP (10 or 20 mg/kg) ip injection. Mice were sacrificed 24 h after the last dose of luteolin. The CP treatment significantly increased serum creatinine and blood urea nitrogen and induced pathohistological changes in the kidneys. Renal oxidative/nitrosative stress was evidenced by decreased glutathione (GSH) levels and increased 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) formation as well as cytochrome P450 2E1 (CYP2E1) expression. The CP administration triggered inflammatory response in mice kidneys through activation of nuclear factor-kappaB (NF-κB) and overexpression of tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2). Simultaneously, the increase in renal p53 and caspase-3 expression indicated apoptosis of tubular cells. The administration of luteolin significantly reduced histological and biochemical changes induced by CP, decreased platinum (Pt) levels and suppressed oxidative/nitrosative stress, inflammation and apoptosis in the kidneys. These results suggest that luteolin is an effective nephroprotective agent, with potential to reduce Pt accumulation in the kidneys and ameliorate CP-induced nephrotoxicity

  3. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism.

    Science.gov (United States)

    Liao, Weitang; Fu, Zongjie; Zou, Yanfang; Wen, Dan; Ma, Hongkun; Zhou, Fangfang; Chen, Yongxi; Zhang, Mingjun; Zhang, Wen

    2017-11-15

    Oxidative stress was predominantly involved in the pathogenesis of acute kidney injury (AKI). Recent studies had reported the protective role of specific microRNAs (miRNAs) against oxidative stress. Hence, we investigated the levels of miR140-5p and its functional role in the pathogenesis of Cisplatin induced AKI. A mice Cisplatin induced-AKI model was established. We found that miR-140-5p expression was markedly increased in mice kidney. Bioinformatics analysis revealed nuclear factor erythroid 2-related factor (Nrf2) was a potential target of miR-140-5p, We demonstrated that miR-140-5p did not affect Kelch-like ECH-associated protein 1 (Keap1) level but directly targeted the 3'-UTR of Nrf2 mRNA and played a positive role in the regulation of Nrf2 expression which was confirmed by luciferase activity assay and western blot. What was more, consistent with miR140-5p expression, the mRNA and protein levels of Nrf2, as well as antioxidant response element (ARE)-driven genes Heme Oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase l (NQO1) were significantly increased in mice kidney tissues. In vitro study, Enforced expression of miR-140-5p in HK2 cells significantly attenuated oxidative stress by decreasing ROS level and increasing the expression of manganese superoxide dismutase (MnSOD). Simultaneously, miR-140-5p decreased lactate dehydrogenase (LDH) leakage and improved cell vitality in HK2 cells under Cisplatin-induced oxidative stress. However, HK2 cells transfected with a siRNA targeting Nrf2 abrogated the protective effects of miR-140-5p against oxidative stress. These results indicated that miR-140-5p might exert its anti-oxidative stress function via targeting Nrf2. Our findings showed the novel transcriptional role of miR140-5p in the expression of Nrf2 and miR-140-5p protected against Cisplatin induced oxidative stress by activating Nrf2-dependent antioxidant pathway, providing a potentially therapeutic target in acute kidney injury. Copyright © 2017

  4. Role of Bone Marrow Derived Mesenchymal Stem Cells and the Protective Effect of Silymarin in Cisplatin-Induced Acute Renal Failure in Rats.

    Science.gov (United States)

    Ibrahim, Mohamed El-Tantawy; Bana, Eman El; El-Kerdasy, Hanan I

    2018-01-01

    Cisplatin is a highly effective antitumor agent whose clinical application is limited by its nephrotoxicity, which is associated with high mortality and morbidity rates. We aimed to study the protective role of silymarin and mesenchymal stem cells as a therapeutic tool of cisplatin nephrotoxicity. We injected rats with cisplatin in a dose of 5mg/kg body weight for 5 days to induce acute renal failure (ARF). Silymarin was administrated 6 hours before cisplatin injection and mesenchymal stem cells were injected 24 hours after cisplatin-induced ARF. We assessed the ARF biochemically by elevation of kidney function tests and histopathologically by an alteration of the histological architecture of the renal cortex in the form of shrinkage of glomeruli, lobulated tufts and glomerular hypertrophy with narrowing capsular space. The tubules showed extensive tubular degeneration with cellular hyaline materials and debris in the lumen of the renal tubules. The renal blood vessels appeared sclerotic with marked thickened walls. When silymarin was given in different doses before cisplatin, it decreased the toxic effect of cisplatin in the kidney but sclerotic blood vessels remained. Injection of mesenchymal stem cells in rats with cisplatin-induced ARF improved the histopathological effects of cisplatin in renal tissues and kidney function tests were significantly improved. There was a significant improvement in kidney function tests and renal histopathology by using silymarin as protective mechanism in cisplatin-induced ARF. Administration of mesenchymal stem cells denoted a more remarkable therapeutic effect in ARF. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  5. Cisplatin Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Seyed Seifollah Beladi Mousavi

    2014-02-01

    The standard approach to prevent cisplatin-induced nephrotoxicity is the administration of lower doses of cisplatin in combination with the administration of full intravenous isotonic saline before and after cisplatin administration. Although a number of pharmacologic agents including sodium thiosulfate, N-acetylcysteine, theophylline and glycine have been evaluated for prevention of nephrotoxicity, none have proved to have an established role, thus, additional clinical studies will be required to confirm their probable effects.

  6. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.

    Directory of Open Access Journals (Sweden)

    Bidya Dhar Sahu

    Full Text Available Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine; degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65 nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.

  7. Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence

    Science.gov (United States)

    Sahu, Bidya Dhar; Kalvala, Anil Kumar; Koneru, Meghana; Mahesh Kumar, Jerald; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-01-01

    Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use. PMID:25184746

  8. Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice

    International Nuclear Information System (INIS)

    Fouad, Amr A.; Al-Sultan, Ali Ibrahim; Refaie, Shereen M.; Yacoubi, Mohamed T.

    2010-01-01

    The nephroprotective effect of coenzyme Q10 was investigated in mice with acute renal injury induced by a single i.p. injection of cisplatin (5 mg/kg). Coenzyme Q10 treatment (10 mg/kg/day, i.p.) was applied for 6 consecutive days, starting 1 day before cisplatin administration. Coenzyme Q10 significantly reduced blood urea nitrogen and serum creatinine levels which were increased by cisplatin. Coenzyme Q10 significantly compensated deficits in the antioxidant defense mechanisms (reduced glutathione level and superoxide dismutase activity), suppressed lipid peroxidation, decreased the elevations of tumor necrosis factor-α, nitric oxide and platinum ion concentration, and attenuated the reductions of selenium and zinc ions in renal tissue resulted from cisplatin administration. Also, histopathological renal tissue damage mediated by cisplatin was ameliorated by coenzyme Q10 treatment. Immunohistochemical analysis revealed that coenzyme Q10 significantly decreased the cisplatin-induced overexpression of inducible nitric oxide synthase, nuclear factor-κB, caspase-3 and p53 in renal tissue. It was concluded that coenzyme Q10 represents a potential therapeutic option to protect against acute cisplatin nephrotoxicity commonly encountered in clinical practice.

  9. Protective effect of Heliotropium eichwaldi against cisplatin-induced nephrotoxicity in mice.

    Science.gov (United States)

    Sharma, Surendra Kr; Goyal, Naveen

    2012-05-01

    The aim of the present study was to evaluate the nephroprotective effect of methanolic extract of Heliotropium eichwaldii (MHE) in mice with cisplatin-induced acute renal damage. Nephrotoxicity was induced by a single intraperitoneal injection of cisplatin (16mg/kg). Swiss albino mice were injected with vehicle, cisplatin, cisplatin plus MHE 200 mg/kg and cisplatin plus MHE 400mg/kg, respectively. MHE was administered for 7 d at a dose of 200 and 400 mg/kg per day orally starting 4 d before cisplatin injection. Animals were sacrificed 3d after treatment and blood as well as kidney tissue was isolated and analyzed. The various parameters such as blood urea nitrogen (BUN), serum creatinine (CRE), malondialdehyde (MDA), and catalase (CAT) and superoxide dismutase (SOD) activities were analyzed. MHE treatment significantly reduced BUN and serum CRE levels elevated by cisplatin administration (P<0.05). Also, it significantly attenuated cisplatin-induced increase in MDA level and improved the decreased CAT and SOD activities in renal cortical homogenates (P<0.05). Additionally, histopathological examination and scoring showed that MHE markedly ameliorated cisplatin-induced renal tubular necrosis. MHE can be considered a potential candidate for protection of nephrotoxicity induced by cisplatin.

  10. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rats

    International Nuclear Information System (INIS)

    Liu, Tao; Meng, Qiang; Wang, Changyuan; Liu, Qi; Guo, Xinjin; Sun, Huijun; Peng, Jinyong

    2012-01-01

    The purpose of this study is to investigate whether the effect of cyclo-trans-4-L-hydroxyprolyl-L-serine (JBP485) on acute renal failure (ARF) induced by cisplatin is related to change in expression of renal Oat1, Oat3 and Mrp2 in rats. JBP485 reduced creatinine, blood urea nitrogen (BUN) and indoxyl sulfate (IS) in plasma and malondialdehyde (MDA) in kidney, and recovered the glomerular filtration rate (GFR) and the activity of superoxide dismutase (SOD) in cisplatin-treated rats. The plasma concentration of PAH (para-aminohippurate) determined by LC–MS/MS was increased markedly after intravenous administration of cisplatin, whereas cumulative urinary excretion of PAH and the uptake of PAH in kidney slices were significantly decreased. qRT-PCR and Western-blot showed a decrease in mRNA and protein of Oat1 and Oat3, an increase in mRNA and protein of Mrp2 in cisplatin-treated rats, and an increase in IS (a uremic toxin) after co-treatment with JBP485. It indicated that JBP485 promoted urinary excretion of toxins by upregulating renal Mrp2. This therefore gives in part the explanation about the mechanism by which JBP485 improves ARF induced by cisplatin in rats. -- Highlights: ► Cisplatin induces acute renal failure (ARF). ► The expression of Oat1, Oat3 and Mrp2 were changed during ARF. ► The regulated expression of Oat1, Oat3 and Mrp2 is an adaptive protected response. ► JBP485 could facilitate the adaptive protective action.

  11. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao, E-mail: liutaomedical@qq.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Meng, Qiang, E-mail: mengq531@yahoo.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Wang, Changyuan, E-mail: wangcyuan@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Liu, Qi, E-mail: llaqii@yahoo.com.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Guo, Xinjin, E-mail: guo.xinjin@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Sun, Huijun, E-mail: sunhuijun@hotmail.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Peng, Jinyong, E-mail: jinyongpeng2005@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); and others

    2012-11-01

    The purpose of this study is to investigate whether the effect of cyclo-trans-4-L-hydroxyprolyl-L-serine (JBP485) on acute renal failure (ARF) induced by cisplatin is related to change in expression of renal Oat1, Oat3 and Mrp2 in rats. JBP485 reduced creatinine, blood urea nitrogen (BUN) and indoxyl sulfate (IS) in plasma and malondialdehyde (MDA) in kidney, and recovered the glomerular filtration rate (GFR) and the activity of superoxide dismutase (SOD) in cisplatin-treated rats. The plasma concentration of PAH (para-aminohippurate) determined by LC–MS/MS was increased markedly after intravenous administration of cisplatin, whereas cumulative urinary excretion of PAH and the uptake of PAH in kidney slices were significantly decreased. qRT-PCR and Western-blot showed a decrease in mRNA and protein of Oat1 and Oat3, an increase in mRNA and protein of Mrp2 in cisplatin-treated rats, and an increase in IS (a uremic toxin) after co-treatment with JBP485. It indicated that JBP485 promoted urinary excretion of toxins by upregulating renal Mrp2. This therefore gives in part the explanation about the mechanism by which JBP485 improves ARF induced by cisplatin in rats. -- Highlights: ► Cisplatin induces acute renal failure (ARF). ► The expression of Oat1, Oat3 and Mrp2 were changed during ARF. ► The regulated expression of Oat1, Oat3 and Mrp2 is an adaptive protected response. ► JBP485 could facilitate the adaptive protective action.

  12. Activation of endoplasmic reticulum stress response by enhanced polyamine catabolism is important in the mediation of cisplatin-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Kamyar Zahedi

    Full Text Available Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT and spermine oxidase (SMOX increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI. Using gene knockout and chemical inhibitors, the role of polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neutralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, significantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the induction of SSAT and elevated polyamine catabolism in cells increases the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α and enhances the expression of binding immunoglobulin protein BiP/GRP78 and CCAAT-enhancer-binding protein homologous protein (CHOP/GADD153. The increased expression of these endoplasmic reticulum stress response (ERSR markers was accompanied by the activation of caspase-3. These results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular damage through the induction of ERSR and the consequent onset of apoptosis. In support of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutralization of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and CHOP and apoptosis (e.g. reduced activated caspase-3. These studies indicate that enhanced polyamine catabolism and its toxic products are important mediators of ERSR and critical to the pathogenesis of cisplatin AKI.

  13. Action of (R)-sila-venlafaxine and reboxetine to antagonize cisplatin-induced acute and delayed emesis in the ferret

    International Nuclear Information System (INIS)

    Warneck, Julie B.; Cheng, Frankie H.M.; Barnes, Matthew J.; Mills, John S.; Montana, John G.; Naylor, Robert J.; Ngan, Man-P.; Wai, Man-K.; Daiss, Juergen O.; Tacke, Reinhold; Rudd, John A.

    2008-01-01

    The chemotherapeutic drug cisplatin is associated with severe gastrointestinal toxicity that can last for several days. A recent strategy to treat the nausea and emesis includes the combination of a 5-HT 3 receptor antagonist, a glucocorticoid, and an NK 1 receptor antagonist. The present studies explore the use of the selective noradrenaline reuptake inhibitors, (R)-sila-venlafaxine, (R,R)-reboxetine and (S,S)-reboxetine to prevent cisplatin (5 mg/kg, i.p.)-induced acute (0-24 h) and delayed (24-72 h) emesis in ferrets. The positive control regimen of ondansetron and dexamethasone, both at 1 mg/kg/8 h, reduced acute and delayed emesis by 100 (P 0.05). In conclusion, the studies provide the first evidence for an anti-emetic potential of noradrenaline reuptake inhibitors to reduce chemotherapy-induced acute and delayed emesis

  14. Gastric myoelectric activity during cisplatin-induced acute and delayed emesis reveals a temporal impairment of slow waves in ferrets: effects not reversed by the GLP-1 receptor antagonist, exendin (9-39).

    Science.gov (United States)

    Lu, Zengbing; Ngan, Man P; Lin, Ge; Yew, David T W; Fan, Xiaodan; Andrews, Paul L R; Rudd, John A

    2017-11-17

    Preclinical studies show that the glucagon-like peptide-1 (GLP-1) receptor antagonist, exendin (9-39), can reduce acute emesis induced by cisplatin. In the present study, we investigate the effect of exendin (9-39) (100 nmol/24 h, i.c.v), on cisplatin (5 mg/kg, i.p.)-induced acute and delayed emesis and changes indicative of 'nausea' in ferrets. Cisplatin induced 37.2 ± 2.3 and 59.0 ± 7.7 retches + vomits during the 0-24 (acute) and 24-72 h (delayed) periods, respectively. Cisplatin also increased ( P Advanced multifractal detrended fluctuation analysis revealed that the slow wave signal shape became more simplistic during delayed emesis. Cisplatin did not affect blood pressure (BP), but transiently increased heart rate, and decreased heart rate variability (HRV) during acute emesis; HRV spectral analysis indicated a shift to 'sympathetic dominance'. A hyperthermic response was seen during acute emesis, but hypothermia occurred during delayed emesis and there was also a decrease in HR. Exendin (9-39) did not improve feeding and drinking but reduced cisplatin-induced acute emesis by ~59 % ( P waves may represent a novel approach to treat the side effects of chemotherapy.

  15. Cisplatin-Induced Eosinophilic Pneumonia

    Directory of Open Access Journals (Sweden)

    Hideharu Ideguchi

    2014-01-01

    Full Text Available A 67-year-old man suffering from esophageal cancer was admitted to our hospital complaining of dyspnea and hypoxemia. He had been treated with cisplatin, docetaxel, and fluorouracil combined with radiotherapy. Chest computed tomography revealed bilateral ground-glass opacity, and bronchoalveolar lavage fluid showed increased eosinophils. Two episodes of transient eosinophilia in peripheral blood were observed after serial administration of anticancer drugs before the admission, and drug-induced lymphocyte stimulation test to cisplatin was positive. Thus cisplatin-induced eosinophilic pneumonia was suspected, and corticosteroid was effectively administered. To our knowledge, this is the first reported case of cisplatin-induced eosinophilic pneumonia.

  16. Analysis of spatiotemporal metabolomic dynamics for sensitively monitoring biological alterations in cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Irie, Miho; Hayakawa, Eisuke; Fujimura, Yoshinori; Honda, Youhei; Setoyama, Daiki; Wariishi, Hiroyuki; Hyodo, Fuminori; Miura, Daisuke

    2018-01-29

    Clinical application of the major anticancer drug, cisplatin, is limited by severe side effects, especially acute kidney injury (AKI) caused by nephrotoxicity. The detailed metabolic mechanism is still largely unknown. Here, we used an integrated technique combining mass spectrometry imaging (MSI) and liquid chromatography-mass spectrometry (LC-MS) to visualize the diverse spatiotemporal metabolic dynamics in the mouse kidney after cisplatin dosing. Biological responses to cisplatin was more sensitively detected within 24 h as a metabolic alteration, which is much earlier than possible with the conventional clinical chemistry method of blood urea nitrogen (BUN) measurement. Region-specific changes (e.g., medulla and cortex) in metabolites related to DNA damage and energy generation were observed over the 72-h exposure period. Therefore, this metabolomics approach may become a novel strategy for elucidating early renal responses to cisplatin, prior to the detection of kidney damage evaluated by conventional method. Copyright © 2018. Published by Elsevier Inc.

  17. Cisplatin-induced hypokalemic paralysis.

    Science.gov (United States)

    Mohammadianpanah, Mohammad; Omidvari, Shapour; Mosalaei, Ahmad; Ahmadloo, Niloofar

    2004-08-01

    Profound hypokalemic conditions resulting from cisplatin therapy have been known to produce hypokalemic paralysis in rare cases. We describe such a case of cisplatin-induced hypokalemic paralysis. A 15-year-old Persian girl with ovarian dysgerminoma presented with severe generalized weakness and paraplegia 1 week after the fourth course of cisplatin-based chemotherapy. On physical examination, there was symmetric flaccid paralysis and areflexia in all of the extremities and particularly in the lower limbs. Her serum potassium concentration was 1.7 mmol/L. Metastatic disease was excluded by a comprehensive systemic evaluation. Complete clinical and paraclinical recovery was achieved after short-term administration of potassium supplement. Adverse drug reactions are common with cisplatin, but the drug is only rarely associated with hypokalemic paralysis. Based on the Naranjo causality algorithm, an objective assessment revealed cisplatin to be a probable cause of hypokalemic paralysis in this case. This adverse drug event--whether isolated or secondary to hypomagnesemia--may be deceptive, leading to a fatal mistake in the oncology setting, and should therefore be precisely differentiated from cancer-related complications. This case suggests that cisplatin should be added to the list of agents causing hypokalemic paralysis. Regular serum electrolyte measurement, the early detection of cation deficiency, and appropriate replacement of cations are all recommended.

  18. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity.

    Science.gov (United States)

    Dugbartey, George J; Bouma, Hjalmar R; Lobb, Ian; Sener, Alp

    2016-07-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Tropisetron attenuates cisplatin-induced nephrotoxicity in mice.

    Science.gov (United States)

    Zirak, Mohammad Reza; Rahimian, Reza; Ghazi-Khansari, Mahmoud; Abbasi, Ata; Razmi, Ali; Mehr, Shahram Ejtemaei; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2014-09-05

    Nephrotoxicity is one of the most important complications of cisplatin, a potent chemotherapeutic agent used in the treatment of various malignancies. 5-HT3 antagonists are widely used to counteract chemotherapy-induced emesis and new studies reveal that they poses notable anti-inflammatory properties. In current study, we investigated the effects of 5-HT3 antagonists on cisplatin induced nephrotoxicity in mice. To identify the underlying mechanism of renal protection by tropisetron, we investigated the probable involvement of alpha7 nicotinic acetylcholine receptor (α7nAChR). A single injection of cisplatin (20mg/kg; i.p) induced nephrotoxicity, 5-HT3 antagonists (tropisetron, granisetron and ondansetron,) were given twice daily for 3 day (3mg/kg; i.p). Finally animals were euthanized and blood sample was collected to measure urea and creatinin level. Also kidneys were removed for histopathological examination and biochemical measurements including glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) activity, inducible nitric oxide synthase (iNOS) expression and inflammatory cytokines. Tropisetron decreased the expression of inflammatory molecules including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and iNOS and improved histopathological damage and renal dysfunction. However other 5-HT3 antagonists, granisetron or ondansetron do not have any elicit effects on biochemical markers and histological damages. Since methyllycaconitine, antagonist of α7nAChR, was unable to reverse the beneficial effect of tropisetron, we concluded that this effect of tropisetron is not mediated by α7nAChR.Our results showed that tropisetron treatment markedly ameliorated the experimental cisplatin induced-nephrotoxicity and this effect might be 5-HT3 receptor and α7nAChR independent. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic.

    Science.gov (United States)

    Ortega-Domínguez, Bibiana; Aparicio-Trejo, Omar Emiliano; García-Arroyo, Fernando E; León-Contreras, Juan Carlos; Tapia, Edilia; Molina-Jijón, Eduardo; Hernández-Pando, Rogelio; Sánchez-Lozada, Laura Gabriela; Barrera-Oviedo, Diana; Pedraza-Chaverri, José

    2017-09-01

    Cisplatin is widely used as chemotherapeutic agent for treatment of diverse types of cancer, however, acute kidney injury (AKI) is an important side effect of this treatment. Diverse mechanisms have been involved in cisplatin-induced AKI, such as oxidative stress, apoptosis and mitochondrial damage. On the other hand, curcumin is a polyphenol extracted from the rhizome of Curcuma longa L. Previous studies have shown that curcumin protects against the cisplatin-induced AKI; however, it is unknown whether curcumin can reduce alterations in mitochondrial bioenergetics and dynamic in this model. It was found that curcumin prevents cisplatin-induced: (a) AKI and (b) alterations in the following mitochondrial parameters: bioenergetics, ultrastructure, hydrogen peroxide production and dynamic. In fact, curcumin prevented the increase of mitochondrial fission 1 protein (FIS1), the decrease of optic atrophy 1 protein (OPA1) and the decrease of NAD + -dependent deacetylase sirtuin-3 (SIRT3), a mitochondrial dynamic regulator as well as the increase in the mitophagy associated proteins parkin and phosphatase and tensin homologue (PTEN)-induced putative kinase protein 1 (PINK1). In conclusion, the protective effect of curcumin in cisplatin-induced AKI was associated with the prevention of the alterations in mitochondrial bioenergetics, ultrastructure, redox balance, dynamic, and SIRT3 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  2. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells

    International Nuclear Information System (INIS)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Lee, Sang Yong; Han, Myung Kwan; Kim, Duk Hoon; Kim, Won

    2012-01-01

    Highlights: ► Cisplatin increases acetylation of NF-κB p65 subunit in HK2 cells. ► SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. ► Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-κB (NF-κB) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD + )-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-κB p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-κB during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-κB p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-κB through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  3. The Protective Effects of Sika Deer Antler Protein on Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Huihai Yang

    2017-08-01

    Full Text Available Background/Aims: This study measured the effect of Sika deer (Cervus nippon Temminck antler protein (SDAPR, glycoproteins (SDAG, and polysaccharides (SDAPO on cisplatin-induced cytotoxicity in HEK 293 cells, and investigated the effect of SDAPR against cisplatin-induced nephrotoxicity in mice. Methods: Cell viability was measured by MTT assay. ICR mice were randomly divided into five groups: control, cisplatin with vehicle, and cisplatin with SDAPR at three concentrations: 5, 10, or 20 mg/kg, p.o., 10 d. Cisplatin was injected on 7th day (25 mg/kg, i.p.. Renal function, oxidative stress, levels of inflammatory factors, and expression of apoptosis-related proteins were measured in vivo. Renal tissues were stained with TUNEL and H&E to observe renal cell apoptosis and pathological changes. Results: Pretreatment with SDAPR (125-2000 µg/mL significantly improved cell viability, with an EC50 of approximately 1000 µg/mL. SDAPR also ameliorated cisplatin-induced histopatholo- gic changes, and decreased blood urea nitrogen (BUN and creatinine (Cr (P < 0.05. Western blotting analysis showed SDAPR clearly decreased expression levels of cleaved-caspase-3 and Bax, and increased the expression level of Bcl-2 (P < 0.01. Additionally, SDAPR markedly regulated oxidative stress markers and inflammatory cytokines (P<0.05. TUNEL staining showed decreased apoptosis after SDAPR treatment (P < 0.01. Conclusions: These results indicate that SDAPR can be an effective dietary supplement, to relieve cisplatin-induced nephrotoxicity by improved antioxidase activity, suppressed inflammation, and inhibited apoptosis in vivo.

  4. Protective effect of curcumin and vitamin C each alone and in combination on cisplatin-induced sperm abnormalities in male albino rats

    Directory of Open Access Journals (Sweden)

    Sabha Elsayed Elballat

    2016-08-01

    The results of the present investigation concluded that the combination between curcumin and vitamin C in cisplatin treatment afforded the best ameliorative effect on cisplatin induced sperm shape abnormalities. This may be due to the synergistic effect between curcumin and vitamin C as both of them have antioxidant properties which in turn lead to repairing of sperm abnormalities.

  5. Ginger Essential Oil Ameliorates Cisplatin-Induced Nephrotoxicity in ...

    African Journals Online (AJOL)

    HP

    Among multiple mechanisms of action, the induction of .... levels using a commercial kit (Gold Analisa®) for calculating the urinary ... ultraviolet light absorbance at 260 nm using a. Nanodrop .... ratio rose following GEO administration. These.

  6. Amelioration of Cisplatin-Induced Nephrotoxicity in Rats by Curcumin

    African Journals Online (AJOL)

    Keywords: Cisplatin, Oxidative stress, Curcumin, α-Tocopherol, Nephrotoxicity. Tropical ... exerts various side effects in several organs particularly in ... Previous study provides evidence which ..... chemotherapy by cisplatin but further in vivo.

  7. Chemopreventive Effect of Tadalafil in Cisplatin-Induced ...

    African Journals Online (AJOL)

    olayemitoyin

    mgkg-1 and 5 mgkg-1 of Tadalafil in cisplatin-induced nephrotoxic rats. In this study, twenty-five male ... mitochondria, and reduced nicotinamide adenine dinucletide .... Laboratory Centrifuge (Model SM 112, Surgifriend. Medicals, England) at ...

  8. A Role for Tubular Necroptosis in Cisplatin-Induced AKI

    Science.gov (United States)

    Xu, Yanfang; Ma, Huabin; Shao, Jing; Wu, Jianfeng; Zhou, Linying; Zhang, Zhirong; Wang, Yuze; Huang, Zhe; Ren, Junming; Liu, Suhuan; Chen, Xiangmei

    2015-01-01

    Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis, a type of programmed necrosis, has a role in cisplatin-induced AKI. We found that inhibition of any of the core components of the necroptotic pathway—receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)—by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination of cytokines (TNF-α, TNF-related weak inducer of apoptosis, and IFN-γ) that were upregulated in proximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatin-treated mice was partially diminished in RIP3- or MLKL-deficient mice, suggesting a positive feedback loop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI. PMID:25788533

  9. Antiemetic and Myeloprotective Effects of Rhus verniciflua Stoke in a Cisplatin-Induced Rat Model

    Directory of Open Access Journals (Sweden)

    Hyo-Seon Kim

    2017-01-01

    Full Text Available Rhus verniciflua Stoke has been commonly used in traditional medicine to treat gastrointestinal (GI dysfunction diseases. In order to investigate pharmacological properties of Rhus verniciflua Stoke water extract (RVX on cisplatin-induced amnesia, RVX (0, 25, 50, or 100 mg/kg was orally administrated for five consecutive days after a single intraperitoneal injection of cisplatin (6 mg/kg to SD rat. Cisplatin injection significantly increased the kaolin intake (emesis but reduced the normal diet intake (anorexia whereas the RVX treatment significantly improved these abnormal diet behaviors at both the acute and delayed phase. The serotonin concentration and the related gene expressions (5-HT3 receptors and SERT in small intestine tissue were abnormally altered by cisplatin injection, which were significantly attenuated by the RVX treatment. Histological findings of gastrointestinal tracts, as well as the proteins level of proinflammatory cytokines (TNF-α, IL-6, and IL-1β, revealed the beneficial effect of RVX on cisplatin-induced gastrointestinal inflammation. In addition, RVX significantly improved cisplatin-induced myelosuppression, as evidenced by the observation of leukopenia and by histological examinations in bone marrow. Our findings collectively indicated Rhus verniciflua Stoke improved the resistance of rats to chemotherapy-related adverse effects in the gastrointestinal track and bone marrow.

  10. Developing better mouse models to study cisplatin-induced kidney injury.

    Science.gov (United States)

    Sharp, Cierra N; Siskind, Leah J

    2017-10-01

    Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury. Copyright © 2017 the American Physiological Society.

  11. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses.

    Science.gov (United States)

    Chowdhury, Sayantani; Sinha, Krishnendu; Banerjee, Sharmistha; Sil, Parames C

    2016-11-12

    Oxidative stress, ER stress, inflammation, and apoptosis results in the pathogenesis of cisplatin-induced cardiotoxicity. The present study was designed to investigate the signaling mechanisms involved in the ameliorating effect of taurine, a conditionally essential amino acid, against cisplatin-mediated cardiac ER stress dependent apoptotic death and inflammation. Mice were simultaneously treated with taurine (150 mg kg -1 body wt, i.p.) and cisplatin (10 mg kg -1 body wt, i.p.) for a week. Cisplatin exposure significantly altered serum creatine kinase and troponin T levels. In addition, histological studies revealed disintegration in the normal radiation pattern of cardiac muscle fibers. However, taurine administration could abate such adverse effects of cisplatin. Taurine administration significantly mitigated the reactive oxygen species production, alleviated the overexpression of nuclear factor-κB (NF-κB), and inhibited the elevation of proinflammatoy cytokines, adhesion molecules, and chemokines. Cisplatin exposure resulted in the unfolded protein response (UPR)-regulated CCAAT/enhancer binding protein (CHOP) up-regulation, induction of GRP78: a marker of ER stress and eIF2α signaling. Increase in calpain-1 expression level, activation of caspase-12 and caspase-3, cleavage of the PARP protein as well as the inhibition of antiapoptotic protein Bcl-2 were reflected on cisplatin-triggered apoptosis. Taurine could, however, combat against such cisplatin induced cardiac-abnormalities. The above mentioned findings suggest that taurine plays a beneficial role in providing protection against cisplatin-induced cardiac damage by modulating inflammatory responses and ER stress. © 2016 BioFactors, 42(6):647-664, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  12. Mechanisms of cisplatin-induced muscle atrophy

    International Nuclear Information System (INIS)

    Sakai, Hiroyasu; Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara; Sato, Ken; Chiba, Yoshihiko; Yamazaki, Mitsuaki; Matoba, Motohiro; Narita, Minoru

    2014-01-01

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin

  13. Mechanisms of cisplatin-induced muscle atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Hiroyasu, E-mail: sakai@hoshi.ac.jp [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Division of Pharmacy Professional Development and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Sato, Ken [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Division of Pharmacy Professional Development and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Chiba, Yoshihiko [Department of Biology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Yamazaki, Mitsuaki [Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 9300194 (Japan); Matoba, Motohiro [Department of Palliative Medicine and Psychooncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 1040045 (Japan); Narita, Minoru, E-mail: narita@hoshi.ac.jp [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan)

    2014-07-15

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin.

  14. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity

    Science.gov (United States)

    Karasawa, Takatoshi; Steyger, Peter S.

    2015-01-01

    Cisplatin is one of the most widely-used drugs to treat cancers. However, its nephrotoxic and ototoxic side-effects remain major clinical limitations. Recent studies have improved our understanding of the molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. While cisplatin binding to DNA is the major cytotoxic mechanism in proliferating (cancer) cells, nephrotoxicity and ototoxicity appear to result from toxic levels of reactive oxygen species and protein dysregulation within various cellular compartments. In this review, we discuss molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. We also discuss potential clinical strategies to prevent nephrotoxicity and ototoxicity and their current limitations. PMID:26101797

  15. Study of protective effects of melatonin on cisplatin-induced nephrotoxicity in rabbits

    International Nuclear Information System (INIS)

    Aslam, J.; Khan, W.; Bakhtiar, S.

    2017-01-01

    To evaluate the protective effects of melatonin on cisplatin-induced nephrotoxicity in rabbits. Study Design: Laboratory based randomized control trial. Place and Duration of Study: Department of Pharmacology and Therapeutics in collaboration with Clinico Pathologic Laboratory, Army Medical College, Rawalpindi, from Apr to Jun 2015. Material and Methods: Eighteen rabbits were divided into three groups, each consisting of six rabbits. Baseline serum urea, creatinine, sodium and potassium were measured. Rabbits were weighed for dose calculation. A single dose of cisplatin 10mg/kg was given as I/P injection to the toxic group. The protective group received 5 mg/kg I/P melatonin for three days. Rabbits were sacrificed 72 hours after the cisplatin dose and both kidneys were sent for histopathology. Statistical analysis was carried out by using Microsoft Office Excel 2010 and SPSS version 21. Student's t-test and one way ANOVA, followed by 'Post Hoc Tukey' test was used for biochemical parameters, while Chi Square' test was used for histopathological comparison. Results: Moderate nephrotoxicity (grade-II) was seen in the toxic group, with substantial elevations of serum urea and creatinine (p<0.001), and serum sodium and potassium (p<0.01). Melatonin ameliorated the renal injury. Conclusion: The protective effects of melatonin on cisplatin-induced nephrotoxicity were due to its antioxidant properties. (author)

  16. Benfotiamine enhances antioxidant defenses and protects against cisplatin-induced DNA damage in nephrotoxic rats.

    Science.gov (United States)

    Harisa, Gamaleldin I

    2013-08-01

    The objective of the present study was to assess superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PON1), glutathione reductase (GR), and catalase (CAT) activities ratio and their relationship with DNA oxidative damage in rats treated with cisplatin (3 mg/kg bwt/day) in the presence and absence of benfotiamine (100 mg/kg/day) for 25 days. Cisplatin-induced renal damage was evidenced by renal dysfunction and elevated oxidative stress markers. SOD activity and levels of nitric oxide, protein carbonyl, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine were significantly increased by cisplatin treatment. Moreover, the ratios of GPx/GR, SOD/GPx, SOD/CAT, and SOD/PON1 were significantly increased compared to control. In contrast, glutathione levels were significantly decreased by cisplatin treatment. Simultaneous treatment of rats with cisplatin and benfotiamine ameliorate these variables to values near to those of control rats. This study suggests that benfotiamine can prevent cisplatin-induced nephrotoxicity by inhibiting formation reactive species of oxygen and nitrogen. © 2013 Wiley Periodicals, Inc.

  17. Protective effect of selenium on cisplatin induced nephrotoxicity: A double-blind controlled randomized clinical trial.

    Science.gov (United States)

    Ghorbani, Ali; Omidvar, Bita; Parsi, Abazar

    2013-04-01

    Renal injury is common following cisplatin infusion. Some agents have been used to attenuate cisplatin nephrotoxicity. However, except hydration, none of them has been proved to be effective. In this study selenium as an antioxidant supplement was tested on cisplatin induced renal injury. 122 cancerous patients (85 male and 37 female; age range of 14 to 82 years old) were enrolled to receive chemotherapy regimens consisting cisplatin. They were allocated into two groups using a random number list . Investigators, patients and analyzers all, were blinded in allocation by using sealed opaque envelopes. Intervention group received a single 400 mcg selenium tablet and patients in control group took a placebo tablet which was similar with selenium preparation in color, weight, shape and taste. Primary end points were an increase in plasma creatinine above 1.5 mg/dl in men and 1.4mg/dl in women, or increase of plasma creatinine more than 50% from baseline or urine flow rate less than 0.5 ml/kg/h. Creatinine level was measured initially and on the 5th day after cisplatin therapy. There was no difference in cumulative dose of cisplatin between the groups (p=0.54). There were not evidences of acute renal failure (ARF) in cases. While, among placebo group, 7 patients had criteria of acute kidney injury. Conclusions :selenium could probably prevent cisplatin-induced acute kidney injury, when it is added to hydration therapy in cancerous patients.

  18. Infliximab Modulates Cisplatin-Induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Medine Cumhur Cüre

    2016-10-01

    Full Text Available Background: Cisplatin (Cis is one of the most commonly used antineoplastic drugs. It is used as chemotherapy for many solid organ malignancies such as brain, neck, male and female urogenital, vesical and pulmonary cancers. Infliximab blocks tumor necrosis factor alpha (TNF-α. Several studies have reported that infliximab ameliorates cell damage by reducing cytokine levels. Aims: We aimed to investigate whether infliximab has a preventive effect against cisplatin-induced hepatotoxicity and whether it has a synergistic effect when combined with Cis. Study Design: Animal experimentation. Methods: Male Wistar albino rats were divided in three groups as follows: Cis group, infliximab + Cis (CIN group and the control group. Each group comprised 10 animals. Animals in the Cis group received an intraperitoneal single-dose injection of Cis (7 mg/kg. In the CIN group, a single dose of infliximab (7 mg/kg was administered 72 h prior to the Cis injection. After 72 h, a single dose of Cis (7 mg/kg was administered. All rats were sacrificed five days after Cis injection. Results: TNF-α levels in the Cis group were significantly higher (345.5±40.0 pg/mg protein than those of the control (278.7±62.1 pg/mg protein, p=0.003 and CIN groups (239.0±64.2 pg/mg protein, p=0.013. The Cis group was found to have high carbonic anhydrase (CA-II and low carbamoyl phosphate synthetase-1 (CPS-1 levels. Aspartate transaminase (AST and alanine transaminase (ALT levels were lower in the CIN group as compared to the Cis group. Total histological damage was greater in the Cis group as compared to the control and CIN groups. Conclusion: Cis may lead to liver damage by increasing cytokine levels. It may increase oxidative stress-induced tissue damage by increasing carbonic anhydrase II (CA-II enzyme levels and decreasing CPS-1 enzyme levels. Infliximab decreases Cis-induced hepatic damage by blocking TNF-α and it may also protect against liver damage by regulating CPS-1 and

  19. Chemopreventive effect of tadalafil in cisplatin-induced ...

    African Journals Online (AJOL)

    Summary: Nephrotoxicity remains a common untoward effect of cisplatin therapy with limited effective chemopreventive options available till date. This study aims to evaluate the possible chemopreventive effect and mechanism(s) of action of 2 mgkg-1 and 5 mgkg-1 of Tadalafil in cisplatin-induced nephrotoxic rats. In this ...

  20. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Sang Yong [Department of Diagnostic Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Han, Myung Kwan [Department of Microbiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Duk Hoon [Division of Forensic Medicine, National Forensic Service, Seoul (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  1. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshio Terada

    Full Text Available Nephrotoxicity is a frequent and major limitation in cisplatin (CDDP-based chemotherapy. 5-Aminolevulinic acid (ALA is widely distributed in animal cells, and it is a precursor of tetrapyrole compounds such as heme that is fundamentally important in aerobic energy metabolism. The aim of this study is to evaluate the protective role of ALA in CDDP-induced acute kidney injury (AKI.We used CDDP-induced AKI rat model and cultured renal tubular cells (NRK-52E. We divided four groups of rats: control, CDDP only, CDDP + ALA(post;(ALA 10 mg/kg + Fe in drinking water after CDDP, CDDP + ALA(pre & post.CDDP increased Cr up to 6.5 mg/dl, BUN up to 230 mg/dl, and ALA significantly reduced these changes. ALA ameliorates CDDP-induced morphological renal damages, and reduced tubular apoptosis evaluated by TUNEL staining and cleaved caspase 3. Protein and mRNA levels of ATP5α, complex(COX IV, UCP2, PGC-1α in renal tissue were significantly decreased by CDDP, and ALA ameliorates reduction of these enzymes. In contrast, Heme Oxigenase (HO-1 level is induced by CDDP treatment, and ALA treatment further up-regulates HO-1 levels. In NRK-52E cells, the CDDP-induced reduction of protein and mRNA levels of mitochondrial enzymes was significantly recovered by ALA + Fe. CDDP-induced apoptosis were ameliorated by ALA + Fe treatment. Furthermore, we evaluated the size of transplantated bladder carcinoma to the rat skin, and ALA did not change the anti cancer effects of CDDP.These data suggested that the protective role of ALA in cisplatin-induced AKI is via protection of mitochondrial viability and prevents tubular apoptosis. Also there are no significant effects of ALA on anticancer efficiency of CDDP in rats. Thus, ALA has the potential to prevent CDDP nephrotoxicity without compromising its anticancer efficacy.

  2. Nephroprotective effect of Bauhinia variegata (Linn.) whole stem extract against cisplatin-induced nephropathy in rats

    Science.gov (United States)

    Pani, Saumya R.; Mishra, Satyaranjan; Sahoo, Sabuj; Panda, Prasana K.

    2011-01-01

    The nephroprotective activity of the ethanolic extract of Bauhinia variegata (Linn.) whole stem against cisplatin-induced nephropathy was investigated by an in vivo method in rats. Acute nephrotoxicity was induced by i.p. injection of cisplatin (7 mg/kg of body weight (b.w.)). Administration of ethanol extract at dose levels of 400 and 200 mg/kg (b.w.) to cisplatin-intoxicated rats for 14 days attenuated the biochemical and histological signs of nephrotoxicity of cisplatin in a dose-dependent fashion. Ethanol extract at 400 mg/kg decreased the serum level of creatinine (0.65 ± 0.09; P<0.001) and urea (32.86 ± 5.88; P<0.001) associated with a significant increase in body weight (7.16 ± 1.10; P<0.001) and urine volume output (11.95 ± 0.79; P<0.05) as compared to the toxic control group. The ethanol extract of B. variegata at 400 mg/kg (b.w.) exhibited significant and comparable nephroprotective potential to that of the standard polyherbal drug cystone. The statistically (one-way-ANOVA followed by Tukey-Kramer multiple comparison) processed results suggested the protective action of B. variegate whole stem against cisplatin-induced nephropathy. PMID:21572659

  3. The Effects of Pretreatment with Various Doses of L-Arginine on Cisplatin-Induced Nephropathy of Male Rats

    Directory of Open Access Journals (Sweden)

    B Rasoulian

    2016-09-01

    Full Text Available Introduction: Cisplatin is a widely used anti-cancer drug, which its application is limited by nephrotoxicity. In this study, the effect of pretreatment with different l-arginine doses on Cisplatin-induced renal functional injury was investigated. Methods: 63 male rats were divided into 7 groups: In groups 3, 4, 5 and 6, 60 min before the Cisplatin injection (5mg/kg; L-Arginine with doses of 50,100,200 or 400mg/kg was injected, respectively. In group7, normal saline was injected before Cisplatin administration. In groups 1 and 2, normal saline was injected instead of Cisplatin. In group 2, 60min before normal saline injection, 400mg/kg L-Arginine was administered and in group1, instead of L-arginine, normal saline was injected too. Injections were intraperitoneal. 72h after Cisplatin injection, blood sampling and plasma separation were done. Urine sample was collected 24 hours before blood sampling by metabolic cage. The mean of plasma urea and creatinine levels and creatinine clearance (ml/day.kg and fractional excretion of Na (FENa, % were compared among different groups as renal functional parameters. Results: In comparison to group 7, L-arginine injection in a dose of 400mg/kg led to significant amelioration of all parameters. 200 mg/kg L-arginine administration led to significant decrease in plasma urea level and FENa. 100mg/kg L-arginine caused significant improvement in fractional excretion of sodium. L-arginine injection with 50mg/kg dose, significantly ameliorate all renal function tests instead of creatinine clearance. Conclusion: Pretreatment with L-arginine administration with 400 or 50 mg/kg doses, respectively, had the highest effect on reducing Cisplatin-induced nephropathy. L-arginine injection with intermediate doses i.e. 200 or 100 mg/kg had less effect in reducing Cisplatin-induced nephropathy and it needs more investigations.

  4. Protective effect of metalloporphyrins against cisplatin-induced kidney injury in mice.

    Directory of Open Access Journals (Sweden)

    Hao Pan

    Full Text Available Oxidative and nitrative stress is a well-known phenomenon in cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of two metalloporphyrins (FeTMPyP and MnTBAP, water soluble complexes, in cisplatin-induced renal damage and their ability to scavenge peroxynitrite. In cisplatin-induced nephropathy study in mice, renal nitrative stress was evident by the increase in protein nitration. Cisplatin-induced nephrotoxicity was also evident by the histological damage from the loss of the proximal tubular brush border, blebbing of apical membranes, tubular epithelial cell detachment from the basement membrane, or intra-luminal aggregation of cells and proteins and by the increase in blood urea nitrogen and serum creatinine. Cisplatin-induced apoptosis and cell death as shown by Caspase 3 assessments, TUNEL staining and DNA fragmentation Cisplatin-induced nitrative stress, apoptosis and nephrotoxicity were attenuated by both metalloporphyrins. Heme oxygenase (HO-1 also plays a critical role in metalloporphyrin-mediated protection of cisplatin-induced nephrotoxicity. It is evident that nitrative stress plays a critical role in cisplatin-induced nephrotoxicity in mice. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration and cisplatin-induced nephrotoxicity can be prevented with the use of metalloporphyrins.

  5. Meclofenamic Acid Reduces Reactive Oxygen Species Accumulation and Apoptosis, Inhibits Excessive Autophagy, and Protects Hair Cell-Like HEI-OC1 Cells From Cisplatin-Induced Damage

    Directory of Open Access Journals (Sweden)

    He Li

    2018-05-01

    Full Text Available Hearing loss is the most common sensory disorder in humans, and a significant number of cases is due to the ototoxicity of drugs such as cisplatin that cause hair cell (HC damage. Thus, there is great interest in finding agents and mechanisms that protect HCs from ototoxic drug damage. It has been proposed that epigenetic modifications are related to inner ear development and play a significant role in HC protection and HC regeneration; however, whether the m6A modification and the ethyl ester form of meclofenamic acid (MA2, which is a highly selective inhibitor of FTO (fatmass and obesity-associated enzyme, one of the primary human demethylases, can affect the process of HC apoptosis induced by ototoxic drugs remains largely unexplored. In this study, we took advantage of the HEI-OC1 cell line, which is a cochlear HC-like cell line, to investigate the role of epigenetic modifications in cisplatin-induced cell death. We found that cisplatin injury caused reactive oxygen species accumulation and increased apoptosis in HEI-OC1 cells, and the cisplatin injury was reduced by co-treatment with MA2 compared to the cisplatin-only group. Further investigation showed that MA2 attenuated cisplatin-induced oxidative stress and apoptosis in HEI-OC1 cells. We next found that the cisplatin-induced upregulation of autophagy was significantly inhibited after MA2 treatment, indicating that MA2 inhibited the cisplatin-induced excessive autophagy. Our findings show that MA2 has a protective effect and improves the viability of HEI-OC1 cells after cisplatin treatment, and they provide new insights into potential therapeutic targets for the amelioration of cisplatin-induced ototoxicity.

  6. Two cases of cisplatin-induced permanent renal failure following neoadjuvant chemotherapy for esophageal cancer.

    Science.gov (United States)

    Sasaki, Tomohiko; Motoyama, Satoru; Komatsuda, Atsushi; Shibata, Hiroyuki; Sato, Yusuke; Yoshino, Kei; Wakita, Akiyuki; Saito, Hajime; Anbai, Akira; Jin, Mario; Minamiya, Yoshihiro

    2016-01-01

    We experienced two esophageal cancer patients who developed severe acute renal failure after neoadjuvant chemotherapy with cisplatin and 5-fluorourasil. After administration of cisplatin, their serum creatinine increased gradually until they required hemodialysis and their renal failure was permanent. In both cases, renal biopsy examination indicated partial recovery of the proximal tubule, but renal function did not recover. After these events, one patient underwent definitive radiotherapy and the other underwent esophagectomy for their esophageal cancers, while continuing dialysis. Both patients are alive without cancer recurrence. In these two cases of cisplatin-induced renal failure, renal biopsy examination showed only slight disorder of proximal tubules and tendency to recover. Although cisplatin-related nephrotoxicity is a well-recognized complication, there have been few reports of renal failure requiring hemodialysis in cancer patients. In this report, we present their clinical courses and the pathological findings of cisplatin-related renal failure. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Dexamethasone loaded nanoparticles exert protective effects against Cisplatin-induced hearing loss by systemic administration.

    Science.gov (United States)

    Sun, Changling; Wang, Xueling; Chen, Dongye; Lin, Xin; Yu, Dehong; Wu, Hao

    2016-04-21

    Ototoxicity is one of the most important adverse effects of cisplatin chemotherapy. As a common treatment of acute sensorineural hearing loss, systemic administration of steroids was demonstrated ineffective against cisplatin-induced hearing loss (CIHL) in published studies. The current study aimed to evaluate the potential protective effect of dexamethasone (DEX) encapsulated in polyethyleneglycol-coated polylactic acid (PEG-PLA) nanoparticles (DEX-NPs) against cisplatin-induced hearing loss following systemic administration. DEX was fabricated into PEG-PLA nanoparticles using emulsion and evaporation technique as previously reported. DEX or DEX-NPs was administered intraperitoneally to guinea pigs 1h before cisplatin administration. Auditory brainstem response (ABR) threshold shifts were measured at four frequencies (4, 8, 16, and 24kHz) 1 day before and three days after cisplatin injection. Cochlear morphology was examined to evaluate inner ear injury induced by cisplatin exposure. A single dose of DEX-NPs 1h before cisplatin treatment resulted in a significant preservation of the functional and structural properties of the cochlea, which was equivalent to the effect of multidose (3 days) DEX injection. In contrast, no significant protective effect was observed by single dose injection of DEX. The results of histological examination of the cochleae were consistent with the functional measurements. In conclusion, a single dose DEX-NPs significantly attenuated cisplatin ototoxicity in guinea pigs after systemic administration at both histological and functional levels indicating the potential therapeutic benefits of these nanoparticles for enhancing the delivery of DEX in acute sensorineural hearing loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Ebselen attenuates cisplatin-induced ROS generation through Nrf2 activation in auditory cells.

    Science.gov (United States)

    Kim, Se-Jin; Park, Channy; Han, A Lum; Youn, Myung-Ja; Lee, Jeong-Han; Kim, Yunha; Kim, Eun-Sook; Kim, Hyung-Jin; Kim, Jin-Kyung; Lee, Ho-Kyun; Chung, Sang-Young; So, Hongseob; Park, Raekil

    2009-05-01

    Ebselen, an organoselenium compound that acts as a glutathione peroxidase mimetic, has been demonstrated to possess antioxidant and anti-inflammatory activities. However, the molecular mechanism underlying this effect is not fully understood in auditory cells. The purpose of the present study is to investigate the protective effect of ebselen against cisplatin-induced toxicity in HEI-OC1 auditory cells, organotypic cultures of cochlear explants from two-day postnatal rats (P(2)) and adult Balb/C mice. Pretreatment with ebselen ameliorated apoptotic death induced by cisplatin in HEI-OC1 cells and organotypic cultures of Corti's organ. Ebselen pretreatment also significantly suppressed cisplatin-induced increases in intracellular reactive oxygen species (ROS), intracellular reactive nitrogen species (RNS) and lipid peroxidation levels. Ebselen dose-dependently increased the expression level of an antioxidant response element (ARE)-luciferase reporter in HEI-OC1 cells through the translocation of Nrf2 into the nucleus. Furthermore, we found that pretreatment with ebselen significantly restored Nrf2 function, whereas it ameliorated the cytotoxicity of cisplatin in cells transfectants with either a pcDNA3.1 (control) or a DN-Nrf2 (dominant-negative) plasmid. We also observed that Nrf2 activation by ebselen increased the expression of phase II antioxidant genes, including heme oxygenase (HO-1), NAD(P)H:quinine oxidoreductase, and gamma-glutamylcysteine synthetase (gamma-GCS). Treatment with ebselen resulted in an increased expression of HO-1 and intranuclear Nrf2 in hair cells of organotypic cultured cochlea. After intraperitoneal injection with cisplatin, auditory brainstem responses (ABRs) threshold was measured on 8th day in Balb/C mice. ABR threshold shift was marked occurred in mice injected with cisplatin (16 mg/kg, n=5; Click and 8-kHz stimuli, pebselen was not significantly changed. These results suggest that ebselen activates the Nrf2-ARE signaling pathway

  9. Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism.

    OpenAIRE

    Miner, W. D.; Sanger, G. J.

    1986-01-01

    MDL 72222, the selective 5-hydroxytryptamine (5-HT) M-receptor antagonist, prevented or reduced cisplatin-induced emesis in ferrets. It is suggested that cisplatin-induced, and possibly other cytotoxic drug-induced vomiting may involve a 5-HT M-receptor mechanism.

  10. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways.

    Science.gov (United States)

    Li, Fan; Yao, Yunyi; Huang, Hui; Hao, Hua; Ying, Mingzhong

    2018-06-12

    Cisplatin is a chemotherapeutic agent that widely used in the treatment of cancer. However, cisplatin has been reported to induce nephrotoxicity by directly inducing inflammatory response and oxidative stress. In this study, we aimed to investigate the protective effects and mechanism of xanthohumol on cisplatin-induced nephrotoxicity. The model of nephrotoxicity was induced by intraperitoneal injection of cisplatin and xanthohumol was given intraperitoneally for three consecutive days. The results showed that xanthohumol significantly attenuated kidney histological changes and serum creatinine and BUN production. The levels of TNF-α, IL-1ß and IL-6 in kidney tissues were suppressed by xanthohumol. The levels of malondialdehyde (MDA) and ROS were suppressed by treatment of xanthohumol. The activities of glutathione (GSH) and superoxide dismutase (SOD) decreased by cisplatin were reversed by xanthohumol. Furthermore, the expression of TLR4 and the activation of NF-κB induced by cisplatin were significantly inhibited by xanthohumol. The expression of Nrf2 and HO-1 were dose-dependently up-regulated by the treatment of xanthohumol. In conclusion, xanthohumol protects against cisplatin-induced nephrotoxicity by ameliorating inflammatory and oxidative responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Protective effect and mechanism of action of lupane triterpenes from Cornus walteri in cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Lee, Seulah; Jung, Kiwon; Lee, Dahae; Lee, Seoung Rak; Lee, Kang Ro; Kang, Ki Sung; Kim, Ki Hyun

    2015-12-01

    The present study reports a renoprotective effect and the mechanism of action of lupane triterpenes isolated from Cornus walteri in cisplatin-induced renal toxicity. A phytochemical investigation of the MeOH extract of the stems and stem bark of C. walteri resulted in the isolation and identification of twelve lupane triterpenes. Among these, betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol ameliorated cisplatin-induced nephrotoxicity to 80% of the control value at 125 μM. Upregulated phosphorylation of JNK, ERK, and p38 following cisplatin treatment were markedly decreased after co-treatment with betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol. In addition, the protein expression level of cleaved caspase-3 and the percentage of apoptotic cells were also significantly reduced after co-treatment with betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol. These results show that blocking the MAPK signaling cascade plays a critical role in mediating the renoprotective effect of betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol isolated from C. walteri extract. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    Science.gov (United States)

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  13. Suppression of Cisplatin-Induced Vomiting by Cannabis sativa in Pigeons: Neurochemical Evidences

    Directory of Open Access Journals (Sweden)

    Ihsan Ullah

    2018-03-01

    Full Text Available Cannabis sativa (CS, family Cannabinaceae has been reported for its anti-emetic activity against cancer chemotherapy-induced emesis in animal models and in clinics. The current study was designed to investigate CS for potential effectiveness to attenuate cisplatin-induced vomiting in healthy pigeons and to study the impact on neurotransmitters involved centrally and peripherally in the act of vomiting. High-performance liquid chromatography system coupled with electrochemical detector was used for the quantification of neurotransmitters 5-hydroxytryptamine (5HT, dopamine (DA and their metabolites; Di-hydroxy Phenyl Acetic acid (Dopac, Homovanillic acid (HVA, and 5-hydroxy indole acetic acid (5HIAA centrally in specific brain areas (area postrema and brain stem while, peripherally in small intestine. Cisplatin (7 mg/kg i.v. induce emesis without lethality across the 24 h observation period. CS hexane fraction (CS-HexFr; 10 mg/kg attenuated cisplatin-induced emesis ∼ 65.85% (P < 0.05; the reference anti-emetic drug, metoclopramide (MCP; 30 mg/kg, produced ∼43.90% reduction (P < 0.05. At acute time point (3rd h, CS-HexFr decreased (P < 0.001 the concentration of 5HT and 5HIAA in the area postrema, brain stem and intestine, while at 18th h (delayed time point CS-HexFr attenuated (P < 0.001 the upsurge of 5HT caused by cisplatin in the brain stem and intestine and dopamine in the area postrema. CS-HexFr treatment alone did not alter the basal neurotransmitters and their metabolites in the brain areas and intestine except 5HIAA and HVA, which were decreased significantly. In conclusion the anti-emetic effect of CS-HexFr is mediated by anti-serotonergic and anti-dopaminergic components in a blended manner at the two different time points, i.e., 3rd and 18th h in pigeons.

  14. Protective effect of riboflavin on cisplatin induced toxicities: a gender-dependent study.

    Science.gov (United States)

    Naseem, Imrana; Hassan, Iftekhar; Alhazza, Ibrahim M; Chibber, Sandesh

    2015-01-01

    The toxicity exerted by the anticancer drug, cisplatin in vivo is functional to many factors such as dose, duration, gender and age etc. The present study is aimed to investigate if ameliorative potential of riboflavin on cisplatin induced toxicity is gender dependent. Eighty four adult mice from male and female sex were divided into seven groups (n=6) for both sexes. They were treated with riboflavin (2mg/kg), cisplatin (2mg/kg) and their two different combinations (cisplatin at 2mg/kg with 1mg/kg and 2mg/kg of riboflavin) under photoillumination with their respective controls for the combination groups without photoillumination. After treatment, all groups were sacrificed and their kidney, liver and serum were collected for biochemical estimations, comet assay and histopathology. In the present investigation, it was evident from antioxidant and detoxification studies (SOD, CAT, GSH, GST, MDA and carbonyl level) that the female mice exhibited better tolerance towards cisplatin inducted toxicity and the ameliorative effect of riboflavin against cisplatin toxicity was found stronger in their combination groups as compared to the male groups as the activity of all antioxidant enzymes were found better concomitant with lower level of MDA and carbonyl contents in the female combination groups than their male counterparts. Furthermore, single cell gel electrophoresis and histopathological examination confirmed that restoration of normal nuclear and cellular integrity was more prominent in female with respect to the males after treatment in the combination groups in a dose-dependent manner. Hence, this study reveals that cisplatin is more toxic in male mice and the ameliorative effect of riboflavin against cisplatin toxicity is stronger in female mice. Copyright © 2014. Published by Elsevier GmbH.

  15. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation.

    Science.gov (United States)

    Choi, Yong-Min; Kim, Han-Kyul; Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun

    2015-01-01

    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.

  16. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    International Nuclear Information System (INIS)

    El-Naga, Reem N.

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  17. Paracrine Activation of the Wnt/β-Catenin Pathway by Bone Marrow Stem Cell Attenuates Cisplatin-Induced Kidney Injury

    Directory of Open Access Journals (Sweden)

    Xiaoyan Jiao

    2017-12-01

    Full Text Available Background/Aims: Cisplatin-induced acute kidney injury (AKI involves damage to tubular cells via excess reactive oxygen species (ROS generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC-derived conditioned medium (CM against cisplatin-induced AKI. Methods: In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. Results: CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data

  18. Paracrine Activation of the Wnt/β-Catenin Pathway by Bone Marrow Stem Cell Attenuates Cisplatin-Induced Kidney Injury.

    Science.gov (United States)

    Jiao, Xiaoyan; Cai, Jieru; Yu, Xiaofang; Ding, Xiaoqiang

    2017-01-01

    Cisplatin-induced acute kidney injury (AKI) involves damage to tubular cells via excess reactive oxygen species (ROS) generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived conditioned medium (CM) against cisplatin-induced AKI. In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data showed that the tubular β-catenin level was lower in

  19. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    El-Naga, Reem N., E-mail: reemelnaga@hotmail.com

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  20. Acute toxicity, lipid peroxidation and ameliorative properties of ...

    African Journals Online (AJOL)

    OKEY

    2014-01-29

    Jan 29, 2014 ... Full Length Research Paper. Acute toxicity ... Diabetes mellitus represents a group of metabolic ... Figure 1. Pictorial view of Alstonia boonei leaves (Sidiyasa, 1998). ..... The position of hydroxyl groups and other features in the.

  1. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    vivo (forelimb force and muscle volume) outcomes in cachectic animals. Administration of hexarelin or JMV2894 markedly reduced the cisplatin-induced alteration of calcium homeostasis by both common as well as drug-specific mechanisms of action. This effect correlated with muscle function preservation as well as amelioration of various atrophic indexes, thus supporting the functional impact of GHS activity on calcium homeostasis. Our findings provide a direct evidence that a dysregulation of calcium homeostasis plays a key role in cisplatin-induced model of cachexia gaining insight into the etiopathogenesis of this form of muscle wasting. Furthermore, our demonstration that GHS administration efficaciously prevents cisplatin-induced calcium homeostasis alteration contributes to elucidate the mechanism of action through which GHS could potentially ameliorate chemotherapy-associated cachexia. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  2. Effect of Honey and Royal Jelly against Cisplatin-Induced Nephrotoxicity in Patients with Cancer.

    Science.gov (United States)

    Osama, Hasnaa; Abdullah, Aya; Gamal, Bassma; Emad, Dina; Sayed, Doha; Hussein, Eman; Mahfouz, Eman; Tharwat, Joy; Sayed, Sally; Medhat, Shrouk; Bahaa, Treza; Abdelrahim, Mohamed E A

    2017-07-01

    Cisplatin constitutes one of the most potent antineoplastic drugs; however, nephrotoxicity limited its eligibility for optimal clinical use. This study was designed to evaluate the role of honey and royal jelly with antioxidant properties in the protection of cisplatin-induced acute kidney injury in patients with cancer. Patients with cancer assigned for cisplatin chemotherapy were randomly divided into bee honey and royal jelly groups pretreated before the initiation and during cisplatin chemotherapeutic regimen and control group on cisplatin only. Serum creatinine and urea levels were measured before and after the chemotherapeutic cycle and over 2 cycles. Patients on crude bee honey and royal jelly capsules showed lower serum levels of renal injury products (creatinine and urea) compared to those in the control group. The changes in kidney parameters were significantly (p honey group before and after cisplatin treatment. Royal jelly was found to be effective; however, the difference in creatinine and urea levels before and after chemotherapy was not statistically significant. The use of bee honey and royal jelly as natural compounds is effective in reducing cisplatin nephrotoxicity and may offer a promising chance for clinically meaningful prevention. This study has potentially important implications for the treatment of cisplatin kidney side effects and is considered to be the first to investigate this effect of honey and royal jelly in human subjects. However, due to its small sample size, we recommend further investigation using a larger sample size.

  3. Central Diabetes Insipidus and Cisplatin-Induced Renal Salt Wasting Syndrome: A Challenging Combination.

    Science.gov (United States)

    Cortina, Gerard; Hansford, Jordan R; Duke, Trevor

    2016-05-01

    We describe a 2-year-old female with a suprasellar primitive neuroectodermal tumor and central diabetes insipidus (DI) who developed polyuria with natriuresis and subsequent hyponatremia 36 hr after cisplatin administration. The marked urinary losses of sodium in combination with a negative sodium balance led to the diagnosis of cisplatin-induced renal salt wasting syndrome (RSWS). The subsequent clinical management is very challenging. Four weeks later she was discharged from ICU without neurological sequela. The combination of cisplatin-induced RSWS with DI can be confusing and needs careful clinical assessment as inaccurate diagnosis and management can result in increased neurological injury. © 2016 Wiley Periodicals, Inc.

  4. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    Science.gov (United States)

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  5. Protective effects of edaravone against cisplatin-induced hair cell damage in zebrafish.

    Science.gov (United States)

    Hong, Seok Jin; Im, Gi Jung; Chang, Jiwon; Chae, Sung Won; Lee, Seung Hoon; Kwon, Soon Young; Jung, Hak Hyun; Chung, Ah Young; Park, Hae Chul; Choi, June

    2013-06-01

    Edaravone is known to have a potent free radical scavenging effect. The objective of the present study was to evaluate the effects of edaravone on cisplatin-induced ototoxicity in transgenic zebrafish (Brn3C: EGFP). Five day post-fertilization zebrafish larvae were exposed to 1000 μM cisplatin and 50 μM, 100 μM, 250 μM, 500 μM, 750 μM, and 1000 μM concentrations of edaravone for 4h. Hair cells within neuromasts of the supraorbital (SO1 and SO2), otic (O1), and occipital (OC1) lateral lines were analyzed by fluorescence microscopy and confocal microscopy (n=10). Hair cell survival was calculated as a percentage of the hair cells in the control group that were not exposed to cisplatin. Ultrastructural changes were evaluated using scanning electron microscopy and transmission electron microscopy. Edaravone protected cisplatin-induced hair cell loss of neuromasts (edaravone 750 μM: 8.7 ± 1.5 cells, cisplatin 1000 μM only: 3.7 ± 0.9 cells; n=10, pedaravone for 4h. Edaravone attenuated cisplatin-induced hair cell damage in zebrafish. The results of the current study suggest that cisplatin induces apoptosis, and the apoptotic cell death can be prevented by treatment with edaravone in zebrafish. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism.

    Science.gov (United States)

    Wang, Yimin; Luo, Xiao; Pan, Hao; Huang, Wei; Wang, Xueping; Wen, Huali; Shen, Kezhen; Jin, Baiye

    2015-09-01

    Cisplatin induced nephrotoxicity is primarily caused by ROS (Reactive Oxygen Species) induced proximal tubular cell death. NADPH oxidase is major source of ROS production by cisplatin. Here, we reported that pharmacological inhibition of NADPH oxidase by acetovanillone (obtained from medicinal herb Picrorhiza kurroa) led to reduced cisplatin nephrotoxicity in mice. In this study we used various molecular biology and biochemistry methods a clinically relevant model of nephropathy, induced by an important chemotherapeutic drug cisplatin. Cisplatin-induced nephrotoxicity was evident by histological damage from loss of the tubular structure. The damage was also marked by the increase in blood urea nitrogen, creatinine, protein nitration as well as cell death markers such as caspase 3/7 activity and DNA fragmentation. Tubular cell death by cisplatin led to pro-inflammatory response by production of TNFα and IL1β followed by leukocyte/neutrophil infiltration which resulted in new wave of ROS involving more NADPH oxidases. Cisplatin-induced markers of kidney damage such as oxidative stress, cell death, inflammatory cytokine production and nephrotoxicity were attenuated by acetovanillone. In addition to that, acetovanillone enhanced cancer cell killing efficacy of cisplatin. Thus, pharmacological inhibition of NADPH oxidase can be protective for cisplatin-induced nephrotoxicity in mice. Copyright © 2015. Published by Elsevier Ltd.

  7. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells.

    Science.gov (United States)

    Lin, Ji-Fan; Lin, Yi-Chia; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng

    2017-01-01

    Cisplatin-based chemotherapy is the first line treatment for several cancers including bladder cancer (BC). Autophagy induction has been implied to contribute to cisplatin resistance in ovarian cancer; and a high basal level of autophagy has been demonstrated in human bladder tumors. Therefore, it is reasonable to speculate that autophagy may account for the failure of cisplatin single treatment in BC. This study investigated whether cisplatin induces autophagy and the mechanism involved using human BC cell lines. Human BC cells (5637 and T24) were used in this study. Cell viability was detected using water soluble tetrazolium-8 reagents. Autophagy induction was detected by monitoring the levels of light chain 3 (LC3)-II and p62 by Western blot, LC3-positive puncta formation by immunofluorescence, and direct observation of the autophagolysosome (AL) formation by transmission electron microscopy. Inhibitors including bafilomycin A1 (Baf A1), chloroquine (CQ), and shRNA-based lentivirus against autophagy-related genes (ATG7 and ATG12) were utilized. Apoptosis level was detected by caspase 3/7 activity and DNA fragmentation. Cisplatin decreased cell viability and induced apoptosis of 5637 and T24 cells in a dose-and time-dependent manner. The increased LC3-II accumulation, p62 clearance, the number of LC3-positive puncta, and ALs in cisplatin-treated cells suggested that cisplatin indeed induces autophagy. Inhibition of cisplatin-induced autophagy using Baf A1, CQ, or ATG7/ATG12 shRNAs significantly enhanced cytotoxicity of cisplatin toward BC cells. These results indicated that cisplatin induced protective autophagy which may contribute to the development of cisplatin resistance and resulted in treatment failure. Mechanistically, upregulation of beclin-1 (BECN1) was detected in cisplatin-treated cells, and knockdown of BECN1 using shRNA attenuated cisplatin-induced autophagy and subsequently enhanced cisplatin-induced apoptosis. Collectively, the study results

  8. The free radical scavenger, edaravone, ameliorates delayed neuropsychological sequelae after acute carbon monoxide poisoning in rabbits.

    Science.gov (United States)

    Qingsong, Wang; Yeming, Guan; Xuechun, Liu; Hongjuan, Liu; Jing, Wang

    2013-01-01

    The mechanism underlying delayed neuropsychological sequelae (DNS) after acute carbon monoxide (CO) poisoning is unclear. There are no effective treatments for DNS. As part of a new generation of antioxidants, edaravone has been reported to improve clinical outcomes in patients exhibiting ischemic strokes. There has been little data about edaravone in relationship to DNS prevention and treatment. We hypothesized that edaravone could ameliorate DNS: Here we test that hypothesis in rabbits Rabbits were randomly divided into sham control,DNS group, saline group and edaravone group. DNS model was made by intraperitoneal injection of CO. Normal saline or edaravone (1 mg/kg, twice daily, a total of one course for 14 days) was infused through the ear vein from Day 15 since the DNS model was established. Serum superoxide dismutase (SOD) activity and malondialdehyde (MDA) were measured in each group. Magnetic resonance spectroscopy (MRS) was used to examine regions of the brain for various compounds. The apoptotic index and neuronal density in the hippocampal CA1 area were also investigated. SOD activity decreased significantly and MDA content increased substantially in the DNS group and saline group when compared with the sham control (p edaravone group, serum SOD activity significantly increased and MDA levels significantly decreased when compared with DNS and saline group (p edaravone group (p edaravone group was significantly lower than that of the DNS and saline groups (p edaravone group was significantly higher than that of the DNS and saline group in the hippocampal CA1 area (p edaravone could ameliorate DNS after acute carbon monoxide poisoning in rabbits. These results suggest free radicals could be involved in the underlying mechanisms of DNS. Furthermore, brain MRS shows promise as a tool for early diagnosis for DNS.

  9. Cisplatin-Induced Conditioned Taste Aversion: Attenuation by Dexamethasone but not Zacopride or GR38032F

    Science.gov (United States)

    1992-01-01

    SR2-1 Cisplatin-induced conditioned taste aversion: ateuto by dexamethasone but not zacopride or GR38032F Nm I- Paul C Mele, John R. McDonough, David...to 5-H1’, receptor blockade. 5-HT., receptor antagonists; Zacopridc: GR38032F; Desamethasone: Cisplatin: Taste aversion (conditioned) I. Introductlon...intake) was used as the area known as the chemoreceptor trigger zone (Borri- index of the CTA. son, 1974). Moreover. the findings that rats, ferrets

  10. Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt

    OpenAIRE

    Yang, X; Fraser, M; Abedini, M R; Bai, T; Tsang, B K

    2008-01-01

    Cisplatin is a first-line chemotherapeutic for ovarian cancer, although chemoresistance limits treatment success. Apoptosis, an important determinant of cisplatin sensitivity, occurs via caspase-dependent and -independent mechanisms. Activation of the protein kinase Akt, commonly observed in ovarian tumours, confers resistance to ovarian cancer cells via inhibition of caspase-dependent apoptosis. However, the effect of Akt on cisplatin-induced, caspase-independent apoptosis remains unclear. W...

  11. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  12. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Science.gov (United States)

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  13. Curcuma longa (curcumin) decreases in vivo cisplatin-induced ototoxicity through heme oxygenase-1 induction.

    Science.gov (United States)

    Fetoni, Anna R; Eramo, Sara L M; Paciello, Fabiola; Rolesi, Rolando; Podda, Maria Vittoria; Troiani, Diana; Paludetti, Gaetano

    2014-06-01

    To investigate whether curcumin may have in vivo protective effects against cisplatin ototoxicity by its direct scavenger activity and/or by curcumin-mediated upregulation of HO-1. Cisplatin-induced ototoxicity is a major dose-limiting side effect in anticancer chemotherapy. A protective approach to decrease cisplatin ototoxicity without compromising its therapeutic efficacy remains a critical goal for anticancer therapy. Recent evidences indicate that curcumin exhibits antioxidant, anti-inflammatory, and chemosensitizer activities. In male adult Wistar rats, a curcumin dose of 200 mg/kg, selected from a dose-response curve, was injected 1 hour before cisplatin administration and once daily for the following 3 days. A single dose of cisplatin (16 mg/kg) was administered intraperitoneally. Rats were divided as follows: 1) control, 2) curcumin control, 3) vehicle control, 4) cisplatin, 5) cisplatin+ vehicle, and 6) curcumin+cisplatin. ABRs were measured before and at Days 3 and 5 after cisplatin administration. Rhodamine-phalloidin staining, 4-hydroxy-2-nonenal and heme-oxigenase-1 immunostainings, and Western blot analyses were performed to assess and quantify OHC loss, lipid peroxidation, and the endogenous response to cisplatin-induced damage and to curcumin protection. Curcumin treatment attenuated hearing loss induced by cisplatin, increased OHC survival, decreased 4-HNE expression, and increased HO-1 expression. This preclinical study demonstrates that systemic curcumin attenuates ototoxicity and provides molecular evidence for a role of HO-1 as an additional mediator in attenuating cisplatin-induced damage.

  14. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    International Nuclear Information System (INIS)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-01-01

    Highlights: ► VCC-1 is hypothesized to be associated with carcinogenesis. ► Levels of VCC-1 are increased significantly in HCC. ► Over-expression of VCC-1 could promotes cellular proliferation rate. ► Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. ► VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  15. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence.

    Science.gov (United States)

    Kumar, Mukesh; Dahiya, Vicky; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Lahkar, Mangala

    2017-05-01

    Nephrotoxicity remain a major life-threatening complication in cancer patients on cisplatin chemotherapy. In this study, we investigated the protective effect and possible cellular mechanism of the hesperetin, a naturally-occurring bioflavonoid against cisplatin-induced renal injury in rats. Hesperetin was administered at a dose of 50mg/kg and 100mg/kg orally for 10days and cisplatin (7.5mg/kg, ip) was administered on the 5th day of experiment. Cisplatin induced nephrotoxicity was evidenced by alteration in the level of markers such as blood urea nitrogen, creatinine, serum albumin and severe histopathological changes in kidney. Cisplatin administration also resulted in significant increase in the tissue oxidative stress and inflammatory cytokines. The level of antioxidants enzymes were decreased significantly in the cisplatin administered rats. Hesperetin treatment (50mg/kg and 100mg/kg) normalized the renal function by attenuation of the cisplatin-induced oxidative stress, lipid peroxidation, and inflammatory cytokines and histopathological alterations. On the basis of these experimental findings our present study postulate that co-administration of hesperetin with cisplatin chemotherapy may be promising preventive approach to limit the major mortal side effect of cisplatin. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Tian, Xiuli; Liu, Zhijun; Yu, Ting; Yang, Haitao; Feng, Linlin

    2018-03-01

    Acute lung injury (ALI) is associated with excessive mortality and lacks appropriate therapy. Ghrelin is a novel peptide that protects the lung against ALI. This study aimed to investigate whether endoplasmic reticulum stress (ERS) mediates the protective effect of ghrelin on ALI. We used a rat oleic acid (OA)-induced ALI model. Pulmonary impairment was detected by hematoxylin and eosin (HE) staining, lung mechanics, wet/dry weight ratio, and arterial blood gas analysis. Plasma and lung content of ghrelin was examined by ELISA, and mRNA expression was measured by quantitative real-time PCR. Protein levels were detected by western blot. Rats with OA treatment showed significant pulmonary injury, edema, inflammatory cellular infiltration, cytokine release, hypoxia and CO 2 retention as compared with controls. Plasma and pulmonary content of ghrelin was reduced in rats with ALI, and mRNA expression was downregulated. Ghrelin (10nmol/kg) treatment ameliorated the above symptoms, but treatment with the ghrelin antagonists D-Lys 3 GHRP-6 (1μmol/kg) and JMV 2959 (6mg/kg) exacerbated the symptoms. ERS induced by OA was prevented by ghrelin and augmented by ghrelin antagonist treatment. The ERS inducer, tunicamycin (Tm) prevented the ameliorative effect of ghrelin on ALI. The decreased ratio of p-Akt and Akt induced by OA was improved by ghrelin treatment, and was further exacerbated by ghrelin antagonists. Ghrelin protects against ALI by inhibiting ERS. These results provide a new target for prevention and therapy of ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Can ebselen prevent cisplatin-induced ovarian damage?

    Science.gov (United States)

    Soyman, Zeynep; Uzun, Hafize; Bayindir, Nihan; Esrefoglu, Mukaddes; Boran, Birtan

    2018-06-01

    The occurrence of ovarian damage is a major shortcoming in treating tumors with cisplatin (CP). The present study investigates the beneficial effects of ebselen-a seleno-organic compound with antioxidant and antiinflammatory properties-vis-à-vis CP-induced ovarian damage. Twenty-eight adult female rats were divided into four study groups. Group 1 received no treatment. The rats in Groups 2, 3, and 4 were intraperitoneally administered CP (2 mg/kg/day) twice per week, for 5 weeks. Those in Group 2 received 0.3 ml saline (0.9% NaCl) intraperitoneally 60 min before each CP treatment, while those in Group 3 received 0.2 ml dimethyl sulfoxide (DMSO) and 0.3 ml saline intraperitoneally 60 min before each CP treatment. The rats in Group 4 were pretreated with an intraperitoneal injection of 15 mg/kg/day ebselen 60 min before each CP treatment. Ovarian tissue malondialdehyde (MDA), total nitric oxide (NOx), glutathione (GSH), Cu/Zn-superoxide dismutase (Cu/Zn-SOD), and catalase levels, as well as histopathological damage scores (HDSs) and serum antimullerian hormone (AMH) levels, were assessed. Cu/Zn-SOD and GSH levels were significantly higher, and MDA and NOx levels significantly lower, in Group 4 than in Groups 2 and 3. Pretreatment with ebselen significantly improved serum AMH levels, relative to Groups 2 and 3. Additionally, HDS values were significantly lower in Group 4 than in Groups 2 and 3. Our results from using an experimental rat model of CP chemotherapy suggest that ebselen use may ameliorate ovarian damage by preventing oxidative injury.

  18. Zingiber officinale Roscoe ameliorates anticancer antibiotic doxorubicin-induced acute cardiotoxicity in rat.

    Science.gov (United States)

    Ajith, Thekkuttuparambil Ananthanarayanan; Hema, Unnikrishnan; Aswathi, Sreedharan

    2016-07-01

    Oxidative stress (OS) has been suggested in the cardiotoxicity induced by anticancer antibiotic doxorubicin (DXN). The cardioprotective effects of aqueous ethanol extract of Zingiber officinale was evaluated against DXN-induced acute cardiac damage in rat. The results of the study demonstrated that Z. officinale significantly and dose dependently protected the cardiotoxicity induced by DXN. The activities of serum glutamate oxaloacetate transaminase and serum lactate dehydrogenase activity in the DXN alone treated group of animals were significantly (pofficinale (200 and 400 mg/kg, p.o) plus DXN treated groups. The cardiac malondialdehyde was elevated in the DXN alone treated group and declined significantly in the Z. officinale (400 mg/kg) plus DXN treated group. The results concluded that aqueous ethanol extract of Z. officinale ameliorated DXN-induced cardiotoxicity. The protection can be ascribed to the free radical scavenging activity of Z. officinale. This protective effect may suggest the adjuvant role of Z. officinale against OS induced by cancer chemotherapeutants, which warrant further research. © 2016 Old City Publishing, Inc.

  19. Neferine reduces cisplatin-induced nephrotoxicity by enhancing autophagy via the AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Li, Hui; Tang, Yuling; Wen, Long; Kong, Xianglong; Chen, Xuelian; Liu, Ping; Zhou, Zhiguo; Chen, Wenhang; Xiao, Chenggen; Xiao, Ping; Xiao, Xiangcheng

    2017-03-11

    Cisplatin is one of the most effective chemotherapeutic agents; however, its clinical use is limited by serious side effects of which nephrotoxicity is the most important. Nephrotoxicity induced by cisplatin is closely associated with autophagy reduction and caspase activation. In this study, we investigated whether neferine, an autophagy inducer, had a protective effect against cisplatin-induced nephrotoxicity. In an in vitro cisplatin-induced nephrotoxicity model, we determined that neferine was able to induce autophagy and that pretreatment with neferine not only attenuated cisplatin-induced cell apoptosis but further activated cell autophagy. This pro-survival effect was abolished by the autophagic flux inhibitor chloroquine. Furthermore, neferine pretreatment activated the AMPK/mTOR pathway; however, pharmacological inhibition of AMPK abolished neferine-mediated autophagy and nephroprotection against cisplatin-induced apoptosis. Collectively, our findings suggest for the first time the possible protective mechanism of neferine, which is crucial for its further development as a potential therapeutic agent for cisplatin-induced nephrotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells.

    Science.gov (United States)

    Del Bello, Barbara; Toscano, Marzia; Moretti, Daniele; Maellaro, Emilia

    2013-01-01

    The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response. Consistently, exogenously stimulated autophagy, obtained with trehalose or calpains inhibitors (MDL-28170 and calpeptin), protects from cisplatin-induced apoptosis, and such a protection is reverted by inhibiting autophagy with 3-methyladenine or ATG5 silencing. In addition, during trehalose-stimulated autophagy, the cisplatin-induced activation of calpains is abrogated, suggesting the existence of a feedback loop between the autophagic process and calpains. On the whole, our results demonstrate that in human melanoma cells autophagy may function as a beneficial stress response, hindered by cisplatin-induced death mechanisms. In a therapeutic perspective, these findings suggest that the efficacy of cisplatin-based polychemotherapies for melanoma could be potentiated by inhibitors of autophagy.

  1. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Lin JF

    2017-05-01

    Full Text Available Ji-Fan Lin,1 Yi-Chia Lin,2 Te-Fu Tsai,2,3 Hung-En Chen,2 Kuang-Yu Chou,2,3 Thomas I-Sheng Hwang2–4 1Central Laboratory, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 2Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, 3Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, 4Department of Urology, Taipei Medical University, Taipei, Taiwan Purpose: Cisplatin-based chemotherapy is the first line treatment for several cancers including bladder cancer (BC. Autophagy induction has been implied to contribute to cisplatin resistance in ovarian cancer; and a high basal level of autophagy has been demonstrated in human bladder tumors. Therefore, it is reasonable to speculate that autophagy may account for the failure of cisplatin single treatment in BC. This study investigated whether cisplatin induces autophagy and the mechanism involved using human BC cell lines.Materials and methods: Human BC cells (5637 and T24 were used in this study. Cell viability was detected using water soluble tetrazolium-8 reagents. Autophagy induction was detected by monitoring the levels of light chain 3 (LC3-II and p62 by Western blot, LC3-positive puncta formation by immunofluorescence, and direct observation of the autophagolysosome (AL formation by transmission electron microscopy. Inhibitors including bafilomycin A1 (Baf A1, chloroquine (CQ, and shRNA-based lentivirus against autophagy-related genes (ATG7 and ATG12 were utilized. Apoptosis level was detected by caspase 3/7 activity and DNA fragmentation.Results: Cisplatin decreased cell viability and induced apoptosis of 5637 and T24 cells in a dose- and time-dependent manner. The increased LC3-II accumulation, p62 clearance, the number of LC3-positive puncta, and ALs in cisplatin-treated cells suggested that cisplatin indeed induces autophagy. Inhibition of cisplatin-induced autophagy using Baf A1, CQ, or ATG7/ATG12 shRNAs significantly enhanced cytotoxicity of

  2. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway.

    Science.gov (United States)

    Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao

    2014-04-06

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Possible mechanism of PNS protection against cisplatin-induced nephrotoxicity in rat models.

    Science.gov (United States)

    Liu, Xinwen; Huang, Zhenguang; Zou, Xiaoqin; Yang, Yufang; Qiu, Yue; Wen, Yan

    2015-01-01

    This study investigates the mechanism of the protective effect of Panax notoginsenosides (PNS) against cisplatin-induced nephrotoxicity via the hypoxia inducible factor 1 (HIF-1)/Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) pathway of autophagy. The rats underwent intraperitoneal injection with a single dose of cisplatin and a subset of rats were also intraperitoneally injected with 31.35 mg/kg PNS once a day. After 24 h exposure to cisplatin, the concentrations of urinary N-acetyl-β-D-glucosaminidase (NAG), blood urea nitrogen (BUN) and serum creatinine (Scr) were determined. The rat renal tissue was examined using H&E-staining, and the mitochondria of renal tubular epithelial cells were observed using transmission electron microscopy. The expressions of microtubule-associated protein-1 light chain (LC)3, autophagy-related gene (Atg)5, Beclin-1 and BNIP3 in rat renal tissue were detected using western blotting. The expression of HIF-1 was detected by immunohistochemistry. The results showed that PNS significantly protected against cisplatin-induced nephrotoxicity, as evidenced by decreasing the concentration of blood BUN and Scr, the attenuation of renal histopathological changes and the mitochondrial damages of renal cells, and the increase of mitochondria autophagosome in renal tubular epithelial cells. Additionally, PNS significantly increased the expression of LC3 and the ratio of LC3II/LC3I in rat renal tissue. Moreover, PNS significantly increased the expression of HIF-1α, BNIP3, Atg5 and Beclin-1 in rat renal tissue. In conclusion, the protective effect of PNS on cisplatin-induced nephrotoxicity was mainly due to its ability to enhancing the mitochondrial autophagy of renal tissue via the HIF-1α/BNIP3 pathway, and here is the first demonstration about it.

  4. Pinpointing differences in cisplatin-induced apoptosis in adherent and non-adherent cancer cells

    DEFF Research Database (Denmark)

    Tastesen, Hanne Sørup; Holm, Jacob Bak; Poulsen, Kristian Arild

    2010-01-01

    Platinum compounds are used in the treatment of cancer. We demonstrate that cisplatin-induced (10 µM) apoptosis (caspase-3 activity) is pronounced within 18 hours in non-adherent Ehrlich ascites tumour cells (EATC), whereas there is no increase in caspase-3 activity in the adherent Ehrlich Lettré...... ascites tumour cells (ELA). Loss of KCl and cell shrinkage are hallmarks in apoptosis and has been shown in EATC. However, we find no reduction in cell volume and only a minor loss of K(+) which is accompanied by net uptake of Na(+) following 18 hours cisplatin exposure in ELA. Glutathione and taurine...

  5. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    International Nuclear Information System (INIS)

    Chen, Han; Sun, Yan Ping; Li, Yang; Liu, Wen Wu; Xiang, Hong Gang; Fan, Lie Ying; Sun, Qiang; Xu, Xin Yun; Cai, Jian Mei; Ruan, Can Ping; Su, Ning; Yan, Rong Lin; Sun, Xue Jun; Wang, Qiang

    2010-01-01

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-κB) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-κB activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-κB activation and to promote acinar cell proliferation.

  6. Orally Administered Enoxaparin Ameliorates Acute Colitis by Reducing Macrophage-Associated Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Qi Ying Lean

    Full Text Available Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS. Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8, colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and the presence of edema, while all aspects of this pathology were alleviated by oral enoxaparin. Reduced number of macrophages in the colon of oral enoxaparin-treated mice was accompanied by decreased levels of pro-inflammatory cytokines. Oral enoxaparin significantly reduces the inflammatory pathology associated with DSS-induced colitis in mice and could therefore represent a novel therapeutic option for the management of ulcerative colitis.

  7. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    Science.gov (United States)

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  8. Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs.

    Science.gov (United States)

    Tate, Alan D; Antonelli, Patrick J; Hannabass, Kyle R; Dirain, Carolyn O

    2017-03-01

    Objective To determine if mitoquinone (MitoQ) attenuates cisplatin-induced hearing loss in guinea pigs. Study Design Prospective and controlled animal study. Setting Academic, tertiary medical center. Subjects and Methods Guinea pigs were injected subcutaneously with either 5 mg/kg MitoQ (n = 9) or normal saline (control, n = 9) for 7 days and 1 hour before receiving a single dose of 10 mg/kg cisplatin. Auditory brainstem response thresholds were measured before MitoQ or saline administration and 3 to 4 days after cisplatin administration. Results Auditory brainstem response threshold shifts after cisplatin treatment were smaller by 28 to 47 dB in guinea pigs injected with MitoQ compared with those in the control group at all tested frequencies (4, 8, 16, and 24 kHz, P = .0002 to .04). Scanning electron microscopy of cochlear hair cells showed less outer hair cell loss and damage in the MitoQ group. Conclusion MitoQ reduced cisplatin-induced hearing loss in guinea pigs. MitoQ appears worthy of further investigation as a means of preventing cisplatin ototoxicity in humans.

  9. Reduced ghrelin secretion in the hypothalamus of rats due to cisplatin-induced anorexia.

    Science.gov (United States)

    Yakabi, Koji; Sadakane, Chiharu; Noguchi, Masamichi; Ohno, Shino; Ro, Shoki; Chinen, Katsuya; Aoyama, Toru; Sakurada, Tomoya; Takabayashi, Hideaki; Hattori, Tomohisa

    2010-08-01

    Although chemotherapy with cisplatin is a widely used and effective cancer treatment, the undesirable gastrointestinal side effects associated with it, such as nausea, vomiting, and anorexia, markedly decrease patients' quality of life. To elucidate the mechanism underlying chemotherapy-induced anorexia, focusing on the hypothalamic ghrelin secretion-anorexia association, we measured hypothalamic ghrelin secretion in fasted and cisplatin-treated rats. Hypothalamic ghrelin secretion changes after vagotomy or administration of cisplatin. Cisplatin + rikkunshito, a serotonin 2C receptor antagonist or serotonin 3 receptor antagonist, was investigated. The effects of intracerebroventricular (icv) administration of ghrelin or the serotonin 2C receptor antagonist SB242084 on food intake were also evaluated in cisplatin-treated rats. Hypothalamic ghrelin secretion significantly increased in 24-h-fasted rats compared to freely fed rats and was markedly reduced 24 and 48 h after cisplatin treatment in cisplatin-treated rats compared to saline-treated rats, although their plasma ghrelin levels were comparable. In cisplatin-treated rats, icv ghrelin administration reversed the decrease in food intake, vagotomy partially restored hypothalamic ghrelin secretion, and hypothalamic serotonin 2C receptor mRNA expression increased significantly. Administration of rikkunshito (an endogenous ghrelin enhancer) or a serotonin 2C receptor antagonist reversed the decrease in hypothalamic ghrelin secretion and food intake 24 h after cisplatin treatment. Cisplatin-induced anorexia is mediated through reduced hypothalamic ghrelin secretion. Cerebral serotonin 2C receptor activation partially induces decrease in hypothalamic ghrelin secretion, and rikkunshito suppresses cisplatin-induced anorexia by enhancing this secretion.

  10. Protective role of edaravone against cisplatin-induced ototoxicity in an auditory cell line.

    Science.gov (United States)

    Im, Gi Jung; Chang, Jiwon; Lee, Sehee; Choi, June; Jung, Hak Hyun; Lee, Hyung Min; Ryu, Sung Hoon; Park, Su Kyoung; Kim, Jin Hwan; Kim, Hyung-Jong

    2015-12-01

    Edaravone is a neuroprotective agent with a potent free radical scavenging and antioxidant actions. In the present study we investigated the influence of edaravone on cisplatin ototoxicity in auditory cells. Cell viability was determined using a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide cell proliferation assay. Oxidative stress and apoptosis were assessed by reactive oxygen species (ROS) measurement, Hoechst 33258 staining, caspase-3 activity assay, and immunoblotting of PARP. Pretreatment with 100 μM of edaravone prior to application of 15 μM of cisplatin increased cell viability after 48 h of incubation in HEI-OC1 cells (from 51.9% to 64. 6% viability) and also, attenuated the cisplatin-induced increase in reactive oxygen species (ROS) (from 2.3 fold to 1.9 fold). Edaravone also decreased the activation of caspase-3 and reduced levels of cleaved poly-ADP-ribose polymerase (PARP). We propose that edaravone protects against cisplatin-induced ototoxicity by preventing apoptosis, and limiting ROS production in HEI-OC1 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Protective Effect of Aqueous and Ethanolic Extracts of Portulaca Oleracea Against Cisplatin Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Gholamreza Karimi

    2010-04-01

    Full Text Available Objective(sPortulaca oleracea L. is a herbaceous weed from portulacaceae family. It can be found in many parts of the world. Modern pharmacological studies have demonstrated that P. oleracea have antioxidant effects. The protective effect of aqueous and ethanolic extract of P. oleracea against cisplatin-induced renal toxicity was studied in rats.Materials and MethodsSingle intraperitoneal injection of 4 mg/kg cisplatin was administrated to rats. After 5 days, blood urea nitrogen (BUN and serum creatinine (Scr concentration were determined. Effect of aqueous and ethanolic extracts, before and after cisplatin injection on BUN and Scr, as well as morphological renal damage, was evaluated. ResultsIt was indicated that treatment with aqueous and ethanolic extracts of P. oleracea in the highest dose (0.8 and 2 g/ kg, 6 and 12 hr before cisplatin injection reduced BUN and Scr. Tubular necrotic damage was not observed either. ConclusionResults suggest that P. oleracea extract may protect against cisplatin-induced renal toxicity and might serve as a novel combination agent with cisplan to limit renal injury.

  12. Effects of a histamine H4 receptor antagonist on cisplatin-induced anorexia in mice.

    Science.gov (United States)

    Yamamoto, Kouichi; Okui, Rikuya; Yamatodani, Atsushi

    2018-04-12

    Cancer chemotherapy often induces gastrointestinal symptoms such as anorexia, nausea, and vomiting. Antiemetic agents are effective in inhibiting nausea and vomiting, but patients still experience anorexia. We previously reported that chemotherapeutic agent-induced anorexia is associated with an increase of inflammatory cytokines. Other studies also reported that antagonism of the histamine H 4 receptor is anti-inflammatory. In this study, we investigated the involvement of the H 4 receptor in the development of chemotherapy-induced anorexia in mice. Cisplatin-induced anorexia occurred within 24 h of its administration and continued for 3 days. The early phase (day 1), but not the delayed phase (days 2 and 3), of anorexia was inhibited by the daily injection of a 5-HT 3 receptor antagonist (granisetron). However, a corticosteroid (dexamethasone) or selective H 4 receptor antagonist (JNJ7777120) abolished the delayed phases of anorexia. Cisplatin significantly increased TNF-α mRNA expression in the hypothalamus and spleen, and the period of expression increase paralleled the onset period of anorexia. In addition, pretreatment with JNJ7777120 completely inhibited the increased expression. These results suggest that TNF-α mRNA expression via H 4 receptors may contribute to the development of cisplatin-induced anorexia, and that H 4 receptor antagonists are potentially useful treatments. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Beneficial Effects of Bioactive Compounds in Mulberry Fruits against Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Dahae Lee

    2018-04-01

    Full Text Available Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae, is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1–5. The compounds were identified as butyl pyroglutamate (1, quercetin 3-O-β-d-glucoside (2, kaempferol 3-O-β-d-rutinoside (3, rutin (4, and 2-phenylethyl d-rutinoside (5 by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR data with those in published literature, and liquid chromatography–mass spectrometry analysis. The isolated compounds 1–5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.

  14. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    Science.gov (United States)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  15. Protective effect and mechanism of action of saponins isolated from the seeds of gac (Momordica cochinchinensis Spreng.) against cisplatin-induced damage in LLC-PK1 kidney cells.

    Science.gov (United States)

    Jung, Kiwon; Lee, Dahae; Yu, Jae Sik; Namgung, Hojin; Kang, Ki Sung; Kim, Ki Hyun

    2016-03-01

    This study was performed to investigate the renoprotective effect and mechanism of Momordicae Semen, gac seeds, against the cisplatin-induced damage in LLC-PK1 kidney cells. In order to identify the active components, three major saponins were isolated from extract of the gac seed, gypsogenin 3-O-β-d-galactopyranosyl(1→2)-[α-L-rhamnopyranosyl(1→3)]-β-d-glucuronopyranoside (1), quillaic acid 3-O-β-D-galactopyranosyl(1→2)-[α-L-rhamnopyranosyl(1→3)]-β-D-glucuronopyranoside (2), and momordica saponin I (3). Compounds 1 and 2 ameliorated cisplatin-induced nephrotoxicity up to 80% of the control value at both 5 and 25μM. Phosphorylation of MAPKs was decreased along cisplatin treatment after treatment with compounds 1 and 2. These results show that blocking the MAPKs signaling cascade plays a critical role in mediating the renoprotective effect of Momordicae Semen extract and compounds 1 and 2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Andrographolide Ameliorates Beta-Naphthoflavone-Induced CYP1A Enzyme Activity and Lipid Peroxidation in Hamsters with Acute Opisthorchiasis.

    Science.gov (United States)

    Udomsuk, Latiporn; Chatuphonprasert, Waranya; Jarukamjorn, Kanokwan; Sithithaworn, Paiboon

    2016-01-01

    Opisthorchis viverrini (OV) infection generates oxidative stress/free radicals and is considered as a primary cause ofcholangiocarcinoma since it primarily triggers sclerosing cholangitis. In this study, the impacts of andrographolide on acute opisthorchaisis in β-naphthoflavone (BNF)-exposed hamsters were investigated. Ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) activities and Thiobarbituric acid reaction substances (TBARS) assay of andrographolide in acute opisthorchiasis in the BNF-exposed hamsters were assessed. The results showed that andrographolide ameliorated the hepatic CYP1A1 and CYP1A2 activities by decreases of the specific enzymatic reactions of EROD and MROD, respectively, in the BNF-exposed hamsters. Moreover, andrographolide lowered the formation of malondialdehyde in the livers and brains of the hamsters. These observations revealed the promising chemo-protective and antioxidant activities of andrographolide via suppression of the specific EROD and MROD reactions and lipid peroxidation against acute opisthorchiasis in the BNF-exposed hamsters.

  17. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity

    International Nuclear Information System (INIS)

    Singh, Amarinder; Arvinda, S; Singh, Surjeet; Suri, Jyotsna; Koul, Surinder; Mondhe, Dilip M.; Singh, Gurdarshan; Vishwakarma, Ram

    2017-01-01

    The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24β-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100 mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism. - Highlights: • Synthesis of a novel boswellic acid derivative (IN0523) • Counter oxidative stress induced due to Cisplatin • Protect against urogenital toxicity induced by Cisplatin

  18. Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: In vivo investigation and LC-MS analysis.

    Science.gov (United States)

    Katanić, Jelena; Matić, Sanja; Pferschy-Wenzig, Eva-Maria; Kretschmer, Nadine; Boroja, Tatjana; Mihailović, Vladimir; Stanković, Vesna; Stanković, Nevena; Mladenović, Milan; Stanić, Snežana; Mihailović, Mirjana; Bauer, Rudolf

    2017-01-01

    Filipendula ulmaria, known as meadowsweet, is a perennial herb found in wild and cultivated habitats in Europe and Asia. Usage of F. ulmaria in traditional medicine is based on diuretic, astringent, antirheumatic, and anti-inflammatory properties of this plant. Exposure to cisplatin at a dose of 7.5 mg/kg caused significant increase in serum parameters of liver and kidneys function and tissue oxidative stress markers along with some histopathological changes in liver and kidney tissues of experimental rats, as well as high level of genotoxicity. Administration of F. ulmaria extracts in three different concentrations (100, 200, and 400 mg/kg/day) for 10 days resulted in a reduction of oxidative stress in tissues and decrease of serum parameters. Moreover, tested extracts attenuated the genotoxicity of cisplatin in reverse dose-dependent manner. F. ulmaria extracts had no in vitro cytotoxic activity at all applied concentrations (IC 50  > 50 μg/mL). Tested extracts, rich in polyphenolic compounds, attenuate cisplatin-induced liver and kidney oxidative stress, reduce tissue damage, and enhance the antioxidative status of experimental animals during cisplatin application. Therefore, F. ulmaria extracts may be used as supportive agent for the prevention and amelioration of cisplatin side effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Amarinder [Academy of Scientific & Innovative Research (AcSIR), New Delhi (India); PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Arvinda, S [Deptt. of Pathology, Govt. Medical College, Jammu 180001, J& K (India); Singh, Surjeet [PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Suri, Jyotsna [Deptt. of Pathology, Govt. Medical College, Jammu 180001, J& K (India); Koul, Surinder [Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Mondhe, Dilip M. [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Singh, Gurdarshan, E-mail: singh_gd@iiim.ac.in [PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Vishwakarma, Ram [Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India)

    2017-03-01

    The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24β-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100 mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism. - Highlights: • Synthesis of a novel boswellic acid derivative (IN0523) • Counter oxidative stress induced due to Cisplatin • Protect against urogenital toxicity induced by Cisplatin.

  20. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity.

    Science.gov (United States)

    Singh, Amarinder; Arvinda, S; Singh, Surjeet; Suri, Jyotsna; Koul, Surinder; Mondhe, Dilip M; Singh, Gurdarshan; Vishwakarma, Ram

    2017-03-01

    The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24β-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice

    Directory of Open Access Journals (Sweden)

    Carlton Susan M

    2010-03-01

    Full Text Available Abstract Background Cisplatin is primarily used for treatment of ovarian and testicular cancer. Oxaliplatin is the only effective treatment for metastatic colorectal cancer. Both are known to cause dose related, cumulative toxic effects on the peripheral nervous system and thirty to forty percent of cancer patients receiving these agents experience painful peripheral neuropathy. The mechanisms underlying painful platinum-induced neuropathy remain poorly understood. Previous studies have demonstrated important roles for TRPV1, TRPM8, and TRPA1 in inflammation and nerve injury induced pain. Results In this study, using real-time, reverse transcriptase, polymerase chain reaction (RT-PCR, we analyzed the expression of TRPV1, TRPM8, and TRPA1 induced by cisplatin or oxaliplatin in vitro and in vivo. For in vitro studies, cultured E15 rat dorsal root ganglion (DRG neurons were treated for up to 48 hours with cisplatin or oxaliplatin. For in vivo studies, trigeminal ganglia (TG were isolated from mice treated with platinum drugs for three weeks. We show that cisplatin and oxaliplatin-treated DRG neurons had significantly increased in TRPV1, TRPA1, and TRPM8 mRNA expression. TG neurons from cisplatin treated mice had significant increases in TRPV1 and TRPA1 mRNA expression while oxaliplatin strongly induced only TRPA1. Furthermore, compared to the cisplatin-treated wild-type mice, cisplatin-treated TRPV1-null mice developed mechanical allodynia but did not exhibit enhancement of noxious heat- evoked pain responses. Immunohistochemistry studies showed that cisplatin-treated mice had no change in the proportion of the TRPV1 immunopositive TG neurons. Conclusion These results indicate that TRPV1 and TRPA1 could contribute to the development of thermal hyperalgesia and mechanical allodynia following cisplatin-induced painful neuropathy but that TRPV1 has a crucial role in cisplatin-induced thermal hyperalgesia in vivo.

  2. Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways ana Activating Transcription Factor 3

    Directory of Open Access Journals (Sweden)

    Carly St. Germain

    2010-07-01

    Full Text Available The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3 as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogenactivated protein kinase (MAPK pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellularsignal-regulated kinase, and p38 resulted in decreasedATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-ylF2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/murine embryonic fibroblasts (MEFs were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin’s cytotoxic effects.

  3. Cisplatin Induces Bmi-1 and Enhances the Stem Cell Fraction in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Carolina Nör

    2014-02-01

    Full Text Available Recent evidence has unveiled a subpopulation of highly tumorigenic, multipotent cells capable of self-renewal in head and neck squamous cell carcinomas (HNSCCs. These unique cells, named here cancer stem cells (CSCs, proliferate slowly and might be involved in resistance to conventional chemotherapy. We have shown that CSCs are found in perivascular niches and rely on endothelial cell-secreted factors [particularly interleukin-6 (IL-6] for their survival and self-renewal in HNSCC. Here, we hypothesized that cisplatin enhances the stem cell fraction in HNSCC. To address this hypothesis, we generated xenograft HNSCC tumors with University of Michigan-squamous cell carcinoma 22B (UM-SCC-22B cells and observed that cisplatin treatment increased (P = .0013 the fraction of CSCs [i.e., aldehyde dehydrogenase activity high and cluster of differentiation 44 high (ALDHhighCD44high]. Cisplatin promoted self-renewal and survival of CSCs in vitro, as seen by an increase in the number of orospheres in ultralow attachment plates and induction in B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1 and octamer-binding transcription factor 4 expression. Cisplatin-resistant cells expressed more Bmi-1 than cisplatinsensitive cells. IL-6 potentiated cisplatin-induced orosphere formation generated when primary human HNSCC cells were sorted for ALDHhighCD44high immediately after surgery and plated onto ultralow attachment plates. IL-6-induced signal transducer and activator of transcription 3 (STAT3 phosphorylation (indicative of stemness was unaffected by treatment with cisplatin in UM-SCC-22B cells, whereas IL-6-induced extracellular signal-regulated kinase (ERK phosphorylation (indicative of differentiation processes was partially inhibited by cisplatin. Notably, cisplatin-induced Bmi-1 was inhibited by interleukin-6 receptor blockade in parental and cisplatin-resistant cells. Taken together, these results demonstrate that cisplatin enhances the fraction of CSCs

  4. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  5. Ameliorative Effects of Chloroform Fraction of Cocos nucifera L. Husk Fiber Against Cisplatin-induced Toxicity in Rats.

    Science.gov (United States)

    Adaramoye, Oluwatosin Adekunle; Azeez, Adesola Fausat; Ola-Davies, Olufunke Elizabeth

    2016-01-01

    Cisplatin (Cis) is used in the treatment of solid tumors and is known to elicit serious side effects. The present study investigated the protective effects of chloroform fraction of Cocos nucifera husk fiber (CFCN) against Cis-induced organs' damage and chromosomal defect in rats. Quercetin (QUE), standard antioxidant, served as positive control. Thirty male Wistar rats were assigned into six groups and treated with corn oil (control), Cis alone, Cis + CFCN, CFCN alone, Cis + QUE, and QUE alone. QUE and CFCN were given at 50 and 200 mg/kg/day, respectively, by oral gavage for 7 days before the rats were exposed to a single dose of Cis (10 mg/kg, intraperitoneal) at the last 36 h of study. Administration of Cis alone caused a significant (P 0.05) affected in Cis-treated rats. Furthermore, the activities of hepatic and renal catalase, superoxide dismutase, glutathione S-transferase, glutathione peroxidase, and levels of reduced glutathione were significantly (P Cocos nucifera husk fiber (CFCN) against Cis-induced organs' damage while quercetin (QUE) served as standard antioxidant.Thirty male Wistar rats were assigned into six groups and treated with corn oil (Control), Cis alone, Cis + CFCN, CFCN alone, Cis + QUE and QUE alone.QUE and CFCN were given at 50 and 200 mg/kg/day respectively by oral gavage for seven days before the rats were exposed to a single dose of Cis (10mg/kg, i.p.) at the last 36 h of study. Results indicate that administration of Cis caused a significant (P0.05) affected in Cis-treated rats.The activities of hepatic and renal catalase, superoxide dismutase, glutathione-s-transferase, glutathione peroxidase and levels of reduced glutathione were significantly (P<0.05) decreased in Cis-treated rats with concomitant elevation of malondialdehyde.Cis exposure increased the frequency of micronucleated polychromatic erythrocytes (mPCE) by 92%.Pretreatment with CFCN inhibited lipid peroxidation, enhanced the activities of some antioxidative enzymes and reduced the frequency of mPCE. The findings suggest that CFCN may protect against organs damage by cisplatin.Further studies are required to determine the component of the plant responsible for this activity.

  6. Ameliorative effect of parsley oil on cisplatin-induced hepato-cardiotoxicity: A biochemical, histopathological, and immunohistochemical study.

    Science.gov (United States)

    Abdellatief, Suhair A; Galal, Azza A A; Farouk, Sameh M; Abdel-Daim, Mohamed M

    2017-02-01

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is an effective DNA alkylating agent used in the treatment of different types of tumors; however, its clinical use is associated with hepato-cardiotoxicity. The current study was designed to assess the potential protective effect of parsley oil (PO) against CDDP-induced hepato-cardiotoxicity. For this purpose, 25 adult male rats were assigned into five groups, each containing five animals. Group I (control) was administered saline solution. Group II was administered PO at a dosage of 0.42ml/kg BW. Group III were administered CDDP at a dosage of 5mg/kg BW. Group IV was administered PO in addition to CDDP. Group V was administered saline solution in addition to CDDP, after which they were administered PO for five days. Oral administration of either saline solution or PO was performed each day for 10days, while administration of CDDP was via a single intraperitoneal injection five days following the commencement of the experiment. The recorded results revealed that CDDP induced obvious hepatic and cardiac injuries that were indicated by biochemical, histopathological, and immunohistochemical alterations, including elevation of serum hepatic and cardiac injury markers as well as proinflammatory cytokines. Moreover, CDDP induced an increase in the level of hepatic and cardiac injury biomarkers, decreases in the activities of antioxidant enzymes, a decrease in GSH concentration, and an increase in MDA concentration. CDDP also induced histopathological hepatocellular and myocardial changes, and overexpression of p53 and COX-2 in hepatic and cardiac tissues. Administration of PO either as a preventative medicine or as treatment significantly improved all the observed deleterious effects induced by CDDP in rat liver and heart. Thus, it may be concluded that PO, with its antioxidant, anti-inflammatory, and antiapoptotic activities, can potentially be used in the treatment of CDDP-induced hepatic and cardiac injuries. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Ameliorative influence of Urtica dioica L against cisplatin-induced toxicity in mice bearing Ehrlich ascites carcinoma.

    Science.gov (United States)

    Özkol, Halil; Musa, Davut; Tuluce, Yasin; Koyuncu, Ismail

    2012-07-01

    Cisplatin (CP) is a widely used cytotoxic agent against cancer, and high doses of CP have been known to cause nephrotoxicity and hepatotoxicity. Some reports claim that antioxidants can reduce CP-induced toxicity. This study investigated the hepatoprotective, nephroprotective, and antioxidant activity of Urtica dioica L methanolic extract (UDME) against CP toxicity in Erhlich ascites tumor (EAT)-bearing mice. Levels of serum hepatic enzymes, renal function markers, and oxidant/antioxidant parameters of liver tissue were measured. Mice were inoculated with EAT on day 0 and treated with nothing else for 24 hours. After a single dose of CP administration on day 1, the extract was given at the doses of 50, 100, 200, and 400 mg/kg body weight daily during 6 days. Almost all doses of UDME performed a significant (P < 0.05) preventive role against CP toxicity by decreasing aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, blood urea nitrogen, creatinine, lipid peroxidation, protein oxidation levels, and myeloperoxidase activity, as well as increasing reduced glutathione content, superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase activities. This suggests that UDME has a protective capacity and antioxidant activity against CP toxicity in EAT-bearing mice, probably by promoting antioxidative defense systems.

  8. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus.

    Science.gov (United States)

    Jangra, Ashok; Kwatra, Mohit; Singh, Tavleen; Pant, Rajat; Kushwah, Pawan; Ahmed, Sahabuddin; Dwivedi, Durgesh; Saroha, Babita; Lahkar, Mangala

    2016-11-15

    Cisplatin is a chemotherapeutic agent used in the treatment of malignant tumors. A major clinical limitation of cisplatin is its potential toxic effects, including neurotoxicity. Edaravone, a potent free radical scavenger, has been reported to have the neuroprotective effect against neurological deficits. The aim of the present study was to determine the neuroprotective effect of edaravone against cisplatin-induced behavioral and biochemical anomalies in male Wistar rats. Our results showed that cisplatin (5mg/kg/week, i.p.) administration for seven weeks caused marked cognitive deficits and motor incoordination in rats. This was accompanied by oxido-nitrosative stress, neuroinflammation, NF-κB activation and down-regulation of Nrf2/HO-1 gene expression level in the hippocampus. Edaravone (10mg/kg/week, i.p.) treatment for seven weeks inhibited the aforementioned neurobehavioral and neurochemical deficits. Furthermore, edaravone was found to up-regulate the gene expression level of Nrf2/HO-1 and prevented the cisplatin-induced NF-κB activation. These findings demonstrated that oxido-nitrosative stress and inflammatory signaling mediators play a key role in the development of cisplatin-induced neurobehavioral deficits which were prevented by edaravone treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A H2S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Mi Liu

    2016-01-01

    Full Text Available Accumulating evidence demonstrated that hydrogen sulfide (H2S is highly involved in inflammation, oxidative stress, and apoptosis and contributes to the pathogenesis of kidney diseases. However, the role of H2S in cisplatin nephrotoxicity is still debatable. Here we investigated the effect of GYY4137, a novel slow-releasing H2S donor, on cisplatin nephrotoxicity in mice. Male C57BL/6 mice were pretreated with GYY4137 for 72 h prior to cisplatin injection. After cisplatin treatment for 72 h, mice developed obvious renal dysfunction and kidney injury as evidenced by elevated blood urea nitrogen (BUN and histological damage. Consistently, these mice also showed increased proinflammatory cytokines such as TNF-α, IL-6, and IL-1β in circulation and/or kidney tissues. Meanwhile, circulating thiobarbituric aid-reactive substances (TBARS and renal apoptotic indices including caspase-3, Bak, and Bax were all elevated. However, application of GYY4137 further aggravated renal dysfunction and kidney structural injury in line with promoted inflammation, oxidative stress, and apoptotic response following cisplatin treatment. Taken together, our results suggested that GYY4137 exacerbated cisplatin-induced nephrotoxicity in mice possibly through promoting inflammation, oxidative stress, and apoptotic response.

  10. Effect of Taurine on Cisplatin -Induced Nephrotoxicity and Hepatoxicity in Male Rat

    Directory of Open Access Journals (Sweden)

    Noruzi M.

    2010-06-01

    Full Text Available Background and Objectives: Cisplatin, Platinum co-ordinate complex is a widely used antineaplastic agent for treatment of metastatic tumors. Taurine is an organic acid and an endogenous antioxidant. In this study we investigated the protective effect of taurine as an endogenous antioxidant against cisplatin induced nephrotoxicity and hepatotexicity.Methods: 24 male albino rats (180-220 grams were divided into 4 groups (n=6: (1: saline-treated group (2: cisplatin-treated group (10mg/kg, ip (3: group that received taurine (400mg/kg, ip 1hr before cisplatin (10mg/kg, ip administration (4: taurine (400mg/kg, ip. The animals were killed 7days after treatment and then blood samples were collected.Results: The results of this study indicated that cisplatin significantly increased CRATININ, URE, ALT, AST levels as compared to control group. Moreover, taurine significantly decreased CRATININ, URE, ALT and AST levels compared to cisplatin group.Conclusion: According to this study taurine prevents the incease of Creatinin, BUN, ALT and AST levels assisted by cisplatin, which may be due to its antioxidant properties.Keywords: Cisplatin; Taurine; Hepatoxicity; Nephrotoxicity; Nephrons.

  11. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    Science.gov (United States)

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  12. Allicin protects against cisplatin-induced vestibular dysfunction by inhibiting the apoptotic pathway.

    Science.gov (United States)

    Wu, Xianmin; Cai, Jing; Li, Xiaofei; Li, He; Li, Jianfeng; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-06-15

    Cisplatin is an anticancer drug that causes the impairment of inner ear function as side effects, including hearing loss and balance dysfunction. The purpose of this study was to investigate the effects of allicin against cisplatin-induced vestibular dysfunction in mice and to make clear the mechanism underlying the protective effects of allicin on oto-vestibulotoxicity. Mice intraperitoneally injected with cisplatin exhibited vestibular dysfunction in swimming test, which agreed with impairment in vestibule. However, these impairments were significantly prevented by pre-treatment with allicin. Allicin markedly reduced cisplatin-activated expression of cleaved-caspase-3 in hair cells and vascular layer cells of utricule, saccule and ampulla, but also decreased AIF nuclear translocation of hair cells in utricule, saccule and ampulla. These results showed that allicin played an effective role in protecting vestibular dysfunction induced by cisplatin via inhibiting caspase-dependent and caspase-independent apoptotic pathways. Therefore, allicin may be useful in preventing oto-vestibulotoxicity mediated by cisplatin. Copyright © 2017. Published by Elsevier B.V.

  13. Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model.

    Science.gov (United States)

    Almutairi, Mashal M; Alanazi, Wael A; Alshammari, Musaad A; Alotaibi, Moureq Rashed; Alhoshani, Ali R; Al-Rejaie, Salim Salah; Hafez, Mohamed M; Al-Shabanah, Othman A

    2017-09-29

    Cisplatin is widely used chemotherapeutic agent for cancer treatment with limited uses due to its neurotoxic side effect. The aim of this study was to determine the potential preventive effects of rutin on the brain of cisplatin- neurotoxic rat model. Forty rats were divided into four groups. Group-1 (control group) was intra-peritoneal (IP) injected with 2.5 ml/kg saline. Group-2 (rutin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days. Group-3 (cisplatin group) was IP received 5 mg/kg cisplatin single dose. Group-4 (rutin and cisplatin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days with a single dose of 5 mg/kg cisplatin IP on day ten. Brain tissues from frontal cortex was used to extract RNA, the gene expression levels of paraoxonase-1 (PON-1), PON-2, PON-3, peroxisome proliferator-activated receptor delta (PPAR-δ), and glutathione peroxidase (GPx) was investigated by Real-time PCR. Cisplatin significantly decreased the expression levels of PON-1, PON-3, PPAR-δ and GPX whereas significantly increased PON-2 expression levels. Co-administration of Rutin prevented the cisplatin-induced toxicity by restoring the alteration in the studied genes to normal values as in the control group. This study showed that Rutin has neuroprotective effect and reduces cisplatin- neurotoxicity with possible mechanism via the antioxidant pathway.

  14. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.

    Science.gov (United States)

    S, Latha; Chaudhary, Sheetal; R S, Ray

    2017-11-01

    Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Amelioration of liver injury by continuously targeted intervention against TNFRp55 in rats with acute-on-chronic liver failure.

    Directory of Open Access Journals (Sweden)

    Yumin Xu

    Full Text Available Acute-on-chronic liver failure (ACLF is an acute deterioration of established liver disease. Blocking the TNF (tumor necrosis factor/TNFR (tumor necrosis factor receptor 1 pathway may reduce hepatocyte apoptosis/necrosis, and subsequently decrease mortality during development of ACLF. We demonstrated that a long-acting TNF antagonist (soluble TNF receptor: IgG Fc [sTNFR:IgG-Fc] prevented/reduced development of acute liver failure by blocking the TNF/TNFR1 (TNFRp55 pathway. However, it is still unclear if sTNFR:IgG-Fc can inhibit hepatocyte damage during development of ACLF.Chronic liver disease (liver fibrosis/cirrhosis was induced in Wistar rats by repeatedly challenging with human serum albumin (HSA, and confirmed by histopathology. ACLF was induced with D-galactosamine (D-GalN/lipopolysaccharide (LPS i.p. in the rats with chronic liver disease. Serum and liver were collected for biochemical, pathological and molecular biological examinations.Reduced mortality was observed in sTNFR:IgG-Fc treated ACLF rats, consistent with reduced interleukin (IL-6 levels in serum and liver, as well as reduced hepatic caspase-3 activity, compared to that of mock treated group. Reduced hepatic damage was confirmed with histopathology in the sTNFR:IgG-Fc treated group, which is consistent with reduced Bcl-2 and Bax, at mRNA and protein levels, but increased hepatocyte proliferation (PCNA. This is also supported by the findings that caspase-3 production was up-regulated significantly in ACLF group compared to the mock treated group. Moreover, up-regulated caspase-3 was inhibited following sTNFR:IgG-Fc treatment. Finally, there was up-regulation of hepatic IL-22R in sTNFR:IgG-Fc treated ACLF rats.sTNFR:IgG-Fc improved survival rate during development of ACLF via ameliorating liver injury with a potential therapeutic value.

  16. Sucralfate does not ameliorate acute radiation proctitis: randomised study and meta-analysis.

    Science.gov (United States)

    Hovdenak, N; Sørbye, H; Dahl, O

    2005-09-01

    During pelvic radiotherapy, many patients develop radiation-induced gastrointestinal symptoms, which may interfere with treatment. Prophylaxis during radiotherapy should ideally prevent acute reaction and the development of delayed injury. Sucralfate, an aluminium sucrose octasulphate, has been used for acute and delayed radiation side-effects. However, conflicting results have been published. We report here a prospective, randomised, placebo-controlled study of prophylactic sucralfate during pelvic radiotherapy. In addition, a meta-analysis of available data from the literature has been carried out. Fifty-one patients with localised pelvic tumours scheduled for curative conformal pelvic radiotherapy (total dose 64-70 Gy over 6.5-7 weeks in 2 Gy daily fractions) were included. Peroral sucralfate 2 g three times daily, or identically appearing placebo tablets, was given during the course of radiotherapy. Symptom registration, endoscopy and biopsies were carried out immediately before radiotherapy, 2 weeks and 6 weeks into the treatment course, and 2 weeks after completing radiotherapy. Mucosal cup forceps biopsies were obtained through a rigid proctoscope. Graded endoscopic appearance and quantitative histology were registered. On the basis of previously published negative reports, an unplanned interim analysis of 44 evaluable patients showed significantly increased diarrhoea in the sucralfate group and the trial was stopped. No difference was seen in other symptoms, endoscopic appearance or histology. A meta-analysis comprising five published studies showed no statistically significant beneficial effect of sucralfate on acute symptoms. Sucralfate cannot be recommended for prophylaxis of acute radiation proctopathy and may even worsen the symptoms.

  17. Protective effects of the Morus alba L. leaf extracts on cisplatin-induced nephrotoxicity in rat

    Science.gov (United States)

    Nematbakhsh, M; Hajhashemi, V; Ghannadi, A; Talebi, A; Nikahd, M

    2013-01-01

    Cisplatin (CP) as an important anti-tumor drug causes nephrotoxicity mainly by oxidative stress and renin-angiotensin system (RAS). Since flavonoids have high antioxidant activity and probable role in the inhibition of RAS, this study was designed to investigate the protective effect of hydroalcoholic extract and flavonoid fraction of Morus alba leaves on cisplatin-induced nephrotoxicity in rat. Extracts of Morus alba leaves were prepared and analyzed Phytochemically. Male rats (160-200 g) were used in this study (n=7-9). Normal group received 0.2 ml normal saline intraperitoneally (i.p.) once daily for ten days. Control animals received CP on the third day and saline in the remaining days. Other groups received either hydroalcoholic extract (200, 400 and 600 mg/kg, i.p.) or flavonoid fraction (50, 100 and 200 mg/kg, i.p.) for two days before CP administration and thereafter until tenth day. Serum concentrations of blood urea nitrogen (BUN), creatinine (Cr) and nitric oxide were measured using standard methods. Also left kidneys were prepared for pathological study. The serum levels of BUN and Cr increased in animals received CP. Hydroalcoholic extract was ineffective in reversing these alterations but flavonoid fraction (50 and 100 mg/kg) significantly inhibited CP-induced increases of BUN and Cr. None of the treatments could affect serum concentration of nitric oxide. Flavonoid fraction could also prevent CP-induced pathological damage of the kidney. It seems that concurrent use of flavonoid fraction of Morus alba with CP can protect kidneys from CP-induced nephrotoxicity. PMID:24019816

  18. Alpha2,3-sialyltransferase III knockdown sensitized ovarian cancer cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Wang, Xiaoyu; Zhang, Yiting; Lin, Haiyingjie; Liu, Yan; Tan, Yi; Lin, Jie; Gao, Fenze; Lin, Shaoqiang

    2017-01-22

    Emerging evidence indicates that β-galactoside-α2,3-sialyltransferase III (ST3Gal3) involves in development, inflammation, neoplastic transformation, and metastasis. However, the role of ST3Gal3 in regulating cancer chemoresistance remains elusive. Herein, we investigated the functional effects of ST3Gal3 in cisplatin-resistant ovarian cancer cells. We found that the levels of ST3Gal3 mRNA differed significantly among ovarian cancer cell lines. HO8910PM cells that have high invasive and metastatic capacity express elevated ST3Gal3 mRNA and are resistant to cisplatin, comparing to SKOV3 cells that have a lower level of ST3Gal3 expression and are more chemosensitive to cisplatin. We found that the expression of ST3Gal3 has reverse correlation with the dosage of cisplatin used in both SKOV3 and HO8910PM cells, and high dose of cisplatin could down-regulate ST3Gal3 expression. We then examined the functional effects of ST3Gal3 knockdown in cancer cell lines using FACS analysis. The number of apoptotic cells was much higher in cells if ST3Gal3 expression was knocked down by siRNA and/or by treating cells with higher dosage of cisplatin in comparison to control cells. Interestingly, in HO8910PM cells with ST3Gal3 knockdown, the levels of caspase 8 and caspase 3 proteins increased, which was more obvious in cells treated with both ST3Gal3 knockdown and cisplatin, suggesting that ST3Gal3 knockdown synergistically enhanced cisplatin-induced apoptosis in ovarian cancer cells. Taken together, these results uncover an alternative mechanism of cisplatin-resistance through ST3Gal3 and open a window for effective prevention of chemoresistance and relapse of ovarian cancer by targeting ST3Gal3. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    International Nuclear Information System (INIS)

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-01-01

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI

  20. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  1. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Zhai, Zhifang [Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Gang Huang [Department of Medical Genetics, Third Military Medical University, Chongqing 430038 (China); Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Hou, Weiping, E-mail: hwp0518@aliyun.com [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China)

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  2. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain.

    Science.gov (United States)

    Kim, Shi Hyoung; Park, Jae Gwang; Sung, Gi-Ho; Yang, Sungjae; Yang, Woo Seok; Kim, Eunji; Kim, Jun Ho; Ha, Van Thai; Kim, Han Gyung; Yi, Young-Su; Kim, Ji Hye; Baek, Kwang-Soo; Sung, Nak Yoon; Lee, Mi-nam; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. miR-203 inhibits cell proliferation and promotes cisplatin induced cell death in tongue squamous cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiong; Lin, Yao [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China); Fan, Li [Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi' an, Shaanxi, 710032 (China); Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 (China); Kuang, Wei [Department of Stomatology, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, 510010 (China); Zheng, Liwei [State Key Laboratory of Oral Diseases, Sichuan University, Wuhou District, Chengdu, 610041 (China); Wu, Jiahua [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China); Shang, Peng [Patient-specific Orthopedic Technology Research Center in GuangDong Research Centre for Neural Engineering, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili, Nanshan, Shenzhen, 518055 (China); Wang, Qiaofeng [Department of Pharmaceutical Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi' an, Shanxi, 710032 (China); Tan, Jiali, E-mail: jasminenov@163.com [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China)

    2016-04-29

    Oral squamous cell carcinoma (OSCC) is one of the most common types of the head and neck cancer. Chemo resistance of OSCC has been identified as a substantial therapeutic hurdle. In this study, we analyzed the role of miR-203 in the OSCC and its effects on cisplatin-induced cell death in an OSCC cell line, Tca8113. There was a significant decrease of miR-203 expression in OSCC samples, compared with the adjacent normal, non-cancerous tissue. After 3 days cisplatin treatment, the survived Tca8113 cells had a lower expression of miR-203 than that in the untreated control group. In contrast, PIK3CA showed an inverse expression in cancer and cisplatin survived Tca8113 cells. Transfection of Tca8113 cells with miR-203 mimics greatly reduced PIK3CA expression and Akt activation. Furthermore, miR-203 repressed PIK3CA expression through targeting the 3′UTR. Restoration of miR-203 not only suppressed cell proliferation, but also sensitized cells to cisplatin induced cell apoptosis. This effect was absent in cells that were simultaneously treated with PIK3CA RNAi. In summary, these findings suggest miR-203 plays an important role in cisplatin resistance in OSCC, and furthermore delivery of miR-203 analogs may serve as an adjuvant therapy for OSCC. - Highlights: • Much lower miR-203 expression in cisplatin resistant Tca8113 cells is discovered. • Delivery of miR-203 can sensitize the Tca8113 cells to cisplatin induced cell death. • MiR-203 can downregulate PIK3CA through the 3′UTR. • The effects of miR-203 on cisplatin sensitivity is mainly through PIK3CA pathway.

  4. Fentanyl Ameliorates Severe Acute Pancreatitis-Induced Myocardial Injury in Rats by Regulating NF-κB Signaling Pathway.

    Science.gov (United States)

    Wang, Yayun; Chen, Manhua

    2017-07-06

    BACKGROUND Acute pancreatitis (AP) is a sudden inflammation of the pancreas. It results in multiple, severe complications, and 15-20% of patients develop severe acute pancreatitis (SAP) with mortality as high as 30%. Consequently, it is imperative to develop an effective therapy for SAP. MATERIAL AND METHODS We used 30 adult male Sprague Dawley (SD) rats. Rats were randomly divided into 3 groups - sham, SAP, and fentanyl+SAP - with 10 rats in each group. An automatic biochemical analyzer was used to analyze the concentration of creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay was applied to assess the cell apoptosis rate. Pathological changes in pancreas/heart were detected with hematoxylin and eosin (HE) staining. Western immunoblot assay was used to analyze protein levels of interleukin (IL)-1β, IL-6, and IκB. RESULTS Fentanyl pre-treatment inhibits SAP-induced elevation of CK-MB/LDH concentrations in serum. Compared with the sham group, SAP generates a higher brown/yellow staining rate, which is abated by fentanyl. In the pancreas, SAP generated more serious interstitial edema/hemorrhage and fat necrosis than in the sham group, which are attenuated by fentanyl. Likewise, compared to the sham group, SAP generates swelled/disordered myocardial fibers and congested blood vessels in myocardium, which are ameliorated by fentanyl. In the sham group, there was little IL-1β/IL-6, and fentanyl significantly inhibited SAP-induced up-regulation of IL-1β/IL-6 levels. Compared with the sham group, SAP significantly reduced IκB level, which was rescued by fentanyl. CONCLUSIONS Fentanyl effectively alleviates SAP-induced pancreas and heart injuries through regulating the nuclear factor-κB (NF-κB) signaling pathway.

  5. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    International Nuclear Information System (INIS)

    Li, Qing; Guo, Dong; Dong, Zhongqi; Zhang, Wei; Zhang, Lei; Huang, Shiew-Mei; Polli, James E.; Shu, Yan

    2013-01-01

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT 3 ) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic cisplatin

  6. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats.

    Science.gov (United States)

    Kilic, Korhan; Sakat, Muhammed Sedat; Akdemir, Fazile Nur Ekinci; Yildirim, Serkan; Saglam, Yavuz Selim; Askin, Seda

    2018-04-07

    Cisplatin is an antineoplastic agent widely used in the treatment of a variety of cancers. Ototoxicity is one of the main side-effects restricting the use of cisplatin. The purpose of this study was to investigate the protective efficacy of gallic acid, in biochemical, functional and histopathological terms, against ototoxicity induced by cisplatin. Twenty-eight female Sprague Dawley rats were included. Rats were randomly assigned into four groups of seven animals each. Cisplatin group received a single intraperitoneal dose of 15mg/kg cisplatin. Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days. Cisplatin+Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days and a single intraperitoneal dose of 15mg/kg cisplatin at 3rd day. A control group received 1mL intraperitoneal saline solution for five consecutive days. Prior to drug administration, all rats were exposed to the distortion product otoacoustic emissions test. The test was repeated on the 6th day of the study. All rats were then sacrificed; the cochleas were removed and set aside for biochemical and histopathological analyses. In Cisplatin group, Day 6 signal noise ratio values were significantly lower than those of the other groups. Also, malondialdehyde levels in cochlear tissues were significantly higher, superoxide dismutase and glutathione peroxidase activities were significantly lower compared to the control group. Histopathologic evaluation revealed erosion in the stria vascularis, degeneration and edema in the connective tissue layer in endothelial cells, impairment of outer hair cells and a decrease in the number of these calls. In the Cisplatin+Gallic acid group, this biochemical, histopathological and functional changes were reversed. In the light of our findings, we think that gallic acid may have played a protective role against cisplatin-induced ototoxicity in rats, as indicated by the distortion product otoacoustic

  7. Sodium selenosulfate at an innocuous dose markedly prevents cisplatin-induced gastrointestinal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Sun, Kang [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Ni, Lijuan; Wang, Xufang [School of Chemistry and Materials of Science, University of Science and Technology of China, Hefei 230052, Anhui (China); Wang, Dongxu [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2012-02-01

    Our previous studies in mice revealed that two weeks short-term toxicity of sodium selenosulfate was significantly lower than that of sodium selenite, but selenium repletion efficacy of both compounds was equivalent. In addition, we showed that sodium selenosulfate reduced nephrotoxicity of cisplatin (CDDP) without compromising its anticancer activity, thus leading to a dramatic increase of cancer cure rate from 25% to 75%. Hydration has been used in clinical practice to reduce CDDP-induced nephrotoxicity, but it cannot mitigate CDDP-induced gastrointestinal toxicity. The present work investigated whether sodium selenosulfate is a potential preventive agent for the gastrointestinal toxicity. In tumor-bearing mice, sodium selenosulfate was administered at a dose of 9.5 μmol/kg daily for 11 days, CDDP alone resulted in diarrhea by 88% on day 12, whereas the co-administration of CDDP and sodium selenosulfate dramatically reduced diarrhea to 6% (p < 0.0001). Such a prominent protective effect promoted us to evaluate the safety potential of long-term sodium selenosulfate application. Mice were administered with sodium selenosulfate or sodium selenite for 55 days at the doses of 12.7 and 19 μmol/kg. The low-dose sodium selenite caused growth suppression and hepatotoxicity which were aggravated by the high-dose, leading to 40% mortality rate, but no toxic symptoms were observed in the two sodium selenosulfate groups. Altogether these results clearly show that sodium selenosulfate at an innocuous dose can markedly prevent CDDP-induced gastrointestinal toxicity. -- Highlights: ►Cisplatin resulted in diarrhea in mice by 88%. ►i.p. selenosulfate at 9.5 μmol/kg daily for 11 days reduced diarrhea to 6%. ►i.p. selenosulfate at 19 μmol/kg daily for 55 days was not toxic. ►i.p. selenite at 19 μmol/kg daily for 55 days was lethal. ►Innocuous dose of selenosulfate greatly prevents cisplatin-induced diarrhea.

  8. Sodium selenosulfate at an innocuous dose markedly prevents cisplatin-induced gastrointestinal toxicity

    International Nuclear Information System (INIS)

    Li, Jun; Sun, Kang; Ni, Lijuan; Wang, Xufang; Wang, Dongxu; Zhang, Jinsong

    2012-01-01

    Our previous studies in mice revealed that two weeks short-term toxicity of sodium selenosulfate was significantly lower than that of sodium selenite, but selenium repletion efficacy of both compounds was equivalent. In addition, we showed that sodium selenosulfate reduced nephrotoxicity of cisplatin (CDDP) without compromising its anticancer activity, thus leading to a dramatic increase of cancer cure rate from 25% to 75%. Hydration has been used in clinical practice to reduce CDDP-induced nephrotoxicity, but it cannot mitigate CDDP-induced gastrointestinal toxicity. The present work investigated whether sodium selenosulfate is a potential preventive agent for the gastrointestinal toxicity. In tumor-bearing mice, sodium selenosulfate was administered at a dose of 9.5 μmol/kg daily for 11 days, CDDP alone resulted in diarrhea by 88% on day 12, whereas the co-administration of CDDP and sodium selenosulfate dramatically reduced diarrhea to 6% (p < 0.0001). Such a prominent protective effect promoted us to evaluate the safety potential of long-term sodium selenosulfate application. Mice were administered with sodium selenosulfate or sodium selenite for 55 days at the doses of 12.7 and 19 μmol/kg. The low-dose sodium selenite caused growth suppression and hepatotoxicity which were aggravated by the high-dose, leading to 40% mortality rate, but no toxic symptoms were observed in the two sodium selenosulfate groups. Altogether these results clearly show that sodium selenosulfate at an innocuous dose can markedly prevent CDDP-induced gastrointestinal toxicity. -- Highlights: ►Cisplatin resulted in diarrhea in mice by 88%. ►i.p. selenosulfate at 9.5 μmol/kg daily for 11 days reduced diarrhea to 6%. ►i.p. selenosulfate at 19 μmol/kg daily for 55 days was not toxic. ►i.p. selenite at 19 μmol/kg daily for 55 days was lethal. ►Innocuous dose of selenosulfate greatly prevents cisplatin-induced diarrhea.

  9. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Guo, Dong [Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Dong, Zhongqi [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Zhang, Wei [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Zhang, Lei; Huang, Shiew-Mei [Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD (United States); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2013-11-15

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT{sub 3}) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic

  10. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury

    International Nuclear Information System (INIS)

    Domitrović, Robert; Cvijanović, Olga; Šušnić, Vesna; Katalinić, Nataša

    2014-01-01

    Highlights: • Chlorogenic acid attenuated cisplatin-induced renal oxidative stress by reducing the expression of 4-HNE, HO-1 and CYP2E1. • The inhibition of inflammatory response was achieved through the reduction of TNF-α and COX-2 expression. • The expression of p53, Bax, active caspase-3 and LC3B was suppressed, suggesting the inhibition of apoptosis and autophagy. • Attenuation of Mrp1 and Mrp2 expression and the increase in Oct2 expression indicated reduced burden of tubular cells. • The recovery of kidneys form cisplatin injury was accompanied by the suppression of cyclin D1 and augmented PCNA expression. - Abstract: The aim of this study was to investigate the renoprotective activity of chlorogenic acid (CA) in a murine model of cisplatin (CP)-induced kidney injury. Male BALB/cN mice were gavaged daily with CA at 3, 10 and 30 mg/kg for two successive days, 48 h after intraperitoneal injection of CP (13 mg/kg). On the fifth day, serum creatinine and blood urea nitrogen (BUN) levels were significantly increased in CP-intoxicated mice, which was recovered by CA. Renal oxidative stress, evidenced by increased 4-hydroxynonenal (4-HNE) expression, was significantly reduced with CA. Simultaneously, the overexpression of heme oxygenase 1 (HO-1) and cytochrome P450 E1 (CYP2E1) was attenuated. The inhibition of inflammatory response by CA was achieved through the reduction of tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) expression. Additionally, CA significantly suppressed p53, Bax active caspase-3, cyclin D1 and microtubule-associated protein 1 light chain 3 isoform B (LC3B) expression, suggesting the inhibition of both apoptosis and autophagy. The expression of multidrug resistance-associated proteins (Mrp1 and Mrp2) increased and organic cation transporter 2 (Oct2) decreased by CP, protecting the kidneys from nephrotoxicity by reducing the burden of tubular cells. CA dose-dependently restored Mrp1, Mrp2 and Oct2 expression. The recovery

  11. Neo-adjuvant chemotherapy with cisplatin induces low expression of NMDA receptors and postoperative cognitive impairment.

    Science.gov (United States)

    Cheng, Jing; Liu, Xiaoqing; Cao, Longhui; Zhang, Tianhua; Li, Huiting; Lin, Wenqian

    2017-01-10

    Whether Neo-adjuvant chemotherapy can affect patients' postoperative brain function is not clear. In this study, we investigated the effect of preoperative cisplatin treatment on postoperative cognitive function and its possible mechanism in rats. Moreover, we also tested whether the NMDAR inhibitor memantine could attenuate cisplatin-induced alterations. 12-month-oldSprague-Dawley rats randomly received an intraperitoneal injection of either cisplatin once a week at a dose of 3mg/kg for three consecutive weeks or an equivalent volume of normal saline. After the injections, the normal saline injection group was divided into 3 groups (n=5 each): a normal saline group (group S), normal saline+pentobarbital group (group SP), and normal saline+pentobarbital+operation group (group SPO).The cisplatin injection group was divided into 3 groups: a cisplatin group (group C), cisplatin+pentobarbital group (group CP), and cisplatin+pentobarbital+operation group (group CPO).Rats in the group SP, SPO,CP and CPO were anaesthetized with sodium pentobarbital and then the SPO and CPO groups underwent a simple laparotomy operation. The effects of memantine were tested through two additional groups of rats (cisplatin+memantine group (group CM) and cisplatin+pentobarbital+operation+memantine group (group CPOM)). A Morris water maze test was performed to evaluate the spatial learning and memory ability five days after anesthesia or operation. After the test, the hippocampi were removed for detection of the expression of NMDAR by western bloting. The relevant protein expression levels of PSD95 and ERK1/2 were detected by western blot analysis. Rats treated with cisplatin had a longer mean escape latency and spent a shorter amount of time in the target quadrant than did the normal saline injection rats. Furthermore, the protein expression levels of NMDA receptors, PSD95 and ERK1/2 were decreased in cisplatin group and memantine could up-regulate their expression. These results suggest

  12. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5.

    Science.gov (United States)

    Du, Bin; Dai, Xiao-Meng; Li, Shuang; Qi, Guo-Long; Cao, Guang-Xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-Song

    2017-08-10

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity.

  13. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome.

    Science.gov (United States)

    Weiss, Yoram G; Maloyan, Alina; Tazelaar, John; Raj, Nichelle; Deutschman, Clifford S

    2002-09-01

    The acute respiratory distress syndrome (ARDS) provokes three pathologic processes: unchecked inflammation, interstitial/alveolar protein accumulation, and destruction of pulmonary epithelial cells. The highly conserved heat shock protein HSP-70 can limit all three responses but is not appropriately expressed in the lungs after cecal ligation and double puncture (2CLP), a clinically relevant model of ARDS. We hypothesize that restoring expression of HSP-70 using adenovirus-mediated gene therapy will limit pulmonary pathology following 2CLP. We administered a vector containing the porcine HSP-70 cDNA driven by a CMV promoter (AdHSP) into the lungs of rats subjected to 2CLP or sham operation. Administration of AdHSP after either sham operation or 2CLP increased HSP-70 protein expression in lung tissue, as determined by immunohistochemistry and Western blot hybridization. Administration of AdHSP significantly attenuated interstitial and alveolar edema and protein exudation and dramatically decreased neutrophil accumulation, relative to a control adenovirus. CLP-associated mortality at 48 hours was reduced by half. Modulation of HSP-70 production reduces pathologic changes and may improve outcome in experimental ARDS.

  14. The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer.

    Science.gov (United States)

    Roh, Jong-Lyel; Ko, Jung Ho; Moon, Soo Jin; Ryu, Chang Hwan; Choi, Jun Young; Koch, Wayne M

    2012-12-01

    We evaluated whether the restoration of p53 function by the p53-reactivating small molecule RITA (reactivation of p53 and induction of tumor cell apoptosis enhances cisplatin-induced cytotoxicity and apoptosis in head-and-neck cancer (HNC). RITA induced prominent accumulation and reactivation of p53 in a wild-type TP53-bearing HNC cell line. RITA showed maximal growth suppression in tumor cells showing MDM2-dependent p53 degradation. RITA promoted apoptosis in association with upregulation of p21, BAX, and cleaved caspase-3; notably, the apoptotic response was blocked by pifithrin-α, demonstrating its p53 dependence. With increasing concentrations, RITA strongly induced apoptosis rather than G2-phase arrest. In combination therapy, RITA enhanced cisplatin-induced growth inhibition and apoptosis of HNC cells invitro and in vivo. Our data suggest that the restoration of p53 tumor-suppressive function by RITA enhances the cytotoxicity and apoptosis of cisplatin, an action that may offer an attractive strategy for treating HNC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer

    Science.gov (United States)

    Pabla, Navjotsingh; Dong, Guie; Jiang, Man; Huang, Shuang; Kumar, M. Vijay; Messing, Robert O.; Dong, Zheng

    2011-01-01

    Cisplatin is a widely used cancer therapy drug that unfortunately has major side effects in normal tissues, notably nephrotoxicity in kidneys. Despite intensive research, the mechanism of cisplatin-induced nephrotoxicity remains unclear, and renoprotective approaches during cisplatin-based chemotherapy are lacking. Here we have identified PKCδ as a critical regulator of cisplatin nephrotoxicity, which can be effectively targeted for renoprotection during chemotherapy. We showed that early during cisplatin nephrotoxicity, Src interacted with, phosphorylated, and activated PKCδ in mouse kidney lysates. After activation, PKCδ regulated MAPKs, but not p53, to induce renal cell apoptosis. Thus, inhibition of PKCδ pharmacologically or genetically attenuated kidney cell apoptosis and tissue damage, preserving renal function during cisplatin treatment. Conversely, inhibition of PKCδ enhanced cisplatin-induced cell death in multiple cancer cell lines and, remarkably, enhanced the chemotherapeutic effects of cisplatin in several xenograft and syngeneic mouse tumor models while protecting kidneys from nephrotoxicity. Together these results demonstrate a role of PKCδ in cisplatin nephrotoxicity and support targeting PKCδ as an effective strategy for renoprotection during cisplatin-based cancer therapy. PMID:21633170

  16. An integrative view of cisplatin-induced renal and cardiac toxicities: molecular mechanisms, current treatment challenges and potential protective measures

    Science.gov (United States)

    Dugbartey, George J.; Peppone, Luke J.; de Graaf, Inge A.M.

    2017-01-01

    Cisplatin is currently one of the most widely-used chemotherapeutic agents against various malignancies. Its clinical application is limited, however, by inherent renal and cardiac toxicities and other side effects, of which the underlying mechanisms are only partly understood. Experimental studies show cisplatin generates reactive oxygen species, which impair the cell’s antioxidant defense system, causing oxidative stress and potentiating injury, thereby culminating in kidney and heart failure. Understanding the molecular mechanisms of cisplatin-induced renal and cardiac toxicities may allow clinicians to prevent or treat this problem better and may also provide a model for investigating drug-induced organ toxicity in general. This review discusses some of the major molecular mechanisms of cisplatin-induced renal and cardiac toxicities including disruption of ionic homeostasis and energy status of the cell leading to cell injury and cell death. We highlight clinical manifestations of both toxicities as well as (novel)biomarkers such as kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We also present some current treatment challenges and propose potential protective strategies with novel pharmacological compounds that might mitigate or prevent these toxicities, which include the use of hydrogen sulfide. PMID:27717837

  17. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo.

    Science.gov (United States)

    Bansal, Ruchi; Prakash, Jai; De Ruiter, Marieke; Poelstra, Klaas

    2014-04-10

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent anti-fibrotics, interferon gamma (IFNγ), a proinflammatory cytokine, is highly efficacious but it failed in clinical trials due to the poor efficacy and multiple adverse effects attributed to the ubiquitous IFNγ receptor (IFNγR) expression. To resolve these drawbacks, we chemically synthesized a chimeric molecule containing (a) IFNγ signaling peptide (IFNγ peptidomimetic, mimγ) that retains the agonistic activities of IFNγ but lacks an extracellular receptor recognition sequence for IFNγR; coupled via heterobifunctional PEG linker to (b) bicyclic platelet derived growth factor beta receptor (PDGFβR)-binding peptide (BiPPB) to induce internalization into the stellate cells that express PDGFβR. The synthesized targeted IFNγ peptidomimetic (mimγ-BiPPB) was extensively investigated for its anti-fibrotic and adverse effects in acute and chronic CCl4-induced liver fibrosis models in mice. Treatment with mimγ-BiPPB, after the onset of disease, markedly inhibited both early and established hepatic fibrosis as reflected by a reduced intrahepatic α-SMA, desmin and collagen-I mRNA expression and protein levels. While untargeted mimγ and BiPPB had no effect, and native IFNγ only induced a moderate reduction. Additionally, no off-target effects, e.g. systemic inflammation, were found with mimγ-BiPPB, which were substantially observed in mice treated with native IFNγ. The present study highlights the beneficial effects of a novel BiPPB mediated cell-specific targeting of IFNγ peptidomimetic to the disease-inducing cells and therefore represents a highly potential therapeutic approach to treat fibrotic diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury

    Science.gov (United States)

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A.; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Abstract Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. Results: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1−/−) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. Innovation: This is the first study delineating the role of heme in ALI caused by Br2. Conclusion: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI. Antioxid. Redox Signal. 24, 99–112. PMID:26376667

  19. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury.

    Science.gov (United States)

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A; Traylor, Amie; Agarwal, Anupam; Matalon, Sadis

    2016-01-10

    Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. This is the first study delineating the role of heme in ALI caused by Br2. The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.

  20. Erythrocyte deformation in ischemic acute tubular necrosis and amelioration by splenectomy in the dog.

    Science.gov (United States)

    Mandal, A K; Taylor, C A; Bell, R D; Hillman, N M; Jarnot, M D; Cunningham, J D; Phillips, L G

    1991-11-01

    Bilateral renal artery occlusion (RAO) for 120 minutes in dogs results in acute tubular necrosis (ATN) and peritubular capillary (PTC) congestion with rapidly deteriorating renal function. We have shown that prior splenectomy minimizes RAO-induced renal functional and histopathologic changes. The purpose of this study was to examine whether this renal protection is due to prevention of red blood cell echinocyte formation and resultant renal PTC congestion. Echinocytes (burr cells) are poorly deformable, impart high viscosity to the blood, and may hinder reperfusion by increasing resistance to renal capillary blood flow. Splenectomized (SPLX) or sham-SPLX dogs were treated with bilateral RAO for 120 minutes. After RAO, renal function and renal blood flow were monitored, and peripheral blood red blood cells were examined at 1 hour and at 24-hour intervals for 96 hours. Renal biopsies were taken 1 hour after RAO and the kidneys removed 96 hours after RAO. The RBCs and renal tissues were studied using scanning electron microscopy. Renal function was assessed by endogenous creatinine clearance. Sham-SPLX animals showed a marked and sustained decrease in creatinine clearance, consistently elevated serum creatinine levels and fractional excretion of sodium, and diffuse ATN and PTC congestion with echinocytes. These animals had a peak in circulating echinocytes 1 hour after RAO (p less than 0.05), which showed an excellent negative correlation with creatinine clearance (r = -0.999; p less than 0.001). On the contrary, SPLX animals had essentially no change in serum creatinine or fractional excretion of sodium, minimal tubular changes, no PTC congestion, and no rise in circulating echinocytes during the 96-hour observation. In vitro treatment of the postischemic red blood cells from sham animals with adenosine-inosine or fresh postischemic plasma from the SPLX animals showed almost complete reversal to discocytes (normal red blood cells), whereas in vitro treatment of

  1. Corticosteroid treatment ameliorates acute lung injury induced by 2009 swine origin influenza A (H1N1 virus in mice.

    Directory of Open Access Journals (Sweden)

    Chenggang Li

    Full Text Available BACKGROUND: The 2009 influenza pandemic affected people in almost all countries in the world, especially in younger age groups. During this time, the debate over whether to use corticosteroid treatment in severe influenza H1N1 infections patients resurfaced and was disputed by clinicians. There is an urgent need for a susceptible animal model of 2009 H1N1 infection that can be used to evaluate the pathogenesis and the therapeutic effect of corticosteroid treatment during infection. METHODOLOGY/PRINCIPAL FINDINGS: We intranasally inoculated two groups of C57BL/6 and BALB/c mice (using 4- or 6-to 8-week-old mice to compare the pathogenesis of several different H1N1 strains in mice of different ages. Based on the results, a very susceptible 4-week-old C57BL/6 mouse model of Beijing 501 strain of 2009 H1N1 virus infection was established, showing significantly elevated lung edema and cytokine levels compared to controls. Using our established animal model, the cytokine production profile and lung histology were assessed at different times post-infection, revealing increased lung lesions in a time-dependent manner. In additional,the mice were also treated with dexamethasone, which significantly improved survival rate and lung lesions in infected mice compared to those in control mice. Our data showed that corticosteroid treatment ameliorated acute lung injury induced by the 2009 A/H1N1 virus in mice and suggested that corticosteroids are valid drugs for treating 2009 A/H1N1 infection. CONCLUSIONS/SIGNIFICANCE: Using the established, very susceptible 2009 Pandemic Influenza A (H1N1 mouse model, our studies indicate that corticosteroids are a potential therapeutic remedy that may address the increasing concerns over future 2009 A/H1N1 pandemics.

  2. Inhibition of CD147 (Cluster of Differentiation 147) Ameliorates Acute Ischemic Stroke in Mice by Reducing Thromboinflammation.

    Science.gov (United States)

    Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong

    2017-12-01

    Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart

  3. Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages

    Science.gov (United States)

    2014-01-01

    Introduction The mortality of rhabdomyolysis-induced acute kidney injury (AKI) is still high, as there is no effective therapy. It has been shown that bone marrow-derived mesenchymal stem cells (MSCs) can induce M2 macrophages, which mediate MSC protection in other experimental inflammation-related organ injury. This study was designed to investigate the protective effects of macrophage activation in MSC therapy of rhabdomyolysis-induced AKI. Methods MSCs were injected into glycerol-induced rhabdomyolysis mice. Renal injury was evaluated using the serum creatinine, urea nitrogen, renal pathology and acute tubular necrosis score. The distribution of MSCs was detected using two-photon fluorescence confocal imaging. Immunofluorescence of anti-F4/80 and anti-CD206 was performed to determine macrophages and M2 macrophages in the tissues of the kidney, and M2 macrophage infiltration was also evaluated using western blotting analyses. After depletion of macrophages using clodronate liposomes at the phase of kidney repair, renal injury was re-evaluated. RAW 264.7 macrophages were incubated with lipopolysaccharide and co-cultured with MSCs and subsequently visualised using immunofluorescence staining and flow cytometry analysis. Finally, disparate phenotype macrophages, including normal macrophages (M0), lipopolysaccharide-stimulated macrophages (M1), and MSC-co-cultured macrophages (M2), were infused into mice with AKI, which were pre-treated with liposomal clodronate. Results In vivo infusion of MSCs protected AKI mice from renal function impairment and severe tubular injury, which was accompanied by a time-dependent increase in CD206-positive M2 macrophage infiltration. In addition, depleting macrophages with clodronate delayed restoration of AKI. In vitro, macrophages co-cultured with MSCs acquired an anti-inflammatory M2 phenotype, which was characterised by an increased expression of CD206 and the secretory cytokine interleukin (IL)-10. The concentrations of IL-10, IL

  4. Protective mechanism of Korean Red Ginseng in cisplatin-induced ototoxicity through attenuation of nuclear factor-κB and caspase-1 activation.

    Science.gov (United States)

    Kim, Su-Jin; Kwak, Hyun Jeong; Kim, Dae-Seung; Choi, Hyun-Myung; Sim, Jung-Eun; Kim, Sung-Hoon; Um, Jae-Young; Hong, Seung-Heon

    2015-07-01

    Cisplatin is an effective anti-cancer drug; however, one of its side effects is irreversible sensorineural hearing damage. Korean Red Ginseng (KRG) has been used clinically for the treatment of various diseases; however, the underlying mechanism of KRG treatment of ototoxicity has not been studied extensively. The present study aimed to further investigate the mechanism of KRG on cisplatin-induced toxicity in auditory HEI-OC1 cells in vitro, as well as in vivo. The pharmacological effects of KRG on cisplatin-induced changes in the hearing threshold of mice were determined, as well as the effect on the impairment of hair cell arrays. In addition, in order to elucidate the protective mechanisms of KRG, the regulatory effects of KRG on cisplatin-induced apoptosis-associated gene levels and nuclear factor-κB (NF-κB) activation were investigated in auditory cells. The results revealed that KRG prevented cisplatin-induced alterations in the hearing threshold of mice as well as the destruction of hair cell arrays in rat organ of Corti primary explants. In addition, KRG inhibited cisplatin-mediated cell toxicity, reactive oxygen species generation, interleukin-6 production, cytochrome c release and activation of caspases-3 in the HEI-OC1 auditory cell line. Furthermore, the results demonstrated that KRG inhibited the activation of NF-κB and caspase-1. In conclusion, these results provided a model for the pharmacological mechanism of KRG and provided evidence for potential therapies against ototoxicity.

  5. Possible (enzymatic) routes and biological sites for metabolic reduction of BNP7787, a new protector against cisplatin-induced side-effects.

    NARCIS (Netherlands)

    Verschraagen, M.; Boven, E.; Torun, E; Hausheer, FH; Vijgh, van der WJ

    2004-01-01

    Disodium 2,2'-dithio-bis-ethane sulfonate (BNP7787) is under investigation as a potential new chemoprotector against cisplatin-induced nephrotoxicity. The selective protection of BNP7787 appears to arise from the preferential uptake of the drug in the kidneys, where BNP7787 would undergo

  6. Anti-emetic mechanisms of Zingiber officinale against cisplatin induced emesis in the pigeon; behavioral and neurochemical correlates.

    Science.gov (United States)

    Ullah, Ihsan; Subhan, Fazal; Ayaz, Muhammad; Shah, Rehmat; Ali, Gowhar; Haq, Ikram Ul; Ullah, Sami

    2015-02-26

    Zingiber officinale (ZO, family Zingiberaceae) has been reported for its antiemetic activity against cancer chemotherapy induced emesis in animal models and in clinics. Current study was designed to investigate ZO for potential usefulness against cisplatin induced vomiting in pigeon and its effects on central and peripheral neurotransmitters involved in the act of vomiting. Zingiber officinale acetone fraction (ZO-ActFr) was investigated for attenuation of emesis induced by cisplatin in healthy pigeons. Neurotransmitters DA, 5HT and their metabolites DOPAC, HVA and 5HIAA were analyzed using High Performance Liquid Chromatography system coupled with electrochemical detector in area postrema, brain stem and intestine. Antiemetic effect of ZO-ActFr was correlated with central and intestinal neurotransmitters levels in pigeon. Cisplatin (7 mg/kg i.v.) induced emesis without lethality upto the observation period. ZO-ActFr (25, 50 & 100 mg/kg) attenuated cisplatin induced emesis ~ 44.18%, 58.13% (P < 0.05) and 27.9%, respectively; the reference drug, metoclopramide (MCP; 30 mg/kg), produced ~ 48.83% reduction (P < 0.05). ZO-ActFr reduced (P < 0.05 - 0.001) 5-hydroxytryptamine (5HT) concentration in the area postrema, brain stem and intestine at 3(rd) hour of cisplatin administration, while at the 18(th) hour ZO treatments attenuated the dopamine upsurge (P < 0.001) caused by cisplatin in the area postrema and 5HT concentration (P < 0.01 - 0.001) in the brain stem and intestine. ZO treatments alone did not altered the basal neurotransmitters and their metabolites in the brain areas and intestine. The behavioral study verify the antiemetic profile of ZO against cisplatin induced emesis in the pigeon, where central and peripheral neural evidences advocate the involvement of serotonergic mechanism at initial time point (3(rd) hr), while the later time point (18(th) hr) is associated with serotonergic and dopaminergic component in the mediation

  7. Mutations in Cockayne Syndrome-Associated Genes (Csa and Csb) Predispose to Cisplatin-Induced Hearing Loss in Mice

    Science.gov (United States)

    Rainey, Robert N.; Ng, Sum-yan; Llamas, Juan; van der Horst, Gijsbertus T. J.

    2016-01-01

    Cisplatin is a common and effective chemotherapeutic agent, yet it often causes permanent hearing loss as a result of sensory hair cell death. The causes of sensitivity to DNA-damaging agents in nondividing cell populations, such as cochlear hair and supporting cells, are poorly understood, as are the specific DNA repair pathways that protect these cells. Nucleotide excision repair (NER) is a conserved and versatile DNA repair pathway for many DNA-distorting lesions, including cisplatin-DNA adducts. Progressive sensorineural hearing loss is observed in a subset of NER-associated DNA repair disorders including Cockayne syndrome and some forms of xeroderma pigmentosum. We investigated whether either of the two overlapping branches that encompass NER, transcription-coupled repair or global genome repair, which are implicated in Cockayne syndrome and xeroderma pigmentosum group C, respectively, modulates cisplatin-induced hearing loss and cell death in the organ of Corti, the auditory sensory epithelium of mammals. We report that cochlear hair cells and supporting cells in transcription-coupled repair-deficient Cockayne syndrome group A (Csa−/−) and group B (Csb−/−) mice are hypersensitive to cisplatin, in contrast to global genome repair-deficient Xpc−/− mice, both in vitro and in vivo. We show that sensory hair cells in Csa−/− and Csb−/− mice fail to remove cisplatin-DNA adducts efficiently in vitro; and unlike Xpc−/− mice, Csa−/− and Csb−/− mice lose hearing and manifest outer hair cell degeneration after systemic cisplatin treatment. Our results demonstrate that Csa and Csb deficiencies predispose to cisplatin-induced hearing loss and hair/supporting cell damage in the mammalian organ of Corti, and emphasize the importance of transcription-coupled DNA repair in the protection against cisplatin ototoxicity. SIGNIFICANCE STATEMENT The utility of cisplatin in chemotherapy remains limited due to serious side effects, including

  8. Evidence for different mechanisms of ‘unhooking’ for melphalan and cisplatin-induced DNA interstrand cross-links in vitro and in clinical acquired resistant tumour samples

    Directory of Open Access Journals (Sweden)

    Spanswick Victoria J

    2012-09-01

    Full Text Available Abstract Background DNA interstrand cross-links (ICLs are critical lesions produced by several cancer chemotherapy agents including platinum drugs and nitrogen mustards. We have previously shown in haematological (multiple myeloma and solid tumours (ovarian cancer that clinical sensitivity to such agents can result from a defect in DNA ICL processing leading to their persistence. Conversely, enhanced repair can result in clinical acquired resistance following chemotherapy. The repair of ICLs is complex but it is assumed that the ‘unhooking’ step is common to all ICLs. Methods Using a modification of the single cell gel electrophoresis (Comet assay we measured the formation and unhooking of melphalan and cisplatin-induced ICLs in cell lines and clinical samples. DNA damage response in the form of γ-H2AX foci formation and the formation of RAD51 foci as a marker of homologous recombination were also determined. Real-time PCR of 84 genes involved in DNA damage signalling pathways was also examined pre- and post-treatment. Results Plasma cells from multiple myeloma patients known to be clinically resistant to melphalan showed significant unhooking of melphalan-induced ICLs at 48 hours, but did not unhook cisplatin-induced ICLs. In ovarian cancer cells obtained from patients following platinum-based chemotherapy, unhooking of cisplatin-induced ICLs was observed at 48 hours, but no unhooking of melphalan-induced ICLs. In vitro, A549 cells were proficient at unhooking both melphalan and cisplatin-induced ICLs. γ-H2AX foci formation closely followed the formation of ICLs for both drugs, and rapidly declined following the peak of formation. RPMI8226 cells unhooked melphalan, but not cisplatin-induced ICLs. In these cells, although cross-links form with cisplatin, the γ-H2AX response is weak. In A549 cells, addition of 3nM gemcitabine resulted in complete inhibition of cisplatin-induced ICL unhooking but no effect on repair of melphalan ICLs. The

  9. Evidence for different mechanisms of ‘unhooking’ for melphalan and cisplatin-induced DNA interstrand cross-links in vitro and in clinical acquired resistant tumour samples

    International Nuclear Information System (INIS)

    Spanswick, Victoria J; Hartley, John A; Lowe, Helen L; Newton, Claire; Bingham, John P; Bagnobianchi, Alessia; Kiakos, Konstantinos; Craddock, Charles; Ledermann, Jonathan A; Hochhauser, Daniel

    2012-01-01

    DNA interstrand cross-links (ICLs) are critical lesions produced by several cancer chemotherapy agents including platinum drugs and nitrogen mustards. We have previously shown in haematological (multiple myeloma) and solid tumours (ovarian cancer) that clinical sensitivity to such agents can result from a defect in DNA ICL processing leading to their persistence. Conversely, enhanced repair can result in clinical acquired resistance following chemotherapy. The repair of ICLs is complex but it is assumed that the ‘unhooking’ step is common to all ICLs. Using a modification of the single cell gel electrophoresis (Comet) assay we measured the formation and unhooking of melphalan and cisplatin-induced ICLs in cell lines and clinical samples. DNA damage response in the form of γ-H2AX foci formation and the formation of RAD51 foci as a marker of homologous recombination were also determined. Real-time PCR of 84 genes involved in DNA damage signalling pathways was also examined pre- and post-treatment. Plasma cells from multiple myeloma patients known to be clinically resistant to melphalan showed significant unhooking of melphalan-induced ICLs at 48 hours, but did not unhook cisplatin-induced ICLs. In ovarian cancer cells obtained from patients following platinum-based chemotherapy, unhooking of cisplatin-induced ICLs was observed at 48 hours, but no unhooking of melphalan-induced ICLs. In vitro, A549 cells were proficient at unhooking both melphalan and cisplatin-induced ICLs. γ-H2AX foci formation closely followed the formation of ICLs for both drugs, and rapidly declined following the peak of formation. RPMI8226 cells unhooked melphalan, but not cisplatin-induced ICLs. In these cells, although cross-links form with cisplatin, the γ-H2AX response is weak. In A549 cells, addition of 3nM gemcitabine resulted in complete inhibition of cisplatin-induced ICL unhooking but no effect on repair of melphalan ICLs. The RAD51 foci response was both drug and cell line

  10. Anthocyanin – Rich Red Dye of Hibiscus Sabdariffa Calyx Modulates Cisplatin-induced Nephrotoxicity and Oxidative Stress in Rats

    Science.gov (United States)

    Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.

    2013-01-01

    This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (Psabdariffa dye could be attributed to its anthocyanin content. PMID:24711761

  11. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60 in normal and transformed lymphoid cells

    Directory of Open Access Journals (Sweden)

    D. V. Franskevych

    2016-02-01

    Full Text Available The early response of normal (Wistar rat thymocytes and transformed (mice lymphoid leukemia L1210 cells to treatment with anticancer drug cisplatin or to combined treatment with cisplatin and carbon nanostructure fullerene C60 was studied. We demonstrated with fluorescent probes DCFH-DA and TMRE that cisplatin at concentration 1 μg/ml induced reactive oxygen species (ROS production and decreased the value of mitochondrial membrane potential in both cell types. The combined treatment with cisplatin (1 μg/ml and fullerene C60 (7.2 μg/ml was shown to be followed by oppositely directed modulation of ROS production in thymocytes and L1210 cells. Cisplatin-induced ROS production was intensified in L1210 cells, while in thymocytes it was decreased. It is supposed that the different effects of combined treatment are associated with peculiarities of fullerene C60 accumulation and localization in normal and cancer cells.

  12. The synthesis, structure-toxicity relationship of cisplatin derivatives for the mechanism research of cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Hu, Jing; Wu, Tian-Ming; Li, Hong-Ze; Zuo, Ze-Ping; Zhao, Ying-Lan; Yang, Li

    2017-08-01

    Cisplatin is a widely used antineoplastic drug, while its nephrotoxicity limits the clinical application. Although several mechanisms contributing to nephrotoxicity have been reported, the direct protein targets are unclear. Herein we reported the synthesis of 29 cisplatin derivatives and the structure-toxicity relationship (STR) of these compounds with MTT assay in human renal proximal tubule cells (HK-2) and pig kidney epithelial cells (LLC-PK1). To the best of our knowledge, this study represented the first report regarding the structure-toxicity relationship (STR) of cisplatin derivatives. The potency of biotin-pyridine conjugated derivative 3 met the requirement for target identification, and the preliminary chemical proteomics results suggested that it is a promising tool for further target identification of cisplatin-induced nephrotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  13. Ghrelin Partially Protects Against Cisplatin-Induced Male Murine Gonadal Toxicity in a GHSR-1a-Dependent Manner1

    Science.gov (United States)

    Whirledge, Shannon D.; Garcia, Jose M.; Smith, Roy G.; Lamb, Dolores J.

    2015-01-01

    ABSTRACT The chemotherapeutic drug cisplatin causes a number of dose-dependent side effects, including cachexia and testicular damage. Patients receiving a high cumulative dose of cisplatin may develop permanent azoospermia and subsequent infertility. Thus, the development of chemotherapeutic regimens with the optimal postsurvival quality of life (fertility) is of high importance. This study tested the hypothesis that ghrelin administration can prevent or minimize cisplatin-induced testicular damage and cachexia. Ghrelin and its receptor, the growth hormone secretagogue receptor (GHSR-1a), are expressed and function in the testis. Targeted deletion of ghrelin, or its receptor, significantly increases the rate of cell death in the testis, suggesting a protective role. Intraperitoneal administration of vehicle, ghrelin, or cisplatin alone or in combination with ghrelin, in cycles of 9 or 18 days, to adult male C57Bl/6 mice was performed. Body weight was measured daily and testicular and epididymal weight, sperm density and motility, testicular histology, and testicular cell death were analyzed at the time of euthanization. Ghrelin coadministration decreased the severity of cisplatin-induced cachexia and gonadal toxicity. Body, testicular, and epididymal weights significantly increased as testicular cell death decreased with ghrelin coadministration. The widespread damage to the seminiferous epithelium induced by cisplatin administration was less severe in mice simultaneously treated with ghrelin. Furthermore, ghrelin diminished the deleterious effects of cisplatin on testis and body weight homeostasis in wild-type but not Ghsr−/− mice, showing that ghrelin's actions are mediated via GHSR. Ghrelin or more stable GHSR agonists potentially offer a novel therapeutic approach to minimize the testicular damage that occurs after gonadotoxin exposure. PMID:25631345

  14. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs

    International Nuclear Information System (INIS)

    Cheng, P.-W.; Liu, S.-H.; Young, Y.-H.; Lin-Shiau, Shoei-Yn

    2006-01-01

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na + , K + -ATPase and Ca 2+ -ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na + , K + -ATPase and Ca 2+ -ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property

  15. Role of annexin A5 in cisplatin-induced toxicity in renal cells: molecular mechanism of apoptosis.

    Science.gov (United States)

    Jeong, Jin-Joo; Park, Nahee; Kwon, Yeo-Jung; Ye, Dong-Jin; Moon, Aree; Chun, Young-Jin

    2014-01-24

    Annexin A5 belongs to a large family of calcium-binding and phospholipid-binding proteins and may act as an endogenous regulator of various pathophysiological processes. There is increasing evidence that annexin A5 is related to cytotoxicity, but the precise function of this protein has yet to be elucidated. In this study, we aimed to verify the function of annexin A5 in the apoptosis of renal epithelial cells. Real-time PCR and Western blot analysis, together with immunofluorescence analysis, showed that the expression of annexin A5 significantly increased in the presence of cisplatin in both human and rat renal epithelial cells. With regard to the mechanism of cisplatin-induced apoptosis, apoptosis-inducing factor (AIF) release into the cytosol was observed, and the underlying mechanism was identified as voltage-dependent anion channel (VDAC) oligomerization. Mitochondrial membrane potential (Δψm) was found to be greatly disrupted in cisplatin-treated cells. Moreover, cisplatin strongly induced translocation of annexin A5 into mitochondria. To understand the functional significance of annexin A5 in renal cell death, we used a siRNA-mediated approach to knock down annexin A5. Annexin A5 depletion by siRNA led to decreased annexin A5 translocation into mitochondria and significantly reduced VDAC oligomerization and AIF release. Annexin A5 siRNA also increased cell viability compared with the control. Moreover, expression of annexin A5 was induced by other nephrotoxicants such as CdCl2 and bacitracin. Taken together, our data suggest that annexin A5 may play a crucial role in cisplatin-induced toxicity by mediating the mitochondrial apoptotic pathway via the induction and oligomerization of VDAC.

  16. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways.

    Science.gov (United States)

    Peng, Shuang; Hang, Nan; Liu, Wen; Guo, Wenjie; Jiang, Chunhong; Yang, Xiaoling; Xu, Qiang; Sun, Yang

    2016-05-01

    Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on lipopolysaccharide (LPS)-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK) as well as p65 subunit of nuclear factor-κB (NF-κB). In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  17. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways

    Directory of Open Access Journals (Sweden)

    Shuang Peng

    2016-05-01

    Full Text Available Acute lung injury (ALI or acute respiratory distress syndrome (ARDS is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection, on lipopolysaccharide (LPS-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK as well as p65 subunit of nuclear factor-κB (NF-κB. In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  18. Antioxidantes da dieta como inibidores da nefrotoxicidade induzida pelo antitumoral cisplatina Dietary antioxidants as inhibitors of cisplatin-induced nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Lusânia Maria Greggi Antunes

    2004-03-01

    Full Text Available A cisplatina é uma droga antineoplásica altamente efetiva contra vários tipos de cânceres humanos, tais como tumores do testículo e ovário, câncer da cabeça e pescoço e câncer do pulmão. Entretanto, a nefrotoxicidade é um dos principais efeitos colaterais da terapia com a cisplatina. A gravidade da nefrotoxicidade induzida pela cisplatina está relacionada com a concentração de platina nos rins. As evidências mostram que a nefrotoxicidade induzida pela cisplatina é atribuída ao dano oxidativo resultante da geração de radicais livres, e que a administração de antioxidantes é eficiente na inibição destes efeitos colaterais. Uma abordagem alternativa para proteger os roedores dos efeitos colaterais da cisplatina é o uso de conhecidos antioxidantes da dieta. Alguns estudos têm sido realizados para diminuir a peroxidação lipídica e os efeitos citotóxicos induzidos pela cisplatina, com o emprego de antioxidantes da dieta, tais como, selenito de sódio, vitaminas C e E, curcumina e o carotenóide bixina. Nós sugerimos que aqueles antioxidantes da dieta têm efeito nefroprotetor, e que os mecanismos antioxidantes destes compostos deveriam ser explorados durante a quimioterapia com a cisplatina.Cisplatin is a highly effective antineoplastic drug used against several types of human cancers, such as testicular and ovarian tumors; head and neck; and lung cancer. However, nephrotoxicity is one of the most important side-effects of cisplatin therapy. The severity of cisplatin nephrotoxicity is related to platinum concentration in the kidneys. There is a growing amount of evidence that cisplatin-induced nephrotoxicity is ascribed to oxidative damage resulting from free radical generation and that the administration of antioxidants is efficient in inhibiting these side effects. An alternative approach aiming to protect rodents against cisplatin side-effects is the introduction of known dietary antioxidants. Some studies have been

  19. CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Johnson Erica L

    2010-06-01

    Full Text Available Abstract Background Cisplatin is more often used to treat ovarian cancer (OvCa, which provides modest survival advantage primarily due to chemo-resistance and up regulated anti-apoptotic machineries in OvCa cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in OvCa cell may improve therapeutic outcomes. We have shown that ovarian cancer cells express CC chemokine receptor-9 (CCR9. Others have also shown that CCL25, the only natural ligand for CCR9, up regulates anti-apoptotic proteins in immature T lymphocytes. Hence, it is plausible that CCR9-mediated cell signals might be involved in OvCa cell survival and inhibition of cisplatin-induced apoptosis. In this study, we investigated the potential role and molecular mechanisms of CCR9-mediated inhibition of cisplatin-induced apoptosis in OvCa cells. Methods Cell proliferation, vibrant apoptosis, and TUNEL assays were performed with or without cisplatin treatment in presence or absence of CCL25 to determine the role of the CCR9-CCL25 axis in cisplatin resistance. In situ Fast Activated cell-based ELISA (FACE assays were performed to determine anti-apoptotic signaling molecules responsible for CCL25-CCR9 mediated survival. Results Our results show interactions between CCR9 and CCL25 increased anti-apoptotic signaling cascades in OvCa cells, which rescued cells from cisplatin-induced cell death. Specifically, CCL25-CCR9 interactions mediated Akt, activation as well as GSK-3β and FKHR phosphorylation in a PI3K-dependent and FAK-independent fashion. Conclusions Our results suggest the CCR9-CCL25 axis plays an important role in reducing cisplatin-induced apoptosis of OvCa cells.

  20. Abrogation of cisplatin-induced hepatotoxicity in mice by xanthorrhizol is related to its effect on the regulation of gene transcription

    International Nuclear Information System (INIS)

    Hwan Kim, Seong; Ok Hong, Kyoung; Chung, Won-Yoon; Kwan Hwang, Jae; Park, Kwang-Kyun

    2004-01-01

    Cisplatin is a widely used anticancer drug, but at high dose, it can produce undesirable side effects such as hepatotoxicity. Because Curcuma xanthorrhiza Roxb. (Zingiberaceae) has been traditionally used to treat liver disorders, the protective effect of xanthorrhizol, which is isolated from C. xanthorrhiza, on cisplatin-induced hepatotoxicity was evaluated in mice. The pretreatment of xanthorrhizol (200 mg/kg/day, po) for 4 days prevented the hepatotoxicity induced by cisplatin (45 mg/kg, ip) with statistical significance. Interestingly, it abrogated cisplatin-induced DNA-binding activity of nuclear factor-kappaB (NF-κB), which consequently affected mRNA expression levels of NF-κB-dependent genes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), even in part. It also attenuated the cisplatin-suppressed DNA-binding activity of activator protein 1 (AP-1). Using differential display reverse transcription-polymerase chain reaction (DDRT-PCR), seven upregulated genes including S100 calcium binding protein A9 (S100A9) mRNA and antigenic determinant for rec-A protein mRNA and five downregulated genes including caseinolytic protease X (ClpX) mRNA and ceruloplasmin (CP) mRNA by cisplatin were identified. Although these mRNA expression patterns were not totally consistent with gel shift patterns, altered expression levels by cisplatin were reversed by the pretreatment of xanthorrhizol. In conclusion, the ability of xanthorrhizol to regulate the DNA-binding activities of transcription factors, NF-κB and AP-1, could be one possible mechanism to elucidate the preventive effect of xanthorrhizol on cisplatin-induced hepatotoxicity. Furthermore, genes identified in this study could be helpful to understand the mechanism of cisplatin-induced hepatotoxicity. Finally, the combination treatment of xanthorrhizol and cisplatin may provide more advantage than single treatment of cisplatin in cancer therapy

  1. Assessment of D-methionine protecting cisplatin-induced otolith toxicity by vestibular-evoked myogenic potential tests, ATPase activities and oxidative state in guinea pigs.

    Science.gov (United States)

    Lo, Wu-Chia; Chang, Chih-Ming; Liao, Li-Jen; Wang, Chi-Te; Young, Yi-Ho; Chang, Yih-Leong; Cheng, Po-Wen

    2015-01-01

    To date, inadequate study has been devoted to the toxic vestibular effects caused by cisplatin. In addition, no electrophysiological examination has been conducted to assess cisplatin-induced otolith toxicity. The purposes of this study are thus two-fold: 1) to determine whether cervical vestibular-evoked myogenic potentials (VEMPs) and ocular VEMPs are practical electrophysiological methods of testing for cisplatin-induced otolith toxicity and 2) to examine if D-methionine (D-met) pre-injection would protect the otolith organs against cisplatin-induced changes in enzyme activities and/or oxidative status. Guinea pigs were intraperitoneally treated once daily with the following injections for seven consecutive days: sterile 0.9% saline control, cisplatin (5 mg/kg) only, D-met (300 mg/kg) only, or a combination of d-met (300 mg/kg) and cisplatin (5 mg/kg), respectively, with a 30 minute window in between. Each animal underwent the oVEMP and cVEMP tests before and after treatment. The changes in the biochemistry of the otolith organs, including membranous Na(+), K(+)-ATPase and Ca(2+)-ATPase, lipid peroxidation (LPO) levels and nitric oxide (NO) levels, were also evaluated. In the cisplatin-only treated guinea pigs, the mean amplitudes of the oVEMP tests were significantly (potolith dysfunction. D-Met attenuated the reduced ATPase activities and increased oxidative stress induced by cisplatin toxicity in the otolith organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Protective effects of vitamins E, B and C and L-carnitine in the prevention of cisplatin-induced ototoxicity in rats.

    Science.gov (United States)

    Tokgöz, S Alicura; Vuralkan, E; Sonbay, N D; Çalişkan, M; Saka, C; Beşalti, Ö; Akin, İ

    2012-05-01

    This experimental study aimed to investigate the effects of vitamins E, B and C and L-carnitine in preventing cisplatin-induced ototoxicity. Twenty-five adult, male, Wistar albino rats were randomly allocated to receive intraperitoneal cisplatin either alone or preceded by vitamins B, E or C or L-carnitine. Auditory brainstem response (i.e. hearing thresholds and wave I-IV intervals) and distortion product otoacoustic emissions (i.e. signal-to-noise ratios) were recorded before and 72 hours after cisplatin administration. The following statistically significant differences were seen: control group pre- vs post-treatment wave I-IV interval values (p vitamin E and B groups' I-IV interval values (p vitamin E vs vitamin B and C and L-carnitine groups' hearing thresholds (p vitamin B vs vitamin C and L-carnitine groups' hearing thresholds (p vitamin B and L-carnitine groups (2000 and 3000 Hz; p Vitamins B, E and C and L-carnitine appear to reduce cisplatin-induced ototoxicity in rats. The use of such additional treatments to decrease cisplatin-induced ototoxicity in humans is still under discussion.

  3. S-Allylmercaptocysteine Attenuates  Cisplatin-Induced Nephrotoxicity through  Suppression of Apoptosis, Oxidative Stress, and  Inflammation.

    Science.gov (United States)

    Zhu, Xiaosong; Jiang, Xiaoyan; Li, Ang; Zhao, Zhongxi; Li, Siying

    2017-02-20

    Cisplatin is a potent chemotherapeutic agent, but its clinical usage is limited by nephrotoxicity. S-allylmercaptocysteine (SAMC), one of the water-soluble organosulfur garlic derivatives, has antioxidant and anti-inflammatory properties and plays an important role in protecting cells from apoptosis. This study aims to examine the protective effects of SAMC on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection. Rats were treated with cisplatin with or without pre-treatment with SAMC. Renal function, histological change, oxidative stress markers and antioxidant enzyme activities were investigated. Apoptotic marker, nuclearfactor (NF)-κB activity, expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and inflammatory cytokines were also examined. The effect of SAMC on cell viability and apoptosis was examined in cultured human kidney (HK-2) cells. SAMC was confirmed to significantly attenuate cisplatin-induced renal damage by using histological pathology and molecular biological method. Pre-treatment with SAMC reduced NF-κB activity, up-regulated Nrf2 and NQO1 expression and down-regulated inflammatory cytokine levels after cisplatin administration. Cisplatin-induced apoptosis in HK-2 cells was significantly attenuated by SAMC. Thus our results suggest that SAMC could be a potential therapeutic agent in the treatment of the cisplatin-induced nephrotoxicity through its anti-apoptotic, anti-oxidant and anti-inflammatory effects.

  4. Edaravone attenuates lipopolysaccharide-induced acute respiratory distress syndrome associated early pulmonary fibrosis via amelioration of oxidative stress and transforming growth factor-β1/Smad3 signaling.

    Science.gov (United States)

    Wang, Xida; Lai, Rongde; Su, Xiangfen; Chen, Guibin; Liang, Zijing

    2018-01-01

    Pulmonary fibrosis is responsible for the both short-term and long-term outcomes in patients with acute respiratory distress syndrome (ARDS). There is still no effective cure to improve prognosis. The purpose of this study was to investigate whether edaravone, a free radical scavenger, have anti-fibrosis effects in the rat model of ARDS associated early pulmonary fibrosis by lipopolysaccharide (LPS) administration. Rats were subjected to intravenous injection of LPS, and edaravone was given intraperitoneally after LPS administration daily for 7 consecutive days. LPS treatment rapidly increased lung histopathology abnormalities, coefficient of lung, hydroxyproline and collagen I levels, stimulated myofibroblast differentiation and induced expression of TGF-β1 and activation of TGF-β1/Smad3 signaling as early as day 7 after LPS injection. Moreover, LPS intoxication significantly increased the contents of malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), whereas it dramatically decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities from day 1 after LPS treatment. On the contrary, edaravone treatment ameliorated LPS-induced myofibroblast differentiation and pulmonary fibrosis, simultaneously, and attenuated LPS-stimulated oxidative stress and activation of TGF-β1/Smad3 signaling. Collectively, edaravone may attenuate ARDS associated early pulmonary fibrosis through amelioration of oxidative stress and TGF-β1/Smad3 signaling pathway. Edaravone may be a promising drug candidate for the treatment of ARDS-related pulmonary fibrosis in early period. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Epigallocatechin-3-gallate Ameliorates Seawater Aspiration-Induced Acute Lung Injury via Regulating Inflammatory Cytokines and Inhibiting JAK/STAT1 Pathway in Rats

    Science.gov (United States)

    Liu, Wei; Dong, Mingqing; Bo, Liyan; Li, Congcong; Liu, Qingqing; Li, Yanyan; Ma, Lijie; Xie, Yonghong; Fu, Enqing; Mu, Deguang; Pan, Lei; Jin, Faguang; Li, Zhichao

    2014-01-01

    Signal transducers and activators of transcriptions 1 (STAT1) play an important role in the inflammation process of acute lung injury (ALI). Epigallocatechin-3-gallate (EGCG) exhibits a specific and strong anti-STAT1 activity. Therefore, our study is to explore whether EGCG pretreatment can ameliorate seawater aspiration-induced ALI and its possible mechanisms. We detected the arterial partial pressure of oxygen, lung wet/dry weight ratios, protein content in bronchoalveolar lavage fluid, and the histopathologic and ultrastructure staining of the lung. The levels of IL-1, TNF-α, and IL-10 and the total and the phosphorylated protein level of STAT1, JAK1, and JAK2 were assessed in vitro and in vivo. The results showed that EGCG pretreatment significantly improved hypoxemia and histopathologic changes, alleviated pulmonary edema and lung vascular leak, reduced the production of TNF-α and IL-1, and increased the production of IL-10 in seawater aspiration-induced ALI rats. EGCG also prevented the seawater aspiration-induced increase of TNF-α and IL-1 and decrease of IL-10 in NR8383 cell line. Moreover, EGCG pretreatment reduced the total and the phosphorylated protein level of STAT1 in vivo and in vitro and reduced the phosphorylated protein level of JAK1 and JAK2. The present study demonstrates that EGCG ameliorates seawater aspiration-induced ALI via regulating inflammatory cytokines and inhibiting JAK/STAT1 pathway in rats. PMID:24692852

  6. Influence of dosing times on cisplatin-induced peripheral neuropathy in rats

    International Nuclear Information System (INIS)

    Seto, Yoshihiro; Okazaki, Fumiyasu; Horikawa, Keiji; Zhang, Jing; Sasaki, Hitoshi; To, Hideto

    2016-01-01

    Although cis-diamminedichloro-platinum (CDDP) exhibits strong therapeutic effects in cancer chemotherapy, its adverse effects such as peripheral neuropathy, nephropathy, and vomiting are dose-limiting factors. Previous studies reported that chronotherapy decreased CDDP-induced nephropathy and vomiting. In the present study, we investigated the influence of dosing times on CDDP-induced peripheral neuropathy in rats. CDDP (4 mg/kg) was administered intravenously at 5:00 or 17:00 every 7 days for 4 weeks to male Sprague–Dawley rats, and saline was given to the control group. To assess the dosing time dependency of peripheral neuropathy, von-Frey test and hot-plate test were performed. In order to estimate hypoalgesia, the hot-plate test was performed in rats administered CDDP weekly for 4 weeks. On day 28, the withdrawal latency to thermal stimulation was significantly prolonged in the 17:00-treated group than in the control and 5:00-treated groups. When the von-Frey test was performed to assess mechanical allodynia, the withdrawal threshold was significantly lower in the 5:00 and 17:00-treated groups than in the control group on day 6 after the first CDDP dose. The 5:00-treated group maintained allodynia throughout the experiment with the repeated administration of CDDP, whereas the 17:00-treated group deteriorated from allodynia to hypoalgesia. It was revealed that the severe of CDDP-induced peripheral neuropathy was inhibited in the 5:00-treated group, whereas CDDP-treated groups exhibited mechanical allodynia. These results suggested that the selection of an optimal dosing time ameliorated CDDP-induced peripheral neuropathy. The online version of this article (doi:10.1186/s12885-016-2777-0) contains supplementary material, which is available to authorized users

  7. Resveratrol influences platinum pharmacokinetics: A novel mechanism in protection against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Darwish, Mostafa A; Abo-Youssef, Amira M; Khalaf, Marwa M; Abo-Saif, Ali A; Saleh, Ibrahim G; Abdelghany, Tamer M

    2018-06-15

    Cisplatin (CP) is a widely used drug in treatment of solid tumors. However, the use of CP was hampered by its serious side effects especially nephrotoxicity. This study aims to investigate the effect of resveratrol (RES) on CP-induced nephrotoxicity, particularly, the effect of RES on CP pharmacokinetics (PKs). Male white albino rats were divided to four group's six rats each. The first group received (1%) tween 80 in normal saline and served as control. The second group received RES (30 mg kg -1 ) per day for 14 consecutive day's i.p. The third and fourth groups were given a single i.p. injection of CP (6 mg kg -1 ) with or without pre-treatment of RES (30 mg kg -1 per day for 14 consecutive days), respectively. Following administration of CP, plasma, urine and kidney platinum concentration were monitored to study PKs of CP. Five days after the CP injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CP treatment significantly deteriorated kidney functions with subsequent alteration in redox balance of the kidney. On the other hand, RES successfully ameliorated CP-induced kidney injury and recovered normal kidney tissue redox status. Importantly, while RES pre-treatment did not significantly alter the plasma CP level, it dramatically decreased the urine concentration of CP and lowered its accumulation into the kidneys. Moreover, it increased CP plasma half-life (t 1/2 ) with subsequent decrease in its elimination rate constant, indicating an important role of PKs modulation in RES protection against CP-induced renal damage. Taken together, RES may protect the kidney tissue from the deleterious effects of CP through constringe of CP renal accumulation and enhancement of CP-induced oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yafei [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States); Brott, David [Patient Safety, AstraZeneca R and D Wilmington, DE 19850 (United States); Luo, Wenli [Discovery Statistics, AstraZeneca R and D Waltham, MA 02451 (United States); Gangl, Eric [DMPK, AstraZeneca R and D Waltham, MA 02451 (United States); Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Fikes, James; Kinter, Lewis [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States); Valentin, Jean-Pierre [Global Safety Assessment, AstraZeneca R and D Alderley Park, Macclesfield, SK10 4TG (United Kingdom); Bialecki, Russell, E-mail: russell.bialecki@astrazeneca.com [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States)

    2013-05-01

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development.

  9. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    International Nuclear Information System (INIS)

    Chen, Yafei; Brott, David; Luo, Wenli; Gangl, Eric; Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Fikes, James; Kinter, Lewis; Valentin, Jean-Pierre; Bialecki, Russell

    2013-01-01

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development

  10. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition

    International Nuclear Information System (INIS)

    Wang, Wenwen; Yang, Yanqin; Xiong, Zhewen; Kong, Jiamin; Fu, Xinlu; Shen, Feihai; Huang, Zhiying

    2016-01-01

    Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3 inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP. - Highlights: • GSK-3β inhibition ameliorates TP-induced cardiotoxicity in vitro and in vivo. • GSK-3β controls Cyp-F activation, and regulates mPTP and apoptosis in H9c2 cells. • The protective effect is attributed to GSK-3β activity rather than to protein level. • GSK-3β may be a promising target against TP-induced cardiotoxicity.

  11. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenwen; Yang, Yanqin; Xiong, Zhewen; Kong, Jiamin [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Fu, Xinlu [Laboratory Animals Center, Sun Yat-sen University, Guangzhou 510006 (China); Shen, Feihai, E-mail: shenfh3@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Huang, Zhiying, E-mail: hzhiying@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China)

    2016-12-15

    Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3 inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP. - Highlights: • GSK-3β inhibition ameliorates TP-induced cardiotoxicity in vitro and in vivo. • GSK-3β controls Cyp-F activation, and regulates mPTP and apoptosis in H9c2 cells. • The protective effect is attributed to GSK-3β activity rather than to protein level. • GSK-3β may be a promising target against TP-induced cardiotoxicity.

  12. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.

    Science.gov (United States)

    De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R

    2016-01-01

    While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cisplatin-Induced Renal Salt Wasting Requiring over 12 Liters of 3% Saline Replacement

    Directory of Open Access Journals (Sweden)

    Phuong-Chi Pham

    2017-01-01

    Full Text Available Cisplatin is known to induce Fanconi syndrome and renal salt wasting (RSW. RSW typically only requires transient normal saline (NS support. We report a severe RSW case that required 12 liters of 3% saline. A 57-year-old woman with limited stage small cell cancer was admitted for cisplatin (80 mg/m2 and etoposide (100 mg/m2 therapy. Patient’s serum sodium (SNa decreased from 138 to 133 and 125 mEq/L within 24 and 48 hours of cisplatin therapy, respectively. A diagnosis of syndrome of inappropriate antidiuretic hormone secretion (SIADH was initially made. Despite free water restriction, patient’s SNa continued to decrease in association with acute onset of headaches, nausea, and dizziness. Three percent saline (3%S infusion with rates up to 1400 mL/day was required to correct and maintain SNa at 135 mEq/L. Studies to evaluate Fanconi syndrome revealed hypophosphatemia and glucosuria in the absence of serum hyperglycemia. The natriuresis slowed down by 2.5 weeks, but 3%S support was continued for a total volume of 12 liters over 3.5 weeks. Attempts of questionable benefits to slow down glomerular filtration included the administration of ibuprofen and benazepril. To our knowledge, this is the most severe case of RSW ever reported with cisplatin.

  14. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance

    International Nuclear Information System (INIS)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-01-01

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells

  15. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats.

    Science.gov (United States)

    Abdulla, M H; Duff, M; Swanton, H; Johns, E J

    2016-11-01

    This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg 9 , Leu 8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  16. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance.

    Science.gov (United States)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-05-10

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells.

  17. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  18. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections.

    Science.gov (United States)

    Alhadeff, Amber L; Holland, Ruby A; Nelson, Alexandra; Grill, Harvey J; De Jonghe, Bart C

    2015-08-05

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss). Although hundreds of

  19. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections

    Science.gov (United States)

    Alhadeff, Amber L.; Holland, Ruby A.; Nelson, Alexandra; Grill, Harvey J.

    2015-01-01

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. SIGNIFICANCE STATEMENT To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss

  20. Acute effect of insulin on guinea pig airways and its amelioration by pre-treatment with salbutamol

    International Nuclear Information System (INIS)

    Sharif, M.; Khan, B. T.; Anwar, M. A.

    2014-01-01

    Objective: To study the magnitude of insulin-mediated airway hyper-reactivity and to explore the protective effects of salbutamol in inhibiting the insulin-induced airway hyper-responsiveness on tracheal smooth muscle of guinea pigs in vitro. Methods: The quasi-experimental study was conducted at the Pharmacology Department of Army Medical College, Rawalpindi, in collaboration with the Centre for Research in Experimental and Applied Medicine from December 2011 to July 2012. It used 18 healthy Dunkin Hartely guinea pigs of either gender. Effects of increasing concentrations of histamine (10-8-10-3M), insulin (10-8-10-3 M) and insulin pre-treated with salbutamol (10-6 M) were observed on isolated tracheal strip of guinea pig in vitro by constructing cumulative concentration response curves. The tracheal smooth muscle contractions were recorded with Transducer on Four Channel Oscillograph. Mean and standard error of mean were calculated. SPSS 16 was used for statistical analysis. Results: Histamine and insulin produced a concentration-dependent reversible contraction of isolated tracheal muscle of guinea pig. The mean of maximum amplitudes of contraction with histamine, insulin and insulin pre-treated with salbutamol were 92. 1.20 mm, 35+-1.13 mm and 14.55+-0.62 mm respectively. Salbutamol shifted the concentration response curve of insulin to the right and downwards. Conclusions: Salbutamol significantly reduced the insulin mediated airway hyper-reactivity in guinea pigs, suggesting that pre-treatment of inhaled insulin with salbutamol may have clinical implication in the amelioration of its potential respiratory adverse effects such as bronchoconstriction. (author)

  1. Epidermal growth factor protects squamous cell carcinoma against cisplatin-induced cytotoxicity through increased interleukin-1β expression.

    Directory of Open Access Journals (Sweden)

    Shian-Chin Ko

    Full Text Available The expression of cytokines, such as IL-1β, and the activation of the epidermal growth factor receptor (EGFR are crucial regulators in the process of carcinogenesis. The correlation between growth factor and activated cytokine signals in the control of tumor development is a critical issue to be clarified. In our study, we found that the IL-1β gene and protein expression were induced by EGF in squamous cell carcinoma. To clarify the mechanism involved in EGF-regulated IL-1β expression, we examined the transcriptional activity and mRNA stability of IL-1β in EGF-treated cells. We found that EGF induced the expression of IL-1β and was mediated through transcriptional activation, but not through mRNA stability. The involvement of Akt and NF-κB signaling pathways in the EGF-induced IL-1β gene expression was confirmed by knockdown of RelA and Akt in cells or treating cells with Akt and NF-κB inhibitors, LY294002 and parthenolide, respectively. The expression of dominant negative IκB also repressed the activation of NF-κB and inhibited EGF-induced IL-1β expression. Using immunofluorescence staining assay, the EGF-stimulated nuclear translocation of NF-κB (p65 was inhibited by pre-treating cells with LY294002 and parthenolide. Furthermore, EGF increased the binding of NF-κB to the NF-κB binding site of the IL-1β promoter through the activation of the Akt/NF-κB pathway, which resulted in activating IL-1β promoter activity. The expression and secretion of IL-1β induced by EGF considerably reduced chemotherapeutic drug cisplatin-induced cell death. These results showed that EGF enhanced the expression of IL-1β, which was mediated by the Akt/NF-κB pathway. The activation of EGF signaling and increase of IL-1β contributed to chemotherapeutic resistance of cancer cells, suggesting that the expression of IL-1β may be used as a biomarker to evaluate successful cancer treatment.

  2. Xanthohumol ameliorates lipopolysaccharide (LPS-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2017-08-01

    Full Text Available Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2 and/or AMP-activated protein kinase (AMPK activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI. Xanthohumol (Xn, a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2-/- mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway. Keywords: Xanthohumol, Acute lung injury, Oxidative stress

  3. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    International Nuclear Information System (INIS)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng; Xia, Qiang

    2012-01-01

    Highlights: ► miR-199a-5p levels were significantly decreased after cisplatin treatment. ► Cisplatin treatment induced autophagy activation. ► Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  5. Cisplatin induces expression of drug resistance-related genes through c-jun N-terminal kinase pathway in human lung cancer cells.

    Science.gov (United States)

    Xu, Li; Fu, Yingya; Li, Youlun; Han, Xiaoli

    2017-08-01

    Change of multidrug resistance-related genes (e.g., lung resistance protein, LRP) and overexpression of anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are responsible for cisplatin resistance. In our study, we investigated the mechanism by which cisplatin induces LRP, Bcl-2, Bcl-xL, XIAP, and Survivin expression in human lung adenocarcinoma A549 cells and human H446 small cell lung cancer cells at mRNA and protein levels. In our study, cell proliferation was assessed with CCK-8 assays, and cell apoptosis was assessed with flow cytometric analysis and Annexin-V/PI staining. qPCR was used to complete RNA experiments. Protein expression was assessed with Western blotting. Cisplatin increased Bcl-2, LRP, and Survivin expression, but decreased Bcl-xL and XIAP expression in a dose-dependent manner. Preincubation with JNK-specific inhibitor, SP600125, significantly inhibited these genes' expression at mRNA and protein levels, enhanced chemosensitivity of lung cancer cells to cisplatin, and promoted cisplatin-induced apoptosis. Our data suggest that the JNK signaling pathway plays an important role in cisplatin resistance. Lung resistance protein (LRP) and anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are involved in the process. The results reminded us of a novel therapy target for lung cancer treatment.

  6. Halofuginone ameliorates inflammation in severe acute hepatitis B virus (HBV-infected SD rats through AMPK activation

    Directory of Open Access Journals (Sweden)

    Zhan WL

    2017-10-01

    Full Text Available Weili Zhan, Yanhong Kang, Ning Chen, Chongshan Mao, Yi Kang, Jia Shang Department of Infectious Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China Abstract: The hepatitis B virus (HBV has caused acute and chronic liver diseases in ~350 million infected people worldwide. Halofuginone (HF is a plant alkaloid which has been demonstrated to play a crucial role in immune regulation. Our present study explored the function of HF in the immune response of HBV-infected Sprague Dawley (SD rats. Plasmid containing pCDNA3.1-HBV1.3 was injected in SD rats for the construction of an acute HBV-infected animal model. Our data showed that HF reduced the high concentrations of serum hepatitis B e-antigen, hepatitis B surface antigen, and HBV DNA induced by HBV infection. HF also reduced the number of T helper (Th17 cells and the expression of interleukin (IL-17 compared with the pCDNA3.1-HBV1.3 group. Moreover, pro-inflammatory cytokine levels (IL-17, IL-23, interferon-γ, and IL-2 were downregulated and anti-inflammatory cytokine levels (IL-4 and IL-13 were upregulated by HF. Through further research we found that the expression of AMP-activated protein kinase (AMPK and IKBA which suppressed NF-κB activation was increased while the expression of p-NF-κB P65 was decreased in pCDNA3.1-HBV1.3+HF group compared with pCDNA3.1-HBV1.3 group, indicating that HF may work through the activation of AMPK. Finally, our conjecture was further verified by using the AMPK inhibitor compound C, which counteracted the anti-inflammation effect of HF, resulting in the decreased expression of AMPK, IKBA and increased expression of p-NF-κB P65 and reduced number of Th17 cells. In our present study, HF was considered as an anti-inflammatory factor in acute HBV-infected SD rats and worked through AMPK-mediated NF-κB p65 inactivation. This study implicated HF as a potential therapeutic strategy for hepatitis B. Keywords: halofuginone, hepatitis B virus

  7. Cheongsangbangpung-tang ameliorated the acute inflammatory response via the inhibition of NF-κB activation and MAPK phosphorylation.

    Science.gov (United States)

    Kim, Seon Young; Park, Sang Mi; Hwangbo, Min; Lee, Jong Rok; Byun, Sung Hui; Ku, Sae Kwang; Cho, Il Je; Kim, Sang Chan; Jee, Seon Young; Park, Sook Jahr

    2017-01-13

    Cheongsangbangpung-tang (CBT) is a traditional herbal formula used in Eastern Asia to treat heat-related diseases and swellings in the skin. The present study was conducted to evaluate the anti-inflammatory effects of cheongsangbangpung-tang extract (CBTE) both in vitro and in vivo. The in vitro effects of CBTE on the lipopolysaccharide (LPS)-induced production of inflammation-related proteins were examined in RAW 264.7 cells. The levels of nitric oxide (NO) were measured with the Griess reagent. Inflammatory cytokines and prostaglandin E 2 (PGE 2 ) were detected using the enzyme-linked immunosorbent assay (ELISA) method. Inflammation-related proteins were detected by Western blot. The effect of CBTE on acute inflammation in vivo was evaluated using carrageenan (CA)-induced paw oedema. To evaluate the anti-inflammatory effect, paw oedema volume, thickness of the dorsum and ventrum pedis skin, number of infiltrated inflammatory cells, and number of COX-2-, iNOS-immunoreactive cells were measured. In an in vitro study, CBTE inhibited the production of NO and PGE 2 and also decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) activity, interleukin (IL)-1β, IL-6 and tumuor necrosis factor-α. In LPS-activated macrophages, nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signalling is a pivotal pathway in the inflammatory process. These plausible molecular mechanisms increased the phosphorylation of I-κBα, while the activation of NF-κB and the phosphorylation of MAPK by LPS were blocked by CBTE treatment. In our in vivo study, a CA-induced acute oedematous paw inflammation rat model was used to evaluate the anti-inflammatory effect of CBTE. CBTE significantly reduced the increases in paw swelling, skin thicknesses, infiltrated inflammatory cells and iNOS-, COX-2 positive cells induced by CA injection. Based on these results, CBTE should favourably inhibit the acute inflammatory response through

  8. Secreted Factors from Bone Marrow Stromal Cells Upregulate IL-10 and Reverse Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Jack M. Milwid

    2012-01-01

    Full Text Available Acute kidney injury is a devastating syndrome that afflicts over 2,000,000 people in the US per year, with an associated mortality of greater than 70% in severe cases. Unfortunately, standard-of-care treatments are not sufficient for modifying the course of disease. Many groups have explored the use of bone marrow stromal cells (BMSCs for the treatment of AKI because BMSCs have been shown to possess unique anti-inflammatory, cytoprotective, and regenerative properties in vitro and in vivo. It is yet unresolved whether the primary mechanisms controlling BMSC therapy in AKI depend on direct cell infusion, or whether BMSC-secreted factors alone are sufficient for mitigating the injury. Here we show that BMSC-secreted factors are capable of providing a survival benefit to rats subjected to cisplatin-induced AKI. We observed that when BMSC-conditioned medium (BMSC-CM is administered intravenously, it prevents tubular apoptosis and necrosis and ameliorates AKI. In addition, we observed that BMSC-CM causes IL-10 upregulation in treated animals, which is important to animal survival and protection of the kidney. In all, these results demonstrate that BMSC-secreted factors are capable of providing support without cell transplantation, and the IL-10 increase seen in BMSC-CM-treated animals correlates with attenuation of severe AKI.

  9. Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Jin Tao

    2016-01-01

    Full Text Available Jie-Geng-Tang (JGT, a classic and famous traditional Chinese medicine (TCM prescription composed of Platycodon grandiflorum (Jacq. A. DC. (PG and Glycyrrhiza uralensis Fisch. (GU, is well known for “clearing heat and relieving toxicity” and its ability to “diffuse the lung and relieve sore throat.” However, the mechanism underlying its action remains unclear. In this study, potential anti-inflammatory ingredients were screened and submitted to PharmMapper and the KEGG bioinformatics website to predict the target proteins and related pathways, respectively. Differentially expressed candidate proteins from acute lung injury (ALI mice treated with JGT were identified by isobaric tags for relative and absolute quantitation (iTRAQ and LC Triple-TOF. Eleven potential anti-inflammatory ingredients were found, including the derivatives of glycyrrhizic acid, licorice-saponin, liquiritin, and platycodigenin. A total of sixty-seven differentially expressed proteins were confirmed after JGT treatment with four therapeutic functions, including immunoregulation, anti-inflammation, ribosome, and muscle contraction. PG and GU comediate PI3K/Akt signal pathway inhibition of NF-κB, VCAM1, and ICAM1 release which primarily act on PI3K, PDK1, AKT, and GSK3β. GU markedly inhibits the ERK/MAPK signaling pathways and primarily acts on LCK, RAS, and MEK. A network was constructed using bioactive ingredients, targets, and pathways to determine the mechanism underlying JGT treatment of ALI.

  10. [Acute Kidney Injury: the nephrology plus value and competence and a good organization can ameliorate the prognosis].

    Science.gov (United States)

    Fagugli, Riccardo Maria; Guastoni, Carlo Maria; Battistoni, Sara; Patera, Francesco; Quintaliani, Giuseppe

    2016-01-01

    Epidemiology of Acute Kidney Injury (AKI) has changed radically in the past 15 years: we have observed an exponential increase of cases with high mortality and residual disability, particularly in those patients who need dialysis treatment. Those who survive AKI have an increased risk of requiring dialysis after hospital discharge over the short term as well as long term. They have an increased risk of deteriorating residual kidney function and cardiovascular events as well as a shorter life expectancy. Given the severe prognosis, difficulties of treatment, high level of resources needed, increased workload and consequently costs, several aspects of AKI have not been sufficiently investigated. Any national register of AKI has not been developed and its absence has an impact on provisional strategies. Specific training should be planned beginning with University, which should include practical training in Intensive Care Units. A definition of the organizational characteristics and requirements for the care of AKI is needed. Treatment of AKI is not based exclusively on dialysis efficiency or technology, but also on professional skills, volume of activity, clinical experience, model of healthcare organizations, continuity of processes and medical activities to guarantee such as a closed-staff system. Progress in knowledge and technology has only partially modified the outcome and prognosis of AKI patients; consequently, new strategies based on increased awareness, on the implementation of professional skills, and on revision, definition and updating of resources for the organization of AKI management are needed and expected over the short term.

  11. 1α,25-Dihydroxyvitamin D3 Ameliorates Seawater Aspiration-Induced Acute Lung Injury via NF-κB and RhoA/Rho Kinase Pathways

    Science.gov (United States)

    Liu, Wei; Wang, Li; Luo, Ying; Li, Zhichao; Jin, Faguang

    2014-01-01

    Introduction Inflammation and pulmonary edema are involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have reported that 1α,25-Dihydroxyvitamin D3 (calcitriol) suppresses inflammation, it has not been confirmed to be effective in seawater aspiration-induced ALI. Thus, we investigated the effect of calcitriol on seawater aspiration-induced ALI and explored the probable mechanism. Methods Male SD rats receiving different doses of calcitriol or not, underwent seawater instillation. Then lung samples were collected at 4 h for analysis. In addition, A549 cells and rat pulmonary microvascular endothelial cells (RPMVECs) were cultured with calcitriol or not and then stimulated with 25% seawater for 40 min. After these treatments, cells samples were collected for analysis. Results Results from real-time PCR showed that seawater stimulation up-regulated the expression of vitamin D receptor in lung tissues, A549 cells and RPMVECs. Seawater stimulation also activates NF-κB and RhoA/Rho kinase pathways. However, we found that pretreatment with calcitriol significantly inhibited the activation of NF-κB and RhoA/Rho kinase pathways. Meanwhile, treatment of calcitriol also improved lung histopathologic changes, reduced inflammation, lung edema and vascular leakage. Conclusions These results demonstrated that NF-κB and RhoA/Rho kinase pathways are critical in the development of lung inflammation and pulmonary edema and that treatment with calcitriol could ameliorate seawater aspiration-induced ALI, which was probably through the inhibition of NF-κB and RhoA/Rho kinase pathways. PMID:25118599

  12. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways.

    Science.gov (United States)

    Yu, Jian-Bo; Shi, Jia; Zhang, Yuan; Gong, Li-Rong; Dong, Shu-An; Cao, Xin-Shun; Wu, Li-Li; Wu, Li-Na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies.

  13. Ultrastructural morphology and localisation of cisplatin-induced platinum-DNA adducts in a cisplatin-sensitive and -resistant human small cell lung cancer cell line using electron microscopy

    NARCIS (Netherlands)

    Meijer, C; van Luyn, MJA; Nienhuis, EF; Blom, N; Mulder, NH; de Vries, EGE

    2001-01-01

    Ultrastructural morphology (transmission electron microscopy) and localisation of cisplatin-induced platinum (Pt)-DNA adducts (immunoelectron microscopy) were analysed in the human small cell lung cancer cell line GLC(4) and its 40-fold in vitro acquired cisplatin-resistant subline GLC(4)-CDDP,

  14. Traditional Chinese medicine, Qing Ying Tang, ameliorates the severity of acute lung injury induced by severe acute pancreatitis in rats via the upregulation of aquaporin-1.

    Science.gov (United States)

    Gao, Zhenming; Xu, Junfeng; Sun, Deguang; Zhang, Rixin; Liang, Rui; Wang, Liming; Fan, Rong

    2014-12-01

    Aquaporin-1 (AQP-1) is expressed in lung endothelial cells and regulates water transport; thus, AQP-1 plays an important role in a number of edema-associated lung diseases. Qing Yin Tang (QYT), a traditional Chinese medicine, has been shown to effectively reduce the mortality rate of acute lung injury (ALI) induced by severe acute pancreatitis (SAP). The current study aimed to investigate the detailed mechanisms underlying the effects of QYT on ALI induced by SAP, particularly the effects on the expression levels of AQP-1 in the lung tissue. ALI was established in Wister rats who were subsequently divided into four groups: SHAM, ALI, dexamethasone (DEX) and QYT groups (n=8 per group). In the QYT group, 20 ml/kg QYT was administered by gavage immediately following the induction of SAP. Blood and lung tissues were collected 8 h following the induction of pancreatitis. The lung wet/dry ratio, as well as the levels of blood gases, serum amylase and tumor necrosis factor-α (TNF-α), were measured at 4, 8 and 12 h following SAP-associated ALI induction surgery. The expression levels of AQP-1 in the lung tissue were detected by quantitative polymerase chain reaction, immunohistochemistry and western blot analysis. No statistically significant differences were observed with regard to the levels of serum amylase, wet/dry ratio, partial pressure of oxygen, serum TNF-α and pathological changes in the pulmonary tissue between the QYT and DEX groups; however, a statistically significant difference was observed when compared with the ALI group. The expression levels of AQP-1 significantly increased (P<0.05) and lung edema was alleviated in the QYT and DEX groups, when compared with ALI group. Therefore, the expression level of AQP-1 is associated with pulmonary edema. QYT protects the lungs from injury induced by SAP via the upregulation of AQP-1, which suppresses TNF-α expression.

  15. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  16. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda.

    Science.gov (United States)

    Zhang, Xiaoxue; Zhang, Rui; Yang, HuiOu; Xiang, Qian; Jiang, Qing; He, Qi; Zhang, Ting; Chen, Chen; Zhu, Huifen; Wang, Qiang; Ning, Qin; Li, Yiwu; Lei, Ping; Shen, Guanxin

    2016-07-25

    Cisplatin is a classical platinum-based chemotherapeutic drug used in the treatment of many cancer types, including hepatocellular carcinoma (HCC). The application of cisplatin is significantly limited by its toxicity, which may be affected by various biological factors. Persistence of Hepatitis B virus (HBV) infection leads to HCC development and may be associated with higher incidence of severe hepatitis during chemotherapy. However, whether HBV alters the susceptibility of hepatocytes to cisplatin remains poorly understood. Here, we demonstrate that HBV transfection enhanced cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 KDa (Grp78), a major stress-induced chaperone that localizes to the endoplasmic reticulum. Silencing Grp78 gene increased the susceptibility of HepG2 to cisplatin by activating caspase-3. Grp78 expression was down-regulated by HBV infection both in vitro and in liver tissues of patients. We compared the cisplatin sensitivity of hepatoma cells either expressing (HepG2.2.15 cells) or not expressing the entire Hepatitis B Virus genome (HepG2). HepG2.2.15 cells showed increased sensitivity to cisplatin and a higher apoptosis rate. Overexpression of Grp78 counteracted the increase of sensitivity of HepG2.215 cells to cisplatin. Furthermore, we found that HBV disrupted Grp78 synthesis in response to cisplatin stimulation, which may trigger severe and prolonged endoplasmic reticulum (ER) stress that can induce cellular apoptosis. Our findings provide new information into the effect of HBV in the modulation of Grp78 expression, and, consequently on cisplatin-induced hepatotoxicity during viral infection. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease.

    Science.gov (United States)

    Chen, Hanqing; Shen, Feng; Sherban, Alex; Nocon, Allison; Li, Yu; Wang, Hua; Xu, Ming-Jiang; Rui, Xianliang; Han, Jinyan; Jiang, Bingbing; Lee, Donghwan; Li, Na; Keyhani-Nejad, Farnaz; Fan, Jian-Gao; Liu, Feng; Kamat, Amrita; Musi, Nicolas; Guarente, Leonard; Pacher, Pal; Gao, Bin; Zang, Mengwei

    2018-02-19

    Alcoholic liver disease (ALD) is characterized by lipid accumulation and liver injury. However, how chronic alcohol consumption causes hepatic lipid accumulation remains elusive. The present study demonstrates that activation of the mechanistic target of rapamycin complex 1 (mTORC1) plays a causal role in alcoholic steatosis, inflammation, and liver injury. Chronic-plus-binge ethanol feeding led to hyperactivation of mTORC1, as evidenced by increased phosphorylation of mTOR and its downstream kinase S6 kinase 1 (S6K1) in hepatocytes. Aberrant activation of mTORC1 was likely attributed to the defects of the DEP domain-containing mTOR-interacting protein (DEPTOR) and the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1) in the liver of chronic-plus-binge ethanol-fed mice and in the liver of patients with ALD. Conversely, adenoviral overexpression of hepatic DEPTOR suppressed mTORC1 signaling and ameliorated alcoholic hepatosteatosis, inflammation, and acute-on-chronic liver injury. Mechanistically, the lipid-lowering effect of hepatic DEPTOR was attributable to decreased proteolytic processing, nuclear translocation, and transcriptional activity of the lipogenic transcription factor sterol regulatory element-binding protein-1 (SREBP-1). DEPTOR-dependent inhibition of mTORC1 also attenuated alcohol-induced cytoplasmic accumulation of the lipogenic regulator lipin 1 and prevented alcohol-mediated inhibition of fatty acid oxidation. Pharmacological intervention with rapamycin alleviated the ability of alcohol to up-regulate lipogenesis, to down-regulate fatty acid oxidation, and to induce steatogenic phenotypes. Chronic-plus-binge ethanol feeding led to activation of SREBP-1 and lipin 1 through S6K1-dependent and independent mechanisms. Furthermore, hepatocyte-specific deletion of SIRT1 disrupted DEPTOR function, enhanced mTORC1 activity, and exacerbated alcoholic fatty liver, inflammation, and liver injury in mice. The dysregulation of SIRT1

  18. Acute Radiation Sickness Amelioration Analysis

    Science.gov (United States)

    1994-05-01

    Emetic Drugs 16. PRICE CODE Antagonists 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF...102 UNCLASSIFIED mcuIw IA IIIcaIIin or Isis PAW CLASSFIED BY: N/A since Unclassified. DECLASSIFY ON: N/A since Unclassified. SECURITY CLASSIFICATION OF...Approximately 2000 documents relevant to the development of the candidate anti-emetic drugs ondansetron (Zofran, Glaxo Pharmaceuticals) and granisetron

  19. A randomized study to assess the efficacy of herbal product to prevent cisplatin-induced nephrotoxicity in a rat model.

    Science.gov (United States)

    Kucuk, Eyup Veli; Bindayi, Ahmet; Mese, Meral; Gulcu Bulmus, Funda; Parmaksiz, Ergun; Cetinel, Ali Cihangir; Bicik Bahcebasi, Zerrin; Sarica, Kemal

    2017-10-03

    This study aimed to investigate the protective effect and antioxidant activity of an herbal product that made from multiple plants in a rat model of kidney dysfunction induced by intraperitoneal cisplatin. Twenty-four rats were divided into four different groups namely: Group 1 - control healthy animals without any specific medication, Group 2 - Herbal product only 5 mg/kg, Group 3 - cisplatin only and Group 4 - Herbal product 5 mg/kg + cisplatin. Evaluation of our findings demonstrated a significant (p = 0.017) reduction in Catalase activities and a significant increase (p = 0.001) in renal tissue Malondialdehyde levels in cisplatin- treated rats when compared with the control group. Also, Glutathion and Glutathione peroxidase content revealed significant (p = 0.031) reduction in renal tissues of cisplatintreated rats compared with the control group. Pre-treatment of rats with the herbal product ameliorated these cisplatininduced changes of the antioxidant enzymes. No statistically significant changes were demonstrated in Superoxide dismutase activities in the tissue specimens of any group. This potent antioxidant herbal medicine was found to have potential antioxidant activity, which may in turn to be effective in the protection of kidney tissue resulting from cisplatin application. Therefore, much attention should be given to the possible role of natural dietary antioxidants for protecting the kidney.

  20. A randomized study to assess the efficacy of herbal product to prevent cisplatin-induced nephrotoxicity in a rat model

    Directory of Open Access Journals (Sweden)

    Eyup Veli Kucuk

    2017-10-01

    Full Text Available Objectives: This study aimed to investigate the protective effect and antioxidant activity of an herbal product that made from multiple plants in a rat model of kidney dysfunction induced by intraperitoneal cisplatin. Materials and methods: Twenty-four rats were divided into four different groups namely: Group 1 - control healthy animals without any specific medication, Group 2 - Herbal product only 5 mg/kg, Group 3 - cisplatin only and Group 4 - Herbal product 5 mg/kg + cisplatin. Results: Evaluation of our findings demonstrated a significant (p = 0.017 reduction in Catalase activities and a significant increase (p = 0.001 in renal tissue Malondialdehyde levels in cisplatin- treated rats when compared with the control group. Also, Glutathion and Glutathione peroxidase content revealed significant (p = 0.031 reduction in renal tissues of cisplatintreated rats compared with the control group. Pre-treatment of rats with the herbal product ameliorated these cisplatininduced changes of the antioxidant enzymes. No statistically significant changes were demonstrated in Superoxide dismutase activities in the tissue specimens of any group. Conclusions: This potent antioxidant herbal medicine was found to have potential antioxidant activity, which may in turn to be effective in the protection of kidney tissue resulting from cisplatin application. Therefore, much attention should be given to the possible role of natural dietary antioxidants for protecting the kidney.

  1. Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury.

    Science.gov (United States)

    Gheisari, Yousof; Azadmanesh, Kayhan; Ahmadbeigi, Naser; Nassiri, Seyed Mahdi; Golestaneh, Azadeh Fahim; Naderi, Mahmood; Vasei, Mohammad; Arefian, Ehsan; Mirab-Samiee, Siamak; Shafiee, Abbas; Soleimani, Masoud; Zeinali, Sirous

    2012-11-01

    The therapeutic potential of bone marrow mesenchymal stem cells (MSCs) in kidney failure has been examined in some studies. However, recent findings indicate that after transplantation, these cells home to kidneys at very low levels. Interaction of stromal derived factor-1 (SDF-1) with its receptor, CXCR4, is of pivotal importance in migration and homing. Recently, CXCR7 has also been recognized as another SDF-1 receptor that interacts with CXCR4 and modulates its functions. In this study, CXCR4 and CXCR7 were separately and simultaneously overexpressed in BALB/c bone marrow MSCs by using a lentiviral vector system and the homing and renoprotective potentials of these cells were evaluated in a mouse model of cisplatin-induced acute kidney injury. Using flow cytometry, immunohistochemistry, and real-time PCR methods for detection of GFP-labeled MSCs, we found that although considerably entrapped in lungs, native MSCs home very rarely to kidneys and bone marrow and this rate cannot be significantly affected by CXCR4 and/or CXCR7 upregulation. Transplantation of neither native nor genetically engineered MSCs ameliorated kidney failure. We concluded that overexpression of CXCR4 and CXCR7 receptors in murine MSCs cannot improve the homing and therapeutic potentials of these cells and it can be due to severe chromosomal abnormalities that these cells bear during ex vivo expansion.

  2. Significance of downregulation of renal organic cation transporter (SLC47A1 in cisplatin-induced proximal tubular injury

    Directory of Open Access Journals (Sweden)

    Mizuno T

    2015-07-01

    Full Text Available Tomohiro Mizuno,1–3 Waichi Sato,2,3 Kazuhiro Ishikawa,4 Yuki Terao,1 Kazuo Takahashi,2 Yukihiro Noda,5 Yukio Yuzawa,2 Tadashi Nagamatsu1 1Department of Analytical Pharmacology, Meijo University Faculty of Pharmacy, Nagoya, 2Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, 3Department of Nephrology, Nagoya University School of Medicine, Nagoya, 4Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 5Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Japan Background/aim: To elucidate the mechanism responsible for developing acute kidney injury in patients with diabetes mellitus, we also evaluated the issue of whether advanced glycation endproducts (AGEs influence the expressions of multi antimicrobial extrusion protein (MATE1/SLC47A1 in tubular cells. Materials and methods: To detect changing expression of MATE1/SLC47A1 in dose- and time-dependent manners, human proximal tubular epithelial cells were incubated with AGE-aggregated-human serum albumin. As a function assay for MATE1/SLC47A1, human proximal tubular epithelial cells were incubated with cisplatin or carboplatin. Results: On incubation with AGEs, the expressions of MATE1/SLC47A1 were decreased in tubular cells. In addition, the toxicities of cisplatin were increased in tubular cells that had been pretreated with AGEs. However, the toxicities of carboplatin were smaller than that of cisplatin in proximal tubular epithelial cells. Conclusion: The expression of the MATE1/SLC47A1 is decreased by AGEs, which increases the risk for proximal tubular injury. Keywords: advanced glycation endproducts, cisplatin, SLC47A1, diabetes mellitus, acute kidney injury

  3. COAST (Cisplatin ototoxicity attenuated by aspirin trial): A phase II double-blind, randomised controlled trial to establish if aspirin reduces cisplatin induced hearing-loss.

    Science.gov (United States)

    Crabb, Simon J; Martin, Karen; Abab, Julia; Ratcliffe, Ian; Thornton, Roger; Lineton, Ben; Ellis, Mary; Moody, Ronald; Stanton, Louise; Galanopoulou, Angeliki; Maishman, Tom; Geldart, Thomas; Bayne, Mike; Davies, Joe; Lamb, Carolynn; Popat, Sanjay; Joffe, Johnathan K; Nutting, Chris; Chester, John; Hartley, Andrew; Thomas, Gareth; Ottensmeier, Christian; Huddart, Robert; King, Emma

    2017-12-01

    Cisplatin is one of the most ototoxic chemotherapy drugs, resulting in a permanent and irreversible hearing loss in up to 50% of patients. Cisplatin and gentamicin are thought to damage hearing through a common mechanism, involving reactive oxygen species in the inner ear. Aspirin has been shown to minimise gentamicin-induced ototoxicity. We, therefore, tested the hypothesis that aspirin could also reduce ototoxicity from cisplatin-based chemotherapy. A total of 94 patients receiving cisplatin-based chemotherapy for multiple cancer types were recruited into a phase II, double-blind, placebo-controlled trial and randomised in a ratio of 1:1 to receive aspirin 975 mg tid and omeprazole 20 mg od, or matched placebos from the day before, to 2 days after, their cisplatin dose(s), for each treatment cycle. Patients underwent pure tone audiometry before and at 7 and 90 days after their final cisplatin dose. The primary end-point was combined hearing loss (cHL), the summed hearing loss at 6 kHz and 8 kHz, in both ears. Although aspirin was well tolerated, it did not protect hearing in patients receiving cisplatin (p-value = 0.233, 20% one-sided level of significance). In the aspirin arm, patients demonstrated mean cHL of 49 dB (standard deviation [SD] 61.41) following cisplatin compared with placebo patients who demonstrated mean cHL of 36 dB (SD 50.85). Women had greater average hearing loss than men, and patients treated for head and neck malignancy experienced the greatest cHL. Aspirin did not protect from cisplatin-related ototoxicity. Cisplatin and gentamicin may therefore have distinct ototoxic mechanisms, or cisplatin-induced ototoxicity may be refractory to the aspirin regimen used here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells.

    Science.gov (United States)

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-10-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling.

  5. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Navin Sarin

    Full Text Available The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2, xeroderma pigmentosum complementation group C (XPC, stress inducible protein (SIP and p21 compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.

  6. Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa–induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways

    Directory of Open Access Journals (Sweden)

    Yuanyuan Hou

    2016-05-01

    Full Text Available Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF, a traditional Chinese medicine (TCM formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG, cholic acid (CLA, chlorogenic acid (CGA and sinapic acid (SPA, regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6 and chemokines (IL-8 and RANTES, reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively.

  7. The Rhizome Mixture of Anemarrhena asphodeloides and Coptidis chinensis Ameliorates Acute and Chronic Colitis in Mice by Inhibiting the Binding of Lipopolysaccharide to TLR4 and IRAK1 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Jin-Ju Jeong

    2014-01-01

    Full Text Available In the previous study, the mixture of the rhizome of Anemarrhena asphodeloides (AA, family Liliaceae and the rhizome of Coptidis chinensis (CC, family Ranunculaceae (AC-mix improved TNBS- or oxazolone-induced colitis in mice. Therefore, to investigate its anticolitic mechanism, we measured its effect in acute and chronic DSS-induced colitic mice and investigated its anti-inflammatory mechanism in peritoneal macrophages. AC-mix potently suppressed DSS-induced body weight loss, colon shortening, myeloperoxidase activity, and TNF-α, IL-1β, and IL-6 expressions in acute or chronic DSS-stimulated colitic mice. Among AC-mix ingredients, AA, CC, and their main constituents mangiferin and berberine potently inhibited the expression of proinflammatory cytokines TNF-α and IL-1β, as well as the activation of NF-κB in LPS-stimulated peritoneal macrophages. AA and mangiferin potently inhibited IRAK phosphorylation, but CC and berberine potently inhibited the binding of LPS to TLR4 on macrophages, as well as the phosphorylation of IRAK1. AC-mix potently inhibited IRAK phosphorylation and LPS binding to TLR4 on macrophages. Based on these findings, AC-mix may ameliorate colitis by the synergistic inhibition of IRAK phosphorylation and LPS binding to TLR4 on macrophages.

  8. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27Kip1 promoter in primordial follicles.

    Science.gov (United States)

    Jang, Hoon; Na, Younghwa; Hong, Kwonho; Lee, Sangho; Moon, Sohyeon; Cho, Minha; Park, Miseon; Lee, Ok-Hee; Chang, Eun Mi; Lee, Dong Ryul; Ko, Jung Jae; Lee, Woo Sik; Choi, Youngsok

    2017-10-01

    Premature ovarian failure during chemotherapy is a serious problem for young women with cancer. To preserve the fertility of these patients, approaches to prevent chemotherapy-induced ovarian failure are needed. In a previous study, we reported that melatonin treatment prevents the depletion of the dormant follicle pool via repression of the simultaneous activation of dormant primordial follicles by cisplatin. However, melatonin's protective effect was only partial and thus insufficient. In this study, we found that the hormone ghrelin enhances the protective effect of melatonin against cisplatin-induced ovarian failure in mouse model. Co-administration of melatonin and ghrelin more effectively prevented cisplatin-induced follicle disruption. Simultaneous treatment with melatonin and ghrelin almost restored the number of primordial follicles and the corpus luteum in cisplatin-treated ovaries, compared with single administration. We found melatonin and ghrelin receptors on the cell membrane of premature oocytes of primordial follicles. In addition, melatonin and ghrelin co-administration inhibited the cisplatin-induced phosphorylation of PTEN and FOXO3a that induces cytoplasmic translocation of FOXO3a. Inhibition of FOXO3a phosphorylation by melatonin and ghrelin increased the binding affinity of FOXO3a for the p27 Kip1 promoter in primordial follicles. Co-administration of melatonin and ghrelin in cisplatin-treated ovaries restored the expression of p27 Kip1 , which is critical for retention of the dormant status of primordial follicles. In conclusion, these findings suggest that melatonin and ghrelin co-administration is suitable for use as a fertoprotective adjuvant therapy during cisplatin chemotherapy in young female cancer patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Acute, Sub-lethal Cyanide Poisoning in Mice is Ameliorated by Nitrite Alone: Complications Arising from Concomitant Administration of Nitrite and Thiosulfate as an Antidotal Combination

    Science.gov (United States)

    Cambal, Leah K.; Swanson, Megan R.; Yuan, Quan; Weitz, Andrew C.; Li, Hui-Hua; Pitt, Bruce R.; Pearce, Linda L.; Peterson, Jim

    2011-01-01

    Sodium nitrite alone is shown to ameliorate sub-lethal cyanide toxicity in mice when given from ~1 hour before until 20 minutes after the toxic dose as demonstrated by the recovery of righting ability. An optimum dose (12 mg/kg) was determined to significantly relieve cyanide toxicity (5.0 mg/kg) when administered to mice intraperitoneally. Nitrite so administered was shown to rapidly produce NO in the bloodsteam as judged by the dose dependent appearance of EPR signals attributable to nitrosylhemoglobin and methemoglobin. It is argued that antagonism of cyanide inhibition of cytochrome c oxidase by NO is the crucial antidotal activity rather than the methemoglobin-forming action of nitrite. Concomitant addition of sodium thiosulfate to nitrite-treated blood resulted in the detection of sulfidomethemoblobin by EPR spectroscopy. Sulfide is a product of thiosulfate hydrolysis and, like cyanide, is known to be a potent inhibitor of cytochrome c oxidase; the effects of the two inhibitors being essentially additive under standard assay conditions, rather than dominated by either one. The findings afford a plausible explanation for an observed detrimental effect in mice associated with the use of the standard nitrite-thiosulfate combination therapy at sub-lethal levels of cyanide intoxication. PMID:21534623

  10. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest.

    Science.gov (United States)

    Shirazi Fard, Shahrzad; Thyselius, Malin; All-Ericsson, Charlotta; Hallböök, Finn

    2014-01-01

    For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.

  11. CXCL12 suppresses cisplatin-induced apoptosis through activation of JAK2/STAT3 signaling in human non-small-cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Wang M

    2017-06-01

    Full Text Available Meng Wang,1 Tie Lin,2 Yicun Wang,3 Song Gao,4 Zhaoyang Yang,1 Xuan Hong,1 Gongyan Chen1 1Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, 2Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 3Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 4Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China Aims: Poor efficacy of chemotherapy drugs in non-small-cell lung cancer (NSCLC is the key reason for the failure of treatment, but the mechanism of this remains largely unknown. Stromal cell-derived factor 1-alpha (SDF-1α/CXCL12 is a small chemotactic cytokine protein that plays an important role in tumor progression. In this study, we investigated the anti-apoptotic mechanism of the CXCL12/CXCR4 axis in response to cisplatin, a commonly used chemotherapeutic drug, in human lung adenocarcinoma A549 cells.Methods: CXCL12 blocks cisplatin-induced apoptosis in A549, and the results were shown by propidium iodide/annexin V staining in vitro. The mechanism of CXCL12 stimulating phosphorylation of STAT3 through CXCR4/JAK2 was demonstrated by immunofluorescence and Western blotting. The expression of CXCL12 and p-STAT3 in clinical specimens was examined by immunohistochemistry.Results: CXCL12 significantly decreased the ratio of apoptotic cells and stimulation of phospho-signal transducer and activator of transcription (p-STAT-3 in a time-dependent manner through interaction with CXCR4. Among the signaling molecules downstream of CXCR4, the JAK2/STAT3 pathway plays a predominant role in the anti-apoptotic effect of CXCL12. Analysis of clinical specimens revealed that increased CXCL12 and p-STAT3 expression correlates with enhanced lung cancer progression.Conclusion: These data suggest that CXCR4 contributes to CXCL12-mediated anti-apoptosis by activating JAK2

  12. Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity.

    Science.gov (United States)

    Taguchi, Kazuaki; Nagao, Saori; Maeda, Hitoshi; Yanagisawa, Hiroki; Sakai, Hiromi; Yamasaki, Keishi; Wakayama, Tomohiko; Watanabe, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2018-11-01

    Macrophages play a central role in various inflammatory disorders and are broadly divided into two subpopulations, M1 and M2 macrophage. In the healing process in acute inflammatory disorders, shifting the production of M1 macrophages to M2 macrophages is desirable, because M1 macrophages secrete pro-inflammatory cytokines, whilst the M2 variety secrete anti-inflammatory cytokines. Previous findings indicate that when macrophages are treated with carbon monoxide (CO), the secretion of anti-inflammatory cytokine is increased and the expression of pro-inflammatory cytokines is inhibited, indicating that CO may have a potential to modulate the production of macrophages toward the M2-like phenotype. In this study, we examined the issue of whether CO targeting macrophages using a nanotechnology-based CO donor, namely CO-bound hemoglobin vesicles (CO-HbV), modulates their polarization and show therapeutic effects against inflammatory disorders. The results showed that the CO-HbV treatment polarized a macrophage cell line toward an M2-like phenotype. Furthermore, in an in vivo study using acute pancreatitis model mice as a model of an inflammatory disease, a CO-HbV treatment also tended to polarize macrophages toward an M2-like phenotype and inhibited neutrophil infiltration in the pancreas, resulting in a significant inflammation. In addition to the suppression of acute pancreatitis, CO-HbV diminished a subsequent pancreatitis-associated acute lung injury. This could be due to the inhibition of the systemic inflammation, neutrophil infiltration in the lungs and the production of HMGB-1. These findings suggest that CO-HbV exerts superior anti-inflammatory effects against inflammatory disorders via the regulation of macrophage and neutrophil activity.

  13. Hemistepsin A ameliorates acute inflammation in macrophages via inhibition of nuclear factor-κB and activation of nuclear factor erythroid 2-related factor 2.

    Science.gov (United States)

    Kim, Jae Kwang; Lee, Ji Eun; Jung, Eun Hye; Jung, Ji Yun; Jung, Dae Hwa; Ku, Sae Kwang; Cho, Il Je; Kim, Sang Chan

    2018-01-01

    Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata (Bunge) Bunge. We investigated the anti-inflammatory effects of HsA and sought to determine its mechanisms of action in macrophages. HsA pretreatment inhibited nitric oxide production, and reduced the expression of iNOS and COX-2 in Toll-like receptor ligand-stimulated RAW 264.7 cells. Additionally, HsA decreased the secretion of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated Kupffer cells as well as in RAW 264.7 cells. HsA inhibited phosphorylation of IKKα/β and degradation of IκBα, resulting in decreased nuclear translocation of nuclear factor-κB (NF-κB) and its transcriptional activity. Moreover, HsA phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2), increased expression levels of antioxidant genes, and attenuated LPS-stimulated H 2 O 2 production. Phosphorylation of p38 and c-Jun N-terminal kinase was required for HsA-mediated Nrf2 phosphorylation. In a D-galactosamine/LPS-induced liver injury model, HsA ameliorated D-galactosamine/LPS-induced hepatocyte degeneration and inflammatory cells infiltration. Moreover, immunohistochemical analyses using nitrotyrosine, 4-hydroxynonenal, and cleaved poly (ADP-ribose) polymerase antibodies revealed that HsA protected the liver from oxidative stress. Furthermore, HsA reduced the numbers of proinflammatory cytokine-positive cells in hepatic tissues. Thus, these results suggest HsA may be a promising natural product to manage inflammation-mediated tissue injuries through inhibition of NF-κB and activation of Nrf2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Monitoring cisplatin-induced ototoxicity.

    Directory of Open Access Journals (Sweden)

    Ana SÁNCHEZ-MARTÍNEZ

    2018-03-01

    Full Text Available Introduction and objective: The ototoxic damage goes unnoticed to disabling levels, being justified to apply control for its early detection procedures, make it possible to a therapeutic change and if necessary, a speech and auditory rehabilitation. The objective of this study will consist to present Protocol we did at the Hospital Clínico Universitario de Valladolid for the follow-up of the patients treated with cisplatin. Method: Ototoxicity monitoring means serially collect hearing thresholds. It is identified on a visit if hearing has worsened in some ear. The comparison allows to detect the change and indicate if it is significant or not in relation to some criteria. We will also evaluate the occurrence of vestibular damage. As auditory monitoring procedures, we will use high frequency audiometry and acoustic oto-emissions. Results: After giving informed consent and a brief medical history we started with baseline assessment of hearing, prior to treatment, continuing with periodic reviews before each cycle. If any change is detected it is reported to the physician and the patient. To grade the ototoxicity, we apply the Brock and Chang criteria. We maintain post-treatment control. Discussion and conclusion: The incidence of ototoxicity of cisplatin is unknown in our country and it is not possible to predict which patients will experience. The increase in the survival rate for cancer involves improving comorbidity, which in the case of its early ototoxicity supposed to find the best solutions to restore the quality of life of patient’s detection.

  15. Nrf2 activation ameliorates cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cells through increased glutathione levels and arsenic efflux from cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, Shoichi; Suzuki, Toshihiro; Koike, Shin [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan); Yuan, Bo; Takagi, Norio [Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 (Japan); Ogasawara, Yuki, E-mail: yo@my-pharm.ac.jp [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan)

    2016-08-15

    Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, has been shown to activate nuclear transcription factor E2-related factor 2 (Nrf2), which plays a central role in cytoprotective responses to oxidative and electrophilic stress. Recently, the Nrf2-Kelch ECH associating protein 1 (Keap1) pathway has been associated with cancer drug resistance attributable to modulation of the expression and activation of antioxidant and detoxification enzymes. However, the exact mechanisms by which Nrf2 activation results in chemoresistance are insufficiently understood to date. This study investigated the mechanisms by which the cytotoxic effects of arsenic trioxide (ATO), an anticancer drug, were decreased in acute promyelocytic leukemia cells treated with CA, a typical activator of Nrf2 used to stimulate the Nrf2/Keap1 system. Our findings suggest that arsenic is non-enzymatically incorporated into NB4 cells and forms complexes that are dependent on intracellular glutathione (GSH) concentrations. In addition, the arsenic complexes are recognized as substrates by multidrug resistance proteins and subsequently excreted from the cells. Therefore, Nrf2-associated activation of the GSH biosynthetic pathway, followed by increased levels of intracellular GSH, are key mechanisms underlying accelerated arsenic efflux and attenuation of the cytotoxic effects of ATO. - Highlights: • Nrf2 activation attenuates the effect of arsenic trioxide to acute promyelocytic leukemia cells. • The sensitivity of arsenic trioxide to NB4 cells was dependent on efflux rate of arsenic. • Activation of the GSH biosynthesis is essential in Nrf2-regulated responses for arsenic efflux.

  16. Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms.

    Science.gov (United States)

    Sui, Xizhong; Gao, Changqing

    2014-01-01

    Huperzine A (HupA), an alkaloid used in traditional Chinese medicine and isolated from Huperzia serrata, has been shown to possess diverse biological activities. The present study was undertaken to evaluate the cardioprotective potential of HupA in myocardial ischemic damage using a rat model of acute myocardial infarction. HupA significantly diminished the infarct size and inhibited the activities of myocardial enzymes, including creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT). A significantly reduced activity of malondialdehyde (MDA) and elevated activities of superoxide dismutase (SOD), of the non-enzymatic scavenger enzyme, glutathione (GSH), as well as of glutathione peroxidase (GSH-PX) were found in the HupA-treated groups. Furthermore, decreased protein levels of caspase-3 and Bax, and increased levels of Bcl-2 were observed in the infarcted hearts of the rats treated with various concentrations of HupA. In addition, treatment with HupA markedly inhibited the expression of the nuclear factor-κB (NF-κB) subunit p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). These findings suggest that the cardioprotective potential of HupA is associated with its antioxidant, anti-apoptotic and anti-inflammatory properties in acute myocardial infarction in rats.

  17. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  18. CD1d-dependent NKT cells play a protective role in acute and chronic arthritis models by ameliorating antigen-specific Th1 responses

    DEFF Research Database (Denmark)

    Teige, Anna; Bockermann, Robert; Hasan, Maruf

    2010-01-01

    -induced arthritis (AIA) and collagen-induced arthritis (CIA), to evaluate acute and chronic arthritis in CD1d knockout mice and mice depleted of NK1.1(+) cells. CD1d-deficient mice developed more severe AIA compared with wild-type littermates, with a higher degree of inflammation and proteoglycan depletion. Chronic...... arthritis in CIA was also worse in the absence of CD1d-dependent NKTs. Elevated levels of Ag-specific IFN-gamma production accompanied these findings rather than changes in IL-17alpha. Depletion of NK1.1(+) cells supported these findings in AIA and CIA. This report provides support for CD1d-dependent NKTs...

  19. A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration

    Directory of Open Access Journals (Sweden)

    Sun CL

    2015-05-01

    kHz frequencies when compared to the control of free DEX formulation. Histological analyses indicated that the administration of DEX-NPs did not induce local inflammatory responses. Therefore, prolonged delivery of DEX by PEG-PLA nanoparticles through local RWM diffusion (administration significantly protected the hair cells and auditory function in guinea pigs from cisplatin toxicity, as determined at both histological and functional levels, suggesting the potential therapeutic benefits in clinical applications.Keywords: stealth nanoparticles, dexamethasone, single-dose administration, cisplatin-induced hearing loss

  20. Casticin, an active compound isolated from Vitex Fructus, ameliorates the cigarette smoke-induced acute lung inflammatory response in a murine model.

    Science.gov (United States)

    Lee, Hyeonhoon; Jung, Kyung-Hwa; Lee, Hangyul; Park, Soojin; Choi, Woosung; Bae, Hyunsu

    2015-10-01

    The aim of this study was to determine of the effect of casticin, as an anti-inflammatory agent, on an acute lung inflammation in vivo model established through exposure to cigarette smoke (CS). Casticin is a phytochemical from Vitex species such as Vitex rotundifolia and Vitex agnus-castus that was recently shown to exert an anti-inflammatory effect in vivo. To demonstrate the effects of casticin, C57BL/6 mice were whole-body exposed to mainstream CS or fresh air for two weeks and treated with 1, 2, and 10mg/kg casticin via an i.p. injection. Immune cell infiltrations and cytokine productions were assessed from bronchoalveolar lavage Fluid (BALF), and lung histological analysis was performed. Treatment with casticin was observed to significantly inhibit the numbers of total cells, neutrophils, macrophages, and lymphocytes and reduce the levels of proinflammatory cytokines and chemokines in the BALF. In addition, casticin significantly decreased the infiltration of peribronchial and perivascular inflammatory cells and the epithelium thickness. The results of this study indicate that casticin has significant effects on the lung inflammation induced by CS in a mouse model. According to these outcomes, casticin may have therapeutic potential in inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-κB Bioluminescent Imaging.

    Science.gov (United States)

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-08

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-κB (NF-κB) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-κB activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 μg/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-κB bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-κB-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1β (IL-1β)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-κB, the production of IL-1β, and the infiltration of inflammatory cells in mice.

  2. Amelioration of Behavioural, Biochemical, and Neurophysiological Deficits by Combination of Monosodium Glutamate with Resveratrol/Alpha-Lipoic Acid/Coenzyme Q10 in Rat Model of Cisplatin-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Naini Bhadri

    2013-01-01

    Full Text Available Cisplatin or cis-diamminedichloroplatinum (II (CDDP is a cytotoxic chemotherapeutic agent with dose-dependent peripheral neuropathy as a foremost side effect characterised by ataxia, pain, and sensory impairment. Cumulative drug therapy of CDDP is known to produce severe oxidative damage. It mainly targets and accumulates in dorsal root ganglia that in turn cause damage resulting in secondary nerve fibre axonopathy. In the present study, we investigated the neuroprotective effect of the combination of monosodium glutamate (MSG with three individual antioxidants, that is, resveratrol, alpha-lipoic acid (ALA, and coenzyme Q10 (CoQ10, in cisplatin (2 mg/kg i.p. twice weekly induced peripheral neuropathy in rats. After 8 weeks of treatment the degree of neuroprotection was determined by measuring behavioral and electrophysiological properties and sciatic nerve lipid peroxidation, as well as glutathione and catalase levels. The results suggested that pretreatment with the combination of MSG (500 mg/kg/day po with resveratrol (10 mg/kg/day i.p. or ALA (20 mg/kg/day i.p. or CoQ10 (10 mg/kg weekly thrice i.p. exhibited neuroprotective effect. The maximum neuroprotection of MSG was observed in the combination with resveratrol.

  3. Ameliorative percutaneous lumbar discectomy

    International Nuclear Information System (INIS)

    Xiao Chengjiang; Su Huanbin; He Xiaofeng; Li Yanhao

    2005-01-01

    Objective: To ameliorate the percutaneous lumbar discectomy (APLD) for improving the effectiveness and amplifying the indicative range of PLD. Methods: To ameliorate percutaneous punctured route based on classic PLD and discectomy of extracting pulp out of the herniated disc with special pulpforceps. The statistical analysis of the therapeutic results on 750 disc protrusions of 655 cases undergone APLD following up from 6 to 54 months retrospectively. Results: The effective ratios were excellent in 40.2%, good for 46.6% and bad of 13.3%. No occurrance of intervertebral inflammation and paradiscal hematoma, there were only 1 case complicated with injuried cauda equina, and 4 cases with broken appliance within disc. Conclusions: APLD is effective and safe, not only indicative for inclusion disc herniation, but also for noninclusion herniation. (authors)

  4. Acute Kidney Injury in Heart Failure Revisited-The Ameliorating Impact of "Decongestive Diuresis" on Renal Dysfunction in Type 1 Acute Cardiorenal Syndrome: Accelerated Rising Pro B Naturetic Peptide Is a Predictor of Good Renal Prognosis.

    Science.gov (United States)

    Onuigbo, Macaulay Amechi Chukwukadibia; Agbasi, Nneoma; Sengodan, Mohan; Rosario, Karen Flores

    2017-08-29

    There is mounting evidence that forward heart failure as manifested by low cardiac output alone does not define the degree of renal dysfunction in cardiorenal syndrome. As a result, the term "congestive renal failure" was coined in 2012 by Ross to depict the role of renal venous hypertension in type 1 acute cardiorenal syndrome. If so, aggressive decongestive therapies, either through mechanical ultrafiltration with dialysis machines or pharmacologic ultrafiltration with potent diuretics, would lead to improved cardio and renal outcomes. Nevertheless, as recently as 2012, a review of this literature had concluded that a renal venous hypertension-directed approach using diuretics to manage cardio-renal syndrome was yet to be fully investigated. We, in this review, with three consecutive case series, describe our experience with pharmacologic decongestive diuresis in this paradigm of care and argue for studies of such therapeutic interventions in the management of cardiorenal syndrome. Finally, based on our observations in the Renal Unit, Mayo Clinic Health System, in Northwestern Wisconsin, we have hypothesized that patients with cardiorenal syndrome presenting with accelerated rising Pro B Naturetic Peptide levels appear to represent a group that would have good cardio- and renal-outcomes with such decongestive pharmacologic therapies.

  5. Ameliorative potential of gemfibrozil and silymarin on experimentally induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    A.M. Kabel

    2013-12-01

    Conclusion: The combination of gemfibrozil and silymarin has protective effects against cisplatin-induced nephrotoxicity in rats better than each of these drugs alone due to anti-inflammatory and antioxidant properties of the used drugs.

  6. BH3-mimetics- and cisplatin-induced cell death proceeds through different pathways depending on the availability of death-related cellular components.

    Directory of Open Access Journals (Sweden)

    Vicente Andreu-Fernández

    Full Text Available BACKGROUND: Owing to their important function in regulating cell death, pharmacological inhibition of Bcl-2 proteins by dubbed BH3-mimetics is a promising strategy for apoptosis induction or sensitization to chemotherapy. However, the role of Apaf-1, the main protein constituent of the apoptosome, in the process has yet not been analyzed. Furthermore as new chemotherapeutics develop, the possible chemotherapy-induced toxicity to rapidly dividing normal cells, especially sensitive differentiated cells, has to be considered. Such undesirable effects would probably be ameliorated by selectively and locally inhibiting apoptosis in defined sensitive cells. METHODOLOGY AND PRINCIPAL FINDINGS: Mouse embryonic fibroblasts (MEFS from Apaf-1 knock out mouse (MEFS KO Apaf-1 and Bax/Bak double KO (MEFS KO Bax/Bak, MEFS from wild-type mouse (MEFS wt and human cervix adenocarcinoma (HeLa cells were used to comparatively investigate the signaling cell death-induced pathways of BH3-mimetics, like ABT737 and GX15-070, with DNA damage-inducing agent cisplatin (cis-diammineplatinum(II dichloride, CDDP. The study was performed in the absence or presence of apoptosis inhibitors namely, caspase inhibitors or apoptosome inhibitors. BH3-mimetic ABT737 required of Apaf-1 to exert its apoptosis-inducing effect. In contrast, BH3-mimetic GX15-070 and DNA damage-inducing CDDP induced cell death in the absence of both Bax/Bak and Apaf-1. GX15-070 induced autophagy-based cell death in all the cell lines analyzed. MEFS wt cells were protected from the cytotoxic effects of ABT737 and CDDP by chemical inhibition of the apoptosome through QM31, but not by using general caspase inhibitors. CONCLUSIONS: BH3-mimetic ABT737 not only requires Bax/Bak to exert its apoptosis-inducing effect, but also Apaf-1, while GX15-070 and CDDP induce different modalities of cell death in the absence of Bax/Bak or Apaf-1. Inclusion of specific Apaf-1 inhibitors in topical and well

  7. Ameliorating effect of hawthorn ( Crataegus oxyacantha ) and ...

    African Journals Online (AJOL)

    Ameliorating effect of hawthorn ( Crataegus oxyacantha ) and physical exercise on ... Conclusion: Crataegus oxyacantha extract has shown positive affect to ameliorate on ... Key words: Crataegus oxyacantha, physical activity, epilepsy, gerbil, ...

  8. Lycium barbarum polysaccharide attenuates cisplatin- induced ...

    African Journals Online (AJOL)

    effects on the life quality of cancer patients. Cisplatin is ... response and hormone balance [12,13]. However not ..... through facilitation of cytochrome C across the mitochondrial ... No conflict of interest associated with this work. Contribution of ...

  9. A Standardized Traditional Chinese Medicine Preparation Named Yejuhua Capsule Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Downregulating Toll-Like Receptor 4/Nuclear Factor-κB

    Directory of Open Access Journals (Sweden)

    Chu-Wen Li

    2015-01-01

    Full Text Available A standardized traditional Chinese medicine preparation named Yejuhua capsule (YJH has been clinically used in treatments of various acute respiratory system diseases with high efficacy and low toxicity. In this study, we were aiming to evaluate potential effects and to elucidate underlying mechanisms of YJH against lipopolysaccharide- (LPS- induced acute lung injury (ALI in mice. Moreover, the chemical analysis and chromatographic fingerprint study were performed for quality evaluation and control of this drug. ALI was induced by intratracheal instillation of LPS (5 mg/kg into the lung in mice and dexamethasone (5 mg/kg, p.o. was used as a positive control drug. Results demonstrated that pretreatments with YJH (85, 170, and 340 mg/kg, p.o. effectively abated LPS-induced histopathologic changes, attenuated the vascular permeability enhancement and edema, inhibited inflammatory cells migrations and protein leakages, suppressed the ability of myeloperoxidase, declined proinflammatory cytokines productions, and downregulated activations of nuclear factor-κB (NF-κB and expressions of toll-like receptor 4 (TLR4. This study demonstrated that YJH exerted potential protective effects against LPS-induced ALI in mice and supported that YJH was a potential therapeutic drug for ALI in clinic. And its mechanisms were at least partially associated with downregulations of TLR4/NF-κB pathways.

  10. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    Science.gov (United States)

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Zhang, Ruihua; Ai, Xia; Duan, Yongjie; Xue, Man; He, Wenxiao; Wang, Cunlian; Xu, Tong; Xu, Mingju; Liu, Baojian; Li, Chunhong; Wang, Zhijun; Zhang, Ruihong; Wang, Guohua; Tian, Shufei; Liu, Huifeng

    2017-05-01

    Kaempferol, a very common type of dietary flavonoids, has been found to exert antioxidative and anti-inflammatory properties. The purpose of our investigation was designed to reveal the effect of kaempferol on H9N2 influenza virus-induced inflammation in vivo and in vitro. In vivo, BALB/C mice were infected intranasally with H9N2 influenza virus with or without kaempferol treatment to induce acute lung injury (ALI) model. In vitro, MH-S cells were infected with H9N2 influenza virus with or without kaempferol treatment. In vivo, kaempferol treatment attenuated pulmonary edema, the W/D mass ratio, pulmonary capillary permeability, myeloperoxidase (MPO) activity, and the numbers of inflammatory cells. Kaempferol reduced ROS and Malondialdehyde (MDA) production, and increased the superoxide dismutase (SOD) activity. Kaempferol also reduced overproduction of TNF-α, IL-1β and IL-6. In addition, kaempferol decreased the H9N2 viral titre. In vitro, ROS, MDA, TNF-α, IL-1β and IL-6 was also reduced by kaempferol. Moreover, our data showed that kaempferol significantly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκBα and nuclear factor-κB (NF-κB) p65, NF-κB p65 DNA binding activity, and phosphorylation level of MAPKs, both in vivo and in vitro. These results suggest that kaempferol exhibits a protective effect on H9N2 virus-induced inflammation via suppression of TLR4/MyD88-mediated NF-κB and MAPKs pathways, and kaempferol may be considered as an effective drug for the potential treatment of influenza virus-induced ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Specific immunotherapy ameliorates ulcerative colitis.

    Science.gov (United States)

    Cai, Min; Zeng, Lu; Li, Lin-Jing; Mo, Li-Hua; Xie, Rui-Di; Feng, Bai-Sui; Zheng, Peng-Yuan; Liu, Zhi-Gang; Liu, Zhan-Ju; Yang, Ping-Chang

    2016-01-01

    Hypersensitivity reaction to certain allergens plays a role in the pathogenesis of inflammatory bowel disease (IBD). This study aims to observe the effect of specific immunotherapy in a group of IBD patients. Patients with both ulcerative colitis (UC) and food allergy were recruited into this study. Food allergy was diagnosed by skin prick test and serum specific IgE. The patients were treated with specific immunotherapy (SIT) and Clostridium butyricum (CB) capsules. After treating with SIT and CB, the clinical symptoms of UC were markedly suppressed as shown by reduced truncated Mayo scores and medication scores. The serum levels of specific IgE, interleukin (IL)-4 and tumor necrosis factor (TNF)-α were also suppressed. Treating with SIT alone or CB alone did not show appreciable improvement of the clinical symptoms of UC. UC with food allergy can be ameliorated by administration with SIT and butyrate-production probiotics.

  13. Dunnione ameliorates cisplatin ototoxicity through modulation of NAD(+) metabolism.

    Science.gov (United States)

    Kim, Hyung-Jin; Pandit, Arpana; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2016-03-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that cisplatin-induced ototoxicity is related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of energy metabolism and cellular homeostasis. Here, we demonstrate that the levels and activities of sirtuin-1 (SIRT1) are suppressed by the reduction of intracellular NAD(+) levels in cisplatin-mediated ototoxicity. We provide evidence that the decreases in SIRT1 activity and expression facilitated by increasing poly(ADP-ribose) polymerase-1 (PARP-1) activation and microRNA-34a levels through cisplatin-mediated p53 activation aggravate the associated ototoxicity. Furthermore, we show that the induction of cellular NAD(+) levels using dunnione, which targets intracellular NQO1, prevents the toxic effects of cisplatin through the regulation of PARP-1 and SIRT1 activity. These results suggest that direct modulation of cellular NAD(+) levels by pharmacological agents could be a promising therapeutic approach for protection from cisplatin-induced ototoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ameliorative Effect of Different Concentration of Mushroom ...

    African Journals Online (AJOL)

    Prof. Ogunji

    ameliorative effect of mushroom in the post-experimental stage. Samples of liver and ... except in the liver which showed mild periportal chronic inflammatory cell. However, the .... alcohol for 12 hours and through absolute alcohol to remove ...

  15. Portulaca oleracea Linn seed extract ameliorates hydrogen ...

    African Journals Online (AJOL)

    Portulaca oleracea Linn seed extract ameliorates hydrogen ... induced cell death by inhibiting oxidative stress and ROS generation. Keywords: ... culture medium; therefore the stock solutions of ... acetic acid (1 %) and ethanol (50 %) to extract.

  16. Ameliorative effects of selenium and zinc

    African Journals Online (AJOL)

    Methidathion-induced hematological, biochemical and hepatohistological alterations in rat: Ameliorative effects of selenium and zinc. L Barkat, A Boumendjel, C Abdennour, MS Boulakoud, A El Feki, M Messarah ...

  17. Black ginseng extract ameliorates hypercholesterolemia in rats

    Directory of Open Access Journals (Sweden)

    Evelyn Saba

    2016-04-01

    Conclusion: Administration of BG extracts to Sprague Dawley rats fed with high-cholesterol diet ameliorated hypercholesterolemia, which was mediated via modulation of cholesterol-metabolizing marker genes. This data throw a light on BG's cardioprotective effects.

  18. Dietary Amelioration of Helicobacter Infection

    Science.gov (United States)

    Fahey, Jed W.; Stephenson, Katherine K.; Wallace, Alison J.

    2015-01-01

    We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on: (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H. pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H. pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability and cultural acceptability. This review therefore highlights specific foods, food components, and food products, grouped as follows: bee products (e.g. honey and propolis), probiotics, dairy products, vegetables, fruits, oils, essential oils, and herbs, spices and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and pre-clinical evidence must now be followed up with rationally designed, unambiguous human trials. PMID:25799054

  19. Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine.

    Science.gov (United States)

    Bhat, Roopa; Mahapatra, Sidharth; Axtell, Robert C; Steinman, Lawrence

    2017-12-15

    In patients with multiple sclerosis, the selective serotonin reuptake inhibitor, fluoxetine, resulted in less acute disease activity. We tested the immune modulating effects of fluoxetine in a mouse model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE). We show that fluoxetine delayed the onset of disease and reduced clinical paralysis in mice with established disease. Fluoxetine had abrogating effects on proliferation of immune cells and inflammatory cytokine production by both antigen-presenting cells and T cells. Specifically, in CD 4 T cells, fluoxetine increased Fas-induced apoptosis. We conclude that fluoxetine possesses immune-modulating effects resulting in the amelioration of symptoms in EAE. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ameliorative effect of Lentinus squarrosulus mycomeat against ...

    African Journals Online (AJOL)

    Ameliorative effect of Lentinus squarrosulus mycomeat against Pseudomonas aeruginosa infection using albino rat as animal model. ... Morphological appearance and behavior of the rats were used as the assessment method for adverse reactions. After a period of 26 days, the rats were sacrificed with the liver, spleen and ...

  1. Caspase Activation of p21-Activated Kinase 2 Occurs During Cisplatin-Induced Apoptosis of SH-SY5Y Neuroblastoma Cells and in SH-SY5Y Cell Culture Models of Alzheimer’s and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jerry W. Marlin

    2010-04-01

    Full Text Available p21-activated kinase 2 (PAK-2 appears to have a dual function in the regulation of cell survival and cell death. Activation of full-length PAK-2 by the p21 G-proteins Rac or Cdc42 stimulates cell survival. However, PAK-2 is unique among the PAK family because it is also activated through proteolytic cleavage by caspase 3 or similar caspases to generate the constitutively active PAK-2p34 fragment. Caspase activation of PAK-2 correlates with the induction of apoptosis in response to many stimuli and recombinant expression of PAK-2p34 has been shown to stimulate apoptosis in several human cell lines. Here, we show that caspase activation of PAK-2 also occurs during cisplatin-induced apoptosis of SH-SY5Y neuroblastoma cells as well as in SH-SY5Y cell culture models for Alzheimer’s and Parkinson’s disease. Inhibition of mitochondrial complex I or of ubiquitin/proteasome-mediated protein degradation, which both appear to be involved in Parkinson’s disease, induce apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Overexpression of the amyloid precursor protein, which results in accumulation and aggregation of β-amyloid peptide, the main component of β-amyloid plaques in Alzheimer’s disease, also induces apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Expression of the PAK-2 regulatory domain inhibits caspase-activated PAK-2p34 and prevents apoptosis in 293T human embryonic kidney cells, indicating that caspase activation of PAK-2 is directly involved in the apoptotic response. This is the first evidence that caspase activation of PAK-2 correlates with apoptosis in cell culture models of Alzheimer’s and Parkinson’s disease and that selective inhibition of caspase-activated PAK-2p34 could prevent apoptosis.

  2. [Acute agitation conditions].

    Science.gov (United States)

    Mavrogiorgou, P; Juckel, G

    2015-09-01

    Acute agitation psychiatric emergencies as frequently occur in psychiatric as well as in non-psychiatric settings, such as general hospitals, specialized clinics, emergency services and private practices. Psychiatric emergencies can be life-threatening and necessitate immediate treatment. This article presents the core symptomatology, differential diagnoses and treatment options of acute agitation emergencies. Case control studies and reliable data regarding prevalence and treatment of acute agitation in psychiatric and general hospitals or private practices are sparse. Existing evidence suggests that optimization of diagnosis and therapy of psychiatric emergencies, such as acute agitation is warranted. Treatment of acute agitation, psychological distress and other psychiatric emergencies are highly demanding regarding psychiatric expertise and concerning the personality and behavior of the therapist. The basis of therapy comprises the ability to form a stable and trustworthy relationship with the patient as well as to patiently calm down agitated patients. Unambiguous and rapid decision-making that takes effective pharmacological treatment options into account usually leads to swift amelioration of the acute symptomatology.

  3. Effects of combined treatment of α-tocopherol, L-ascorbic acid, selenium and zinc on bleomycin, etoposide and cisplatin-induced alterations in testosterone synthesis pathway in rats.

    Science.gov (United States)

    Kilarkaje, Narayana

    2014-12-01

    To investigate the effects of therapeutically relevant dose levels of bleomycin, etoposide and cisplatin (BEP) on testicular steroidogenic enzymes, and possible protective effects of an antioxidant cocktail (AC). Adult Sprague-Dawley rats received BEP with or without the AC (α-tocopherol, L-ascorbic acid, selenium and zinc) for either (a) 4 days (short term; 1.5, 15 and 3 mg/kg), or (b) three cycles of 21 days each (0.75, 7.5 and 1.5 mg/kg), or (c) the three cycles with a 63-day recovery period. The expression of steroidogenic enzymes were measured in the testes by Western blotting and immunofluorescent labeling. The short-term BEP exposure resulted in a decrease in scavenger receptor class-B1 and an increase in luteinizing hormone receptor (LHR). The AC with or without BEP has increased the levels of LHR, 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-HSD, but without significant changes in testosterone levels. The three cycles of BEP up-regulated the expression of steroidogenic acute regulatory protein (StAR) and down-regulated that of cholesterol side chain cleavage enzyme (P450scc), cytochrome p450 17A1 (Cyp17A1, recovered by the AC) and 17β-HSD, associated with significant reduction in testosterone levels. The three cycles with the recovery time led to decreases in LHR, StAR, P450scc and Cyp17A1 and increases in 3β-HSD and 17β-HSD. The AC did not enhance the recovery of the enzyme levels. The three cycles of BEP treatment inhibit the testosterone synthesis pathway even after the recovery time. The AC recovers the effects of BEP chemotherapy on a few steroidogenic enzymes.

  4. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis

    NARCIS (Netherlands)

    Lutgendorff, Femke; Trulsson, Lena M.; van Minnen, L. Paul; Rijkers, Ger T.; Timmerman, Harro M.; Franzen, Lennart E.; Gooszen, Hein G.; Akkermans, Louis M. A.; Soderholm, Johan D.; Sandstrom, Per A.

    2008-01-01

    Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress,

  5. Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock

    DEFF Research Database (Denmark)

    Widlund, Anne Lykkegaard; Wang, H.; Guan, Y.

    2014-01-01

    for glucose, insulin, corticosterone, total glucagon-like peptide (GLP-1), glucagon, and serum cytokine levels. The Homeostatic Model AssessmentYInsulin Resistance index was used to quantify insulin resistance. Results: RSV supplementation following HS significantly improved mitochondrial function...... resuscitation would ameliorate HS-induced mitochondrial dysfunction and improve hyperglycemia following acute blood loss. Methods: With the use a decompensated HS model, male Long-Evans rats (n = 6 per group) were resuscitated with lactated Ringer's solution with or without RSV (30 mg/kg) and were killed before.......2 mg/dL vs. 359.0 ± 79.5 mg/dL, p Model...

  6. Effects of zerumbone on cisplatin-induced clastogenesis in Sprague ...

    African Journals Online (AJOL)

    Administrator

    2011-06-20

    Jun 20, 2011 ... bol ester-induced papilloma formation in mouse skin which is another indication of its ... zerumbet plant. The rhizomes were obtained from the wet market in ... erythrocyte micronucleus test), guideline No. 474 (OECD 1997).

  7. Attenuation of cisplatin-induced nephrotoxicity in rats using ...

    African Journals Online (AJOL)

    USER

    2010-07-28

    Jul 28, 2010 ... Trunk blood was collected and analyzed for blood urea nitrogen (BUN) and serum creatinine. Kidney tissue .... method. Briefly, fresh rhizomes of Z. zerumbet were initially cleaned and sliced and later ..... Phosphorylation of c-.

  8. Case report: An unusual case of cisplatin induced paralytic ileus

    Directory of Open Access Journals (Sweden)

    Rosdiana Abd Rahim

    2017-12-01

    Full Text Available Background: Ileus is a failure of normal intestinal motility in the absence of mechanical obstruction. Ileus is thought to result from an imbalance between sympathetic and parasympathetic motor activity, resulting in intestinal atony. Few anti-cancer therapies reported to be associated with paralytic ileus, such as vincristine, vinblastine and paclitaxel. It is thought as a consequences of autonomic neuropathy. Here we present a paralytic ileus experience during cisplatin therapy. Case presentation: We present a case of 57 years old gentleman with diagnosis of metastatic nasopharyngeal carcinoma to lung and multiple bones who develop paralytic ileus following chemotherapy cisplatin and fluorouracil. The patient complained of abdominal discomfort with bloating and not tolerating Ryle tube feeding started 3 days after completion of cycle 2 cisplatin & fluorouracil infusion chemotherapy. No vomiting and still passing out small amount of stool everyday. Physical examination revealed abdominal distension, lower abdominal tenderness, sluggish bowel sound and empty rectum. The blood investigations for electrolyte, renal and hepatic function, and amylase were normal. Abdominal computerized tomography showed diffuse dilatation of small and large bowels extending to the rectum, without any obstructive pathology which was consistent with paralytic ileus. He was hospitalized and treated with nasogastric decompression and partial parenteral nutrition started. The symptoms improved after few days of decompression. Conclusion: Peripheral neuropathy due to cisplatin has been well described, however paralytic ileus has not previously been reported in medical literature. From patient self-reported outcome study, however, this complication was not that uncommon, and was reported by 0.76% of patients receiving cisplatin, especially people who are male, 60 years old and more, have been taking the drug for more than 1 month, also take medication dexamethasone. The present study, after excluding other cause of paralytic ileus, was associated with cisplatin. The mechanism of how cisplatin causes paralytic ileus is poorly understood, maybe due to autonomic neuropathy. Autonomic neuropathy presented with severe postural hypotension has been reported previously in cases of germ cell tumor treated with cisplatin based chemotherapy. This report highlights the need for physicians to be aware of this potential complication when administering cisplatin for such higher-risk group.

  9. Pharmacological Protection From Radiation ± Cisplatin-Induced Oral Mucositis

    International Nuclear Information System (INIS)

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2012-01-01

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation ± cisplatin. Methods and Materials: Female C3H mice, ∼8 weeks old, were irradiated with five fractionated doses ± cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 × 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  10. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity

    OpenAIRE

    Ojha, Shreesh; Venkataraman, Balaji; Kurdi, Amani; Mahgoub, Eglal; Sadek, Bassem; Rajesh, Mohanraj

    2016-01-01

    Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in th...

  11. Cisplatin-induced Casepase-3 activation in different tumor cells

    Science.gov (United States)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  12. Real-time monitoring of cisplatin-induced cell death.

    Directory of Open Access Journals (Sweden)

    Hamed Alborzinia

    Full Text Available Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.

  13. Attenuation of cisplatin-induced nephrotoxicity in rats using ...

    African Journals Online (AJOL)

    The rats received a single dose injection of 10 mg/kg cisplatin. Other groups of rats received zerumbone (100 and 200 mg/kg), corn oil or the vehicle, dimethyl sulfoxide (DMSO) intraperitoneally for 4 days prior to cisplatin-injections. All animals were decapitated 16 h after cisplatin injection. Trunk blood was collected and ...

  14. High prevalence of cisplatin-induced ototoxicity in Cape Town ...

    African Journals Online (AJOL)

    Background. Cisplatin is administered as the first-line treatment of soft-tissue cancers. It has a reported cure rate of up to 85%, but is associated with a high incidence of ototoxicity, characterised by irreversible bilateral hearing loss and affecting 23 - 50% of adults who receive the drug. Objectives. To determine the incidence ...

  15. Potential protective role of hydrogen against cisplatin- induced side ...

    African Journals Online (AJOL)

    1Department of Radiation Oncology, Sichuan Cancer Hospital, 2Department of Oncology, Chengdu First People's ... Molecular hydrogen has been shown to .... in signal transduction and biological activities .... unresectable pancreatic cancer.

  16. Acetylcholinesterase inhibition ameliorates deficits in motivational drive

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2012-03-01

    Full Text Available Abstract Background Apathy is frequently observed in numerous neurological disorders, including Alzheimer's and Parkinson's, as well as neuropsychiatric disorders including schizophrenia. Apathy is defined as a lack of motivation characterized by diminished goal-oriented behavior and self-initiated activity. This study evaluated a chronic restraint stress (CRS protocol in modeling apathetic behavior, and determined whether administration of an anticholinesterase had utility in attenuating CRS-induced phenotypes. Methods We assessed behavior as well as regional neuronal activity patterns using FosB immunohistochemistry after exposure to CRS for 6 h/d for a minimum of 21 d. Based on our FosB findings and recent clinical trials, we administered an anticholinesterase to evaluate attenuation of CRS-induced phenotypes. Results CRS resulted in behaviors that reflect motivational loss and diminished emotional responsiveness. CRS-exposed mice showed differences in FosB accumulation, including changes in the cholinergic basal forebrain system. Facilitating cholinergic signaling ameliorated CRS-induced deficits in initiation and motivational drive and rescued immediate early gene activation in the medial septum and nucleus accumbens. Conclusions Some CRS protocols may be useful for studying deficits in motivation and apathetic behavior. Amelioration of CRS-induced behaviors with an anticholinesterase supports a role for the cholinergic system in remediation of deficits in motivational drive.

  17. Prophylactic treatment with a potent corticosteroid cream ameliorates radiodermatitis, independent of radiation schedule

    DEFF Research Database (Denmark)

    Ulff, Eva; Maroti, Marianne; Serup, Jörgen

    2017-01-01

    BACKGROUND AND PURPOSE: The study will test the hypothesis that preventive topical steroid treatment instituted from start of radiotherapy can ameliorate acute radiation dermatitis. Subgroups of increased risk of dermatitis are included. MATERIAL AND METHODS: A double blinded randomized trial...... of acute radiation dermatitis in breast cancer patients treated with adjuvant RT, independent of RT schedule. Preventive application of a potent corticosteroid cream should be used in the routine and instituted at the start of RT....... schedules as well as for anatomical sites, skin type, breast size and BMI. Patients treated the irradiated area during the radiation period and two weeks following cessation of radiation. RESULTS: Patients receiving hypofraction RT developed less skin reactions than those treated with conventional RT...

  18. The performance of maize crop during acid amelioration with ...

    African Journals Online (AJOL)

    Tanzania Journal of Science ... This study evaluated acid ameliorative potential and their effects on maize growth of four organic residues namely wild spikenard, cordia, cowpea and pigeon peas ... The finding suggests different acid ameliorating potential of residues, pigeon peas and cordia being the most effective.

  19. Intestinal ameliorative effects of traditional Ogi-tutu, Vernonia amygdalina and Psidium guajava in mice infected with Vibrio cholera.

    Science.gov (United States)

    Shittu, Olufunke B; Ajayi, Olusola L; Bankole, Samuel O; Popoola, Temitope Os

    2016-06-01

    Cholera, a severe acute watery diarrhea caused by Vibrio cholerae is endemic in Nigeria with most cases occurring in the rural areas. In South West Nigeria, some individuals resort to alternative treatments such as Ogi-tutu, Psidium guajava and Vernonia amygdalina during infections. The effectiveness of these alternatives in the prevention and treatment of V. cholerae infection requires experimental investigation. This study was designed to investigate the ameliorative effects of Ogi-tutu, Vernonia amygdalina and Psidium guajava on intestinal histopathology of experimental mice infected with V. cholerae. Preliminary investigation of in vitro vibriocidal activities of these alternatives were carried out using agar cup diffusion assay. For ameliorative effects, adult mice were inoculated with 100 µl (106 cells) of Vibrio cholerae and dosed at 0 h (immediate prevention) and 4 h (treatment of infection) and their intestines were histopathologically evaluated. The histopathological changes were the same irrespective of the treated groups, but the lesions varied in extent and severity. The ameliorative effects in decreasing order were V. amygdalina > P. guajava > Ogi-tutu. V. amygdalina gave the best ameliorative effects in the prevention and treatment of V. cholerae infection.

  20. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  1. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis.

    Science.gov (United States)

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-11-06

    To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα(-/-)) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα(-/-) mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. This is the first-ever study reporting

  2. Bacterial mediated amelioration of drought stress in drought tolerant ...

    African Journals Online (AJOL)

    Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice ( Oryza sativa L.) ... and IR-64 (drought sensitive) cultivars of rice (Oryza sativa L.) under different level of drought stress. ... from 32 Countries:.

  3. Improvement for Amelioration Inventory Model with Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Han-Wen Tuan

    2017-01-01

    Full Text Available Most inventory models dealt with deteriorated items. On the contrary, just a few papers considered inventory systems under amelioration environment. We study an amelioration inventory model with Weibull distribution. However, there are some questionable results in the amelioration paper. We will first point out those questionable results in the previous paper that did not derive the optimal solution and then provide some improvements. We will provide a rigorous analytical work for different cases dependent on the size of the shape parameter. We present a detailed numerical example for different ranges of the sharp parameter to illustrate that our solution method attains the optimal solution. We developed a new amelioration model and then provided a detailed analyzed procedure to find the optimal solution. Our findings will help researchers develop their new inventory models.

  4. Oral metformin-ascorbic acid co-administration ameliorates alcohol-induced hepatotoxicity in rats.

    Science.gov (United States)

    Adeneye, A A; Benebo, A S

    2007-01-01

    Alcoholic liver disease remains a major cause of liver failure worldwide with no available curative or prophylactic therapy as at present. High dose metformin is reported to ameliorate liver injuries in both human and animal models of acute and chronic alcoholic liver injuries. The aim of the present in vivo animal study was to determine whether metformin-ascorbic acid co-administration also prevents alcoholic hepatotoxicity in chronic alcohol exposure. In the present study, ameliorating effect of 200 mg/ kg/day of ascorbic acid (Asc), 500 mg/kg/day of metformin (Met) and their co-administration (Met-Asc) were investigated in 5 groups of 50% ethanol-treated male Wistar rats for 2 weeks of the experiment. The body weight of each rat was taken on days 1, 7, and 14 of the experiment, respectively. On day 15, fasted blood samples for plasma lipids and liver enzyme markers were collected via cardiac puncture from the rats under diethyl ether anaesthesia. Results showed that administration of graded oral doses of 50% ethanol for 14 days significantly (pcholesterol (PTC), high density lipoprotein (HDL-c), and low density lipoprotein (LDL-c). However, these elevations were significantly (pascorbic acid co-administration protected the liver against the deleterious effects of chronic high dose alcohol and the hepatoprotective effect of Met-Asc appeared to be due mainly to the metformin molecule of the drug combination. However, further studies would be required to evaluate the mechanisms underlying the observed effects.

  5. Black ginseng extract ameliorates hypercholesterolemia in rats.

    Science.gov (United States)

    Saba, Evelyn; Jeon, Bo Ra; Jeong, Da-Hye; Lee, Kija; Goo, Youn-Kyoung; Kim, Seung-Hyung; Sung, Chang-Keun; Roh, Seong-Soo; Kim, Sung Dae; Kim, Hyun-Kyoung; Rhee, Man-Hee

    2016-04-01

    Ginseng (Panax ginseng Meyer) is a well-characterized medicinal herb listed in the classic oriental herbal dictionary as "Shin-nong-bon-cho-kyung." Ginseng has diverse pharmacologic and therapeutic properties. Black ginseng (BG, Ginseng Radix nigra) is produced by repeatedly steaming fresh ginseng nine times. Studies of BG have shown that prolonged heat treatment enhances the antioxidant activity with increased radical scavenging activity. Several recent studies have showed the effects of BG on increased lipid profiles in mice. In this study report the effects of water and ethanol extracts of BG on hypercholesterolemia in rats. To our knowledge, this is the first time such an effect has been reported. Experiments were conducted on male Sprague Dawley rats fed with a high-cholesterol diet supplemented with the water and ethanol extracts of BG (200 mg/kg). Their blood cholesterol levels, serum white blood cell levels, and cholesterol-metabolizing marker genes messenger RNA (mRNA) expression were determined. Liver and adipose tissues were histologically analyzed. We found that BG extracts efficiently reduced the total serum cholesterol levels, low-density lipoprotein (LDL) levels with increased food efficiency ratio and increased number of neutrophil cells. It also attenuated the key genes responsible for lipogenesis, that is, acetyl-coenzyme A (CoA) acetyltransferase 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and sterol regulatory element-binding protein 2, at the mRNA level inside liver cells. Furthermore, the BG extract also reduced the accumulation of fat in adipose tissues, and inhibited the neutral fat content in liver cells stained with hematoxylin and eosin and oil red O. Administration of BG extracts to Sprague Dawley rats fed with high-cholesterol diet ameliorated hypercholesterolemia, which was mediated via modulation of cholesterol-metabolizing marker genes. This data throw a light on BG's cardioprotective effects.

  6. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature

    Directory of Open Access Journals (Sweden)

    Abbaszadeh A.

    2017-06-01

    Full Text Available Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/ biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses

  7. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-01-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections.Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops.The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  8. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-12-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections. Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops. The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  9. The 6-hydroxychromanol derivative SUL-109 ameliorates renal injury after deep hypothermia and rewarming in rats.

    Science.gov (United States)

    Vogelaar, Pieter C; Roorda, Maurits; de Vrij, Edwin L; Houwertjes, Martin C; Goris, Maaike; Bouma, Hjalmar; van der Graaf, Adrianus C; Krenning, Guido; Henning, Robert H

    2018-04-11

    Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats. Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 µg/kg/h) undergoing H/R at 15°C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed. H/R injury in vitro lowered cell viability by 94 ± 1%, which was counteracted dose-dependently by multiple 6-hydroxychomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 5'-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation. The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols

  10. Zataria multiflora ameliorates testicular and spermatological damages induced by cisplatin in mice model

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Cisplatin (CP, a highly effective antineoplastic drug, causes testicular damage. Zataria multiflora Boiss. (ZM, a medicinal plant, has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effects of ZM against cisplatin-induced testicular toxicity. Methods: Thirty-two adult male mice were randomly divided into four groups. The control group received normal saline with oral gavage during 7 days; ZM group received ZM (200 mg/kg during 7 days by gavage; CP group received CP (10 mg/kg i.p. in 5th day of study; ZM + CP group received ZM during 7 days and CP was injected in 5th day. Sperm parameters (including motility, sperm count, sperm viability rate and morphological sperm abnormalities, biochemical (malondialdehyde (MDA, glutathione (GSH and protein carbonyl (PC levels, serum testosterone levels, histological and immunochemistry assays of testis were examined one day after the last receipt of the drug. Results: CP treatment caused significant damage via changed of sperm parameters, increased oxidative stress (increased MDA, PC levels and decreased GSH level, histological changes (degeneration, necrosis, arrest of spermatogenesis, congestion and decrease in thickness of the germinal epithelium, diameter of seminiferous tubules and Johnsen’s Score, decreased serum testosterone level and increased caspase-3 immunoreactivity. ZM preserved spermatogenesis and mitigated the toxic effects of CP on the testis tissue. In addition, pretreatment with ZM significantly reduced caspase-3 immunoreactivity. Conclusion: The findings of this study suggested ZM as a potential antioxidant compound which showed protective effect against cisplatin-induced testicular toxicity.

  11. Acute nephritic syndrome

    Science.gov (United States)

    Glomerulonephritis - acute; Acute glomerulonephritis; Nephritis syndrome - acute ... Acute nephritic syndrome is often caused by an immune response triggered by an infection or other disease. Common causes in children ...

  12. The Effect of Vitamin E on Ameliorating Primary Dysmenorrhea: A ...

    African Journals Online (AJOL)

    Dysmenorrhea or painful menstruation is one of the most common problems of women. Using systematic review and meta‑analysis, this study aimed to determine the effect of vitamin E on ameliorating the intensity of pain of primary dysmenorrhea. Available databases comprising PubMed, Google Scholar, ISI, Science ...

  13. Designing urban parks that ameliorate the effects of climate change

    NARCIS (Netherlands)

    Brown, R.D.; Vanos, J.; Kenny, N.; Lenzholzer, S.

    2015-01-01

    Many inhabitants of cities throughout the world suffer from health problems and discomfort that are caused by overheating of urban areas, and there is compelling evidence that these problems will be exacerbated by global climate change. Most cities are not designed to ameliorate these effects

  14. Oral Metformin-Ascorbic Acid Co-Administration Ameliorates Alcohol ...

    African Journals Online (AJOL)

    Oral Metformin-Ascorbic Acid Co-Administration Ameliorates Alcohol-Induced Hepatotoxicity In Rats. ... Nigerian Quarterly Journal of Hospital Medicine ... the present in vivo animal study was to determine whether metformin-ascorbic acid co-administration also prevents alcoholic hepatotoxicity in chronic alcohol exposure.

  15. Antibiotics can ameliorate circulatory complications of liver cirrhosis

    DEFF Research Database (Denmark)

    Madsen, Bjørn Stæhr; Schaffalitzky de Muckadell, Ove B

    2011-01-01

    . This review focuses on how broad spectrum antibiotics can ameliorate the haemodynamic consequences of bacterial translocation. It is possible that the use of broad spectrum antibiotics in the future may be used to prevent other complications of liver cirrhosis than spontaneous bacterial peritonitis...

  16. Ameliorative effect of the hydroethanolic whole plant extract of ...

    African Journals Online (AJOL)

    At the end of the study, biochemical markers of nitrosative and oxidative stress status were determined. Results: DH (12.5, 50 and 100 mg/kg) significantly ameliorated haloperidol-induced catalepsy (bar test), spontaneous motor and working memory deficits (open field and elevated plus maze tests, respectively), ...

  17. Ameliorative effects of Cnidoscolus aconitifolius on anaemia and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... This study was designed to evaluate the ameliorative effect of ... The group fed with 20% C. aconitifolius in place of 20% soya protein also ... to cholesterol enrichment of the erythrocytes membrane, ... rabbit and horse erythrocytes membrane with 1,2- .... various substances such as iron, vitamins and protein.

  18. Ameliorative effects of Cnidoscolus aconitifolius on anaemia and ...

    African Journals Online (AJOL)

    This study was designed to evaluate the ameliorative effect of dietary supplementation of Cnidoscolus aconitifolius leaf on anaemia and changes in erythrocyte osmotic fragility in protein energy malnourished rats. Protein energy malnutrition has been associated with anaemia and changes in osmotic fragility, deformability ...

  19. Delivery of Placenta-Derived Mesenchymal Stem Cells Ameliorates Ischemia Induced Limb Injury by Immunomodulation

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-11-01

    Full Text Available Background: Peripheral artery disease (PAD is a major health burden in the world. Stem cell-based therapy has emerged as an attractive treatment option in regenerative medicine. In this study, we sought to test the hypothesis that stem cell-based therapy can ameliorate ischemia induced limb injury. Methods: We isolated mesenchymal stem cells derived from human placentas (PMSCs and intramuscularly transplanted them into injured hind limbs. Treatment with PMSCs reduced acute muscle fibers apoptosis induced by ischemia. Results: PMSC treatment significantly enhanced regeneration of the injured hind limb by reducing fibrosis and enhancing running capacity when the animals were subjected to treadmill training. Mechanistically, injected PMSCs can modulate acute inflammatory responses by reducing neutrophil and macrophage infiltration following limb ischemia. ELISA assays further confirmed that PMSC treatment can also reduce pro-inflammatory cytokines, TNF-α and IL-6, and enhance anti-inflammatory cytokine, IL-10 at the injury sites. Conclusion: Taken together, our results demonstrated that PMSCs can be a potential effective therapy for treatment of PAD via immunomodulation.

  20. Nano-sized titanium dioxide toxicity in rat prostate and testis: Possible ameliorative effect of morin.

    Science.gov (United States)

    Shahin, Nancy N; Mohamed, Maha M

    2017-11-01

    This study investigated the effect of short-term oral exposure to nano-sized titanium dioxide (nTiO 2 ) on Wistar rat prostate and testis, and the associating reproductive-related alterations. The study also evaluated the potential ameliorative effect of the natural flavonoid, morin, on nTiO 2 -induced aberrations. Intragastric administration of nTiO 2 (50mg/kg/day for 1, 2 and 3weeks) increased testicular gamma-glutamyltransferase (γ-GT) activity and decreased testicular steroidogenic acute regulatory protein (StAR) and c-kit gene expression, serum testosterone level and sperm count. nTiO 2 -treated rats also exhibited prostatic and testicular altered glutathione levels, elevated TNF-α levels, up-regulated Fas, Bax and caspase-3 gene expression, down-regulated Bcl-2 gene expression and enhanced prostatic lipid peroxidation. Sperm malformation and elevated testicular acid phosphatase (ACP) activity and malondialdehyde level, serum prostatic acid phosphatase activity, prostate specific antigen (PSA), gonadotrophin and estradiol levels occurred after the 2 and 3week regimens. Morin (30mg/kg/day administered intragastrically for 5weeks) mitigated nTiO 2 -induced prostatic and testicular injury as evidenced by lowering serum PSA level, testicular γ-GT and ACP activities and TNF-α level, along with hampering both intrinsic and extrinsic apoptotic pathways. Moreover, morin alleviated prostatic lipid peroxidation, raised prostatic glutathione level, and relieved testicular reductive stress. Additionally, morin increased testicular StAR and c-kit mRNA expression, raised the sperm count, reduced sperm deformities and modified the altered hormone profile. Histopathological evaluation supported the biochemical findings. In conclusion, morin could ameliorate nTiO 2 -induced prostatic and testicular injury and the corresponding reproductive-related aberrations via redox regulatory, anti-inflammatory and anti-apoptotic mechanisms, promoting steroidogenesis and

  1. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junru; Kulkarni, Ashwini [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Chintala, Madhu [Schering-Plough Research Institute, Kenilworth, New Jersey (United States); Fink, Louis M. [Nevada Cancer Institute, Las Vegas, Nevada (United States); Hauer-Jensen, Martin, E-mail: mhjensen@life.uams.edu [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgery Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States)

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  2. Dexamethasone Modifies Cystatin C-Based Diagnosis of Acute Kidney Injury During Cisplatin-Based Chemotherapy

    Directory of Open Access Journals (Sweden)

    Timothy J. Pianta

    2017-03-01

    Full Text Available Background/Aims: Plasma cystatin C (pCysC may be superior to serum creatinine (sCr as a surrogate of GFR. However, the performance of pCysC for diagnosing acute kidney injury (AKI after cisplatin-based chemotherapy is potentially affected by accompanying corticosteroid anti-emetic therapy and hydration. Methods: In a prospective observational study pCysC, sCr, urinary kidney injury molecule-1 (KIM-1, and urinary clusterin were measured over 2 weeks in 27 patients given first-cycle chemotherapy. The same variables were measured over 2 weeks in Sprague–Dawley rats given a single intraperitoneal injection of dexamethasone, cisplatin, or both, and in controls. Results: In patients, pCysC increases were greater than sCr 41% vs. 16%, mean paired difference 25% (95% CI: 16–34%], relative increases were ≥ 50% in 9 patients (35% for pCysC compared with 2 (8% for sCr (p = 0.04 and increases in sCr were accompanied by increased KIM-1 and clusterin excretion, but increases in pCysC alone were not. In rats, dexamethasone administration produced dose-dependent increases in pCysC (and augmented cisplatin-induced increases in pCysC, but did not augment histological injury, increases in sCr, or KIM-1 and clusterin excretion. Conclusions: In the presence of dexamethasone, elevation of pCysC does not reliably diagnose AKI after cisplatin-based chemotherapy.

  3. Therapeutic potency of bee pollen against biochemical autistic features induced through acute and sub-acute neurotoxicity of orally administered propionic acid.

    Science.gov (United States)

    Al-Salem, Huda S; Bhat, Ramesa Shafi; Al-Ayadhi, Laila; El-Ansary, Afaf

    2016-04-23

    It is now well documented that postnatal exposure to certain chemicals has been reported to increase the risk of autism spectrum disorder. Propionic acid (PA), as a metabolic product of gut microbiotaandas a commonly used food additive, has been reported to mediate the effects of autism. Results from animal studies may help to identify environmental neurotoxic agents and drugs that can ameliorate neurotoxicity and may thereby aid in the treatment of autism. The present study investigated the ameliorative effects of natural bee pollen against acute and sub-acute brain intoxication induced by (PA) in rats. Twenty-four young male Western Albino ratswere enrolled in the present study. They were classified into four equal groups, eachwith6 rats. The control group received only phosphate buffered saline; the oral buffered PA-treated groups (II and III) received a neurotoxic dose of 750 mg/kg body weight divided in 3 dose of 250 mg/kg body weight/day serving asthe acute group and 750 mg/kg body weight divided in 10 equal dose of 75 mg/kg body weight/day as the sub-acute group. The fourth group received 50 mg bee pollen for 30 days after PA-acute intoxication. The obtained data showed that the PA-treated groups demonstrated multiple signs of brain toxicity, as indicated by a depletion of serotonin (5HT), dopamine and nor-adrenaline, together withan increase in IFN-γ and caspase 3. Bee pollen was effective in ameliorating the neurotoxic effect of PA. All measured parameters demonstrated minimal alteration in comparison with thecontrol animal than did those of acute and sub-acute PA-treated animals. In conclusion, bee pollen demonstrates anti-inflammatory and anti-apoptotic effects while ameliorating the impaired neurochemistry of PA-intoxicated rats.

  4. Mechanisms of Broad-Spectrum Antiemetic Efficacy of Cannabinoids against Chemotherapy-Induced Acute and Delayed Vomiting

    Directory of Open Access Journals (Sweden)

    Nissar A. Darmani

    2010-09-01

    Full Text Available Chemotherapy-induced nausea and vomiting (CINV is a complex pathophysiological condition and consists of two phases. The conventional CINV neurotransmitter hypothesis suggests that the immediate phase is mainly due to release of serotonin (5-HT from the enterochromaffin cells in the gastrointestinal tract (GIT, while the delayed phase is a consequence of release of substance P (SP in the brainstem. However, more recent findings argue against this simplistic neurotransmitter and anatomical view of CINV. Revision of the hypothesis advocates a more complex, differential and overlapping involvement of several emetic neurotransmitters/modulators (e.g. dopamine, serotonin, substance P, prostaglandins and related arachidonic acid derived metabolites in both phases of emesis occurring concomitantly in the brainstem and in the GIT enteric nervous system (ENS [1]. No single antiemetic is currently available to completely prevent both phases of CINV. The standard antiemetic regimens include a 5-HT3 antagonist plus dexamethasone for the prevention of acute emetic phase, combined with an NK1 receptor antagonist (e.g. aprepitant for the delayed phase. Although NK1 antagonists behave in animals as broad-spectrum antiemetics against different emetogens including cisplatin-induced acute and delayed vomiting, by themselves they are not very effective against CINV in cancer patients. Cannabinoids such as D9-THC also behave as broad-spectrum antiemetics against diverse emetic stimuli as well as being effective against both phases of CINV in animals and patients. Potential side effects may limit the clinical utility of direct-acting cannabinoid agonists which could be avoided by the use of corresponding indirect-acting agonists. Cannabinoids (both phyto-derived and synthetic behave as agonist antiemetics via the activation of cannabinoid CB1 receptors in both the brainstem and the ENS emetic loci. An endocannabinoid antiemetic tone may exist since inverse CB1

  5. Acute Pancreatitis and Pregnancy

    Science.gov (United States)

    ... Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  6. Biochar from commercially cultivated seaweed for soil amelioration

    OpenAIRE

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum ? brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma ? red seaweeds). While there is some variability in biochar properties as ...

  7. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    Science.gov (United States)

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.

  8. Infiltration in reclaimed mined land ameliorated with deep tillage treatments

    International Nuclear Information System (INIS)

    Chong, S.K.; Cowsert, P.T.

    1997-01-01

    Reclamation of mined land with heavy machinery can result in soil compaction, which increases soil bulk density and reduces porosity, water infiltrability, root elongation and crop productivity. This paper examines the effect on infiltration in reclaimed surface mined land of a deep tillage treatment, and the subsequent changes in infiltration after the amelioration. The experiment was conducted at the Horse Creek Mine near Conant, Ferry County, IL, USA

  9. Acute pancreatitis.

    Science.gov (United States)

    Talukdar, Rupjyoti; Vege, Santhi S

    2015-09-01

    To summarize recent data on classification systems, cause, risk factors, severity prediction, nutrition, and drug treatment of acute pancreatitis. Comparison of the Revised Atlanta Classification and Determinant Based Classification has shown heterogeneous results. Simvastatin has a protective effect against acute pancreatitis. Young black male, alcohol, smoldering symptoms, and subsequent diagnosis of chronic pancreatitis are risk factors associated with readmissions after acute pancreatitis. A reliable clinical or laboratory marker or a scoring system to predict severity is lacking. The PYTHON trial has shown that oral feeding with on demand nasoenteric tube feeding after 72 h is as good as nasoenteric tube feeding within 24 h in preventing infections in predicted severe acute pancreatitis. Male sex, multiple organ failure, extent of pancreatic necrosis, and heterogeneous collection are factors associated with failure of percutaneous drainage of pancreatic collections. The newly proposed classification systems of acute pancreatitis need to be evaluated more critically. New biomarkers are needed for severity prediction. Further well designed studies are required to assess the type of enteral nutritional formulations for acute pancreatitis. The optimal minimally invasive method or combination to debride the necrotic collections is evolving. There is a great need for a drug to treat the disease early on to prevent morbidity and mortality.

  10. Biochar from commercially cultivated seaweed for soil amelioration

    Science.gov (United States)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum – brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma – red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity. PMID:25856799

  11. Biochar from commercially cultivated seaweed for soil amelioration

    Science.gov (United States)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-04-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum - brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma - red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity.

  12. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  13. Administration of red ginseng ameliorates memory decline in aged mice.

    Science.gov (United States)

    Lee, Yeonju; Oh, Seikwan

    2015-07-01

    It has been known that ginseng can be applied as a potential nutraceutical for memory impairment; however, experiments with animals of old age are few. To determine the memory enhancing effect of red ginseng, C57BL/6 mice (21 mo old) were given experimental diet pellets containing 0.12% red ginseng extract (approximately 200 mg/kg/d) for 3 mo. Young and old mice (4 mo and 21 mo old, respectively) were used as the control group. The effect of red ginseng, which ameliorated memory impairment in aged mice, was quantified using Y-maze test, novel objective test, and Morris water maze. Red ginseng ameliorated age-related declines in learning and memory in older mice. In addition, red ginseng's effect on the induction of inducible nitric oxide synthase and proinflammatory cytokines was investigated in the hippocampus of aged mice. Red ginseng treatment suppressed the production of age-processed inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-1β expressions. Moreover, it was observed that red ginseng had an antioxidative effect on aged mice. The suppressed glutathione level in aged mice was restored with red ginseng treatment. The antioxidative-related enzymes Nrf2 and HO-1 were increased with red ginseng treatment. The results revealed that when red ginseng is administered over long periods, age-related decline of learning and memory is ameliorated through anti-inflammatory activity.

  14. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, Jai; De Ruiter, Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent antifibrotics, interferon gamma (IFN gamma), a proinflammatory

  15. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, Jai; de Ruiter, Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent anti-fibrotics, interferon gamma (IFNγ), a proinflammatory cytokine, is

  16. Metalloporphyrin Co(III)TMPyP ameliorates acute, sublethal cyanide toxicity in mice.

    Science.gov (United States)

    Benz, Oscar S; Yuan, Quan; Amoscato, Andrew A; Pearce, Linda L; Peterson, Jim

    2012-12-17

    The formation of Co(III)TMPyP(CN)(2) at pH 7.4 has been shown to be completely cooperative (α(H) = 2) with an association constant of 2.1 (±0.2) × 10(11). The kinetics were investigated by stopped-flow spectrophotometry and revealed a complicated net reaction exhibiting 4 phases at pH 7.4 under conditions where cyanide was in excess. The data suggest molecular HCN (rather than CN(-)) to be the attacking nucleophile around neutrality. The two slower phases do not seem to be present when cyanide is not in excess, and the other two phases have rates comparable to that observed for cobalamin, a known effective cyanide scavenger. Addition of bovine serum albumin (BSA) did not affect the cooperativity of cyanide binding to Co(III)TMPyP, only lowered the equilibrium constant slightly to 1.2 (±0.2) × 10(11) and had an insignificant effect on the observed rate. A sublethal mouse model was used to assess the effectiveness of Co(III)TMPyP as a potential cyanide antidote. The administration of Co(III)TMPyP to sodium cyanide intoxicated mice resulted in the time required for the surviving mice to right themselves from a supine position being significantly decreased (9 ± 2 min) compared to that of the controls (33 ± 2 min). All observations were consistent with the demonstrated antidotal activity of Co(III)TMPyP operating through a cyanide-binding (i.e., scavenging) mechanism.

  17. Therapeutic hypothermia for acute liver failure

    DEFF Research Database (Denmark)

    Stravitz, R.T.; Larsen, Finn Stolze

    2009-01-01

    transplantation or spontaneous liver regeneration follows in short order. To buy time, the induction of therapeutic hypothermia (core temperature 32 degrees C-35 degrees C) has been shown to effectively bridge patients to transplant. Similar to the experience in patients with cerebral edema after other neurologic...... insults, hypothermia reduces cerebral edema and intracranial hypertension in patients with acute liver failure by decreasing splanchnic ammonia production, restoring normal regulation of cerebral hemodynamics, and lowering oxidative metabolism within the brain. Hypothermia may also ameliorate the degree...... of liver injury. Hypothermia has not been adequately studied for its safety and theoretically may increase the risk of infection, cardiac dysrhythmias, and bleeding, all complications independently associated with acute liver failure. Therefore, although an ample body of experimental and human data...

  18. Zinc Ameliorate Oxidative Stress and Hormonal Disturbance Induced by Methomyl, Abamectin, and Their Mixture in Male Rats

    Directory of Open Access Journals (Sweden)

    Sameeh A. Mansour

    2017-12-01

    Full Text Available Exposure to mixtures of toxicants (e.g., pesticides is common in real life and a subject of current concern. The present investigation was undertaken to assess some toxicological effects in male rats following exposure to methomyl (MET, abamectin (ABM, and their combination (MET+ABM, and to evaluate the ameliorative effect of zinc co-administration. Three groups of rats were designated for MET, ABM, and the mixture treatments. Three other groups were designated for zinc in conjunction with the pesticides. Additionally, one group received water only (control, and the other represented a positive zinc treatment. The obtained results revealed that MET was acutely more toxic than ABM. The tested pesticides induced significant elevation in lipid peroxidation and catalase levels, while declined the levels of the other tested parameters e.g., Superoxide dismutase (SOD, Glutathione-S-transferase (GST, Glutathione peroxidase (GPx, Glutathione reductase (GR, Cytochrome P450 (CYP450, testosterone, and thyroxine. Biochemical alterations induced by the mixture were greater than those recorded for each of the individual insecticides. The joint action analysis, based on the obtained biochemical data, revealed the dominance of antagonistic action among MET and ABM. Zinc supplementation achieved noticeable ameliorative effects. It was concluded that zinc may act as a powerful antioxidant, especially in individuals who are occupationally exposed daily to low doses of such pesticides.

  19. Amelioration of Diabetes and Painful Diabetic Neuropathy by Punica granatum L. Extract and Its Spray Dried Biopolymeric Dispersions

    Directory of Open Access Journals (Sweden)

    K. Raafat

    2014-01-01

    Full Text Available Aims. To evaluate the effect of Punica granatum (Pg rind extract and its spray dried biopolymeric dispersions with casein (F1 or chitosan (F2 against Diabetes mellitus (DM and diabetic neuropathy (DN. Methods. We measured the acute (6 h and subacute (8 days effect of various doses of Pg, F1, and F2 and the active compounds on alloxan-induced DM mouse model. We evaluated DN utilizing latency tests for longer period of time (8 weeks. In addition, the in vivo antioxidant activity was assessed utilizing serum catalase level. Results. The results proved that the highest dose levels of Pg extract, F1, F2 exerted remarkable hypoglycemic activity with 48, 52, and 40% drop in the mice glucose levels after 6 hours, respectively. The tested compounds also improved peripheral nerve function as observed from the latency tests. Bioguided fractionation suggested that gallic acid (GA was Pg main active ingredient responsible for its actions. Conclusion. Pg extract, F1, F2, and GA could be considered as a new therapeutic potential for the amelioration of diabetic neuropathic pain and the observed in vivo antioxidant potential may be involved in its antinociceptive effect. It is highly significant to pay attention to Pg and GA for amelioration and control of DM and its complications.

  20. Amelioration of Diabetes and Painful Diabetic Neuropathy by Punica granatum L. Extract and Its Spray Dried Biopolymeric Dispersions

    Science.gov (United States)

    Raafat, K.; Samy, W.

    2014-01-01

    Aims. To evaluate the effect of Punica granatum (Pg) rind extract and its spray dried biopolymeric dispersions with casein (F1) or chitosan (F2) against Diabetes mellitus (DM) and diabetic neuropathy (DN). Methods. We measured the acute (6 h) and subacute (8 days) effect of various doses of Pg, F1, and F2 and the active compounds on alloxan-induced DM mouse model. We evaluated DN utilizing latency tests for longer period of time (8 weeks). In addition, the in vivo antioxidant activity was assessed utilizing serum catalase level. Results. The results proved that the highest dose levels of Pg extract, F1, F2 exerted remarkable hypoglycemic activity with 48, 52, and 40% drop in the mice glucose levels after 6 hours, respectively. The tested compounds also improved peripheral nerve function as observed from the latency tests. Bioguided fractionation suggested that gallic acid (GA) was Pg main active ingredient responsible for its actions. Conclusion. Pg extract, F1, F2, and GA could be considered as a new therapeutic potential for the amelioration of diabetic neuropathic pain and the observed in vivo antioxidant potential may be involved in its antinociceptive effect. It is highly significant to pay attention to Pg and GA for amelioration and control of DM and its complications. PMID:24982685

  1. Acute Pancreatitis

    DEFF Research Database (Denmark)

    Bertilsson, Sara; Håkansson, Anders; Kalaitzakis, Evangelos

    2017-01-01

    Aims: We aimed to evaluate the potential relation between the incidence of (alcoholic and non-alcoholic) acute pancreatitis (AP) and alcohol consumption in the general population, and whether the occurrence of AP shows any seasonal variation, particularly in relation to periods with expected...... consumption in the general population do not appear to be related to changes in the incidence of AP and there are no significant seasonal differences in the occurrence of AP in Sweden. Short summary: The incidence of acute pancreatitis (AP) is increasing, and alcohol is still recognized as one of the most...

  2. Fluoxetine treatment ameliorates depression induced by perinatal arsenic exposure via a neurogenic mechanism

    Science.gov (United States)

    Tyler, Christina R.; Solomon, Benjamin R.; Ulibarri, Adam L.; Allan, Andrea M.

    2014-01-01

    Several epidemiological studies have reported an association between arsenic exposure and increased rates of psychiatric disorders, including depression, in exposed populations. We have previously demonstrated that developmental exposure to low amounts of arsenic induces depression in adulthood along with several morphological and molecular aberrations, particularly associated with the hippocampus and the hypothalamic–pituitary–adrenal (HPA) axis. The extent and potential reversibility of this toxin-induced damage has not been characterized to date. In this study, we assessed the effects of fluoxetine, a selective serotonin reuptake inhibitor antidepressant, on adult animals exposed to arsenic during development. Perinatal arsenic exposure (PAE) induced depressive-like symptoms in a mild learned helplessness task and in the forced swim task after acute exposure to a predator odor (2,4,5-trimethylthiazoline, TMT). Chronic fluoxetine treatment prevented these behaviors in both tasks in arsenic-exposed animals and ameliorated arsenic-induced blunted stress responses, as measured by corticosterone (CORT) levels before and after TMT exposure. Morphologically, chronic fluoxetine treatment reversed deficits in adult hippocampal neurogenesis (AHN) after PAE, specifically differentiation and survival of neural progenitor cells. Protein expression of BDNF, CREB, the glucocorticoid receptor (GR), and HDAC2 was significantly increased in the dentate gyrus of arsenic animals after fluoxetine treatment. This study demonstrates that damage induced by perinatal arsenic exposure is reversible with chronic fluoxetine treatment resulting in restored resiliency to depression via a neurogenic mechanism. PMID:24952232

  3. Edaravone ameliorates compression-induced damage in rat nucleus pulposus cells.

    Science.gov (United States)

    Lin, Hui; Ma, Xuan; Wang, Bai-Chuan; Zhao, Lei; Liu, Jian-Xiang; Pu, Fei-Fei; Hu, Yi-Qiang; Hu, Hong-Zhi; Shao, Zeng-Wu

    2017-11-15

    Edaravone is a strong free radical scavenger most used for treating acute ischemic stroke. In this study we investigated the protective effects and underlying mechanisms of edaravone on compression-induced damage in rat nucleus pulposus (NP) cells. Cell viability was determined using MTT assay methods. NP cell apoptosis was measured by Hoechst 33,258 staining and Annexin V/PI double staining. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and intracellular calcium ([Ca 2+ ] i ) were determined by fluorescent probes DCFH-DA, JC-1 and Fluo-3/AM, respectively. Apoptosis-related proteins (cleaved caspase-3, cytosolic cytochrome c, Bax and Bcl-2) and extracellular matrix proteins (aggrecan and collagen II) were analyzed by western blot. Edaravone attenuated the compression-induced decrease in viability of NP cells in a dose-dependent manner. 33,258 and Annexin V/PI double staining showed that edaravone protected NP cells from compression-induced apoptosis. Further studies confirmed that edaravone protected NP cells against compression-induced mitochondrial pathway of apoptosis by inhibiting overproduction of ROS, collapse of MMP and overload of [Ca 2+ ] i . In addition, edaravone promoted the expression of aggrecan and collagen II in compression-treated NP cells. These results strongly indicate that edaravone ameliorates compression-induced damage in rat nucleus pulposus cells. Edaravone could be a potential new drug for treatment of IDD. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Diesel Exhaust Particles Induce Impairment of Vascular and Cardiac Homeostasis in Mice: Ameliorative Effect of Emodin

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2015-07-01

    Full Text Available Background/Aim: There is strong epidemiological and clinical evidence that components of the cardiovascular system are adversely affected by particulate air pollutants through the generation of inflammation and oxidative stress. Emodin (1,3,8-trihydroxy-6-methylanthraquinone, which is commonly found in the roots of rhubarb plant, has strong antioxidant and anti-inflammatory effects. However, its possible protective effect on the cardiovascular effect of particulate air pollutants has never been reported before. Methods: We tested, in Tuck-Ordinary mice, the possible ameliorative effect of emodin on the acute (24h cardiovascular effects of diesel exhaust particles (DEP, 1 mg/kg or saline (control. Emodin (4 mg/kg was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty four h following DEP exposure, several cardiovascular endpoints were assessed. Results: Emodin significantly prevented the increase of leukocyte (n=8, Pin vivo prothrombotic effect of DEP in pial arterioles (n=6, Pin vitro in whole blood (n=4-5, PConclusion: We conclude that emodin treatment has consistently protected against DEP-induced impairment of vascular and cardiac homeostasis in mice. Our study provides experimental evidence that the use of functional food such as emodin, pending further studies, can be considered a useful agent and may have the potential to protect or mitigate the cardiovascular detrimental effects observed in people living in cities with high concentrations of particulate air pollution.

  5. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  6. Probiotics and Probiotic Metabolic Product Improved Intestinal Function and Ameliorated LPS-Induced Injury in Rats.

    Science.gov (United States)

    Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei

    2017-11-01

    In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.

  7. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  8. Nasal Colivelin treatment ameliorates memory impairment related to Alzheimer's disease.

    Science.gov (United States)

    Yamada, Marina; Chiba, Tomohiro; Sasabe, Jumpei; Terashita, Kenzo; Aiso, Sadakazu; Matsuoka, Masaaki

    2008-07-01

    Humanin (HN) and its derivatives, such as Colivelin (CLN), suppress neuronal death induced by insults related to Alzheimer's disease (AD) by activating STAT3 in vitro. They also ameliorate functional memory impairment of mice induced by anticholinergic drugs or soluble toxic amyloid-beta (Abeta) in vivo when either is directly administered into the cerebral ventricle or intraperitoneally injected. However, the mechanism underlying the in vivo effect remains uncharacterized. In addition, from the standpoint of clinical application, drug delivery methods that are less invasive and specific to the central nervous system (CNS) should be developed. In this study, we show that intranasally (i.n.) administered CLN can be successfully transferred to CNS via the olfactory bulb. Using several behavioral tests, we have demonstrated that i.n. administered CLN ameliorates memory impairment of AD models in a dose-responsive manner. Attenuation of AD-related memory impairment by HN derivatives such as CLN appears to be correlated with an increase in STAT3 phosphorylation levels in the septohippocampal region, suggesting that anti-AD activities of HN derivatives may be mediated by activation of STAT3 in vivo as they are in vitro. We further demonstrate that CLN treatment inhibits an Abeta induced decrease in the number of choline acetyltransferase (ChAT)-positive neurons in the medial septum. Combined with the finding that HN derivatives upregulate mRNA expression of neuronal ChAT and vesicular acetylcholine transporter (VAChT) in vitro, it is assumed that CLN may ameliorate memory impairment of AD models by supporting cholinergic neurotransmission, which is at least partly mediated by STAT3-mediated transcriptional upregulation of ChAT and VAChT.

  9. A note on inventory model for ameliorating items with time dependent second order demand rate

    Directory of Open Access Journals (Sweden)

    Gobinda Chandra Panda

    2013-03-01

    Full Text Available Background: This paper is concerned with the development of ameliorating inventory models. The ameliorating inventory is the inventory of goods whose utility increases over the time by ameliorating activation. Material and Methods: This study is performed according to two areas: one is an economic order quantity (EOQ model for the items whose utility is ameliorating in accordance with Weibull distribution, and the other is a partial selling quantity (PSQ model developed for selling the surplus inventory accumulated by ameliorating activation with linear demand. The aim of this paper was to develop a mathematical model for inventory type concerned in the paper. Numerical examples were presented show the effect of ameliorating rate on inventory polices.  Results and Conclusions:  The inventory model for items with Weibull ameliorating is developed. For the case of small ameliorating rate (less than linear demand rate, EOQ model is developed, and for the case where ameliorating rate is greater than linear demand rate, PSQ model is developed.  .  

  10. ELM pace making and amelioration at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lang, P.T.; Gruber, O.; Haas, G.; Horton, L.D.; Kaufmann, M.; Mertens, V.; Neu, R.; Neuhauser, J.; Puetterich, T.; Schneider, W.; Sihler, C.; Sips, A.C.C.; Suttrop, W.; Treutterer, W. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Garching (Germany); Bucalossi, J. [Association Euratom-Confederation Suisse, CRPP-EPFL, Lausanne (Switzerland); Kalvin, S.; Kocsis, G. [Association Euratom, KFKI-RMKI, Budapest (Hungary); Mc Carthy, P.J. [University College Cork, Physics Dept., Association Euratom-DCu, Cork (Ireland)

    2004-07-01

    Different techniques were tried to trigger ELMs (edge localized mode): injection of cryogenic solid pellets or a super-sonic molecular gas jet composed of deuterium or magnetic triggering, relying on a fast motion of the plasma column in a spatially asymmetric flux configuration. Our investigations prove externally imposed control techniques can change the ELM frequency. Frequency enhancement can result in amelioration of the single ELMs. Moreover, the approach can maintain plasma operation at a high performance level. Both pellet injection and magnetic triggering have been shown their potential to act as useful control tools. This yields the option to choose eventually the most appropriate technique for a given scenario.

  11. A novel and selective poly (ADP-ribose polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy.

    Directory of Open Access Journals (Sweden)

    Lauren E Ta

    Full Text Available Chemotherapy-induced neuropathy is the principle dose limiting factor requiring discontinuation of many chemotherapeutic agents, including cisplatin and oxaliplatin. About 30 to 40% of patients receiving chemotherapy develop pain and sensory changes. Given that poly (ADP-ribose polymerase (PARP inhibition has been shown to provide neuroprotection, the current study was developed to test whether the novel PARP inhibitor compound 4a (analog of ABT-888 would attenuate pain in cisplatin and oxaliplatin-induced neuropathy in mice.An established chemotherapy-induced painful neuropathy model of two weekly cycles of 10 intraperitoneal (i.p. injections separated by 5 days rest was used to examine the therapeutic potential of the PARP inhibitor compound 4a. Behavioral testing using von Frey, paw radiant heat, cold plate, and exploratory behaviors were taken at baseline, and followed by testing at 3, 6, and 8 weeks from the beginning of drug treatment.Cisplatin-treated mice developed heat hyperalgesia and mechanical allodynia while oxaliplatin-treated mice exhibited cold hyperalgesia and mechanical allodynia. Co-administration of 50 mg/kg or 25 mg/kg compound 4a with platinum regimen, attenuated cisplatin-induced heat hyperalgesia and mechanical allodynia in a dose dependent manner. Similarly, co-administration of 50 mg/kg compound 4a attenuated oxaliplatin-induced cold hyperalgesia and mechanical allodynia. These data indicate that administration of a novel PARP inhibitor may have important applications as a therapeutic agent for human chemotherapy-induced painful neuropathy.

  12. A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy.

    Science.gov (United States)

    Ta, Lauren E; Schmelzer, James D; Bieber, Allan J; Loprinzi, Charles L; Sieck, Gary C; Brederson, Jill D; Low, Philip A; Windebank, Anthony J

    2013-01-01

    Chemotherapy-induced neuropathy is the principle dose limiting factor requiring discontinuation of many chemotherapeutic agents, including cisplatin and oxaliplatin. About 30 to 40% of patients receiving chemotherapy develop pain and sensory changes. Given that poly (ADP-ribose) polymerase (PARP) inhibition has been shown to provide neuroprotection, the current study was developed to test whether the novel PARP inhibitor compound 4a (analog of ABT-888) would attenuate pain in cisplatin and oxaliplatin-induced neuropathy in mice. An established chemotherapy-induced painful neuropathy model of two weekly cycles of 10 intraperitoneal (i.p.) injections separated by 5 days rest was used to examine the therapeutic potential of the PARP inhibitor compound 4a. Behavioral testing using von Frey, paw radiant heat, cold plate, and exploratory behaviors were taken at baseline, and followed by testing at 3, 6, and 8 weeks from the beginning of drug treatment. Cisplatin-treated mice developed heat hyperalgesia and mechanical allodynia while oxaliplatin-treated mice exhibited cold hyperalgesia and mechanical allodynia. Co-administration of 50 mg/kg or 25 mg/kg compound 4a with platinum regimen, attenuated cisplatin-induced heat hyperalgesia and mechanical allodynia in a dose dependent manner. Similarly, co-administration of 50 mg/kg compound 4a attenuated oxaliplatin-induced cold hyperalgesia and mechanical allodynia. These data indicate that administration of a novel PARP inhibitor may have important applications as a therapeutic agent for human chemotherapy-induced painful neuropathy.

  13. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  14. The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats

    Directory of Open Access Journals (Sweden)

    Nermin Eissa

    2018-02-01

    Full Text Available The role of Histamine H3 receptors (H3Rs in memory, and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD is well-accepted. For that reason, the procognitive effects of the H3R antagonist DL77 on cognitive impairments induced with MK801 were tested in an inhibitory passive avoidance paradigm (PAP and novel object recognition (NOR task in adult male rats, using donepezil (DOZ as a standard drug. Acute systemic pretreatment with DL77 (2.5, 5, and 10 mg/kg, i.p. significantly ameliorated memory deficits induced with MK801 in PAP (all P < 0.05, n = 7. The ameliorative effect of most promising dose of DL77 (5 mg/kg, i.p. was reversed when rats were co-injected with the H3R agonist R-(α-methylhistamine (RAMH, 10 mg/kg, i.p. (p = 0.701 for MK801-amnesic group vs. MK801+DL77+RAMH group, n = 6. In the NOR paradigm, DL77 (5 mg/kg, i.p. counteracted long-term memory (LTM deficits induced with MK801 (P < 0.05, n = 6–8, and the DL77-provided effect was similar to that of DOZ (p = 0.788, n = 6–8, and was reversed when rats were co-injected with RAMH (10 mg/kg, i.p. (p = 0.877, n = 6, as compared to the (MK801-amnesic group. However, DL77 (5 mg/kg, i.p. did not alter short-term memory (STM impairment in NOR test (p = 0.772, n = 6–8, as compared to (MK801-amnesic group. Moreover, DL77 (5 mg/kg failed to modify anxiety and locomotor behaviors of animals innate to elevated-plus maze (EPM (p = 0.67 for percentage of time spent exploring the open arms, p = 0.52 for number of entries into the open arms, p = 0.76 for percentage of entries into the open arms, and p = 0.73 number of closed arm entries as compared to saline-treated groups, all n = 6, demonstrating that the procognitive effects observed in PAP or NOR tests were unconnected to alterations in emotions or in natural locomotion of tested animals. These results signify the potential involvement of H3Rs in modulating

  15. Arginase Inhibition Ameliorates Hepatic Metabolic Abnormalities in Obese Mice

    Science.gov (United States)

    Moon, Jiyoung; Do, Hyun Ju; Cho, Yoonsu; Shin, Min-Jeong

    2014-01-01

    Objectives We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity. Methods and Results After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells. Conclusions Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function. PMID:25057910

  16. Phytoceramide Shows Neuroprotection and Ameliorates Scopolamine-Induced Memory Impairment

    Directory of Open Access Journals (Sweden)

    Seikwan Oh

    2011-10-01

    Full Text Available The function and the role phytoceramide (PCER and phytosphingosine (PSO in the central nervous system has not been well studied. This study was aimed at investigating the possible roles of PCER and PSO in glutamate-induced neurotoxicity in cultured neuronal cells and memory function in mice. Phytoceramide showed neuro-protective activity in the glutamate-induced toxicity in cultured cortical neuronal cells. Neither phytosphingosine nor tetraacetylphytosphingosine (TAPS showed neuroproective effects in neuronal cells. PCER (50 mg/kg, p.o. recovered the scopolamine-induced reduction in step-through latency in the passive avoidance test; however, PSO did not modulate memory function on this task. The ameliorating effects of PCER on spatial memory were confirmed by the Morris water maze test. In conclusion, through behavioral and neurochemical experimental results, it was demonstrated that central administration of PCER produces amelioration of memory impairment. These results suggest that PCER plays an important role in neuroprotection and memory enhancement and PCER could be a potential new therapeutic agent for the treatment of neurodegenerative diseases such as Alzheimer’s disease.

  17. IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Jin Kyeong Choi

    2017-10-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE, the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

  18. Naltrexone ameliorates functional network abnormalities in alcohol‐dependent individuals

    Science.gov (United States)

    Baek, Kwangyeol; Tait, Roger; Elliott, Rebecca; Ersche, Karen D.; Flechais, Remy; McGonigle, John; Murphy, Anna; Nestor, Liam J.; Orban, Csaba; Passetti, Filippo; Paterson, Louise M.; Rabiner, Ilan; Reed, Laurence; Smith, Dana; Suckling, John; Taylor, Eleanor M.; Bullmore, Edward T.; Lingford‐Hughes, Anne R.; Deakin, Bill; Nutt, David J.; Sahakian, Barbara J.; Robbins, Trevor W.; Voon, Valerie

    2017-01-01

    Abstract Naltrexone, an opioid receptor antagonist, is commonly used as a relapse prevention medication in alcohol and opiate addiction, but its efficacy and the mechanisms underpinning its clinical usefulness are not well characterized. In the current study, we examined the effects of 50‐mg naltrexone compared with placebo on neural network changes associated with substance dependence in 21 alcohol and 36 poly‐drug‐dependent individuals compared with 36 healthy volunteers. Graph theoretic and network‐based statistical analysis of resting‐state functional magnetic resonance imaging (MRI) data revealed that alcohol‐dependent subjects had reduced functional connectivity of a dispersed network compared with both poly‐drug‐dependent and healthy subjects. Higher local efficiency was observed in both patient groups, indicating clustered and segregated network topology and information processing. Naltrexone normalized heightened local efficiency of the neural network in alcohol‐dependent individuals, to the same levels as healthy volunteers. Naltrexone failed to have an effect on the local efficiency in abstinent poly‐substance‐dependent individuals. Across groups, local efficiency was associated with substance, but no alcohol exposure implicating local efficiency as a potential premorbid risk factor in alcohol use disorders that can be ameliorated by naltrexone. These findings suggest one possible mechanism for the clinical effects of naltrexone, namely, the amelioration of disrupted network topology. PMID:28247526

  19. Curative effect of minimally invasive puncture and drainage assisted with alteplase on treatment of acute intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Jun-Lin Hu

    2017-01-01

    >Conclusions: As for the effect on evacuation of hematoma and also the ameliorative effect on nerve injury, inflammatory reaction and oxidative stress response in treatment of acute intracerebral hemorrhage, minimally invasive puncture and drainage assisted with alteplase was superior to adjuvant therapy with urokinase.

  20. Acute abdomen

    Directory of Open Access Journals (Sweden)

    Wig J

    1978-01-01

    Full Text Available 550 cases of acute abdomen have been analysed in detail includ-ing their clinical presentation and operative findings. Males are more frequently affected than females in a ratio of 3: 1. More than 45% of patients presented after 48 hours of onset of symptoms. Intestinal obstruction was the commonest cause of acute abdomen (47.6%. External hernia was responsible for 26% of cases of intestinal obstruction. Perforated peptic ulcer was the commonest cause of peritonitis in the present series (31.7% while incidence of biliary peritonitis was only 2.4%.. The clinical accuracy rate was 87%. The mortality in operated cases was high (10% while the over-all mortality rate was 7.5%.

  1. Acute Blindness.

    Science.gov (United States)

    Meekins, Jessica M

    2015-09-01

    Sudden loss of vision is an ophthalmic emergency with numerous possible causes. Abnormalities may occur at any point within the complex vision pathway, from retina to optic nerve to the visual center in the occipital lobe. This article reviews specific prechiasm (retina and optic nerve) and cerebral cortical diseases that lead to acute blindness. Information regarding specific etiologies, pathophysiology, diagnosis, treatment, and prognosis for vision is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. 27 CFR 24.304 - Chaptalization (Brix adjustment) and amelioration record.

    Science.gov (United States)

    2010-04-01

    ... ameliorates juice or wine, or both, shall maintain a record of the operation and the transaction date. Records...; however, if liquid sugar or invert sugar syrup is used, the quantity of water in such sugar is included as... to be held after that date for completion. When the amelioration of wine included in the record for...

  3. Heregulin ameliorates the dystrophic phenotype in mdx mice

    DEFF Research Database (Denmark)

    Krag, Thomas O B; Bogdanovich, Sasha; Jensen, Claus J

    2004-01-01

    Duchenne's muscular dystrophy (DMD) is a fatal neuromuscular disease caused by absence of dystrophin. Utrophin is a chromosome 6-encoded dystrophin-related protein (DRP), sharing functional motifs with dystrophin. Utrophin's ability to compensate for dystrophin during development and when....... Therefore, this pathway offers a potential mechanism to modulate utrophin expression in muscle. We tested the ability of heregulin to improve the dystrophic phenotype in the mdx mouse model of DMD. Intraperitoneal injections of a small peptide encoding the epidermal growth factor-like region of heregulin...... ectodomain for 3 months in vivo resulted in up-regulation of utrophin, a marked improvement in the mechanical properties of muscle as evidenced by resistance to eccentric contraction mediated damage, and a reduction of muscle pathology. The amelioration of dystrophic phenotype by heregulin-mediated utrophin...

  4. Flurbiprofen ameliorates glucose deprivation-induced leptin resistance

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    2016-09-01

    Full Text Available Leptin resistance is one of the mechanisms involved in the pathophysiology of obesity. The present study showed that glucose deprivation inhibited leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3 and signal transducer and activator of transcription 5 (STAT5 in neuronal cells. Flurbiprofen reversed glucose deprivation-mediated attenuation of STAT3, but not STAT5 activation, in leptin-treated cells. Glucose deprivation increased C/EBP-homologous protein (CHOP and glucose regulated protein 78 (GRP78 induction, indicating the activation of unfolded protein responses (UPR. Flurbiprofen did not affect the glucose deprivation-induced activation of UPR, but did attenuate the glucose deprivation-mediated induction of AMP-activated protein kinase (AMPK phosphorylation. Flurbiprofen may ameliorate glucose deprivation-induced leptin resistance in neuronal cells.

  5. Flemingia macrophylla Extract Ameliorates Experimental Osteoporosis in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ya Ho

    2011-01-01

    Full Text Available Flemingia macrophylla (Leguminosae, a native plant of Taiwan, is used as folk medicine. An in vitro study showed that a 75% ethanolic extract of F. macrophylla (FME inhibited osteoclast differentiation of cultured rat bone marrow cells, and the active component, lespedezaflavanone A (LDF-A, was isolated. It was found that oral administration of FME for 13 weeks suppressed bone loss in ovariectomized rats, an experimental model of osteoporosis. In addition, FME decreased urinary deoxypyridinoline concentrations but did not inhibit serum alkaline phosphatase activities, indicating that it ameliorated bone loss via inhibition of bone resorption. These results suggest that FME may represent a useful remedy for the treatment of bone resorption diseases, such as osteoporosis. In addition, LDF-A could be used as a marker compound to control the quality of FME.

  6. Acute Appendicitis

    DEFF Research Database (Denmark)

    Tind, Sofie; Qvist, Niels

    2017-01-01

    and treatment of AA it is important that the classifications are consistent. Furthermore, in the clinical settings, incorrect classification might lead to over diagnosing and a prolonged antibiotic treatment. The aim of our study was to investigate the concordance between perioperative diagnosis made......BACKGROUND: The classification of acute appendicitis (AA) into various grades is not consistent, partly because it is not clear whether the perioperative or the histological findings should be the foundation of the classification. When comparing results from the literature on the frequency...

  7. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    Science.gov (United States)

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    Science.gov (United States)

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  9. Induction of Heat Shock Protein 70 Ameliorates Ultraviolet-Induced Photokeratitis in Mice

    Directory of Open Access Journals (Sweden)

    Yukihiro Horie

    2013-01-01

    Full Text Available Acute ultraviolet (UV B exposure causes photokeratitis and induces apoptosis in corneal cells. Geranylgeranylacetone (GGA is an acyclic polyisoprenoid that induces expression of heat shock protein (HSP70, a soluble intracellular chaperone protein expressed in various tissues, protecting cells against stress conditions. We examined whether induction of HSP70 has therapeutic effects on UV-photokeratitis in mice. C57 BL/6 mice were divided into four groups, GGA-treated (500 mg/kg/mouse and UVB-exposed (400 mJ/cm2, GGA-untreated UVB-exposed (400 mJ/cm2, GGA-treated (500 mg/kg/mouse but not exposed and naive controls. Eyeballs were collected 24 h after irradiation, and corneas were stained with hematoxylin and eosin (H&E and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL. HSP70, reactive oxygen species (ROS production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and protein kinase B (Akt expression were also evaluated. Irradiated corneal epithelium was significantly thicker in the eyes of mice treated with GGA compared with those given the vehicle alone (p < 0.01. Significantly fewer TUNEL-positive cells were observed in the eyes of GGA-treated mice than controls after irradiation (p < 0.01. Corneal HSP70 levels were significantly elevated in corneas of mice treated with GGA (p < 0.05. ROS signal was not affected by GGA. NF-κB activation was reduced but phospho-(Ser/Ther Akt substrate expression was increased in corneas after irradiation when treated with GGA. GGA-treatment induced HSP70 expression and ameliorated UV-induced corneal damage through the reduced NF-κB activation and possibly increased Akt phosphorilation.

  10. Amelioration of carbon tetrachloride-induced hepatic injury by emulsified Antrodia extract

    Directory of Open Access Journals (Sweden)

    Wei-Chih Chang

    2018-03-01

    Full Text Available Objective(s: Antrodia cinnamomea (AC is found with anti-inflammatory and immunomodulatory biological activities. In this study, we investigated the anti-hepatitis effect of the emulsified AC extract from RO water or supercritical fluid CO2 with ethanol co-solvent extract methods of AC preparations. Materials and Methods: Five groups of eight to ten weeks male rats with a count of ten for each group were studied to evaluate the protection of two kinds of AC extract from hepatic injury. Acute liver injury of rats was induced by injecting 40% carbon tetrachloride (CCl4 1 mg/kg intraperitoneally. Positive and negative control groups rats were perfused with CCl4 or isotonic saline, respectively. Experimental groups received oral administration once/day of AC preparations before CCl4 treatment: water AC extract (WAE group, or emulsified AC extract from supercritical fluid extraction (EAE group for 5 days, and sacrificed on the 6th day and the blood and liver samples were collected under chloral hydrate anesthesia. The anti-inflammatory, antioxidant markers, and relevant signaling pathways were measured (AST, ALT, ROS, IL-1, IL-6, NO, and COX-2, MAPKs, and caspase-3. Results: EAE at 50 mg/kg significantly decreased the serum AST, ALT, IL-1, IL-6, NO, and ROS levels. Both extracts reduced the activation of p-ERK in the liver samples, but EAE inhibited COX-2 and caspase-3 protein expression better than WAE. The EAE ameliorated CCl4-induced hepatic injury significantly; as compared with WAE and the positive control. Conclusion: The hepatoprotection of EAE could be attributed to the antioxidant and anti-inflammatory effects of Antrodia.

  11. Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2013-07-01

    Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.

  12. Acute lower extremity ischaemia

    African Journals Online (AJOL)

    Acute lower extremity ischaemia. Acute lower limb ischaemia is a surgical emergency. ... is ~1.5 cases per 10 000 persons per year. Acute ischaemia ... Table 2. Clinical features discriminating embolic from thrombotic ALEXI. Clinical features.

  13. Acute kidney failure

    Science.gov (United States)

    ... Renal failure - acute; ARF; Kidney injury - acute Images Kidney anatomy References Devarajan P. Biomarkers for assessment of renal function during acute kidney injury. In: Alpern RJ, Moe OW, Caplan M, ...

  14. Acute radiation proctitis. A clinical, histopathological and histochemical study

    International Nuclear Information System (INIS)

    Hovdenak, Nils

    2004-01-01

    The aim of the study is: 1) A sequential description of the clinical course of acute radiation proctitis during pelvic RT. 2) A sequential description of the rectal mucosal histopathology during pelvic RT as a possible substrate for clinical toxicity. 3) To assess the mucosal protease activity during RT as a possible explanation of the observed tissue changes. 4) To assess the efficacy of prophylactic sucralfate in acute radiation proctitis a randomised study was initiated and carried out together with a meta-analysis of previously available data. 5) Most studies on clinical acute toxicity in pelvic RT use either the RTOG/EORTC score system or focus on diarrhoea/stool frequency. A more differentiated and sensitive recording was developed and tested to pick up symptoms escaping the commonly used scores. 6) Study the relation between histopathological findings and the clinical picture. 4 papers presenting various studies are included. The titles are: 1) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. 2) Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. 3) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. 4) Sucralfate does not ameliorate acute radiation proctitis. Some future prospects are discussed

  15. Acute radiation proctitis. A clinical, histopathological and histochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Hovdenak, Nils

    2004-07-01

    The aim of the study is: 1) A sequential description of the clinical course of acute radiation proctitis during pelvic RT. 2) A sequential description of the rectal mucosal histopathology during pelvic RT as a possible substrate for clinical toxicity. 3) To assess the mucosal protease activity during RT as a possible explanation of the observed tissue changes. 4) To assess the efficacy of prophylactic sucralfate in acute radiation proctitis a randomised study was initiated and carried out together with a meta-analysis of previously available data. 5) Most studies on clinical acute toxicity in pelvic RT use either the RTOG/EORTC score system or focus on diarrhoea/stool frequency. A more differentiated and sensitive recording was developed and tested to pick up symptoms escaping the commonly used scores. 6) Study the relation between histopathological findings and the clinical picture. 4 papers presenting various studies are included. The titles are: 1) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. 2) Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. 3) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. 4) Sucralfate does not ameliorate acute radiation proctitis. Some future prospects are discussed.

  16. Intestinal ameliorative effects of traditional Ogi-tutu, Vernonia ...

    African Journals Online (AJOL)

    Background: Cholera, a severe acute watery diarrhea caused by Vibrio cholerae is endemic in Nigeria with most cases occurring in the rural areas. In South West Nigeria, some individuals resort to alternative treatments such as Ogi-tutu, Psidium guajava and Vernonia amygdalina during infections. The effectiveness of ...

  17. Nitric oxide synthase inhibition ameliorates nicotine-induced sperm function decline in male rats

    Directory of Open Access Journals (Sweden)

    Ibukun P. Oyeyipo

    2015-09-01

    Conclusion: Taken together, the present data indicate the abilities of l-NAME to ameliorate nicotine-induced spermatotoxic effects in male rats via a mechanism dependent on the circulating testosterone level.

  18. Listening to classical music ameliorates unilateral neglect after stroke.

    Science.gov (United States)

    Tsai, Pei-Luen; Chen, Mei-Ching; Huang, Yu-Ting; Lin, Keh-Chung; Chen, Kuan-Lin; Hsu, Yung-Wen

    2013-01-01

    OBJECTIVE. We determined whether listening to excerpts of classical music ameliorates unilateral neglect (UN) in stroke patients. METHOD. In this within-subject study, we recruited and separately tested 16 UN patients with a right-hemisphere stroke under three conditions within 1 wk. In each condition, participants were asked to complete three subtests of the Behavioral Inattention Test while listening to classical music, white noise, or nothing. All conditions and the presentation of the tests were counterbalanced across participants. Visual analog scales were used to provide self-reported ratings of arousal and mood. RESULTS. Participants generally had the highest scores under the classical music condition and the lowest scores under the silence condition. In addition, most participants rated their arousal as highest after listening to classical music. CONCLUSION. Listening to classical music may improve visual attention in stroke patients with UN. Future research with larger study populations is necessary to validate these findings. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  19. Exenatide with Metformin Ameliorated Visceral Adiposity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Xuan Du

    2018-01-01

    Full Text Available Background. To study the effectiveness of exenatide with metformin and sequential treatment with exenatide and glargine added to metformin and their influence on insulin sensitivity and adipose distribution. Methods. 20 newly diagnosed obese type 2 diabetic patients were enrolled, and 2-month washout treatment of metformin, 6-month exenatide treatment, and 6-month glargine treatment were administrated sequentially accompanied with previous metformin. Glucolipid metabolic parameters were compared among groups. Adipose distribution was quantified with computerized tomography according to anatomy, dividing into visceral adipose tissue (VAT and subcutaneous adipose tissue (SAT, adding up to total adipose tissue (TAT. Results. The 6-month exenatide treatment dramatically ameliorated the glucose and lipid profile, improved insulin sensitivity, and mainly decreased VAT and also the ratio of VAT/SAT (RVS. The following 6-month glargine treatment increased VAT. The whole 12-month sequential treatment with exenatide and glargine added to metformin basically improved the insulin sensitivity and glucolipid control though VAT rebounded at the end, however without deteriorating the other parameters. Conclusion. Exenatide is an ideal treatment for obese type 2 diabetic patients in the aspect of adipose tissue distribution. Sequential treatment of exenatide and glargine could be an alternative for low-income patients who cannot afford GLP-1 agonist for long time. This trial is registered with ChiCTR-OOC-17013679.

  20. Probiotic BIFICO cocktail ameliorates Helicobacter pylori induced gastritis.

    Science.gov (United States)

    Yu, Hong-Jing; Liu, Wei; Chang, Zhen; Shen, Hui; He, Li-Juan; Wang, Sha-Sha; Liu, Lu; Jiang, Yuan-Ying; Xu, Guo-Tong; An, Mao-Mao; Zhang, Jun-Dong

    2015-06-07

    To determine the protective effect of triple viable probiotics on gastritis induced by Helicobacter pylori (H. pylori) and elucidate the possible mechanisms of protection. Colonization of BIFICO strains in the mouse stomach was determined by counting colony-forming units per gram of stomach tissue. After treatment with or without BIFICO, inflammation and H. pylori colonization in the mouse stomach were analyzed by hematoxylin and eosin and Giemsa staining, respectively. Cytokine levels were determined by enzyme-linked immunosorbent assay and Milliplex. The activation of nuclear factor (NF)-κB and MAPK signaling in human gastric epithelial cells was evaluated by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was used to quantify TLR2, TLR4 and MyD88 mRNA expression in the mouse stomach. We demonstrated that BIFICO, which contains a mixture of Enterococcus faecalis, Bifidobacterium longum and Lactobacillus acidophilus, was tolerant to the mouse stomach environment and was able to survive both the 8-h and 3-d courses of administration. Although BIFICO treatment had no effect on the colonization of H. pylori in the mouse stomach, it ameliorated H. pylori-induced gastritis by significantly inhibiting the expression of cytokines and chemokines such as TNF-α, IL-1β, IL-10, IL-6, G-CSF and MIP-2 (P gastritis by inhibiting the inflammatory response in gastric epithelial cells.

  1. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction.

    Science.gov (United States)

    Furumoto, Yasuko; Smith, Carolyne K; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L; Trier, Anna M; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T; O'Shea, John J; Kaplan, Mariana J; Gadina, Massimo

    2017-01-01

    Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. No drug to date targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a JAK inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and the associated vascular pathology remains to be characterized. MRL/lpr lupus-prone mice were administered tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum levels of autoantibodies and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular traps (NETs) release, endothelium-dependent vasorelaxation, and endothelial differentiation were compared in treated and untreated mice. Treatment with tofacitinib led to significant improvement in measures of disease activity, including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of proinflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated the formation of NETs and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective in both preventive and therapeutic strategies. Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus, and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. © 2016, American College of Rheumatology.

  2. Cellulose supplementation early in life ameliorates colitis in adult mice.

    Directory of Open Access Journals (Sweden)

    Dorottya Nagy-Szakal

    Full Text Available Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (IBD: Crohn disease [CD] and ulcerative colitis [UC] where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption during critical developmental periods may prevent consecutive intestinal inflammation. The incidence of IBD peaks in young adulthood indicating that pediatric environmental exposures may be important in the etiology of this disease group. We studied the effects of transient dietary cellulose supplementation on dextran sulfate sodium (DSS colitis susceptibility during the pediatric period in mice. Cellulose supplementation stimulated substantial shifts in the colonic mucosal microbiome. Several bacterial taxa decreased in relative abundance (e.g., Coriobacteriaceae [p = 0.001], and other taxa increased in abundance (e.g., Peptostreptococcaceae [p = 0.008] and Clostridiaceae [p = 0.048]. Some of these shifts persisted for 10 days following the cessation of cellulose supplementation. The changes in the gut microbiome were associated with transient trophic and anticolitic effects 10 days following the cessation of a cellulose-enriched diet, but these changes diminished by 40 days following reversal to a low cellulose diet. These findings emphasize the transient protective effect of dietary cellulose in the mammalian large bowel and highlight the potential role of dietary fibers in amelioration of intestinal inflammation.

  3. Yangjing Capsule Ameliorates Spermatogenesis in Male Mice Exposed to Cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Hongle Zhao

    2015-01-01

    Full Text Available Yangjing capsule (YC, a traditional Chinese compound herbal preparation, has been proven as an effective drug to improve spermatogenesis in clinical practice. However, its pharmacological mechanisms were not fully clarified. This study was designed to investigate the protective effects of YC on spermatogenesis in the mouse model of spermatogenesis dysfunction induced by cyclophosphamide (CP. The administration of YC significantly increased the epididymal index, sperm count, and sperm motility of model mice. Histopathological changes demonstrated that CP caused obvious structural damage to testis, which were reversed by the administration of YC. Results from TUNEL assay showed that treatment with YC dramatically decreased the apoptosis of spermatogenic cell induced by CP. Moreover, YC treatment could inhibit the mRNA and protein expression of Bax to Bcl-2 and also raised expression of AR at both mRNA and protein levels. These data suggest that YC might ameliorate spermatogenesis in male mice exposed to CP through inhibiting the apoptosis of spermatogenic cell and enhancing the actions of testosterone in spermatogenesis.

  4. Cellulose Supplementation Early in Life Ameliorates Colitis in Adult Mice

    Science.gov (United States)

    Nagy-Szakal, Dorottya; Hollister, Emily B.; Luna, Ruth Ann; Szigeti, Reka; Tatevian, Nina; Smith, C. Wayne; Versalovic, James; Kellermayer, Richard

    2013-01-01

    Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (IBD: Crohn disease [CD] and ulcerative colitis [UC]) where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption during critical developmental periods may prevent consecutive intestinal inflammation. The incidence of IBD peaks in young adulthood indicating that pediatric environmental exposures may be important in the etiology of this disease group. We studied the effects of transient dietary cellulose supplementation on dextran sulfate sodium (DSS) colitis susceptibility during the pediatric period in mice. Cellulose supplementation stimulated substantial shifts in the colonic mucosal microbiome. Several bacterial taxa decreased in relative abundance (e.g., Coriobacteriaceae [p = 0.001]), and other taxa increased in abundance (e.g., Peptostreptococcaceae [p = 0.008] and Clostridiaceae [p = 0.048]). Some of these shifts persisted for 10 days following the cessation of cellulose supplementation. The changes in the gut microbiome were associated with transient trophic and anticolitic effects 10 days following the cessation of a cellulose-enriched diet, but these changes diminished by 40 days following reversal to a low cellulose diet. These findings emphasize the transient protective effect of dietary cellulose in the mammalian large bowel and highlight the potential role of dietary fibers in amelioration of intestinal inflammation. PMID:23437211

  5. Osteitis pubis ameliorated after tooth extraction: a case report.

    Science.gov (United States)

    Fukushi, Jun-ichi; Nakashima, Yasuharu; Iwamoto, Yukihide

    2013-03-01

    Osteitis pubis is a non-infective inflammation of the symphysis pubis, which is known to be associated with trauma, athletic exertion, urological or gynecological surgery, or with rheumatic conditions such as seronegative spondyloarthropathies. In this report, we describe a case of osteitis pubis whose symptoms were completely ameliorated following tooth extraction attributable to periodontitis. A 57-year-old female patient developed osteitis pubis, presenting with pain in the groin area with an elevated Creactive protein (CRP; 4.4 mg/dl) and radiological erosive changes in symphysis pubis. Prednisolone (5 mg/day) and etodolac were prescribed, but the patient's symptoms improved only partially and remained persistent. One year from the patient's first visit, three teeth were extracted due to severe chronic periodontitis, which she had been suffering from for years. Soon after the above tooth extraction, her symptoms appeared completely resolved, and the patient's CRP was decreased to nearly normal levels in 4 weeks. Human leukocyte antigen (HLA)-typing analysis revealed a positive result for HLA-A11, A24, and B54. Because HLA-B54 cross-reacts with HLA-B27, the patient's osteitis pubis was considered to be a form of reactive arthritis associated with periodontitis.

  6. Acute Pancreatitis in acute viral hepatitis

    Directory of Open Access Journals (Sweden)

    S K.C.

    2011-03-01

    Full Text Available Introduction: The association of acute viral hepatitis and acute pancreatitis is well described. This study was conducted to find out the frequency of pancreatic involvement in acute viral hepatitis in the Nepalese population. Methods: Consecutive patients of acute viral hepatitis presenting with severe abdominal pain between January 2005 and April 2010 were studied. Patients with history of significant alcohol consumption and gall stones were excluded. Acute viral hepatitis was diagnosed by clinical examination, liver function test, ultrasound examination and confirmed by viral serology. Pancreatitis was diagnosed by clinical presentation, biochemistry, ultrasound examination and CT scan. Results: Severe abdominal pain was present in 38 of 382 serologically-confirmed acute viral hepatitis patients. Twenty five patients were diagnosed to have acute pancreatitis. The pancreatitis was mild in 14 and severe in 11 patients. The etiology of pancreatitis was hepatitis E virus in 18 and hepatitis A virus in 7 patients. Two patients died of complications secondary to shock. The remaining patients recovered from both pancreatitis and hepatitis on conservative treatment. Conclusions: Acute pancreatitis occurred in 6.5 % of patients with acute viral hepatitis. Cholelithiasis and gastric ulcers are the other causes of severe abdominal pain. The majority of the patients recover with conservative management. Keywords: acute viral hepatitis, acute pancreatitis, pain abdomen, hepatitis E, hepatitis A, endemic zone

  7. Acute abdomen

    International Nuclear Information System (INIS)

    Beger, H.G.; Kern, E.

    1987-01-01

    The book first presents the anatomy and physiology of the abdomen and continues with chapters discussing clinical and laboratory aspects and a suitable order of diagnostic examinations with reference to the acute processes, explaining the diagnostic tools: ultrasonography, radiography including angiography and CT, tapping techniques and endoscopy together with their basic principles, examination techniques, and diagnosis. One chapter presents a complete survey of the processes involving the entire abdomen - as e.g. peritonitis, ileus, abdominal trauma, intraperitoneal hemorrage. This chapter profoundly discusses the diagnostics and therapies including emergency measures and surgery. Problems requiring consultation among varous specialists, in internal medicine, gynecology, urology, or pediatrics, are discussed in great detail. Information for the anesthetist is given for cases of emergency. More than one third of the book is devoted to organ-specific information, dicussing the pathogenesis, diagnostics, and therapy of the oesophagus, stomach, large and small intestine, bile ducts, pankreas, liver, spleen, and the abdominal vessels and the abdominal wall. (orig.) With 153 figs., 90 tabs [de

  8. Amelioration and reforestation of sulfurous mine soils in Lusatia (eastern Germany)

    International Nuclear Information System (INIS)

    Katzur, J.; Haubold-Rosar, M.

    1996-01-01

    In Germany nearly 1.550 km 2 have been claimed by brown coal mining until now. Mine soils formed of carboniferous and sulfurous overburden are classified as sulfurous mine soils. They remain vegetation-free for decades and may be cultivated only after soil amelioration. The objective of amelioration is a sustained improvement of soil reaction. Lime requirement for the achievement of a certain pH-value is calculated from acid-base-balance (SBB). Lime fertilizers and base-rich brown coal ashes are used for amelioration. As ashes have several advantages, their application is recommended. The ameliorative application of lime fertilizer or brown coal ash should be incorporated intensively into the soil to a depth of 60 cm, better 100 cm. Amelioration includes a mineral fertilization with N, P and K. Afforestation with Pinus sylvestris, Pinus nigra, Larix decidua, Larix eurolepis. Tilia cordata, Quercus rubra and Quercus petraea on ameliorated mine soils show surprising good results. Multi-species stands have very positive effects on soil formation. Raw humus is formed under pine and larch, and under deciduous trees moder and mull with higher bioactivity and better development of water and nutrient balance in the topsoil are found. 55 refs., 6 figs., 4 tabs

  9. Acute otitis externa

    OpenAIRE

    Hui, Charles PS

    2013-01-01

    Acute otitis externa, also known as ‘swimmer’s ear’, is a common disease of children, adolescents and adults. While chronic suppurative otitis media or acute otitis media with tympanostomy tubes or a perforation can cause acute otitis externa, both the infecting organisms and management protocol are different. This practice point focuses solely on managing acute otitis externa, without acute otitis media, tympanostomy tubes or a perforation being present.

  10. Therapeutic spaces of care farming: Transformative or ameliorating?

    Science.gov (United States)

    Kaley, Alexandra; Hatton, Chris; Milligan, Christine

    2018-05-04

    Since Wil Gesler's earliest articulation (Gesler, 1992; Gesler, 1996) key thinkers in the field of therapeutic landscapes have sought to emphasise the embodied, contextual and wholly relational nature of the relationship that exists between people and place. However, the extant research has tended to focus on the relational healing experience as this occurs 'in the moment' and with reference to a specific location or site of healing, with less attention being paid to what happens to people when they return to their ordinary or everyday places. In this paper, we reflect on findings from visual ethnographic work (including photography and film) that explored the therapeutic landscape experiences of people with intellectual disabilities engaged in care farming interventions for health and wellbeing. The study also recruited farm staff and family members or carers to take part, and comprised 20 participants in total. Having identified a gap in our understanding, consideration is given to wider impact that engaging in these sorts of activities had on the everyday lives of the participants in this study. We argue that this study has identified two types of therapeutic journey that broadly fit the experiences of study participants. The first type of journey denotes landscape experiences that are transformative. Here the therapeutic power of the care farm landscape resides in the ability of activities conducted on care farms to influence other aspects of participants' lives in ways that promote wellbeing. By contrast, there is another type of journey where the therapeutic power of the care farm resides in its ability to ameliorate challenging or harmful life situations, thus offering people a temporary site of respite or refuge. We conclude that these findings denote an important development for this sub-field of health geography, not only because they draw attention to the transformative power of the therapeutic encounter, but also the broader socio-spatial environments

  11. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    Science.gov (United States)

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  12. NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy

    Science.gov (United States)

    Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin

  13. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death.

    Science.gov (United States)

    Nagahara, Yuki; Shimazawa, Masamitsu; Ohuchi, Kazuki; Ito, Junko; Takahashi, Hitoshi; Tsuruma, Kazuhiro; Kakita, Akiyoshi; Hara, Hideaki

    2017-08-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  15. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    Directory of Open Access Journals (Sweden)

    J Pedro Fernández-Murray

    2016-01-01

    Full Text Available Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  16. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  17. Esculetin Ameliorates Carbon Tetrachloride-Mediated Hepatic Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    Chuan-Sung Chiu

    2011-06-01

    Full Text Available Esculetin (ESC is a coumarin that is present in several plants such as Fraxinus rhynchophylla and Artemisia capillaris. Our previous study found that FR ethanol extract (FREtOH significantly ameliorated rats’ liver function. This study was intended to investigate the protective mechanism of ESC in hepatic apoptosis in rats induced by carbon tetrachloride. Rat hepatic apoptosis was induced by oral administration of CCl4. All rats were administered orally with CCl4 (20%, 0.5 mL/rat twice a week for 8 weeks. Rats in the ESC groups were treated daily with ESC, and silymarin group were treated daily with silymarin. Serum alanine aminotransferase (ALT, aspartate aminotransferase (AST as well as the activities of the anti-oxidative enzymes glutathione peroxidase (GPx, superoxide dismutase (SOD, and catalase in the liver were measured. In addition, expression of liver apoptosis proteins and anti-apoptotic proteins were detected. ESC (100, 500 mg/kg significantly reduced the elevated activities of serum ALT and AST caused by CCl4 and significantly increased the activities of catalase, GPx and SOD. Furthermore, ESC (100, 500 mg/kg significantly decreased the levels of the proapoptotic proteins (t-Bid, Bak and Bad and significantly increased the levels of the anti-apoptotic proteins (Bcl-2 and Bcl-xL. ESC inhibited the release of cytochrome c from mitochondria. In addition, the levels of activated caspase-9 and activated caspase-3 were significantly decreased in rats treated with ESC than those in rats treated with CCl4 alone. ESC significantly reduced CCl4-induced hepatic apoptosis in rats.

  18. Economic recession and suicidal behaviour: Possible mechanisms and ameliorating factors.

    Science.gov (United States)

    Haw, Camilla; Hawton, Keith; Gunnell, David; Platt, Stephen

    2015-02-01

    A growing body of research evidence from countries around the world indicates that economic recession is associated with increases in suicide, particularly in males of working age. To explore contributory and ameliorating factors associated with economic recession and suicide and thereby stimulate further research in this area and encourage policy makers to consider how best to reduce the impact of recession on mental health and suicidal behaviour. We conducted a selective review of the worldwide literature focusing on possible risk factors, mechanisms and preventative strategies for suicidal behaviour linked to economic recession. A model of how recession might affect suicide rates is presented. A major and often prolonged effect of recession is on unemployment and job insecurity. Other important effects include those exerted by financial loss, bankruptcy and home repossession. It is proposed these factors may lead directly or indirectly to mental health problems such as depression, anxiety and binge drinking and then to suicidal behaviour. Countries with active labour market programmes and sustained welfare spending during recessions have less marked increases in suicide rates than those that cut spending on welfare and job-search initiatives for the unemployed. Other measures likely to help include targeted interventions for unemployed people, membership of social organisations and responsible media reporting. Good primary care and mental health services are needed to cope with increased demand in times of economic recession but some governments have in fact reduced healthcare spending as an austerity measure. The research evidence linking recession, unemployment and suicide is substantial, but the evidence for the other mechanisms we have investigated is much more tentative. We describe the limitations of the existing body of research as well as make suggestions for future research into the effects of economic recession on suicidal behaviour. © The Author

  19. Nephroprotective Effect of Bauhinia tomentosa Linn against Cisplatin-Induced Renal Damage.

    Science.gov (United States)

    Kannan, Narayanan; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2016-01-01

    Cisplatin (CP) is an important chemotherapeutic drug used for the treatment of a wide variety of solid tumors. However, clinical use of CP has been limited due to its adverse effect of nephrotoxicity. In the present study, we evaluate the nephroprotective effect of Bauhinia tomentosa against CP-induced renal damage in rats. Administration of methonolic extract of B. tomentosa (250 mg/kg b.w.) results in a significant increase in antioxidant enzymes including superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Furthermore, treatment with B. tomentosa increased body weight and relative organ weight when compared with that of the CP-induced control group. Moreover, treatment with B. tomentosa extract significantly decreased lipid peroxidation(LPO), serum urea, and creatinine when compared with the CP-induced control group. Thus, the present study highlights the potential role of B. tomentosa and its use as a new protective strategy against CP-induced nephrotoxicity.

  20. Multiparametric analysis of cisplatin-induced changes in cancer cells using FLIM

    Science.gov (United States)

    Shirmanova, Marina V.; Sergeeva, Tatiana F.; Gavrina, Alena I.; Dudenkova, Varvara V.; Lukyanov, Konstantin A.; Zagaynova, Elena V.

    2018-02-01

    Cisplatin is an effective anticancer drug commonly used in the treatment of solid tumors. Although DNA is considered as the primary target, the cisplatin action at the cellular level remains unknown. Advanced fluorescence microscopy techniques allow probing various physiological and physicochemical parameters in living cells and tissues with unsurpassed sensitivity in real time. This study was focused on the investigation of cellular bioenergetics and cytosolic pH in colorectal cancer cells during chemotherapy with cisplatin. Special attention was given to the changes in cisplatininduced apoptosis that was identified using genetically encoded FLIM/FRET sensor of caspase-3 activity. Metabolic measurements using FLIM of the metabolic cofactor NAD(P)H showed decreased contribution from free NAD(P)H (a1, %) in all treated cells with more pronounced alterations in the cells undergoing apoptosis. Analysis of cytosolic pH using genetically encoded fluorescent sensor SypHer1 revealed a rapid increase of the pH value upon cisplatin exposure irrespective of the induction of apoptosis. To the best of our knowledge, a simultaneous assessment of metabolic state, cytosolic pH and caspase-3 activity after treatment with cisplatin was performed for the first time. These findings improve our understanding of the cell response to chemotherapy and mechanisms of cisplatin action.

  1. Effects of reduced glutathion and vitamin c on cisplatin-induced ...

    African Journals Online (AJOL)

    glutathione peroxidase [GSHPx], catalase [CAT], glutathione reductase [GSHR] activities and gene expression, glutathione [GSH] content) and lipid peroxidation products (malondialdehyde, MDA) in rat liver tissue were measured. CDDP hepatotoxicity was manifested by an increase in serum ALT and AST, elevation of MDA ...

  2. Cisplatin Induces Up-Regulation of KAI1, a Metastasis Suppressor ...

    African Journals Online (AJOL)

    HP

    including breast, testicular, ovarian, cervical, prostate, head and neck, ..... Vertebral bone metastasis in breast cancer: a case report. Rom J Morphol Embryol 2011; 52: 897-. 905. ... KAI1/CD82 on the β1 integrin maturation in highly migratory ...

  3. LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse.

    Science.gov (United States)

    Rossi, Valerio; Lispi, Monica; Longobardi, Salvatore; Mattei, Maurizio; Rella, Francesca Di; Salustri, Antonietta; De Felici, Massimo; Klinger, Francesca G

    2017-01-01

    Premature ovarian failure and female infertility are frequent side effects of anticancer therapies, owing to the extreme sensitivity of the ovarian reserve oocytes to the damaging effects of irradiation and chemotherapy on DNA. We report here a robust protective effect of luteinizing hormone (LH) on the primordial follicle pool of prepubertal ovaries against the cisplatin (Cs)-induced apoptosis. In vitro LH treatment of prepubertal ovarian fragments generated anti-apoptotic signals by a subset of ovarian somatic cells expressing LH receptor (LHR) through cAMP/PKA and Akt pathways. Such signals, reducing the oocyte level of pro-apoptotic TAp63 protein and favoring the repair of the Cs-damaged DNA in the oocytes, prevented their apoptosis. Noteworthy, in vivo administration to prepubertal female mice of a single dose of LH together with Cs inhibited the depletion of the primordial follicle reserve caused by the drug and preserved their fertility in reproductive age, preventing significant alteration in the number of pregnancy and of delivered pups. In conclusion, these findings establish a novel ovoprotective role for LH and further support the very attracting prospective to use physiological 'fertoprotective' approaches for preventing premature infertility and risks linked to precocious menopause in young patients who survived cancer after chemotherapy.

  4. The effect of Hibiscus sabdariffa calyx extract on cisplatin-induced ...

    African Journals Online (AJOL)

    JTEkanem

    2008-12-14

    Dec 14, 2008 ... of reduced glutathione in the liver and kidney over controls (p < 0.05). Cisplatin also caused a ..... Hydroperoxide-induced hepatic toxicity in rats. Food Chem. ... effects of Artemisia absinthium on acetaminophen and CCl. 4. –.

  5. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance for...

  6. Voluntary Exercise Prevents Cisplatin-Induced Muscle Wasting during Chemotherapy in Mice

    DEFF Research Database (Denmark)

    Hojman, Pernille; Fjelbye, Jonas; Zerahn, Bo

    2014-01-01

    , food intake as well as muscle mass, strength and signalling. Mice were treated weekly with 4 mg/kg cisplatin or saline for 6 weeks, and randomized to voluntary wheel running or not. Cisplatin treatment induced loss of body weight (29.8%, P ... as anorexia, impaired muscle strength (22.5% decrease, P wheel running during treatment attenuated body weight...... loss by 50% (P wheel running, nor was glucose tolerance improved. Exercise...

  7. LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse

    Science.gov (United States)

    Rossi, Valerio; Lispi, Monica; Longobardi, Salvatore; Mattei, Maurizio; Rella, Francesca Di; Salustri, Antonietta; De Felici, Massimo; Klinger, Francesca G

    2017-01-01

    Premature ovarian failure and female infertility are frequent side effects of anticancer therapies, owing to the extreme sensitivity of the ovarian reserve oocytes to the damaging effects of irradiation and chemotherapy on DNA. We report here a robust protective effect of luteinizing hormone (LH) on the primordial follicle pool of prepubertal ovaries against the cisplatin (Cs)-induced apoptosis. In vitro LH treatment of prepubertal ovarian fragments generated anti-apoptotic signals by a subset of ovarian somatic cells expressing LH receptor (LHR) through cAMP/PKA and Akt pathways. Such signals, reducing the oocyte level of pro-apoptotic TAp63 protein and favoring the repair of the Cs-damaged DNA in the oocytes, prevented their apoptosis. Noteworthy, in vivo administration to prepubertal female mice of a single dose of LH together with Cs inhibited the depletion of the primordial follicle reserve caused by the drug and preserved their fertility in reproductive age, preventing significant alteration in the number of pregnancy and of delivered pups. In conclusion, these findings establish a novel ovoprotective role for LH and further support the very attracting prospective to use physiological 'fertoprotective' approaches for preventing premature infertility and risks linked to precocious menopause in young patients who survived cancer after chemotherapy. PMID:27689876

  8. Cisplatin-induced hyponatremia in malignancy: comparison between brand-name and generic formulation.

    Science.gov (United States)

    Ochi, Nobuaki; Yamane, Hiromichi; Hotta, Katsuyuki; Fujii, Hiromi; Isozaki, Hideko; Honda, Yoshihiro; Yamagishi, Tomoko; Kubo, Toshio; Tanimoto, Mitsune; Kiura, Katsuyuki; Takigawa, Nagio

    2014-01-01

    Widespread use of generic drugs is considered to be indispensable if reductions in total health care costs are to be achieved, but the market share of such drugs remains low. In general, generic drugs have the same active ingredients as brand-name drugs, but this is not always the case. Thus, toxicity profiles may vary when brand-name and generic drugs are compared. We retrospectively investigated the incidence of hyponatremia in patients receiving brand-name cisplatin (CDDP) and a generic counterpart thereof. We reviewed the medical records of patients treated with brand-name CDDP (n=53) and a generic formulation (n=26), and compared the incidences of hyponatremia and renal toxicity. Toxicities were graded using the Common Terminology Criteria for Adverse Events, version 4.0. Differences between groups were evaluated using the Student's t-test, and the odds ratio for hyponatremia was estimated via logistic regression analysis. Serum creatinine levels after chemotherapy increased significantly in both the brand-name and generic CDDP groups; no significant difference was evident between the two groups. Hyponatremia of grade 3 or above developed in 30.7% of the generic CDDP group compared to 15.1% of the brand-name CDDP group (P=0.011). Multivariate analysis showed that the use of generic CDDP increased the incidence of hyponatremia (odds ratio =5.661, 95% confidence interval =1.403-22.839; P=0.015). Oncologists should be aware that use of a generic CDDP might be associated with more hyponatremia than would use of brand-name CDDP.

  9. The effect of Ginkgo extract EGb761 in cisplatin-induced peripheral neuropathy in mice

    International Nuclear Information System (INIS)

    Oeztuerk, Guerkan; Anlar, Oemer; Erdogan, Ender; Koesem, Mustafa; Oezbek, Hanefi; Tuerker, Aybars

    2004-01-01

    Neuroprotective effect of Ginkgo biloba extract EGb761 in cisplatin (cis-diamminedi-chloroplatinum, or CDDP)-induced peripheral neuropathy was investigated. Swiss albino mice were treated with CDDP, 2 mg/kg ip twice a week for nine times. One group of the animals also received EGb761 in the drinking water at an estimated dosage of 100 mg/kg per day. Two other groups received vehicle (control) or EGb761 only. Development of neuropathy was evaluated with changes in sensory nerve conduction velocity (NCV). Following the treatments, dorsal root ganglia (DRGs) were microscopically examined and some were cultured for 3 days. EGb761 proved effective in preventing the reduction in NCV (P < 0.0001) caused by CDDP. CDDP caused a decrease in the number of migrating cells (P < 0.01) and in the length of outgrowing axons (P < 0.01) while EGb761 treatment prevented the latter. CDDP led to smaller nuclear and somatic sizes in neurons (P < 0.01), while with EGb761 co-administration, both were close to control values. Animals having EGb761 only had similar results with controls. In conclusion, EGb761 was found to be effective in preventing some functional and morphological deteriorations in CDDP-induced peripheral neuropathy

  10. Taurine Rescues Cisplatin-Induced Muscle Atrophy In Vitro: A Morphological Study

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2014-01-01

    Full Text Available Cisplatin (CisPt is a widely used chemotherapeutic drug whose side effects include muscle weakness and cachexia. Here we analysed CisPt-induced atrophy in C2C12 myotubes by a multidisciplinary morphological approach, focusing on the onset and progression of autophagy, a protective cellular process that, when excessively activated, may trigger protein hypercatabolism and atrophy in skeletal muscle. To visualize autophagy we used confocal and transmission electron microscopy at different times of treatment and doses of CisPt. Moreover we evaluated the effects of taurine, a cytoprotective beta-amino acid able to counteract oxidative stress, apoptosis, and endoplasmic reticulum stress in different tissues and organs. Our microscopic results indicate that autophagy occurs very early in 50 μM CisPt challenged myotubes (4 h–8 h before overt atrophy but it persists even at 24 h, when several autophagic vesicles, damaged mitochondria, and sarcoplasmic blebbings engulf the sarcoplasm. Differently, 25 mM taurine pretreatment rescues the majority of myotubes size upon 50 μM CisPt at 24 h. Taurine appears to counteract atrophy by restoring regular microtubular apparatus and mitochondria and reducing the overload and the localization of autophagolysosomes. Such a promising taurine action in preventing atrophy needs further molecular and biochemical studies to best define its impact on muscle homeostasis and the maintenance of an adequate skeletal mass in vivo.

  11. Action of Bacopa monnieri to antagonize cisplatin-induced emesis in Suncus murinus (house musk shrew

    Directory of Open Access Journals (Sweden)

    Ihsan Ullah

    2017-04-01

    Full Text Available Bacopa monnieri (BM, family Scrophulariaceae is used in several traditional systems of medicine for the management of epilepsy, depression, neuropathic pain, sleep disorders and memory deficits. The present study investigated the potential of BM methanol (BM-MetFr and BM n-butanol fractions (BM-ButFr to reduce chemotherapy-induced emesis in Suncus murinus (house musk shrew. Cisplatin (30 mg/kg, i.p. reliably induced retching and/or vomiting over a 2 day period. BM-MetFr (10–40 mg/kg, s.c. and BM-ButFr (5–20 mg/kg, s.c. antagonized the retching and/or vomiting response by ∼59.4% (p  0.05. In conclusion, the n-butanol fractions of BM have anti-emetic activity comparable with palonosetron and MPG. BM may be useful alone or in combination with other anti-emetic drugs for the treatment of chemotherapy-induced emesis in man.

  12. Cisplatin-induced DNA-platination in experimental dorsal root ganglia neuronopathy

    NARCIS (Netherlands)

    Meijer, C; de Vries, EGE; Marmiroli, P; Tredici, G; Frattola, L; Cavaletti, G

    1999-01-01

    The mechanism(s) and site(s) of the neurotoxic effect of cisplatin (CDDP) are still not entirely elucidated. A more detailed knowledge of these aspects of CDDP treatment might be useful to obtain a better understanding of the pathogenesis of its peripheral neurotoxicity, which is the dose-limiting

  13. Fatty acid synthase regulates the chemosensitivity of breast cancer cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Al-Bahlani, Shadia; Al-Lawati, Hanaa; Al-Adawi, Moza; Al-Abri, Nadia; Al-Dhahli, Buthaina; Al-Adawi, Kawther

    2017-06-01

    Fatty acid synthase (FASN) is a key enzyme in fat biosynthesis that is over-expressed in advanced breast cancer stages. Cisplatin (CDDP) is a platinum-based drug used in the treatment of certain types of this disease. Although it was shown that FASN inhibition induced apoptosis by enhancing the cytotoxicity of certain drugs in breast cancer, its role in regulating the chemosensitivity of different types of breast cancer cells to CDDP-induced apoptosis is not established yet. Therefore, two different breast cancer cell lines; triple negative breast cancer (TNBC; MDA-MB-231) and triple positive breast cancer (TPBC; BT-474) cells were used to examine such role. We show that TNBC cells had naturally less fat content than TPBC cells. Subsequently, the fat content increased in both cells when treated with Palmitate rather than Oleate, whereas both fatty acids produced apoptotic ultra-structural effects and attenuated FASN expression. However, Oleate increased FASN expression in TPBC cells. CDDP decreased FASN expression and increased apoptosis in TNBC cells. These effects were further enhanced by combining CDDP with fatty acids. We also illustrate that the inhibition of FASN by either siRNA or exogenous inhibitor decreased CDDP-induced apoptosis in TPBC cells suggesting its role as an apoptotic factor, while an opposite finding was observed in TNBC cells when siRNA and fatty acids were used, suggesting its role as a survival factor. To our knowledge, we are the first to demonstrate a dual role of FASN in CDDP-induced apoptosis in breast cancer cells and how it can modulate their chemosensitivity.

  14. Voluntary exercise prevents cisplatin-induced muscle wasting during chemotherapy in mice

    DEFF Research Database (Denmark)

    Hojman, Pernille; Fjelbye, Jonas; Zerahn, Bo

    2014-01-01

    Loss of muscle mass related to anti-cancer therapy is a major concern in cancer patients, being associated with important clinical endpoints including survival, treatment toxicity and patient-related outcomes. We investigated effects of voluntary exercise during cisplatin treatment on body weight......% (PExercise training may...

  15. Hydrogen sulfide : A novel nephroprotectant against cisplatin-induced renal toxicity

    NARCIS (Netherlands)

    Dugbartey, George J.; Bouma, Hjalmar R.; Lobb, Ian; Sener, Alp

    2016-01-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links,

  16. Cisplatin Induces Up-Regulation of KAI1, a Metastasis Suppressor ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of cisplatin on cell toxicity and metastasis through modulation of KAI1 gene expression. Methods: MCF-7cells were incubated with different concentrations of cisplatin for 24 h. RNA was extracted by trizol and cDNA synthesized. KAI1 and TBP were chosen as target and internal control ...

  17. The protective effect of infliximab on cisplatin-induced intestinal tissue toxicity.

    Science.gov (United States)

    Aydin, I; Kalkan, Y; Ozer, E; Yucel, A F; Pergel, A; Cure, E; Cure, M C; Sahin, D A

    2014-01-01

    Cisplatin (CP) is a popular chemotherapeutic agent. However, high doses of CP may lead to severe side effects to the gastrointestinal system. The aim of this study was to investigate the protective effects of infliximab on small intestine injury induced by high doses of CP. The A total of 30 rats were equally divided into three groups, including sham (C), cisplatin (CP), and cisplatin + infliximab (CPI). The CP group was treated with 7 mg/kg intraperitoneal cisplatin, and a laparotomy was performed 5 days later. The CPI group received 7 mg/kg infliximab intraperitoneally, were administered 7 mg/kg cisplatin 4 days later, and a laparotomy was performed 5 days after receiving cisplatin. Histopathological and immunohistochemical analysis of small intestine tissue sections were performed, and superoxide dismutase, malondialdehyde, and TNF-α levels were measured. Histopathological evaluation revealed that the CP group had damage in the epithelium and connective tissue, but this damage was significantly improved in the CPI group (p < 0.05). In addition, these histopathological findings were confirmed by biochemical analyses. These results suggest that infliximab is protective against the adverse effects of CP.

  18. Cardioprotective role of tadalafil against cisplatin-induced cardiovascular damage in rats.

    Science.gov (United States)

    Saleh, Rasha M; Awadin, Walaa F; El-Shafei, Reham A; Elseady, Yousef Y; Wehaish, Faheim E; Elshal, Mohamed F

    2015-10-15

    The present study investigated the possible cardioprotective effect of tadalafil (Tad) on cisplatin (CDDP)-induced cardiac and vascular damages in rats. A total number of seventy two healthy male albino rats initially weighting between 200 and 220 g were used and randomly divided into four groups,18 rats in each. The control group received no treatment; CDDP group received a single dose of CDDP (4 mg/kg) intraperitoneal (i.p.) per week for 4 weeks the duration of the experiment; Tad group received 0.4 mg/kg BW Tad i.p. daily and Tad +CDDP group received 0.4 mg/kg BW Tad i.p. +4 mg/kg BW CDDP i.p. The results showed that Tad was able to decrease blood pressure, heart rate, levels of serum cardiac troponin (cTn-I), malondialdehyde (MDA) and increased levels of reduced glutathione (GSH) and nitric oxide (NO) in the heart homogenate sample from CDDP treated rats. Semi-quantitative analysis showed that Tad was able to decrease the histopathological scores of cardiac muscular hyalinzation and fibrosis in three sacrifices in CDDP treated rats. CDDP treated rats showed significantly increased thickening in wall of aorta with an irregular luminal layer of endothelial cell linings in three sacrifices when it was compared to other groups. Moreover, immunohistochemical labeling of α- smooth muscle actin (α-SMA) in aorta revealed significant lower scores in Tad +CDDP group when they were compared to CDDP group. In conclusion, Tad alone did not induce any harmful effects on blood pressure, selective antioxidant, peroxidation markers or cardiac histology, in addition, Tad has a cardio-protective role against CDDP. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The protective effect of melanocortins on cisplatin-induced hearing loss

    NARCIS (Netherlands)

    Wolters, Francisca Louisa Carolina

    2003-01-01

    Cisplatin is widely used for the treatment of a variety of tumors. Unfortunately, the therapeutic effect of cisplatin is limited because patients can develop a high frequency hearing loss in both ears. Recovery of this hearing loss is observed sporadically. Animal studies have shown that chronic

  20. Cisplatin-induced injury of the renal distal convoluted tubule is associated with hypomagnesaemia in mice

    NARCIS (Netherlands)

    Angelen, A.A. van; Glaudemans, B.; Kemp, A. van der; Hoenderop, J.G.J.; Bindels, R.J.M.

    2013-01-01

    Background Cisplatin is an effective anti-neoplastic drug, but its clinical use is limited due to dose-dependent nephrotoxicity. The majority of cisplatin-treated patients develop hypomagnesaemia, often associated with a reduced glomerular filtration rate (GFR), polyuria and other electrolyte

  1. Emblica extract prevents cisplatin-induced apoptosis in dermal papilla fibroblasts

    OpenAIRE

    Sudjit Luanpitpong; Varisa Pongrakhananon; Ubonthip Nimmannit; Pithi Chanvorachote

    2008-01-01

    Cisplatin is a widely prescribed anticancer agent that causes hair loss in patients. Since the dermal papilla (DP) fibroblasts are known to be a key mediator in controlling hair growth and loss, understanding the effect and underlying mechanism of cisplatin on these cells may lead to new strategy for hair loss protection in chemotherapy patients. Less is known regarding the effect of cisplatin on DP fibroblasts. We thus treated DP cells with cisplatin (0-250 mmol/L) and found that cisplatin i...

  2. The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Tae-Wook Chung

    Full Text Available Cisplatin (cis-diamminedichloroplatinum, CDDP is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS, regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl polymerase (PARP. We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3.

  3. Cisplatin-induced ototoxicity : Morphological evidence of spontaneous outer hair cell recovery in albino guinea pigs?

    NARCIS (Netherlands)

    Cardinaal, RM; de Groot, JCMJ; Huizing, EH; Veldman, JE; Smoorenburg, GF

    Cisplatin is frequently used in the treatment of various forms of malignancies. Its therapeutic efficacy, however, is limited by the occurrence of sensorineural hearing loss. Little is known about the course of hearing loss over longer time intervals after cessation of cisplatin administration.

  4. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage and impairs steroidogenesis. ► Nano-Se retained sperm quality against CIS-induced free radicals toxic stress.

  5. Possible Protective Effect of Sertraline against Cisplatin-Induced Ototoxicity: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Murat Ozturk

    2013-01-01

    Full Text Available Background/Objective. Cisplatin is a widely used chemotherapeutic agent, but its ototoxicity side effect can occur in the majority of patients. Lots of agents were tried to prevent this, but there is not a routine treatment modality yet. The aim of this study was to evaluate the otoprotective effect of sertraline, which is an antidepressant with neuroprotective effects, against cisplatin, in rats. Design. Experimental animal study. Material and Methods. Forty-eight rats were randomly separated in two groups as groups I and II. Group I was identified as the control group and only a single dose of intraperitoneal cisplatin was administered. In group II, in addition to cisplatin, sertraline was administered to the rats through an oral cannula for ten-day period. Distortion product otoacoustic emission measurements were performed at the first day and the 10th day. Results. When the ototoxicity rates after cisplatin in group I and group II in distortion product otoacoustic emission measurements were compared, it was statistically significantly lower in group II in frequencies of 5652, 6165, 6726, 7336, and 7996 Hz (. Conclusion. Sertraline seems to have a protective effect on cisplatin ototoxicity and could be used to prevent the ototoxicity and also to treat the depression that occurred in cancer patients together.

  6. Alert Regarding Cisplatin-induced Severe Adverse Events in Cancer Patients with Xeroderma Pigmentosum.

    Science.gov (United States)

    Sumiyoshi, Makoto; Soda, Hiroshi; Sadanaga, Noriaki; Taniguchi, Hirokazu; Ikeda, Takaya; Maruta, Hiroshi; Dotsu, Yosuke; Ogawara, Daiki; Fukuda, Yuichi; Mukae, Hiroshi

    2017-01-01

    Xeroderma pigmentosum (XP) is a genetic disease in which DNA repair mechanisms are impaired. Cisplatin (CDDP) exerts cytotoxic effects by forming mainly intrastrand DNA cross-links, and sensitivity to CDDP depends on the DNA repair system. Several in vitro studies have suggested that treatment with CDDP may cause enhanced adverse events as well as anti-tumor activity in cancer patients with XP. This article is the first to describe two cancer patients with XP showing severe adverse events following CDDP-based chemotherapy. Physicians should pay attention when administering CDDP in cancer patients with XP.

  7. Water permeability is a measure of severity in acute appendicitis.

    Science.gov (United States)

    Pini, Nicola; Pfeifle, Viktoria A; Kym, Urs; Keck, Simone; Galati, Virginie; Holland-Cunz, Stefan; Gros, Stephanie J

    2017-12-01

    Acute appendicitis is the most common indication for pediatric abdominal emergency surgery. Determination of the severity of appendicitis on clinical grounds is challenging. Complicated appendicitis presenting with perforation, abscess or diffuse peritonitis is not uncommon. The question remains why and when acute appendicitis progresses to perforation. The aim of this study was to assess the impact of water permeability on the severity of appendicitis. We show that AQP1 expression and water permeability in appendicitis correlate with the stage of inflammation and systemic infection parameters, leading eventually to perforation of the appendix. AQP1 is also expressed within the ganglia of the enteric nervous system and ganglia count increases with inflammation. Severity of appendicitis can be correlated with water permeability measured by AQP1 protein expression and increase of ganglia count in a progressive manner. This introduces the question if regulation of water permeability can present novel curative or ameliorating therapeutic options.

  8. Hepatoprotective, antioxidant, and ameliorative effects of ginger (Zingiber officinale Roscoe) and vitamin E in acetaminophen treated rats.

    Science.gov (United States)

    Abdel-Azeem, Amal S; Hegazy, Amany M; Ibrahim, Khadiga S; Farrag, Abdel-Razik H; El-Sayed, Eman M

    2013-09-01

    Ginger is a remedy known to possess a number of pharmacological properties. This study investigated efficacy of ginger pretreatment in alleviating acetaminophen-induced acute hepatotoxicity in rats. Rats were divided into six groups; negative control, acetaminophen (APAP) (600 mg/kg single intraperitoneal injection); vitamin E (75 mg/kg), ginger (100 mg/kg), vitamin E + APAP, and ginger + APAP. Administration of APAP elicited significant liver injury that was manifested by remarkable increase in plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), arginase activities, and total bilirubin concentration. Meanwhile, APAP significantly decreased plasma total proteins and albumin levels. APAP administration resulted in substantial increase in each of plasma triacylglycerols (TAGs), malondialdhyde (MDA) levels, and total antioxidant capacity (TAC). However, ginger or vitamin E treatment prior to APAP showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, ALP, and arginase) and total bilirubin in plasma. In addition, they remarkably ameliorated the APAP-induced oxidative stress by inhibiting lipid peroxidation (MDA). Pretreatment by ginger or vitamin E significantly restored TAGs, and total protein levels. Histopathological examination of APAP treated rats showed alterations in normal hepatic histoarchitecture, with necrosis and vacuolization of cells. These alterations were substantially decreased by ginger or vitamin E. Our results demonstrated that ginger can prevent hepatic injuries, alleviating oxidative stress in a manner comparable to that of vitamin E. Combination therapy of ginger and APAP is recommended especially in cases with hepatic disorders or when high doses of APAP are required.

  9. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  10. Amelioration of radiation stress by antioxidants and prooxidants: role of redox transcription factors

    International Nuclear Information System (INIS)

    Sandur, Santosh Kumar

    2011-01-01

    The development of radiation countermeasures has emerged as a major area of research in radiation biology as ionizing radiation is finding wide applications in power generation, agriculture, food processing, disease diagnosis and therapy. Chemical agents used to alter tissue toxicity of radiation can be broadly divided into three categories based on the time of intervention in relation to radiation. These are: radioprotectors, mitigators, and therapeutic agents. Radiation causes injury to normal tissue by a dynamic process involving generation of reactive oxygen species (ROS), their interactions with bio-molecules, intracellular signaling, cell-to-cell communication, inflammatory responses, tissue repair and cell death. Most of the radiation-induced damage to bio-molecules is caused by the formation of free radicals resulting from the radiolysis of water. However, antioxidants that neutralize free radicals failed to reach clinic. At present, no agent, approved by the U.S. Food and Drug Administration, is available for the treatment of acute radiation syndrome (ARS), although amifostine is approved for prophylaxis of dry mouth (xerostomia) from radiotherapy of head and neck cancers. Therefore, researchers are employing new approaches to ameliorate radiation induced injury. Some of these include use of cytokines, NF-κB (Nuclear factor κB) activators, agents that induce G1 arrest, antibiotics and inhibitors of P53. We have used pro-oxidants to upregulate cytoprotective pathways as a novel strategy to protect against radiation induced hematopoietic syndrome. Different prooxidants including hydrogen peroxide, diethylmaleate, t-butylhydroperoxide and naphthoquinone and its derivatives protected lymphocytes against radiation induced cell death. Further studies were carried out with 1,4-naphthoquinone (NQ) to explore the molecular mechanism of the observed protection. Thiol containing antioxidants abrogated NQ mediated radioprotection in lymphocytes. Addition of NQ to

  11. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    Science.gov (United States)

    Yu, Xiao-Wen

    Age-related cognitive deficits are observed in both humans and animals. Yet, the molecular mechanisms underlying these deficits are not yet fully elucidated. In aged animals, a decrease in intrinsic excitability of pyramidal neurons from the CA1 sub-region of hippocampus is believed to contribute to age-related cognitive impairments, but the molecular mechanism(s) that modulate both these factors has yet to be identified. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents has been shown to facilitate cognition, and increase intrinsic excitability of their neurons. However, how CREB changes with age, and how that impacts cognition in aged animals, is not clear. Therefore, we first systematically characterized age- and training-related changes in CREB levels in dorsal hippocampus. At a remote time point after undergoing behavioral training, levels of total CREB and activated CREB (phosphorylated at S133, pCREB) were measured in both young and aged rats. We found that pCREB, but not total CREB was significantly reduced in dorsal CA1 of aged rats. Importantly, levels of pCREB were found to be positively correlated with short-term spatial memory in both young and aged rats i.e. higher pCREB in dorsal CA1 was associated with better spatial memory. These findings indicate that an age-related deficit in CREB activity may contribute to the development of age-related cognitive deficits. However, it was still unclear if increasing CREB activity would be sufficient to ameliorate age-related cognitive, and biophysical deficits. To address this question, we virally overexpressed CREB in CA1, where we found the age-related deficit. Young and aged rats received control or CREB virus, and underwent water maze training. While control aged animals exhibited deficits in long-term spatial memory, aged animals with CREB overexpression performed at levels comparable to young animals. Concurrently, aged neurons

  12. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    International Nuclear Information System (INIS)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-01-01

    deficiency of SIRT2 ameliorates iNOS, NO expression and reactive oxygen species production with suppressing LPS-induced activation of NFκB in macrophages

  13. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    deficiency of SIRT2 ameliorates iNOS, NO expression and reactive oxygen species production with suppressing LPS-induced activation of NFκB in macrophages.

  14. Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice.

    Science.gov (United States)

    Yuan, Xidi; Klein, Dennis; Kerscher, Susanne; West, Brian L; Weis, Joachim; Katona, Istvan; Martini, Rudolf

    2018-05-09

    Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly. SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging

  15. The Effectiveness of Ameliorant to Increase Carbon Stock of Oilpalm and Rubber Plantation on Peatland

    Directory of Open Access Journals (Sweden)

    Ai Dariah

    2015-05-01

    Full Text Available Application of peatland amelioration can improve soil quality, reduce GHG emissions, and increase carbon sequestration. The research aimed to study the effect of peatland amelioration on oil palm and rubber carbon stock improvement. Research was conducted from August 2013 until June 2014. The researches on oil palm were done in Arang-arang Village, Kumpeh Subdistrict, Muaro Jambi District, and in Lubuk Ogong Village, Bandar Seikijang Sub-district, Pelalawan District. Both sites are in Jambi and Riau Province. The research on rubber was done in Jabiren Village, Jabiren Raya Subdistrict, Pulang Pisau District, Central Kalimantan Province. The study used a Randomized Completely Block Design (RCBD, in four treatments and four replications. The treatments were pugam (peat fertilizer enriched by polyvalent cation, manure; empty fruit bunch compost, and control (no application. The measurement of C stock was performed 10 months after application using nondestructive methods. The results showed that peatland amelioration treatments had no significant effect to improve C stock on oil palm in 6 years old and 7 years old of rubber. After 10 months of amelioration application, the treatments increased C - stock of oil palm and rubber were 2.1-2.4 Mg ha-1 and 5-11 Mg ha-1, respectively. Longer time observation may be needed to study the effect of ameliorant on C-stock of annual crops.

  16. Assessment of changes of some functions of Ukrainian acid soils after chemical amelioration

    Directory of Open Access Journals (Sweden)

    Zapko Yurij

    2014-09-01

    Full Text Available The objective of the article was to determine the effectiveness of lime of different origin for chemical amelioration of soils and examine its impact on soil functions such as productivity, habitat, regulation of water quality, and the protective buffer biogeocenotic screen. Limy ameliorants were applied in small local field experiment on Luvic Chernozem, and experiment with lysimeter columns was carried out on Albic Luvisol. The number of the main groups of microflora and enzymatic activity of soil was determined in soil samples taken for the analysis from the root zone. Research concerning the influence of natural and industrial origin ameliorants on soil as habitat showed the correlation of sugar beets productivity with soil biogenic. The increase of biomultiplicity of soil microbiota after addition of a cement dust and negative influence of red sludge on soil as habitat for living organisms was observed. Research involving the influence of ameliorants on soil by lime as the protective buffer biogeocenotic screen was carried out using lysimeter columns. It was stated that the addition of limy ameliorants reduces mobility of heavy metals.

  17. Acute respiratory distress syndrome

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000103.htm Acute respiratory distress syndrome To use the sharing features on this page, please enable JavaScript. Acute respiratory distress syndrome (ARDS) is a life-threatening lung ...

  18. AcuTable

    DEFF Research Database (Denmark)

    Dibbern, Simon; Rasmussen, Kasper Vestergaard; Ortiz-Arroyo, Daniel

    2017-01-01

    In this paper we describe AcuTable, a new tangible user interface. AcuTable is a shapeable surface that employs capacitive touch sensors. The goal of AcuTable was to enable the exploration of the capabilities of such haptic interface and its applications. We describe its design and implementation...

  19. Acute mastoiditis in children

    DEFF Research Database (Denmark)

    Anthonsen, Kristian; Høstmark, Karianne; Hansen, Søren

    2013-01-01

    Conservative treatment of acute otitis media may lead to more complications. This study evaluates changes in incidence, the clinical and microbiological findings, the complications and the outcome of acute mastoiditis in children in a country employing conservative guidelines in treating acute...

  20. Haematolohical profile of subacute oral toxicity of molybdenum and ameliorative efficacy of copper salt in goats.

    Science.gov (United States)

    Kusum; Raina, R; Verma, P K; Pankaj, N K; Kant, V; Kumar, J; Srivastava, A K

    2010-07-01

    Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils.

  1. Ginger and alpha lipoic acid ameliorate age-related ultrastructural changes in rat liver.

    Science.gov (United States)

    Mahmoud, Y I; Hegazy, H G

    2016-01-01

    Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats.

  2. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    Science.gov (United States)

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.

  3. Effects of forest road amelioration techniques on soil bulk density, surface runoff, sediment transport, soil moisture and seedling growth

    Science.gov (United States)

    Randy K. Kolka; Mathew F. Smidt

    2004-01-01

    Although numerous methods have been used to retire roads, new technologies have evolved that can potentially ameliorate soil damage, lessen ,the generation of nonpoint source pollution and increase tree productivity on forest roads. In this study we investigated the effects of three forest road amelioration techniques, subsoiling, recontouring and traditional...

  4. Ocular effects of acute ingestion of Cola nitida(Linn on healthy adult volunteers

    Directory of Open Access Journals (Sweden)

    S. A. Igwe

    2007-12-01

    Full Text Available Cola nitida Linn (Sterculiaceae is an economic plant widely distributed throughout West Africa and possibly other parts of Africa.Members are malvalves because of their lobular nature. Because of its ubiquity, the plant plays an important role in commerce, and in social activities where it is casually eaten without prescription or restriction. The ethnopharmacological effects of bolus ingestion of 30g of Cola nitida was investigated on visually acute and healthy volunteers in order to determine its ocular implications or effects. Results showed that Cola nitida had no effecton the pupil diameter, visual acuity and intraocular pressure but improved the near point of convergence by 43% and increased the amplitude of accommodation by 11% while existing heterophorias are ameliorated. The stimulating effect of Cola nitida might overcome asthenopic symptoms with convergence insufficiency and allows near work to be donewithout stress. Somnolence and ocular muscle imbalance common features of the elderly canbe ameliorated or relieved.

  5. Salvia aegyptiaca as a Potential Herb for Ameliorating the Acute Toxicity Induced by Fenvalerate in Adult Male Albino Rats

    International Nuclear Information System (INIS)

    Abdel Kader, S.M.; Aly, M.A.S.

    2007-01-01

    After fen valerate and/or Salvia aegyptiaca administration to male albino rats, fenvalerate caused a reduction in liver enzymes activity in liver homogenate with a percent change recording -24.1, -21.94 and-30.46 %, after 7 days, for ALT, AST and ALP, respectively .. Moreover, it increased the total protein and albumin at the same period. On day 7, fenvalerate increased the levels of serum ALT, AST and ALP by 351. 24, 164.60 and 119.78%, respectively. On the contrary, fenvalerate reduced the serum levels of total protein and albumin. Significant increase was observed in both creatinine (58.62%) and blood urea (47.41 %) after 7 days, whereas, serum T 3 and T 4 recorded a percentage change of -3.0.18 and -51.45%, respectively. An increase in GABA content in 7 brain areas was noticed after daily oral administration of fenvalerate, showing that GABA content in 'the cortex was the most affected recording, 191.43% change from control on the 7th day. Daily oral administration of 2 g/kg body weight of Salvia aegyptiaca extract alone or after fenvalerate caused a gradual decrease in ALT, AST and ALP enzyme activity as well as in total protein and albumin content in both liver homogenate and serum, on the 7th day. Salvia extract decreased serum creatinine and blood urea throughout the experimental period. No statistically significant changes in T 3 and T 4 levels were observed in animals that received salvia extract alone. On the other hand, salvia improved T 3 and T 4 levels after it was delivered post fenvalerate administration, bringing the hormonal levels near to that of control. Moreover, salvia extract caused a significant decrease in GABA content throughout the experimental period. However, animals that received combined treatment (fenvalerate + salvia) showed that salvia reduced the elevation that occurred in GABA content as a result of fenvalerate administration in all brain areas under investigation. From the current investigation, it could be recommended that, the duration of exposure as well as the given dose have to be planned carefully if salvia has to be taken as a potential herb for treatment. Further studies have to be undertaken to better elucidate the mode of action of salvia and to extract compounds with potential drug treatment

  6. Metformin ameliorates insulitis in STZ-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Guo-Jun Jiang

    2017-04-01

    Full Text Available Background & Aims Metformin is currently the most widely used first-line hypoglycemic agent for diabetes mellitus. Besides glucose-lowering action, there is increasingly interest in the potential anti-inflammatory action of this drug. In the present study, we investigated the actions of metformin on experimental insulitis using STZ-induced diabetic mice. Methods Mice with acute diabetes induced by STZ were administered metformin by gavage. Changes of blood glucose and body weight, and the daily amount of food and water intake were measured. Pancreatic tissues were collected for histologic analyses. Pathological assessment and immunohistochemistry analysis were used to determine the effect of metformin on insulitis. Inflammatory cytokines in the pancreas and insulin levels were measured through ELISA analysis. Results Metformin significantly reduced blood glucose levels and improved aberrant water intake behavior in experimental diabetic mice. No significant differences were observed in terms of body weight and food intake behavior in metformin-treated animals. In the STZ-induced model of diabetes, we found the appearance of pronounced insulitis. However, metformin administration reduced the severity of insulitis assessed by blind pathological scoring. In addition, metformin treatment improved insulin levels in experimental diabetic mice. ELISA assay revealed decreased levels of inflammatory response marker IL-1β and TNF-α in the pancreatic tissues following metformin treatment. Conclusion Metformin attenuated insulitis in the STZ-induced mice model of diabetes. This islet-protective effect might be partly correlated with the anti-inflammatory action of metformin.

  7. Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats

    NARCIS (Netherlands)

    Waanders, Femke; Rienstra, Heleen; Boer, Mark Walther; Zandvoort, Andre; Rozing, Jan; Navis, Gerjan; van Goor, Harry; Hillebrands, Jan-Luuk

    Waanders F, Rienstra H, Walther Boer M, Zandvoort A, Rozing J, Navis G, van Goor H, Hillebrands JL. Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats. Am J Physiol Renal Physiol 296: F1072-F1079, 2009. First published February 25, 2009;

  8. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Economic efficiency of the use of the bush vegetation from slopes of the ameliorative canals

    International Nuclear Information System (INIS)

    Titov, V.N.

    2009-01-01

    The results of calculations of the economic efficiency of the use of the bush vegetation from slopes of the ameliorative canals for fuel and energy purposes has been presented. The two variants of disposal of bushes are considered burning and conversion into fuel chips. (authors)

  10. Lipid abnormalities in streptozotocin-diabetes: Amelioration by Morus indica L. cv Suguna leaves

    OpenAIRE

    Andallu, B.; Vinay Kumar, A. V.; Varadacharyulu, N. Ch.

    2009-01-01

    AIM: To observe the influence of mulberry (Morus indica L. cv Suguna) leaves on lipid abnormalities in STZ-diabetic rats. MATERIALS AND METHODS: Treatment with dried mulberry leaf powder for a period of 8 weeks in hyperglycemic and hyperlipidemic STZ-diabetic rats. RESULTS: Mulberry leaves regulated fasting blood glucose, ameliorated the abnormalities in lipid profile as indicated by significant (P

  11. Fermented ginseng, GBCK25, ameliorates hemodynamic function on experimentally induced myocardial injury

    Directory of Open Access Journals (Sweden)

    Adithan Aravinthan

    2016-10-01

    Full Text Available In the present study, we investigated whether treatment with GBCK25 facilitated the recovery of hemodynamic parameters, left ventricle systolic pressure, left ventricular developed pressure, and electrocardiographic changes. GBCK25 significantly prevented the decrease in hemodynamic parameters and ameliorated the electrocardiographic abnormality. These results indicate that GBCK25 has distinct cardioprotective effects in rat heart.

  12. Progresses on Amelioration of Red Soil Acidity with Crop Straw Biochar: A Review

    OpenAIRE

    XU Ren-kou

    2016-01-01

    The research progresses on amelioration of red soil acidity and immobilization of heavy metals in red soils with the biochars generated from crop straws were summarized in this review paper. The developing trends of the research in these areas in future were also predicted.

  13. Amelioration of Anti-Nutritive Effects of Castor Oil Seed ( Ricinus ...

    African Journals Online (AJOL)

    Three hundred and twenty (320) day old male broilers were used to investigate the amelioration of anti-nutritive effects of castor oil seed (Ricinus communis) meal in broilers' ration using natural fermentation and DL-Methionine supplementation. The experimental designed was a 4 × 2 factorial arrangement of dietary ...

  14. EFFECTS OF AMELIORANT COMPOSITIONS ON NITROGEN MINERALIZATION AND UPTAKE BY SWEET CORN IN DEGRADED PEATLAND

    Directory of Open Access Journals (Sweden)

    Eni Maftu’ah

    2014-04-01

    Full Text Available Peat soil is characterized by poor nitrogen (N availability. Ameliorants are expected to rectify this problem. This research  aimed to study the effect of ameliorant on N availability and N uptake by sweet corn plant in degraded peatland. The experiment was conducted in the greenhouse in May-July 2011 and on peatland of Kalampangan Village, Palangkaraya, Central Kalimantan in September-December 2011. Burnt peat soil of Kalampangan was used in the greenhouse experiment and sweet corn was used as an indicator plant. The treatments consisted of two factors, i.e. compositions of ameliorants by weight (A1 = 80% chicken manure + 20% dolomite; A2 = 80% local farm weed + 20% dolomite; A3 = 80% mineral soil + 20% dolomite; A4 = 20% chicken manure + 20% local farm weed + 20% residue of Chinese water chestnut (Eleocharis dulcis + 20% mineral soil + 20% dolomite; and A5 = 19% chicken manure + 71.5% mineral soil + 9.5% dolomite and rates of those ameliorants (5, 10, 15, 20 and 25 t ha-1. The experiment was arranged in a completely randomized block design with three replications. Data were collected every two weeks for five times. Observations were made on soil pH, available N (NH4+, NO3-, plant height, and N uptake in root and shoot. The results showed that  treatment A1 increased soil pH and availability of NH4+ and NO3-  in peat soils at the maximum vegetative stage. Treatment A1 provided the highest N availability and N uptake by the plant. Field experiment showed that N uptake increased  with the plant yield. Optimum yield of fresh corn cob was obtained from treatment A1 at the rate of 20 t ha-1. This research reconfirms the effectiveness of chicken manure and dolomite as peat soil ameliorant.

  15. Preconditioning with endoplasmic reticulum stress ameliorates endothelial cell inflammation.

    Science.gov (United States)

    Leonard, Antony; Paton, Adrienne W; El-Quadi, Monaliza; Paton, James C; Fazal, Fabeha

    2014-01-01

    Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability.

  16. Acute Idiopathic Scrotal Edema

    Directory of Open Access Journals (Sweden)

    Micheál Breen

    2013-01-01

    Full Text Available We report a case of acute idiopathic scrotal edema (AISE in a 4-year-old boy who presented with acute scrotal pain and erythema. The clinical features, ultrasound appearance, and natural history of this rare diagnosis are reviewed. In this report, we highlight the importance of good ultrasound technique in differentiating the etiology of the acute scrotum and demonstrate the color Doppler “Fountain Sign” that is highly suggestive of AISE.

  17. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    International Nuclear Information System (INIS)

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-01-01

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys 3 ]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation

  18. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian; Zhang, Lin [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Dai, Weiqi [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Li, Sainan [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Wang, Jingjie; Li, Huanqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Guo, Chuanyong [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Fan, Xiaoming, E-mail: xiaomingfan57@sina.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China)

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  19. Dl-3-n-Butylphthalide Treatment Enhances Hemodynamics and Ameliorates Memory Deficits in Rats with Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Zhilin Xiong

    2017-07-01

    Full Text Available Our previous study has revealed that chronic cerebral hypoperfusion (CCH activates a compensatory vascular mechanism attempting to maintain an optimal cerebral blood flow (CBF. However, this compensation fails to prevent neuronal death and cognitive impairment because neurons die prior to the restoration of normal CBF. Therefore, pharmacological invention may be critical to enhance the CBF for reducing neurodegeneration and memory deficit. Dl-3-n-butylphthalide (NBP is a compound isolated from the seeds of Chinese celery and has been proven to be able to prevent neuronal loss, reduce inflammation and ameliorate memory deficits in acute ischemic animal models and stroke patients. In the present study, we used magnetic resonance imaging (MRI techniques, immunohistochemistry and Morris water maze (MWM to investigate whether NBP can accelerate CBF recovery, reduce neuronal death and improve cognitive deficits in CCH rats after permanent bilateral common carotid artery occlusion (BCCAO. Rats were intravenously injected with NBP (5 mg/kg daily for 14 days beginning the first day after BCCAO. The results showed that NBP shortened recovery time of CBF to pre-occlusion levels at 2 weeks following BCCAO, compared to 4 weeks in the vehicle group, and enhanced hemodynamic compensation through dilation of the vertebral arteries (VAs and increase in angiogenesis. NBP treatment also markedly reduced reactive astrogliosis and cell apoptosis and protected hippocampal neurons against ischemic injury. The escape latency of CCH rats in the MWM was also reduced in response to NBP treatment. These findings demonstrate that NBP can accelerate the recovery of CBF and improve cognitive function in a rat model of CCH, suggesting that NBP is a promising therapy for CCH patients or vascular dementia.

  20. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  1. Total glucosides of paeony ameliorates TNBS‑induced colitis by modulating differentiation of Th17/Treg cells and the secretion of cytokines.

    Science.gov (United States)

    Lin, Haihua; Zhang, Wenyou; Jiang, Xuepei; Chen, Renpin; Huang, Xielin; Huang, Zhiming

    2017-12-01

    The imbalance between effector CD4+ T helper 17 (Th17) and regulatory CD4+ T cells (Treg) cells and their associated cytokines, have been associated with the pathogenesis of inflammatory bowel disease (IBD). Total glycosides of paeony (TGP) is an alternative immunomodulatory agent that is widely used for the treatment of autoimmune diseases. The present study aimed to evaluate the modulatory effect of TGP in a rat model of colitis induced by 2,4,6‑trinitrobenzene sulfonic acid (TNBS). TGP was administered intragastrically 24 h after the TNBS intrarectal instillation for 7 days. TGP treatment ameliorated the clinical status and reversed the histopathologic severity of acute TNBS colitis. Furthermore, TGP inhibited the levels of Th17‑associated cytokines interleukin (IL)‑17, IL‑6, tumor necrosis factor‑α, whereas the expression levels of Treg‑associated cytokines IL‑10, transforming growth factor‑β in the plasma, colon, spleen and mesenteric lymph nodes (MLN). Additionally, TGP reduced the percentage of Th17 cells; however, the proportion of Treg cells in the spleen and MLN was increased. The present study also observed a suppression of Th17‑associated transcription factor, termed retinoid‑related orphan receptor‑γt (ROR‑γt). However, expression of the Treg‑associated transcription factor forkhead boxp3 was increased in the TGP treatment group. Therefore, the present findings suggest that TGP has a regulatory role in modulating the balance of Th17 and Treg cells to ameliorate the TNBS‑induced colitis and support the strategy of using TGP to treat IBD.

  2. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Huang, Zhangjian [Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009 (China); Li, Ping [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Li, Jia [National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203 (China); Zhang, Luyong [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Saavedra, Juan M. [Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States); Liao, Hong, E-mail: liaohong56@hotmail.com [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Pang, Tao, E-mail: tpang@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2015-12-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  3. Amelioration of both early and late radiation-induced damage to pig skin by essential fatty acids

    International Nuclear Information System (INIS)

    Hopewell, J.W.; Van den Aardweg, G.J.M.J.; Morris, G.M.

    1994-01-01

    To evaluate the possible role of essential fatty acids, specifically gamma-linolenic and eicosapentaenoic acid, in the amelioration of early and late radiation damage to the skin. Skin sites on the flank of 22-25 kg female large white pigs were irradiated with either single or fractionated doses (20 F/28 days) of β-rays from 22.5 mm diameter 90 Sr/ 90 Y plaques at a dose rate of ∼3 Gy/min. Essential fatty acids were administered orally in the form of two open-quotes activeclose quotes oils, So-1100 and So-5407, which contained gamma-linolenic acid and a mixture of that oil with eicosapentaenoic acid, respectively. Oils (1.5-6.0 ml) were given daily for 4 weeks prior, both 4 weeks prior and 10-16 weeks after, or in the case of one single dose study, just for 10 weeks after irradiation. Control animals received a open-quotes placeboclose quotes oil, So-1129, containing no gamma linolenic acid or eicosapentaenoic acid over similar time scales before and after irradiation. Acute and late skin reactions were assessed visually and the dose-related incidence of a specific reaction used to compare the effects of different treatment schedules. A reduction in the severity of both the early and late radiation reactions in the skin was only observed when open-quotes activeclose quotes oils were given over the time course of the expression of radiation damage. Prior treatment with oils did not modify the radiation reaction. A 3.0 ml daily dose of either So-1100 or So-5407 given prior to, but also after irradiation with single and fractionated doses of β-rays produced the most significant modification to the radiation reactions, effects consistent with dose modification factors between 1.06-1.24 for the acute reactions of bright red erythema and/or moist desquamation, and of 1.14-1.35 for the late reactions of dusky/mauve erythema and dermal necrosis. 38 refs., 5 tabs

  4. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    International Nuclear Information System (INIS)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi; Huang, Zhangjian; Li, Ping; Li, Jia; Zhang, Luyong; Saavedra, Juan M.; Liao, Hong; Pang, Tao

    2015-01-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  5. Pediatric acute lung injury

    NARCIS (Netherlands)

    Dahlem, P.; van Aalderen, W. M. C.; Bos, A. P.

    2007-01-01

    Among ventilated children, the incidence of acute lung injury (ALI) was 9%; of that latter group 80% developed the acute respiratory distress syndrome (ARDS). The population-based prevalence of pediatric ARDS was 5.5 cases/100.000 inhabitants. Underlying diseases in children were septic shock (34%),

  6. Acute hamstringblessures bij sporters

    NARCIS (Netherlands)

    Reurink, Gustaaf; Tol, Johannes L.; de Vos, Robert-Jan

    2014-01-01

    Acute hamstring injuries are the most common injuries in participants in popular sports such as football and track and field athletics. The diagnosis is made if there is a history of acute-onset pain in the posterior thigh, and presence of the triad of pain on contraction, stretching and palpation.

  7. ACUTE COMPARTMENT SYNDROME

    African Journals Online (AJOL)

    muscle destruction, muscle fibrosis, contractures and permanent disability and at worst case scenario of amputation (3,4). As reported by Frink et al (3) on their study on acute compartment syndrome it can occur even when there is no fracture. Also general surgeons have reported acute compartment syndrome.

  8. [Acute kidney injury

    NARCIS (Netherlands)

    Hageman, D.; Kooman, J.P.; Lance, M.D.; van Heurn, L.W.; Snoeijs, M.G.

    2012-01-01

    - 'Acute kidney injury' is modern terminology for a sudden decline in kidney function, and is defined by the RIFLE classification (RIFLE is an acronym for Risk, Injury, Failure, Loss and End-stage kidney disease).- Acute kidney injury occurs as a result of the combination of reduced perfusion in the

  9. Leukocytosis in acute stroke

    DEFF Research Database (Denmark)

    Kammersgaard, L P; Jørgensen, H S; Nakayama, H

    1999-01-01

    Leukocytosis is a common finding in the acute phase of stroke. A detrimental effect of leukocytosis on stroke outcome has been suggested, and trials aiming at reducing the leukocyte response in acute stroke are currently being conducted. However, the influence of leukocytosis on stroke outcome has...

  10. Acute nicotine alteration of sensory memory impairment in smokers with schizophrenia.

    Science.gov (United States)

    Dulude, Louise; Labelle, Alain; Knott, Verner J

    2010-10-01

    Patients with schizophrenia have a high rate of cigarette smoking and also exhibit profound deficits in sensory processing, which may in part be ameliorated by the acute actions of smoke-inhaled nicotine. The mismatch negativity (MMN), a preattentive event-related potential index of auditory sensory memory, is diminished in schizophrenia. The MMN is increased in healthy controls with acute nicotine. To utilize the MMN to compare auditory sensory memory in minimally tobacco-deprived (3 hours) patients and matched tobacco-deprived smoking controls and to assess the effects of acute nicotine on MMN-indexed sensory memory processing in the patients. Event-related potentials were recorded in 2 auditory oddball paradigms, one involving tone frequency changes (frequency MMN) and one involving tone duration changes (duration MMN). Controls were assessed once under nontreatment conditions, and patients were assessed twice under randomized double-blind treatment conditions involving placebo and nicotine (8 mg) gum. Outpatient mental health center. Twelve smokers with schizophrenia and twelve control smokers. Compared with the controls, the patients showed reduced frequency-MMN (P sensory memory processing in patients with schizophrenia, an effect that may be mediated by activation of α7 nicotinic acetylcholine receptors, the function of which is diminished in schizophrenia. These ameliorating actions of nicotine may have implications for understanding the close relationship between tobacco smoking and schizophrenia and for developing nicotinic pharmacotherapies to alleviate sensory memory impairments in schizophrenia.

  11. Hyperglycemia, Acute Ischemic Stroke and Thrombolytic Therapy

    Science.gov (United States)

    Bruno, Askiel; Fagan, Susan C.; Ergul, Adviye

    2014-01-01

    Ischemic stroke is a leading cause of disability and is considered now the 4th leading cause of death. Many clinical trials have shown that stroke patients with acute elevation in blood glucose at onset of stroke suffer worse functional outcomes, longer in-hospital stay and higher mortality rates. The only therapeutic hope for these patients is the rapid restoration of blood flow to the ischemic tissue through intravenous administration of the only currently proven effective therapy, tissue plasminogen activator (tPA). However, even this option is associated with the increased risk of intracerebral hemorrhage. Nonetheless, the underlying mechanisms through which hyperglycemia (HG) and tPA worsen the neurovascular injury after stroke are not fully understood. Accordingly, this review summarizes the latest updates and recommendations about the management of HG and co-administration of tPA in a clinical setting while focusing more on the various experimental models studying: 1. the effect of HG on stroke outcomes; 2. the potential mechanisms involved in worsening the neurovasular injury; 3. the different therapeutic strategies employed to ameliorate the injury, and finally; 4. the interaction between HG and tPA. Developing therapeutic strategies to reduce the hemorrhage risk with tPA in hyperglycemic setting is of great clinical importance. This can best be achieved by conducting robust preclinical studies evaluating the interaction between tPA and other therapeutics in order to develop potential therapeutic strategies with high translational impact. PMID:24619488

  12. Treatment of acute and chronic rhinosinusitis.

    Science.gov (United States)

    Casiano, R R

    2000-09-01

    Rhinosinusitis is a common health complaint that is often seen by primary care physicians and otolaryngologists in the United States. The complicated anatomy of the paranasal sinuses, as well as the multiple etiologies, contributes to the complexity that one often faces in trying to ameliorate or eradicate this disease in affected individuals. A full understanding of the fundamentals of rhinosinusitis, as well as the treatment options available for the different types, is important. It is very important for the physician to take an organized, step-by-step approach to the management of each patient with this complicated disease. As most cases of rhinosinusitis presenting to the generalist's office will be of viral origin, antibiotics should not be given unless the patient has purulent rhinorrhea or worsening symptoms lasting more than 5 days, or total symptoms lasting longer than 10 days. When medical treatment fails or is incomplete, adjunctive surgical treatment becomes an option. Generally, the symptoms that are most helped by surgery include persistent headaches, nasal obstruction, and recurrent or persistent purulent rhinorrhea unresponsive to medical management. Appropriate and timely referral for specialty care will result in the definitive management of recalcitrant rhinosinusitis when medical management alone fails or in cases where a complication or malignancy is suspected. This article reviews the current understanding of the anatomy, pathophysiology, classification, diagnosis, and potential complications of rhinosinusitis. It also describes the current approach to the treatment of both acute and chronic rhinosinusitis.

  13. Induced hypernatraemia is protective in acute lung injury.

    Science.gov (United States)

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Basiru Olaitan Ajiboye

    2018-03-01

    Full Text Available Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (p0.05 different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients.

  15. Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils.

    Science.gov (United States)

    Shi, Renyong; Li, Jiuyu; Jiang, Jun; Mehmood, Khalid; Liu, Yuan; Xu, Renkou; Qian, Wei

    2017-05-01

    The chemical characteristics, element contents, mineral compositions, and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity, and higher Ca and Mg levels in biomass ashes, which made them particularly good at ameliorating effects on soil acidity. However, heavy metal contents, such as Cr, Cu, and Zn in the ashes, were relatively high. The incorporation of all ashes increased soil pH, exchangeable base cations, and available phosphorus, but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore, the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments. Copyright © 2016. Published by Elsevier B.V.

  16. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity.

    Science.gov (United States)

    Rungsung, Soya; Khan, Adil Mehraj; Sood, Naresh Kumar; Rampal, Satyavan; Singh Saini, Simrat Pal

    2016-05-25

    The study was designed to assess the ameliorative potential of selenium (Se) on enrofloxacin-induced testicular toxicity in rats. There was a significant decrease in body weight and non-significant decrease in mean testicular weight of enrofloxacin treated rats. In enrofloxacin treated rats, total sperm count and viability decreased where as sperm abnormalities increased. Testicular histopathology revealed dose dependent dysregulation of spermatogenesis and presence of necrotic debris in seminiferous tubules which was marginally improved with Se. Enrofloxacin also produced a dose dependent decrease in testosterone level. The activity of testicular antioxidant enzymes decreased where as lipid peroxidation increased in a dose-dependent manner. Se supplementation partially restored oxidative stress and sperm damage and did not affect the plasma concentrations of enrofloxacin or ciprofloxacain. The results indicate that enrofloxacin produces a dose-dependent testicular toxicity in rats that is moderately ameliorated with supranutritional Se. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. The HDAC Inhibitor TSA Ameliorates a Zebrafish Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Johnson, Nathan M; Farr, Gist H; Maves, Lisa

    2013-09-17

    Zebrafish are an excellent model for Duchenne muscular dystrophy. In particular, zebrafish provide a system for rapid, easy, and low-cost screening of small molecules that can ameliorate muscle damage in dystrophic larvae. Here we identify an optimal anti-sense morpholino cocktail that robustly knocks down zebrafish Dystrophin (dmd-MO). We use two approaches, muscle birefringence and muscle actin expression, to quantify muscle damage and show that the dmd-MO dystrophic phenotype closely resembles the zebrafish dmd mutant phenotype. We then show that the histone deacetylase (HDAC) inhibitor TSA, which has been shown to ameliorate the mdx mouse Duchenne model, can rescue muscle fiber damage in both dmd-MO and dmd mutant larvae. Our study identifies optimal morpholino and phenotypic scoring approaches for dystrophic zebrafish, further enhancing the zebrafish dmd model for rapid and cost-effective small molecule screening.

  18. Amelioration of alkali soil using flue gas desulfurization byproducts: productivity and environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.J.; Chen, C.H.; Xu, X.C.; Li, Y.J. [Tsing Hua University, Beijing (China). Ministry of Education

    2008-01-15

    In this study, flue gas desulfurization (FGD) byproducts are used to ameliorate alkali soil. The average application rates for soils with low exchangeable sodium percentage (ESP), mid ESP, and high ESP are 20.9, 30.6, and 59.3 Mg ha{sup -1} respectively. The experimental results obtained for 3 consecutive years reveal that the emergence ratios and yields of the crops were 1.1-7.6 times and 1.1-13.9 times those of the untreated control, respectively. The concentrations of Cr, Pb, Cd, As, and Hg in the treated soils are far below the background values stipulated by the Environmental Quality Standard for Soils (GB 15618-1995). Their concentrations in the seeds of corn and alfalfa grown in the treated soils are far below the tolerance limits regulated by National Food Standards of China. The results of this research demonstrate that the amelioration of alkali soils using FGD byproducts is promising.

  19. Amelioration of soils contaminated with industrial exhalations in the Chvaletice region

    Energy Technology Data Exchange (ETDEWEB)

    Kozel, J

    1966-01-01

    In the area of the Chvaletice manganese and pyrite works, the pyrite fly dust decomposing into sulfuric acid causes considerable damage to agricultural production. Sulfuric acid is also formed from the escaping sulfur dioxide. The reaction of the affected soils is extremely acid and reaches from 4.5 to 6.5 pH, and in some cases it decreases to 2.5 pH. Soil devastation spreads to distant land in the direction of the predominating winds. Damage is caused to agricultural crops which decreases yields. It was decided to ameliorate the affected soils with high doses of calcareous composts of material obtained from fish-ponds and of marl. The purpose of the experiment, the partial results of which are described, was an operational checking of the suitability of the composts for the amelioration of contaminated soils and an estimation of the doses to be applied.

  20. Effect of probiotic Lactobacillus strains in young children hospitalized with acute diarrhea

    DEFF Research Database (Denmark)

    Rosenfeldt, Vibeke; Michaelsen, Kim Fleischer; Jakobsen, Mogens

    2002-01-01

    intervention, the length of hospitalization was reduced by 48% (3.5 vs. 1.7 days, P = 0.03). At the end of the intervention, rotavirus antigen was found in 12% of patients from the treatment group vs. 46% from the control group (P = 0.02). CONCLUSIONS: The two probiotics, L. rhamnosus 19070-2 and L. reuteri...... DSM 12246, ameliorated acute diarrhea in hospitalized children and reduced the period of rotavirus excretion. Oral bacteriotherapy was associated with a reduced length of hospital stay. The beneficial effects were most prominent in children treated early in the diarrheal phase....

  1. Ameliorative effect of antioxidants (vitamins C and E against abamectin toxicity in liver, kidney and testis of male albino rats

    Directory of Open Access Journals (Sweden)

    B. Wilson Magdy

    2016-10-01

    In conclusion, it appears that vitamins C and E, or in combination (as antioxidants ameliorate the hepato-renal and testicular toxicity of abamectin, but are not completely protective, especially in liver tissue.

  2. Lagenaria siceraria ameliorates atheromatous lesions by modulating HMG–CoA reductase and lipoprotein lipase enzymes activity in hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Mithun Singh Rajput

    2014-01-01

    Conclusion: It can be concluded that ethanolic extract of fruits of L. siceraria contains active components which ameliorates the atheromatous lesions in rat aorta and lowers the risk of atherosclerosis in hypercholesterolemic rats.

  3. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats

    Directory of Open Access Journals (Sweden)

    Chen-Hwan Cherng

    2014-08-01

    Conclusion: The present findings suggest that baicalin can ameliorate neuropathic pain by suppressing HDAC1 expression and preventing histone-H3 acetylation in the spinal cord dorsal horn of SNL rats.

  4. Comment ameliorer la selection et le traitement des messages verbaux? (How to Improve the Selection and Processing of Verbal Messages)

    National Research Council Canada - National Science Library

    Rivenez, Marie; Darwin, Chris; Guillaume, Anne

    2005-01-01

    L'objectif de cette recherche est d'ameliorer la selection des messages verbaux. Nous cherchons a determiner les facteurs influencant le traitement d'un message verbal lorsque l'attention est portee sur un autre message...

  5. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    Science.gov (United States)

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions. © 2013 SETAC.

  6. Hypomethylating agent 5-aza-2'-deoxycytidine (DAC) ameliorates multiple sclerosis in mouse models

    DEFF Research Database (Denmark)

    Mangano, Katia; Fagone, Paolo; Bendtzen, Klaus

    2014-01-01

    murine models of experimental allergic encephalomyelitis (EAE). DAC treatment was associated with a significant amelioration of the clinical and histological hallmarks of EAE in both models. These effects were observed both in prophylactic and therapeutic regimens. The milder course of the disease....... Finally, DAC treatment increased the percentage of circulating regulatory T cells by inducing Foxp3 expression via demethylation of a CpG island in Foxp3....

  7. Effect of sodium fluoride in maternal and offspring rats and its amelioration

    Directory of Open Access Journals (Sweden)

    Sneha Panchal

    2014-03-01

    Full Text Available High fluoride content is known to cause dental and skeletal abnormalities. In addition, present review indicates that sodium fluoride consumption caused increased number of r=esorptions and dead foetuses. Various skeletal anomalies such as wavy ribs, presence of 14th ribs, lacking 6th sternebrae and incompete ossification of skull occur. All these changes could be due to oxidative stress caused by fluoride consumption. Fluoride-induced changes could be successfully ameliorated by cotreatment with vitamins and calcium.

  8. Modelling of 137Cs behaviour in the soil-plant system following the application of ameliorants

    International Nuclear Information System (INIS)

    Spiridonov, S.; Fesenko, S.; Sanzharova, N.

    2004-01-01

    A set of countermeasures aimed at reducing 137 Cs uptake by plant products includes agrochemical measures based on changes in the soil properties after the application of ameliorants. The dynamic models for studying the effect of the application of potassium fertilizers and dolomite powder on 137 Cs accumulation in plants are presented. Conceptual approaches to the development of models are based on the identification of mechanisms governing a complex of physico-chemical processes in soil after the use of ameliorants. The following assumptions were used in the development of models: - dynamics of 137 Cs distribution in each soil layer depends on the sorption processes characterized by different time to achieve quasi-equilibrium (exchangeable uptake and fixation by clay minerals) as well as on vertical migration process; - change in 137 Cs content in soil solution results from the radionuclide sorption on selective and nonselective exchange sites; - uptake of extra amounts of K + and Ca 2+ in soil solution produces effect on processes of 137 Cs exchangeable sorption and initiate specific processes responsible for 137 Cs fixation in the crystal lattice of clay minerals; - Ca 2+ and K + cations have a competing effect on 137 Cs uptake by plants from soil solution, which along with the fixation processes, causes lower accumulation of this radionuclide by plants during the application of ameliorants. The developed models were parameterized for soils of the coniferous forest located in the Bryansk region in area suffered from the radioactive fallout after the Chernobyl accident. Effects of ameliorants and time of their application on 137 Cs behaviour in the soil-plant system are assessed. The contribution of soil chemical and biological processes to the decrease in the radionuclide uptake by plants is estimated. (author)

  9. Use of vegetation to ameliorate building microclimates: an assessment of energy-conservation potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, B.A.; Taylor, F.G.; Wendt, R.L.

    1982-04-01

    The space-conditioning energy conservation potentials of landscapes designed to ameliorate building microclimates are evaluated. The physical bases for vegetative modifications of climate are discussed, and results of past study of the effects of vegetation on space-conditioning energy consumption in buildings are reviewed. The state-of-the-art of energy-conserving landscape designs is assessed and recommendations are presented for further research.

  10. Dietary -carbamylglutamate and rumen-protected -arginine supplementation ameliorate fetal growth restriction in undernourished ewes.

    Science.gov (United States)

    Zhang, H; Sun, L W; Wang, Z Y; Deng, M T; Zhang, G M; Guo, R H; Ma, T W; Wang, F

    2016-05-01

    This study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary -carbamylglutamate (NCG) and rumen-protected -Arg (RP-Arg) supplementation are effective in ameliorating fetal growth restriction in undernourished ewes. Beginning on d 35 of gestation, ewes were fed a diet providing 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations (50% NRC), 50% of NRC recommendations supplemented with 20 g/d RP-Arg (providing 10 g/d of Arg), and 50% of NRC recommendations supplemented with 5 g/d NCG product (providing 2.5 g/d of NCG). On d 110, maternal, fetal, and placental tissues and fluids were collected and weighed. Ewe weights were lower ( ewes compared with adequately fed ewes. Maternal RP-Arg or NCG supplementation did not alter ( = 0.26) maternal BW in nutrient-restricted ewes. Weights of most fetal organs were increased ( ewes compared with 50% NRC-fed ewes. Supplementation of RP-Arg or NCG reduced ( ewes but had no effect on concentrations of lactate and GH. Maternal RP-Arg or NCG supplementation markedly improved ( ewes. These novel results indicate that dietary NCG and RP-Arg supplementation to underfed ewes ameliorated fetal growth restriction, at least in part, by increasing the availability of AA in the conceptus and provide support for its clinical use to ameliorate IUGR in humans and sheep industry production.

  11. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    Science.gov (United States)

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2016-01-01

    T-cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathologic immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite that multiple pharmacologic properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4(+) T-cell subsets by regulating the expression and production of T-cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited TCR-mediated Akt and NF-κB signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as 2,4,6-trinitrochlorobenzene-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4(+) T cell differentiation and overall immune responses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    Science.gov (United States)

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast