WorldWideScience

Sample records for ameliorates cardiac dysfunction

  1. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    Science.gov (United States)

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Exercise Ameliorates High Fat Diet Induced Cardiac Dysfunction by Increasing Interleukin 10

    Directory of Open Access Journals (Sweden)

    Varun eKesherwani

    2015-04-01

    Full Text Available Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α and attenuation of anti-inflammatory cytokine such as interleukin10 (IL-10 contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, eight week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1hr/day for 5 days/week for eight weeks. The four treatment groups: normal diet (ND, HFD, HFD + exercise (HFD + Ex and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

  3. Milrinone ameliorates cardiac mechanical dysfunction after hypothermia in an intact rat model.

    Science.gov (United States)

    Dietrichs, Erik Sveberg; Kondratiev, Timofei; Tveita, Torkjel

    2014-12-01

    Rewarming from hypothermia is often complicated by cardiac dysfunction, characterized by substantial reduction in stroke volume. Previously we have reported that inotropic agents, working via cardiac β-receptor agonism may exert serious side effects when applied to treat cardiac contractile dysfunction during rewarming. In this study we tested whether Milrinone, a phosphodiesterase III inhibitor, is able to ameliorate such dysfunction when given during rewarming. A rat model designed for circulatory studies during experimental hypothermia with cooling to a core temperature of 15°C, stable hypothermia at this temperature for 3h and subsequent rewarming was used, with a total of 3 groups: (1) a normothermic group receiving Milrinone, (2) a hypothermic group receiving Milrinone the last hour of hypothermia and during rewarming, and (3) a hypothermic saline control group. Hemodynamic function was monitored using a conductance catheter introduced to the left ventricle. After rewarming from 15°C, stroke volume and cardiac output returned to within baseline values in Milrinone treated animals, while these variables were significantly reduced in saline controls. Milrinone ameliorated cardiac dysfunction during rewarming from 15°C. The present results suggest that at low core temperatures and during rewarming from such temperatures, pharmacologic efforts to support cardiovascular function is better achieved by substances preventing cyclic AMP breakdown rather than increasing its formation via β-receptor stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Oroxylin A, but Not Vasopressin, Ameliorates Cardiac Dysfunction of Endotoxemic Rats

    Directory of Open Access Journals (Sweden)

    Chin-Hung Liu

    2012-01-01

    Full Text Available The mortality in septic patients with myocardial dysfunction is higher than those without it. Beneficial effects of flavonoid oroxylin A (Oro-A on endotoxemic hearts were evaluated and compared with that of arginine vasopressin (AVP which is used to reverse hypotension in septic patients. Endotoxemia in rats was induced by one-injection of lipopolysaccharides (LPS, 10 mg/kg, i.p., and hearts were isolated 5-hrs or 16-hrs later. Isolated hearts with constant-pressure or constant-flow mode were examined by Langendorff technique. Rate and force of contractions of isolated atrial and ventricular strips were examined by tissue myography. Isolated endotoxemic hearts were characterized by decreased or increased coronary flow (CF in LPS-treated-for-5hr and LPS-treated-for-16-hr groups, respectively, with decreased inotropy in both groups. Oro-A-perfusion ameliorated while AVP-perfusion worsened the decreased CF and inotropy in both preparations. Oro-A and AVP, however, did not affect diminished force or rate of contraction of atrial and ventricular strips of endotoxemic hearts. Oro-A-induced CF increase was not affected following coronary endothelium-denudation with saponin. These results suggest that Oro-A ameliorates LPS-depressed cardiac functions by increasing CF, leading to positive inotropy. In contrast, AVP aggravates cardiac dysfunction by decreasing CF. Oro-A is a potentially useful candidate for treating endotoxemia complicated with myocardial dysfunction.

  5. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid

    Directory of Open Access Journals (Sweden)

    Li Chun-jun

    2012-06-01

    Full Text Available Abstract Background Alpha-lipoic acid (ALA, a naturally occurring compound, exerts powerful protective effects in various cardiovascular disease models. However, its role in protecting against diabetic cardiomyopathy (DCM has not been elucidated. In this study, we have investigated the effects of ALA on cardiac dysfunction, mitochondrial oxidative stress (MOS, extracellular matrix (ECM remodeling and interrelated signaling pathways in a diabetic rat model. Methods Diabetes was induced in rats by I.V. injection of streptozotocin (STZ at 45 mg/kg. The animals were randomly divided into 4 groups: normal groups with or without ALA treatment, and diabetes groups with or without ALA treatment. All studies were carried out 11 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate cardiac function. Mitochondrial oxidative biochemical parameters were measured by spectophotometeric assays. Extracellular matrix content (total collagen, type I and III collagen was assessed by staining with Sirius Red. Gelatinolytic activity of Pro- and active matrix metalloproteinase-2 (MMP-2 levels were analyzed by a zymogram. Cardiac fibroblasts differentiation to myofibroblasts was evaluated by Western blot measuring smooth muscle actin (α-SMA and transforming growth factor–β (TGF-β. Key components of underlying signaling pathways including the phosphorylation of c-Jun N-terminal kinase (JNK, p38 MAPK and ERK were also assayed by Western blot. Results DCM was successfully induced by the injection of STZ as evidenced by abnormal heart mass and cardiac function, as well as the imbalance of ECM homeostasis. After administration of ALA, left ventricular dysfunction greatly improved; interstitial fibrosis also notably ameliorated indicated by decreased collagen deposition, ECM synthesis as well as enhanced ECM degradation. To further assess the underlying mechanism of improved DCM by ALA, redox status and cardiac remodeling associated

  6. Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice.

    Science.gov (United States)

    Zhang, Liang; Yan, Xiao; Zhang, Yun-Long; Bai, Jie; Hidru, Tesfaldet Habtemariam; Wang, Qing-Shan; Li, Hui-Hua

    2018-04-01

    Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-β, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    Science.gov (United States)

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.

  8. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats.

  9. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congying [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Dong, Ruolan [Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Chen, Chen [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hong, E-mail: hong.wang1988@yahoo.com [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Dao Wen, E-mail: dwwang@tjh.tjmu.edu.cn [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-12-25

    Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejection fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.

  10. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality

    International Nuclear Information System (INIS)

    Xia, Congying; Dong, Ruolan; Chen, Chen; Wang, Hong; Wang, Dao Wen

    2015-01-01

    Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejection fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.

  11. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ogata

    Full Text Available Chronic left ventricular (LV pressure overload causes relative ischemia with resultant LV dysfunction. We have recently demonstrated that low-intensity pulsed ultrasound (LIPUS improves myocardial ischemia in a pig model of chronic myocardial ischemia through enhanced myocardial angiogenesis. In the present study, we thus examined whether LIPUS also ameliorates contractile dysfunction in LV pressure-overloaded hearts.Chronic LV pressure overload was induced with transverse aortic constriction (TAC in mice. LIPUS was applied to the whole heart three times in the first week after TAC and was repeated once a week for 7 weeks thereafter (n = 22. Animals in the control groups received the sham treatment without LIPUS (n = 23. At 8 weeks after TAC, LV fractional shortening was depressed in the TAC-Control group, which was significantly ameliorated in the TAC-LIPUS group (30.4±0.5 vs. 36.2±3.8%, P<0.05. Capillary density was higher and perivascular fibrosis was less in the LV in the TAC-LIPUS group than in the TAC-Control group. Myocardial relative ischemia evaluated with hypoxyprobe was noted in the TAC-Control group, which was significantly attenuated in the TAC-LIPUS group. In the TAC-LIPUS group, as compared with the control group, mRNA expressions of BNP and collagen III were significantly lower (both P<0.05 and protein expressions of VEGF and eNOS were significantly up-regulated associated with Akt activation (all P<0.05. No adverse effect related to the LIPUS therapy was noted.These results indicate that the LIPUS therapy ameliorates contractile dysfunction in chronically pressure-overloaded hearts through enhanced myocardial angiogenesis and attenuated perivascular fibrosis. Thus, the LIPUS therapy may be a promising, non-invasive treatment for cardiac dysfunction due to chronic pressure overload.

  12. Diabetic cardiac autonomic dysfunction. Parasympathetic versus sympathetic

    International Nuclear Information System (INIS)

    Uehara, Akihiko; Kurata, Chinori; Sugi, Toshihiko; Mikami, Tadashi; Shouda, Sakae

    1999-01-01

    Diabetic cardiac autonomic dysfunction often causes lethal arrhythmia and sudden cardiac death. 123 I-Metaiodobenzylguanidine (MIBG) can evaluate cardiac sympathetic dysfunction, and analysis of heart rate variability (HRV) can reflect cardiac parasympathetic activity. We examined whether cardiac parasympathetic dysfunction assessed by HRV may correlate with sympathetic dysfunction assessed by MIBG in diabetic patients. In 24-hour electrocardiography, we analyzed 4 HRV parameters: high-frequency power (HF), HF in the early morning (EMHF), rMSSD and pNN50. MIBG planar images and SPECT were obtained 15 minutes (early) and 150 minutes (late) after injection and the heart washout rate was calculated. The defect score in 9 left ventricular regions was scored on a 4 point scale (0=normal - 3=severe defect). In 20 selected diabetic patients without congestive heart failure, coronary artery disease and renal failure, parasympathetic HRV parameters had a negative correlation with the sum of defect scores (DS) in the late images (R=-0.47 to -0.59, p<0.05) and some parameters had a negative correlation with the washout rate (R=-0.50 to -0.55, p<0.05). In a total of 64 diabetic patients also, these parameters had a negative correlation with late DS (R=-0.28 to -0.35, p<0.05) and early DS (R=-0.27 to -0.32, p<0.05). The progress of diabetic cardiac parasympathetic dysfunction may parallel the sympathetic one. (author)

  13. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes.

    Science.gov (United States)

    Strunz, Célia Maria Cássaro; Roggerio, Alessandra; Cruz, Paula Lázara; Pacanaro, Ana Paula; Salemi, Vera Maria Cury; Benvenuti, Luiz Alberto; Mansur, Antonio de Pádua; Irigoyen, Maria Cláudia

    2017-02-01

    Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hongmei Lang

    2018-04-01

    Full Text Available Background/Aims: Excessive salt intake and left ventricular hypertrophy (LVH are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3 plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. Methods: UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5% or a high-salt (HS, 8% diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Results: Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. Conclusion: UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction.

  15. Novel therapeutic effects of sesamin on diabetes-induced cardiac dysfunction

    Science.gov (United States)

    Thuy, Tran Duong; Phan, Nam Nhut; Wang, Chih-Yang; Yu, Han-Gang; Wang, Shu-Yin; Huang, Pung-Ling; Do, Yi-Yin; Lin, Yen-Chang

    2017-01-01

    Diabetes is a risk factor that increases the occurrence and severity of cardiovascular events. Cardiovascular complications are the leading cause of mortality of 75% of patients with diabetes >40 years old. Sesamin, the bioactive compound extracted from Sesamum indicum, is a natural compound that has diverse beneficial effects on hypoglycemia and reducing cholesterol. The aim of this study is to investigate sesamin effects to diabetes-inducing cardiac hypertrophy. In the present study bioinformatics analysis demonstrated cardiac hypertrophy signaling may be the most important pathway for upregulating genes in sesamin-treated groups. To verify the bioinformatics prediction, sesamin was used as the main bioactive compound to attenuate the impact of diabetes induced by streptozotocin (STZ) on cardiac function in a rat model. The results revealed that oral administration of sesamin for 4 weeks (100 and 200 mg/kg body weight) marginally improved blood glucose levels, body weight and significantly ameliorated the effects on heart rate and blood pressure in rats with type 1 diabetes relative to control rats. The QT interval of sesamin was also reduced relative to the control group. The findings indicated that sesamin has potential cardioprotective effects in the STZ-induced diabetes model. This suggested that this can be used as a novel treatment for patients with diabetes with cardiac dysfunction complication. PMID:28358428

  16. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.

    Science.gov (United States)

    Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo

    2013-11-01

    Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.

  17. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  18. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and

  19. Minocycline attenuates cardiac dysfunction in tumor-burdened mice.

    Science.gov (United States)

    Devine, Raymond D; Eichenseer, Clayton M; Wold, Loren E

    2016-11-01

    Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Detecting early cardiac dysfunction with radionuclide cardiac blood-pool imaging

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Lin Haoxue

    1992-01-01

    Cardiac function was measured by radionuclide cardiac blood-pool imaging in 15 normal persons, 19 cases of hypertension, 32 cases of coronary heart disease, 35 cases of coronary heart disease combined with hypertension and 44 cases of myocardial infarction. Significant differences have been found in indices of cardiac function between normal subjects and patients with coronary heart disease and coronary heart disease combined with hypertension, even though the patients were without any clinical sin of cardiac failure. Lowered regional EF and decreased ventricular was motion were found in 38.8% of patients, while 65.7%of patients revealed marked abnormality in MFR. The results indicate that latent cardiac dysfunction is common in patients with coronary heart disease. The earliest change is diastolic function abnormalities

  1. Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats

    NARCIS (Netherlands)

    Waanders, Femke; Rienstra, Heleen; Boer, Mark Walther; Zandvoort, Andre; Rozing, Jan; Navis, Gerjan; van Goor, Harry; Hillebrands, Jan-Luuk

    Waanders F, Rienstra H, Walther Boer M, Zandvoort A, Rozing J, Navis G, van Goor H, Hillebrands JL. Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats. Am J Physiol Renal Physiol 296: F1072-F1079, 2009. First published February 25, 2009;

  2. Cardiac Dysfunction in a Porcine Model of Pediatric Malnutrition

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Lykke, Mikkel; Hother, Anne-Louise

    2015-01-01

    BACKGROUND: Half a million children die annually of severe acute malnutrition and cardiac dysfunction may contribute to the mortality. However, cardiac function remains poorly examined in cases of severe acute malnutrition. OBJECTIVE: To determine malnutrition-induced echocardiographic disturbances...... and longitudinal changes in plasma pro-atrial natriuretic peptide and cardiac troponin-T in a pediatric porcine model. METHODS AND RESULTS: Five-week old piglets (Duroc-x-Danish Landrace-x-Yorkshire) were fed a nutritionally inadequate maize-flour diet to induce malnutrition (MAIZE, n = 12) or a reference diet...... groups. The myocardial performance index was 86% higher in MAIZE vs AGE-REF (pMalnutrition associates with cardiac dysfunction in a pediatric porcine model by increased myocardial performance index and pro-atrial natriuretic peptide...

  3. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    Science.gov (United States)

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  4. Roles of PDE1 in Pathological Cardiac Remodeling and Dysfunction.

    Science.gov (United States)

    Chen, Si; Knight, Walter E; Yan, Chen

    2018-04-23

    Pathological cardiac hypertrophy and dysfunction is a response to various stress stimuli and can result in reduced cardiac output and heart failure. Cyclic nucleotide signaling regulates several cardiac functions including contractility, remodeling, and fibrosis. Cyclic nucleotide phosphodiesterases (PDEs), by catalyzing the hydrolysis of cyclic nucleotides, are critical in the homeostasis of intracellular cyclic nucleotide signaling and hold great therapeutic potential as drug targets. Recent studies have revealed that the inhibition of the PDE family member PDE1 plays a protective role in pathological cardiac remodeling and dysfunction by the modulation of distinct cyclic nucleotide signaling pathways. This review summarizes recent key findings regarding the roles of PDE1 in the cardiac system that can lead to a better understanding of its therapeutic potential.

  5. Pitavastatin-attenuated cardiac dysfunction in mice with dilated cardiomyopathy via regulation of myocardial calcium handling proteins

    Directory of Open Access Journals (Sweden)

    Hu Wei

    2014-03-01

    Full Text Available C57BL/6 mice with dilated cardiomyopathy (DCM were randomly divided to receive placebo or pitavastatin at a dose of 1 or 3 mg kg-1d-1. After 8 weeks treatment, mice with dilated cardiomyopathy developed serious cardiac dysfunction characterized by significantly enhanced left ventricular end-diastolic diameter (LVIDd, decreased left ventricular ejection fraction (LVEF as well as left ventricular short axis fractional shortening (LVFS, accompanied with enlarged cardiomyocytes, and increased plasma levels of N-terminal pro-B type natriuretic peptide (NT-proBNP and plasma angiotensin II (AngII concentration. Moreover, myocardium sarcoplasmic reticulum Ca2+ pump (SERCA-2 activity was decreased. The ratio of phosphorylated phospholamban (PLB to total PLB decreased significantly with the down-regulation of SERCA- -2a and ryanodine receptor (RyR2 expression. Pitavastatin was found to ameliorate the cardiac dysfunction in mice with dilated cardiomyopathy by reversing the changes in the ratios of phosphorylated PLB to total PLB, SERCA-2a and RyR2 via reducing the plasma AngII concentration and the expressions of myocardium angiotensin II type 1 receptor (AT1R and protein kinase C (PKCb2. The possible underlying mechanism might be the regulation of myocardial AT1R-PKCb2-Ca2+ handling proteins.

  6. The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair.

    Science.gov (United States)

    Shen, Deliang; Wang, Xiaofang; Zhang, Li; Zhao, Xiaoyan; Li, Jingyi; Cheng, Ke; Zhang, Jinying

    2011-12-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of advanced cardiomyopathy. Conventional pharmacological therapies rely on prompt reperfusion and prevention of repetitive maladaptive pathways. Keratin biomaterials can be manufactured in an autologous fashion and are effective in various models of tissue regeneration. However, its potential application in cardiac regeneration has not been tested. Keratin biomaterials were derived from human hair and its structure morphology, carryover of beneficial factors, biocompatibility with cardiomyocytes, and in vivo degradation profile were characterized. After delivery into infarcted rat hearts, the keratin scaffolds were efficiently infiltrated by cardiomyocytes and endothelial cells. Injection of keratin biomaterials promotes angiogenesis but does not exacerbate inflammation in the post-MI hearts. Compared to control-injected animals, keratin biomaterials-injected animals exhibited preservation of cardiac function and attenuation of adverse ventricular remodeling over the 8 week following time course. Tissue western blot analysis revealed up-regulation of beneficial factors (BMP4, NGF, TGF-beta) in the keratin-injected hearts. The salient functional benefits, the simplicity of manufacturing and the potentially autologous nature of this biomaterial provide impetus for further translation to the clinic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... transplantation and vascular surgery respectively) had an improvement in endothelial dysfunction 1 month after surgery. CONCLUSION: Endothelial function changes in relation to surgery. Assessment of endothelial function by non-invasive measures has the potential to guide clinicians in the prevention or treatment...

  8. Milrinone for cardiac dysfunction in critically ill adult patients

    DEFF Research Database (Denmark)

    Koster, Geert; Bekema, Hanneke J; Wetterslev, Jørn

    2016-01-01

    INTRODUCTION: Milrinone is an inotrope widely used for treatment of cardiac failure. Because previous meta-analyses had methodological flaws, we decided to conduct a systematic review of the effect of milrinone in critically ill adult patients with cardiac dysfunction. METHODS: This systematic...... trials were at high risk of bias, and none reported the primary composite outcome SAE. Fourteen trials with 1611 randomised patients reported mortality data at maximum follow-up (RR 0.96; 95% confidence interval 0.76-1.21). Milrinone did not significantly affect other patient-centred outcomes. All...... analyses displayed statistical and/or clinical heterogeneity of patients, interventions, comparators, outcomes, and/or settings and all featured missing data. DISCUSSION: The current evidence on the use of milrinone in critically ill adult patients with cardiac dysfunction suffers from considerable risks...

  9. Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2016-01-01

    Full Text Available Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS. However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction.

  10. Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Gema Marín-Royo

    2018-02-01

    Full Text Available Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3 induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day attenuated the increase in cardiac levels of total triglyceride (TG. MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in 18F-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2 to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, β-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction.

  11. Contributions of pulmonary hypertension to HIV-related cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Godsent C. Isiguzo

    2013-09-01

    Conclusion: Immune-suppression affects the cardiac function adversely and coexisting pulmonary hypertension contributes to poor systolic and diastolic function in affected patients. The subtle nature of presentation of pulmonary hypertension and other cardiac dysfunctions in HIV/AIDS patients demand a high-index of suspicion and early intervention if detected, to ensure better care for these emerging threats to our patients.

  12. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yanli Zhao

    Full Text Available Heme oxygenase-1 (HO-1 has been implicated in cardiac dysfunction, oxidative stress, inflammation, apoptosis and autophagy associated with heart failure, and atherosclerosis, in addition to its recognized role in metabolic syndrome and diabetes. Numerous studies have presented contradictory findings about the role of HO-1 in diabetic cardiomyopathy (DCM. In this study, we explored the role of HO-1 in myocardial dysfunction, myofibril structure, oxidative stress, inflammation, apoptosis and autophagy using a streptozotocin (STZ-induced diabetes model in mice systemically overexpressing HO-1 (Tg-HO-1 or mutant HO-1 (Tg-mutHO-1. The diabetic mouse model was induced by multiple peritoneal injections of STZ. Two months after injection, left ventricular (LV function was measured by echocardiography. In addition, molecular biomarkers related to oxidative stress, inflammation, apoptosis and autophagy were evaluated using classical molecular biological/biochemical techniques. Mice with DCM exhibited severe LV dysfunction, myofibril structure disarray, aberrant cardiac oxidative stress, inflammation, apoptosis, autophagy and increased levels of HO-1. In addition, we determined that systemic overexpression of HO-1 ameliorated left ventricular dysfunction, myofibril structure disarray, oxidative stress, inflammation, apoptosis and autophagy in DCM mice. Furthermore, serine/threonine-specific protein kinase (Akt and AMP-activated protein kinase (AMPK phosphorylation is normally inhibited in DCM, but overexpression of the HO-1 gene restored the phosphorylation of these kinases to normal levels. In contrast, the functions of HO-1 in DCM were significantly reversed by overexpression of mutant HO-1. This study underlines the unique roles of HO-1, including the inhibition of oxidative stress, inflammation and apoptosis and the enhancement of autophagy, in the pathogenesis of DCM.

  13. Cardioprotection against ischemia/reperfusion injury by QiShenYiQi Pill® via ameliorate of multiple mitochondrial dysfunctions

    Directory of Open Access Journals (Sweden)

    Chen JR

    2015-06-01

    Full Text Available Jing Rui Chen,1–3 Jing Wei,1–3 Ling Yan Wang,1–3 Yan Zhu,1–3 Lan Li,1–3 Mary Akinyi Olunga,1–3 Xiu Mei Gao,1–3 Guan Wei Fan1–31Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China; 2Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, 3Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of ChinaAim: To investigate the potential cardioprotective effects of QiShenYiQi Pill® (QSYQ on myocardial ischemia/reperfusion (I/R injury through antioxidative stress and mitochondrial protection.Methods and results: Sprague Dawley rats were pretreated with QSYQ or saline for 7 days and subjected to ischemia (30 minutes occlusion of the left anterior descending coronary artery and reperfusion (120 minutes. Cardiac functions were evaluated by echocardiogram and hemodynamics. Myocardial mitochondria were obtained to evaluate changes in mitochondrial structure and function, immediately after 120 minutes reperfusion. Pretreatment with QSYQ protected against I/R-induced myocardial structural injury and improved cardiac hemodynamics, as demonstrated by normalized serum creatine kinase and suppressed oxidative stress. Moreover, the impaired myocardial mitochondrial structure and function decreased level of ATP (accompanied by reduction of ATP5D and increase in the expression of cytochrome C. Myocardial fiber rupture, interstitial edema, and infiltrated leukocytes were all significantly ameliorated by pretreatment with QSYQ.Conclusion: Pretreatment of QSYQ in Sprague Dawley rats improves ventricular function and energy metabolism and reduces oxidative stress via ameliorating multiple mitochondrial dysfunctions during I/R injury.Keywords: QSYQ, ischemia/reperfusion injury, energy metabolism, mitochondria

  14. The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W

    2016-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.

  15. Cardiac microvascular rarefaction in hyperthyroidism-induced left ventricle dysfunction.

    Science.gov (United States)

    Freitas, Felipe; Estato, Vanessa; Carvalho, Vinícius Frias; Torres, Rafael Carvalho; Lessa, Marcos Adriano; Tibiriçá, Eduardo

    2013-10-01

    The pathophysiology underlying hyperthyroidism-induced left ventricle (LV) dysfunction and hypertrophy directly involves the heart and indirectly involves the neuroendocrine systems. The effects of hyperthyroidism on the microcirculation are still controversial in experimental models. We investigated the effects of hyperthyroidism on the cardiac function and microcirculation of an experimental rat model. Male Wistar rats (170-250 g) were divided into two groups: the euthyroid group (n = 10), which was treated with 0.9% saline solution, and the hyperthyroid group (n = 10), which was treated with l-thyroxine (600 μg/kg/day, i.p.) during 14 days. An echocardiographic study was performed to evaluate the alterations in cardiac function, structure and geometry. The structural capillary density and the expression of angiotensin II AT1 receptor in the LV were analyzed using histochemistry and immunohistochemistry, respectively. Hyperthyroidism was found to induce profound cardiovascular alterations, such as systolic hypertension, tachycardia, LV dysfunction, cardiac hypertrophy, and myocardial fibrosis. This study demonstrates the existence of structural capillary rarefaction and the down-regulation of the cardiac angiotensin II AT1 receptor in the myocardium of hyperthyroid rats in comparison with euthyroid rats. Microvascular rarefaction may be involved in the pathophysiology of hyperthyroidism-induced cardiovascular alterations. © 2013 John Wiley & Sons Ltd.

  16. Testicular Dysfunction Ameliorative Effect of the Methanolic Roots Extracts of Maytenus procumbens and Ozoroa paniculosa

    Directory of Open Access Journals (Sweden)

    Nkosinathi David Cele

    2017-01-01

    Full Text Available The traditional use of medicinal plants in the management of sexual dysfunctions has a long history. This study investigated testicular dysfunction ameliorative effect of the methanolic roots extracts of Maytenus procumbens and Ozoroa paniculosa in a butanol-induced testicular dysfunction rat model. The rats in respective experimental groups were orally administered with the extract at 50 and 250 mg/kg bw, daily for 28 days. The cytotoxicity of the extracts was evaluated against HEK293, MCF-7, and HT29 cell lines. The extracts exhibited moderate (LC50 30.3–330.2 μg/mL to weak (LC50 200.8–438.4 μg/mL cytotoxicity level on the cancer and normal cells, respectively. While relatively lower serum testosterone levels and total sperm count along with decreased numbers of spermatogonia were noted in the untreated group, all these parameters were improved in the groups treated with the extracts at 250 mg/kg. Improved histomorphological changes of the testes were also observed when compared to the untreated group. While the extracts (at 250 mg/kg increased serum reduced glutathione content and decreased malondialdehyde content, a relatively higher serum creatinine level was also observed in the treated animals group. The results indicate that the two plant extracts have potential to ameliorate testicular dysfunction.

  17. Postoperative cognitive dysfunction and neuroinflammation; Cardiac surgery and abdominal surgery are not the same

    NARCIS (Netherlands)

    Hovens, Iris B.; van Leeuwen, Barbara L.; Mariani, Massimo A.; Kraneveld, Aletta D.; Schoemaker, Regien G.

    Postoperative cognitive dysfunction (POCD) is a debilitating surgical complication, with cardiac surgery patients at particular risk. To gain insight in the mechanisms underlying the higher incidence of POCD after cardiac versus non-cardiac surgery, systemic and central inflammatory changes,

  18. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.

    Science.gov (United States)

    Jin, Sheng; Teng, Xu; Xiao, Lin; Xue, Hongmei; Guo, Qi; Duan, Xiaocui; Chen, Yuhong; Wu, Yuming

    2017-12-01

    Reductions in hydrogen sulfide (H 2 S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in N ω -nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dt max and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and

  19. Sexual Dysfunction before and after Cardiac Rehabilitation

    Directory of Open Access Journals (Sweden)

    Jörg Schumann

    2010-01-01

    variables. Methods. Analysis of patients participating in a 12-week exercise-based outpatient cardiac rehabilitation program (OCR between April 1999 and December 2007. Exercise capacity (ExC and quality of life including sexual function were assessed before and after OCR. Results. Complete data were available in 896 male patients. No sexual activity at all was indicated by 23.1% at baseline and 21.8% after OCR, no problems with sexual activity by 40.8% at baseline and 38.6% after OCR. Patients showed an increase in specific problems (erectile dysfunction and lack of orgasm from 18% to 23% (<.0001 during OCR. We found the following independent positive and negative predictors of sexual problems after OCR: hyperlipidemia, age, CABG, baseline ExC and improvement of ExC, subjective physical and mental capacity, and sense of affiliation. Conclusions. Sexual dysfunction is present in over half of the patients undergoing OCR with no overall improvement during OCR. Age, CABG, low exercise capacity are independent predictors of sexual dysfunction after OCR.

  20. No evidence for cardiac dysfunction in Kif6 mutant mice.

    Directory of Open Access Journals (Sweden)

    Abdul Hameed

    Full Text Available A KIF6 variant in man has been reported to be associated with adverse cardiovascular outcomes after myocardial infarction. No clear biological or physiological data exist for Kif6. We sought to investigate the impact of a deleterious KIF6 mutation on cardiac function in mice. Kif6 mutant mice were generated and verified. Cardiac function was assessed by serial echocardiography at baseline, after ageing and after exercise. Lipid levels were also measured. No discernable adverse lipid or cardiac phenotype was detected in Kif6 mutant mice. These data suggest that dysfunction of Kif6 is linked to other more complex biological/biochemical parameters or is unlikely to be of material consequence in cardiac function.

  1. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.

    Science.gov (United States)

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-09-01

    Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

  2. Hyperthyroidism causes cardiac dysfunction by mitochondrial impairment and energy depletion.

    Science.gov (United States)

    Maity, Sangeeta; Kar, Dipak; De, Kakali; Chander, Vivek; Bandyopadhyay, Arun

    2013-05-01

    This study elucidates the role of metabolic remodeling in cardiac dysfunction induced by hyperthyroidism. Cardiac hypertrophy, structural remodeling, and expression of the genes associated with fatty acid metabolism were examined in rats treated with triiodothyronine (T3) alone (8 μg/100 g body weight (BW), i.p.) for 15 days or along with a peroxisome proliferator-activated receptor alpha agonist bezafibrate (Bzf; 30 μg/100 g BW, oral) and were found to improve in the Bzf co-treated condition. Ultrastructure of mitochondria was damaged in T3-treated rat heart, which was prevented by Bzf co-administration. Hyperthyroidism-induced oxidative stress, reduction in cytochrome c oxidase activity, and myocardial ATP concentration were also significantly checked by Bzf. Heart function studied at different time points during the course of T3 treatment shows an initial improvement and then a gradual but progressive decline with time, which is prevented by Bzf co-treatment. In summary, the results demonstrate that hyperthyroidism inflicts structural and functional damage to mitochondria, leading to energy depletion and cardiac dysfunction.

  3. MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2.

    Science.gov (United States)

    Zhou, Yu; Song, Yan; Shaikh, Zahir; Li, Hui; Zhang, Haiju; Caudle, Yi; Zheng, Shouhua; Yan, Hui; Hu, Dan; Stuart, Charles; Yin, Deling

    2017-07-18

    Cardiac dysfunction is correlated with detrimental prognosis of sepsis and contributes to a high risk of mortality. After an initial hyperinflammatory reaction, most patients enter a protracted state of immunosuppression (late sepsis) that alters both innate and adaptive immunity. The changes of cardiac function in late sepsis are not yet known. MicroRNA-155 (miR-155) is previously found to play important roles in both regulations of immune activation and cardiac function. In this study, C57BL/6 mice were operated to develop into early and late sepsis phases, and miR-155 mimic was injected through the tail vein 48 h after cecal ligation and puncture (CLP). The effect of miR-155 on CLP-induced cardiac dysfunction was explored in late sepsis. We found that increased expression of miR-155 in the myocardium protected against cardiac dysfunction in late sepsis evidenced by attenuating sepsis-reduced cardiac output and enhancing left ventricular systolic function. We also observed that miR-155 markedly reduced the infiltration of macrophages and neutrophils into the myocardium and attenuated the inflammatory response via suppression of JNK signaling pathway. Moreover, overexpression of β-arrestin 2 (Arrb2) exacerbated the mice mortality and immunosuppression in late sepsis. Furthermore, transfection of miR-155 mimic reduced Arrb2 expression, and then restored immunocompetence and improved survival in late septic mice. We conclude that increased miR-155 expression through systemic administration of miR-155 mimic attenuates cardiac dysfunction and improves late sepsis survival by targeting JNK associated inflammatory signaling and Arrb2 mediated immunosuppression.

  4. TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats.

    Science.gov (United States)

    Yu, Yang; Wei, Shun-Guang; Weiss, Robert M; Felder, Robert B

    2017-10-01

    In systolic heart failure (HF), circulating proinflammatory cytokines upregulate inflammation and renin-angiotensin system (RAS) activity in cardiovascular regions of the brain, contributing to sympathetic excitation and cardiac dysfunction. Important among these is the subfornical organ (SFO), a forebrain circumventricular organ that lacks an effective blood-brain barrier and senses circulating humors. We hypothesized that the tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) in the SFO contributes to sympathetic excitation and cardiac dysfunction in HF rats. Rats received SFO microinjections of a TNFR1 shRNA or a scrambled shRNA lentiviral vector carrying green fluorescent protein, or vehicle. One week later, some rats were euthanized to confirm the accuracy of the SFO microinjections and the transfection potential of the lentiviral vector. Other rats underwent coronary artery ligation (CL) to induce HF or a sham operation. Four weeks after CL, vehicle- and scrambled shRNA-treated HF rats had significant increases in TNFR1 mRNA and protein, NF-κB activity, and mRNA for inflammatory mediators, RAS components and c-Fos protein in the SFO and downstream in the hypothalamic paraventricular nucleus, along with increased plasma norepinephrine levels and impaired cardiac function, compared with vehicle-treated sham-operated rats. In HF rats treated with TNFR1 shRNA, TNFR1 was reduced in the SFO but not paraventricular nucleus, and the central and peripheral manifestations of HF were ameliorated. In sham-operated rats treated with TNFR1 shRNA, TNFR1 expression was also reduced in the SFO but there were no other effects. These results suggest a key role for TNFR1 in the SFO in the pathophysiology of systolic HF. NEW & NOTEWORTHY Activation of TNF-α receptor 1 in the subfornical organ (SFO) contributes to sympathetic excitation in heart failure rats by increasing inflammation and renin-angiotensin system activity in the SFO and downstream in the hypothalamic

  5. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Bollano, Entela; Lindegaard, Marie L S

    2003-01-01

    Obesity may confer cardiac dysfunction due to lipid accumulation in cardiomyocytes. To test this idea, we examined whether obese ob/ob mice display heart lipid accumulation and cardiac dysfunction. Ob/ob mouse hearts had increased expression of genes mediating extracellular generation, transport....../ob mice and 2.5 +/- 0.1 in ob/+ mice (P = 0.0001). In contrast, the indexes of systolic function and heart brain natriuretic peptide mRNA expression were only marginally affected and unaffected, respectively, in ob/ob compared with ob/+ mice. The results suggest that ob/ob mouse hearts have increased...... across the myocyte cell membrane, intracellular transport, mitochondrial uptake, and beta-oxidation of fatty acids compared with ob/+ mice. Accordingly, ob/ob mouse hearts contained more triglyceride (6.8 +/- 0.4 vs. 2.3 +/- 0.4 microg/mg; P hearts. Histological examinations...

  6. Maternal Diet-Induced Obesity Programmes Cardiac Dysfunction in Male Mice Independently of Post-Weaning Diet.

    Science.gov (United States)

    Loche, Elena; Blackmore, Heather L; Carpenter, Asha A M; Beeson, Jessica H; Pinnock, Adele; Ashmore, Thomas J; Aiken, Catherine E; de Almeida-Faria, Juliana; Schoonejans, Josca; Giussani, Dino A; Fernandez-Twinn, Denise S; Ozanne, Susan E

    2018-04-04

    Obesity during pregnancy increases risk of cardiovascular disease (CVD) in the offspring and individuals exposed to over-nutrition during fetal life are likely to be exposed to a calorie-rich environment postnatally. Here, we established the consequences of combined exposure to a maternal and post-weaning obesogenic diet on offspring cardiac structure and function using an established mouse model of maternal diet-induced obesity. The impact of the maternal and postnatal environment on the offspring metabolic profile, arterial blood pressure, cardiac structure and function was assessed in 8-week old C57BL/6 male mice. Measurement of cardiomyocyte cell area, the transcriptional re-activation of cardiac fetal genes as well as genes involved in the regulation of contractile function and matrix remodelling in the adult heart were determined as potential mediators of effects on cardiac function. In the adult offspring: a post-weaning obesogenic diet coupled with exposure to maternal obesity increased serum insulin (P<0.0001) and leptin levels (P<0.0001); maternal obesity (P=0.001) and a post-weaning obesogenic diet (P=0.002) increased absolute heart weight; maternal obesity (P=0.01) and offspring obesity (P=0.01) caused cardiac dysfunction but effects were not additive; cardiac dysfunction resulting from maternal obesity was associated with re-expression of cardiac fetal genes (Myh7:Myh6 ratio; P=0.0004), however these genes were not affected by offspring diet; maternal obesity (P=0.02) and offspring obesity (P=0.05) caused hypertension and effects were additive. Maternal diet-induced obesity and offspring obesity independently promote cardiac dysfunction and hypertension in adult male progeny. Exposure to maternal obesity alone programmed cardiac dysfunction, associated with hallmarks of pathological left ventricular hypertrophy, including increased cardiomyocyte area, upregulation of fetal genes and remodelling of cardiac structure. These data highlight that the

  7. Medulla oblongata damage and cardiac autonomic dysfunction in Parkinson disease.

    Science.gov (United States)

    Pyatigorskaya, Nadya; Mongin, Marie; Valabregue, Romain; Yahia-Cherif, Lydia; Ewenczyk, Claire; Poupon, Cyril; Debellemaniere, Eden; Vidailhet, Marie; Arnulf, Isabelle; Lehéricy, Stephane

    2016-12-13

    To characterize medulla oblongata damage using diffusion tensor imaging (DTI) in Parkinson disease (PD) and correlate it with dysfunction of the cardiac sympathetic/vagal balance. Fifty-two patients with PD and 24 healthy controls were included in the study. All participants underwent clinical examination and 3T MRI using 3D T1-weighted imaging and DTI. DTI metrics were calculated within manually drawn regions of interest. Heart rate variability was evaluated using spectral analysis of the R-R cardiac interval during REM and slow-wave sleep based on continuous overnight electrocardiographic monitoring. Respiratory frequency was measured in 30-second contiguous epochs of REM and slow-wave sleep. The relationships between imaging and cardiac variables were calculated using partial correlations followed by the multiple comparisons permutation approach. The changes in heart rate and respiratory frequency variability from slow-wave sleep to REM sleep in healthy controls were no longer detectable in patients with PD. There were significant increases in the mean (p = 0.006), axial (p = 0.006), and radial diffusivities (p = 0.005) in the medulla oblongata of patients with PD. In PD, diffusion changes were specifically correlated with a lower heart rate and respiratory frequency variability during REM sleep. This study provides evidence that medulla oblongata damage underlies cardiac sympathetic/vagal balance and respiratory dysfunction in patients with PD. © 2016 American Academy of Neurology.

  8. Echocardiographic study of cardiac dysfunction in patients of chronic kidney disease on hemodialysis

    International Nuclear Information System (INIS)

    Arshi, S.; Butt, G.U.D.; Mian, F.A.

    2016-01-01

    Objective: The objective of this study was to see echocardiographic findings of cardiac dysfunction in patients of chronic kidney disease (CKD) on hemodialysis. Study Design: Comparative cross sectional study. Place and Duration of Study: Department of nephrology, Pakistan Institute of Medical Sciences. Islamabad from September 2014 to February 2015. Patients and Methods: One hundred patients of either gender were included in this study. Fifty patients of chronic kidney disease stage V on hemodialysis were taken for echocardiography and fifty were normal. Echocardiography was done for cardiac dysfunction. Systolic function was measured by ejection fraction (EF) and fractional shortening (FS). Diastolic function was measured by E/A ratio. Results: Out of 100 patients included in the study, 50 patients were on hemodialysis and 50 were control. Left ventricular end systolic and end diastolic volumes were higher in patients on hemodialysis than controls as well as left atrial enlargement and inter ventricular septum which was statistically significant. Ejection fraction, although normal and fractional shortening decreased in patients on hemodialysis (p<0.05). Diastolic dysfunction was present in 36 patients on hemodialysis, while absent in the control group. Conclusion: Patients with chronic kidney disease on hemodialysis have higher prevalence of cardiac dysfunction. (author)

  9. Chemotherapy-Induced Cardiotoxicity: Subclinical Cardiac Dysfunction Evidence Using Speckle Tracking Echocardiography

    OpenAIRE

    Monte, Ines; Bottari, Vera Elena; Buccheri, Sergio; Blundo, Anita; Sirugo, Luana; Leggio, Stefano; Licciardi, Salvatore

    2013-01-01

    Objectives: In our study, we aimed to identify early markers of cardiac dysfunction in patients treated with mitoxantrone. We also looked at cardiac functional changes during therapy by analyzing longitudinal deformation and by measuring left ventricular (LV) and left atrial (LA) global strain. Materials and Methods: LA and LV global longitudinal strain were analyzed in 20 patients affected by multiple sclerosis and treated with mitoxantrone. Patients underwent echocardiography before treatme...

  10. Association of morning blood pressure surge with carotid intima-media thickness and cardiac dysfunction in patients with cardiac syndrome-X.

    Science.gov (United States)

    Mahfouz, Ragab A; Goda, Mohammad; Galal, Islam; Ghareb, Mohamed S

    2018-05-23

    Background & hypothesis: We hypothesized that exaggerated morning blood pressure surge, may contribute in cardiac dysfunction and arterial stiffness in patients with cardiac syndrome X. Thus we investigated the impact of morning blood pressure surge on cardiac function and carotid intima-media thickness in subjects with cardiac syndrome X. We studied patients with cardiac syndrome X using ambulatory blood pressure monitoring and investigated the association of morning blood pressure surge with carotid intima thickness, left atrial volume index and left ventricular filling (E/e'). Seventy patients with cardiac syndrome X were enrolled for the study and compared with 70 age and sex matched controls. Patients with cardiac syndrome X were stratified based on the systolic morning blood pressure surge value of control subjects to patients with exaggerated blood pressure surge (n = 42) and those with normal morning blood pressure surge (n = 28). Basal heart rate (p blood pressure surge group than those with morning blood pressure surge group. Morning blood pressure surge was significantly correlated with carotid intima-media thickness, high sensitive C-reactive protein, left atrial volume index and E/e' ratio in patients with cardiac syndrome X. In multivariate analysis, exaggerated morning blood pressure surge was the only independent predictor of increased carotid intima-media thickness (OR = 2.379; p blood pressure surge is an independent predictor for arterial stiffness and diastolic dysfunction in patients with cardiac syndrome X.

  11. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    OpenAIRE

    Kandadi, Machender R; Yu, Xuejun; Frankel, Arthur E; Ren, Jun

    2012-01-01

    Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT) and cardiac-specific catalase overexpression mice were challenged...

  12. Evolution of echocardiography in subclinical detection of cancer therapy-related cardiac dysfunction.

    Science.gov (United States)

    Moudgil, Rohit; Hassan, Saamir; Palaskas, Nicolas; Lopez-Mattei, Juan; Banchs, Jose; Yusuf, Syed Wamique

    2018-05-11

    Cancer therapies have resulted in increased survivorship in oncological patients. However, the benefits have been marred by the development of premature cardiovascular disease. The current definition outlines measurement of ejection fraction as a mean to diagnose cancer therapeutic-related cardiac dysfunction (CTRCD); however, up to 58% of the patients do not regain their cardiac function after the CTRCD diagnosis, despite therapeutic interventions. Therefore, there has been a growing interest in the markers for early myocardial changes (ie, changes with normal left ventricular ejection fraction [LVEF]) that may predict the development of subsequent left ventricular ejection fraction reduction or progression to heart failure. This review will highlight the use of diastolic parameters, tissue Doppler imaging (TDI), and speckle tracking echocardiogram (STE) as emerging technologies which can potentially detect cardiac dysfunction thereby stratifying patients for cardioprotective therapies. The goal of this manuscript was to highlight the concepts and discuss the current controversies surrounding these echocardiographic imaging modalities. © 2018 Wiley Periodicals, Inc.

  13. Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor

    Directory of Open Access Journals (Sweden)

    Zhang WW

    2017-10-01

    mmHg, p<0.05 and ejection fraction (82%±3% vs 60%±5%, p<0.05. Treatment with telmisartan provided a comparable level of protection as compared with edaravone in all the parameters measured. Taken together, edaravone treatment ameliorates cardiac fibrosis and improves left ventricular function in the pressure overload rat model, potentially via suppressing the AT1 receptor-mediated signaling pathways. These data indicate that edaravone might be selected in combination with other existing drugs in preventing progression of cardiac dysfunction in heart failure. Keywords: angiotensin II receptor, cardiac fibrosis, cardiac function, edaravone, heart failure

  14. Modern nuclear cardiac imaging in diagnosis and clinical management of patients with left ventricular dysfunction.

    Science.gov (United States)

    Abidov, A; Hachamovitch, R; Berman, D S

    2004-12-01

    Congestive heart failure (CHF) has become a large social burden in modern Western society, with very high morbidity and mortality and extremely large financial costs. The largest cause of CHF is coronary heart disease, with ventricular dysfunction that may or may not be reversible by revascularization. Thus, evaluation of the viable myocardial tissue in patients with ischemic left ventricular (LV) dysfunction has important clinical and therapeutic implications. Furthermore, since patients with ventricular dysfunction are at higher operative risk, cardiologists and cardiac surgeons are commonly faced with issues regarding the balance between the potential risk vs benefit of revascularization procedures. Cardiac nuclear imaging [myocardial perfusion SPECT (MPS) and positron emission tomography (PET)] provide objective information that augments standard clinical and angiographic assessments of patients with ventricular dysfunction with respect to diagnosis (etiology), prognosis, and potential benefit from intervention. Development of the technology and methodology of gated MPS, now the routine method for MPS, allows assessment of the extent and severity of inducible ischemia as well as hypoperfused but viable myocardium, and also provides measurements of LV ejection fraction, regional wall motion, LV volume measurements, diastolic function and LV geometry. With PET, myocardial metabolism and blood flow reserve can be added to the measurements provided by nuclear cardiology procedures. This paper provides insight into the current evidence regarding settings in which nuclear cardiac imaging procedures are helpful in assessment of patients in the setting of coronary artery disease with severe LV dysfunction. A risk-benefit approach to MPS results is proposed, with principal focus on identifying patients at risk for major cardiac events who may benefit from myocardial revascularization.

  15. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Bidya Dhar [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Tatireddy, Srujana [National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037 (India); Koneru, Meghana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Borkar, Roshan M. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Kumar, Jerald Mahesh [CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500 007 (India); Kuncha, Madhusudana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Srinivas, R. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Shyam Sunder, R. [Faculty of Pharmacy, Osmania University, Hyderabad 500 007 (India); Sistla, Ramakrishna, E-mail: sistla@iict.res.in [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India)

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in

  16. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Marchesi Bozi

    2013-04-01

    Full Text Available OBJECTIVES: The present study was performed to investigate 1 whether aerobic exercise training prior to myocardial infarction would prevent cardiac dysfunction and structural deterioration and 2 whether the potential cardiac benefits of aerobic exercise training would be associated with preserved morphological and contractile properties of cardiomyocytes in post-infarct remodeled myocardium. METHODS: Male Wistar rats underwent an aerobic exercise training protocol for eight weeks. The rats were then assigned to sham surgery (SHAM, sedentary lifestyle and myocardial infarction or exercise training and myocardial infarction groups and were evaluated 15 days after the surgery. Left ventricular tissue was analyzed histologically, and the contractile function of isolated myocytes was measured. Student's t-test was used to analyze infarct size and ventricular wall thickness, and the other parameters were analyzed by the Kruskal-Wallis test followed by Dunn's test or a one-way analysis of variance followed by Tukey's test (p<0.05. RESULTS: Myocardial infarctions in exercise-trained animals resulted in a smaller myocardial infarction extension, a thicker infarcted wall and less collagen accumulation as compared to myocardial infarctions in sedentary animals. Myocardial infarction-induced left ventricular dilation and cardiac dysfunction, as evaluated by +dP/dt and -dP/dt, were both prevented by previous aerobic exercise training. Moreover, aerobic exercise training preserved cardiac myocyte shortening, improved the maximum shortening and relengthening velocities in infarcted hearts and enhanced responsiveness to calcium. CONCLUSION: Previous aerobic exercise training attenuated the cardiac dysfunction and structural deterioration promoted by myocardial infarction, and such benefits were associated with preserved cardiomyocyte morphological and contractile properties.

  17. Garlic activates SIRT-3 to prevent cardiac oxidative stress and mitochondrial dysfunction in diabetes.

    Science.gov (United States)

    Sultana, Md Razia; Bagul, Pankaj K; Katare, Parameshwar B; Anwar Mohammed, Soheb; Padiya, Raju; Banerjee, Sanjay K

    2016-11-01

    Cardiac complications are major contributor in the mortality of diabetic people. Mitochondrial dysfunctioning is a crucial contributor for the cardiac complications in diabetes, and SIRT-3 remains the major mitochondrial deacetylase. We hypothesized whether garlic has any role on SIRT-3 to prevent mitochondrial dysfunction in diabetic heart. Rats with developed hyperglycemia after STZ injection were divided into two groups; diabetic (Dia) and diabetic+garlic (Dia+Garl). Garlic was administered at a dose of 250mg/kg/day, orally for four weeks. An additional group was maintained to evaluate the effect of raw garlic administration on control rat heart. We have observed altered functioning of cardiac mitochondrial enzymes involved in metabolic pathways, and increased levels of cardiac ROS with decreased activity of catalase and SOD in diabetic rats. Cardiac mRNA expression of TFAM, PGC-1α, and CO1 was also altered in diabetes. In addition, reduced levels of electron transport chain complexes that observed in Dia group were normalized with garlic administration. This indicates the presence of increased oxidative stress with mitochondrial dysfunctioning in diabetic heart. We have observed reduced activity of SIRT3 and increased acetylation of MnSOD. Silencing SIRT-3 in cells also revealed the same. However, administration of garlic improved the SIRT-3 and MnSOD activity, by deacetylating MnSOD. Increased SOD activity was correlated with reduced levels of ROS in garlic-administered rat hearts. Collectively, our results provide an insight into garlic's protection to T1DM heart through activation of SIRT3-MnSOD pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  19. Cardiac Autonomic Dysfunction in Type 2 Diabetes – Effect of Hyperglycemia and Disease Duration

    OpenAIRE

    Mika P. Tarvainen; Mika P. Tarvainen; Tomi Petteri Laitinen; Jukka Antero Lipponen; David eCornforth; Herbert eJelinek

    2014-01-01

    Heart rate variability (HRV) is reduced in diabetes mellitus (DM) patients, suggesting dysfunction of cardiac autonomic regulation and an increased risk for cardiac events. The aim of this paper was to examine the associations of blood glucose level (BGL), glycated hemoglobin (HbA1c) and duration of diabetes with cardiac autonomic regulation assessed by HRV analysis. Resting electrocardiogram (ECG), recorded over 20 minutes in supine position, and clinical measurements of 189 healthy controls...

  20. Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock

    DEFF Research Database (Denmark)

    Widlund, Anne Lykkegaard; Wang, H.; Guan, Y.

    2014-01-01

    for glucose, insulin, corticosterone, total glucagon-like peptide (GLP-1), glucagon, and serum cytokine levels. The Homeostatic Model AssessmentYInsulin Resistance index was used to quantify insulin resistance. Results: RSV supplementation following HS significantly improved mitochondrial function...... resuscitation would ameliorate HS-induced mitochondrial dysfunction and improve hyperglycemia following acute blood loss. Methods: With the use a decompensated HS model, male Long-Evans rats (n = 6 per group) were resuscitated with lactated Ringer's solution with or without RSV (30 mg/kg) and were killed before.......2 mg/dL vs. 359.0 ± 79.5 mg/dL, p Model...

  1. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress.

    Science.gov (United States)

    Carvajal, Karla; Balderas-Villalobos, Jaime; Bello-Sanchez, Ma Dolores; Phillips-Farfán, Bryan; Molina-Muñoz, Tzindilu; Aldana-Quintero, Hugo; Gómez-Viquez, Norma L

    2014-11-01

    Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cardiac Autonomic Dysfunction in Type 2 Diabetes – Effect of Hyperglycemia and Disease Duration

    OpenAIRE

    Tarvainen, Mika P.; Laitinen, Tomi P.; Lipponen, Jukka A.; Cornforth, David J.; Jelinek, Herbert F.

    2014-01-01

    Heart rate variability (HRV) is reduced in diabetes mellitus (DM) patients, suggesting dysfunction of cardiac autonomic regulation and an increased risk for cardiac events. The aim of this paper was to examine the associations of blood glucose level (BGL), glycated hemoglobin (HbA1c), and duration of diabetes with cardiac autonomic regulation assessed by HRV analysis. Resting electrocardiogram (ECG), recorded over 20 min in supine position, and clinical measurements of 189 healthy controls an...

  3. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy.

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F; Roe, Nathan D; Hu, Nan; Gao, Feng; Ren, Jun

    2012-09-15

    Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kanouchi

    Full Text Available Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, a solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence-accelerated P8 mouse. Senescence-accelerated P8 mice were fed 0.25% (w/w concentrated Kurozu or 0.5% (w/w Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect; however, the level of lipid peroxidation in the brain did not differ in senescence-accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. The suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons.

  5. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    Science.gov (United States)

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-01

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4.

  6. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    Science.gov (United States)

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  7. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout

    Science.gov (United States)

    Balbo, Bruno E.; Amaral, Andressa G.; Fonseca, Jonathan M.; de Castro, Isac; Salemi, Vera M.; Souza, Leandro E.; dos Santos, Fernando; Irigoyen, Maria C.; Qian, Feng; Chammas, Roger; Onuchic, Luiz F.

    2016-01-01

    Alterations in myocardial wall texture stand out among ADPKD cardiovascular manifestations, in hypertensive and normotensive patients. To elucidate their pathogenesis, we analyzed the cardiac phenotype in Pkd1cond/cond:Nestincre (CYG+) cystic mice exposed to increased blood pressure, at 5–6 and 20–24 weeks of age, and Pkd1+/− (HTG+) noncystic mice at 5–6 and 10–13 weeks. Echocardiographic analyses revealed decreased myocardial deformation and systolic function in CYG+ and HTG+ mice, as well as diastolic dysfunction in older CYG+ mice, compared to their Pkd1cond/cond and Pkd1+/+ controls. Hearts from CYG+ and HTG+ mice presented reduced polycystin-1 expression, increased apoptosis and mild fibrosis. Since galectin-3 has been associated with heart dysfunction, we studied it as a potential modifier of the ADPKD cardiac phenotype. Double-mutant Pkd1cond/cond:Nestincre;Lgals3−/− (CYG−) and Pkd1+/−;Lgals3−/− (HTG−) mice displayed improved cardiac deformability and systolic parameters compared to single-mutants, not differing from their controls. CYG− and HTG− showed decreased apoptosis and fibrosis. Analysis of a severe cystic model (Pkd1V/V; VVG+) showed that Pkd1V/V;Lgals3−/− (VVG−) mice have longer survival, decreased cardiac apoptosis and improved heart function compared to VVG+. CYG− and VVG− animals showed no difference in renal cystic burden compared to CYG+ and VVG+ mice. Thus, myocardial dysfunction occurs in different Pkd1-deficient models and suppression of galectin-3 expression rescues this phenotype. PMID:27475230

  8. Discriminating between cardiac and pulmonary dysfunction in the general population with dyspnea by plasma pro-B-type natriuretic peptide

    DEFF Research Database (Denmark)

    Mogelvang, R; Goetze, JP; Schnohr, P

    2007-01-01

    OBJECTIVES: This study was designed to determine whether measurement of plasma pro-B-type natriuretic peptide (proBNP) could be used in discriminating between cardiac and pulmonary dyspnea in the general population. BACKGROUND: Natriuretic peptides are useful markers in ruling out acute cardiac d......% to 17%). CONCLUSIONS: In the general population with dyspnea, plasma proBNP concentrations are increased in left ventricular dilatation, hypertrophy, systolic dysfunction, or diastolic dysfunction, but are unaffected by pulmonary dysfunction.......OBJECTIVES: This study was designed to determine whether measurement of plasma pro-B-type natriuretic peptide (proBNP) could be used in discriminating between cardiac and pulmonary dyspnea in the general population. BACKGROUND: Natriuretic peptides are useful markers in ruling out acute cardiac...... dyspnea in the emergency department, but their diagnostic significance in evaluating chronic dyspnea in the general population is unknown. METHODS: Within the Copenhagen City Heart Study, a large, community-based population study, dyspnea was evaluated by spirometry, oxygen saturation, echocardiography...

  9. The effect of preoperative renal dysfunction with or without dialysis on early postoperative outcome following cardiac surgery.

    LENUS (Irish Health Repository)

    Al-Sarraf, Nael

    2011-01-01

    Although previous studies have shown increased mortality in renal dysfunction patients undergoing cardiac surgery, there is lack of data on the pattern of postoperative complications that occur in such patients and their distribution among dialysis and non-dialysis dependent renal dysfunction.

  10. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    OpenAIRE

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged ...

  11. Acute hypopituitarism associated with periorbital swelling and cardiac dysfunction in a patient with pituitary tumor apoplexy: a case report.

    Science.gov (United States)

    Ohara, Nobumasa; Yoneoka, Yuichiro; Seki, Yasuhiro; Akiyama, Katsuhiko; Arita, Masataka; Ohashi, Kazumasa; Suzuki, Kazuo; Takada, Toshinori

    2017-08-24

    Pituitary tumor apoplexy is a rare clinical syndrome caused by acute hemorrhage or infarction in a preexisting pituitary adenoma. It typically manifests as an acute episode of headache, visual disturbance, mental status changes, cranial nerve palsy, and endocrine pituitary dysfunction. However, not all patients present with classical symptoms, so it is pertinent to appreciate the clinical spectrum of pituitary tumor apoplexy presentation. We report an unusual case of a patient with pituitary tumor apoplexy who presented with periorbital edema associated with hypopituitarism. An 83-year-old Japanese man developed acute anterior hypopituitarism; he showed anorexia, fatigue, lethargy, severe bilateral periorbital edema, and mild cardiac dysfunction in the absence of headache, visual disturbance, altered mental status, and cranial nerve palsy. Magnetic resonance imaging showed a 2.5-cm pituitary tumor containing a mixed pattern of solid and liquid components indicating pituitary tumor apoplexy due to hemorrhage in a preexisting pituitary adenoma. Replacement therapy with oral hydrocortisone and levothyroxine relieved his symptoms of central adrenal insufficiency, central hypothyroidism, periorbital edema, and cardiac dysfunction. Common causes of periorbital edema include infections, inflammation, trauma, allergy, kidney or cardiac dysfunction, and endocrine disorders such as primary hypothyroidism. In the present case, the patient's acute central hypothyroidism was probably involved in the development of both periorbital edema and cardiac dysfunction. The present case highlights the need for physicians to consider periorbital edema as an unusual predominant manifestation of pituitary tumor apoplexy.

  12. Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes.

    Science.gov (United States)

    Zhao, Peng; Turdi, Subat; Dong, Feng; Xiao, Xiaoyan; Su, Guohai; Zhu, Xinglei; Scott, Glenda I; Ren, Jun

    2009-07-01

    Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in

  13. Mediastinal Bronchogenic Cyst With Acute Cardiac Dysfunction: Two-Stage Surgical Approach.

    Science.gov (United States)

    Smail, Hassiba; Baste, Jean Marc; Melki, Jean; Peillon, Christophe

    2015-10-01

    We describe a two-stage surgical approach in a patient with cardiac dysfunction and hemodynamic compromise resulting from a massive and compressive mediastinal bronchogenic cyst. To drain this cyst, video-assisted mediastinoscopy was performed as an emergency procedure, which immediately improved the patient's cardiac function. Five days later and under video thoracoscopy, resection of the cyst margins was impossible because the cyst was tightly adherent to the left atrium. We performed deroofing of this cyst through a right thoracotomy. The patient had an uncomplicated postoperative recovery, and no recurrence was observed at the long-term follow-up visit. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Left atrial dysfunction in type 2 diabetes mellitus: insights from cardiac MRI

    Energy Technology Data Exchange (ETDEWEB)

    Graca, Bruno; Donato, Paulo; Caseiro-Alves, Filipe [University of Coimbra, Faculty of Medicine, Coimbra (Portugal); Coimbra' s Hospital Centre and University, Medical Imaging Department, Coimbra (Portugal); Joao Ferreira, Maria [University of Coimbra, Faculty of Medicine, Coimbra (Portugal); Coimbra' s Hospital Centre and University, Cardiology Department, Coimbra (Portugal); Gomes, Leonor [University of Coimbra, Faculty of Medicine, Coimbra (Portugal); Coimbra' s Hospital Centre and University, Endocrinology Department, Coimbra (Portugal); Castelo-Branco, Miguel [University of Coimbra, Faculty of Medicine, Coimbra (Portugal)

    2014-11-15

    The left atrium (LA) modulates left ventricular filling through reservoir, conduit and booster pump functions. Only limited data exist on LA involvement in type 2 diabetes mellitus (DM2). This study sought to assess LA function in asymptomatic DM2 with cardiac MRI. We hypothesized that cardiac MRI can detect LA dysfunction in asymptomatic DM2. Forty-five patients with asymptomatic DM2 and 24 normoglycaemic controls were studied. MRI cine imaging was performed to measure LA maximal and minimal volumes. A flow-sensitive phase-contrast gradient-echo sequence was used for flow measurements perpendicular to the orifice of the mitral valve, to quantify active LA stroke volume. LA total, passive and active emptying volumes and fractions were calculated. LA reservoir function, namely LA total ejection fraction, was significantly greater in controls compared to patients with DM2 (62.2 ± 5.2 vs 57.0 ± 7.6 %, P = 0.004). LA passive ejection fraction was also greater in the controls (26.2 ± 9.5 vs 16.1 ± 11.0 %, P < 0.001). Regarding parameters of LA booster pump function, LA active ejection fraction was not significantly different between groups. DM2 was demonstrated to be an independent determinant of LA function. Cardiac MRI enables the detection of LA dysfunction in asymptomatic DM2, characterized by a reduction in LA reservoir and conduit functions. (orig.)

  15. Oxidized CaMKII causes cardiac sinus node dysfunction in mice

    OpenAIRE

    Swaminathan, Paari Dominic; Purohit, Anil; Soni, Siddarth; Voigt, Niels; Singh, Madhu V.; Glukhov, Alexey V.; Gao, Zhan; He, B. Julie; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Kutschke, William; Yang, Jinying; Donahue, J. Kevin; Weiss, Robert M.; Grumbach, Isabella M.

    2011-01-01

    Sinus node dysfunction (SND) is a major public health problem that is associated with sudden cardiac death and requires surgical implantation of artificial pacemakers. However, little is known about the molecular and cellular mechanisms that cause SND. Most SND occurs in the setting of heart failure and hypertension, conditions that are marked by elevated circulating angiotensin II (Ang II) and increased oxidant stress. Here, we show that oxidized calmodulin kinase II (ox-CaMKII) is a biomark...

  16. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice.

    Science.gov (United States)

    Hong, Fashui; Wu, Nan; Zhao, Xiangyu; Tian, Yusheng; Zhou, Yingjun; Chen, Ting; Zhai, Yanyu; Ji, Li

    2016-12-01

    In the past two decades, titanium dioxide nanoparticles (TiO 2 NPs) have been extensively used in medicine, food industry and other daily life, while their possible interactions with the their influence and human body on human health remain not well understood. Thus, the study was designed to examine whether long-term exposure to TiO 2 NPs cause myocardial dysfunction which is involved in cardiac lesions and alter expression of genes and proteins involving inflammatory response in the mouse heart. The findings showed that intragastric feeding for nine consecutive months with TiO 2 NPs resulted in titanium accumulation, infiltration of inflammatory cells and apoptosis of heart, reductions in net increases of body weight, cardiac indices of function (LV systolic pressure, maximal rate of pressure increase over time, maximal rate of pressure decrease over time and coronary flow), and increases in heart indices, cardiac indices of function (LV end-diastolic pressure and heart rate) in mice. TiO 2 NPs also decreased ATP production in the hearts. Furthermore, TiO 2 NPs increased expression of nuclear factor-κB, interleukin-lβ and tumour necrosis factor-α, and reduced expression of anti-inflammatory cytokines including suppressor of cytokine signaling (SOCS) 1 and SOCS3 in the cardiac tissue. These results suggest that TiO 2 NPs may modulate the cardiac function and expression of inflammatory cytokines. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2917-2927, 2016. © 2016 Wiley Periodicals, Inc.

  17. The Prevalence, Correlates, and Impact on Cardiac Mortality of Right Ventricular Dysfunction in Nonischemic Cardiomyopathy.

    Science.gov (United States)

    Pueschner, Andreas; Chattranukulchai, Pairoj; Heitner, John F; Shah, Dipan J; Hayes, Brenda; Rehwald, Wolfgang; Parker, Michele A; Kim, Han W; Judd, Robert M; Kim, Raymond J; Klem, Igor

    2017-10-01

    This study sought to determine the prevalence, correlates, and impact on cardiac mortality of right ventricular (RV) dysfunction in nonischemic cardiomyopathy. Current heart failure guidelines place little emphasis on RV assessment due to limited available data on determinants of RV function, mechanisms leading to its failure, and relation to outcomes. We prospectively studied 423 patients with cardiac magnetic resonance (CMR). The pre-specified study endpoint was cardiac mortality. In 100 patients, right heart catheterization was performed as clinically indicated. During a median follow-up time of 6.2 years (interquartile range: 2.9 to 7.6 years), 101 patients (24%) died of cardiac causes. CMR right ventricular ejection fraction (RVEF) was a strong independent predictor of cardiac mortality after adjustment for age, heart failure-functional class, blood pressure, heart rate, serum sodium, serum creatinine, myocardial scar, and left ventricular ejection fraction (LVEF). Patients with the lowest quintile of RVEF had a nearly 5-fold higher cardiac mortality risk than did patients with the highest quintile (hazard ratio: 4.68; 95% confidence interval [CI]: 2.43 to 9.02; p right atrial pressure (r = -0.32; p = 0.001), pulmonary artery pressure (r = -0.34; p = 0.0005), transpulmonary gradient (r = -0.28; p = 0.006) but not with pulmonary wedge pressure (r = -0.15; p = 0.13). In multivariable logistic regression analysis of CMR, clinical, and hemodynamic data the strongest predictors of right ventricular dysfunction were LVEF (odds ratio [OR]: 0.85; 95% CI: 0.78 to 0.92; p Right ventricular dysfunction is strongly associated with both indices of intrinsic myocardial contractility and increased afterload from pulmonary vascular dysfunction. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Treatment of Angina and Microvascular Coronary Dysfunction

    Science.gov (United States)

    Samim, Arang; Nugent, Lynn; Mehta, Puja K.; Shufelt, Chrisandra; Merz, C. Noel Bairey

    2014-01-01

    Opinion statement Microvascular coronary dysfunction (MCD) is an increasingly recognized cause of cardiac ischemia and angina, more commonly diagnosed in women. Patients with MCD present with the triad of persistent chest pain, ischemic changes on stress testing, and no obstructive coronary artery disease (CAD) on cardiac catheterization. Data from National Heart, Lung and Blood Institute (NHLBI)-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study has shown that the diagnosis of MCD is not benign, with a 2.5% annual risk of adverse cardiac events including myocardial infarction, stroke, congestive heart failure, or death. The gold standard diagnostic test for MCD is an invasive coronary reactivity test (CRT), which uses acetylcholine, adenosine, and nitroglycerin to test the endothelial dependent and independent, microvascular and macrovascular coronary function. The CRT allows for diagnostic and treatment options as well as further risk stratifying patients for future cardiovascular events. Treatment of angina and MCD should be aimed at ischemia disease management to reduce risk of adverse cardiac events, ameliorating symptoms to improve quality of life, and to decrease the morbidity from unnecessary and repeated cardiac catheterization in patients with open coronary arteries. A comprehensive treatment approach aimed at risk factor managment, including lifestyle counseling regarding smoking cessation, nutrition and physical activity should be initiated. Current pharmacotherapy for MCD can include the treatment of microvascular endothelial dysfunction (statins, angiotensin-converting enzyme inhibitor, low dose aspirin), as well as treatment for angina and myocardial ischemia (beta blockers, calcium channel blockers, nitrates, ranolazine). Additional symptom management techniques can include tri-cyclic medication, enhanced external counterpulsation, autogenic training, and spinal cord stimulation. While our current therapies are effective in the treatment

  19. Artificial aortic valve dysfunction due to pannus and thrombus - different methods of cardiac surgical management.

    Science.gov (United States)

    Ostrowski, Stanisław; Marcinkiewicz, Anna; Kośmider, Anna; Walczak, Andrzej; Zwoliński, Radosław; Jaszewski, Ryszard

    2015-09-01

    Approximately 60 000 prosthetic valves are implanted annually in the USA. The risk of prosthesis dysfunction ranges from 0.1% to 4% per year. Prosthesis valve dysfunction is usually caused by a thrombus obstructing the prosthetic discs. However, 10% of prosthetic valves are dysfunctional due to pannus formation, and 12% of prostheses are damaged by both fibrinous and thrombotic components. The authors present two patients with dysfunctional aortic prostheses who were referred for cardiac surgery. Different surgical solutions were used in the treatment of each case. The first patient was a 71-year-old woman whose medical history included arterial hypertension, stable coronary artery disease, diabetes mellitus, chronic obstructive pulmonary disease (COPD), and hypercholesterolemia; she had previously undergone left-sided mastectomy and radiotherapy. The patient was admitted to the Cardiac Surgery Department due to aortic prosthesis dysfunction. Transthoracic echocardiography revealed complete obstruction of one disc and a severe reduction in the mobility of the second. The mean transvalvular gradient was very high. During the operation, pannus covering the discs' surface was found. A biological aortic prosthesis was reimplanted without complications. The second patient was an 87-year-old woman with arterial hypertension, persistent atrial fibrillation, and COPD, whose past medical history included gastric ulcer disease and ischemic stroke. As in the case of the first patient, she was admitted due to valvular prosthesis dysfunction. Preoperative transthoracic echocardiography revealed an obstruction of the posterior prosthetic disc and significant aortic regurgitation. Transesophageal echocardiography and fluoroscopy confirmed the prosthetic dysfunction. During the operation, a thrombus growing around a minor pannus was found. The thrombus and pannus were removed, and normal functionality of the prosthetic valve was restored. Precise and modern diagnostic methods

  20. Ameliorative Activity of Ethanol Extract of Artocarpus heterophyllus Stem Bark on Pancreatic β-Cell Dysfunction in Alloxan-Induced Diabetic Rats.

    Science.gov (United States)

    Ajiboye, Basiru O; Ojo, Oluwafemi A; Adeyonu, Oluwatosin; Imiere, Oluwatosin D; Fadaka, Adewale O; Osukoya, Adetutu O

    2017-10-01

    This study sought to investigate the ameliorative effects of ethanol extract Artocarpus heterophyllus (EAH) in alloxan-induced diabetic rats. The rats were divided into 6 groups, with groups 1 and 2 serving as nondiabetic and diabetic control, respectively; group 3 serving as diabetic rats treated with 5 mg/kg glibenclamide; and groups 4 to 6 were diabetic rats treated with 50, 100, and 150 mg/kg of EAH, respectively. Assays determined were serum insulin, lipid peroxidation, and antioxidant enzyme activities. EAH stem bark reduced fasting blood glucose and lipid peroxidation levels and increased serum insulin levels and activities of antioxidant enzymes. Data obtained demonstrated the ability of EAH stem bark to ameliorate pancreatic β-cell dysfunction in alloxan-induced diabetic rats.

  1. Postoperative Pulmonary Dysfunction and Mechanical Ventilation in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Rafael Badenes

    2015-01-01

    Full Text Available Postoperative pulmonary dysfunction (PPD is a frequent and significant complication after cardiac surgery. It contributes to morbidity and mortality and increases hospitalization stay and its associated costs. Its pathogenesis is not clear but it seems to be related to the development of a systemic inflammatory response with a subsequent pulmonary inflammation. Many factors have been described to contribute to this inflammatory response, including surgical procedure with sternotomy incision, effects of general anesthesia, topical cooling, and extracorporeal circulation (ECC and mechanical ventilation (VM. Protective ventilation strategies can reduce the incidence of atelectasis (which still remains one of the principal causes of PDD and pulmonary infections in surgical patients. In this way, the open lung approach (OLA, a protective ventilation strategy, has demonstrated attenuating the inflammatory response and improving gas exchange parameters and postoperative pulmonary functions with a better residual functional capacity (FRC when compared with a conventional ventilatory strategy. Additionally, maintaining low frequency ventilation during ECC was shown to decrease the incidence of PDD after cardiac surgery, preserving lung function.

  2. Decreased Polycystin 2 Levels Result in Non-Renal Cardiac Dysfunction with Aging.

    Science.gov (United States)

    Kuo, Ivana Y; Duong, Sophie L; Nguyen, Lily; Ehrlich, Barbara E

    2016-01-01

    Mutations in the gene for polycystin 2 (Pkd2) lead to polycystic kidney disease, however the main cause of mortality in humans is cardiac related. We previously showed that 5 month old Pkd2+/- mice have altered calcium-contractile activity in cardiomyocytes, but have preserved cardiac function. Here, we examined 1 and 9 month old Pkd2+/- mice to determine if decreased amounts of functional polycystin 2 leads to impaired cardiac function with aging. We observed changes in calcium handling proteins in 1 month old Pkd2+/- mice, and these changes were exacerbated in 9 month old Pkd2+/- mice. Anatomically, the 9 month old Pkd2+/- mice had thinner left ventricular walls, consistent with dilated cardiomyopathy, and the left ventricular ejection fraction was decreased. Intriguingly, in response to acute isoproterenol stimulation to examine β-adrenergic responses, the 9 month old Pkd2+/- mice exhibited a stronger contractile response, which also coincided with preserved localization of the β2 adrenergic receptor. Importantly, the Pkd2+/- mice did not have any renal impairment. We conclude that the cardiac-related impact of decreased polycystin 2 progresses over time towards cardiac dysfunction and altered adrenergic signaling. These results provide further evidence that polycystin 2 provides a critical function in the heart, independent of renal involvement.

  3. Modulation of Cardiac Autonomic Dysfunction in Ischemic Stroke following Ayurveda (Indian System of Medicine Treatment

    Directory of Open Access Journals (Sweden)

    Sriranjini Sitaram Jaideep

    2014-01-01

    Full Text Available Objectives. Cardiac autonomic dysfunction in stroke has implications on morbidity and mortality. Ayurveda (Indian system of medicine describes stroke as pakshaghata. We intended to study the effect of Ayurveda therapies on the cardiac autonomic dysfunction. Methods. Fifty patients of ischemic stroke (middle cerebral artery territory (mean age 39.26 ± 9.88 years; male 43, female 7 were recruited within one month of ictus. All patients received standard allopathic medications as advised by neurologist. In addition, patients were randomized to receive physiotherapy (Group I or Ayurveda treatment (Group II for 14 days. Continuous electrocardiogram and finger arterial pressure were recorded for 15 min before and after treatments and analyzed offline to obtain heart rate and blood pressure variability and baroreflex sensitivity (BRS. Results were analysed by RMANOVA. Results. Patients in Group II showed statistically significant improvement in cardiac autonomic parameters. The standard deviation of normal to normal intervals,and total and low frequency powers were significantly enhanced (F=8.16, P=0.007, F=9.73, P=0.004, F=13.51, and P=0.001, resp.. The BRS too increased following the treatment period (F=10.129, P=0.004. Conclusions. The current study is the first to report a positive modulation of cardiac autonomic activity after adjuvant Ayurveda treatment in ischemic stroke. Further long term studies are warranted.

  4. Sida rhomboidea.Roxb leaf extract ameliorates gentamicin induced nephrotoxicity and renal dysfunction in rats.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjitsinh V; Ramachandran, A V

    2010-10-28

    Sida rhomboidea.Roxb (SR) known as "Mahabala" in Ayurveda and marketed as "Shahadeyi" is used in ethnomedicine to treat ailments such as dysuria and urinary disorders. To evaluate nephroprotective potential of SR against gentamicin (GM) induced nephrotoxicity and renal dysfunction. Nephrotoxicity was induced in rats with GM (100 mg/kg bodyweight (i.p.) for 8 days) and were treated with SR extract (200 and 400 mg/kg bodyweight (p.o.) for 8 days) or 0.5% carboxymethyl cellulose (vehicle). Plasma and urine urea and creatinine, renal enzymatic and non-enzymatic antioxidants along with lipid peroxidation were evaluated in various experimental groups. GM treatment induced significant elevation (p<0.05) in plasma and urine urea, creatinine, renal lipid peroxidation along with significant decrement (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR treatment to GM treated rats (GM+SR) recorded significant decrement (p<0.05) in plasma and urine urea and creatinine, renal lipid peroxidation along with significant increment (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR leaf extract ameliorates GM induced nephrotoxicity and renal dysfunction and thus validates its ethnomedicinal use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Rho-Kinase Inhibition Ameliorates Dasatinib-Induced Endothelial Dysfunction and Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Csilla Fazakas

    2018-05-01

    Full Text Available The multi-kinase inhibitor dasatinib is used for treatment of imatinib-resistant chronic myeloid leukemia, but is prone to induce microvascular dysfunction. In lung this can manifest as capillary leakage with pleural effusion, pulmonary edema or even pulmonary arterial hypertension. To understand how dasatinib causes endothelial dysfunction we examined the effects of clinically relevant concentrations of dasatinib on both human pulmonary arterial macro- and microvascular endothelial cells (ECs. The effects of dasatinib was compared to imatinib and nilotinib, two other clinically used BCR/Abl kinase inhibitors that do not inhibit Src. Real three-dimensional morphology and high resolution stiffness mapping revealed softening of both macro- and microvascular ECs upon dasatinib treatment, which was not observed in response to imatinib. In a dose-dependent manner, dasatinib decreased transendothelial electrical resistance/impedance and caused a permeability increase as well as disruption of tight adherens junctions in both cell types. In isolated perfused and ventilated rat lungs, dasatinib increased mean pulmonary arterial pressure, which was accompanied by a gain in lung weight. The Rho-kinase inhibitor Y27632 partly reversed the dasatinib-induced changes in vitro and ex vivo, presumably by acting downstream of Src. Co-administration of the Rho-kinase inhibitor Y27632 completely blunted the increased pulmonary pressure in response to dasatinib. In conclusion, a dasatinib-induced permeability increase in human pulmonary arterial macro- and microvascular ECs might explain many of the adverse effects of dasatinib in patients. Rho-kinase inhibition might be suitable to ameliorate these effects.

  6. Cardiac magnetic resonance markers of progressive RV dilation and dysfunction after tetralogy of Fallot repair

    NARCIS (Netherlands)

    Wald, Rachel M.; Valente, Anne Marie; Gauvreau, Kimberlee; Babu-Narayan, Sonya V.; Assenza, Gabriele Egidy; Schreier, Jenna; Gatzoulis, Michael A.; Kilner, Philip J.; Koyak, Zeliha; Mulder, Barbara; Powell, Andrew J.; Geva, Tal

    2015-01-01

    Patients with repaired tetralogy of Fallot (TOF) are followed serially by cardiac magnetic resonance (CMR) for surveillance of RV dilation and dysfunction. We sought to define the prevalence of progressive RV disease and the optimal time interval between CMR evaluations. Candidates were selected

  7. Dahuang Fuzi Decoction Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in Chronic Aristolochic Acid Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-xing Shui

    2017-01-01

    Full Text Available Objectives. The effects of the traditional formula Dahuang Fuzi Decoction (DFD on chronic aristolochic acid nephropathy (AAN in mice and its underlying mechanisms were studied. Methods. Mice were randomly divided into the following six groups: the control group, the model group (AAN, the saline-treated group (AAN + vehicle, the normal dose DFD-treated group (AAN + NDFD, the high dose DFD-treated group (AAN + HDFD, and the rosiglitazone treated group (AAN + Rosi. After treating for 8 weeks, 24 h urine and blood samples were collected and the mice sacrificed to study the biochemical parameters associated with renal function. The samples were analyzed for renal fibrosis and mitochondrial dysfunction (MtD markers. To achieve that, collagen III, collagen I, mitochondrial DNA copy numbers (mtDNA, mitochondrial membrane potential (MMP, ATP content, and ROS production were evaluated. Results. Our results showed that proteinuria, kidney function, and the renal pathological characteristics were improved by DFD and rosiglitazone. The expression of collagen III and collagen I decreased after treating with either DFD or rosiglitazone. Mitochondrial dysfunction based on the increase in ROS production, decrease in mitochondrial DNA copy numbers, and reduction of MMP and ATP content was improved by DFD and rosiglitazone. Conclusions. DFD could protect against renal impairments and ameliorate mitochondrial dysfunction in chronic AAN mice.

  8. Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity.

    Science.gov (United States)

    Aksentijević, Dunja; McAndrew, Debra J; Karlstädt, Anja; Zervou, Sevasti; Sebag-Montefiore, Liam; Cross, Rebecca; Douglas, Gillian; Regitz-Zagrosek, Vera; Lopaschuk, Gary D; Neubauer, Stefan; Lygate, Craig A

    2014-10-01

    Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy. To clarify the link between MCD deficiency and cardiac dysfunction in early life and to determine the contributing systemic and cardiac metabolic perturbations. MCD knockout mice ((-/-)) exhibited non-Mendelian genotype ratios (31% fewer MCD(-/-)) with deaths clustered around weaning. Immediately prior to weaning (18days) MCD(-/-) mice had lower body weights, elevated body fat, hepatic steatosis and glycogen depletion compared to wild-type littermates. MCD(-/-) plasma was hyperketonemic, hyperlipidemic, had 60% lower lactate levels and markers of cellular damage were elevated. MCD(-/-) hearts exhibited hypertrophy, impaired ejection fraction and were energetically compromised (32% lower total adenine nucleotide pool). However differences between WT and MCD(-/-) converged with age, suggesting that, in surviving MCD(-/-) mice, early cardiac dysfunction resolves over time. These observations were corroborated by in silico modelling of cardiomyocyte metabolism, which indicated improvement of the MCD(-/-) metabolic phenotype and improved cardiac efficiency when switched from a high-fat diet (representative of suckling) to a standard post-weaning diet, independent of any developmental changes. MCD(-/-) mice consistently exhibited cardiac dysfunction and severe metabolic perturbations while on a high-fat, low carbohydrate diet of maternal milk and these gradually resolved post-weaning. This suggests that dysfunction is a common feature of MCD deficiency during early development, but that severity is dependent on composition of dietary substrates. Copyright © 2014. Published by Elsevier Ltd.

  9. Artificial aortic valve dysfunction due to pannus and thrombus – different methods of cardiac surgical management

    Science.gov (United States)

    Marcinkiewicz, Anna; Kośmider, Anna; Walczak, Andrzej; Zwoliński, Radosław; Jaszewski, Ryszard

    2015-01-01

    Introduction Approximately 60 000 prosthetic valves are implanted annually in the USA. The risk of prosthesis dysfunction ranges from 0.1% to 4% per year. Prosthesis valve dysfunction is usually caused by a thrombus obstructing the prosthetic discs. However, 10% of prosthetic valves are dysfunctional due to pannus formation, and 12% of prostheses are damaged by both fibrinous and thrombotic components. The authors present two patients with dysfunctional aortic prostheses who were referred for cardiac surgery. Different surgical solutions were used in the treatment of each case. Case study 1 The first patient was a 71-year-old woman whose medical history included arterial hypertension, stable coronary artery disease, diabetes mellitus, chronic obstructive pulmonary disease (COPD), and hypercholesterolemia; she had previously undergone left-sided mastectomy and radiotherapy. The patient was admitted to the Cardiac Surgery Department due to aortic prosthesis dysfunction. Transthoracic echocardiography revealed complete obstruction of one disc and a severe reduction in the mobility of the second. The mean transvalvular gradient was very high. During the operation, pannus covering the discs’ surface was found. A biological aortic prosthesis was reimplanted without complications. Case study 2 The second patient was an 87-year-old woman with arterial hypertension, persistent atrial fibrillation, and COPD, whose past medical history included gastric ulcer disease and ischemic stroke. As in the case of the first patient, she was admitted due to valvular prosthesis dysfunction. Preoperative transthoracic echocardiography revealed an obstruction of the posterior prosthetic disc and significant aortic regurgitation. Transesophageal echocardiography and fluoroscopy confirmed the prosthetic dysfunction. During the operation, a thrombus growing around a minor pannus was found. The thrombus and pannus were removed, and normal functionality of the prosthetic valve was restored

  10. Prophylactic furosemide infusion decreasing early major postoperative renal dysfunction in on-pump adult cardiac surgery: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Fakhari S

    2017-01-01

    Full Text Available Solmaz Fakhari,1 Fariba Mirzaei Bavil,2 Eissa Bilehjani,1 Sona Abolhasani,3 Moussa Mirinazhad,2 Bahman Naghipour2 1Department of Anesthesiology, 2Department of Physiology, 3Tabriz University of Medical Sciences, Tabriz, Iran Introduction: Acute renal dysfunction is a common complication of cardiac surgery. Furosemide is used in prevention, or treatment, of acute renal dysfunction. This study was conducted to evaluate the protective effects of intra- and early postoperative furosemide infusion on preventing acute renal dysfunction in elective adult cardiac surgery. Methods: Eighty-one patients, candidates of elective cardiac surgery, were enrolled in this study in either the furosemide (n=41 or placebo (n=40 group. Furosemide (2 mg/h or 0.9% saline was administered and continued up to 12 hours postoperatively. We measured serum creatinine (Scr at preoperative and on the second and fifth postoperative days. Then calculated estimated glomerular filtration rate (eGFR at these times. An increase in Scr of >0.5 mg/dL and/or >25%–50%, compared to preoperative values, was considered as acute kidney injury (AKI. In contrast, an increase in Scr by >50% and/or the need for hemodialysis was regarded as acute renal failure (ARF. At the end we compared the AKI or ARF incidence between the two groups. Results: On the second and fifth postoperative days, Scr was lower, and the eGFR was higher in the furosemide group. AKI incidence was similar in the two groups (11 vs 12 cases; P-value 0.622; however, ARF rate was lower in furosemide group (1 vs 6 cases; P-value 0.044. During the study period, Scr was more stable in the furosemide group, however in the placebo group, Scr initially increased and then decreased to its preoperative value after a few days. Conclusion: This study showed that intra- and early postoperative furosemide infusion has a renal protective effect in adult cardiac surgery with cardiopulmonary bypass. Although this protective effect cannot

  11. Portulaca oleracea Ameliorates Diabetic Vascular Inflammation and Endothelial Dysfunction in db/db Mice

    Science.gov (United States)

    Lee, An Sook; Lee, Yun Jung; Lee, So Min; Yoon, Jung Joo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Type 2 diabetes is associated with significantly accelerated rates of micro- and macrovascular complications such as diabetic vascular inflammation and endothelial dysfunction. In the present study, we investigated the protective effect of the aqueous extract of Portulaca oleracea L. (AP), an edible plant used as a folk medicine, on diabetic vascular complications. The db/db mice were treated with AP (300 mg/kg/day, p.o.) for 10 weeks, and AP treatment markedly lowered blood glucose, plasma triglyceride, plasma level of LDL-cholesterol, and systolic blood pressure in diabetic db/db mice. Furthermore, AP significantly increased plasma level of HDL-cholesterol and insulin level. The impairment of ACh- and SNP-induced vascular relaxation of aortic rings were ameliorated by AP treatment in diabetic db/db mice. This study also showed that overexpression of VCAM-1, ICAM-1, E-selectin, MMP-2, and ET-1 were observed in aortic tissues of untreated db/db mice, which were significantly suppressed by treatment with AP. We also found that the insulin immunoreactivity of the pancreatic islets remarkably increased in AP treated db/db mice compared with untreated db/db mice. Taken together, AP suppresses hyperglycemia and diabetic vascular inflammation, and prevents the development of diabetic endothelial dysfunction for the development of diabetes and its vascular complications. PMID:22474522

  12. Prevalence and pattern of cardiac autonomic dysfunction in newly detected type 2 diabetes mellitus.

    Science.gov (United States)

    Jyotsna, Viveka P; Sahoo, Abhay; Sreenivas, V; Deepak, K K

    2009-01-01

    Cardiac autonomic functions were assessed in 145 consecutive recently detected type 2 diabetics. Ninety-nine healthy persons served as controls. Criteria for normalcy were, heart rate variation during deep breathing >or=15 beats/min, deep breathing expiratory to inspiratory R-R ratio >or=1.21, Valsalva ratio >or=1.21, sustained handgrip test >or=16 mm of mercury, cold pressor test >or=10, BP response to standing or=1.04. An abnormal test was defined as the above parameters being or=30 mm of mercury and dysfunction was found in 44.2% and sympathetic dysfunction in 51.9% diabetics. Among healthy controls, these figures were 11.9% and 22.1%, respectively. Cardiac autonomic function was normal in 7.8% patients and 32.5% healthy controls.

  13. Contribution of serum FGF21 level to the identification of left ventricular systolic dysfunction and cardiac death.

    Science.gov (United States)

    Shen, Yun; Zhang, Xueli; Pan, Xiaoping; Xu, Yiting; Xiong, Qin; Lu, Zhigang; Ma, Xiaojing; Bao, Yuqian; Jia, Weiping

    2017-08-18

    The relationship between fibroblast growth factor 21 (FGF21) and cardiovascular disease has been well established in recent studies. This study aimed to investigate the relationship between FGF21 and left ventricular systolic dysfunction and cardiac death. Two-dimensional echocardiography was used to measure the left ventricular ejection fraction (LVEF) to estimate left ventricular systolic function. The optimal cutoff of FGF21 for identifying left ventricular systolic dysfunction at baseline was analyzed via receiver operating characteristic (ROC) curves. The identification of different serum levels of FGF21 and their association with cardiac death was analyzed via Kaplan-Meier survival curves. Serum FGF21 level was measured by an enzyme-linked immunosorbent assay kit, and serum N-terminal pro-brain natriuretic peptide (NT-pro-BNP) level was determined by a chemiluminescent immunoassay. A total of 253 patients were recruited for this study at baseline. Patients were excluded if they lacked echocardiography or laboratory measurement data, and there were 218 patients enrolled in the final analysis. The average age was 66.32 ± 10.10 years. The optimal cutoff values of FGF21 and NT-pro-BNP for identifying left ventricular systolic dysfunction at baseline were 321.5 pg/mL and 131.3 ng/L, respectively, determined separately via ROC analysis. The areas under the curves were non-significant among FGF21, NT-pro-BNP and FGF21 + NT-pro-BNP as determined by pairwise comparisons. Both a higher serum level of FGF21 and a higher serum level of NT-pro-BNP were independent risk factors for left ventricular systolic dysfunction at baseline (odd ratio (OR) 3.138 [1.037-9.500], P = 0.043, OR 9.207 [2.036-41.643], P = 0.004, separately). Further Kaplan-Meier survival analysis indicated an association between both a higher serum level of FGF21 and a higher serum level of NT-pro-BNP with cardiac death in 5 years [RR 5.000 (1.326-18.861), P = 0.026; RR 9.643 (2

  14. Cardiac remodeling and myocardial dysfunction in obese spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Linz Dominik

    2012-09-01

    Full Text Available Abstract Background The additive effects of obesity and metabolic syndrome on left ventricular (LV maladaptive remodeling and function in hypertension are not characterized. Methods We compared an obese spontaneously hypertensive rat model (SHR-ob with lean spontaneously hypertensive rats (SHR-lean and normotensive controls (Ctr. LV-function was investigated by cardiac magnetic resonance imaging and invasive LV-pressure measurements. LV-interstitial fibrosis was quantified and protein levels of phospholamban (PLB, Serca2a and glucose transporters (GLUT1 and GLUT4 were determined by immunohistochemistry. Results Systolic blood pressure was similar in SHR-lean and SHR-ob (252 ± 7 vs. 242 ± 7 mmHg, p = 0.398 but was higher when compared to Ctr (155 ± 2 mmHg, p  Conclusion In addition to hypertension alone, metabolic syndrome and obesity adds to the myocardial phenotype by aggravating diastolic dysfunction and a progression towards systolic dysfunction. SHR-ob may be a useful model to develop new interventional and pharmacological treatment strategies for hypertensive heart disease and metabolic disorders.

  15. Correlation between changes in diastolic dysfunction and health-related quality of life after cardiac rehabilitation program in dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Sherin H.M. Mehani

    2013-03-01

    Full Text Available Chronic heart failure (CHF is a complex syndrome characterized by progressive decline in left ventricular function, low exercise tolerance and raised mortality and morbidity. Left ventricular diastolic dysfunction plays a major role in CHF and progression of most cardiac diseases. The current recommended goals can theoretically be accomplished via exercise and pharmacological therapy so the aim of the present study was to evaluate the impact of cardiac rehabilitation program on diastolic dysfunction and health related quality of life and to determine the correlation between changes in left ventricular diastolic dysfunction and domains of health-related quality of life (HRQoL. Forty patients with chronic heart failure were diagnosed as having dilated cardiomyopathy (DCM with systolic and diastolic dysfunction. The patients were equally and randomly divided into training and control groups. Only 30 of them completed the study duration. The training group participated in rehabilitation program in the form of circuit-interval aerobic training adjusted according to 55–80% of heart rate reserve for a period of 7 months. Circuit training improved both diastolic and systolic dysfunction in the training group. On the other hand, only a significant correlation was found between improvement in diastolic dysfunction and health related quality of life measured by Kansas City Cardiomyopathy Questionnaire. It was concluded that improvement in diastolic dysfunction as a result of rehabilitation program is one of the important underlying mechanisms responsible for improvement in health-related quality of life in DCM patients.

  16. Ginsenoside Re Ameliorates Brain Insulin Resistance and Cognitive Dysfunction in High Fat Diet-Induced C57BL/6 Mice.

    Science.gov (United States)

    Kim, Jong Min; Park, Chang Hyeon; Park, Seon Kyeong; Seung, Tae Wan; Kang, Jin Yong; Ha, Jeong Su; Lee, Du Sang; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2017-04-05

    The ameliorating effects of ginsenoside Re (G Re) on high fat diet (HFD)-induced insulin resistance in C57BL/6 mice were investigated to assess its physiological function. In the results of behavioral tests, G Re improved cognitive dysfunction in diabetic mice using Y-maze, passive avoidance, and Morris water maze tests. G Re also significantly recovered hyperglycemia and fasting blood glucose level. In the results of serum analysis, G Re decreased triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDLC), glutamic-oxaloacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) and increased the ratio of high-density lipoprotein cholesterol (HDLC). G Re regulated acetylcholine (ACh), acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), and oxidized glutathione (GSH)/total GSH by regulating the c-Jun N-terminal protein kinase (JNK) pathway. These findings suggest that G Re could be used to improve HFD-induced insulin resistance condition by ameliorating hyperglycemia via protecting the cholinergic and antioxidant systems in the mouse brains.

  17. Evaluation of early cardiac dysfunction in patients with systemic lupus erythematosus with or without anticardiolipin antibodies.

    Science.gov (United States)

    Barutcu, A; Aksu, F; Ozcelik, F; Barutcu, C A E; Umit, G E; Pamuk, O N; Altun, A

    2015-09-01

    The aim of this study was to use transthoracic Doppler echocardiographic (TTE) imaging methods to identify cardiac dysfunction, an indicator of subclinical atherosclerosis in asymptomatic systemic lupus erythematosus (SLE) patients in terms of cardiac effects. This study involved 80 patients: a study group (n = 50) and control group (n = 30). They were categorized into four subgroups: anticardiolipin antibodies (aCL) (+) (n = 14) and aCL (-) (n = 36); systemic lupus erythematosus disease activity index (SLEDAI) ≥ 6 (n = 15) and SLEDAI 5 years group compared with the disease period <5 years group (p < 0.01, p < 0.05, respectively). Carrying out regular scans with TTE image of SLE patients is important in order to identify early cardiac involvement during monitoring and treatment. Identifying early cardiac involvement in SLE may lead to a reduction in mortality and morbidity rates. © The Author(s) 2015.

  18. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy.

    Science.gov (United States)

    Kandadi, Machender R; Yu, Xuejun; Frankel, Arthur E; Ren, Jun

    2012-11-07

    Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Wild type (WT) and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.)). Cardiomyocyte contractile and intracellular Ca(2+) properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca(2+) handling), the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, possibly through regulation of autophagy and mitochondrial function.

  19. Cell therapy attenuates cardiac dysfunction post myocardial infarction: effect of timing, routes of injection and a fibrin scaffold.

    Directory of Open Access Journals (Sweden)

    Juliana S Nakamuta

    Full Text Available BACKGROUND: Cell therapy approaches for biologic cardiac repair hold great promises, although basic fundamental issues remain poorly understood. In the present study we examined the effects of timing and routes of administration of bone marrow cells (BMC post-myocardial infarction (MI and the efficacy of an injectable biopolymer scaffold to improve cardiac cell retention and function. METHODOLOGY/PRINCIPAL FINDINGS: (99mTc-labeled BMC (6 x 10(6 cells were injected by 4 different routes in adult rats: intravenous (IV, left ventricular cavity (LV, left ventricular cavity with temporal aorta occlusion (LV(+ to mimic coronary injection, and intramyocardial (IM. The injections were performed 1, 2, 3, or 7 days post-MI and cell retention was estimated by gamma-emission counting of the organs excised 24 hs after cell injection. IM injection improved cell retention and attenuated cardiac dysfunction, whereas IV, LV or LV* routes were somewhat inefficient (<1%. Cardiac BMC retention was not influenced by timing except for the IM injection that showed greater cell retention at 7 (16% vs. 1, 2 or 3 (average of 7% days post-MI. Cardiac cell retention was further improved by an injectable fibrin scaffold at day 3 post-MI (17 vs. 7%, even though morphometric and function parameters evaluated 4 weeks later displayed similar improvements. CONCLUSIONS/SIGNIFICANCE: These results show that cells injected post-MI display comparable tissue distribution profile regardless of the route of injection and that there is no time effect for cardiac cell accumulation for injections performed 1 to 3 days post-MI. As expected the IM injection is the most efficient for cardiac cell retention, it can be further improved by co-injection with a fibrin scaffold and it significantly attenuates cardiac dysfunction evaluated 4 weeks post myocardial infarction. These pharmacokinetic data obtained under similar experimental conditions are essential for further development of these

  20. Milrinone for cardiac dysfunction in critically ill adult patients: a systematic review of randomised clinical trials with meta-analysis and trial sequential analysis.

    Science.gov (United States)

    Koster, Geert; Bekema, Hanneke J; Wetterslev, Jørn; Gluud, Christian; Keus, Frederik; van der Horst, Iwan C C

    2016-09-01

    Milrinone is an inotrope widely used for treatment of cardiac failure. Because previous meta-analyses had methodological flaws, we decided to conduct a systematic review of the effect of milrinone in critically ill adult patients with cardiac dysfunction. This systematic review was performed according to The Cochrane Handbook for Systematic Reviews of Interventions. Searches were conducted until November 2015. Patients with cardiac dysfunction were included. The primary outcome was serious adverse events (SAE) including mortality at maximum follow-up. The risk of bias was evaluated and trial sequential analyses were conducted. The quality of evidence was assessed by the Grading of Recommendations Assessment, Development and Evaluation criteria. A total of 31 randomised clinical trials fulfilled the inclusion criteria, of which 16 provided data for our analyses. All trials were at high risk of bias, and none reported the primary composite outcome SAE. Fourteen trials with 1611 randomised patients reported mortality data at maximum follow-up (RR 0.96; 95% confidence interval 0.76-1.21). Milrinone did not significantly affect other patient-centred outcomes. All analyses displayed statistical and/or clinical heterogeneity of patients, interventions, comparators, outcomes, and/or settings and all featured missing data. The current evidence on the use of milrinone in critically ill adult patients with cardiac dysfunction suffers from considerable risks of both bias and random error and demonstrates no benefits. The use of milrinone for the treatment of critically ill patients with cardiac dysfunction can be neither recommended nor refuted. Future randomised clinical trials need to be sufficiently large and designed to have low risk of bias.

  1. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2015-06-01

    Full Text Available Advanced glycation end products (AGEs, the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg and orally treated with sesamin (160 mg/kg for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM and then exposed to AGEs (200 mg/L for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67phox and p22phox, and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  2. Amelioration of cardiac function and activation of anti-inflammatory vasoactive peptides expression in the rat myocardium by low level laser therapy.

    Directory of Open Access Journals (Sweden)

    Martha Trindade Manchini

    Full Text Available Low-level laser therapy (LLLT has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI. However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS and Kallikrein-Kinin System (KKS vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO generation.

  3. Amelioration of Cardiac Function and Activation of Anti-Inflammatory Vasoactive Peptides Expression in the Rat Myocardium by Low Level Laser Therapy

    Science.gov (United States)

    Manchini, Martha Trindade; Serra, Andrey Jorge; Feliciano, Regiane dos Santos; Santana, Eduardo Tadeu; Antônio, Ednei Luis; de Tarso Camillo de Carvalho, Paulo; Montemor, Jairo; Crajoinas, Renato Oliveira; Girardi, Adriana Castello Costa; Tucci, Paulo José Ferreira; Silva, José Antônio

    2014-01-01

    Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation. PMID:24991808

  4. A combined intervention of zinc, multiple micronutrients, and albendazole does not ameliorate environmental enteric dysfunction or stunting in rural Malawian children in a double-blind randomized controlled trial

    Science.gov (United States)

    Environmental enteric dysfunction (EED) and linear growth stunting affect many rural agrarian children in the developing world and contribute to the persistently high rates of stunting that are observed worldwide. Effective interventions to consistently ameliorate EED are lacking. We tested whether ...

  5. Cardiac dysfunction assessed by echocardiographic tissue Doppler imaging is an independent predictor of mortality in the general population

    DEFF Research Database (Denmark)

    Mogelvang, Rasmus; Sogaard, Peter; Pedersen, Sune A

    2009-01-01

    parameters, left ventricular dysfunction by TDI is a powerful and independent predictor of death, especially when systolic performance and diastolic performance are considered together, recognizing their interdependency and their complex relation to deteriorating cardiac function....

  6. Cardiac magnetic resonance imaging for evaluation of non-compaction cardiomyopathy in patients with or without left ventricular systolic dysfunction

    International Nuclear Information System (INIS)

    Deviggiano, A.; Deschle, H.; Lewkowicz, J.M.; Tajer, C.D.; Carrascosa, P.; Capunay, C.; Vallejos, J.; Stewart Harris, A.

    2011-01-01

    Background: Non-compaction cardiomyopathy (NCC) is a genetic disorder characterized by deep trabeculations in the ventricular wall, which define recesses communicating with the main ventricular chamber. The prevalence of NCC is greater in symptomatic populations with left ventricular dysfunction; yet, it may also be detected in asymptomatic patients with normal left ventricular function using novel diagnostic tools. However, this condition is under-diagnosed due to a low index of clinical suspicion and to the use of echocardiography classifications based on different diagnostic criteria. The use of cardiac magnetic resonance imaging (CMRI) has established two diagnostic criteria that clearly recognize this disease. Objective: To evaluate the clinical and morphological characteristics of patients with NCC with and without systolic dysfunction undergoing cardiac magnetic resonance imaging (CMRI). Material and Methods: A total of 20 patients with NCC were retrospectively included. The following parameters were determined: left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV); left ventricular end-diastolic diameter (LVEDD); left ventricular end-systolic diameter (LVESD); cardiac mass and left ventricular trabeculations. The distribution of NC myocardium was evaluated according to the model of 17 myocardial segments. Results: Mean myocardial thickness was 13.1 ± 3.3 mm and 3.6 ± 0.6 mm in NC versus normal myocardium, respectively. Patients with left ventricular dysfunction presented increased LVEDD, LVEDV, total cardiac mass, and LV non-compaction and trabeculations. We found a positive correlation and a linear relationship between LVEDD and TLVM (g/m 2 ): r=0.76; r 2 =0.59; p [es

  7. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  8. Cardiac Autonomic Dysfunction in Offspring of Hypertensive Parents During Exercise.

    Science.gov (United States)

    Almeida, Leonardo Barbosa de; Peçanha, Tiago; Mira, Pedro Augusto de Carvalho; Souza, Livia Victorino de; da Silva, Lílian Pinto; Martinez, Daniel Godoy; Freitas, Isabelle Magalhães Guedes; Laterza, Mateus Camaroti

    2017-12-01

    Offspring of hypertensive parents present autonomic dysfunction at rest and during physiological maneuvers. However, the cardiac autonomic modulation during exercise remains unknown. This study tested whether the cardiac autonomic modulation would be reduced in offspring of hypertensive parents during exercise. Fourteen offspring of hypertensive and 14 offspring of normotensive individuals were evaluated. The groups were matched by age (24.5±1.0 vs. 26.6±1.5 years; p=0.25) and BMI (22.8±0.6 vs. 24.2±1.0 kg/m 2 ; p=0.30). Blood pressure and heart rate were assessed simultaneously during 3 min at baseline followed by 3-min isometric handgrip at 30% of maximal voluntary contraction. Cardiac autonomic modulation was evaluated using heart rate variability. Primary variables were subjected to two-way ANOVA (group vs. time). P valueexercise protocol. In contrast, offspring of hypertensive subjects showed a reduction of SDNN (Basal=34.8±3.5 vs. 45.2±3.7 ms; Exercise=30.8±3.3 vs. 41.5±3.9 ms; p group=0.01), RMSSD (Basal=37.1±3.7 vs. 52.0±6.0 ms; Exercise=28.6±3.4 vs. 41.9±5.3 ms; p group=0.02) and pNN50 (Basal=15.7±4.0 vs. 29.5±5.5%; Exercise=7.7±2.4 vs. 18.0±4.3%; p group=0.03) during the exercise protocol in comparison with offspring of normotensive parents. We concluded that normotensive offspring of hypertensive parents exhibit impaired cardiac autonomic modulation during exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Treatment with Fenofibrate plus a low dose of Benznidazole attenuates cardiac dysfunction in experimental Chagas disease

    Directory of Open Access Journals (Sweden)

    Ágata C. Cevey

    2017-12-01

    Full Text Available Trypanosoma cruzi induces serious cardiac alterations during the chronic infection. Intense inflammatory response observed from the beginning of infection, is critical for the control of parasite proliferation and evolution of Chagas disease. Peroxisome proliferator-activated receptors (PPAR-α, are known to modulate inflammation.In this study we investigated whether a PPAR-α agonist, Fenofibrate, improves cardiac function and inflammatory parameters in a murine model of T. cruzi infection. BALB/c mice were sequentially infected with two T. cruzi strains of different genetic background. Benznidazole, commonly used as trypanocidal drug, cleared parasites but did not preclude cardiac pathology, resembling what is found in human chronic chagasic cardiomyopathy. Fenofibrate treatment restored to normal values the ejection and shortening fractions, left ventricular end-diastolic, left ventricular end-systolic diameter, and isovolumic relaxation time. Moreover, it reduced cardiac inflammation and fibrosis, decreased the expression of pro-inflammatory (IL-6, TNF-α and NOS2 and heart remodeling mediators (MMP-9 and CTGF, and reduced serum creatine kinase activity. The fact that Fenofibrate partially inhibited NOS2 expression and NO release in the presence of a PPAR-α non-competitive inhibitor, suggested it also acted through PPAR-α-independent pathways. Since IκBα cytosolic degradation was inhibited by Fenofibrate, it can be concluded that the NFκB pathway has a role in its effects. Thus, we demonstrate that Fenofibrate acts through PPAR-α-dependent and -independent pathways.Our study shows that combined treatment with Fenofibrate plus Benznidazole is able both to reverse the cardiac dysfunction associated with the ongoing inflammatory response and fibrosis and to attain parasite clearance in an experimental model of Chagas disease. Keywords: Trypanosoma cruzi, Heart dysfunction, PPAR-α, Fenofibrate treatment, Inflammatory mediators

  10. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    Directory of Open Access Journals (Sweden)

    Kandadi Machender R

    2012-11-01

    Full Text Available Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.. Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Results Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling, the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Conclusions Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

  11. Milrinone for cardiac dysfunction in critically ill adult patients : a systematic review of randomised clinical trials with meta-analysis and trial sequential analysis

    NARCIS (Netherlands)

    Koster, Geert; Bekema, Hanneke J.; Wetterslev, Jorn; Gluud, Christian; Keus, Frederik; van der Horst, Iwan C. C.

    Milrinone is an inotrope widely used for treatment of cardiac failure. Because previous meta-analyses had methodological flaws, we decided to conduct a systematic review of the effect of milrinone in critically ill adult patients with cardiac dysfunction. This systematic review was performed

  12. Primary hemochromatosis: anatomic and physiologic characteristics of the cardiac ventricles and their response to phlebotomy

    International Nuclear Information System (INIS)

    Dabestani, A.; Child, J.S.; Henze, E.; Perloff, J.K.; Schon, H.; Figueroa, W.G.; Schelbert, H.R.; Thessomboon, S.

    1984-01-01

    M-mode and 2-dimensional echocardiography and gated equilibrium blood pool imaging (rest and exercise) were used in 10 patients with primary hemochromatosis to characterize the spectrum of pathophysiologic abnormalities of the cardiac ventricles and to determine the response to chronic therapeutic phlebotomy. Dilated and restrictive cardiomyopathic patterns were identified in 1 patient each, but our data do not permit conclusions on when in the natural history a given pattern becomes overt. On entry into study, 3 patients had normal ventricles and 7 had ventricular abnormalities on echocardiography and blood pool angiography. In 2 of the latter patients, biventricular dysfunction and increased left ventricular (LV) mass normalized after phlebotomy; 1 patient achieved a normal LV response to exercise. Of the 4 patients with isolated abnormal LV ejection fraction responses to exercise, the EF normalized in 2 after phlebotomy. In 1 patient, isolated right ventricular enlargement and dysfunction (echocardiographic and radionuclide imaging) normalized after phlebotomy. Thus, primary hemochromatosis can effect LV and RV size and function; clinically occult cardiac involvement can be identified by echocardiography and equilibrium blood pool imaging; therapeutic phlebotomy can ameliorate or reverse the deleterious effects of excess cardiac iron deposition which appears to exert its harm, at least in part, by a mechanism other than irreversible connective tissue replacement

  13. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury.

    Directory of Open Access Journals (Sweden)

    Yunen Liu

    Full Text Available We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE on cyclophosphamide (CTX-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE.

  14. Hypothermia and postconditioning after cardiopulmonary resuscitation reduce cardiac dysfunction by modulating inflammation, apoptosis and remodeling.

    Directory of Open Access Journals (Sweden)

    Patrick Meybohm

    Full Text Available BACKGROUND: Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia. METHODOLOGY/PRINCIPAL FINDINGS: Thirty pigs (28-34 kg were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21, coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38 degrees C, hypothermia at 33 degrees C or hypothermia at 33 degrees C combined with sevoflurane (each group n = 7 for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01, reduced infarct size (34+/-7 versus 57+/-12%; p<0.05 and improved left ventricular function compared to normothermia (p<0.05. Hypothermia was associated with a reduction in: (i immune cell infiltration, (ii apoptosis, (iii IL-1beta and IL-6 mRNA up-regulation, and (iv IL-1beta protein expression (p<0.05. Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached. CONCLUSIONS/SIGNIFICANCE: Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis

  15. CCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload

    Directory of Open Access Journals (Sweden)

    Bindiya Patel, PhD

    2018-04-01

    Full Text Available Summary: Although chronic inflammation is a central feature of heart failure (HF, the immune cell profiles differ with different underlying causes. This suggests that for immunomodulatory therapy in HF to be successful, it needs to be tailored to the specific etiology. Here, the authors demonstrate that monocyte-derived C-C chemokine receptor 2 (CCR2+ macrophages infiltrate the heart early during pressure overload in mice, and that blocking this response either pharmacologically or with antibody-mediated CCR2+ monocyte depletion alleviates late pathological left ventricular remodeling and dysfunction, T-cell expansion, and cardiac fibrosis. Hence, suppression of CCR2+ monocytes/macrophages may be an important immunomodulatory therapeutic target to ameliorate pressure-overload HF. Key Words: cardiac remodeling, heart failure, inflammation, macrophages, T cells

  16. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    Science.gov (United States)

    Bernardo, Bianca C; Sapra, Geeta; Patterson, Natalie L; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A; McMullen, Julie R

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.

  17. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Bianca C Bernardo

    Full Text Available Previous animal studies had shown that increasing heat shock protein 70 (Hsp70 using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF. AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC. Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.

  18. Changes in glomerular filtration rate after cardiac surgery with cardiopulmonary bypass in patients with mild preoperative renal dysfunction

    NARCIS (Netherlands)

    Loef, B. G.; Henning, R. H.; Navis, G.; Rankin, A. J.; Van Oeveren, W.; Ebels, T.; Epema, A. H.

    Background. Cardiac surgery with cardiopulmonary bypass (CPB) is commonly perceived as a risk factor for decline in renal function, especially in patients with preoperative renal dysfunction. There are few data on the effects of CPB on renal function in patients with mild preoperative renal

  19. PREVENTION OF LEFT VENTRICLE SYSTOLIC DYSFUNCTION IN PATIENTS WITH ACUTE CORONARY SYNDROME WITH ST SEGMENT ELEVATION AFTER CARDIAC REVASCULARIZATION

    OpenAIRE

    A. L. Alyavi; B. A. Alyavi; M. L. Kenzhaev; S. R. Kenzhaev

    2009-01-01

    Aim. To study effects of bioflavonoid quercetin (corvitin) on left ventricle (LV) systolic dysfunction in patients with acute coronary syndrome with ST segment elevation (ACS+ST) after cardiac revascularization.Material and methods. 60 patients with ACS+ST (44,2±1,3 y.o.) were examined. Patients were admitted to hospital within 6 hours after complaints beginning. Patients were randomized in two groups. 30 patients of group A had standard therapy and cardiac revascularization. 30 patients of g...

  20. Impedance cardiography: a comparison of cardiac output vs waveform analysis for assessing left ventricular systolic dysfunction.

    Science.gov (United States)

    DeMarzo, Arthur P; Kelly, Russell F; Calvin, James E

    2007-01-01

    Early detection of asymptomatic left ventricular systolic dysfunction (LVSD) is beneficial in managing heart failure. Recent studies have cast doubt on the usefulness of cardiac output as an indicator of LVSD. In impedance cardiography (ICG), the dZ/dt waveform has a systolic wave called the E wave. This study looked at measurements of the amplitude and area of the E wave compared with ICG-derived cardiac output, stroke volume, cardiac index, and stroke index as methods of assessing LVSD. ICG data were obtained from patients (n=26) admitted to a coronary care unit. Clinical LVSD severity was stratified into 4 groups (none, mild, moderate, and severe) based on echocardiography data and standard clinical assessment by a cardiologist blinded to ICG data. Statistical analysis showed that the E wave amplitude and area were better indicators of the level of LVSD than cardiac output, stroke volume, cardiac index, or stroke index. ICG waveform analysis has potential as a simple point-of-care test for detecting LVSD in asymptomatic patients at high risk for developing heart failure and for monitoring LVSD in patients being treated for heart failure.

  1. Gelatin Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Angiogenesis to Ameliorate Cardiac Function after Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Kazuaki Nakajima

    Full Text Available Cell transplantation therapy will mean a breakthrough in resolving the donor shortage in cardiac transplantation. Cardiomyocyte (CM transplantation, however, has been relatively inefficient in restoring cardiac function after myocardial infarction (MI due to low engraftment of transplanted CM. In order to ameliorate engraftment of CM, the novel transplantation strategy must be invented. Gelatin hydrogel (GH is a biodegradable water-soluble polymer gel. Gelatin is made of collagen. Although we observed that collagen strongly induced the aggregation of platelets to potentially cause coronary microembolization, GH did not enhance thrombogenicity. Therefore, GH is a suitable biomaterial in the cell therapy after heart failure. To assess the effect of GH on the improvement of cardiac function, fetal rat CM (5×10(6 or 1x10(6 cells were transplanted with GH (10 mg/ml to infarcted hearts. We compared this group with sham operated rats, CM in phosphate buffered saline (PBS, only PBS, and only GH-transplanted groups. Three weeks after transplantation, cardiac function was evaluated by echocardiography. The echocardiography confirmed that transplantation of 5×10(6 CM with GH significantly improved cardiac systolic function, compared with the CM+PBS group (fractional area change: 75.1±3.4% vs. 60.7±5.9%, p<0.05, only PBS, and only GH groups (60.1±6.5%, 65.0±2.8%, p<0.05. Pathological analyses demonstrated that in the CM+GH group, CM were efficiently engrafted in infarcted myocardium (p<0.01 and angiogenesis was significantly enhanced (p<0.05 in both central and peripheral areas of the scar. Moreover, quantitative RT-PCR revealed that angiogenic cytokines, such as basic fibroblast growth factor, vascular endothelial growth factor, and hepatocyte growth factor, were significantly enriched in the CM+GH group (p<0.05. Here, we report that GH confined the CM effectively in infarcted myocardium after transplantation, and that CM transplanted with GH

  2. Cardiac diastolic dysfunction is associated with cerebral white matter lesions in elderly patients with risk factors for atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Hisashi; Senda, Shoichi; Goda, Fuminori [Kagawa Univ., Faculty of Medicine, Miki, Kagawa (Japan)

    2008-10-15

    Cerebral white matter lesions on magnetic resonance imaging (MRI) are considered to be the result of brain ischemic injury and a risk factor for clinical stroke. The purpose of this study was to elucidate the relationship between the cardiac diastolic function and cerebral white matter lesions in elderly patients with risk factors for atherosclerosis. The study subjects were 55 patients (75{+-}7 years) with risk factors for atherosclerosis including hypertension, diabetes mellitus, and dyslipidemia. Patients with symptomatic cerebrovascular events were excluded from the study. Cerebral white matter lesions, which were defined as exhibiting high intensity regions on brain MRI, were evaluated with the degrees of periventricular hyperintensity (PVH) according to the Japanese Brain Dock Guidelines of 2003. Peak early diastolic mitral annular velocity (E' velocity) was measured by tissue Doppler echocardiography, and was used as a parameter of cardiac diastolic function. The mean value of E' velocity was decreased due to the cardiac diastolic dysfunction (5.2{+-}1.4 cm/s). In addition, the E' velocity was inversely correlated with the degree of PVH ({rho}=-0.701, p<0.001). Stepwise regression analysis showed that the decrease in the E' velocity ({beta} coefficient=-0.42, p<0.001) and the presence of hypertension ({beta} coefficient=0.31, p=0.001) were independent determinants of the degree of PVH. Thus, cardiac diastolic dysfunction is correlated to the severity of cerebral white matter lesions, suggesting the cardio-cerebral connection in elderly patients with risk factors for atherosclerosis. (author)

  3. Neuroendocrine and Cardiac Metabolic Dysfunction and NLRP3 Inflammasome Activation in Adipose Tissue and Pancreas following Chronic Spinal Cord Injury in the Mouse

    Directory of Open Access Journals (Sweden)

    Gregory E. Bigford

    2013-08-01

    Full Text Available CVD (cardiovascular disease represents a leading cause of mortality in chronic SCI (spinal cord injury. Several component risk factors are observed in SCI; however, the underlying mechanisms that contribute to these risks have not been defined. Central and peripheral chronic inflammation is associated with metabolic dysfunction and CVD, including adipokine regulation of neuroendocrine and cardiac function and inflammatory processes initiated by the innate immune response. We use female C57 Bl/6 mice to examine neuroendocrine, cardiac, adipose and pancreatic signaling related to inflammation and metabolic dysfunction in response to experimentally induced chronic SCI. Using immunohistochemical, -precipitation, and -blotting analysis, we show decreased POMC (proopiomelanocortin and increased NPY (neuropeptide-Y expression in the hypothalamic ARC (arcuate nucleus and PVN (paraventricular nucleus, 1-month post-SCI. Long-form leptin receptor (Ob-Rb, JAK2 (Janus kinase/STAT3 (signal transducer and activator of transcription 3/p38 and RhoA/ROCK (Rho-associated kinase signaling is significantly increased in the heart tissue post-SCI, and we observe the formation and activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3 inflammasome in VAT (visceral adipose tissue and pancreas post-SCI. These data demonstrate neuroendocrine signaling peptide alterations, associated with central inflammation and metabolic dysfunction post-SCI, and provide evidence for the peripheral activation of signaling mechanisms involved in cardiac, VAT and pancreatic inflammation and metabolic dysfunction post-SCI. Further understanding of biological mechanisms contributing to SCI-related inflammatory processes and metabolic dysfunction associated with CVD pathology may help to direct therapeutic and rehabilitation countermeasures.

  4. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    International Nuclear Information System (INIS)

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-01-01

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys 3 ]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation

  5. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian; Zhang, Lin [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Dai, Weiqi [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Li, Sainan [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Wang, Jingjie; Li, Huanqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Guo, Chuanyong [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Fan, Xiaoming, E-mail: xiaomingfan57@sina.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China)

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  6. Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice.

    Directory of Open Access Journals (Sweden)

    Lamiaa A Ahmed

    Full Text Available Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg with or without oral administration of tempol (100 mg/kg/day. Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I-IV activities and mitochondrial nitric oxide synthase (mNOS protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma.This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.

  7. Cardiac diastolic dysfunction is associated with cerebral white matter lesions in elderly patients with risk factors for atherosclerosis

    International Nuclear Information System (INIS)

    Masugata, Hisashi; Senda, Shoichi; Goda, Fuminori

    2008-01-01

    Cerebral white matter lesions on magnetic resonance imaging (MRI) are considered to be the result of brain ischemic injury and a risk factor for clinical stroke. The purpose of this study was to elucidate the relationship between the cardiac diastolic function and cerebral white matter lesions in elderly patients with risk factors for atherosclerosis. The study subjects were 55 patients (75±7 years) with risk factors for atherosclerosis including hypertension, diabetes mellitus, and dyslipidemia. Patients with symptomatic cerebrovascular events were excluded from the study. Cerebral white matter lesions, which were defined as exhibiting high intensity regions on brain MRI, were evaluated with the degrees of periventricular hyperintensity (PVH) according to the Japanese Brain Dock Guidelines of 2003. Peak early diastolic mitral annular velocity (E' velocity) was measured by tissue Doppler echocardiography, and was used as a parameter of cardiac diastolic function. The mean value of E' velocity was decreased due to the cardiac diastolic dysfunction (5.2±1.4 cm/s). In addition, the E' velocity was inversely correlated with the degree of PVH (ρ=-0.701, p<0.001). Stepwise regression analysis showed that the decrease in the E' velocity (β coefficient=-0.42, p<0.001) and the presence of hypertension (β coefficient=0.31, p=0.001) were independent determinants of the degree of PVH. Thus, cardiac diastolic dysfunction is correlated to the severity of cerebral white matter lesions, suggesting the cardio-cerebral connection in elderly patients with risk factors for atherosclerosis. (author)

  8. Inhibition of soluble epoxide hydrolase lowers portal hypertension in cirrhotic rats by ameliorating endothelial dysfunction and liver fibrosis.

    Science.gov (United States)

    Deng, Wensheng; Zhu, Yiming; Lin, Jiayun; Zheng, Lei; Zhang, Chihao; Luo, Meng

    2017-07-01

    Epoxyeicostrienoic acids (EETs) are arachidonic acid derived meditators which are catalyzed by soluble epoxide hydrolase (sEH) to less active dihydroeicostrienoics acids (DHETS). The aim of our study is to investigate the effects of sEH inhibition on hepatic and systemic hemodynamics, hepatic endothelial dysfunction, and hepatic fibrosis in CCl4 cirrhotic rats. The sEH inhibitor,trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB) was administered to stabilize hepatic EETs by gavage at a dose of 1mg/kg/d. Our results showed that hepatic sEH expression was markedly increased in portal hypertension, and led to a lower ratio of EETs/DHETs which was effectively reversed by t-TUCB administration. t-TUCB significantly decreased portal pressure without significant changes in systemic hemodynamics, which was associated with the attenuation of intrahepatic vascular resistance (IHVR) and liver fibrosis. t-TUCB ameliorated endothelial dysfunction, increased hepatic endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. In addition, t-TUCB significantly reduced alpha-Smooth Muscle Actin (α-SMA) expression and liver fibrosis, which was associated with a decrease in NF-κB signaling. Taken together, inhibition of sEH reduces portal pressure, liver fibrosis and attenuates hepatic endothelial dysfunction in cirrhotic rats. Our results indicate that sEH inhbitors may be useful in the treatment of portal hypertension in patients with cirrhosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cardiovascular dysfunction in infants with neonatal encephalopathy.

    LENUS (Irish Health Repository)

    Armstrong, Katey

    2012-04-01

    Severe perinatal asphyxia with hypoxic ischaemic encephalopathy occurs in approximately 1-2\\/1000 live births and is an important cause of cerebral palsy and associated neurological disabilities in children. Multiorgan dysfunction commonly occurs as part of the asphyxial episode, with cardiovascular dysfunction occurring in up to a third of infants. This narrative paper attempts to review the literature on the importance of early recognition of cardiac dysfunction using echocardiography and biomarkers such as troponin and brain type natriuretic peptide. These tools may allow accurate assessment of cardiac dysfunction and guide therapy to improve outcome.

  10. Discriminating between cardiac and pulmonary dysfunction in the general population with dyspnea by plasma pro-B-type natriuretic peptide

    DEFF Research Database (Denmark)

    Mogelvang, R; Goetze, JP; Schnohr, P

    2007-01-01

    OBJECTIVES: This study was designed to determine whether measurement of plasma pro-B-type natriuretic peptide (proBNP) could be used in discriminating between cardiac and pulmonary dyspnea in the general population. BACKGROUND: Natriuretic peptides are useful markers in ruling out acute cardiac...... the expected concentration of plasma proBNP based on age and gender was established for dyspneic subjects: an actual plasma proBNP concentration below half of the expected value ruled out left ventricular systolic and diastolic dysfunction (sensitivity 100%, 95% CI 100% to 100%; specificity 15%, 95% CI 12...

  11. Dysfunction of cortical synapse-specific mitochondria in developing rats exposed to lead and its amelioration by ascorbate supplementation

    Directory of Open Access Journals (Sweden)

    Ahmad F

    2018-03-01

    Full Text Available Faraz Ahmad,1,2 Mohammad Salahuddin,3 Widyan Alamoudi,2 Sadananda Acharya1 1Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; 2Neuroscience Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; 3Animal House Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia Background: Lead (Pb is a widespread environmental neurotoxin and its exposure even in minute quantities can lead to compromised neuronal functions. A developing brain is particularly vulnerable to Pb mediated toxicity and early-life exposure leads to permanent alterations in brain development and neuronal signaling and plasticity, culminating into cognitive and behavioral dysfunctions and elevated risk of neuropsychiatric disorders later in life. Nevertheless, the underlying biochemical mechanisms have not been completely discerned. Methods: Because of their ability to fulfill high energy needs and to act as calcium buffers in events of high intensity neuronal activity as well as their adaptive regulatory capability to match the requirements of the dynamicity of synaptic signaling, synapse-specific or synaptic mitochondria (SM are critical for synaptic development, function and plasticity. Our aim for the present study hence was to characterize the effects of early-life Pb exposure on the functions of SM of prepubertal rats. For this purpose, employing a chronic model of Pb neurotoxicity, we exposed rat pups perinatally and postnatally to Pb and used a plethora of colorimetric and fluorometric assays for assessing redox and bioenergetic properties of SM. In addition, taking advantage of its ability as an antioxidant and as a metal chelator, we employed ascorbic acid (vitamin C supplementation as an ameliorative therapeutic strategy against Pb-induced neurotoxicity and dysfunction of SM

  12. PREVENTION OF LEFT VENTRICLE SYSTOLIC DYSFUNCTION IN PATIENTS WITH ACUTE CORONARY SYNDROME WITH ST SEGMENT ELEVATION AFTER CARDIAC REVASCULARIZATION

    Directory of Open Access Journals (Sweden)

    A. L. Alyavi

    2016-01-01

    Full Text Available Aim. To study effects of bioflavonoid quercetin (corvitin on left ventricle (LV systolic dysfunction in patients with acute coronary syndrome with ST segment elevation (ACS+ST after cardiac revascularization.Material and methods. 60 patients with ACS+ST (44,2±1,3 y.o. were examined. Patients were admitted to hospital within 6 hours after complaints beginning. Patients were randomized in two groups. 30 patients of group A had standard therapy and cardiac revascularization. 30 patients of group B received corvitin additionally to standard therapy before cardiac revascularization. Echocardiography initially and stress-echocardiography with dobutamine after status stabilization (at 8-10 days of disease were performed.Results. Dobutamine test (with low and high doses showed myocardial viability in patients of group B. Patients of group A had irreversible LV systolic dysfunction in 32 % of segments. Corvitin slowed down LV dilatation progression in patients with ACS+ST. It resulted in the end-diastolic and end-systolic indexes did not change within 10 days. The LV ejection fraction was more increased in patients of group B in comparison with patients of group A.Conclusion. The early corvitin prescribing has positive effects on LV systolic function and prevents post-reperfusion complications. 

  13. PREVENTION OF LEFT VENTRICLE SYSTOLIC DYSFUNCTION IN PATIENTS WITH ACUTE CORONARY SYNDROME WITH ST SEGMENT ELEVATION AFTER CARDIAC REVASCULARIZATION

    Directory of Open Access Journals (Sweden)

    A. L. Alyavi

    2009-01-01

    Full Text Available Aim. To study effects of bioflavonoid quercetin (corvitin on left ventricle (LV systolic dysfunction in patients with acute coronary syndrome with ST segment elevation (ACS+ST after cardiac revascularization.Material and methods. 60 patients with ACS+ST (44,2±1,3 y.o. were examined. Patients were admitted to hospital within 6 hours after complaints beginning. Patients were randomized in two groups. 30 patients of group A had standard therapy and cardiac revascularization. 30 patients of group B received corvitin additionally to standard therapy before cardiac revascularization. Echocardiography initially and stress-echocardiography with dobutamine after status stabilization (at 8-10 days of disease were performed.Results. Dobutamine test (with low and high doses showed myocardial viability in patients of group B. Patients of group A had irreversible LV systolic dysfunction in 32 % of segments. Corvitin slowed down LV dilatation progression in patients with ACS+ST. It resulted in the end-diastolic and end-systolic indexes did not change within 10 days. The LV ejection fraction was more increased in patients of group B in comparison with patients of group A.Conclusion. The early corvitin prescribing has positive effects on LV systolic function and prevents post-reperfusion complications. 

  14. Misalignment with the external light environment drives metabolic and cardiac dysfunction.

    Science.gov (United States)

    West, Alexander C; Smith, Laura; Ray, David W; Loudon, Andrew S I; Brown, Timothy M; Bechtold, David A

    2017-09-12

    Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.

  15. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2015-01-01

    Full Text Available Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.

  16. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits.

    Science.gov (United States)

    El-Awady, Mohammed S; Suddek, Ghada M

    2014-06-01

    The aim of this work was to explore possible effects of agmatine, an endogenous inhibitor of inducible nitric oxide synthase (iNOS), against hypercholesterolemia-induced lipid profile changes and endothelial dysfunction. Hypercholesterolemia was induced by feeding rabbits with a high-cholesterol diet (HCD, 0.5%) for 8 weeks. Another HCD-fed group was orally administered agmatine (10 mg/kg/day) during weeks 5 through 8. Serum lipid profile, malondialdehyde (MDA), nitric oxide (NO) and lactate dehydrogenase (LDH) were determined. Aorta was isolated to analyse vascular reactivity, atherosclerotic lesions and intima/media (I/M) ratio. HCD induced a significant increase in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides and high-density lipoprotein cholesterol (HDL-C). Agmatine administration significantly decreased HCD-induced elevations in serum TC and LDL-C, MDA, LDH and NO while significantly increased HDL-C levels. Additionally, agmatine significantly protected against HCD-induced attenuation of rabbit aortic endothelium-dependent relaxation to acetylcholine. HCD and agmatine did not significantly influence aortic endothelium-independent relaxation to sodium nitroprusside. Moreover, agmatine significantly reduced the elevation in aortic atherosclerotic lesion area and I/M ratio. This study is the first to reveal that agmatine has the ability to ameliorate hypercholesterolemia-induced lipemic-oxidative and endothelial function injuries possibly by its antioxidant potential and/or iNOS inhibition. © 2014 Royal Pharmaceutical Society.

  17. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury.

    Science.gov (United States)

    Cherpanath, Thomas G V; Smeding, Lonneke; Hirsch, Alexander; Lagrand, Wim K; Schultz, Marcus J; Groeneveld, A B Johan

    2015-10-07

    High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p tidal volume ventilation without LPS (p = 0.223). A significant interaction (p tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.

  18. Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice

    Science.gov (United States)

    Ahmed, Lamiaa A.; Shehata, Nagwa I.; Abdelkader, Noha F.; Khattab, Mahmoud M.

    2014-01-01

    Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction

  19. Radiotherapy-Induced Cardiac Implantable Electronic Device Dysfunction in Patients With Cancer.

    Science.gov (United States)

    Bagur, Rodrigo; Chamula, Mathilde; Brouillard, Émilie; Lavoie, Caroline; Nombela-Franco, Luis; Julien, Anne-Sophie; Archambault, Louis; Varfalvy, Nicolas; Gaudreault, Valérie; Joncas, Sébastien X; Israeli, Zeev; Parviz, Yasir; Mamas, Mamas A; Lavi, Shahar

    2017-01-15

    Radiotherapy can affect the electronic components of a cardiac implantable electronic device (CIED) resulting in malfunction and/or damage. We sought to assess the incidence, predictors, and clinical impact of CIED dysfunction (CIED-D) after radiotherapy for cancer treatment. Clinical characteristics, cancer, different types of CIEDs, and radiation dose were evaluated. The investigation identified 230 patients, mean age 78 ± 8 years and 70% were men. A total of 199 patients had pacemakers (59% dual chamber), 21 (9%) cardioverter-defibrillators, and 10 (4%) resynchronizators or defibrillators. The left pectoral (n = 192, 83%) was the most common CIED location. Sixteen patients (7%) experienced 18 events of CIED-D after radiotherapy. Reset to backup pacing mode was the most common encountered dysfunction, and only 1 (6%) patient of those with CIED-D experienced symptoms of atrioventricular dyssynchrony. Those who had CIED-D tended to have a shorter device age at the time of radiotherapy compared to those who did not (2.5 ± 1.5 vs 3.8 ± 3.4 years, p = 0.09). The total dose prescribed to the tumor was significantly greater among those who had CIED-D (66 ± 30 vs 42 ± 23 Gy, p radiotherapy for cancer treatment, the occurrence of newly diagnosed CIED-D was 7%, and the reset to backup pacing mode was the most common encountered dysfunction. The total dose prescribed to the tumor was a predictor of CIED-D. Importantly, although the unpredictability of CIEDs under radiotherapy is still an issue, none of our patients experienced significant symptoms, life-threatening arrhythmias, or conduction disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. High plasma apolipoprotein B identifies obese subjects who best ameliorate white adipose tissue dysfunction and glucose-induced hyperinsulinemia after a hypocaloric diet.

    Science.gov (United States)

    Bissonnette, Simon; Saint-Pierre, Nathalie; Lamantia, Valerie; Leroux, Catherine; Provost, Viviane; Cyr, Yannick; Rabasa-Lhoret, Remi; Faraj, May

    2018-06-18

    To optimize the prevention of type 2 diabetes (T2D), high-risk obese subjects with the best metabolic recovery after a hypocaloric diet should be targeted. Apolipoprotein B lipoproteins (apoB lipoproteins) induce white adipose tissue (WAT) dysfunction, which in turn promotes postprandial hypertriglyceridemia, insulin resistance (IR), and hyperinsulinemia. The aim of this study was to explore whether high plasma apoB, or number of plasma apoB lipoproteins, identifies subjects who best ameliorate WAT dysfunction and related risk factors after a hypocaloric diet. Fifty-nine men and postmenopausal women [mean ± SD age: 58 ± 6 y; body mass index (kg/m2): 32.6 ± 4.6] completed a prospective study with a 6-mo hypocaloric diet (-500 kcal/d). Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured by 1-h intravenous glucose-tolerance test (IVGTT) followed by a 3-h hyperinsulinemic-euglycemic clamp, respectively. Ex vivo gynoid WAT function (i.e., hydrolysis and storage of 3H-triolein-labeled triglyceride-rich lipoproteins) and 6-h postprandial plasma clearance of a 13C-triolein-labeled high-fat meal were measured in a subsample (n = 25). Postintervention first-phase GIISIVGTT and total C-peptide secretion decreased in both sexes, whereas second-phase and total GIISIVGTT and clamp IS were ameliorated in men (P hypocaloric diet. We propose that subjects with high plasma apoB represent an optimal target group for the primary prevention of T2D by hypocaloric diets. This trial was registered at BioMed Central as ISRCTN14476404.

  1. Hemodilution, kidney dysfunction and cardiac surgery

    Directory of Open Access Journals (Sweden)

    Fabio Papa Taniguchi

    2009-03-01

    Full Text Available Hemodilution has been used in cardiac surgery to reduce blood viscosity and peripheral vascular resistance, decrease the need for blood transfusions, attenuate the risk of transfusions and diminish systemic inflammatory response syndrome and hospital costs. The lowest hematocrit level during cardiopulmonary bypass has been stated as 20%. However, severe hemodilution in cardiopulmonary bypass for patients undergoing cardiac surgery has been recognized as a risk factor for hospital deaths and reduced long-term survival. The introduction of normothermia restarted the debate about the lowest acceptable hematocrit during cardiopulmonary bypass. The objective of this review is to evaluate hemodilution during cardiac surgery as a risk factor for the development of post-operative acute renal failure.

  2. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

    Science.gov (United States)

    Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S

    2016-01-11

    Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance.

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-05-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.

  4. MURC, a Muscle-Restricted Coiled-Coil Protein That Modulates the Rho/ROCK Pathway, Induces Cardiac Dysfunction and Conduction Disturbance▿

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-01-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105

  5. Renal denervation improves cardiac function in rats with chronic heart failure: Effects on expression of β-adrenoceptors

    Science.gov (United States)

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.

    2016-01-01

    Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats. Four weeks after surgery, RDN was performed, 1 wk before the final measurements. At the end of the protocol, cardiac function was assessed by measuring ventricular hemodynamics. Rats with HF had an average infarct area >30% of the left ventricle and left ventricular end-diastolic pressure (LVEDP) >20 mmHg. β1- and β2-adrenoceptor proteins in the left ventricle were reduced by 37 and 49%, respectively, in the rats with HF. RDN lowered elevated levels of urinary excretion of norepinephrine and brain natriuretic peptide levels in the hearts of rats with HF. RDN also decreased LVEDP to 10 mmHg and improved basal dP/dt to within the normal range in rats with HF. RDN blunted loss of β1-adrenoceptor (by 47%) and β2-adrenoceptor (by 100%) protein expression and improved isoproterenol (0.5 μg/kg)-induced increase in +dP/dt (by 71%) and −dP/dt (by 62%) in rats with HF. RDN also attenuated the increase in collagen 1 expression in the left ventricles of rats with HF. These findings demonstrate that RDN initiated in chronic HF condition improves cardiac function mediated by adrenergic agonist and blunts β-adrenoceptor expression loss, providing mechanistic insights for RDN-induced improvements in cardiac function in the HF condition. PMID:27288440

  6. Matrix Metalloproteinase-9 Production following Cardiopulmonary Bypass Was Not Associated with Pulmonary Dysfunction after Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Tso-Chou Lin

    2015-01-01

    Full Text Available Background. Cardiopulmonary bypass (CPB causes release of matrix metalloproteinase- (MMP- 9, contributing to pulmonary infiltration and dysfunction. The aims were to investigate MMP-9 production and associated perioperative variables and oxygenation following CPB. Methods. Thirty patients undergoing elective cardiac surgery were included. Arterial blood was sampled at 6 sequential points (before anesthesia induction, before CPB and at 2, 4, 6, and 24 h after beginning CPB for plasma MMP-9 concentrations by ELISA. The perioperative laboratory data and variables, including bypass time, PaO2/FiO2, and extubation time, were also recorded. Results. The plasma MMP-9 concentrations significantly elevated at 2–6 h after beginning CPB (P<0.001 and returned to the preanesthesia level at 24 h (P=0.23, with predominant neutrophil counts after surgery (P<0.001. The plasma MMP-9 levels at 4 and 6 h were not correlated with prolonged CPB time and displayed no association with postoperative PaO2/FiO2, regardless of reduced ratio from preoperative 342.9±81.2 to postoperative 207.3±121.3 mmHg (P<0.001. Conclusion. Elective cardiac surgery with CPB induced short-term elevation of plasma MMP-9 concentrations within 24 hours, however, without significant correlation with CPB time and postoperative pulmonary dysfunction, despite predominantly increased neutrophils and reduced oxygenation.

  7. Palmitate diet-induced loss of cardiac caveolin-3: a novel mechanism for lipid-induced contractile dysfunction.

    Directory of Open Access Journals (Sweden)

    Catherine J Knowles

    Full Text Available Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate, and MCT diet (21% medium-chain triglycerides, no palmitate. We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release.

  8. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2014-12-01

    Full Text Available A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  9. Cardiac, renal, and neurological benefits of preoperative levosimendan administration in patients with right ventricular dysfunction and pulmonary hypertension undergoing cardiac surgery: evaluation with two biomarkers neutrophil gelatinase-associated lipocalin and neuronal enolase

    Directory of Open Access Journals (Sweden)

    Guerrero-Orriach JL

    2016-04-01

    Full Text Available José Luis Guerrero-Orriach,1 Daniel Ariza-Villanueva,1 Ana Florez-Vela,1 Lourdes Garrido-Sánchez,2,3 María Isabel Moreno-Cortés,1 Manuel Galán-Ortega,1 Alicia Ramírez-Fernández,1 Juan Alcaide Torres,3 Concepción Santiago Fernandez,3 Isabel Navarro Arce,1 José María Melero-Tejedor,4 Manuel Rubio-Navarro,1 José Cruz-Mañas1 1Department of Cardio-Anaesthesiology, University Hospital Virgen de la Victoria, Málaga, Spain; 2CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN, Instituto de Salud Carlos III, Málaga, Spain; 3Department of Nutrition and Endocrinology, Instituto de Investigaciones Biomédicas de Málaga (IBIMA, University Hospital Virgen de la Victoria, Málaga, Spain; 4Department of Cardiovascular Surgery, University Hospital Virgen de la Victoria, Málaga, Spain Purpose: To evaluate if the preoperative administration of levosimendan in patients with right ventricular (RV dysfunction, pulmonary hypertension, and high perioperative risk would improve cardiac function and would also have a protective effect on renal and neurological functions, assessed using two biomarkers neutrophil gelatinase-associated lipocalin (N-GAL and neuronal enolase. Methods: This is an observational study. Twenty-seven high-risk cardiac patients with RV dysfunction and pulmonary hypertension, scheduled for cardiac valve surgery, were prospectively followed after preoperative administration of levosimendan. Levosimendan was administered preoperatively on the day before surgery. All patients were considered high risk of cardiac and perioperative renal complications. Cardiac function was assessed by echocardiography, renal function by urinary N-GAL levels, and the acute kidney injury scale. Neuronal damage was assessed by neuron-specific enolase levels. Results: After surgery, no significant variations were found in mean and SE levels of N-GAL (14.31 [28.34] ng/mL vs 13.41 [38.24] ng/mL, neuron-specific enolase (5.40 [0.41] ng/mL vs 4.32 [0.61] ng

  10. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia

    2014-01-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy...... and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H......-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H...

  11. Predictive Value of Beat-to-Beat QT Variability Index across the Continuum of Left Ventricular Dysfunction: Competing Risks of Non-cardiac or Cardiovascular Death, and Sudden or Non-Sudden Cardiac Death

    Science.gov (United States)

    Tereshchenko, Larisa G.; Cygankiewicz, Iwona; McNitt, Scott; Vazquez, Rafael; Bayes-Genis, Antoni; Han, Lichy; Sur, Sanjoli; Couderc, Jean-Philippe; Berger, Ronald D.; de Luna, Antoni Bayes; Zareba, Wojciech

    2012-01-01

    Background The goal of this study was to determine the predictive value of beat-to-beat QT variability in heart failure (HF) patients across the continuum of left ventricular dysfunction. Methods and Results Beat-to-beat QT variability index (QTVI), heart rate variance (LogHRV), normalized QT variance (QTVN), and coherence between heart rate variability and QT variability have been measured at rest during sinus rhythm in 533 participants of the Muerte Subita en Insuficiencia Cardiaca (MUSIC) HF study (mean age 63.1±11.7; males 70.6%; LVEF >35% in 254 [48%]) and in 181 healthy participants from the Intercity Digital Electrocardiogram Alliance (IDEAL) database. During a median of 3.7 years of follow-up, 116 patients died, 52 from sudden cardiac death (SCD). In multivariate competing risk analyses, the highest QTVI quartile was associated with cardiovascular death [hazard ratio (HR) 1.67(95%CI 1.14-2.47), P=0.009] and in particular with non-sudden cardiac death [HR 2.91(1.69-5.01), P<0.001]. Elevated QTVI separated 97.5% of healthy individuals from subjects at risk for cardiovascular [HR 1.57(1.04-2.35), P=0.031], and non-sudden cardiac death in multivariate competing risk model [HR 2.58(1.13-3.78), P=0.001]. No interaction between QTVI and LVEF was found. QTVI predicted neither non-cardiac death (P=0.546) nor SCD (P=0.945). Decreased heart rate variability (HRV) rather than increased QT variability was the reason for increased QTVI in this study. Conclusions Increased QTVI due to depressed HRV predicts cardiovascular mortality and non-sudden cardiac death, but neither SCD nor excracardiac mortality in HF across the continuum of left ventricular dysfunction. Abnormally augmented QTVI separates 97.5% of healthy individuals from HF patients at risk. PMID:22730411

  12. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    Remme, Carol Ann; Bezzina, Connie R.

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation

  13. Warfarin accelerated vascular calcification and worsened cardiac dysfunction in remnant kidney mice

    Directory of Open Access Journals (Sweden)

    Ming-Tsun Tsai

    2018-04-01

    Full Text Available Background: Vascular calcification is highly prevalent in end-stage renal disease (ESRD and is a significant risk factor for future cardiovascular events and death. Warfarin use results in dysfunction of matrix Gla protein, an inhibitor of vascular calcification. However, the effect of warfarin on vascular calcification in patients with ESRD is still not well characterized. Thus we investigated whether arterial calcification can be accelerated by warfarin treatment both in vitro and in vivo using a mouse remnant kidney model. Methods: Human aortic smooth muscle cells (HASMC were cultured in medium supplemented with warfarin and phosphate to investigate the potential role of this drug in osteoblast transdifferentiation. For in vivo study, adult male C57BL/6 mice underwent 5/6 nephrectomy were treated with active vitamin D3 plus warfarin to determine the extent of vascular calcification and parameters of cardiovascular function. Results: We found that the expressions of Runx2 and osteocalcin in HASMC were markedly enhanced in the culture medium containing warfarin and high phosphate concentration. Warfarin induced calcification of cultured HASMC in the presence of high phosphate levels, and this effect is inhibited by vitamin K2. Severe aortic calcification and reduced left ventricular ejection fractions were also noted in 5/6 nephrectomy mice treated with warfarin and active vitamin D3. Conclusion: Warfarin treatment contributes to the accelerated vascular calcification in animal models of advanced chronic kidney disease. Clinicians should therefore be aware of the profound risk of warfarin use on vascular calcification and cardiac dysfunction in patients with ESRD and atrial fibrillation. Keywords: Left ventricular dysfunction, Uremia, Vascular calcification, Warfarin

  14. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    Science.gov (United States)

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Exercise-induced ventricular arrhythmias and vagal dysfunction in Chagas disease patients with no apparent cardiac involvement

    Directory of Open Access Journals (Sweden)

    Henrique Silveira Costa

    2015-04-01

    Full Text Available INTRODUCTION : Exercise-induced ventricular arrhythmia (EIVA and autonomic imbalance are considered as early markers of heart disease in Chagas disease (ChD patients. The objective of the present study was to verify the differences in the occurrence of EIVA and autonomic maneuver indexes between healthy individuals and ChD patients with no apparent cardiac involvement. METHODS : A total of 75 ChD patients with no apparent cardiac involvement, aged 44.7 (8.5 years, and 38 healthy individuals, aged 44.0 (9.2 years, were evaluated using echocardiography, symptom-limited treadmill exercise testing and autonomic function tests. RESULTS : The occurrence of EIVA was higher in the chagasic group (48% than in the control group (23.7% during both the effort and the recovery phases. Frequent ventricular contractions occurred only in the patient group. Additionally, the respiratory sinus arrhythmia index was significantly lower in the chagasic individuals compared with the control group. CONCLUSIONS : ChD patients with no apparent cardiac involvement had a higher frequency of EIVA as well as more vagal dysfunction by respiratory sinus arrhythmia. These results suggest that even when asymptomatic, ChD patients possess important arrhythmogenic substrates and subclinical disease.

  16. The Impact of Timing and Graft Dysfunction on Survival and Cardiac Allograft Vasculopathy in Antibody Mediated Rejection

    Science.gov (United States)

    Clerkin, Kevin J.; Restaino, Susan W.; Zorn, Emmanuel; Vasilescu, Elena R.; Marboe, Charles C.; Mancini, Donna M.

    2017-01-01

    Background Antibody mediated rejection (AMR) has been associated with increased mortality and cardiac allograft vasculopathy (CAV). Early studies suggested that late AMR was rarely associated with graft dysfunction while recent reports have demonstrated an association with increased mortality. We sought to investigate the timing of AMR and its association with graft dysfunction, mortality, and CAV. Methods This retrospective cohort study identified all adult heart transplant recipients at Columbia University Medical Center from 2004–2013 (689 patients). There were 68 primary cases of AMR, which were stratified by early (1-year post-OHT) AMR. Kaplan-Meier survival analysis and modeling was performed with multivariable logistic regression and Cox proportional hazards regression. Results From January 1, 2004 through October 1, 2015 43 patients had early AMR (median 23 days post-OHT) and 25 had late AMR (median 1084 days post-OHT). Graft dysfunction was less common with early compared with late AMR (25.6% vs. 56%, p=0.01). Patients with late AMR had decreased post-AMR survival compared with early AMR (1-year 80% vs. 93%, 5-year 51% vs. 73%, p<0.05). When stratified by graft dysfunction, only those with late AMR and graft dysfunction had worse survival (30-day 79%, 1-year 64%, and 5-year 36%, p<0.006). The association remained irrespective of age, sex, DSA, LVAD use, reason for OHT, and recovery of graft function. Similarly, those with late AMR and graft dysfunction had accelerated development of de-novo CAV (50% at 1 year, HR 5.42, p=0.009), while all other groups were all similar to the general transplant population. Conclusion Late AMR is frequently associated with graft dysfunction. When graft dysfunction is present in late AMR there is an early and sustained increased risk of mortality and rapid development of de-novo CAV despite aggressive treatment. PMID:27423693

  17. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.

    Science.gov (United States)

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C; Connors, Lawreen H; Merlini, Giampaolo; Falk, Rodney H; MacRae, Calum A; Liao, Ronglih

    2013-07-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.

  18. S-diclofenac Protects against Doxorubicin-Induced Cardiomyopathy in Mice via Ameliorating Cardiac Gap Junction Remodeling

    Science.gov (United States)

    Zhang, Huili; Zhang, Alian; Guo, Changfa; Shi, Chunzhi; Zhang, Yang; Liu, Qing; Sparatore, Anna; Wang, Changqian

    2011-01-01

    Hydrogen sulfide (H2S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p.), diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H2S in the pathogenesis of doxorubicin-induced cardiomyopathy. PMID:22039489

  19. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Directory of Open Access Journals (Sweden)

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  20. Sulforaphane Ameliorates Bladder Dysfunction through Activation of the Nrf2-ARE Pathway in a Rat Model of Partial Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Chong Liu

    2016-01-01

    Full Text Available Purpose. We evaluated the effect of sulforaphane (SFN treatment on the function and changes of expression of Nrf2-ARE pathway in the bladder of rats with bladder outlet obstruction (BOO. Materials and Methods. A total of 18 male Sprague-Dawley rats at age of 8 weeks were divided into 3 groups (6 of each: the sham operated group, the BOO group, and the BOO+SFN group. We examined histological alterations and the changes of oxidative stress markers and the protein expression of the Nrf2-ARE pathway. Results. We found that SFN treatment could prolong micturition interval and increase bladder capacity and bladder compliance. However, the peak voiding pressure was lower than BOO group. SFN treatment can ameliorate the increase of collagen fibers induced by obstruction. SFN treatment also increased the activity of SOD, GSH-Px, and CAT compared to the other groups. The level of bladder cell apoptosis was decreased in BOO rats with SFN treatment. Moreover, SFN could reduce the ratio of Bax/Bcl-2 expression. Furthermore, SFN could activate the Nrf2 expression with elevation of its target antioxidant proteins. Conclusions. The sulforaphane-mediated decrease of oxidative stress and activation of the Nrf2-ARE pathway may ameliorate bladder dysfunction caused by bladder outlet obstruction.

  1. Sulforaphane Ameliorates Bladder Dysfunction through Activation of the Nrf2-ARE Pathway in a Rat Model of Partial Bladder Outlet Obstruction

    Science.gov (United States)

    Liu, Chong; Xu, Huan; Fu, Shi; Chen, Yanbo; Chen, Qi; Cai, Zhikang; Zhou, Juan; Wang, Zhong

    2016-01-01

    Purpose. We evaluated the effect of sulforaphane (SFN) treatment on the function and changes of expression of Nrf2-ARE pathway in the bladder of rats with bladder outlet obstruction (BOO). Materials and Methods. A total of 18 male Sprague-Dawley rats at age of 8 weeks were divided into 3 groups (6 of each): the sham operated group, the BOO group, and the BOO+SFN group. We examined histological alterations and the changes of oxidative stress markers and the protein expression of the Nrf2-ARE pathway. Results. We found that SFN treatment could prolong micturition interval and increase bladder capacity and bladder compliance. However, the peak voiding pressure was lower than BOO group. SFN treatment can ameliorate the increase of collagen fibers induced by obstruction. SFN treatment also increased the activity of SOD, GSH-Px, and CAT compared to the other groups. The level of bladder cell apoptosis was decreased in BOO rats with SFN treatment. Moreover, SFN could reduce the ratio of Bax/Bcl-2 expression. Furthermore, SFN could activate the Nrf2 expression with elevation of its target antioxidant proteins. Conclusions. The sulforaphane-mediated decrease of oxidative stress and activation of the Nrf2-ARE pathway may ameliorate bladder dysfunction caused by bladder outlet obstruction. PMID:27433291

  2. Adenoviral short hairpin RNA therapy targeting phosphodiesterase 5a relieves cardiac remodeling and dysfunction following myocardial infarction

    Science.gov (United States)

    Li, Longhu; Haider, Husnain Kh.; Wang, Linlin; Lu, Gang

    2012-01-01

    We previously showed that treatment with tadalafil, a long-acting phosphodiesterase-5a (PDE5a) inhibitor, effectively prevented adverse left ventricular (LV) remodeling of the infarcted heart. We hypothesized that short-hairpin RNA (shRNA) therapy targeting PDE5a would simulate the effects of pharmacological intervention for treatment of postinfarction LV remodeling and dysfunction. Experimental model of myocardial infarction was developed in female mice by permanent ligation of left coronary artery. Immediately after that, an adenoviral vector encoding for shRNA sequence targeting PDE5a (Ad-shPDE5a) was injected intramyocardially, which specifically inhibited PDE5a in the heart. Four weeks later, Ad-shPDE5a treated mice showed significant mitigation of the left ventricle (LV) dilatation and dysfunction as indicated by smaller LV cavity and more preserved ejection fraction and fractional shortening. Infarction size and fibrosis were significantly reduced in Ad-shPDE5a-treated mice. Additionally, more salvaged cardiomyocytes, significantly reduced collagen contents, and higher blood vessel density were observed in Ad-shPDE5a-treated mice. The cytoprotective effects of Ad-shPDE5a were demonstrated in vitro in Ad-shPDE5a transfected cardiomyocytes cultured under oxygen glucose deprivation. Among downstream mediators of PDE5a signaling, cyclic GMP (cGMP) and cGMP-dependent protein kinase G (PKG) were activated with concomitant reduction in caspase-3 activity. However, no significant change in PKA and cAMP activities were observed in Ad-shPDE5a-treated hearts. Inhibition with shRNA improved cardiac remodeling and dysfunction by reducing infarction size and cardiac fibrosis and increased cGMP and PKG activity. These findings suggest that PDE5 inhibition with Ad-shPDE5a is a novel approach for treatment of myocardial infarction. PMID:22447941

  3. Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes

    Directory of Open Access Journals (Sweden)

    Hualin Wang

    2018-04-01

    Full Text Available The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON, a high-fat diet (HFD group or a HFD supplemented with fish oil (FO group for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes’ expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.

  4. Mechanisms Involved in Secondary Cardiac Dysfunction in Animal Models of Trauma and Hemorrhagic Shock.

    Science.gov (United States)

    Wilson, Nick M; Wall, Johanna; Naganathar, Veena; Brohi, Karim; De'Ath, Henry D

    2017-10-01

    Clinical evidence reveals the existence of a trauma-induced secondary cardiac injury (TISCI) that is associated with poor patient outcomes. The mechanisms leading to TISCI in injured patients are uncertain. Conversely, animal models of trauma hemorrhage have repeatedly demonstrated significant cardiac dysfunction following injury, and highlighted mechanisms through which this might occur. The aim of this review was to provide an overview of the animal studies describing TISCI and its pathophysiology.Basic science models of trauma show evidence of innate immune system activation via Toll-like receptors, the exact protagonists of which remain unclear. Shortly following trauma and hemorrhage, cardiomyocytes upregulate gene regulatory protein and inflammatory molecule expression including nuclear factor kappa beta, tumor necrosis factor alpha, and interleukin-6. This is associated with expression of membrane bound adhesion molecules and chemokines leading to marked myocardial leukocyte infiltration. This cell activation and infiltration is linked to a rise in enzymes that cause oxidative and nitrative stress and subsequent protein misfolding within cardiomyocytes. Such protein damage may lead to reduced contractility and myocyte apoptosis. Other molecules have been identified as cardioprotective following injury. These include p38 mitogen-activated protein kinases and heat shock proteins.The balance between increasing damaging mediators and a reduction in cardio-protective molecules appears to define myocardial function following trauma. Exogenous therapeutics have been trialled in rodents with promising abilities to favorably alter this balance, and subsequently lead to improved cardiac function.

  5. Inhibition of Epithelial TNF-α Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis.

    Science.gov (United States)

    Zhou, Zijuan; Wang, Liang; Feng, Panpan; Yin, Lianhong; Wang, Chen; Zhi, Shengxu; Dong, Jianyi; Wang, Jingyu; Lin, Yuan; Chen, Dapeng; Xiong, Yongjian; Peng, Jinyong

    2017-01-01

    Activation of the TNF-α receptor (TNFR) leads to an inflammatory response, and anti-TNF therapy has been administered to reduce inflammation symptoms and heal mucosal ulcers in inflammatory bowel disease (IBD). Bromelain, a complex natural mixture of proteolytic enzymes, has been shown to exert anti-inflammatory effects. This study aimed to investigate the effect of purified fruit bromelain (PFB)-induced inhibition of epithelial TNFR in a rat colitis model. Colitis was established by intracolonic administration of 2, 4, 6-trinitrobenzene sulfonic acid. Expression of TNFR1 and TNFR2 was measured by quantitative RT-PCR and western blotting. The effect of PFB on colitis was evaluated by examining the inflammatory response and intestinal epithelial barrier function. Our results showed that both TNFR1 and TNFR2 expression were significantly increased in a colitis model, and the increase was significantly reversed by PFB. Colitis symptoms, including infiltration of inflammatory cells, cytokine profiles, epithelial cell apoptosis, and epithelial tight junction barrier dysfunction were significantly ameliorated by PFB. Compared with fruit bromelain and stem bromelain complex, the inhibition of TNFR2 induced by PFB was stronger than that exhibited on TNFR1. These results indicate that PFB showed a stronger selective inhibitory effect on TNFR2 than TNFR1. In other words, purification of fruit bromelain increases its selectivity on TNFR2 inhibition. High expression of epithelial TNFRs in colitis was significantly counteracted by PFB, and PFB-induced TNFR inhibition ameliorated colitis symptoms. These results supply novel insights into potential IBD treatment by PFB.

  6. Changes in cardiac heparan sulfate proteoglycan expression and streptozotocin-induced diastolic dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Cestari Ismar N

    2011-04-01

    Full Text Available Abstract Background Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ-induced diabetes. Methods Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection, after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E diastolic filling and isovolumic relaxation time (IVRT indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.

  7. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.

    Science.gov (United States)

    Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-08-06

    Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  8. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    Directory of Open Access Journals (Sweden)

    Lee Yun

    2012-08-01

    Full Text Available Abstract Background Arctium lappa L. (Asteraceae, burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD. Method EAL-I (100 mg·kg−1/day, EAL-II (200 mg·kg−1/day, and fluvastatin (3 mg·kg−1/day groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM-1, vascular cell adhesion molecule (VCAM-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  9. TNF-α as a potential mediator of cardiac dysfunction due to intracellular Ca2+-overload

    International Nuclear Information System (INIS)

    Zhang Ming; Xu Yanjun; Saini, Harjot K.; Turan, Belma; Liu, Peter P.; Dhalla, Naranjan S.

    2005-01-01

    TNF-α has been shown to be involved in cardiac dysfunction during ischemia/reperfusion injury; however, no information regarding the status of TNF-α production in myocardial injury due to intracellular Ca 2+ -overload is available in the literature. The intracellular Ca 2+ -overload was induced in the isolated rat hearts subjected to 5 min Ca 2+ -depletion and 30 min Ca 2+ -repletion (Ca 2+ -paradox). The Ca 2+ -paradox hearts exhibited a dramatic depression in left ventricular developed pressure, a marked elevation in left ventricular end diastolic pressure, and more than a 4-fold increase in TNF-α content. The ratio of cytosolic to homogenate nuclear factor-κB (NFκB) was decreased whereas the ratio of phospho-NFκB to total NFκB was increased in the Ca 2+ -paradox hearts. All these changes due to Ca 2+ -paradox were significantly attenuated upon treating the hearts with 100 μM pentoxifylline. These results suggest that activation of NFκB and increased production of TNF-α may play an important role in cardiac injury due to intracellular Ca 2+ -overload

  10. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload

    Directory of Open Access Journals (Sweden)

    Sujith Dassanayaka

    2018-07-01

    Full Text Available Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2. An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Keywords: Heart failure, Hypertrophy, Oxidative stress, Aldehydes, Cardiac remodeling, Hormesis

  11. The effect of timing and graft dysfunction on survival and cardiac allograft vasculopathy in antibody-mediated rejection.

    Science.gov (United States)

    Clerkin, Kevin J; Restaino, Susan W; Zorn, Emmanuel; Vasilescu, Elena R; Marboe, Charles C; Mancini, Donna M

    2016-09-01

    Antibody-mediated rejection (AMR) has been associated with increased death and cardiac allograft vasculopathy (CAV). Early studies suggested that late AMR was rarely associated with graft dysfunction, whereas recent reports have demonstrated an association with increased mortality. We investigated the timing of AMR and its association with graft dysfunction, death, and CAV. This retrospective cohort study identified all adult orthotopic heart transplant (OHT) recipients (N = 689) at Columbia University Medical Center from 2004 to 2013. There were 68 primary cases of AMR, which were stratified by early ( 1 year post-OHT) AMR. Kaplan-Meier survival analysis and modeling was performed with multivariable logistic regression and Cox proportional hazards regression. From January 1, 2004, through October 1, 2015, early AMR (median 23 days post-OHT) occurred in 43 patients and late AMR (median 1,084 days post-OHT) occurred in 25. Graft dysfunction was less common with early compared with late AMR (25.6% vs 56%, p = 0.01). Patients with late AMR had decreased post-AMR survival compared with early AMR (1 year: 80% vs 93%, 5 years: 51% vs 73%, p < 0.05). When stratified by graft dysfunction, only those with late AMR and graft dysfunction had worse survival (30 days: 79%, 1 year: 64%, 5 years: 36%; p < 0.006). The association remained irrespective of age, sex, donor-specific antibodies, left ventricular assist device use, reason for OHT, and recovery of graft function. Similarly, those with late AMR and graft dysfunction had accelerated development of de novo CAV (50% at 1 year; hazard ratio, 5.42; p = 0.009), whereas all other groups were all similar to the general transplant population. Late AMR is frequently associated with graft dysfunction. When graft dysfunction is present in late AMR, there is an early and sustained increased risk of death and rapid development of de novo CAV despite aggressive treatment. Copyright © 2016 International Society for Heart and Lung

  12. Brain-Heart Interaction: Cardiac Complications After Stroke.

    Science.gov (United States)

    Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli

    2017-08-04

    Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.

  13. Silencing of the Drosophila ortholog of SOX5 in heart leads to cardiac dysfunction as detected by optical coherence tomography.

    Science.gov (United States)

    Li, Airong; Ahsen, Osman O; Liu, Jonathan J; Du, Chuang; McKee, Mary L; Yang, Yan; Wasco, Wilma; Newton-Cheh, Christopher H; O'Donnell, Christopher J; Fujimoto, James G; Zhou, Chao; Tanzi, Rudolph E

    2013-09-15

    The SRY-related HMG-box 5 (SOX5) gene encodes a member of the SOX family of transcription factors. Recently, genome-wide association studies have implicated SOX5 as a candidate gene for susceptibility to four cardiac-related endophenotypes: higher resting heart rate (HR), the electrocardiographic PR interval, atrial fibrillation and left ventricular mass. We have determined that human SOX5 has a highly conserved Drosophila ortholog, Sox102F, and have employed transgenic Drosophila models to quantitatively measure cardiac function in adult flies. For this purpose, we have developed a high-speed and ultrahigh-resolution optical coherence tomography imaging system, which enables rapid cross-sectional imaging of the heart tube over various cardiac cycles for the measurement of cardiac structural and dynamical parameters such as HR, dimensions and areas of heart chambers, cardiac wall thickness and wall velocities. We have found that the silencing of Sox102F resulted in a significant decrease in HR, heart chamber size and cardiac wall velocities, and a significant increase in cardiac wall thickness that was accompanied by disrupted myofibril structure in adult flies. In addition, the silencing of Sox102F in the wing led to increased L2, L3 and wing marginal veins and increased and disorganized expression of wingless, the central component of the Wnt signaling pathway. Collectively, the silencing of Sox102F resulted in severe cardiac dysfunction and structural defects with disrupted Wnt signaling transduction in flies. This implicates an important functional role for SOX5 in heart and suggests that the alterations in SOX5 levels may contribute to the pathogenesis of multiple cardiac diseases or traits.

  14. Cardiac dysfunction in the trastuzumab clinical trials experience.

    Science.gov (United States)

    Seidman, Andrew; Hudis, Clifford; Pierri, Mary Kathryn; Shak, Steven; Paton, Virginia; Ashby, Mark; Murphy, Maureen; Stewart, Stanford J; Keefe, Deborah

    2002-03-01

    This study sought to estimate cardiac dysfunction (CD) risk for patients receiving trastuzumab; to characterize observed CD by severity, treatment, and clinical outcome; to assess effects of baseline clinical risk factors on CD; and to assess effects of cumulative doses of anthracyclines and trastuzumab on CD. A retrospective review of records for patients enrolled onto any of seven phase II and III trastuzumab clinical trials was performed. Predefined criteria were used for the diagnosis, and the New York Heart Association functional classification system was used to document CD severity. Product-limit estimates were used to summarize the cumulative anthracycline and trastuzumab doses at the time of CD onset. Patients treated with trastuzumab were found to be at an increased risk for CD. The incidence was greatest in patients receiving concomitant trastuzumab and anthracycline plus cyclophosphamide (27%). The risk was substantially lower in patients receiving paclitaxel and trastuzumab (13%) or trastuzumab alone (3% to 7%); however, most of these patients had received prior anthracycline therapy. CD was noted in 8% of patients receiving anthracycline plus cyclophosphamide and 1% receiving paclitaxel alone. Most trastuzumab-treated patients developing CD were symptomatic (75%), and most improved with standard treatment for congestive heart failure (79%). Trastuzumab is associated with an increased risk of CD, which is greatest in patients receiving concurrent anthracyclines. In most patients with metastatic breast cancer, the risk of CD can be justified given the improvement in overall survival previously reported with trastuzumab.

  15. Oxidative-Nitrosative Stress and Myocardial Dysfunctions in Sepsis: Evidence from the Literature and Postmortem Observations

    Directory of Open Access Journals (Sweden)

    M. Neri

    2016-01-01

    Full Text Available Background. Myocardial depression in sepsis is common, and it is associated with higher mortality. In recent years, the hypothesis that the myocardial dysfunction during sepsis could be mediated by ischemia related to decreased coronary blood flow waned and a complex mechanism was invoked to explain cardiac dysfunction in sepsis. Oxidative stress unbalance is thought to play a critical role in the pathogenesis of cardiac impairment in septic patients. Aim. In this paper, we review the current literature regarding the pathophysiology of cardiac dysfunction in sepsis, focusing on the possible role of oxidative-nitrosative stress unbalance and mitochondria dysfunction. We discuss these mechanisms within the broad scenario of cardiac involvement in sepsis. Conclusions. Findings from the current literature broaden our understanding of the role of oxidative and nitrosative stress unbalance in the pathophysiology of cardiac dysfunction in sepsis, thus contributing to the establishment of a relationship between these settings and the occurrence of oxidative stress. The complex pathogenesis of septic cardiac failure may explain why, despite the therapeutic strategies, sepsis remains a big clinical challenge for effectively managing the disease to minimize mortality, leading to consideration of the potential therapeutic effects of antioxidant agents.

  16. Mitochondrial dysfunction in H9c2 cells during ischemia and amelioration with Tribulus terrestris L.

    Science.gov (United States)

    Reshma, P L; Sainu, Neethu S; Mathew, Anil K; Raghu, K G

    2016-05-01

    The present study investigates the protective effect of partially characterized Tribulus terrestris L. fruit methanol extract against mitochondrial dysfunction in cell based (H9c2) myocardial ischemia model. To induce ischemia, the cells were maintained in an ischemic buffer (composition in mM -137 NaCl, 12 KCl, 0.5 MgCl2, 0.9 CaCl2, 20 HEPES, 20 2-deoxy-d-glucose, pH-6.2) at 37°C with 0.1% O2, 5% CO2, and 95% N2 in a hypoxia incubator for 1h. Cells were pretreated with various concentrations of T. terrestris L. fruit methanol extract (10 and 25μg/ml) and Cyclosporin A (1μM) for 24h prior to the induction of ischemia. Different parameters like lactate dehydrogenase release, total antioxidant capacity, glutathione content and antioxidant enzymes were investigated. Studies were conducted on mitochondria by analyzing alterations in mitochondrial membrane potential, integrity, and dynamics (fission and fusion proteins - Mfn1, Mfn2, OPA1, Drp1 and Fis1). Various biochemical processes in mitochondria like activity of electron transport chain (ETC) complexes, oxygen consumption and ATP production was measured. Ischemia for 1h caused a significant (p≤0.05) increase in LDH leakage, decrease in antioxidant activity and caused mitochondrial dysfunction. T. terrestris L. fruit methanol extract pretreatment was found effective in safeguarding mitochondria via its antioxidant potential, mediated through various bioactives. HPLC of T. terrestris L. fruit methanol extract revealed the presence of ferulic acid, phloridzin and diosgenin. T. terrestris L. fruit ameliorate ischemic insult in H9c2 cells by safeguarding mitochondrial function. This validates the use of T. terrestris L. against heart disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cardiac biomarkers in neonatal hypoxic ischaemia.

    LENUS (Irish Health Repository)

    Sweetman, D

    2012-04-01

    Following a perinatal hypoxic-ischaemic insult, term infants commonly develop cardiovascular dysfunction. Troponin-T, troponin-I and brain natriuretic peptide are sensitive indicators of myocardial compromise. The long-term effects of cardiovascular dysfunction on neurodevelopmental outcome following perinatal hypoxic ischaemia remain controversial. Follow-up studies are warranted to ensure optimal cardiac function in adulthood. CONCLUSION: Cardiac biomarkers may improve the diagnosis of myocardial injury, help guide management, estimate mortality risk and may also aid in longterm neurodevelopmental outcome prediction following neonatal hypoxic-ischaemia.

  18. Aqueous Extract of Allium sativum (Linn.) Bulbs Ameliorated Pituitary-Testicular Injury and Dysfunction in Wistar Rats with Pb-Induced Reproductive Disturbances.

    Science.gov (United States)

    Ayoka, Abiodun O; Ademoye, Aderonke K; Imafidon, Christian E; Ojo, Esther O; Oladele, Ayowole A

    2016-06-15

    To determine the effects of aqueous extract of Allium sativum bulbs (AEASAB) on pituitary-testicular injury and dysfunction in Wistar rats with lead-induced reproductive disturbances. Male Wistar rats were divided into 7 groups such that the control group received propylene glycol at 0.2 ml/100 g intraperitoneally for 10 consecutive days, the toxic group received lead (Pb) alone at 15 mg/kg/day via intraperitoneal route for 10 days while the treatment groups were pretreated with lead as the toxic group after which they received graded doses of the extract at 50, 100 and 200 mg/kg/day via oral route for 28 days. Pb administration induced significant deleterious alterations in the antioxidant status of the brain and testis, sperm characterization (counts, motility and viability) as well as reproductive hormones (FSH, LH and testosterone) of exposed rats (p < 0.05). These were significantly reversed in the AEASAB-treated groups (p < 0.05). Also, there was marked improvement in the Pb-induced vascular congestion and cellular loss in the pituitary while the observed Pb-induced severe testicular vacuolation was significantly reversed in the representative photomicrographs, following administration of the extract. AEASAB treatment ameliorated the pituitary-testicular injury and dysfunction in Wistar rats with Pb-Induced reproductive disturbances.

  19. Left ventricular dysfunction with reduced functional cardiac reserve in diabetic and non-diabetic LDL-receptor deficient apolipoprotein B100-only mice

    Directory of Open Access Journals (Sweden)

    Bosch Fatima

    2011-06-01

    Full Text Available Abstract Background Lack of suitable mouse models has hindered the studying of diabetic macrovascular complications. We examined the effects of type 2 diabetes on coronary artery disease and cardiac function in hypercholesterolemic low-density lipoprotein receptor-deficient apolipoprotein B100-only mice (LDLR-/-ApoB100/100. Methods and results 18-month-old LDLR-/-ApoB100/100 (n = 12, diabetic LDLR-/-ApoB100/100 mice overexpressing insulin-like growth factor-II (IGF-II in pancreatic beta cells (IGF-II/LDLR-/-ApoB100/100, n = 14 and age-matched C57Bl/6 mice (n = 15 were studied after three months of high-fat Western diet. Compared to LDLR-/-ApoB100/100 mice, diabetic IGF-II/LDLR-/-ApoB100/100 mice demonstrated more calcified atherosclerotic lesions in aorta. However, compensatory vascular enlargement was similar in both diabetic and non-diabetic mice with equal atherosclerosis (cross-sectional lesion area ~60% and consequently the lumen area was preserved. In coronary arteries, both hypercholesterolemic models showed significant stenosis (~80% despite positive remodeling. Echocardiography revealed severe left ventricular systolic dysfunction and anteroapical akinesia in both LDLR-/-ApoB100/100 and IGF-II/LDLR-/-ApoB100/100 mice. Myocardial scarring was not detected, cardiac reserve after dobutamine challenge was preserved and ultrasructural changes revealed ischemic yet viable myocardium, which together with coronary artery stenosis and slightly impaired myocardial perfusion suggest myocardial hibernation resulting from chronic hypoperfusion. Conclusions LDLR-/-ApoB100/100 mice develop significant coronary atherosclerosis, severe left ventricular dysfunction with preserved but diminished cardiac reserve and signs of chronic myocardial hibernation. However, the cardiac outcome is not worsened by type 2 diabetes, despite more advanced aortic atherosclerosis in diabetic animals.

  20. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia

    Directory of Open Access Journals (Sweden)

    Landoni Giovanni

    2009-01-01

    Full Text Available Volatile anaesthetic agents have direct protective properties against ischemic myocardial damage. The implementation of these properties during clinical anaesthesia can provide an additional tool in the treatment or prevention, or both, of ischemic cardiac dysfunction in the perioperative period. A recent meta-analysis showed that desflurane and sevoflurane reduce postoperative mortality and incidence of myocardial infarction following cardiac surgery, with significant advantages in terms of postoperative cardiac troponin release, need for inotrope support, time on mechanical ventilation, intensive care unit and overall hospital stay. Multicentre, randomised clinical trials had previously demonstrated that the use of desflurane can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalisation following coronary artery bypass graft surgery either with and without cardiopulmonary bypass. The American College of Cardiology/American Heart Association Guidelines recommend volatile anaesthetic agents during non-cardiac surgery for the maintenance of general anaesthesia in patients at risk for myocardial infarction. Nonetheless, e vidence in non-coronary surgical settings is contradictory and will be reviewed in this paper together with the mechanisms of cardiac protection by volatile agents.

  1. Prevention of disease progression by cardiac resynchronization therapy in patients with asymptomatic or mildly symptomatic left ventricular dysfunction: insights from the European cohort of the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial

    DEFF Research Database (Denmark)

    Daubert, Claude; Gold, Michael R; Abraham, William T

    2009-01-01

    were decreased in this patient population in New York Heart Association functional classes I or II. These observations suggest that CRT prevents the progression of disease in patients with asymptomatic or mildly symptomatic LV dysfunction. (REsynchronization reVErses Remodeling in Systolic Left v......OBJECTIVES: The aim of this study was to determine the long-term effects of cardiac resynchronization therapy (CRT) in the European cohort of patients enrolled in the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial. BACKGROUND: Previous data suggest...... that CRT slows disease progression and improves the outcomes of asymptomatic or mildly symptomatic patients with left ventricular (LV) dysfunction and a wide QRS complex. METHODS: We randomly assigned 262 recipients of CRT pacemakers or defibrillators, with QRS > or =120 ms and LV ejection fraction...

  2. Noninvasive Assisted Ventilation in Pulmonary Gas Exchange Dysfunctions in Cardiac Surgical Patients

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2008-01-01

    Full Text Available Background. Postextubation pulmonary gas exchange dysfunctions are a potential complication in the activation of cardio-surgical patients in the early periods after surgical intervention. Objective: to evaluate the efficiency of noninvasive assisted ventilation (NIAV as a method for correcting the pulmonary gas exchange disturbances developing after early activation of cardiosurgical patients. Subjects and methods. The study included 64 patients (36 males and 28 females aged 21 to 72 (54±2 years who had been operated on under extracorporeal circulation (EC. The duration of EC and myocardial ischemia was 104±6 and 73±4 min, respectively. The indications for NIAV were the clinical manifestations of acute respiratory failure (ARF and/or PaCO2>50 mm Hg and/or PaO2/FiO2Results. During NIAV, there was improvement (p<0.05 of lung oxygenizing function (the increase in PaO2/FiO2 was 23%, a reduction in Qs/Qt from 21.1±1.9 to 13.9±1.0% (p<0.05. NIAV was accompanied by a decrease in PaCO2 (p<0.05. Hypercapnia regressed in 7 patients with isolated lung ventilatory dysfunction (PaCO2>50 mm Hg an hour after initiation of NIAV. During and after NIAV, there were reductions in right atrial pressure, mean pulmonary pressure, indexed total pulmonary vascular resistance (ITPVR (p<0.05. Prior to, during, and following NIAV, mean blood pressure, cardiac index, and indexed total pulmonary vascular resstance did not change greatly. In hypercapnia, the duration of NIAV was significantly less than that in lung oxygenizing function (2.8±0.2 hours versus 4.7±0.5 hours. That of ICU treatment was 23±4 hours. Fifty-two (81% patients were transferred from ICUs to cardiosurgical units on the following day after surgery. Conclusion. In most cases, NIAV promotes a rapid and effective correction of postextubation lung ventilatory and oxygenizing dysfunctions occurring after early activation of cardiosurgical patients. Key words: non-invasive assisted ventilation, early

  3. EFFICACY OF TOMATO AND / OR GARLIC IN AMELIORATING CARDIAC DISORDERS INDUCED BY FEEDING RATS FRYING OIL

    International Nuclear Information System (INIS)

    OSMAN, N.N.

    2007-01-01

    and AST activities were also observed. As well as, significant increase in both TSH and T4 levels were noticed, while T3 level was not affected. These biochemical alterations were ameliorated when tomato, garlic and their combination was administered to rats fed diet supplemented with frying oil. It appears that adequate amounts of tomato and/or garlic might protects against cardiac injuries induced by feeding frying oil

  4. Cardiac Function in Patients with Early Cirrhosis during Maximal Beta-Adrenergic Drive

    DEFF Research Database (Denmark)

    Krag, Aleksander; Bendtsen, Flemming; Dahl, Emilie Kristine

    2014-01-01

    BACKGROUND AND AIM: Cardiac dysfunction in patients with early cirrhosis is debated. We investigated potential cardiac dysfunction by assessing left ventricular systolic performance during a dobutamine stress test in patients with early cirrhosis. PATIENTS AND METHODS: Nineteen patients with Chil...

  5. Level of complement activity predicts cardiac dysfunction after acute myocardial infarction treated with primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Haahr-Pedersen, Sune; Bjerre, Mette; Flyvbjerg, Allan

    2009-01-01

    BACKGROUND: The positive effect of reperfusion after ST-elevation myocardial infarction (STEMI) can be reduced by ischemic/reperfusion (I/R) injury.Mannose-binding-lectin (MBL) and soluble C5b-9 (membrane-attack-complex) are involved in complement-driven cell lysis and may play a role in human...... with increased risk of cardiac dysfunction in STEMI patients treated with pPCI, probably due to increased complement activity during the ischemic and reperfusion process. The predictive value of low peripheral plasma sC5b-9 may be explained by an accumulation and activation of sC5b-9 in the infarcted myocardium....

  6. Diastolic and autonomic dysfunction in early cirrhosis

    DEFF Research Database (Denmark)

    Dahl, Emilie Kristine; Møller, Søren; Kjær, Andreas

    2014-01-01

    OBJECTIVE. Presence of cardiac dysfunction in patients with advanced cirrhosis is widely accepted, but data in early stages of cirrhosis are limited. Systolic and diastolic functions, dynamics of QT-interval, and pro-atrial natriuretic peptide (pro-ANP) are investigated in patients with early stage...... cirrhosis during maximal β-adrenergic drive. MATERIAL AND METHODS. Nineteen patients with Child A (n = 12) and Child B cirrhosis (n = 7) and seven matched controls were studied during cardiac stress induced by increasing dosages of dobutamine and atropine. RESULTS. Pharmacological responsiveness was similar...... indicate that patients with early stage cirrhosis exhibit early diastolic and autonomic dysfunction as well as elevated pro-ANP. However, the cardiac chronotropic and inotropic responses to dobutamine stress were normal. The dynamics of ventricular repolarization appears normal in patients with early stage...

  7. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Yves eLecarpentier

    2014-11-01

    Full Text Available Circadian clock mechanisms are far-from-equilibrium dissipative structures. Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta and gamma play a key role in metabolic regulatory processes, particularly in heart muscle. Links between circadian rhythms (CRs and PPARs have been established. Mammalian CRs involve at least two critical transcription factors, CLOCK and BMAL1 (Gekakis et al., 1998; Hogenesch et al., 1998. PPAR gamma plays a major role in both glucose and lipid metabolisms and presents circadian properties which coordinate the interplay between metabolism and CRs. PPAR gamma is a major component of the vascular clock. Vascular PPAR gamma is a peripheral regulator of cardiovascular rhythms controlling circadian variations in blood pressure and heart rate through BMAL1. We focused our review on diseases with abnormalities of CRs and with primary or secondary cardiac dysfunction. Moreover, these diseases presented changes in the Wnt/beta-catenin pathway and PPARs, according to two opposed profiles. Profile 1 was defined as follows: inactivation of the Wnt/beta-catenin pathway with increased expression of PPAR gamma. Profile 2 was defined as follows: activation of the Wnt/beta-catenin pathway with decreased expression of PPAR gamma. A typical profile 1 disease is arrhythmogenic right ventricular cardiomyopathy, a genetic cardiac disease which presents mutations of the desmosomal proteins and is mainly characterized by fatty acid accumulation in adult cardiomyocytes mainly in the right ventricle. The link between PPAR gamma dysfunction and desmosomal genetic mutations occurs via inactivation of the Wnt/beta-catenin pathway presenting oscillatory properties. A typical profile 2 disease is type 2 diabetes, with activation of the Wnt/beta-catenin pathway and decreased expression of PPAR gamma. CRs abnormalities are present in numerous pathologies such as cardiovascular diseases, sympathetic/parasympathetic dysfunction

  8. Endothelial dysfunction in the early postoperative period after major colon cancer surgery

    DEFF Research Database (Denmark)

    Ekeloef, S; Larsen, M H H; Schou-Pedersen, A M V

    2017-01-01

    BACKGROUND: Evidence suggests that endothelial dysfunction in the early postoperative period promotes myocardial injury after non-cardiac surgery. The aim of this study was to investigate the impact of colon cancer surgery on endothelial function and the association with the l-arginine-nitric oxide...... was attenuated in the first days after colon cancer surgery indicating acute endothelial dysfunction. Endothelial dysfunction correlated with disturbances in the L-arginine - nitric oxide pathway. Our findings provide a rationale for investigating the hypothesized association between acute endothelial...... dysfunction and cardiovascular complications after non-cardiac surgery. CLINICAL TRIAL REGISTRATION: NCT02344771....

  9. Endothelial dysfunction in the early postoperative period after major colon cancer surgery

    DEFF Research Database (Denmark)

    Ekeløf, Sara; Larsen, Mikkel Hjordt; Schou-Pedersen, Anne Marie Voigt

    2017-01-01

    Background. Evidence suggests that endothelial dysfunction in the early postoperative period promotes myocardial injury after non-cardiac surgery. The aim of this study was to investigate the impact of colon cancer surgery on endothelial function and the association with the l-arginine-nitric oxide...... was attenuated in the first days after colon cancer surgery indicating acute endothelial dysfunction. Endothelial dysfunction correlated with disturbances in the L-arginine – nitric oxide pathway. Our findings provide a rationale for investigating the hypothesized association between acute endothelial...... dysfunction and cardiovascular complications after non-cardiac surgery. Clinical trial registration. NCT02344771....

  10. Cardiac Dysfunction in HIV-1 Transgenic Mouse: Role of Stress and BAG3.

    Science.gov (United States)

    Cheung, Joseph Y; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Tilley, Douglas G; Gao, Erhe; Koch, Walter J; Rabinowitz, Joseph; Klotman, Paul E; Khalili, Kamel; Feldman, Arthur M

    2015-08-01

    Since highly active antiretroviral therapy improved long-term survival of acquired immunodeficiency syndrome (AIDS) patients, AIDS cardiomyopathy has become an increasingly relevant clinical problem. We used human immunodeficiency virus (HIV)-1 transgenic (Tg26) mouse to explore molecular mechanisms of AIDS cardiomyopathy. Tg26 mice had significantly lower left ventricular (LV) mass and smaller end-diastolic and end-systolic LV volumes. Under basal conditions, cardiac contractility and relaxation and single myocyte contraction dynamics were not different between wild-type (WT) and Tg26 mice. Ten days after open heart surgery, contractility and relaxation remained significantly depressed in Tg26 hearts, suggesting that Tg26 mice did not tolerate surgical stress well. To simulate heart failure in which expression of Bcl2-associated athanogene 3 (BAG3) is reduced, we down-regulated BAG3 by small hairpin ribonucleic acid in WT and Tg26 hearts. BAG3 down-regulation significantly reduced contractility in Tg26 hearts. BAG3 overexpression rescued contractile abnormalities in myocytes expressing the HIV-1 protein Tat. We conclude: (i) Tg26 mice exhibit normal contractile function at baseline; (ii) Tg26 mice do not tolerate surgical stress well; (iii) BAG3 down-regulation exacerbated cardiac dysfunction in Tg26 mice; (iv) BAG3 overexpression rescued contractile abnormalities in myocytes expressing HIV-1 protein Tat; and (v) BAG3 may occupy a role in pathogenesis of AIDS cardiomyopathy. © 2015 Wiley Periodicals, Inc.

  11. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl4-Induced Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Ping-Chun Li

    2012-01-01

    Full Text Available We used the carbon tetrachloride (CCl4 induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl4 and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W. or silymarin (0.2 g/kg B.W.. Cardiac eccentric hypertrophy was induced by CCl4 along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6 signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl4-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl4-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.

  12. Targeted NGF siRNA delivery attenuates sympathetic nerve sprouting and deteriorates cardiac dysfunction in rats with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Hesheng Hu

    Full Text Available Nerve growth factor (NGF is involved in nerve sprouting, hyper-innervation, angiogenesis, anti-apoptosis, and preservation of cardiac function after myocardial infarction (MI. Positively modulating NGF expression may represent a novel pharmacological strategy to improve post-infarction prognosis. In this study, lentivirus encoding NGF short interfering RNA (siRNA was prepared, and MI was modeled in the rat using left anterior descending coronary artery ligation. Rats were randomly grouped to receive intramyocardial injection of lentiviral solution containing NGF-siRNA (n = 19, MI-SiNGF group, lentiviral solution containing empty vector (n = 18, MI-GFP group or 0.9% NaCl solution (n = 18, MI-control group, or to receive thoracotomy and pericardiotomy (n = 17, sham-operated group. At 1, 2, 4, and 8 wk after transduction, rats in the MI-control group had higher levels of NGF mRNA and protein than those in the sham-operated group, rats in the MI-GFP group showed similar levels as the MI-control group, and rats in the MI-SiNGF group had lower levels compared to the MI-GFP group, indicating that MI model was successfully established and NGF siRNA effectively inhibited the expression of NGF. At 8 wk, echocardiographic and hemodynamic studies revealed a more severe cardiac dysfunction in the MI-siRNA group compared to the MI-GFP group. Moreover, rats in the MI-siRNA group had lower mRNA and protein expression levels of tyrosine hydroxylase (TH and growth-associated protein 43-positive nerve fibers (GAP-43 at both the infarcted border and within the non-infarcted left ventricles (LV. NGF silencing also reduced the vascular endothelial growth factor (VEGF expression and decreased the arteriolar and capillary densities at the infarcted border compared to the MI-GFP group. Histological analysis indicated a large infarcted size in the MI-SiNGF group. These findings suggested that endogenous NGF silencing attenuated sympathetic nerve sprouting

  13. [Nitrid oxide, levosimendan and sildenafile in a patient with right ventricle dysfunction and severe pulmonary hypertension after cardiac surgery].

    Science.gov (United States)

    Aleixandre, L; Cortell, J; Vicente, R; Herrera, P; Loro, J M; Valera, F

    2014-11-01

    Pulmonary hypertension (PHT) and the resulting right ventricle dysfunction are important risk factors in patients who undergo cardiac surgery. The treatment of PHT and right ventricle dysfunction should be focused on maintaining the correct right ventricle after load, improving right ventricle function and reducing the right ventricle pre-load and therefore reducing pulmonary vascular resistance by means of vasodilators. A combined therapy of vasodilators and medicines which have different mechanisms of action, is becoming an option for the treatment of PHT. We present a 65 year old woman that suffered from mitral regurgitation, aortic valve disease, tricuspid and ascending aortic dilation with 115mmHg of pulmonary artery pressure (by ultrasound evaluation). The patient was operated on of mitral, aortic valve and tricuspid plastia and proximal aortic artery plastia as well. Previosly to surgery the patient suffered right ventricle dysfunction and PHT and was treated with nitric oxide, intravenous sildenafil and levosimendan. Subsequent evolution was satisfactory, PHT being controlled, without arterial hypotension nor respiratory alterations. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. High-sugar intake does not exacerbate metabolic abnormalities or cardiac dysfunction in genetic cardiomyopathy.

    Science.gov (United States)

    Hecker, Peter A; Galvao, Tatiana F; O'Shea, Karen M; Brown, Bethany H; Henderson, Reney; Riggle, Heather; Gupte, Sachin A; Stanley, William C

    2012-05-01

    A high-sugar intake increases heart disease risk in humans. In animals, sugar intake accelerates heart failure development by increased reactive oxygen species (ROS). Glucose-6-phosphate dehydrogenase (G6PD) can fuel ROS production by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH) for superoxide generation by NADPH oxidase. Conversely, G6PD also facilitates ROS scavenging using the glutathione pathway. We hypothesized that a high-sugar intake would increase flux through G6PD to increase myocardial NADPH and ROS and accelerate cardiac dysfunction and death. Six-week-old TO-2 hamsters, a non-hypertensive model of genetic cardiomyopathy caused by a δ-sarcoglycan mutation, were fed a long-term diet of high starch or high sugar (57% of energy from sucrose plus fructose). After 24 wk, the δ-sarcoglycan-deficient animals displayed expected decreases in survival and cardiac function associated with cardiomyopathy (ejection fraction: control 68.7 ± 4.5%, TO-2 starch 46.1 ± 3.7%, P sugar 58.0 ± 4.2%, NS, versus TO-2 starch or control; median survival: TO-2 starch 278 d, TO-2 sugar 318 d, P = 0.133). Although the high-sugar intake was expected to exacerbate cardiomyopathy, surprisingly, there was no further decrease in ejection fraction or survival with high sugar compared with starch in cardiomyopathic animals. Cardiomyopathic animals had systemic and cardiac metabolic abnormalities (increased serum lipids and glucose and decreased myocardial oxidative enzymes) that were unaffected by diet. The high-sugar intake increased myocardial superoxide, but NADPH and lipid peroxidation were unaffected. A sugar-enriched diet did not exacerbate ventricular function, metabolic abnormalities, or survival in heart failure despite an increase in superoxide production. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia

    Directory of Open Access Journals (Sweden)

    Michaela Schäfer

    2016-02-01

    Full Text Available Objectives: Cancer cachexia affects the majority of tumor patients and significantly contributes to high mortality rates in these subjects. Despite its clinical importance, the identity of tumor-borne signals and their impact on specific peripheral organ systems, particularly the heart, remain mostly unknown. Methods and results: By combining differential colon cancer cell secretome profiling with large-scale cardiomyocyte phenotyping, we identified a signature panel of seven “cachexokines”, including Bridging integrator 1, Syntaxin 7, Multiple inositol-polyphosphate phosphatase 1, Glucosidase alpha acid, Chemokine ligand 2, Adamts like 4, and Ataxin-10, which were both sufficient and necessary to trigger cardiac atrophy and aberrant fatty acid metabolism in cardiomyocytes. As a prototypical example, engineered secretion of Ataxin-10 from non-cachexia-inducing cells was sufficient to induce cachexia phenotypes in cardiomyocytes, correlating with elevated Ataxin-10 serum levels in murine and human cancer cachexia models. Conclusions: As Ataxin-10 serum levels were also found to be elevated in human cachectic cancer patients, the identification of Ataxin-10 as part of a cachexokine cocktail now provides a rational approach towards personalized predictive, diagnostic and therapeutic measures in cancer cachexia. Author Video: Author Video Watch what authors say about their articles Keywords: Cancer cachexia, Ataxin-10, Cardiac dysfunction, Fatty acid metabolism

  16. Renal-sparing strategies in cardiac transplantation

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Ross, Heather J

    2009-01-01

    PURPOSE OF REVIEW: Renal dysfunction due to calcineurin inhibitor (CNI) toxicity is a major clinical problem in cardiac transplantation. The aim of the article is to review the efficacy and safety of various renal sparing strategies in cardiac transplantation. RECENT FINDINGS: Small studies have...... reduction in terms of preserving renal function. Patients with longstanding CNI treatment or proteinuria are less likely to respond favourably to a switch from a CNI-based regimen to a proliferation signal inhibitor-based regimen. SUMMARY: Each cardiac transplant recipient with renal dysfunction must...... documented that late initiation of CNI is safe in patients treated with induction therapy at the time of transplantation. Use of mycophenolate is superior when compared with azathioprine to allow for CNI reduction. More substantial reduction in CNI levels is safe and effective with the introduction...

  17. RIPHeart (Remote Ischemic Preconditioning for Heart Surgery) Study: Myocardial Dysfunction, Postoperative Neurocognitive Dysfunction, and 1 Year Follow-Up.

    Science.gov (United States)

    Meybohm, Patrick; Kohlhaas, Madeline; Stoppe, Christian; Gruenewald, Matthias; Renner, Jochen; Bein, Berthold; Albrecht, Martin; Cremer, Jochen; Coburn, Mark; Schaelte, Gereon; Boening, Andreas; Niemann, Bernd; Sander, Michael; Roesner, Jan; Kletzin, Frank; Mutlak, Haitham; Westphal, Sabine; Laufenberg-Feldmann, Rita; Ferner, Marion; Brandes, Ivo F; Bauer, Martin; Stehr, Sebastian N; Kortgen, Andreas; Wittmann, Maria; Baumgarten, Georg; Meyer-Treschan, Tanja; Kienbaum, Peter; Heringlake, Matthias; Schoen, Julika; Treskatsch, Sascha; Smul, Thorsten; Wolwender, Ewa; Schilling, Thomas; Fuernau, Georg; Bogatsch, Holger; Brosteanu, Oana; Hasenclever, Dirk; Zacharowski, Kai

    2018-03-26

    Remote ischemic preconditioning (RIPC) has been suggested to protect against certain forms of organ injury after cardiac surgery. Previously, we reported the main results of RIPHeart (Remote Ischemic Preconditioning for Heart Surgery) Study, a multicenter trial randomizing 1403 cardiac surgery patients receiving either RIPC or sham-RIPC. In this follow-up paper, we present 1-year follow-up of the composite primary end point and its individual components (all-cause mortality, myocardial infarction, stroke and acute renal failure), in a sub-group of patients, intraoperative myocardial dysfunction assessed by transesophageal echocardiography and the incidence of postoperative neurocognitive dysfunction 5 to 7 days and 3 months after surgery. RIPC neither showed any beneficial effect on the 1-year composite primary end point (RIPC versus sham-RIPC 16.4% versus 16.9%) and its individual components (all-cause mortality [3.4% versus 2.5%], myocardial infarction [7.0% versus 9.4%], stroke [2.2% versus 3.1%], acute renal failure [7.0% versus 5.7%]) nor improved intraoperative myocardial dysfunction or incidence of postoperative neurocognitive dysfunction 5 to 7 days (67 [47.5%] versus 71 [53.8%] patients) and 3 months after surgery (17 [27.9%] versus 18 [27.7%] patients), respectively. Similar to our main study, RIPC had no effect on intraoperative myocardial dysfunction, neurocognitive function and long-term outcome in cardiac surgery patients undergoing propofol anesthesia. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01067703. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  18. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury.

    Science.gov (United States)

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Ban, Tae Hyun; Jang, In-Ae; Yoon, Hye Eun; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2018-01-11

    Two important issues in the aging kidney are mitochondrial dysfunction and oxidative stress. An Nrf2 activator, resveratrol, is known to have various effects. Resveratrol may prevent inflammation and oxidative stress by activating Nrf2 and SIRT1 signaling. We examined whether resveratrol could potentially ameliorate the cellular condition, such as renal injury due to cellular oxidative stress and mitochondrial dysfunction caused by aging. Male 18-month-old C57BL/6 mice were used. Resveratrol (40 mg/kg) was administered to aged mice for 6 months. We compared histological changes, oxidative stress, and aging-related protein expression in the kidney between the resveratrol-treated group (RSV) and the control group (cont). We performed experiments using small-interfering RNAs (siRNAs) for Nrf2 and SIRT1 in cultured HK2 cells. Resveratrol improved renal function, proteinuria, histological changes and inflammation in aging mice. Also, expression of Nrf2-HO-1-NOQ-1 signaling and SIRT1-AMPK-PGC-1α signaling was increased in the RSV group. Transfection with Nrf2 and SIRT1 siRNA prevented resveratrol-induced anti-oxidative effect in HK2 cells in media treated with H 2 O 2 . Activation of the Nrf2 and SIRT1 signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Pharmacological targeting of Nrf2 signaling molecules may reduce the pathologic changes of aging in the kidney.

  19. The importance of daily physical activity for improved exercise tolerance in heart failure patients with limited access to centre-based cardiac rehabilitation.

    Science.gov (United States)

    Sato, Noriaki; Origuchi, Hideki; Yamamoto, Umpei; Takanaga, Yasuhiro; Mohri, Masahiro

    2012-09-01

    Supervised cardiac rehabilitation provided at dedicated centres ameliorates exercise intolerance in patients with chronic heart failure. To correlate the amount of physical activity outside the hospital with improved exercise tolerance in patients with limited access to centre-based programs. Forty patients (median age 69 years) with stable heart failure due to systolic left ventricular dysfunction participated in cardiac rehabilitation once per week for five months. Using a validated single-axial accelerometer, the number of steps and physical activity-related energy expenditures on nonrehabilitation days were determined. Median (interquartile range) peak oxygen consumption was increased from 14.4 mL/kg/min (range 12.9 mL/kg/min to 17.8 mL/kg/min) to 16.4 mL/kg/min (range 13.9 mL/kg/min to 19.1 mL/kg/min); Pdaily number of steps (Pexercise time per day and time spent for light (≤3 metabolic equivalents) exercise, but not with time spent for moderate/vigorous (>3 metabolic equivalents) exercise. The number of steps and energy expenditures outside the hospital were correlated with improved exercise capacity. An accelerometer may be useful for guiding home-based cardiac rehabilitation.

  20. Acacetin protects against cardiac remodeling after myocardial infarction by mediating MAPK and PI3K/Akt signal pathway

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2017-12-01

    Full Text Available Since inhibiting cardiac remodeling is a critical treatment goal after myocardial infarction (MI, many drugs have been evaluated for this purpose. Acacetin is a flavonoid compound that has been shown to have anti-cancer, anti-mutagenic, anti-inflammatory and anti-peroxidative effects. In this study, we investigated whether acacetin is able to exert a protective effect against MI. One week after anterior wall standard MI surgeries or sham surgeries were performed in mice, acacetin was administered via gavage for two weeks. The results of echocardiographic and hemodynamic evaluation revealed that cardiac dysfunction significantly improved after acacetin treatment. H&E staining indicated that the ratio of the infarct size and the cardiomyocyte cross-sectional area was decreased by acacetin. Masson's staining detected that the fibrotic area ratio was evidently lower in the acacetin-treated MI group. TUNEL assays showed that acacetin ameliorated cardiomyocyte apoptosis after MI. RT-qPCR analysis showed that levels of hypertrophic and fibrotic markers were significantly decreased after acacetin treatment. Western blot analysis of various signaling pathway proteins showed that acacetin targets the MAPK and PI3K/Akt signaling pathways. Collectively, acacetin improves mouse left ventricular function and attenuates cardiac remodeling by inhibiting of the MAPK and PI3K/Akt signaling pathway.

  1. Oxidized CaMKII causes cardiac sinus node dysfunction in mice

    Science.gov (United States)

    Swaminathan, Paari Dominic; Purohit, Anil; Soni, Siddarth; Voigt, Niels; Singh, Madhu V.; Glukhov, Alexey V.; Gao, Zhan; He, B. Julie; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Kutschke, William; Yang, Jinying; Donahue, J. Kevin; Weiss, Robert M.; Grumbach, Isabella M.; Ogawa, Masahiro; Chen, Peng-Sheng; Efimov, Igor; Dobrev, Dobromir; Mohler, Peter J.; Hund, Thomas J.; Anderson, Mark E.

    2011-01-01

    Sinus node dysfunction (SND) is a major public health problem that is associated with sudden cardiac death and requires surgical implantation of artificial pacemakers. However, little is known about the molecular and cellular mechanisms that cause SND. Most SND occurs in the setting of heart failure and hypertension, conditions that are marked by elevated circulating angiotensin II (Ang II) and increased oxidant stress. Here, we show that oxidized calmodulin kinase II (ox-CaMKII) is a biomarker for SND in patients and dogs and a disease determinant in mice. In wild-type mice, Ang II infusion caused sinoatrial nodal (SAN) cell oxidation by activating NADPH oxidase, leading to increased ox-CaMKII, SAN cell apoptosis, and SND. p47–/– mice lacking functional NADPH oxidase and mice with myocardial or SAN-targeted CaMKII inhibition were highly resistant to SAN apoptosis and SND, suggesting that ox-CaMKII–triggered SAN cell death contributed to SND. We developed a computational model of the sinoatrial node that showed that a loss of SAN cells below a critical threshold caused SND by preventing normal impulse formation and propagation. These data provide novel molecular and mechanistic information to understand SND and suggest that targeted CaMKII inhibition may be useful for preventing SND in high-risk patients. PMID:21785215

  2. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  3. Pathological links between stroke and cardiac arrest

    Institute of Scientific and Technical Information of China (English)

    Shaila Ghanekar; Sydney Corey; Trenton Lippert; Cesar V.Borlongan

    2017-01-01

    There may be a pathological connection between cardiac failure and ischemic stroke.In this article we describe pertinent research that demonstrates subsequent death of cardiac and neural myocytes in the post ischemic stroke brain.Current stroke therapy overlooks the connection between cardiac and cerebrovascular events and fails to address the shared risk factors.Current pre-clinical stroke investigations have provided evidence that suggests the presence of an indirect cell death pathway in which toxic molecules emanate from the stroke brain and trigger cardiac cell death.On the other hand,other studies highlight the presence of a reverse cell death cascade in which toxic molecules from the heart,following cardiac arrest,travel to the brain and induce ischemic cell death.Further examination of these putative cell death pathways between ischemic stroke and cardiac arrest will prompt the advancement of innovative treatments specifically targeting both diseases,leading to ameliorated clinical results of patients diagnosed with heart failure and ischemic stroke.

  4. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats

    Science.gov (United States)

    Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2013-01-01

    Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656

  5. Latent cardiac dysfunction as assessed by echocardiography in bed-bound patients following cerebrovascular accidents: comparison with nutritional status.

    Science.gov (United States)

    Masugata, Hisashi; Senda, Shoichi; Goda, Fuminori; Yoshihara, Yumiko; Yoshikawa, Kay; Fujita, Norihiro; Himoto, Takashi; Okuyama, Hiroyuki; Taoka, Teruhisa; Imai, Masanobu; Kohno, Masakazu

    2007-07-01

    The aim of this study was to elucidate the cardiac function in bed-bound patients following cerebrovascular accidents. In accord with the criteria for activities of daily living (ADL) of the Japanese Ministry of Health, Labour and Welfare, 51 age-matched poststroke patients without heart disease were classified into 3 groups: rank A (house-bound) (n = 16, age, 85 +/- 6 years), rank B (chair-bound) (n = 16, age, 84 +/- 8 years), and rank C (bed-bound) (n = 19, age, 85 +/- 9 years). Using echocardiography, the left ventricular (LV) diastolic function was assessed by the ratio of early filling (E) and atrial contraction (A) transmitral flow velocities (E/A) of LV inflow. LV systolic function was assessed by LV ejection fraction (LVEF), and the Tei index was also measured to assess both LV systolic and diastolic function. No difference was observed in the E/A and LVEF among the 3 groups. The Tei index was higher in rank C (0.56 +/- 0.17) than in rank A (0.39 +/- 0.06) and rank B (0.48 +/- 0.17), and a statistically significant difference was observed between rank A and rank C (P cerebrovascular accidents. The Tei index may be a useful index of cardiac dysfunction in bed-bound patients because it is independent of the cardiac loading condition.

  6. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.

    Science.gov (United States)

    Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-11-01

    Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.

  7. Noninvasive and invasive evaluation of cardiac dysfunction in experimental diabetes in rodents

    Directory of Open Access Journals (Sweden)

    Salemi Vera

    2007-04-01

    Full Text Available Abstract Background Because cardiomyopathy is the leading cause of death in diabetic patients, the determination of myocardial function in diabetes mellitus is essential. In the present study, we provide an integrated approach, using noninvasive echocardiography and invasive hemodynamics to assess early changes in myocardial function of diabetic rats. Methods Diabetes was induced by streptozotocin injection (STZ, 50 mg/kg. After 30 days, echocardiography (noninvasive at rest and invasive left ventricular (LV cannulation at rest, during and after volume overload, were performed in diabetic (D, N = 7 and control rats (C, N = 7. The Student t test was performed to compare metabolic and echocardiographic differences between groups at 30 days. ANOVA was used to compare LV invasive measurements, followed by the Student-Newman-Keuls test. Differences were considered significant at P Results Diabetes impaired LV systolic function expressed by reduced fractional shortening, ejection fraction, and velocity of circumferential fiber shortening compared with that in the control group. The diabetic LV diastolic dysfunction was evidenced by diminished E-waves and increased A-waves and isovolumic relaxation time. The myocardial performance index was greater in diabetic compared with control rats, indicating impairment in diastolic and systolic function. The LV systolic pressure was reduced and the LV end-diastolic pressure was increased at rest in diabetic rats. The volume overload increased LVEDP in both groups, while LVEDP remained increased after volume overload only in diabetic rats. Conclusion These results suggest that STZ-diabetes induces systolic and diastolic dysfunction at rest, and reduces the capacity for cardiac adjustment to volume overload. In addition, it was also demonstrated that rodent echocardiography can be a useful, clinically relevant tool for the study of initial diabetic cardiomyopathy manifestations in asymptomatic patients.

  8. Activation of the Nkx2.5–Calr–p53 signaling pathway by hyperglycemia induces cardiac remodeling and dysfunction in adult zebrafish

    Directory of Open Access Journals (Sweden)

    Yanyi Sun

    2017-10-01

    Full Text Available Hyperglycemia is an independent risk factor for diabetic cardiomyopathy in humans; however, the underlying mechanisms have not been thoroughly elucidated. Zebrafish (Danio rerio was used in this study as a novel vertebrate model to explore the signaling pathways of human adult cardiomyopathy. Hyperglycemia was induced by alternately immersing adult zebrafish in a glucose solution or water. The hyperglycemic fish gradually exhibited some hallmarks of cardiomyopathy such as myocardial hypertrophy and apoptosis, myofibril loss, fetal gene reactivation, and severe arrhythmia. Echocardiography of the glucose-treated fish demonstrated diastolic dysfunction at an early stage and systolic dysfunction at a later stage, consistent with what is observed in diabetic patients. Enlarged hearts with decreased myocardial density, accompanied by decompensated cardiac function, indicated that apoptosis was critical in the pathological process. Significant upregulation of the expression of Nkx2.5 and its downstream targets calreticulin (Calr and p53 was noted in the glucose-treated fish. High-glucose stimulation in vitro evoked marked apoptosis of primary cardiomyocytes, which was rescued by the p53 inhibitor pifithrin-μ. In vitro experiments were performed using compound treatment and genetically via cell infection. Genetically, knockout of Nkx2.5 induced decreased expression of Nkx2.5, Calr and p53. Upregulation of Calr resulted in increased p53 expression, whereas the level of Nkx2.5 remained unchanged. An adult zebrafish model of hyperglycemia-induced cardiomyopathy was successfully established. Hyperglycemia-induced myocardial apoptosis was mediated, at least in part, by activation of the Nkx2.5–Calr–p53 pathway in vivo, resulting in cardiac dysfunction and hyperglycemia-induced cardiomyopathy.

  9. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes.

    Science.gov (United States)

    Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki

    2017-03-01

    Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.

  10. A New Strategy Using Rikkunshito to Treat Anorexia and Gastrointestinal Dysfunction

    Directory of Open Access Journals (Sweden)

    Yayoi Saegusa

    2015-01-01

    Full Text Available Because the clinical condition of gastrointestinal dysfunction, including functional dyspepsia, involves tangled combinations of pathologies, there are some cases of insufficient curative efficacy. Thus, traditional herbal medicines (Kampo medicines uniquely developed in Japan are thought to contribute to medical treatment for upper gastrointestinal symptoms. Rikkunshito is a Kampo medicine often used to treat dyspeptic symptoms. Over the past few years, several studies have investigated the efficacy of rikkunshito for dysmotility, for example, upper abdominal complaints, in animals and humans. Rikkunshito ameliorated the decrease in gastric motility and anorexia in cisplatin-treated rats, stress-loaded mice, and selective serotonin reuptake inhibitor-treated rats by enhancing plasma ghrelin levels via serotonin2B/2C receptor antagonism. In addition, rikkunshito ameliorated the decrease in food intake in aged mice and stress-loaded decreased gastric motility via enhanced ghrelin receptor signaling. Several clinical studies revealed that rikkunshito was effective in ameliorating upper gastrointestinal symptoms, including dyspepsia, epigastric pain, and postprandial fullness. In this review, we discuss these studies and propose additional evidence-based research that may promote the clinical use of Kampo medicines, particularly rikkunshito, for treating anorexia and gastrointestinal dysfunction.

  11. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy.

    Science.gov (United States)

    Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H

    2015-12-23

    Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A [Hijiyanna Park, Hiroshima JP; Nakashima, N; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction; (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically; and apparently is not associated with any cardiac abnormality; and (3) focal cardiac myocytolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by non-bacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  13. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A; Nakashima, T; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction, (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically, and apparently is not associated with any cardiac abnormality, and (3) focal cardiac myochtolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by nonbacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  14. Perioperative factors affecting fast tracking in paediatrics cardiac ...

    African Journals Online (AJOL)

    Young age was found to be a factor associated with prolonged mechanical ventilation and extubation. Further, the presence of pulmonary hypertension, lower cardiac grade and ventricular dysfunction were found to be factors significantly associated with prolonged weaning. While, cardiac disease occurring in combination, ...

  15. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses

    International Nuclear Information System (INIS)

    Nan, Changlong; Li, Yuejin; Jean-Charles, Pierre-Yves; Chen, Guozhen; Kreymerman, Alexander; Prentice, Howard; Weissbach, Herbert; Huang, Xupei

    2010-01-01

    Research highlights: → Deficiency of MsrA in the heart renders myocardial cells more sensitive to oxidative stress. → Mitochondrial damage happens in the heart lacking MsrA. → More protein oxidation in myocardial cells lacking MsrA. → MsrA protects the heart against oxidative stress. -- Abstract: Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA -/- ) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA -/- mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2 Hz), is significantly reduced in MsrA -/- cardiac myocytes. MsrA -/- cardiac myocytes also show a significant decrease in contractility after oxidative stress using H 2 O 2 . Corresponding changes in Ca 2+ transients are observed in MsrA -/- cardiomyocytes treated with 2 Hz stimulation or with H 2 O 2 . Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA -/- mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA -/- mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell's capability against stress stimulations resulting in a cellular dysfunction in the heart.

  16. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy.

    Science.gov (United States)

    Patten, Ian S; Rana, Sarosh; Shahul, Sajid; Rowe, Glenn C; Jang, Cholsoon; Liu, Laura; Hacker, Michele R; Rhee, Julie S; Mitchell, John; Mahmood, Feroze; Hess, Philip; Farrell, Caitlin; Koulisis, Nicole; Khankin, Eliyahu V; Burke, Suzanne D; Tudorache, Igor; Bauersachs, Johann; del Monte, Federica; Hilfiker-Kleiner, Denise; Karumanchi, S Ananth; Arany, Zoltan

    2012-05-09

    Peripartum cardiomyopathy (PPCM) is an often fatal disease that affects pregnant women who are near delivery, and it occurs more frequently in women with pre-eclampsia and/or multiple gestation. The aetiology of PPCM, and why it is associated with pre-eclampsia, remain unknown. Here we show that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble FLT1 (sFLT1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by subclinical cardiac dysfunction, the extent of which correlates with circulating levels of sFLT1. Exogenous sFLT1 alone caused diastolic dysfunction in wild-type mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFLT1. These data indicate that PPCM is mainly a vascular disease, caused by excess anti-angiogenic signalling in the peripartum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM.

  17. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Konstantinos Drosatos

    2016-08-01

    Full Text Available Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic equilibrium of the heart along with mitochondrial dysfunction and impaired β-adrenergic receptor signaling contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-activated receptor-α, β-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential therapeutic targets for cardiac aging.

  18. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Nylander, Malin; Frøssing, Signe; Clausen, Helle V.

    2017-01-01

    Polycystic ovary syndrome (PCOS) encompasses an ovarian and a metabolic dysfunction. Glucagon-like peptide-1 (GLP-1) analogues facilitate weight loss and ameliorate metabolic dysfunction in overweight women with PCOS, but their effect on ovarian dysfunction is scarcely reported. In a double......-blind, randomized trial, 72 women with PCOS were allocated to intervention with the GLP-1 analogue liraglutide or placebo (1.8 mg/day), in a 2:1 ratio. At baseline and 26-week follow-up, bleeding pattern, levels of AMH, sex hormones and gonadotrophins were assessed and ovarian morphology evaluated. Liraglutide...... of ovarian function in overweight women with PCOS, and might be a possible intervention....

  19. Diastolic Dysfunction is Common in Survivors of Pediatric Differentiated Thyroid Carcinoma

    NARCIS (Netherlands)

    Hesselink, Marielle S. Klein; Bocca, Gianni; Hummel, Yoran M.; Brouwers, Adrienne H.; Burgerhof, Johannes G. M.; van Dam, Eveline W. C. M.; Gietema, Jourik A.; Havekes, Bas; van den Heuvel-Eibrink, Marry M.; Corssmit, Eleonora P. M.; Kremer, Leontien C. M.; Netea-Maier, Romana T.; van der Pal, Helena J. H.; Peeters, Robin P.; Plukker, John T. M.; Ronckers, Cecile M.; van Santen, Hanneke M.; van der Meer, Peter; Links, Thera P.; Tissing, Wim J. E.

    2017-01-01

    Introduction: Whether pediatric patients with differentiated thyroid carcinoma (DTC) are at risk of developing treatment-related adverse effects on cardiac function is unknown. We therefore studied in long-term survivors of pediatric DTC the prevalence of cardiac dysfunction and atrial fibrillation

  20. Extracorporeal Shock Wave Therapy for Coronary Artery Disease: Relationship of Symptom Amelioration and Ischemia Improvement

    Directory of Open Access Journals (Sweden)

    Youko Takakuwa

    2018-01-01

    Full Text Available Objective(s: The current management of coronary artery disease (CAD relies on three major therapeutic options, namely medication, percutaneous coronary intervention (PCI, and coronary artery bypass grafting (CABG. However, severe CAD that is not indicated for PCI or CABG still bears a poor prognosis due to the lack of effective treatments. In 2006, extracorporeal cardiac shock wave (SW therapy reported on human for the first time. This treatment resulted in better myocardial perfusion as evaluated by dipyridamole stress thallium scintigraphy, angina symptoms, and exercise tolerance. The aim of the present study was to investigate myocardial perfusion images and evaluate the relationship between the ischemia improvement and symptom amelioration by SW therapy. Methods: We treated ten patients (i.e., nine males and one female with cardiac SW therapy who had CAD but not indicated for PCI or CABG and aged 63–89 years old. After the SW therapy, all patients were followed up for three months to evaluate any amelioration of the myocardial ischemia based on symptoms, adenosine stress thallium scintigraphy, transthoracic echocardiography, and blood biochemical examinations. Results: The changes in various parameters were evaluated before and after cardiac SW therapy. The cardiac SW therapy resulted in a significant improvement in the symptoms as evaluated by the Canadian Cardiovascular Society [CCS] class score (P=0.016 and a tendency to improve in summed stress score (SSS (P=0.068. However, no significant improvement was observed in the summed rest score (SRS, summed difference score (SDS, left ventricular wall motion score index (LVWMSI, N-terminal pro-brain natriuretic, and troponin I. The difference of CCS class score (ΔCCS was significantly correlated with those of SSS (ΔSSS and SDS (ΔSDS (r=0.69, P=0.028 and r=0.70, P=0.025, respectively. There was no significant correlation between ΔCCS and other parameters. Furthermore, no significant

  1. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    Science.gov (United States)

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  2. Leukocytic Toll-Like Receptor 2 Deficiency Preserves Cardiac Function And Reduces Fibrosis In Sustained Pressure Overload

    NARCIS (Netherlands)

    Wang, Jiong-Wei; Fontes, Magda S. C.; Wang, Xiaoyuan; Chong, Suet Yen; Kessler, Elise L.; Zhang, Ya-Nan; de Haan, Judith J.; Arslan, Fatih; de Jager, Saskia C. A.; Timmers, Leo; van Veen, Toon A. B.; Lam, Carolyn S. P.; de Kleijn, Dominique P. V.

    2017-01-01

    An involement of Toll-like receptor 2 (TLR2) has been established in cardiac dysfunction after acute myocardial infarction; however, its role in chronic pressure overload is unclear. We sought to evaluate the role of TLR2 in cardiac hypertrophy, fibrosis and dysfunction in sustained pressure

  3. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels

    OpenAIRE

    Khalil, Md. Ibrahim; Tanvir, E. M.; Afroz, Rizwana; Sulaiman, Siti Amrah; Gan, Siew Hua

    2015-01-01

    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey...

  4. Adverse postresuscitation myocardial effects elicited by buffer-induced alkalemia ameliorated by NHE-1 inhibition in a rat model of ventricular fibrillation.

    Science.gov (United States)

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Mason, Thomas G; Kraut, Jeffrey A; Gazmuri, Raúl J

    2016-11-01

    Major myocardial abnormalities occur during cardiac arrest and resuscitation including intracellular acidosis-partly caused by CO 2 accumulation-and activation of the Na + -H + exchanger isoform-1 (NHE-1). We hypothesized that a favorable interaction may result from NHE-1 inhibition during cardiac resuscitation followed by administration of a CO 2 -consuming buffer upon return of spontaneous circulation (ROSC). Ventricular fibrillation was electrically induced in 24 male rats and left untreated for 8 min followed by defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Rats were randomized 1:1:1 to the NHE-1 inhibitor zoniporide or vehicle during CPR and disodium carbonate/sodium bicarbonate buffer or normal saline (30 ml/kg) after ROSC. Survival at 240 min declined from 100% with Zoniporide/Saline to 50% with Zoniporide/Buffer and 25% with Vehicle/Buffer (P = 0.004), explained by worsening postresuscitation myocardial dysfunction. Marked alkalemia occurred after buffer administration along with lactatemia that was maximal after Vehicle/Buffer, attenuated by Zoniporide/Buffer, and minimal with Zoniporide/Saline [13.3 ± 4.8 (SD), 9.2 ± 4.6, and 2.7 ± 1.0 mmol/l; P ≤ 0.001]. We attributed the intense postresuscitation lactatemia to enhanced glycolysis consequent to severe buffer-induced alkalemia transmitted intracellularly by an active NHE-1. We attributed the worsened postresuscitation myocardial dysfunction also to severe alkalemia intensifying Na + entry via NHE-1 with consequent Ca 2+ overload injuring mitochondria, evidenced by increased plasma cytochrome c Both buffer-induced effects were ameliorated by zoniporide. Accordingly, buffer-induced alkalemia after ROSC worsened myocardial function and survival, likely through enhancing NHE-1 activity. Zoniporide attenuated these effects and uncovered a complex postresuscitation acid-base physiology whereby blood pH drives NHE-1 activity and compromises mitochondrial function and integrity along

  5. Efficacy of functional foods mixture in improving hypercholesterolemia, inflammatory and endothelial dysfunction biomarkers-induced by high cholesterol diet.

    Science.gov (United States)

    Al-Muzafar, Hessah Mohammed; Amin, Kamal Adel

    2017-10-06

    Hypercholesterolemia associated with cardiovascular diseases is a global health issue that could be alleviated by functional foods. This study aimed to explore the effects of a high-cholesterol diet on lipid profile, cardiac, inflammatory, and endothelial dysfunction biomarkers, and the possible improvement by functional foods mixture. Male albino rats weighing 100-150 g were randomly divided into four equal groups: 1st control, giving a normal diet; the 2nd received high-cholesterol diet for 8 weeks, the 3rd received the high-cholesterol diet + functional foods mixture, and the 4th administered high-cholesterol diet +atorvastatin (20 mg) orally. The results showed a significant increase in lipid profile and cardiac biomarkers levels (lactate dehydrogenase, creatine kinase and homocystein), also inflammatory markers, as, tumor necrotic factor alpha and chronic reactive proteins were elevated, moreover, vascular adhesion molecule-1 and nitric oxide synthase were disturbed in high-cholesterol diet compared with normal group. While administration of atorvastatin and functional foods mixture ameliorated these alterations. Administration of functional foods mixture and atorvastatin were effective in treating hypercholesterolemia, reduce the risk of inflammation and cardiovascular biomarkers with a high safety margin. These efficiencies may be due to its active ingredient that improve the imbalance in the measured biomarkers.

  6. Cardiac sympathetic nervous system imaging with (123)I-meta-iodobenzylguanidine: Perspectives from Japan and Europe

    NARCIS (Netherlands)

    Nakajima, K.; Scholte, A.; Nakata, T.; Dimitriu-Leen, A.C.; Chikamori, T.; Vitola, J.V.; Yoshinaga, K.

    2017-01-01

    Cardiac sympathetic nervous system dysfunction is closely associated with risk of serious cardiac events in patients with heart failure (HF), including HF progression, pump-failure death, and sudden cardiac death by lethal ventricular arrhythmia. For cardiac sympathetic nervous system imaging,

  7. Levosimendan in Patients with Left Ventricular Dysfunction Undergoing Cardiac Surgery.

    Science.gov (United States)

    Mehta, Rajendra H; Leimberger, Jeffrey D; van Diepen, Sean; Meza, James; Wang, Alice; Jankowich, Rachael; Harrison, Robert W; Hay, Douglas; Fremes, Stephen; Duncan, Andra; Soltesz, Edward G; Luber, John; Park, Soon; Argenziano, Michael; Murphy, Edward; Marcel, Randy; Kalavrouziotis, Dimitri; Nagpal, Dave; Bozinovski, John; Toller, Wolfgang; Heringlake, Matthias; Goodman, Shaun G; Levy, Jerrold H; Harrington, Robert A; Anstrom, Kevin J; Alexander, John H

    2017-05-25

    Levosimendan is an inotropic agent that has been shown in small studies to prevent or treat the low cardiac output syndrome after cardiac surgery. In a multicenter, randomized, placebo-controlled, phase 3 trial, we evaluated the efficacy and safety of levosimendan in patients with a left ventricular ejection fraction of 35% or less who were undergoing cardiac surgery with the use of cardiopulmonary bypass. Patients were randomly assigned to receive either intravenous levosimendan (at a dose of 0.2 μg per kilogram of body weight per minute for 1 hour, followed by a dose of 0.1 μg per kilogram per minute for 23 hours) or placebo, with the infusion started before surgery. The two primary end points were a four-component composite of death through day 30, renal-replacement therapy through day 30, perioperative myocardial infarction through day 5, or use of a mechanical cardiac assist device through day 5; and a two-component composite of death through day 30 or use of a mechanical cardiac assist device through day 5. A total of 882 patients underwent randomization, 849 of whom received levosimendan or placebo and were included in the modified intention-to-treat population. The four-component primary end point occurred in 105 of 428 patients (24.5%) assigned to receive levosimendan and in 103 of 421 (24.5%) assigned to receive placebo (adjusted odds ratio, 1.00; 99% confidence interval [CI], 0.66 to 1.54; P=0.98). The two-component primary end point occurred in 56 patients (13.1%) assigned to receive levosimendan and in 48 (11.4%) assigned to receive placebo (adjusted odds ratio, 1.18; 96% CI, 0.76 to 1.82; P=0.45). The rate of adverse events did not differ significantly between the two groups. Prophylactic levosimendan did not result in a rate of the short-term composite end point of death, renal-replacement therapy, perioperative myocardial infarction, or use of a mechanical cardiac assist device that was lower than the rate with placebo among patients with a

  8. Cardiac impairment evaluated by transesophageal echocardiography and invasive measurements in rats undergoing sinoaortic denervation.

    Directory of Open Access Journals (Sweden)

    Raquel A Sirvente

    Full Text Available BACKGROUND: Sympathetic hyperactivity may be related to left ventricular (LV dysfunction and baro- and chemoreflex impairment in hypertension. However, cardiac function, regarding the association of hypertension and baroreflex dysfunction, has not been previously evaluated by transesophageal echocardiography (TEE using intracardiac echocardiographic catheter. METHODS AND RESULTS: We evaluated exercise tests, baroreflex sensitivity and cardiovascular autonomic control, cardiac function, and biventricular invasive pressures in rats 10 weeks after sinoaortic denervation (SAD. The rats (n = 32 were divided into 4 groups: 16 Wistar (W with (n = 8 or without SAD (n = 8 and 16 spontaneously hypertensive rats (SHR with (n = 8 or without SAD (SHRSAD (n = 8. Blood pressure (BP and heart rate (HR did not change between the groups with or without SAD; however, compared to W, SHR groups had higher BP levels and BP variability was increased. Exercise testing showed that SHR had better functional capacity compared to SAD and SHRSAD. Echocardiography showed left ventricular (LV concentric hypertrophy; segmental systolic and diastolic biventricular dysfunction; indirect signals of pulmonary arterial hypertension, mostly evident in SHRSAD. The end-diastolic right ventricular (RV pressure increased in all groups compared to W, and the end-diastolic LV pressure increased in SHR and SHRSAD groups compared to W, and in SHRSAD compared to SAD. CONCLUSIONS: Our results suggest that baroreflex dysfunction impairs cardiac function, and increases pulmonary artery pressure, supporting a role for baroreflex dysfunction in the pathogenesis of hypertensive cardiac disease. Moreover, TEE is a useful and feasible noninvasive technique that allows the assessment of cardiac function, particularly RV indices in this model of cardiac disease.

  9. Improvement of cardiac function persists long term with medical therapy for left ventricular systolic dysfunction.

    Science.gov (United States)

    Chen, David; Chang, Richard; Umakanthan, Branavan; Stoletniy, Liset N; Heywood, J Thomas

    2007-09-01

    In certain patients with left ventricular (LV) systolic dysfunction, improvements in cardiac function are seen after initiation of medical therapy; however, the long-term stability of ventricular function in such patients is not well described. We retrospectively analyzed 171 patients who had a baseline ejection fraction of 45% or less, a follow-up echocardiogram at 2 to 12 months after initiation of medical therapy, and a final echocardiogram. We found that 48.5% of the patients demonstrated initial improvements in LV function after initiation of medical therapy, and the improvements appear to be sustained (88% of patients) at 44 +/- 21 months follow-up. A nonischemic etiology and younger age were the only independent predictors of change of LV ejection fraction of 10 or more at a mean 8.4 +/- 3.4 months after optimal medical therapy. Our study revealed a trend toward improved long-term survival in individuals with an early improvement in LV ejection fraction with medical therapy, especially in those with sustained improvement.

  10. Protective effects of ulinastatin on cardiac dysfunction in mice with heat stroke and its mechanism

    Directory of Open Access Journals (Sweden)

    Jing-jing JI

    2017-06-01

    Full Text Available Objective To examine the effects of ulinastatin (UTI on cardiac dysfunction in mice with heat stroke and its possible mechanism. Methods 20 mice were divided into four groups randomly: room temperature plus normal saline (Sham+NS, room temperature plus UTI (Sham+UTI, heat stress plus normal saline (HS+NS, heat stress plus UTI (HS+UTI, 5 each. 105U/kg UTI was delivered by intraperitoneal injection before the onset of the heat stress. Room temperature groups were housed at room temperature (23.0±0.5℃, while heat stress groups were kept in an incubator at 36.5±0.5℃ and humidity of 65.0%±2.0%. The rectal temperature (Tr reaching 42℃ was taken as severe heat stroke, and the time in two heat stress groups was recorded. The mice were transferred to the room temperature (23.0±0.5℃ for natural cooling after the heat stroke onset. 6 hours after the treatment, cardiac output (CO was ultrasonographically detected, the myocardium was separated for histopathological examination and the expression of total p38 and phosphorylated p38 (p-p38 was determined by Western blotting. Results The time to reach 42℃ in HS+UTI group was significantly prolonged (P=0.044. Compared with the Sham+NS group, the CO in HS+NS and HS+UTI group decreased significantly (P=0.017, and the score of myocardial inflammation (P<0.001 and p-p38/p38 ratio (P<0.001 increased. The CO was significantly higher in HS+UTI group than in HS+NS group (P=0.030, and the score of myocardial inflammation (P<0.001 and p-p38/p38 ratio (P=0.001 were significantly lower. Conclusion Ulinastatin might improve the cardiac function in mice with heat stroke by decreasing the p-p38 and alleviating the inflammation response. DOI: 10.11855/j.issn.0577-7402.2017.04.04

  11. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction.

    Science.gov (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Gil, Victoria; Liew, Chong Wee

    2017-01-09

    In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibition of lipolysis and thermogenesis in BAT. Using in vitro, ex vivo, and in vivo approaches, we demonstrate that obesity-induced inflammation upregulates brown adipocytes TRIP-Br2 expression via the ER stress pathway and amelioration of ER stress in mice completely abolishes high fat diet-induced upregulation of TRIP-Br2 in BAT. We find that increased TRIP-Br2 significantly inhibits brown adipocytes thermogenesis. Finally, we show that ablation of TRIP-Br2 ameliorates ER stress-induced inhibition on lipolysis, fatty acid oxidation, oxidative metabolism, and thermogenesis in brown adipocytes. Taken together, our current study demonstrates a role for TRIP-Br2 in ER stress-induced BAT dysfunction, and inhibiting TRIP-Br2 could be a potential approach for counteracting obesity-induced BAT dysfunction.

  12. Diesel Exhaust Particles Induce Impairment of Vascular and Cardiac Homeostasis in Mice: Ameliorative Effect of Emodin

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2015-07-01

    Full Text Available Background/Aim: There is strong epidemiological and clinical evidence that components of the cardiovascular system are adversely affected by particulate air pollutants through the generation of inflammation and oxidative stress. Emodin (1,3,8-trihydroxy-6-methylanthraquinone, which is commonly found in the roots of rhubarb plant, has strong antioxidant and anti-inflammatory effects. However, its possible protective effect on the cardiovascular effect of particulate air pollutants has never been reported before. Methods: We tested, in Tuck-Ordinary mice, the possible ameliorative effect of emodin on the acute (24h cardiovascular effects of diesel exhaust particles (DEP, 1 mg/kg or saline (control. Emodin (4 mg/kg was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty four h following DEP exposure, several cardiovascular endpoints were assessed. Results: Emodin significantly prevented the increase of leukocyte (n=8, Pin vivo prothrombotic effect of DEP in pial arterioles (n=6, Pin vitro in whole blood (n=4-5, PConclusion: We conclude that emodin treatment has consistently protected against DEP-induced impairment of vascular and cardiac homeostasis in mice. Our study provides experimental evidence that the use of functional food such as emodin, pending further studies, can be considered a useful agent and may have the potential to protect or mitigate the cardiovascular detrimental effects observed in people living in cities with high concentrations of particulate air pollution.

  13. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    Science.gov (United States)

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    Science.gov (United States)

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  15. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  16. Curcumin ameliorates gastrointestinal dysfunction and oxidative damage in diabetic rats

    Directory of Open Access Journals (Sweden)

    Nitin Indarchandji Kochar

    2014-05-01

    Full Text Available Diabetes is known to be associated with gastrointestinal complications characterized by nausea, vomiting, early satiety, bloating, and abdominal discomfort or pain commonly occurring in the advanced stages of the disease. Curcumin is the lipid-soluble antioxidant obtained from the rhizomes of Curcuma longa Linn, also known as turmeric. Curcumin targets multiple chemotherapeutic and oxidative stress pathways and has demonstrated safety and tolerability in humans, supporting its potential as a therapeutic agent; however, literature lacks conclusive evidence supporting its use as a therapeutic agent for the treatment of diabetes induced gastrointestinal complications. Hence, Curcumin was given in different doses to SD rats after 4 weeks of diabetic GI complication induction. At the end of 4 weeks, significant GI dysfunction characterized by weight loss, delayed gastric emptying and intestinal transit associated with reduction in antioxidant enzyme levels and increased lipid peroxidation was observed.  Upon treatment with Curcumin for further 4 weeks, reversal of GI dysfunction evidenced by restoration of body weight, GI emptying, intestinal transit, and restoration of antioxidant enzyme level and lipid peroxidation proves the beneficial role of Curcumin in diabetes induced GI complications due to its antioxidant potential.     

  17. Ameliorating effects of Raphanus sativus leaves on sodium arsenite-induced perturbation of blood indices in Swiss albino mice

    Directory of Open Access Journals (Sweden)

    Sayada Dilruba

    2017-10-01

    Conclusions: Results of this study suggest the protective or ameliorating effects of RSL on Sa-induced perturbation of blood indices are related to the hepatic, cardiovascular and kidney dysfunction. Therefore, RSL may be useful to reduce arsenic toxicity in human in the future.

  18. Can cardiac surgery cause hypopituitarism?

    Science.gov (United States)

    Francis, Flverly; Burger, Ines; Poll, Eva Maria; Reineke, Andrea; Strasburger, Christian J; Dohmen, Guido; Gilsbach, Joachim M; Kreitschmann-Andermahr, Ilonka

    2012-03-01

    Apoplexy of pituitary adenomas with subsequent hypopituitarism is a rare but well recognized complication following cardiac surgery. The nature of cardiac on-pump surgery provides a risk of damage to the pituitary because the vascular supply of the pituitary is not included in the cerebral autoregulation. Thus, pituitary tissue may exhibit an increased susceptibility to hypoperfusion, ischemia or intraoperative embolism. After on-pump procedures, patients often present with physical and psychosocial impairments which resemble symptoms of hypopituitarism. Therefore, we analyzed whether on-pump cardiac surgery may cause pituitary dysfunction also in the absence of pre-existing pituitary disease. Twenty-five patients were examined 3-12 months after on-pump cardiac surgery. Basal hormone levels for all four anterior pituitary hormone axes were measured and a short synacthen test and a growth hormone releasing hormone plus arginine (GHRH-ARG)-test were performed. Quality of life (QoL), depression, subjective distress for a specific life event, sleep quality and fatigue were assessed by means of self-rating questionnaires. Hormonal alterations were only slight and no signs of anterior hypopituitarism were found except for an insufficient growth hormone rise in two overweight patients in the GHRH-ARG-test. Psychosocial impairment was pronounced, including symptoms of moderate to severe depression in 9, reduced mental QoL in 8, dysfunctional coping in 6 and pronounced sleep disturbances in 16 patients. Hormone levels did not correlate with psychosocial impairment. On-pump cardiac surgery did not cause relevant hypopituitarism in our sample of patients and does not serve to explain the psychosocial symptoms of these patients.

  19. Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels.

    Science.gov (United States)

    Bostick, Brian; Aroor, Annayya R; Habibi, Javad; Durante, William; Ma, Lixin; DeMarco, Vincent G; Garro, Mona; Hayden, Melvin R; Booth, Frank W; Sowers, James R

    2017-01-01

    Obesity is a global epidemic with profound cardiovascular disease (CVD) complications. Obese women are particularly vulnerable to CVD, suffering higher rates of CVD compared to non-obese females. Diastolic dysfunction is the earliest manifestation of CVD in obese women but remains poorly understood with no evidence-based therapies. We have shown early diastolic dysfunction in obesity is associated with oxidative stress and myocardial fibrosis. Recent evidence suggests exercise may increase levels of the antioxidant heme oxygenase-1 (HO-1). Accordingly, we hypothesized that diastolic dysfunction in female mice consuming a western diet (WD) could be prevented by daily volitional exercise with reductions in oxidative stress, myocardial fibrosis and maintenance of myocardial HO-1 levels. Four-week-old female C57BL/6J mice were fed a high-fat/high-fructose WD for 16weeks (N=8) alongside control diet fed mice (N=8). A separate cohort of WD fed females was allowed a running wheel for the entire study (N=7). Cardiac function was assessed at 20weeks by high-resolution cardiac magnetic resonance imaging (MRI). Functional assessment was followed by immunohistochemistry, transmission electron microscopy (TEM) and Western blotting to identify pathologic mechanisms and assess HO-1 protein levels. There was no significant body weight decrease in exercising mice, normalized body weight 14.3g/mm, compared to sedentary mice, normalized body weight 13.6g/mm (p=0.38). Total body fat was also unchanged in exercising, fat mass of 6.6g, compared to sedentary mice, fat mass 7.4g (p=0.55). Exercise prevented diastolic dysfunction with a significant reduction in left ventricular relaxation time to 23.8ms for exercising group compared to 33.0ms in sedentary group (pstress and myocardial fibrosis with improved mitochondrial architecture. HO-1 protein levels were increased in the hearts of exercising mice compared to sedentary WD fed females. This study provides seminal evidence that exercise

  20. Acute leukaemoid reaction following cardiac surgery

    Directory of Open Access Journals (Sweden)

    Webb Stephen T

    2007-01-01

    Full Text Available Abstract Chronic myelomonocytic leukaemia is an atypical myeloproliferative disorder with a natural history of progression to acute myeloid leukaemia, a complex and poorly understood response by the bone marrow to stress. Cardiac surgery activates many inflammatory cascades and may precipitate a systemic inflammatory response syndrome. We present a case of undiagnosed chronic myelomonocytic leukaemia who developed rapidly fatal multi-organ dysfunction following cardiac surgery due to an acute leukaemoid reaction.

  1. Endothelial Dysfunction in Resuscitated Cardiac Arrest (ENDO-RCA)

    DEFF Research Database (Denmark)

    Meyer, Anna Sina P; Ostrowski, Sisse Rye; Kjærgaard, Jesper

    2016-01-01

    BACKGROUND: Morbidity and mortality following initial survival of cardiac arrest remain high despite great efforts to improve resuscitation techniques and post-resuscitation care, in part due to the ischemia-reperfusion injury secondary to the restoration of the blood circulation. Patients resusc...

  2. [Thromboelastography and its use in cardiac surgery].

    Science.gov (United States)

    Ak, Koray; Atalan, Nazan; Tekeli, Atike; Işbir, Selim; Civelek, Ali; Emekli, Nesrin; Arsan, Sinan

    2008-04-01

    Thromboelastography is an alternative method to conventional coagulation tests for the general evaluation of hemostatic system. Cardiac surgery with cardiopulmonary bypass is accomplished by complex alterations of hemostasis, including acquired dysfunction of platelets, consumption coagulopathy and increased fibrinolysis. Despite major advances in blood conservation methods and perioperative care of the patients, transfusion rates in cardiac surgery remain high. Thromboelastography has an ability to assess almost all components of haemostatic system globally. Currently, thromboelastography is used with standard coagulation tests to decrease the microvascular bleeding and homologous blood transfusion in cardiac surgery with cardiopulmonary bypass. In this review, we aimed to discuss thromboelastography technology and its usage in cardiac surgery.

  3. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    Science.gov (United States)

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  4. Organizing Thrombus Mimicking a Cardiac Tumor Located at the Mitral-Aortic Intervalvular Fibrosa

    Directory of Open Access Journals (Sweden)

    Ji Seong Lee

    2016-02-01

    Full Text Available Thrombosis at the left ventricular outflow tract occurs without any detectable heart disease or predisposing factors only extremely rarely. A 48-year-old male visited Konkuk University Medical Center with loss of consciousness one month prior to presentation. Before he visited our hospital, he had been diagnosed with a cardiac tumor, which was located between the left atrium and posterior aortic root, and which was adjacent to both the aortic and mitral valves. Cardiac transplantation was recommended at the other hospital because of the high risk of cardiac dysfunction induced by both aortic and mitral valvular dysfunction after surgical resection. Based on preoperative transthoracic echocardiography, cardiac computed tomography, cardiac magnetic resonance imaging, and intraoperative transesophageal echocardiography, we considered it to be a benign tumor. Complete resection was achieved and the pathology confirmed organizing thrombus. We report a case of organizing thrombus mimicking a cardiac tumor, which was located at the mitral-aortic intervalvular fibrosa of the left ventricular outflow tract without any heart disease.

  5. Reversibility of ventricular dysfunction: clinical experience in a medical office

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Pereira Barretto

    2001-12-01

    Full Text Available OBJECTIVE - To describe clinical observations of marked improvement in ventricular dysfunction in a medical office environment under circumstances differing from those in study protocols and multicenter studies performed in hospital or with outpatient cohorts. METHODS - Eleven cardiac failure patients with marked ventricular dysfunction receiving treatment at a doctors office between 1994 and 1999 were studied. Their ages ranged from 20 and 66 years (mean 39.42±14.05 years; 7 patients were men, 4 were women. Cardiopathic etiologies were arterial hypertension in 5 patients, peripartum cardiomyopathy in 2, nondefined myocarditis in 2, and alcoholic cardiomyopathy in 4. Initial echocardiograms revealed left ventricular dilatation (average diastolic diameter, 69.45±8.15mm, reduced left ventricular ejection fraction (0.38±0.08 and left atrial dilatation (43.36±5.16mm. The therapeutic approach followed consisted of patient orientation, elimination of etiological or causal factors of cardiac failure, and prescription of digitalis, diuretics, and angiotensinconverting enzyme inhibitors. RESULTS - Following treatment, left ventricular ejection fraction changed to 0.63±0.09; left ventricular diameters changed to 57.18±8.13mm, and left atrium diameters changed to 37.27±8.05mm. Maximum improvement was noted after 16.9±8.63 (6 to 36 months. CONCLUSION - Patients with serious cardiac failure and ventricular dysfunction caused by hypertension, alcoholism, or myocarditis can experience marked improvement in ventricular dysfunction after undergoing appropriate therapy within the venue of the doctor's office.

  6. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Hight, Robert S; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A; Lewis, William

    2015-11-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA's acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p 1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Acute Right Ventricular Dysfunction Complicating Prolonged ...

    African Journals Online (AJOL)

    We report a case of transient right ventricular dysfunction associated with prolonged cardiac tamponade, an unusual complication of uncertain etiology. We believe that in this case dynamic coronary flow restriction resulted in ischemic injury and stunning of the right ventricle. Other possible causes are briefly reviewed. Right ...

  8. Low pre-existing gray matter volume in the medial temporal lobe and white matter lesions are associated with postoperative cognitive dysfunction after cardiac surgery.

    Directory of Open Access Journals (Sweden)

    Kengo Maekawa

    Full Text Available OBJECTIVES: Postoperative cognitive dysfunction (POCD is recognized as a complication in the elderly after cardiac surgery. Imaging of the brain provides evidence of neurodegeneration in elderly patients; however, abnormalities in brain structure and their relation to POCD are uncertain. This pilot study investigated whether loss of gray matter in the bilateral medial temporal lobe (MTL, seen in preoperative MRI, was associated with POCD. METHODS: Data were collected prospectively on 28 elderly patients scheduled for elective cardiac surgery. MRI of the brains of all patients were assessed for prior cerebral infarctions, and carotid and intracranial arterial stenosis. Patients also completed six neuropsychological tests of memory, attention and executive function before and after surgery. POCD was defined as an individual decrease in more than two tests of at least 1 standard deviation from the group baseline mean for that test. The degree of gray matter loss in the MTL of each patient was calculated using voxel-based morphometry with three-dimensional, T1-weighted MRI. This represented the degree of gray matter change as a Z score. RESULTS: Postoperative cognitive dysfunction was identified in 8 of the 28 patients (29%. Patients with POCD had significantly more white matter lesions on MRI, and greater loss of gray matter in the bilateral MTL (average Z score 2.0±0.9 than patients without POCD. An analysis by stepwise logistic regression identified gray matter loss in the MTL and cerebral infarctions on MRI as independent predictors of POCD. CONCLUSIONS: These preliminary findings suggested that reduced gray matter in the bilateral MTL and white matter lesions existed in brains of elderly cardiac surgery patients who experienced POCD. Additional studies with larger sample sizes are needed to confirm these findings.

  9. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo.

    Science.gov (United States)

    Itani, Nozomi; Skeffington, Katie L; Beck, Christian; Niu, Youguo; Giussani, Dino A

    2016-01-01

    There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy. © 2015 The Authors. Journal of Pineal Research. Published by John Wiley & Sons Ltd.

  10. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction.

    Science.gov (United States)

    Puukila, Stephanie; Fernandes, Rafael Oliveira; Türck, Patrick; Carraro, Cristina Campos; Bonetto, Jéssica Hellen Poletto; de Lima-Seolin, Bruna Gazzi; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane; Boreham, Douglas; Khaper, Neelam

    2017-08-01

    Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

  11. Cardiac dysfunction in heart failure: the cardiologist's love affair with time.

    Science.gov (United States)

    Brutsaert, Dirk L

    2006-01-01

    Translating research into clinical practice has been a challenge throughout medical history. From the present review, it should be clear that this is particularly the case for heart failure. As a consequence, public awareness of this disease has been disillusionedly low, despite its prognosis being worse than that of most cancers and many other chronic diseases. We explore how over the past 150 years since Ludwig and Marey concepts about the evaluation of cardiac performance in patients with heart failure have emerged. From this historical-physiologic perspective, we have seen how 3 increasingly reductionist approaches or schools of thought have evolved in parallel, that is, an input-output approach, a hemodynamic pump approach, and a muscular pump approach. Each one of these has provided complementary insights into the pathophysiology of heart failure and has resulted in measurements or derived indices, some of which still being in use in present-day cardiology. From the third, most reductionist muscular pump approach, we have learned that myocardial and ventricular relaxation properties as well as temporal and spatial nonuniformities have been largely overlooked in the 2 other, input-output and hemodynamic pump, approaches. A key message from the present review is that relaxation and nonuniformities can be fully understood only from within the time-space continuum of cardiac pumping. As cyclicity and rhythm are, in some way, the most basic aspects of cardiac function, considerations of time should dominate over any measurement of cardiac performance as a muscular pump. Any measurement that is blind for the arrow of cardiac time should therefore be interpreted with caution. We have seen how the escape from the time domain-as with the calculation of LV ejection fraction-fascinating though as it may be, has undoubtedly served to hinder a rational scientific debate on the recent, so-called systolic-diastolic heart failure controversy. Lacking appreciation of early

  12. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhao

    Full Text Available Abstract Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions.

  13. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  14. Management of erectile dysfunction: perceptions and practices of ...

    African Journals Online (AJOL)

    2003-08-23

    Aug 23, 2003 ... Erectile dysfunction (ED) is a prevalent health problem in many societies, but the ... care. The objective of this study was to investigate the perception and ..... drug may cure cardiac .... practice nurse barriers to talking about.

  15. Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure.

    Science.gov (United States)

    Zhang, Lei; Liu, Ming; Jiang, Hong; Yu, Ying; Yu, Peng; Tong, Rui; Wu, Jian; Zhang, Shuning; Yao, Kang; Zou, Yunzeng; Ge, Junbo

    2016-03-01

    Inflammation plays a key role in pressure overload-induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High-mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload-induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild-type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin-embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up-regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload-induced cardiac hypertrophy and cardiac dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. A randomized controlled trial of levosimendan to reduce mortality in high-risk cardiac surgery patients (CHEETAH): Rationale and design.

    Science.gov (United States)

    Zangrillo, Alberto; Alvaro, Gabriele; Pisano, Antonio; Guarracino, Fabio; Lobreglio, Rosetta; Bradic, Nikola; Lembo, Rosalba; Gianni, Stefano; Calabrò, Maria Grazia; Likhvantsev, Valery; Grigoryev, Evgeny; Buscaglia, Giuseppe; Pala, Giovanni; Auci, Elisabetta; Amantea, Bruno; Monaco, Fabrizio; De Vuono, Giovanni; Corcione, Antonio; Galdieri, Nicola; Cariello, Claudia; Bove, Tiziana; Fominskiy, Evgeny; Auriemma, Stefano; Baiocchi, Massimo; Bianchi, Alessandro; Frontini, Mario; Paternoster, Gianluca; Sangalli, Fabio; Wang, Chew-Yin; Zucchetti, Maria Chiara; Biondi-Zoccai, Giuseppe; Gemma, Marco; Lipinski, Michael J; Lomivorotov, Vladimir V; Landoni, Giovanni

    2016-07-01

    Patients undergoing cardiac surgery are at risk of perioperative low cardiac output syndrome due to postoperative myocardial dysfunction. Myocardial dysfunction in patients undergoing cardiac surgery is a potential indication for the use of levosimendan, a calcium sensitizer with 3 beneficial cardiovascular effects (inotropic, vasodilatory, and anti-inflammatory), which appears effective in improving clinically relevant outcomes. Double-blind, placebo-controlled, multicenter randomized trial. Tertiary care hospitals. Cardiac surgery patients (n = 1,000) with postoperative myocardial dysfunction (defined as patients with intraaortic balloon pump and/or high-dose standard inotropic support) will be randomized to receive a continuous infusion of either levosimendan (0.05-0.2 μg/[kg min]) or placebo for 24-48 hours. The primary end point will be 30-day mortality. Secondary end points will be mortality at 1 year, time on mechanical ventilation, acute kidney injury, decision to stop the study drug due to adverse events or to start open-label levosimendan, and length of intensive care unit and hospital stay. We will test the hypothesis that levosimendan reduces 30-day mortality in cardiac surgery patients with postoperative myocardial dysfunction. This trial is planned to determine whether levosimendan could improve survival in patients with postoperative low cardiac output syndrome. The results of this double-blind, placebo-controlled randomized trial may provide important insights into the management of low cardiac output in cardiac surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  18. Cardiovascular drugs and erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Terzić Branka M.

    2014-01-01

    Full Text Available Erectile dysfunction (ED is a disorder, which basically can have organic nature, psychological or mixed. ED is not a rarity, and data on its prevalence vary, depending on the areas in which the survey was conducted, followed by a period of research and the definition of the disorder. Most of the men associate ED problem with using drugs, especially cardiac. Even though there is some truth in it, mainly the real causes of ED are not well known even to professionals. Contemporary studies of risk factors for cardiovascular disease, particularly coronary heart disease, have shown the clear link between erectile dysfunction and coronary heart disease, wherein ED first manifests. While, ED precedes the onset of symptoms of coronary heart disease and show to the patient and the physician a clear signal of the direction for conducting diagnostic tests and further treatment in the interest of the health of patients. Endocrine, and neurological disorders, as well as bad habits in addition to the cardiac and kidney disease, lead to ED. It is known also, that the use of cardiac medicines may contribute to ED occurrence. Better knowledge of adverse reactions to medicines, a better understanding of the nature of the disease and the implementation of necessary diagnostic procedures, with a good choice of medication, contribute to solving problems related to ED. If all mentioned do not help, there is the possibility of using new drugs to correct ED.

  19. Cardiac Auscultation for Noncardiologists: Application in Cardiac Rehabilitation Programs: PART I: PATIENTS AFTER ACUTE CORONARY SYNDROMES AND HEART FAILURE.

    Science.gov (United States)

    Compostella, Leonida; Compostella, Caterina; Russo, Nicola; Setzu, Tiziana; Iliceto, Sabino; Bellotto, Fabio

    2017-09-01

    During outpatient cardiac rehabilitation after an acute coronary syndrome or after an episode of congestive heart failure, a careful, periodic evaluation of patients' clinical and hemodynamic status is essential. Simple and traditional cardiac auscultation could play a role in providing useful prognostic information.Reduced intensity of the first heart sound (S1), especially when associated with prolonged apical impulse and the appearance of added sounds, may help identify left ventricular (LV) dysfunction or conduction disturbances, sometimes associated with transient myocardial ischemia. If both S1 and second heart sound (S2) are reduced in intensity, a pericardial effusion may be suspected, whereas an increased intensity of S2 may indicate increased pulmonary artery pressure. The persistence of a protodiastolic sound (S3) after an acute coronary syndrome is an indicator of severe LV dysfunction and a poor prognosis. In patients with congestive heart failure, the association of an S3 and elevated heart rate may indicate impending decompensation. A presystolic sound (S4) is often associated with S3 in patients with LV failure, although it could also be present in hypertensive patients and in patients with an LV aneurysm. Careful evaluation of apical systolic murmurs could help identifying possible LV dysfunction or mitral valve pathology, and differentiate them from a ruptured papillary muscle or ventricular septal rupture. Friction rubs after an acute myocardial infarction, due to reactive pericarditis or Dressler syndrome, are often associated with a complicated clinical course.During cardiac rehabilitation, periodic cardiac auscultation may provide useful information about the clinical-hemodynamic status of patients and allow timely detection of signs, heralding possible complications in an efficient and low-cost manner.

  20. Association and pattern of diastolic dysfunction in patients of metabolic syndrome

    International Nuclear Information System (INIS)

    Khan, A.R.; Khan, M.Q.

    2008-01-01

    Diastolic dysfunction is important predictor of morbidity and mortality in patients with metabolic syndrome. This prospective study is to evaluate an association and pattern of diastolic dysfunction in patients of metabolic syndrome in our population. This cross-sectional study was performed at Armed Forces Institute of Cardiology Rawalpindi for a period of 6 months from 20th November 2007 to 20th April 2008. One hundred eligible and consenting patients having metabolic syndrome reporting in the OPD were registered. Inclusion criteria included patients of metabolic syndrome with negative ETT and normal systolic function. Exclusion criteria were patients with age above 60 years and valvular heart disease. Data was collected by a structured clinical interview with a physician, ECG and a transthoracic M-mode, 2D and TDI echocardiogram. The metabolic syndrome was defined according to International Diabetes Federation. There was a positive association between the degree of the metabolic syndrome-assessed as number of concurrently present components-and parameters of cardiac structure and function, with a consistent and statistically significant trend for all cardiac variables considered(p=0.000). There was also a positive association between each parameter and the cardiac diastolic dysfunction grading, e.g., systolic blood pressure (p=0.000), diastolic blood pressure (p=0.005), waist circumference (p=0.004), fasting blood sugar (p=0.008), triglycerides (p=0.006), HDL cholesterol (p=0.001). Several cardiac functional abnormalities regardless of symptoms increased progressively with increasing degree of metabolic syndrome. (author)

  1. Aggravated Cardiac Remodeling post Aortocaval Fistula in Unilateral Nephrectomized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Wu

    Full Text Available Aortocaval fistula (AV in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX rats.Adult male Sprague-Dawley (SD rats were divided into Sham (n = 10, UNX (right kidney remove, n = 10, AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18 and UNX+AV (AV at one week after UNX, n = 22, respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements.UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats.Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals.

  2. Mitochondrial oxidative stress and cardiac ageing.

    Science.gov (United States)

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  4. Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction

    DEFF Research Database (Denmark)

    Stride, Nis; Larsen, Steen; Hey-Mogensen, Martin

    2013-01-01

    Heart failure (HF) with left ventricular systolic dysfunction (LVSD) is associated with a shift in substrate utilization and a compromised energetic state. Whether these changes are connected with mitochondrial dysfunction is not known. We hypothesized that the cardiac phenotype in LVSD could...

  5. Diastolic And Systolic Right Ventricular Dysfunction Precedes Left Ventricular Dysfunction In Patients Paced From Right Ventricular Apex

    Directory of Open Access Journals (Sweden)

    Dwivedi SK

    2006-07-01

    Full Text Available Background: Cardiac dysfunction after right ventricular (RV apical pacing is well known but its extent, time frame of appearance and individual effect on left ventricular (LV, RV systolic and diastolic parameters has not evaluated in a systematic fashion. Methods: Patients with symptomatic bradycardia and ACC-AHA Class I indication for permanent pacemaker implantation (PPI were implanted a single chamber (VVI pacemaker. They were followed prospectively by echocardiographic examination which was done at baseline, 1 week, 1 month and 6 months after implantation. Parameters observed were chamber dimensions (M-line, chamber volumes, cardiac output (modified Simpson's method, systolic functions (ejection fraction, pre-ejection period, ejection time and ratio and diastolic functions( isovolumic relaxation time & deceleration time of left and right heart. Results: Forty eight consecutive patients (mean age 65.6±11.8 yrs, 66.7% males, mean EF 61.82±10.36% implanted a VVI pacemaker were enrolled in this study. The first significant change to appear in cardiac function after VVI pacing was in diastolic properties of RV as shown by increase in RV isovolumic relaxation time (IVRT from 65.89±15.93 to 76.58±17.00 ms,(p<0.001 at 1week and RV deceleration time (DT from 133.84±38.13 to 153.09±31.41 ms, (p=0.02 at 1 month. Increase in RV internal dimension (RVID from 1.26±0.41 to 1.44±0.44, (p<0.05 was also noticed at 1 week. The LV diastolic parameters were significantly altered after 1 month with increase in LV-IVRT from 92.36±21.47 to 117.24±27.21ms, (p<0.001 and increase in LV DT from 147.56±31.84 to 189.27±28.49ms,(p<0.01. This was followed by LV systolic abnormality which appeared at 6 months with an increase in LVPEP from 100.33±14.43 to 118.41±21.34ms, (p<0.001 and increase in LVPEP/LVET ratio from 0.34±0.46 to 0.44±0.10, (p<0.001]. The reduction in LV EF was manifested at 6 months falling from 61.82±10.36% to52.52±12.11%, (p<0

  6. Comparative Effect of Levosimendan and Milrinone in Cardiac Surgery Patients With Pulmonary Hypertension and Left Ventricular Dysfunction.

    Science.gov (United States)

    Mishra, Abhi; Kumar, Bhupesh; Dutta, Vikas; Arya, V K; Mishra, Anand Kumar

    2016-06-01

    To compare the effects of levosimendan with milrinone in cardiac surgical patients with pulmonary hypertension and left ventricular dysfunction. A prospective, randomized study. Tertiary care teaching hospital. The study included patients with valvular heart disease and pulmonary artery hypertension undergoing valve surgery. Forty patients were allocated randomly to receive either milrinone, 50 µg/kg bolus followed by infusion at a rate of 0.5 µg/kg/min (group 1), or levosimendan, 10 µg/kg bolus followed by infusion at a rate of 0.1 µg/kg/min (group 2) for 24 hours after surgery. Hemodynamic parameters were measured using a pulmonary artery catheter, and biventricular functions were assessed using echocardiography. Mean pulmonary artery pressures and the pulmonary vascular resistance index were comparable between the 2 groups at several time points in the intensive care unit. Biventricular function was comparable between both groups. Postcardiopulmonary bypass right ventricular systolic and diastolic functions decreased in both groups compared with baseline, whereas 6 hours postbypass left ventricular ejection fraction improved in patients with stenotic valvular lesions. Levosimendan use was associated with higher heart rate, increased cardiac index, decreased systemic vascular resistance index, and increased requirement of norepinephrine infusion compared with milrinone. The results of this study demonstrated that levosimendan was not clinically better than milrinone. Levosimendan therapy resulted in a greater increase in heart rate, decrease in systemic vascular resistance, and a greater need for norepinephrine than in patients who received milrinone. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase.

    Science.gov (United States)

    Dal-Secco, Daniela; DalBó, Silvia; Lautherbach, Natalia E S; Gava, Fábio N; Celes, Mara R N; Benedet, Patricia O; Souza, Adriana H; Akinaga, Juliana; Lima, Vanessa; Silva, Katiussia P; Kiguti, Luiz Ricardo A; Rossi, Marcos A; Kettelhut, Isis C; Pupo, André S; Cunha, Fernando Q; Assreuy, Jamil

    2017-07-01

    G protein-coupled receptor kinase isoform 2 (GRK2) has a critical role in physiological and pharmacological responses to endogenous and exogenous substances. Sepsis causes an important cardiovascular dysfunction in which nitric oxide (NO) has a relevant role. The present study aimed to assess the putative effect of inducible NO synthase (NOS2)-derived NO on the activity of GRK2 in the context of septic cardiac dysfunction. C57BL/6 mice were submitted to severe septic injury by cecal ligation and puncture (CLP). Heart function was assessed by isolated and perfused heart, echocardiography, and β-adrenergic receptor binding. GRK2 was determined by immunofluorescence and Western blot analysis in the heart and isolated cardiac myocytes. Sepsis increased NOS2 expression in the heart, increased plasma nitrite + nitrate levels, and reduced isoproterenol-induced isolated ventricle contraction, whole heart tension development, and β-adrenergic receptor density. Treatment with 1400W or with GRK2 inhibitor prevented CLP-induced cardiac hyporesponsiveness 12 and 24 h after CLP. Increased labeling of total and phosphorylated GRK2 was detected in hearts after CLP. With treatment of 1400W or in hearts taken from septic NOS2 knockout mice, the activation of GRK2 was reduced. 1400W or GRK2 inhibitor reduced mortality, improved echocardiographic cardiac parameters, and prevented organ damage. Therefore, during sepsis, NOS2-derived NO increases GRK2, which leads to a reduction in β-adrenergic receptor density, contributing to the heart dysfunction. Isolated cardiac myocyte data indicate that NO acts through the soluble guanylyl cyclase/cGMP/PKG pathway. GRK2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. NEW & NOTEWORTHY The main novelty presented here is to show that septic shock induces cardiac hyporesponsiveness to isoproterenol by a mechanism dependent on nitric oxide and mediated by G protein-coupled receptor kinase isoform 2. Therefore

  8. Diastolic dysfunction predicts new-onset atrial fibrillation and cardiovascular events in patients with acute myocardial infarction and depressed left ventricular systolic function: a CARISMA substudy

    DEFF Research Database (Denmark)

    Jons, Christian; Joergensen, Rikke Moerch; Hassager, Christian

    2010-01-01

    The aim of this study was to investigate the association between diastolic dysfunction and long-term occurrence of new-onset atrial fibrillation (AF) and cardiac events in patients with acute myocardial infarction (AMI) and left ventricular (LV) systolic dysfunction.......The aim of this study was to investigate the association between diastolic dysfunction and long-term occurrence of new-onset atrial fibrillation (AF) and cardiac events in patients with acute myocardial infarction (AMI) and left ventricular (LV) systolic dysfunction....

  9. Cardiac Autonomic Function Is Associated With the Coronary Microcirculatory Function in Patients With Type 2 Diabetes

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Hansen, Christian Stevns; Hasbak, Philip

    2016-01-01

    Cardiac autonomic dysfunction and cardiac microvascular dysfunction are diabetic complications associated with increased mortality, but the association between these has been difficult to assess. We applied new and sensitive methods to assess this in patients with type 2 diabetes mellitus (T2DM......). In a cross-sectional design, coronary flow reserve (CFR) assessed by cardiac (82)Rb-positron emission tomography/computed tomography, cardiac autonomic reflex tests, and heart rate variability indices were performed in 55 patients with T2DM, without cardiovascular disease, and in 28 control subjects. Cardiac....... A heart rate variability index, reflecting sympathetic and parasympathetic function (low-frequency power), and the late heart-to-mediastinum ratio, reflecting the function of adrenergic receptors and sympathetic activity, were positively correlated with CFR after adjustment for age and heart rate...

  10. ANP, BNP and D-dimer predict right ventricular dysfunction in patients with acute pulmonary embolism

    DEFF Research Database (Denmark)

    Borgwardt, Henrik Gutte; Mortensen, Jann; Jensen, Claus V

    2010-01-01

    The aim of this study was to predict right ventricular dysfunction (RVD) using plasma concentration of D-dimer, pro-atrial natriuretic peptide (pro-ANP), brain natriuretic peptide (BNP), endothelin-1 (ET-1) and cardiac troponin I (TNI) in patients with pulmonary embolism (PE).......The aim of this study was to predict right ventricular dysfunction (RVD) using plasma concentration of D-dimer, pro-atrial natriuretic peptide (pro-ANP), brain natriuretic peptide (BNP), endothelin-1 (ET-1) and cardiac troponin I (TNI) in patients with pulmonary embolism (PE)....

  11. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    Science.gov (United States)

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  12. Transient left ventricular systolic dysfunction following surgical closure of large patent ductus arteriosus among children and adolescents operated at the cardiac centre, Ethiopia.

    Science.gov (United States)

    Tilahun, Birkneh; Tefera, Endale

    2013-05-31

    Patent ductus arteriosus (PDA) is one of the commonest congenital heart diseases that require closure within the first few months after birth. The residential area of patients affects the size of the PDA: living in highlands, like most places in Ethiopia, is a risk for having larger sized PDA. Closure of these congenital heart defects is usually performed at an early age in places where capable centers are available. In Ethiopia, closure of these defects is done on mission basis often at an older age. Recently, limited reports came about the occurrence of postoperative left ventricular systolic dysfunction (POLVD) following closure of PDA though full explanation is still lacking. To determine the rate of and time to improvement of POLVD and the factors associated with it in children and adolescents who underwent surgical closure of PDA. All children and adolescents who underwent surgical closure of PDA at the Cardiac Center, Ethiopia (CCE) had postoperative follow up with echocardiography. Serial left ventricular ejection fraction (LVEF) and fiber shortening (FS) values were recorded for all of them. SPSS 20 was used to analyze the data. A total of 36 children and adolescents who underwent surgical closure of PDA from January 2009 to December 2012 and who fulfilled the inclusion criteria were studied. Their mean age at intervention was 8.52 years (SD = 5.23 years), 77.80% were females. The mean duct size as determined by either echocardiography or intra-operative by the surgeon was 10.31 mm (SD = 3.20 mm). They were followed for a mean duration of 24.80 months (SD = 12.36 months) following surgical closure of PDA. The mean LVEF and FS decreased from 65.06% and 35.28% preoperatively to 54.83% and 28.40% post-operatively respectively. Fifteen (42.86%) of the patients had a post-operative LVEF of less than 55%. The mean time to normalization of systolic function was 5.11 weeks (SD = 3.30 weeks). Having an associated cardiac lesion was an independent

  13. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels.

    Science.gov (United States)

    Khalil, Md Ibrahim; Tanvir, E M; Afroz, Rizwana; Sulaiman, Siti Amrah; Gan, Siew Hua

    2015-01-01

    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey (3 g/kg/day) for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate transaminase (AST)), cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO) products (TBARS) and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST). Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  14. Right ventricular involvement in cardiac sarcoidosis demonstrated with cardiac magnetic resonance.

    Science.gov (United States)

    Smedema, Jan-Peter; van Geuns, Robert-Jan; Ainslie, Gillian; Ector, Joris; Heidbuchel, Hein; Crijns, Harry J G M

    2017-11-01

    Cardiac involvement in sarcoidosis is reported in up to 30% of patients. Left ventricular involvement demonstrated by contrast-enhanced cardiac magnetic resonance has been well validated. We sought to determine the prevalence and distribution of right ventricular late gadolinium enhancement in patients diagnosed with pulmonary sarcoidosis. We prospectively evaluated 87 patients diagnosed with pulmonary sarcoidosis with contrast-enhanced cardiac magnetic resonance for right ventricular involvement. Pulmonary artery pressures were non-invasively evaluated with Doppler echocardiography. Patient characteristics were compared between the groups with and without right ventricular involvement, and right ventricular enhancement was correlated with pulmonary hypertension, ventricular mass, volume, and systolic function. Left ventricular late gadolinium enhancement was demonstrated in 30 patients (34%). Fourteen patients (16%) had right ventricular late gadolinium enhancement, with sole right ventricular enhancement in only two patients. The pattern of right ventricular enhancement consisted of right ventricular outflow tract enhancement in 1 patient, free wall enhancement in 8 patients, ventricular insertion point enhancement in 10 patients, and enhancement of the right side of the interventricular septum in 11 patients. Pulmonary arterial hypertension correlated with the presence of right ventricular enhancement (P Right ventricular enhancement correlated with systolic ventricular dysfunction (P Right ventricular enhancement was present in 16% of patients diagnosed with pulmonary sarcoidosis and in 48% of patients with left ventricular enhancement. The presence of right ventricular enhancement correlated with pulmonary arterial hypertension, right ventricular systolic dysfunction, hypertrophy, and dilation. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  15. Cardiac amyloidosis detection with pyrophosphate-99mTc scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.S.F.; Ichiki, W.A.; Coura Filho, G.B.; Izaki, M.; Giorgi, M.C.P.; Soares Junior, J; Meneghetti, J.C. [Universidade de Sao Paulo (FM/USP), SP (Brazil). Fac. de Medicina. Instituto do Coracao. Servico de Medicina Nuclear e Imagem Molecular

    2008-07-01

    Full text: Introduction: Amyloidosis is a rare disease, characterized by extracellular deposition of insoluble amyloid fibrils in organs and tissues. It may affect virtually any system, preferably heart, kidneys and liver. The cardiac involvement produces a spectrum of clinical features, usually with progressive dysfunction. Early diagnosis is important for institution of appropriate therapy. Case report: Male patient, 75 years old, with diagnosed congestive heart failure functional class III and Mobitz II second-degree atrial-ventricular block, was hospitalized for implantation of definitive cardiac pacemaker. Patient mentioned history of worsening effort dyspnoea over a one-month period, progressing to minimum effort, orthopnea, paroxysmal nocturnal dyspnoea and paroxysms of dry cough, and swelling of lower limbs. Echocardiography showed diffuse hypertrophy of left ventricle (LV), with systolic dysfunction due to diffuse hypokinesia and hyperrefringent aspect in the septum. It was questioned a cardiac infiltrating process. Cardiac amyloidosis was considered as a diagnostic hypothesis. The patient underwent a pyrophosphate-{sup 99m}Tc scintigraphy, which showed abnormal tracer uptake in the heart projection, with diffuse pattern on the left ventricle walls, compatible with the clinical suspicion cardiac amyloidosis, which was later confirmed by endomyocardial biopsy. Discussion: In this case report, the patient had clinical and other auxiliary examinations, such as electrocardiography and Doppler echocardiography, compatible with cardiac amyloidosis, which led to implementation with pyrophosphate-{sup 99m}Tc scintigraphy and later endomyocardial biopsy. Cardiac amyloidosis occurs in about half the cases of primary amyloidosis (AL) and is rare in secondary amyloidosis (AA). Its clinical presentation is polymorphic and it can be classified into four distinctive types: restrictive cardiomyopathy, systolic dysfunction, postural hypotension and conduction disorders

  16. Cardiac amyloidosis detection with pyrophosphate-99mTc scintigraphy

    International Nuclear Information System (INIS)

    Souza, D.S.F.; Ichiki, W.A.; Coura Filho, G.B.; Izaki, M.; Giorgi, M.C.P.; Soares Junior, J; Meneghetti, J.C.

    2008-01-01

    Full text: Introduction: Amyloidosis is a rare disease, characterized by extracellular deposition of insoluble amyloid fibrils in organs and tissues. It may affect virtually any system, preferably heart, kidneys and liver. The cardiac involvement produces a spectrum of clinical features, usually with progressive dysfunction. Early diagnosis is important for institution of appropriate therapy. Case report: Male patient, 75 years old, with diagnosed congestive heart failure functional class III and Mobitz II second-degree atrial-ventricular block, was hospitalized for implantation of definitive cardiac pacemaker. Patient mentioned history of worsening effort dyspnoea over a one-month period, progressing to minimum effort, orthopnea, paroxysmal nocturnal dyspnoea and paroxysms of dry cough, and swelling of lower limbs. Echocardiography showed diffuse hypertrophy of left ventricle (LV), with systolic dysfunction due to diffuse hypokinesia and hyperrefringent aspect in the septum. It was questioned a cardiac infiltrating process. Cardiac amyloidosis was considered as a diagnostic hypothesis. The patient underwent a pyrophosphate- 99m Tc scintigraphy, which showed abnormal tracer uptake in the heart projection, with diffuse pattern on the left ventricle walls, compatible with the clinical suspicion cardiac amyloidosis, which was later confirmed by endomyocardial biopsy. Discussion: In this case report, the patient had clinical and other auxiliary examinations, such as electrocardiography and Doppler echocardiography, compatible with cardiac amyloidosis, which led to implementation with pyrophosphate- 99m Tc scintigraphy and later endomyocardial biopsy. Cardiac amyloidosis occurs in about half the cases of primary amyloidosis (AL) and is rare in secondary amyloidosis (AA). Its clinical presentation is polymorphic and it can be classified into four distinctive types: restrictive cardiomyopathy, systolic dysfunction, postural hypotension and conduction disorders. Cardiac

  17. Amiodarone-induced thyroid dysfunction | Ross | South African ...

    African Journals Online (AJOL)

    Background. Little is known about the frequency of thyroid dysfunction (TD) associated with. amiodarone therapy in southern Africa. Objectives. To determine the incidence of TD in a cohort of patients initia ed on amiodarone therapy at a cardiac clinic in Cape Town, South Africa, believed to be an iodine-replete area.

  18. Circulating Histones Are Major Mediators of Cardiac Injury in Patients With Sepsis.

    Science.gov (United States)

    Alhamdi, Yasir; Abrams, Simon T; Cheng, Zhenxing; Jing, Shengjie; Su, Dunhao; Liu, Zhiyong; Lane, Steven; Welters, Ingeborg; Wang, Guozheng; Toh, Cheng-Hock

    2015-10-01

    To investigate the impact of circulating histones on cardiac injury and dysfunction in a murine model and patients with sepsis. Prospective, observational clinical study with in vivo and ex vivo translational laboratory investigations. General ICU and university research laboratory. Sixty-five septic patients and 27 healthy volunteers. Twelve-week-old male C57BL/6N mice. Serial blood samples from 65 patients with sepsis were analyzed, and left ventricular function was assessed by echocardiography. Patients' sera were incubated with cultured cardiomyocytes in the presence or absence of antihistone antibody, and cellular viability was assessed. Murine sepsis was initiated by intraperitoneal Escherichia coli injection (10(8) colony-forming unit/mouse) in 12-week-old male C57BL/6N mice, and the effect of antihistone antibody (10 mg/kg) was studied. Murine blood samples were collected serially, and left ventricular function was assessed by intraventricular catheters and electrocardiography. Circulating histones and cardiac troponins in human and murine plasma were quantified. In 65 patients with sepsis, circulating histones were significantly elevated compared with healthy controls (n = 27) and linearly correlated with cardiac troponin T levels (rs = 0.650; p histone levels were significantly associated with new-onset left ventricular dysfunction (p = 0.001) and arrhythmias (p = 0.01). Left ventricular dysfunction only predicted adverse outcomes when combined with elevated histones or cardiac troponin levels. Furthermore, patients' sera directly induced histone-specific cardiomyocyte death ex vivo, which was abrogated by antihistone antibodies. In vivo studies on septic mice confirmed the cause-effect relationship between circulating histones and the development of cardiac injury, arrhythmias, and left ventricular dysfunction. Circulating histones are novel and important mediators of septic cardiomyopathy, which can potentially be utilized for prognostic and therapeutic

  19. Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress.

    Science.gov (United States)

    Koncsos, Gábor; Varga, Zoltán V; Baranyai, Tamás; Boengler, Kerstin; Rohrbach, Susanne; Li, Ling; Schlüter, Klaus-Dieter; Schreckenberg, Rolf; Radovits, Tamás; Oláh, Attila; Mátyás, Csaba; Lux, Árpád; Al-Khrasani, Mahmoud; Komlódi, Tímea; Bukosza, Nóra; Máthé, Domokos; Deres, László; Barteková, Monika; Rajtík, Tomáš; Adameová, Adriana; Szigeti, Krisztián; Hamar, Péter; Helyes, Zsuzsanna; Tretter, László; Pacher, Pál; Merkely, Béla; Giricz, Zoltán; Schulz, Rainer; Ferdinandy, Péter

    2016-10-01

    Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca 2+ /calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria. Copyright © 2016 the American Physiological Society.

  20. Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress

    Science.gov (United States)

    Koncsos, Gábor; Varga, Zoltán V.; Boengler, Kerstin; Rohrbach, Susanne; Li, Ling; Schlüter, Klaus-Dieter; Schreckenberg, Rolf; Radovits, Tamás; Oláh, Attila; Mátyás, Csaba; Lux, Árpád; Al-Khrasani, Mahmoud; Komlódi, Tímea; Bukosza, Nóra; Máthé, Domokos; Deres, László; Barteková, Monika; Rajtík, Tomáš; Adameová, Adriana; Szigeti, Krisztián; Helyes, Zsuzsanna; Tretter, László; Pacher, Pál; Merkely, Béla; Schulz, Rainer; Ferdinandy, Péter

    2016-01-01

    Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4. High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca2+/calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria. PMID:27521417

  1. Bigger is not better: cortisol-induced cardiac growth and dysfunction in salmonids

    DEFF Research Database (Denmark)

    Johansen, Ida B.; Sandblom, Erik; Skov, Peter Vilhelm

    2017-01-01

    show that rainbow trout (Oncorhynchus mykiss) treated with cortisol in the diet for 45 days have enlarged hearts with lower maximum stroke volume and cardiac output. In accordance with impaired cardiac performance, overall circulatory oxygen-transporting capacity was diminished as indicated by reduced...

  2. Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes.

    Science.gov (United States)

    Deshwal, Soni; Forkink, Marleen; Hu, Chou-Hui; Buonincontri, Guido; Antonucci, Salvatore; Di Sante, Moises; Murphy, Michael P; Paolocci, Nazareno; Mochly-Rosen, Daria; Krieg, Thomas; Di Lisa, Fabio; Kaludercic, Nina

    2018-02-19

    Monoamine oxidase (MAO) inhibitors ameliorate contractile function in diabetic animals, but the mechanisms remain unknown. Equally elusive is the interplay between the cardiomyocyte alterations induced by hyperglycemia and the accompanying inflammation. Here we show that exposure of primary cardiomyocytes to high glucose and pro-inflammatory stimuli leads to MAO-dependent increase in reactive oxygen species that causes permeability transition pore opening and mitochondrial dysfunction. These events occur upstream of endoplasmic reticulum (ER) stress and are abolished by the MAO inhibitor pargyline, highlighting the role of these flavoenzymes in the ER/mitochondria cross-talk. In vivo, streptozotocin administration to mice induced oxidative changes and ER stress in the heart, events that were abolished by pargyline. Moreover, MAO inhibition prevented both mast cell degranulation and altered collagen deposition, thereby normalizing diastolic function. Taken together, these results elucidate the mechanisms underlying MAO-induced damage in diabetic cardiomyopathy and provide novel evidence for the role of MAOs in inflammation and inter-organelle communication. MAO inhibitors may be considered as a therapeutic option for diabetic complications as well as for other disorders in which mast cell degranulation is a dominant phenomenon.

  3. Early and simple detection of diastolic dysfunction during weaning from mechanical ventilation.

    Science.gov (United States)

    Voga, Gorazd

    2012-07-06

    Weaning from mechanical ventilation imposes additional work on the cardiovascular system and can provoke or unmask left ventricular diastolic dysfunction with consecutive pulmonary edema or systolic dysfunction with inadequate increase of cardiac output and unsuccessful weaning. Echocardiography, which is increasingly used for hemodynamic assessment of critically ill patients, allows differentiation between systolic and diastolic failure. For various reasons, transthoracic echocardiographic assessment was limited to patients with good echo visibility and to those with sinus rhythm without excessive tachycardia. In these patients, often selected after unsuccessful weaning, echocardiographic findings were predictive for weaning failure of cardiac origin. In some studies, patients with various degrees of systolic dysfunction were included, making evaluation of the diastolic dysfunction to the weaning failure even more difficult. The recent study by Moschietto and coworkers included unselected patients and used very simple diastolic variables for assessment of diastolic function. They also included patients with atrial fibrillation and repeated echocardiographic examination only 10 minutes after starting a spontaneous breathing trial. The main finding was that weaning failure was not associated with systolic dysfunction but with diastolic dysfunction. By measuring simple and robust parameters for detection of diastolic dysfunction, the study was able to predict weaning failure in patients with sinus rhythm and atrial fibrillation as early as 10 minutes after beginning a spontaneous breathing trial. Further studies are necessary to determine whether appropriate treatment tailored according to the echocardiographic findings will result in successful weaning.

  4. Clinical application of l-123 MlBG cardiac imaging

    International Nuclear Information System (INIS)

    Kang, Do Young

    2004-01-01

    Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MlBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with l-123 MlBG imaging may be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy

  5. Clinical application of l-123 MlBG cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young [College of Medicine, Donga Univ., Busan (Korea, Republic of)

    2004-10-01

    Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MlBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with l-123 MlBG imaging may be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

  6. Cerebral Oximetry in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    A. N. Shepelyuk

    2012-01-01

    Full Text Available Based on the data of numerous current references, the review describes different neuromonitoring methods during cardiac surgery under extracorporeal circulation. It shows that it is important and necessary to make neuromonitoring for the early diagnosis and prevention of neurological complications after cardiac surgery. Particular attention is given to cerebral oximetry; the possibilities and advantages of this technique are described. Correction of cerebral oximetric values is shown to improve survival rates and to reduce the incidence of postoperative complications. Lack of cerebral oximetry monitoring denudes a clinician of important information and possibilities to optimize patient status and to prevent potentially menacing complications, which allows one to conclude that it is necessary to use cerebral oximetry procedures within neu-romonitoring in cardiac surgery. Key words: extracorporeal circulation, cerebral oximetry, neurological dysfunction, cerebral oxygenation.

  7. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction.

    Science.gov (United States)

    Schwabl, Philipp; Hambruch, Eva; Seeland, Berit A; Hayden, Hubert; Wagner, Michael; Garnys, Lukas; Strobel, Bastian; Schubert, Tim-Lukas; Riedl, Florian; Mitteregger, Dieter; Burnet, Michael; Starlinger, Patrick; Oberhuber, Georg; Deuschle, Ulrich; Rohr-Udilova, Nataliya; Podesser, Bruno K; Peck-Radosavljevic, Markus; Reiberger, Thomas; Kremoser, Claus; Trauner, Michael

    2017-04-01

    Steroidal farnesoid X receptor (FXR) agonists demonstrated potent anti-fibrotic activities and lowered portal hypertension in experimental models. The impact of the novel non-steroidal and selective FXR agonist PX20606 on portal hypertension and fibrosis was explored in this study. In experimental models of non-cirrhotic (partial portal vein ligation, PPVL, 7days) and cirrhotic (carbon tetrachloride, CCl 4 , 14weeks) portal hypertension, PX20606 (PX,10mg/kg) or the steroidal FXR agonist obeticholic acid (OCA,10mg/kg) were gavaged. We then measured portal pressure, intrahepatic vascular resistance, liver fibrosis and bacterial translocation. PX decreased portal pressure in non-cirrhotic PPVL (12.6±1.7 vs. 10.4±1.1mmHg; p=0.020) and cirrhotic CCl 4 (15.2±0.5 vs. 11.8±0.4mmHg; p=0.001) rats. In PPVL animals, we observed less bacterial translocation (-36%; p=0.041), a decrease in lipopolysaccharide binding protein (-30%; p=0.024) and splanchnic tumour necrosis factor α levels (-39%; p=0.044) after PX treatment. In CCl 4 rats, PX decreased fibrotic Sirius Red area (-43%; p=0.005), hepatic hydroxyproline (-66%; pportal pressure (-14%; p=0.041) by restoring endothelial function, 14week PX therapy additionally inhibited sinusoidal remodelling and decreased portal pressure to a greater extent (-22%; p=0.001). In human liver sinusoidal endothelial cells, PX increased eNOS and DDAH expression. The non-steroidal FXR agonist PX20606 ameliorates portal hypertension by reducing liver fibrosis, vascular remodelling and sinusoidal dysfunction. The novel drug PX20606 activates the bile acid receptor FXR and shows beneficial effects in experimental liver cirrhosis: In the liver, it reduces scarring and inflammation, and also widens blood vessels. Thus, PX20606 leads to an improved blood flow through the liver and decreases hypertension of the portal vein. Additionally, PX20606 improves the altered intestinal barrier and decreases bacterial migration from the gut. Copyright

  8. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-01-01

    Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.

  9. Cardiac Myosin Binding Protein-C Autoantibodies are Potential Early Indicators of Cardiac Dysfunction and Patient Outcome in Acute Coronary Syndrome.

    Science.gov (United States)

    Lynch, Thomas L; Kuster, Diederik W D; Gonzalez, Beverly; Balasubramanian, Neelam; Nair, Nandini; Day, Sharlene; Calvino, Jenna E; Tan, Yanli; Liebetrau, Christoph; Troidl, Christian; Hamm, Christian W; Güçlü, Ahmet; McDonough, Barbara; Marian, Ali J; van der Velden, Jolanda; Seidman, Christine E; Huggins, Gordon S; Sadayappan, Sakthivel

    2017-04-01

    The degradation and release of cardiac myosin binding protein-C (cMyBP-C) upon cardiac damage may stimulate an inflammatory response and autoantibody (AAb) production. We determined whether the presence of cMyBP-C-AAbs associated with adverse cardiac function in CVD patients. Importantly, cMyBP-C-AAbs were significantly detected in ACS patient sera upon arrival to the emergency department, particularly in STEMI patients. Patients positive for cMyBP-C-AAbs had a reduced LVEF and elevated levels of clinical biomarkers of MI. We conclude that cMyBP-C-AAbs may serve as early predictive indicators of deteriorating cardiac function and patient outcome in ACS patients prior to the infarction.

  10. Seizure control and improvement of neurological dysfunction in Lafora disease with perampanel

    Directory of Open Access Journals (Sweden)

    Maya Dirani

    2014-01-01

    Full Text Available Lafora disease is a rare and fatal disease characterized by seizures, progressive cognitive and behavioral deterioration, as well as cerebellar dysfunction. Currently, there is no efficacious treatment that will control the seizures and improve the cognitive decline in this disease. We report a patient with Lafora disease who experienced a dramatic amelioration in her seizure frequency as well as the associated neurological and cognitive dysfunction following initiation of treatment with perampanel administered as monotherapy. Perampanel is the first potentially efficacious treatment for Lafora disease. We discuss a potential mechanism for the efficacy of perampanel in this disease.

  11. 3D cardiac wall thickening assessment for acute myocardial infarction

    Science.gov (United States)

    Khalid, A.; Chan, B. T.; Lim, E.; Liew, Y. M.

    2017-06-01

    Acute myocardial infarction (AMI) is the most severe form of coronary artery disease leading to localized myocardial injury and therefore irregularities in the cardiac wall contractility. Studies have found very limited differences in global indices (such as ejection fraction, myocardial mass and volume) between healthy subjects and AMI patients, and therefore suggested regional assessment. Regional index, specifically cardiac wall thickness (WT) and thickening is closely related to cardiac function and could reveal regional abnormality due to AMI. In this study, we developed a 3D wall thickening assessment method to identify regional wall contractility dysfunction due to localized myocardial injury from infarction. Wall thickness and thickening were assessed from 3D personalized cardiac models reconstructed from cine MRI images by fitting inscribed sphere between endocardial and epicardial wall. The thickening analysis was performed in 5 patients and 3 healthy subjects and the results were compared against the gold standard 2D late-gadolinium-enhanced (LGE) images for infarct localization. The notable finding of this study is the highly accurate estimation and visual representation of the infarct size and location in 3D. This study provides clinicians with an intuitive way to visually and qualitatively assess regional cardiac wall dysfunction due to infarction in AMI patients.

  12. Remifentanil in critically ill cardiac patients

    Directory of Open Access Journals (Sweden)

    Ruggeri Laura

    2011-01-01

    Full Text Available Remifentanil has a unique pharmacokinetic profile, with a rapid onset and offset of action and a plasmatic metabolism. Its use can be recommended even in patients with renal impairment, hepatic dysfunction or poor cardiovascular function. A potential protective cardiac preconditioning effect has been suggested. Drug-related adverse effects seem to be comparable with other opioids. In cardiac surgery, many randomized controlled trials demonstrated that the potential benefits of the use of remifentanil not only include a profound protection against intraoperative stressful stimuli, but also rapid postoperative recovery, early weaning from mechanical ventilation, and extubation. Remifentanil shows ideal properties of sedative agents being often employed for minimally invasive cardiologic techniques, such as transcatheter aortic valve implantation and radio frequency treatment of atrial flutter, or diagnostic procedures such as transesophageal echocardiography. In intensive care units remifentanil is associated with a reduction in the time to tracheal extubation after cessation of the continuous infusion; other advantages could be more evident in patients with organ dysfunction. Effective and safe analgesia can be provided in case of short and painful procedures (i.e. chest drain removal. In conclusion, thanks to its peculiar properties, remifentanil will probably play a major role in critically ill cardiac patients.

  13. Transplantation of endothelial progenitor cells ameliorates vascular dysfunction and portal hypertension in carbon tetrachloride-induced rat liver cirrhotic model.

    Science.gov (United States)

    Sakamoto, Masaharu; Nakamura, Toru; Torimura, Takuji; Iwamoto, Hideki; Masuda, Hiroshi; Koga, Hironori; Abe, Mitsuhiko; Hashimoto, Osamu; Ueno, Takato; Sata, Michio

    2013-01-01

    In cirrhosis, sinusoidal endothelial cell injury results in increased endothelin-1 (ET-1) and decreased nitric oxide synthase (NOS) activity, leading to portal hypertension. However, the effects of transplanted endothelial progenitor cells (EPCs) on the cirrhotic liver have not yet been clarified. We investigated whether EPC transplantation reduces portal hypertension. Cirrhotic rats were created by the administration of carbon tetrachloride (CCl(4) ) twice weekly for 10 weeks. From week 7, rat bone marrow-derived EPCs were injected via the tail vein in this model once a week for 4 weeks. Endothelial NOS (eNOS), vascular endothelial growth factor (VEGF) and caveolin expressions were examined by Western blots. Hepatic tissue ET-1 was measured by a radioimmunoassay (RIA). Portal venous pressure, mean aortic pressure, and hepatic blood flow were measured. Endothelial progenitor cell transplantation reduced liver fibrosis, α-smooth muscle actin-positive cells, caveolin expression, ET-1 concentration and portal venous pressure. EPC transplantation increased hepatic blood flow, protein levels of eNOS and VEGF. Immunohistochemical analyses of eNOS and isolectin B4 demonstrated that the livers of EPC-transplanted animals had markedly increased vascular density, suggesting reconstitution of sinusoidal blood vessels with endothelium. Transplantation of EPCs ameliorates vascular dysfunction and portal hypertension, suggesting this treatment may provide a new approach in the therapy of portal hypertension with liver cirrhosis. © 2012 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  14. Cardiac dysfunction in pneumovirus-induced lung injury in mice

    NARCIS (Netherlands)

    Bem, Reinout A.; van den Berg, Elske; Suidgeest, Ernst; van der Weerd, Louise; van Woensel, Job B. M.; Grotenhuis, Heynric B.

    2013-01-01

    To determine biventricular cardiac function in pneumovirus-induced acute lung injury in spontaneously breathing mice. Experimental animal study. Animal laboratory. C57Bl/6 mice. Mice were inoculated with the rodent pneumovirus, pneumonia virus of mice. Pneumonia virus of mice-infected mice were

  15. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.

    Science.gov (United States)

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-03-14

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.

  16. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Khalil

    2015-01-01

    Full Text Available The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO- induced myocardial infarction (MI in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI, triglycerides (TG, total cholesterol (TC, lipid peroxidation (LPO products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40 were pretreated orally with Tualang honey (3 g/kg/day for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB, lactate dehydrogenase (LDH, and aspartate transaminase (AST, cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO products (TBARS and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST. Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  17. Right and left ventricular cardiac function in a developed world population with human immunodeficiency virus studied with radionuclide ventriculography

    DEFF Research Database (Denmark)

    Lebech, Anne-Mette; Gerstoft, Jan; Hesse, Birger

    2004-01-01

    . No correlations were found between reduced cardiac function and levels of the 3 peptides measured. CONCLUSIONS: No major dysfunction of the left ventricle is present in a developed world HIV population. However, a small but significant part of this population has modestly reduced right-sided systolic function.......-associated morbidity and mortality rates. Accordingly, the prevalence of HIV-associated cardiac dysfunction may also have changed. The aim of the study was to establish the prevalence of right- and left-sided cardiac dysfunction in a Danish HIV population, most of whom were undergoing HAART, with radionuclide...... ventricular ejection fraction and 6 (7%) had a reduced right ventricle ejection fraction (0.35-0.42) compared with reference values from the age- and sex-matched reference population. Patients with HIV and reduced cardiac function did not differ in the duration of HIV, CD4 count, CD4 nadir, or HIV RNA load...

  18. TREM-1 Promotes Pancreatitis-Associated Intestinal Barrier Dysfunction

    Directory of Open Access Journals (Sweden)

    Shengchun Dang

    2012-01-01

    Full Text Available Severe acute pancreatitis (SAP can cause intestinal barrier dysfunction (IBD, which significantly increases the disease severity and risk of mortality. We hypothesized that the innate immunity- and inflammatory-related protein-triggering receptor expressed on myeloid cells-1 (TREM-1 contributes to this complication of SAP. Thus, we investigated the effect of TREM-1 pathway modulation on a rat model of pancreatitis-associated IBD. In this study we sought to clarify the role of TREM-1 in the pathophysiology of intestinal barrier dysfunction in SAP. Specifically, we evaluated levels of serum TREM-1 and membrane-bound TREM-1 in the intestine and pancreas from an animal model of experimentally induced SAP. TREM-1 pathway blockade by LP17 treatment may suppress pancreatitis-associated IBD and ameliorate the damage to the intestinal mucosa barrier.

  19. Echo determinants of dyssynchrony (atrioventricular and inter- and intraventricular) and predictors of response to cardiac resynchronization therapy.

    Science.gov (United States)

    Kapetanakis, Stamatis; Bhan, Amit; Monaghan, Mark J

    2008-10-01

    Cardiac resynchronization therapy (CRT) has revolutionized not only the treatment of chronic heart failure but also how we assess left ventricular (LV) dysfunction on echo. Increasingly, it has become clear that identifying and quantifying delays in events during the cardiac cycle is an important assessment in LV dysfunction as it has prognostic implications for patients undergoing CRT. The delays in atrioventricular, right-to-left ventricular, and LV segmental contraction have been shown to be important components in cardiac performance, and this review provides an overview of the commonest methods used for these assessments and their implications for selecting patients for biventricular pacing.

  20. Intratracheal Milrinone Bolus Administration During Acute Right Ventricular Dysfunction After Cardiopulmonary Bypass.

    Science.gov (United States)

    Gebhard, Caroline Eva; Desjardins, Georges; Gebhard, Cathérine; Gavra, Paul; Denault, André Y

    2017-04-01

    To evaluate intratracheal milrinone (tMil) administration for rapid treatment of right ventricular (RV) dysfunction as a novel route after cardiopulmonary bypass. Retrospective analysis. Single-center study. The study comprised 7 patients undergoing cardiac surgery who exhibited acute RV dysfunction after cardiopulmonary bypass. After difficult weaning caused by cardiopulmonary bypass-induced acute RV dysfunction, milrinone was administered as a 5-mg bolus inside the endotracheal tube. RV function improvement, as indicated by decreasing pulmonary artery pressure and changes of RV waveforms, was observed in all 7 patients. Adverse effects of tMil included dynamic RV outflow tract obstruction (2 patients) and a decrease in systemic mean arterial pressure (1 patient). tMil may be an effective, rapid, and easily applicable therapeutic alternative to inhaled milrinone for the treatment of acute RV failure during cardiac surgery. However, sufficiently powered clinical trials are needed to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. How does pressure overload cause cardiac hypertrophy and dysfunction? High-ouabain affinity cardiac Na+ pumps are crucial.

    Science.gov (United States)

    Blaustein, Mordecai P

    2017-11-01

    Left ventricular hypertrophy is frequently observed in hypertensive patients and is believed to be due to the pressure overload and cardiomyocyte stretch. Three recent reports on mice with genetically engineered Na + pumps, however, have demonstrated that cardiac ouabain-sensitive α 2 -Na + pumps play a key role in the pathogenesis of transaortic constriction-induced hypertrophy. Hypertrophy was delayed/attenuated in mice with mutant, ouabain-resistant α 2 -Na + pumps and in mice with cardiac-selective knockout or transgenic overexpression of α 2 -Na + pumps. The latter, seemingly paradoxical, findings can be explained by comparing the numbers of available (ouabain-free) high-affinity (α 2 ) ouabain-binding sites in wild-type, knockout, and transgenic hearts. Conversely, hypertrophy was accelerated in α 2 -ouabain-resistant (R) mice in which the normally ouabain-resistant α 1 -Na + pumps were mutated to an ouabain-sensitive (S) form (α 1 S/S α 2 R/R or "SWAP" vs. wild-type or α 1 R/R α 2 S/S mice). Furthermore, transaortic constriction-induced hypertrophy in SWAP mice was prevented/reversed by immunoneutralizing circulating endogenous ouabain (EO). These findings show that EO and its receptor, ouabain-sensitive α 2 , are critical factors in pressure overload-induced cardiac hypertrophy. This complements reports linking elevated plasma EO to hypertension, cardiac hypertrophy, and failure in humans and elucidates the underappreciated role of the EO-Na + pump pathway in cardiovascular disease. Copyright © 2017 the American Physiological Society.

  2. Silymarin and Nigella sativa extract ameliorate paracetamol induced oxidative stress and renal dysfunction in male mice

    Directory of Open Access Journals (Sweden)

    Reham Zakaria Hamza

    2015-06-01

    Full Text Available Objective: To evaluate the ameliorative role of silymarin or/and Nigella sativa (N. sativa water extract against N-acetyl-p-aminophenol (APAP-induced renal function deterioration in male mice at the biochemical levels. Methods: The mice were divided into seven groups (10/group. The first group was served as control. The second group was treated with dose of APAP. The third and fourth groups were treated with silymarin alone and N. sativa water extract alone, respectively. The fifth and sixth groups were treated with combination of APAP with silymarin and APAP with N. sativa water extract, respectively. The seventh group was treated with a combination of both ameliorative compounds (silymarin and N. sativa water extract with APAP and all animals were treated for a period of 30 days. Results: Exposure to APAP at the treated dose for mice led to an alteration of kidney function parameters, increase in the level of serum urea and creatinine. Also, paracetamol administration induced oxidative stress in kidney homogenates by increasing malondialdhyde level and decreasing superoxide dismutase and catalase activities and this stress was ameliorated by administration of either silymarin or N. sativa water extract. Conclusions: Administration of silymarin or/and N. sativa water extract to APAP-treated mice alleviate the toxicity of APAP, and this appeared clearly by biochemical improvement of kidney function parameters and antioxidant parameters. But, the alleviation is more pronounced with the both antioxidants. Thus, the pronounce effect of silymarin and N. sativa water extract is most effective in reducing the toxicity induced by APAP and improving the kidney function parameters and antioxidant status of kidney of male mice.

  3. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction.

    Science.gov (United States)

    Furumoto, Yasuko; Smith, Carolyne K; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L; Trier, Anna M; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T; O'Shea, John J; Kaplan, Mariana J; Gadina, Massimo

    2017-01-01

    Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. No drug to date targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a JAK inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and the associated vascular pathology remains to be characterized. MRL/lpr lupus-prone mice were administered tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum levels of autoantibodies and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular traps (NETs) release, endothelium-dependent vasorelaxation, and endothelial differentiation were compared in treated and untreated mice. Treatment with tofacitinib led to significant improvement in measures of disease activity, including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of proinflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated the formation of NETs and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective in both preventive and therapeutic strategies. Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus, and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. © 2016, American College of Rheumatology.

  4. Does anaesthesia cause postoperative cognitive dysfunction? : a randomised study of regional versus general anaesthesia in 438 elderly patients

    NARCIS (Netherlands)

    Rasmussen, L.S.; Johnson, T.; Kuipers, H.M.; Kristensen, D.; Siersma, V.D.; Vila, P.; Jolles, J.; Papaioannou, A.; Abildstrom, H.; Silverstein, J.H.; Bonal, J.A.; Raeder, J.; Nielsen, I.K.; Korttila, K.; Munoz, L.; Dodds, C.; Hanning, C.D.; Moller, J.T.

    2003-01-01

    Keywords:anesthesia;cognitive function;complications;postoperative period;regional anesthesia;surgery Background: Postoperative cognitive dysfunction (POCD) is a common complication after cardiac and major non-cardiac surgery with general anaesthesia in the elderly. We hypothesized that the

  5. Downregulation of Plzf Gene Ameliorates Metabolic and Cardiac Traits in the Spontaneously Hypertensive Rat

    Czech Academy of Sciences Publication Activity Database

    Liška, F.; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šilhavý, Jan; Šimáková, Miroslava; Strnad, Hynek; Trnovská, J.; Škop, V.; Kazdová, L.; Starker, C.G.; Voytas, D.F.; Izsvák, Z.; Mancini, M.; Šeda, O.; Křen, V.; Pravenec, Michal

    2017-01-01

    Roč. 69, č. 6 (2017), s. 1084-1091 ISSN 0194-911X R&D Projects: GA ČR(CZ) GB14-36804G; GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 ; RVO:68378050 Keywords : fibrosis * hypertension * hypertrophy * left ventricular rats * inbred * SHR * transcriptome Subject RIV: EB - Genetics ; Molecular Biology; EB - Genetics ; Molecular Biology (UMG-J) OBOR OECD: Cardiac and Cardiovascular systems; Cardiac and Cardiovascular systems (UMG-J) Impact factor: 6.857, year: 2016

  6. Cardiac troponin I (CTnI level among children with epileptic seizures

    Directory of Open Access Journals (Sweden)

    Ahmed Anwer Attia Khattab

    2014-09-01

    Conclusion: Cardiac troponin I is a perfect tool for early detection of cases with myocardial dysfunction in epileptic patients – cardiac troponin I is significantly increased in children with epilepsy especially the complicated epilepsy. Cardiac injury in epileptic children is more common in patients with early onset epilepsy, positive prenatal problem, idiopathic epilepsy, abnormal imaging and EEG – elevated TnI levels may be of value in assessing the severity and eventual outcome and mortality risk of the disease in children with epilepsy.

  7. Cardiac pathology in chronic alcoholics: A preliminary study

    Directory of Open Access Journals (Sweden)

    P Vaideeswar

    2014-01-01

    Full Text Available Background: Ethyl alcohol exerts both positive and negative effects on the cardiovascular system. Alcoholic cardiomyopathy, produced by direct or indirect mechanisms, is well-documented. An important, but seldom appreciated effect is an increase in iron deposition in the myocardium, which can add to the cardiac dysfunction. The present study was planned to document the pathological features and iron levels in the cardiac tissue of patients who were chronic alcoholics and correlate these characteristics with the liver pathology and iron content. Materials and Methods: An autopsy-based prospective study of 40 consecutive patients compared with ten age matched controls (no history of alcohol intake. Histopathological changes like the morphology of the cardiac myocytes, degree of fibrosis (interstitial, interfiber, perivascular, and replacement, presence of inflammatory cells, increased capillary network, and adipose tissue deposition were noted and graded. These were also correlated with the liver pathology. The iron content in the heart and liver were measured by using calorimetry. Results: All cases had increased epicardial adipose tissue with epicardial and endocardial fibrosis, prominence of interstitial and interfiber fibrosis, myofiber degeneration, and increased capillary network; this was particularly prominent in patients with cirrhosis. Elemental iron level in heart tissue was raised in the cases relative to controls. Conclusions: Alcohol produces subclinical changes in the myocardium, with an increased iron content, which may be the forerunner for subsequent clinical cardiac dysfunction.

  8. Continuous cardiac troponin I release in Fabry disease.

    Science.gov (United States)

    Feustel, Andreas; Hahn, Andreas; Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt; Tanislav, Christian

    2014-01-01

    Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05-0.71 ng/ml, normal: gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD.

  9. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats.

    Science.gov (United States)

    Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C

    2016-11-01

    Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    International Nuclear Information System (INIS)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu

    2001-01-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52±15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m 2 or higher were assigned to the high dose group and those given doses under 300 mg/m 2 to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3±218.2 mg/m 2 . In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m 2 appeared to be the borderline dose beyond which there were

  11. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    2001-05-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52{+-}15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m{sup 2} or higher were assigned to the high dose group and those given doses under 300 mg/m{sup 2} to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3{+-}218.2 mg/m{sup 2}. In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m{sup 2} appeared to be the borderline dose beyond

  12. Effects of Cardiac Rehabilitation on Sexual Dysfunction of Post Myocardial Infarction Patients

    Directory of Open Access Journals (Sweden)

    Jamshid Najafian

    2001-01-01

    Full Text Available Objective: The common sexual complains in patients with coronary heart disease and post myocardial infarction are decrease in libido, impotence, and premature or delay ejaculation. Cardiac rehabilitation could decrease many of the psychological features of myocardial infarction and also increase exercise capacity of patients. Rehabilitation may also improve sexual disturbances in these patients directly or indirectly. This study is a clinical trial that evaluate the effect of rehabilitation on sexual problem of post MI patients. Materials & Methods: 60 patients took part in this study. All of them were men aged between 35 and 65. All patients had myocardial infarction one month ago. 30 patients were referred for cardiac rehabilitation (Case, and 30 people were patients who were not recommended to take part in rehabilitation because their physician did not believe on rehabilitation. Questioner for anxiety, depression, impotency, libido and premature ejaculation were evaluated by before and after study period. The cardiac rehabilitation composed of 24 sessions. Each session consisted of one hour of aerobic exercise (10 min warm up, 10 min cool down and 40 min isotonic exercise. Results: After cardiac rehabilitation the scores for anxiety, depression, premature ejaculation and impotency were decreased and the scores of libido were increased. In both case and control groups, the changes were significant by paired t test P<0.05. The differences between case and control were significant for depression, libido and impotency by independent t test. Conclusion: Cardiac rehabilitation could improve sexual problems in post myocardial infarction patients directly and indirectly by effect on psychological characteristics.

  13. Adiponectin through its biphasic serum level is a useful biomarker during transition from diastolic dysfunction to systolic dysfunction - an experimental study.

    Science.gov (United States)

    Fu, Mingqiang; Zhou, Jingmin; Qian, Juying; Jin, Xuejuan; Zhu, Hongmin; Zhong, Chunlin; Fu, Michael; Zou, Yunzeng; Ge, Junbo

    2012-08-30

    Adiponectin is reported to relate with cardiovascular diseases, we sought to examine whether adiponectin is associated with disease progression of heart failure from hypertension in rats in comparison with other known biomarkers and echocardiographic parameters. Spontaneously hypertensive rats (SHR, n = 35), aged 1 month, were used and followed up to 18 months. High frequency echocardiography was performed both at baseline and every 3 months thereafter. Moreover, serum levels of N-terminal pro-natriuretic peptide (NT-proBNP) and interleukin-6 (IL-6) as well as serum level and tissue expression of adiponectin were determined at the same time as echocardiography. The results clearly demonstrated time-dependent progression of hypertension and heart dysfunction as evidenced by gradually increased left ventricular mass index, NT-proBNP, IL-6 as well as gradually decreased cardiac function as assessed by echocardiography. Meanwhile, tissue and serum adiponectin decreased from 3 months and reached plateau until 12 months in parallel with decreasing of cardiac diastolic function. Thereafter, adiponectin levels increased prior to occurrence of systolic dysfunction. Adiponectin concentration is inversely related with NT-proBNP, IL-6 and E/E' (correlation coefficient (r) = -0.756 for NT-proBNP, p A and E'/A' (r = 0.683 for E/A, p = 0.001, 0.671 for E'/A', p = 0.001, respectively). No difference for adiponectin distribution among visceral adipose tissues was found. Adiponectin through its biphasic serum level is a useful biomarker during transition from diastolic dysfunction to systolic dysfunction.

  14. Assessment of factors that influence weaning from long-term mechanical ventilation after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Emília Nozawa

    2003-03-01

    Full Text Available OBJECTIVE: To analyze parameters of respiratory system mechanics and oxygenation and cardiovascular alterations involved in weaning tracheostomized patients from long-term mechanical ventilation after cardiac surgery. METHODS: We studied 45 patients in their postoperative period of cardiac surgery, who required long-term mechanical ventilation for more than 10 days and had to undergo tracheostomy due to unsuccessful weaning from mechanical ventilation. The parameters of respiratory system mechanics, oxigenation and the following factors were analyzed: type of surgical procedure, presence of cardiac dysfunction, time of extracorporeal circulation, and presence of neurologic lesions. RESULTS: Of the 45 patients studied, successful weaning from mechanical ventilation was achieved in 22 patients, while the procedure was unsuccessful in 23 patients. No statistically significant difference was observed between the groups in regard to static pulmonary compliance (p=0.23, airway resistance (p=0.21, and the dead space/tidal volume ratio (p=0.54. No difference was also observed in regard to the variables PaO2/FiO2 ratio (p=0.86, rapid and superficial respiration index (p=0.48, and carbon dioxide arterial pressure (p=0.86. Cardiac dysfunction and time of extracorporeal circulation showed a significant difference. CONCLUSION: Data on respiratory system mechanics and oxygenation were not parameters for assessing the success or failure. Cardiac dysfunction and time of cardiopulmonary bypass, however, significantly interfered with the success in weaning patients from mechanical ventilation.

  15. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats.

    Science.gov (United States)

    Yamanushi, Tomoko T; Kabuto, Hideaki; Hirakawa, Eiichiro; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2014-04-01

    This study assessed the effects of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) on normal cardiac function (part 1) and congestive heart failure (CHF) (part 2) through electrocardiogram analysis and determination of EPA, DHA, and arachidonic acid (AA) concentrations in rat hearts. In part 2, pathologic assessments were also performed. For part 1 of this study, 4-wk-old male rats were divided into a control group and 2 experimental groups. The rats daily were orally administered (1 g/kg body weight) saline, EPA-ethyl ester (EPA-Et; E group), or DHA-ethyl ester (DHA-Et; D group), respectively, for 28 d. ECGs revealed that QT intervals were significantly shorter for groups E and D compared with the control group (P ≤ 0.05). Relative to the control group, the concentration of EPA was higher in the E group and concentrations of EPA and DHA were higher in the D group, although AA concentrations were lower (P ≤ 0.05). In part 2, CHF was produced by subcutaneous injection of monocrotaline into 5-wk-old rats. At 3 d before monocrotaline injection, rats were administered either saline, EPA-Et, or DHA-Et as mentioned above and then killed at 21 d. The study groups were as follows: normal + saline (control), CHF + saline (H group), CHF + EPA-Et (HE group), and CHF + DHA-Et (HD group). QT intervals were significantly shorter (P ≤ 0.05) in the control and HD groups compared with the H and HE groups. Relative to the H group, concentrations of EPA were higher in the HE group and those of DHA were higher in the control and HD groups (P ≤ 0.05). There was less mononuclear cell infiltration in the myocytes of the HD group than in the H group (P = 0.06). The right ventricles in the H, HE, and HD groups showed significantly increased weights (P ≤ 0.05) compared with controls. The administration of EPA-Et or DHA-Et may affect cardiac function by modification of heart fatty acid composition, and the administration of DHA-Et may ameliorate CHF.

  16. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat.

    Science.gov (United States)

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-06-01

    Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. High fructose feeding to rats and hamsters led to the development of insulin

  17. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2015-01-01

    Full Text Available Background & objectives: Curcuma oil (C. oil isolated from turmeric (Curcuma longa L. has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Methods: Male Golden Syrian hamsters on high fructose diet (HFr for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg or C. oil (300 mg/kg in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Results: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c, peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1α and PGC-1β genes known to be involved in lipid and glucose metabolism. Interpretation

  18. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats.

    Science.gov (United States)

    Benzer, Fulya; Kandemir, Fatih Mehmet; Ozkaraca, Mustafa; Kucukler, Sefa; Caglayan, Cuneyt

    2018-02-01

    Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR-induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR-induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK-MB, LDH, and cTn-I). Curcumin also attenuated activities of Caspase-3, cyclooxygenase-2, inducible nitric oxide synthase, and levels of nuclear factor kappa-B, tumor necrosis factor-α, and interleukin-1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8-OHdG and 3,3'-dityrosine. This study demonstrated that curcumin has a multi-cardioprotective effect due to its antioxidant, anti-inflammatory, and antiapoptotic properties. © 2018 Wiley Periodicals, Inc.

  19. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications.

    Science.gov (United States)

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C Ronald

    2014-10-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications. © FASEB.

  20. Cardiac Intensive Care Unit Management of Patients After Cardiac Arrest: Now the Real Work Begins.

    Science.gov (United States)

    Randhawa, Varinder K; Grunau, Brian E; Debicki, Derek B; Zhou, Jian; Hegazy, Ahmed F; McPherson, Terry; Nagpal, A Dave

    2018-02-01

    Survival with a good quality of life after cardiac arrest continues to be abysmal. Coordinated resuscitative care does not end with the effective return of spontaneous circulation (ROSC)-in fact, quite the contrary is true. Along with identifying and appropriately treating the precipitating cause, various components of the post-cardiac arrest syndrome also require diligent observation and management, including post-cardiac arrest neurologic injury and myocardial dysfunction, systemic ischemia-reperfusion phenomenon with potential consequent multiorgan failure, and the various sequelae of critical illness. There is growing evidence that an early invasive approach to coronary reperfusion with percutaneous coronary intervention, together with active targeted temperature management and optimization of hemodynamic, ventilator, and metabolic parameters, may improve survival and neurologic outcomes in cardiac arrest survivors. Neuroprognostication is complex, as are survivorship issues and long-term rehabilitation. Our paramedics, emergency physicians, and resuscitation specialists are all to be congratulated for ever-increasing success with ROSC… but now the real work begins. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  1. Clinical application of cardiac SPECT

    International Nuclear Information System (INIS)

    Nishimura, Shigeyuki

    1999-01-01

    Single-photon emission computed tomography (SPECT) has replaced planar imaging techniques for myocardial scintigraphy. Thallium-201 was the dominant agent employed for myocardial perfusion imaging. Today new technetium-99m labelled radionuclides have been used as excellent alternatives to 201 Tl for detection of coronary artery disease, prognostification, and even assessment of myocardial viability. Pharmacologic stress imaging using either dipyridamole, adenosine or dobutamine is a substitute for exercise stress. Accurate determination of myocardial viability is vitally important for clinical decision making for patients with LV dysfunction who will most benefit from revascularization. Stunned and hibernated myocardium may result in profound regional LTV dysfunction in absence of necrosis. The various approach such as stress-redistribution-reinjection imaging, rest-redistribution imaging and stress-redistribution-24 hours delayed imaging has been utilized to assess myocardial viability with 201 Tl. Quantitative assessment of 99m Tc MIBI uptake reflect the degree of viability. 123 I-Metaiodobenzylguanidine (MIBG), an analog of norepinephrine, has been used for scintigraphic assessment of regional cardiac adrenergic innervation. Cardiac sympathetic denervation, assessed by 123 I-MIBG, due to ischemia in non-Q myocardial infarction and unstable angina has been shown. Quantitative cardiac MIBG scintigram was shown to have prognostic value in patients with severe congestive heart failure. 23 I-BMIPP (ρ-methyl-iodophenyl pentadecanoic acid) has been used to assess myocardial fatty acid utilization. BMIPP has the memory function of ischemia in unstable angina, since decreased BMIPP uptake persists several days after ischemic episode. Nuclear cardiology in Japan has experienced an expansion in the techniques including use of new radionuclides, 99m Tc perfusion agents, 123 I-MIBG and 23 I-BMIPP and in associated clinical application to the various cardiac diseases

  2. Exercise training restores cardiac protein quality control in heart failure.

    Directory of Open Access Journals (Sweden)

    Juliane C Campos

    Full Text Available Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H₂O₂ release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H₂O₂ resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca²⁺-induced permeability transition and reduced H₂O₂ release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.

  3. Brain stem death as the vital determinant for resumption of spontaneous circulation after cardiac arrest in rats.

    Directory of Open Access Journals (Sweden)

    Alice Y W Chang

    Full Text Available BACKGROUND: Spontaneous circulation returns to less than half of adult cardiac arrest victims who received in-hospital resuscitation. One clue for this disheartening outcome arises from the prognosis that asystole invariably takes place, after a time lag, on diagnosis of brain stem death. The designation of brain stem death as the point of no return further suggests that permanent impairment of the brain stem cardiovascular regulatory machinery precedes death. It follows that a crucial determinant for successful revival of an arrested heart is that spontaneous circulation must resume before brain stem death commences. Here, we evaluated the hypothesis that maintained functional integrity of the rostral ventrolateral medulla (RVLM, a neural substrate that is intimately related to brain stem death and central circulatory regulation, holds the key to the vital time-window between cardiac arrest and resumption of spontaneous circulation. METHODOLOGY/PRINCIPAL FINDINGS: An animal model of brain stem death employing the pesticide mevinphos as the experimental insult in Sprague-Dawley rats was used. Intravenous administration of lethal doses of mevinphos elicited an abrupt cardiac arrest, accompanied by elevated systemic arterial pressure and anoxia, augmented neuronal excitability and enhanced microvascular perfusion in RVLM. This period represents the vital time-window between cardiac arrest and resumption of spontaneous circulation in our experimental model. Animals with restored spontaneous circulation exhibited maintained neuronal functionality in RVLM beyond this critical time-window, alongside resumption of baseline tissue oxygen and enhancement of local blood flow. Intriguingly, animals that subsequently died manifested sustained anoxia, diminished local blood flow, depressed mitochondrial electron transport activities and reduced ATP production, leading to necrotic cell death in RVLM. That amelioration of mitochondrial dysfunction and

  4. The Role of Natriuretic Peptides for the Diagnosis of Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Alberto Palazzuoli

    2013-01-01

    Full Text Available Natriuretic peptides (NPs are entered in current guidelines for heart failure (HF diagnosis and management because of their high specificity and sensibility in screening patients with acute dyspnea. Due to their availability and relatively low cost, they became the first step examinations in HF patients evaluation at hospital admission together with clinical and chest radiography examination. NPs are released following any cardiac haemodynamic stress due to volume or pressure overload and should be considered as a mirror of cardiac condition helping in recognizing patients with poor outcome. Moreover, the exact role of NPs in early HF stages, in isolated diastolic dysfunction, and in general population is questioned. Several promising reports described their potential role; however, the wide cut-off definition, inclusion criteria, and intrinsic measurement biases do not actually consent to their clinical application in these settings. A multimodality strategy including both NPs and imaging studies appears to be the best strategy to define the cardiac dysfunction etiology and its severity as well as to identify patients with higher risk. In this review, we describe the current and potential role of NPs in patients with asymptomatic cardiac insufficiency, evaluating the requirement to obtain a better standardization for imaging as for laboratory criteria.

  5. Anesthetic challenges in minimally invasive cardiac surgery: Are we moving in a right direction?

    Directory of Open Access Journals (Sweden)

    Vishwas Malik

    2016-01-01

    Full Text Available Continuously growing patient′s demand, technological innovation, and surgical expertise have led to the widespread popularity of minimally invasive cardiac surgery (MICS. Patient′s demand is being driven by less surgical trauma, reduced scarring, lesser pain, substantially lesser duration of hospital stay, and early return to normal activity. In addition, MICS decreases the incidence of postoperative respiratory dysfunction, chronic pain, chest instability, deep sternal wound infection, bleeding, and atrial fibrillation. Widespread media coverage, competition among surgeons and hospitals, and their associated brand values have further contributed in raising awareness among patients. In this process, surgeons and anesthesiologist have moved from the comfort of traditional wide incision surgeries to more challenging and intensively skilled MICS. A wide variety of cardiac lesions, techniques, and approaches coupled with a significant learning curve have made the anesthesiologist′s job a challenging one. Anesthesiologists facilitate in providing optimal surgical settings beginning with lung isolation, confirmation of diagnosis, cannula placement, and cardioplegia delivery. However, the concern remains and it mainly relates to patient safety, prolonged intraoperative duration, and reduced surgical exposure leading to suboptimal treatment. The risk of neurological complications, aortic injury, phrenic nerve palsy, and peripheral vascular thromboembolism can be reduced by proper preoperative evaluation and patient selection. Nevertheless, advancement in surgical instruments, perfusion practices, increasing use of transesophageal echocardiography, and accumulating experience of surgeons and anesthesiologist have somewhat helped in amelioration of these valid concerns. A patient-centric approach and clear communication between the surgeon, anesthesiologist, and perfusionist are vital for the success of MICS.

  6. Clinical observation of calcium dobesilate in the treatment of chronic renal allograft dysfunction

    Institute of Scientific and Technical Information of China (English)

    Zheng Xue-yang; Han Shu; Zhou Mei-sheng; Fu Shang-xi; Wang Li-ming

    2014-01-01

    Abstract BACKGROUND: Calcium dobesilate (calcium dihydroxy-2, 5-benzenesulfonate) has been widely used to treat chronic venous insufficiency and diabetic retinopathy, especialy many clinical studies showed that calcium dobesilate as vasoprotective compound ameliorates renal lesions in diabetic nephropathy. However, there are few literatures reported calcium dobesilate in the treatment of chronic renal alograft dysfunction after renal transplantation. OBJECTIVE:To observe the efficacy and safety of calcium dobesilate on chronic renal dysfunction after renal transplantation. METHODS:A total of 152 patients with chronic renal alograft dysfunction after renal transplantation were enroled from the Military Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University of Chinese PLA. They were randomly divided into the treatment group (n=78) and the control group (n=74). Patients in the treatment group received 500 mg of calcium dobesilate three times daily for eight weeks. Al patients were treated with calcineurin inhibitor-based triple immunosuppressive protocols and comprehensive therapies. RESULTS AND CONCLUSION: For patients receiving calcium dobesilate, serum creatinine, blood urea nitrogen and uric acid decreased significantly at two weeks after treatment and maintained a stable level (P 0.05). Administration of calcium dobesilate did not change the general condition of patients with renal insufficiency, nor did it affect blood concentrations of the immunosuppressive agents. Calcium dobesilate may help to delay the progress of graft injury in patients with chronic renal graft dysfunction by conjugating with creatinine, ameliorating the impaired microcirculation and its antioxidant property. The decline in serum creatinine aleviates patients’ anxiety and concern arising from the elevation of creatinine. However, the negative interference with serum creatinine caused by calcium dobesilate should be cautious in order to avoid

  7. Causes and prevention of sudden cardiac death in the elderly.

    Science.gov (United States)

    Tung, Patricia; Albert, Christine M

    2013-03-01

    Sudden cardiac death (SCD) is a major cause of mortality in elderly individuals owing to a high prevalence of coronary heart disease, systolic dysfunction, and congestive heart failure (CHF). Although the incidence of SCD increases with age, the proportion of cardiac deaths that are sudden decreases owing to high numbers of other cardiac causes of death in elderly individuals. Implantable cardioverter-defibrillator (ICD) therapy has been demonstrated to improve survival and prevent SCD in selected patients with systolic dysfunction and CHF. However, ICD therapy in elderly patients might not be effective because of a greater rate of pulseless electrical activity underlying SCD and other competing nonarrhythmic causes of death in this population. Although under-represented in randomized trials of ICD use, elderly patients comprise a substantial proportion of the population that qualifies for and receives an ICD for primary prevention under current guidelines. Cardiac resynchronization therapy (CRT), which has been demonstrated to reduce mortality in selected populations with heart failure, is also more commonly used in this group of patients than in younger individuals. In this Review, we examine the causes of SCD in elderly individuals, and discuss the existing evidence for effectiveness of ICD therapy and CRT in this growing population.

  8. Cardiac Myosin Binding Protein-C Autoantibodies Are Potential Early Indicators of Cardiac Dysfunction and Patient Outcome in Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch, IVPhD

    2017-04-01

    Full Text Available Summary: The degradation and release of cardiac myosin binding protein-C (cMyBP-C upon cardiac damage may stimulate an inflammatory response and autoantibody (AAb production. We determined whether the presence of cMyBP-C-AAbs associated with adverse cardiac function in cardiovascular disease patients. Importantly, cMyBP-C-AAbs were significantly detected in acute coronary syndrome patient sera upon arrival to the emergency department, particularly in ST-segment elevation myocardial infarction patients. Patients positive for cMyBP-C-AAbs had reduced left ventricular ejection fraction and elevated levels of clinical biomarkers of myocardial infarction. We conclude that cMyBP-C-AAbs may serve as early predictive indicators of deteriorating cardiac function and patient outcome in acute coronary syndrome patients prior to the infarction. Key Words: acute myocardial infarction, autoantibodies, cardiac myosin binding protein-c, cardiomyopathy

  9. Atorvastatin reduces cardiac and adipose tissue inflammation in rats with metabolic syndrome.

    Science.gov (United States)

    Yamada, Yuichiro; Takeuchi, Shino; Yoneda, Mamoru; Ito, Shogo; Sano, Yusuke; Nagasawa, Kai; Matsuura, Natsumi; Uchinaka, Ayako; Murohara, Toyoaki; Nagata, Kohzo

    2017-08-01

    Statins are strong inhibitors of cholesterol biosynthesis and help to prevent cardiovascular disease. They also exert additional pleiotropic effects that include an anti-inflammatory action and are independent of cholesterol, but the molecular mechanisms underlying these additional effects have remained unclear. We have now examined the effects of atorvastatin on cardiac and adipose tissue inflammation in DahlS.Z-Lepr fa /Lepr fa (DS/obese) rats, which we previously established as a model of metabolic syndrome (MetS). DS/obese rats were treated with atorvastatin (6 or 20mgkg -1 day -1 ) from 9 to 13weeks of age. Atorvastatin ameliorated cardiac fibrosis, diastolic dysfunction, oxidative stress, and inflammation as well as adipose tissue inflammation in these animals at both doses. The high dose of atorvastatin reduced adipocyte hypertrophy to a greater extent than did the low dose. Atorvastatin inhibited the up-regulation of peroxisome proliferator-activated receptor γ gene expression in adipose tissue as well as decreased the serum adiponectin concentration in DS/obese rats. It also activated AMP-activated protein kinase (AMPK) as well as inactivated nuclear factor-κB (NF-κB) in the heart of these animals. The down-regulation of AMPK and NF-κB activities in adipose tissue of DS/obese rats was attenuated and further enhanced, respectively, by atorvastatin treatment. The present results suggest that the anti-inflammatory effects of atorvastatin on the heart and adipose tissue are attributable at least partly to increased AMPK activity and decreased NF-κB activity in this rat model of MetS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Continuous cardiac troponin I release in Fabry disease.

    Directory of Open Access Journals (Sweden)

    Andreas Feustel

    Full Text Available Fabry disease (FD is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD.cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI.Three patients (21% without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05-0.71 ng/ml, normal: <0.01. cMRI disclosed late gadolinium enhancement (LGE in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01. Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3 in cardiomyocytes.Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD.

  11. Ventilation and gas exchange management after cardiac arrest.

    Science.gov (United States)

    Sutherasan, Yuda; Raimondo, Pasquale; Pelosi, Paolo

    2015-12-01

    For several decades, physicians had integrated several interventions aiming to improve the outcomes in post-cardiac arrest patients. However, the mortality rate after cardiac arrest is still as high as 50%. Post-cardiac arrest syndrome is associated with high morbidity and mortality due to not only poor neurological outcome and cardiovascular failure but also respiratory dysfunction. To minimize ventilator-associated lung injury, protective mechanical ventilation by using low tidal volume ventilation and driving pressure may decrease pulmonary complications and improve survival. Low level of positive end-expiratory pressure (PEEP) can be initiated and titrated with careful cardiac output and respiratory mechanics monitoring. Furthermore, optimizing gas exchange by avoiding hypoxia and hyperoxia as well as maintaining normocarbia may improve neurological and survival outcome. Early multidisciplinary cardiac rehabilitation intervention is recommended. Minimally invasive monitoring techniques, that is, echocardiography, transpulmonary thermodilution method measuring extravascular lung water, as well as transcranial Doppler ultrasound, might be useful to improve appropriate management of post-cardiac arrest patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sexual dysfunction before and after coronary artery bypass graft surgery in males

    Directory of Open Access Journals (Sweden)

    Faisal Mourad, MD

    2017-03-01

    Conclusions: Sexual dysfunction is not uncommon following CABG surgery however, sexual counseling is still not being addressed adequately. Participation in the rehabilitation program is the responsibility of the cardiac surgeons, rehabilitation nurses and the patient's partner.

  13. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    Science.gov (United States)

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  14. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  15. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

    Directory of Open Access Journals (Sweden)

    T. Fernandes

    2011-09-01

    Full Text Available Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1 receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  16. Use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients.

    Science.gov (United States)

    Patel, Neil

    2012-01-01

    Pulmonary hypertension and secondary cardiac dysfunction are important contributors of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). Milrinone, a phosphodiesterase-3 inhibitor, may be useful in this setting for its combined actions as a pulmonary vasodilator and to improve systolic and diastolic function. This study aimed to assess the effects of milrinone on cardiac function and pulmonary artery pressure in infants with CDH. A retrospective review of echocardiograms performed on infants with CDH who received milrinone was performed. Tissue Doppler imaging velocities were used to assess systolic and diastolic function. Pulmonary artery pressure was assessed from the pattern and velocity of ductal shunting. Six infants with CDH and severe pulmonary hypertension were identified. Systolic and diastolic myocardial velocities were reduced in the right ventricle (RV) and interventricular septum (IVS) at baseline. In the 72 h after commencement of milrinone, there was a significant increase in early diastolic myocardial velocities in the RV, accompanied by increasing systolic velocities in the RV and IVS. Oxygenation index was significantly reduced, blood pressure unchanged, and ductal shunt velocity minimally altered over the same time period. Milrinone use was associated with an improvement in systolic and diastolic function in the RV, corresponding to an improvement in clinical status. Copyright © 2012 S. Karger AG, Basel.

  17. The Role of Biomarkers in Decreasing Risk of Cardiac Toxicity after Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Christine Henri

    2016-01-01

    Full Text Available With the improvement of cancer therapy, survival related to malignancy has improved, but the prevalence of long-term cardiotoxicity has also increased. Cancer therapies with known cardiac toxicity include anthracyclines, biologic agents (trastuzumab, and multikinase inhibitors (sunitinib. The most frequent presentation of cardiac toxicity is dilated cardiomyopathy associated with poorest prognosis. Monitoring of cardiac toxicity is commonly performed by assessment of left ventricular (LV ejection fraction, which requires a significant amount of myocardial damage to allow detection of cardiac toxicity. Accordingly, this creates the impetus to search for more sensitive and reproducible biomarkers of cardiac toxicity after cancer therapy. Different biomarkers have been proposed to that end, the most studied ones included troponin release resulting from cardiomyocyte damage and natriuretic peptides reflecting elevation in LV filling pressure and wall stress. Increase in the levels of troponin and natriuretic peptides have been correlated with cumulative dose of anthracycline and the degree of LV dysfunction. Troponin is recognized as a highly efficient predictor of early and chronic cardiac toxicity, but there remains some debate regarding the clinical usefulness of the measurement of natriuretic peptides because of divergent results. Preliminary data are available for other biomarkers targeting inflammation, endothelial dysfunction, myocardial ischemia, and neuregulin-1. The purpose of this article is to review the available data to determine the role of biomarkers in decreasing the risk of cardiac toxicity after cancer therapy.

  18. Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers

    Science.gov (United States)

    Sydykov, Akylbek; Mamazhakypov, Argen; Petrovic, Aleksandar; Kosanovic, Djuro; Sarybaev, Akpay S.; Weissmann, Norbert; Ghofrani, Hossein A.; Schermuly, Ralph T.

    2018-01-01

    Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function. PMID:29875701

  19. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Left ventricular dysfunction in repaired tetralogy of Fallot: incidence and impact on atrial arrhythmias at long term-follow up.

    Science.gov (United States)

    Ait Ali, Lamia; Trocchio, GianLuca; Crepaz, Roberto; Stuefer, Josef; Stagnaro, Nicola; Siciliano, Valeria; Molinaro, Sabrina; Sicari, Rosa; Festa, Pierluigi

    2016-09-01

    Left ventricle (LV) systolic dysfunction in repaired tetralogy of Fallot (TOF) has been identified as a risk factor for functional status and adverse outcome. The aims of this cross-sectional followed by a prospective study were: (1) to evaluate the prevalence of LV systolic dysfunction in a large cohort of adults with repaired tetralogy of Fallot, (2) to test the relationship between LV systolic dysfunction and other known risk factors and (3) to evaluate the impact of LV systolic dysfunction on adverse cardiac events. In a multicenter study, 237 adults repaired TOF (58 % males, age 30 ± 10 years) were evaluated by cardiac magnetic resonance (CMR). Demographics, surgical history, ECG, Echo-Color Doppler and follow-up data were recorded. LV was dilated (Z value >2) in 16 patients (6 %), however 56 patients (23.6 %) had a reduced LV systolic function left ventricle ejection fraction (LVEF) (Z value <-2). Patients with LV systolic dysfunction were mainly males (82 %), had reduced right ventricle ejection fraction (RVEF), and higher right and left Late Gadolinium Enhanced scores. In a multivariate regression analysis male gender and RVEF resulted to be independent factors associated to LV systolic dysfunction. Atrial arrhythmias were the main adverse cardiac event at the follow-up and were associated to higher biventricular volumes and lower biventricular ejection fraction (EF); however multivariable analysis identified age, right ventricle end-diastolic volume (RVEDVi) and tricuspid regurgitation as independents factors associated to atrial arrhythmias. At long term follow-up at least ¼ of repaired TOF has LV dysfunction. Lower LVEF is associated to male gender and lower RVEF.

  1. Bariatric surgery improves the cavernosal neuronal, vasorelaxation, and contraction mechanisms for erectile dysfunction as result of amelioration of glucose homeostasis in a diabetic rat model.

    Directory of Open Access Journals (Sweden)

    Yong Sun Choi

    Full Text Available Bariatric surgery is an effective treatment option for both obesity and obesity-related type 2 diabetes mellitus (T2DM. However, little is known regarding the effects of bariatric surgery on erectile dysfunction among patients with T2DM. Therefore, we investigated whether bariatric surgery would lead to structural and biochemical changes in the corpus cavernosum.Twenty-five male Otsuka Long-Evans Tokushima Fatty rats were assigned to either a control group (sham operation, n = 10 or a bariatric surgery group (gastric bypass surgery, n = 15. Four weeks after the operation, each group of rats was evaluated with an oral glucose tolerance test (OGTT. The penile intracavernous pressure was measured for erectile functional analysis. Histologic evaluation of the tissue was performed with Masson's trichrome staining. Endothelial nitric oxide synthase (eNOS, neuronal nitric oxide synthase (nNOS, Rho kinase, and 8-hydroxy-2-deoxyguanosine (8-OHdG levels in the corpus cavernosum were assayed by using western blot and ELISA.The mean body weight of the bariatric surgery group was lower than the control group (p = 0.002. The postoperative OGTT result was lower in the bariatric surgery group than in the control group (p = 0.014, and this was lower than the preoperative value (p = 0.037. The intracavernous pressure/mean arterial pressure ratio was higher in the bariatric surgery group compared to the control group (p = 0.021, and a higher cavernosum smooth muscle/collagen ratio was observed in the bariatric surgery group compared to the control group (p = 0.025. Likewise, the expression of eNOS and nNOS was higher in bariatric surgery group than in the control group (p = 0.027 and p = 0.008, respectively. Decreased expression of Rho kinase and levels of 8-OHdG were observed in the bariatric surgery group (p = 0.032.In this animal model, bariatric surgery appears to ameliorate T2DM-related metabolic dysfunction leading to

  2. Bariatric surgery improves the cavernosal neuronal, vasorelaxation, and contraction mechanisms for erectile dysfunction as result of amelioration of glucose homeostasis in a diabetic rat model.

    Science.gov (United States)

    Choi, Yong Sun; Lee, Sang Kuon; Bae, Woong Jin; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung-Hoo; Lee, Ji Youl; Hwang, Tae-Kon; Kim, Sae Woong

    2014-01-01

    Bariatric surgery is an effective treatment option for both obesity and obesity-related type 2 diabetes mellitus (T2DM). However, little is known regarding the effects of bariatric surgery on erectile dysfunction among patients with T2DM. Therefore, we investigated whether bariatric surgery would lead to structural and biochemical changes in the corpus cavernosum. Twenty-five male Otsuka Long-Evans Tokushima Fatty rats were assigned to either a control group (sham operation, n = 10) or a bariatric surgery group (gastric bypass surgery, n = 15). Four weeks after the operation, each group of rats was evaluated with an oral glucose tolerance test (OGTT). The penile intracavernous pressure was measured for erectile functional analysis. Histologic evaluation of the tissue was performed with Masson's trichrome staining. Endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), Rho kinase, and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels in the corpus cavernosum were assayed by using western blot and ELISA. The mean body weight of the bariatric surgery group was lower than the control group (p = 0.002). The postoperative OGTT result was lower in the bariatric surgery group than in the control group (p = 0.014), and this was lower than the preoperative value (p = 0.037). The intracavernous pressure/mean arterial pressure ratio was higher in the bariatric surgery group compared to the control group (p = 0.021), and a higher cavernosum smooth muscle/collagen ratio was observed in the bariatric surgery group compared to the control group (p = 0.025). Likewise, the expression of eNOS and nNOS was higher in bariatric surgery group than in the control group (p = 0.027 and p = 0.008, respectively). Decreased expression of Rho kinase and levels of 8-OHdG were observed in the bariatric surgery group (p = 0.032). In this animal model, bariatric surgery appears to ameliorate T2DM-related metabolic dysfunction leading to

  3. Ventricular Fibrillation-Induced Cardiac Arrest Results in Regional Cardiac Injury Preferentially in Left Anterior Descending Coronary Artery Territory in Piglet Model

    Directory of Open Access Journals (Sweden)

    Giridhar Kaliki Venkata

    2016-01-01

    Full Text Available Objective. Decreased cardiac function after resuscitation from cardiac arrest (CA results from global ischemia of the myocardium. In the evolution of postarrest myocardial dysfunction, preferential involvement of any coronary arterial territory is not known. We hypothesized that there is no preferential involvement of any coronary artery during electrical induced ventricular fibrillation (VF in piglet model. Design. Prospective, randomized controlled study. Methods. 12 piglets were randomized to baseline and electrical induced VF. After 5 min, the animals were resuscitated according to AHA PALS guidelines. After return of spontaneous circulation (ROSC, animals were observed for an additional 4 hours prior to cardiac MRI. Data (mean ± SD was analyzed using unpaired t-test; p value ≤ 0.05 was considered statistically significant. Results. Segmental wall motion (mm; baseline versus postarrest group in segment 7 (left anterior descending (LAD was 4.68±0.54 versus 3.31±0.64, p=0.0026. In segment 13, it was 3.82±0.96 versus 2.58±0.82, p=0.02. In segment 14, it was 2.42±0.44 versus 1.29±0.99, p=0.028. Conclusion. Postarrest myocardial dysfunction resulted in segmental wall motion defects in the LAD territory. There were no perfusion defects in the involved segments.

  4. Taurine Supplementation Improves Erectile Function in Rats with Streptozotocin-induced Type 1 Diabetes via Amelioration of Penile Fibrosis and Endothelial Dysfunction.

    Science.gov (United States)

    Ruan, Yajun; Li, Mingchao; Wang, Tao; Yang, Jun; Rao, Ke; Wang, Shaogang; Yang, Weiming; Liu, Jihong; Ye, Zhangqun

    2016-05-01

    For patients with diabetes, erectile dysfunction (ED) is common and greatly affects quality of life. However, these patients often exhibit a poor response to first-line oral phosphodiesterase type 5 inhibitors. To investigate whether taurine, a sulfur-containing amino acid, affects diabetic ED (DED). Type 1 diabetes mellitus was induced in male rats by using streptozotocin. After 12 weeks, an apomorphine test was conducted to confirm DED. Only rats with DED were administered taurine or vehicle for 4 weeks. Age-matched nondiabetic rats were administered saline intraperitoneally for 4 weeks. Erectile function was evaluated by electrical stimulation of the cavernous nerve. Histologic and molecular alterations of the corpus cavernosum also were analyzed. Erectile function was significantly reduced in the diabetic rats compared with in the nondiabetic rats, and was improved in the diabetic rats treated with taurine. The corpus cavernosum of the rats with DED exhibited severe fibrosis and decreased smooth muscle content. Deposition of extracellular matrix proteins was increased in the diabetic rats, while expression of endothelial nitric oxide synthase/cyclic guanosine monophosphate/nitric oxide pathway-related proteins was reduced. Taurine supplementation ameliorated erectile response as well as histologic and molecular alterations. Taurine supplementation improves erectile function in rats with DED probably by potential antifibrotic activity. This finding provides evidence for a potential new therapy for DED. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  5. Silent left ventricular dysfunction during routine activity after thrombolytic therapy for acute myocardial infarction

    International Nuclear Information System (INIS)

    Kayden, D.S.; Wackers, F.J.; Zaret, B.L.

    1990-01-01

    To investigate prospectively the occurrence and significance of postinfarction transient left ventricular dysfunction, 33 ambulatory patients who underwent thrombolytic therapy after myocardial infarction were monitored continuously for 187 +/- 56 min during normal activity with a radionuclide left ventricular function detector at the time of hospital discharge. Twelve patients demonstrated 19 episodes of transient left ventricular dysfunction (greater than 0.05 decrease in ejection fraction, lasting greater than or equal to 1 min), with no change in heart rate. Only two episodes in one patient were associated with chest pain and electrocardiographic changes. The baseline ejection fraction was 0.52 +/- 0.12 in patients with transient left ventricular dysfunction and 0.51 +/- 0.13 in patients without dysfunction (p = NS). At follow-up study (19.2 +/- 5.4 months), cardiac events (unstable angina, myocardial infarction or death) occurred in 8 of 12 patients with but in only 3 of 21 patients without transient left ventricular dysfunction (p less than 0.01). During submaximal supine bicycle exercise, only two patients demonstrated a decrease in ejection fraction greater than or equal to 0.05 at peak exercise; neither had a subsequent cardiac event. These data suggest that transient episodes of silent left ventricular dysfunction at hospital discharge in patients treated with thrombolysis after myocardial infarction are common and associated with a poor outcome. Continuous left ventricular function monitoring during normal activity may provide prognostic information not available from submaximal exercise test results

  6. Evaluation of cerebral-cardiac syndrome using echocardiography in a canine model of acute traumatic brain injury.

    Science.gov (United States)

    Qian, Rong; Yang, Weizhong; Wang, Xiumei; Xu, Zhen; Liu, Xiaodong; Sun, Bing

    2015-01-01

    Previous studies have confirmed that traumatic brain injury (TBI) can induce general adaptation syndrome (GAS), which subsequently results in myocardial dysfunction and damage in some patients with acute TBI; this condition is also termed as cerebral-cardiac syndrome. However, most clinicians ignore the detection and treatment of myocardial dysfunction, and instead concentrate only on the serious neural damage that is observed in acute TBI, which is one of the most important fatal factors. Therefore, clarification is urgently needed regarding the relationship between TBI and myocardial dysfunction. In the present study, we evaluated 18 canine models of acute TBI, by using real-time myocardial contrast echocardiography and strain rate imaging to accurately evaluate myocardial function and regional microcirculation, including the strain rate of the different myocardial segments, time-amplitude curves, mean ascending slope of the curve, and local myocardial blood flow. Our results suggest that acute TBI often results in cerebral-cardiac syndrome, which rapidly progresses to the serious stage within 3 days. This study is the first to provide comprehensive ultrasonic characteristics of cerebral-cardiac syndrome in an animal model of TBI.

  7. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans.

    Science.gov (United States)

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2011-03-01

    Chronically elevated free fatty acids contribute to insulin resistance and pancreatic β-cell failure. Among numerous potential factors, the involvement of endoplasmic reticulum (ER) stress has been postulated to play a mechanistic role. Here we examined the efficacy of the chemical chaperone, sodium phenylbutyrate (PBA), a drug with known capacity to reduce ER stress in animal models and in vitro, on lipid-induced insulin resistance and β-cell dysfunction in humans. Eight overweight or obese nondiabetic men underwent four studies each, in random order, 4 to 6 weeks apart. Two studies were preceded by 2 weeks of oral PBA (7.5 g/day), followed by a 48-h i.v. infusion of intralipid/heparin or saline, and two studies were preceded by placebo treatment, followed by similar infusions. Insulin secretion rates (ISRs) and sensitivity (S(I)) were assessed after the 48-h infusions by hyperglycemic and hyperinsulinemic-euglycemic clamps, respectively. Lipid infusion reduced S(I), which was significantly ameliorated by pretreatment with PBA. Absolute ISR was not affected by any treatment; however, PBA partially ameliorated the lipid-induced reduction in the disposition index (DI = ISR × S(I)), indicating that PBA prevented lipid-induced β-cell dysfunction. These results suggest that PBA may provide benefits in humans by ameliorating the insulin resistance and β-cell dysfunction induced by prolonged elevation of free fatty acids.

  8. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.

    Science.gov (United States)

    Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  9. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    OpenAIRE

    Moustafa Elsheshtawy; Priatharsini Sriganesh; Vasudev Virparia; Falgun Patel; Ashok Khanna

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  10. Thyroid gland and cerebella lesions: New risk factors for sudden cardiac death in schizophrenia?

    Science.gov (United States)

    Scorza, Fulvio A; Cavalheiro, Esper A; de Albuquerque, Marly; de Albuquerque, Juliana; Cysneiros, Roberta M; Terra, Vera C; Arida, Ricardo M

    2011-02-01

    People with schizophrenia show a two to threefold increased risk to die prematurely than those without schizophrenia. Patients' life style, suicide, premature development of cardiovascular disease, high prevalence of metabolic syndrome and sudden cardiac death are well-known causes of the excess mortality. The exact pathophysiological cause of sudden death in schizophrenia is unknown, but it is likely that cardiac arrhythmia and respiratory abnormalities play potential role. Some antipsychotics may be associated with cardiovascular adverse events (e.g., QT interval prolongation) and lesions in specific brain regions, such as cerebella may be associated with respiratory abnormalities, suggesting that metabolic and brain dysfunction could lead to sudden cardiac death in patients with schizophrenia. However, exact knowledge regarding the association of these findings and schizophrenia is lacking. As subclinical hyperthyroidism has been linked with increased risk of cardiovascular disease and cerebella progressive atrophy has been observed in patients with schizophrenia, we propose in this paper that subclinical thyroid dysfunction and cerebella volume loss could be considered as new risk factor for sudden cardiac death in schizophrenia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Cardioprotective effect of valsartan in mice with short-term high-salt diet by regulating cardiac aquaporin 1 and angiogenic factor expression.

    Science.gov (United States)

    Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui

    2015-01-01

    Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Microengineered in vitro model of cardiac fibrosis through modulating myofibroblast mechanotransduction

    International Nuclear Information System (INIS)

    Zhao, Hui; Li, Xiaokang; Zhao, Shan; Zeng, Yang; Ding, Haiyan; Du, Yanan; Zhao, Long; Sun, Wei

    2014-01-01

    Cardiac fibrosis greatly impairs normal heart function post infarction and there is no effective anti-fibrotic drug developed at present. The current therapies for cardiac infarction mainly take effect by eliminating occlusion in coronary artery by thrombolysis drugs, vascular stent grafting or heart bypass operation, which are capable to provide sufficient blood flow for intact myocardium yet showed subtle efficacy in ameliorating fibrosis condition. The advances of in vitro cell/tissue models open new avenues for drug assessment due to the low cost, good controllability and availability as well as the convenience for operation as compared to the animal models. To our knowledge, no proper biomimetic in vitro cardiac fibrosis model has been reported yet. Here we engineered an in vitro cardiac fibrosis model using heart-derived fibroblasts, and the fibrogenesis was recapitulated by patterning the substrate rigidity which mimicked the mechanical heterogeneity of myocardium post-infarction. Various biomarkers for cardiac fibrosis were assayed to validate the biomimicry of the engineered platform. Subsequent addition of Rho-associated protein kinase (ROCK) pathway inhibitor reduced the ratio of myofibroblasts, indicating the feasibility of applying this platform in screening anti-fibrosis drugs. (paper)

  13. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure

    Science.gov (United States)

    Montgomery, Rusty L.; Hullinger, Thomas G.; Semus, Hillary M.; Dickinson, Brent A.; Seto, Anita G.; Lynch, Joshua M.; Stack, Christianna; Latimer, Paul A.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Background Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Methods and Results Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. Conclusions These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression. PMID:21900086

  14. Evaluation of ventricular dysfunction using semi-automatic longitudinal strain analysis of four-chamber cine MR imaging.

    Science.gov (United States)

    Kawakubo, Masateru; Nagao, Michinobu; Kumazawa, Seiji; Yamasaki, Yuzo; Chishaki, Akiko S; Nakamura, Yasuhiko; Honda, Hiroshi; Morishita, Junji

    2016-02-01

    The aim of this study was to evaluate ventricular dysfunction using the longitudinal strain analysis in 4-chamber (4CH) cine MR imaging, and to investigate the agreement between the semi-automatic and manual measurements in the analysis. Fifty-two consecutive patients with ischemic, or non-ischemic cardiomyopathy and repaired tetralogy of Fallot who underwent cardiac MR examination incorporating cine MR imaging were retrospectively enrolled. The LV and RV longitudinal strain values were obtained by semi-automatically and manually. Receiver operating characteristic (ROC) analysis was performed to determine the optimal cutoff of the minimum longitudinal strain value for the detection of patients with cardiac dysfunction. The correlations between manual and semi-automatic measurements for LV and RV walls were analyzed by Pearson coefficient analysis. ROC analysis demonstrated the optimal cut-off of the minimum longitudinal strain values (εL_min) for diagnoses the LV and RV dysfunction at a high accuracy (LV εL_min = -7.8 %: area under the curve, 0.89; sensitivity, 83 %; specificity, 91 %, RV εL_min = -15.7 %: area under the curve, 0.82; sensitivity, 92 %; specificity, 68 %). Excellent correlations between manual and semi-automatic measurements for LV and RV free wall were observed (LV, r = 0.97, p cine MR imaging can evaluate LV and RV dysfunction with simply and easy measurements. The strain analysis could have extensive application in cardiac imaging for various clinical cases.

  15. The antioxidant edaravone prevents cardiac dysfunction by suppressing oxidative stress in type 1 diabetic rats and in high-glucose-induced injured H9c2 cardiomyoblasts.

    Science.gov (United States)

    Ji, Lei; Liu, Yingying; Zhang, Ying; Chang, Wenguang; Gong, Junli; Wei, Shengnan; Li, Xudong; Qin, Ling

    2016-09-01

    Edaravone, a radical scavenger, has been recognized as a potential protective agent for cardiovascular diseases. However, little is known about the effect of edaravone in cardiac complications associated with diabetes. Here, we have demonstrated that edaravone prevents cardiac dysfunction and apoptosis in the streptozotocin-induced type 1 diabetic rat heart. Mechanistic studies revealed that edaravone treatment improved cardiac function and restored superoxide dismutase levels. In addition, treatment of diabetic animals by edaravone increased protein expressions of sirtuin-1 (SIRT-1), peroxisome proliferator activated receptor γ coactivator α (PGC-1α), nuclear factor like-2 (NRF-2), and B cell lymphoma 2 (Bcl-2), and reduced protein expressions of Bax and Caspase-3 compared to the control group. High glucose incubation resulted in the production of reactive oxygen species (ROS) and cell death. Treatment of high-glucose-incubated H9c2 cells by edaravone reduced ROS production and cell death. In addition, the treatment of high-glucose-incubated H9c2 cells by edaravone increased the activity of antioxidative stress by increasing SIRT-1, PGC-1α, and NRF-2, and this treatment also reduced apoptosis by increasing Bcl-2 expression and reducing Bax and Caspase-3 expressions. Knockdown SIRT-1 with small interferer RNA abolished the effects of edaravone. Overall, our data demonstrated that edaravone may be an effective agent against the development of diabetic cardiomyopathy.

  16. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    Science.gov (United States)

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  17. Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis.

    Science.gov (United States)

    Zhang, Rong-Huai; Gao, Jian-Yuan; Guo, Hai-Tao; Scott, Glenda I; Eason, Anna R; Wang, Xiao-Ming; Ren, Jun

    2013-01-01

    Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6weeks. Following 2weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca(2+) regulatory proteins sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)Ca(2+) exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH(2)-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na(+)Ca(2+) exchanger, cardiac contractile and intracellular Ca(2+) defects, cardiac fibrosis, overt O(2)(-) production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Longstanding Hyperthyroidism Is Associated with Normal or Enhanced Intrinsic Cardiomyocyte Function despite Decline in Global Cardiac Function

    Science.gov (United States)

    Redetzke, Rebecca A.; Gerdes, A. Martin

    2012-01-01

    Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390

  19. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  20. Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson's disease.

    Science.gov (United States)

    Lelos, M J; Morgan, R J; Kelly, C M; Torres, E M; Rosser, A E; Dunnett, S B

    2016-04-01

    Patients suffering from Parkinson's disease (PD) display cognitive and neuropsychiatric dysfunctions, especially with disease progression. Although these impairments have been reported to impact more heavily upon a patient's quality of life than any motor dysfunctions, there are currently no interventions capable of adequately targeting these non-motor deficits. Utilizing a rodent model of PD, we investigated whether cell replacement therapy, using intrastriatal transplants of human-derived ventral mesencephalic (hVM) grafts, could alleviate cognitive and neuropsychiatric, as well as motor, dysfunctions. Rats with unilateral 6-hydroxydopamine lesions to the medial forebrain bundle were tested on a complex operant task that dissociates motivational, visuospatial and motor impairments sensitive to the loss of dopamine. A subset of lesioned rats received intrastriatal hVM grafts of ~9 weeks gestation. Post-graft, rats underwent repeated drug-induced rotation tests and were tested on two versions of the complex operant task, before post-mortem analysis of the hVM tissue grafts. Post-graft behavioural testing revealed that hVM grafts improved non-motor aspects of task performance, specifically visuospatial function and motivational processing, as well as alleviating motor dysfunctions. We report the first evidence of human VM cell grafts alleviating both non-motor and motor dysfunctions in an animal model of PD. This intervention, therefore, is the first to improve cognitive and neuropsychiatric symptoms long-term in a model of PD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure

    Science.gov (United States)

    Springer, Jochen; Tschirner, Anika; Haghikia, Arash; von Haehling, Stephan; Lal, Hind; Grzesiak, Aleksandra; Kaschina, Elena; Palus, Sandra; Pötsch, Mareike; von Websky, Karoline; Hocher, Berthold; Latouche, Celine; Jaisser, Frederic; Morawietz, Lars; Coats, Andrew J.S.; Beadle, John; Argiles, Josep M.; Thum, Thomas; Földes, Gabor; Doehner, Wolfram; Hilfiker-Kleiner, Denise; Force, Thomas; Anker, Stefan D.

    2014-01-01

    Aims Symptoms of cancer cachexia (CC) include fatigue, shortness of breath, and impaired exercise capacity, which are also hallmark symptoms of heart failure (HF). Herein, we evaluate the effects of drugs commonly used to treat HF (bisoprolol, imidapril, spironolactone) on development of cardiac wasting, HF, and death in the rat hepatoma CC model (AH-130). Methods and results Tumour-bearing rats showed a progressive loss of body weight and left-ventricular (LV) mass that was associated with a progressive deterioration in cardiac function. Strikingly, bisoprolol and spironolactone significantly reduced wasting of LV mass, attenuated cardiac dysfunction, and improved survival. In contrast, imidapril had no beneficial effect. Several key anabolic and catabolic pathways were dysregulated in the cachectic hearts and, in addition, we found enhanced fibrosis that was corrected by treatment with spironolactone. Finally, we found cardiac wasting and fibrotic remodelling in patients who died as a result of CC. In living cancer patients, with and without cachexia, serum levels of brain natriuretic peptide and aldosterone were elevated. Conclusion Systemic effects of tumours lead not only to CC but also to cardiac wasting, associated with LV-dysfunction, fibrotic remodelling, and increased mortality. These adverse effects of the tumour on the heart and on survival can be mitigated by treatment with either the β-blocker bisoprolol or the aldosterone antagonist spironolactone. We suggest that clinical trials employing these agents be considered to attempt to limit this devastating complication of cancer. PMID:23990596

  2. Cardiac response to hypobaric hypoxia: persistent changes in cardiac mass, function, and energy metabolism after a trek to Mt. Everest Base Camp

    NARCIS (Netherlands)

    Holloway, Cameron J.; Montgomery, Hugh E.; Murray, Andrew J.; Cochlin, Lowri E.; Codreanu, Ion; Hopwood, Naomi; Johnson, Andrew W.; Rider, Oliver J.; Levett, Denny Z. H.; Tyler, Damian J.; Francis, Jane M.; Neubauer, Stefan; Grocott, Michael P. W.; Clarke, Kieran; Grocott, Mike; Montgomery, Hugh; Levett, Denny; Martin, Daniel; Wilson, Mark; Windsor, Jeremy; Luery, Helen; Murray, Andrew; Stroud, Mike; Khosravi, Maryam; Wandrag, Liesl; Holloway, Cameron; Edwards, Lindsay; Ince, Can; Mythen, Monty; Jonas, Max; Imray, Chris; Newman, Stan; Stygal, Jan; Doyle, Patrick; Rodway, George; Howard, David; McMorrow, Roger; Ahuja, Vijay; Aref-Adib, Golnar; Burnham, Richard Dick; Chisholm, Amber; Coates, David; Cook, Debbie; Dhillon, Sundeep; Dougall, Christina; Duncan, Polly; Edsell, Mark; Evans, Lynn; Gardiner, Paul Bugs; Gunning, Paul

    2011-01-01

    We postulated that changes in cardiac high-energy phosphate metabolism may underlie the myocardial dysfunction caused by hypobaric hypoxia. Healthy volunteers (n=14) were studied immediately before, and within 4 d of return from, a 17-d trek to Mt. Everest Base Camp (5300 m). (31)P magnetic

  3. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P; Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore (Singapore); Ghasemi-Mobarakeh, Laleh, E-mail: nnimpp@nus.edu.s [Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of)

    2011-10-15

    A bioengineered construct that matches the chemical, mechanical, biological properties and extracellular matrix morphology of native tissue could be suitable as a cardiac patch for supporting the heart after myocardial infarction. The potential of utilizing a composite nanofibrous scaffold of poly(dl-lactide-co-glycolide)/gelatin (PLGA/Gel) as a biomimetic cardiac patch is studied by culturing a population of cardiomyocyte containing cells on the electrospun scaffolds. The chemical characterization and mechanical properties of the electrospun PLGA and PLGA/Gel nanofibers were studied by Fourier transform infrared spectroscopy, scanning electron microscopy and tensile measurements. The biocompatibility of the scaffolds was also studied and the cardiomyocytes seeded on PLGA/Gel nanofibers were found to express the typical functional cardiac proteins such as alpha-actinin and troponin I, showing the easy integration of cardiomyocytes on PLGA/Gel scaffolds. Our studies strengthen the application of electrospun PLGA/Gel nanofibers as a bio-mechanical support for injured myocardium and as a potential substrate for induction of endogenous cardiomyocyte proliferation, ultimately reducing the cardiac dysfunction and improving cardiac remodeling.

  4. Cardiac involvement in canine babesiosis : review article

    Directory of Open Access Journals (Sweden)

    R.G. Lobetti

    2005-06-01

    Full Text Available Cardiac dysfunction in canine babesiosis has traditionally been regarded as a rare complication, with the majority of lesions reported as incidental findings at post-mortem examination. Recent studies have, however, demonstrated cardiac lesions in canine babesiosis. Cardiac troponins, especially troponin I, are sensitive markers of myocardial injury in canine babesiosis, and the magnitude of elevation of plasma troponin I concentrations appears to be proportional to the severity of the disease. ECG changes in babesiosis are similar to the pattern described for myocarditis and myocardial ischaemia and together with histopathological findings indicate that the heart suffers from the same pathological processes described in other organs in canine babesiosis, namely inflammation and hypoxia. The clinical application of the ECG appears to be limited and thus cardiovascular assessment should be based on functional monitoring rather than an ECG tracing. On cardiac histopathology from dogs that succumbed to babesiosis, haemorrhage, necrosis, inflammation and fibrin microthrombi in the myocardium were documented, all of which would have resulted in ECG changes and elevations in cardiac troponin. Myocardial damage causes left ventricular failure, which will result in hypotension and an expansion of the plasma volume due to homeostatic mechanisms.

  5. Traditional Chinese Medicine ShenZhuGuanXin Granules Mitigate Cardiac Dysfunction and Promote Myocardium Angiogenesis in Myocardial Infarction Rats by Upregulating PECAM-1/CD31 and VEGF Expression

    Directory of Open Access Journals (Sweden)

    Dan-Ping Xu

    2017-01-01

    Full Text Available Background. Myocardial infarction (MI is the main cause of global mortality and morbidity despite the development of therapeutic approaches. ShenZhuGuanXin granules (SG have been shown to possess cardioprotective effects against coronary heart disease (CHD. However, little is known about its specific mechanism. The present study aimed to investigate the therapeutic effect of SG in cardiac dysfunction and to demonstrate whether SG can promote myocardium angiogenesis by establishing a rat model of myocardial infarction with left anterior descending ligating. Methods and Results. Three days after MI, rats were randomly divided into six groups: sham group (sham, MI group (MI, MI + low dose SG (SG-L group, MI + middle dose SG (SG-M group, MI + high dose SG (SG-H group, and MI + compound Danshen dropping pills (CDDP group as a positive control. Four weeks after administration, rats underwent hemodynamics and echocardiography study. Ventricle tissues were processed for histology and immunohistochemistry studies. Compared with MI group, SG treatment dose-dependently improved cardiac hemodynamic function, attenuated infarct size, increased microvessel density, and increased the expression of PECAM-1/CD31 and VEGF. Conclusions. SG dose-dependently improved cardiac hemodynamic function and attenuated infarct size by promoting angiogenesis through upregulating PECAM-1/CD31 and VEGF expression.

  6. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.

  7. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Moustafa Elsheshtawy

    2016-01-01

    Full Text Available Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  8. Tolerability of sirolimus: a decade of experience at a single cardiac transplant center.

    Science.gov (United States)

    Thibodeau, Jennifer T; Mishkin, Joseph D; Patel, Parag C; Kaiser, Patricia A; Ayers, Colby R; Mammen, Pradeep P A; Markham, David W; Ring, William Steves; Peltz, Matthias; Drazner, Mark H

    2013-01-01

    Sirolimus is used in cardiac transplant recipients to prevent rejection, progression of cardiac allograft vasculopathy, and renal dysfunction. However, sirolimus has many potential side effects and its tolerability when used outside of clinical trials is not well established. We describe a decade of experience with sirolimus in cardiac transplant recipients at our institution. We retrospectively reviewed records of all adult cardiac transplant recipients living between September 1999 and February 2010 (n = 329) and identified 67 patients (20%) who received sirolimus. The indications for sirolimus were cardiac allograft vasculopathy (67%), renal dysfunction (25%), rejection (4%), and intolerability of tacrolimus (3%). One-third of patients discontinued sirolimus at a median (25th, 75th percentiles) of 0.9 (0.2, 1.6) yr of duration. Over 70% of subjects experienced an adverse event attributed to sirolimus. Adverse events were associated with higher average sirolimus levels (9.1 ng/mL vs. 7.1 ng/mL, p = 0.004). We conclude that sirolimus is frequently used in cardiac transplant recipients (20%) and commonly causes side effects, often necessitating discontinuation. Higher average sirolimus levels were associated with adverse events, suggesting that tolerability may improve if levels are maintained within the lower end of the current therapeutic range; however, the improvement in tolerability would need to be balanced with the potential for decreased efficacy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome.

    Science.gov (United States)

    Kusaka, Hiroaki; Koibuchi, Nobutaka; Hasegawa, Yu; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2016-11-11

    The potential benefit of SGLT2 inhibitors in metabolic syndrome is with prediabetic stage unclear. This work was undertaken to investigate the non-glycemic effect of empagliflozin on metabolic syndrome rats with prediabetes. SHR/NDmcr-cp(+/+) rats (SHRcp), a model of metabolic syndrome with prediabetes, were given empagliflozin for 10 weeks to examine the effects on urinary sodium and water balance, visceral and subcutaneous adipocyte, and cardiac injury. Further, the effect of empagliflozin on blood pressure and autonomic nervous system was continuously investigated by using radiotelemetry system. Empagliflozin significantly reduced urinary sodium and water balance of SHRcp only within 1 week of the treatment, but later than 1 week did not alter them throughout the treatment. Empagliflozin significantly reduced body weight of SHRcp, which was mainly attributed to the significant reduction of subcutaneous fat mass. Empagliflozin significantly reduced the size of visceral adipocytes and increased the number of smaller size of adipocytes, which was associated with the attenuation of oxidative stress. Empagliflozin ameliorated cardiac hypertrophy and fibrosis of SHRcp, in association with the attenuation of cardiac oxidative stress and inflammation. However, empagliflozin did not significantly change blood pressure, heart rate, sympathetic activity, or baroreceptor function, as evidenced by radiotelemetry analysis. Our present work provided the evidence that SGLT2 inhibition reduced visceral adipocytes hypertrophy and ameliorated cardiac injury in prediabetic metabolic syndrome rat, independently of diuretic effect or blood pressure lowering effect. Thus, SGLT2 inhibition seems to be a promising therapeutic strategy for prediabetic metabolic syndrome.

  10. A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology.

    Science.gov (United States)

    Hofmann, Franz

    2018-06-22

    The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.

  11. LEFT VENTRICULAR DYSFUNCTION IN COPD WITH OR WITHOUT COR PULMONALE

    Directory of Open Access Journals (Sweden)

    Uma Shankar Mishra

    2018-01-01

    Full Text Available BACKGROUND Chronic Obstructive Pulmonary Disease (COPD is a disease state characterised by the presence of airflow obstruction due to chronic bronchitis or emphysema, which is progressive and partially reversible. Right ventricular failure (cor pulmonale is a well-known complication of COPD. But, it also involves left ventricle leading to systolic as well as diastolic dysfunction, which maybe present with associated RV failure and also as a separate entity. Diastolic dysfunction is due to defective filling of the left ventricle because of the hyperinflated lung. On the other hand, systolic dysfunction maybe secondary to RV failure due to the effects of hypoxia in the cardiac muscle fibres as a part of the systemic hypoxaemia or it may be due to the effects of the circulatory inflammatory mediators leading to atherosclerosis and ischaemia of cardiac muscles. MATERIALS AND METHODS It was a prospective study of 100 patients of COPD classified according to GOLD criteria with or without cor pulmonale admitted to our hospital in the period of January 2014 to October 2015 meeting our inclusion and exclusion criteria. Investigations like chest x-ray, spirometry, 2D-echocardiography and electrocardiography were done and data was collected. Data were pooled and interpreted using standard statistical methods. RESULTS Prevalence of COPD was common after middle age, the peak being around 5th and 6 th decade of life without much gender inequality. Cor pulmonale was found in 65% patients of COPD, of which more number were in the severe COPD. LV systolic dysfunction was found in 44% of all COPD patients and LV diastolic dysfunction was found in 59% of cases. LV diastolic dysfunction was found in 64% and LV systolic dysfunction was found in 49% of patients of COPD with cor pulmonale. LV systolic dysfunction was found in 62% of COPD patients who showed a resting hypoxaemia (SpO2 <90%. CONCLUSION In our study of 100 COPD patients, we found LV diastolic dysfunction

  12. Dietary Curcumin Ameliorates Aging-Related Cerebrovascular Dysfunction through the AMPK/Uncoupling Protein 2 Pathway

    Directory of Open Access Journals (Sweden)

    Yunfei Pu

    2013-11-01

    Full Text Available Background/Aims: Age-related cerebrovascular dysfunction contributes to stroke, cerebral amyloid angiopathy, cognitive decline and neurodegenerative diseases. One pathogenic mechanism underlying this effect is increased oxidative stress. Up-regulation of mitochondrial uncoupling protein 2 (UCP2 plays a crucial role in regulating reactive oxygen species (ROS production. Dietary patterns are widely recognized as contributors to cardiovascular and cerebrovascular disease. In this study, we tested the hypothesis that dietary curcumin, which has an antioxidant effect, can improve aging-related cerebrovascular dysfunction via UCP2 up-regulation. Methods: The 24-month-old male rodents used in this study, including male Sprague Dawley (SD rats and UCP2 knockout (UCP2-/- and matched wild type mice, were given dietary curcumin (0.2%. The young control rodents were 6-month-old. Rodent cerebral artery vasorelaxation was detected by wire myograph. The AMPK/UCP2 pathway and p-eNOS in cerebrovascular and endothelial cells were observed by immunoblotting. Results: Dietary curcumin administration for one month remarkably restored the impaired cerebrovascular endothelium-dependent vasorelaxation in aging SD rats. In cerebral arteries from aging SD rats and cultured endothelial cells, curcumin promoted eNOS and AMPK phosphorylation, up-regulated UCP2 and reduced ROS production. These effects of curcumin were abolished by either AMPK or UCP2 inhibition. Chronic dietary curcumin significantly reduced ROS production and improved cerebrovascular endothelium-dependent relaxation in aging wild type mice but not in aging UCP2-/- mice. Conclusions: Curcumin improves aging-related cerebrovascular dysfunction via the AMPK/UCP2 pathway.

  13. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    Energy Technology Data Exchange (ETDEWEB)

    Kurhanewicz, Nicole [Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 (United States); McIntosh-Kastrinsky, Rachel [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 (United States); Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Hazari, Mehdi, E-mail: hazari.mehdi@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2017-06-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  14. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    International Nuclear Information System (INIS)

    Kurhanewicz, Nicole; McIntosh-Kastrinsky, Rachel; Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen; Hazari, Mehdi

    2017-01-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  15. Cardiac autonomic testing and treating heart disease. 'A clinical perspective'

    Directory of Open Access Journals (Sweden)

    Nicholas L. DePace

    2014-12-01

    Full Text Available Background Coronary heart disease (CHD is a major health concern, affecting nearly half the middle-age population and responsible for nearly one-third of all deaths. Clinicians have several major responsibilities beyond diagnosing CHD, such as risk stratification of patients for major adverse cardiac events (MACE and treating risks, as well as the patient. This second of a two-part review series discusses treating risk factors, including autonomic dysfunction, and expected outcomes. Methods Therapies for treating cardiac mortality risks including cardiovascular autonomic neuropathy (CAN, are discussed. Results While risk factors effectively target high-risk patients, a large number of individuals who will develop complications from heart disease are not identified by current scoring systems. Many patients with heart conditions, who appear to be well-managed by traditional therapies, experience MACE. Parasympathetic and Sympathetic (P&S function testing provides more information and has the potential to further aid doctors in individualizing and titrating therapy to minimize risk. Advanced autonomic dysfunction (AAD and its more severe form cardiovascular autonomic neuropathy have been strongly associated with an elevated risk of cardiac mortality and are diagnosable through autonomic testing. This additional information includes patient-specific physiologic measures, such as sympathovagal balance (SB. Studies have shown that establishing and maintaining proper SB minimizes morbidity and mortality risk. Conclusions P&S testing promotes primary prevention, treating subclinical disease states, as well as secondary prevention, thereby improving patient outcomes through (1 maintaining wellness, (2 preventing symptoms and disorder and (3 treating subclinical manifestations (autonomic dysfunction, as well as (4 disease and symptoms (autonomic neuropathy.

  16. Overexpression Myocardial Inducible Nitric Oxide Synthase Exacerbates Cardiac Dysfunction and Beta-Adrenergic Desensitization in Experimental Hypothyroidism☆,☆☆

    Science.gov (United States)

    Shao, Qun; Cheng, Heng-Jie; Callahan, Michael F.; Kitzman, Dalane W; Li, Wei-Min; Cheng, Che Ping

    2015-01-01

    Background Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood. The alterations and functional effects of cardiac NOS in hypothyroidism are unknown. We tested the hypothesis that hypothyroidism increases cadiomyocyte inducible NOS (iNOS) expression, which plays an important role in hypothyroidism-induced depression of cardiomyocyte contractile properties, [Ca2+]i transient ([Ca2+]iT), and β-adrenergic hyporesponsiveness. Methods and Results We simultaneously evaluated LV functional performance and compared myocyte three NOS, β-adrenergic receptors (AR) and SERCA2a expressions and assessed cardiomyocyte contractile and [Ca2+]iT responses to β-AR stimulation with and without pretreatment of iNOS inhibitor (1400W, 10−5 mol/L) in 26 controls and 26 rats with hypothyroidism induced by methimazole (~30 mg/kg/day for 8 weeks in the drinking water). Compared with controls, in hypothyroidism, total serum T3 and T4 were significantly reduced followed by significantly decreased LV contractility (EES) with increased LV time constant of relaxation. These LV abnormalities were accompanied by concomitant significant decreases in myocyte contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca2+]iT. In hypothyroidism, isoproterenol (10−8 M) produced significantly smaller increases in dL/dtmax, dR/dtmax and [Ca2+]iT. These changes were associated with decreased β1-AR and SERCA2a, but significantly increased iNOS. Moreover, only in hypothyroidism, pretreatment with iNOS inhibitor significantly improved basal and isoproterenol-stimulated myocyte contraction, relaxation and [Ca2+]iT. Conclusions Hypothyroidism produces intrinsic defects of LV myocyte force-generating capacity and relaxation with β-AR desensitization. Up-regulation of cadiomyocyte iNOS may promote progressive cardiac dysfunction in

  17. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  18. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice.

    Science.gov (United States)

    Carbone, Salvatore; Mauro, Adolfo G; Mezzaroma, Eleonora; Kraskauskas, Donatas; Marchetti, Carlo; Buzzetti, Raffaella; Van Tassell, Benjamin W; Abbate, Antonio; Toldo, Stefano

    2015-11-01

    Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, exercise intolerance and cardiac dysfunction. Unhealthy diet has been associated with increased risk of obesity and heart disease, but whether it directly affects cardiac function, and promotes the development and progression of HF is unknown. We fed 8-week old male or female CD-1 mice with a standard diet (SD) or a diet rich in saturated fat and sugar, resembling a "Western" diet (WD). Cardiac systolic and diastolic function was measured at baseline and 4 and 8 weeks by Doppler echocardiography, and left ventricular (LV) end-diastolic pressure (EDP) by cardiac catheterization prior to sacrifice. An additional group of mice received WD for 4 weeks followed by SD (wash-out) for 8 weeks. WD-fed mice experienced a significant decreased in LV ejection fraction (LVEF), reflecting impaired systolic function, and a significant increase in isovolumetric relaxation time (IRT), myocardial performance index (MPI), and LVEDP, showing impaired diastolic function, without any sex-related differences. Switching to a SD after 4 weeks of WD partially reversed the cardiac systolic and diastolic dysfunction. A diet rich in saturated fat and sugars (WD) impairs cardiac systolic and diastolic function in the mouse. Further studies are required to define the mechanism through which diet affects cardiac function, and whether dietary interventions can be used in patients with, or at risk for, HF. Published by Elsevier Ireland Ltd.

  19. Zingiber officinale Roscoe ameliorates anticancer antibiotic doxorubicin-induced acute cardiotoxicity in rat.

    Science.gov (United States)

    Ajith, Thekkuttuparambil Ananthanarayanan; Hema, Unnikrishnan; Aswathi, Sreedharan

    2016-07-01

    Oxidative stress (OS) has been suggested in the cardiotoxicity induced by anticancer antibiotic doxorubicin (DXN). The cardioprotective effects of aqueous ethanol extract of Zingiber officinale was evaluated against DXN-induced acute cardiac damage in rat. The results of the study demonstrated that Z. officinale significantly and dose dependently protected the cardiotoxicity induced by DXN. The activities of serum glutamate oxaloacetate transaminase and serum lactate dehydrogenase activity in the DXN alone treated group of animals were significantly (pofficinale (200 and 400 mg/kg, p.o) plus DXN treated groups. The cardiac malondialdehyde was elevated in the DXN alone treated group and declined significantly in the Z. officinale (400 mg/kg) plus DXN treated group. The results concluded that aqueous ethanol extract of Z. officinale ameliorated DXN-induced cardiotoxicity. The protection can be ascribed to the free radical scavenging activity of Z. officinale. This protective effect may suggest the adjuvant role of Z. officinale against OS induced by cancer chemotherapeutants, which warrant further research. © 2016 Old City Publishing, Inc.

  20. Effects of cadmium and monensin on renal and cardiac functions of mice subjected to subacute cadmium intoxication

    Directory of Open Access Journals (Sweden)

    Ivanova Juliana

    2014-06-01

    Full Text Available Cadmium (Cd is a well-known nephrotoxic agent. Cd-induced renal dysfunction has been considered as one of the causes leading to the development of hypertension. The correlation between Cd concentration in blood and urine and cardiovascular diseases has been discussed in many epidemiological studies. A therapy with chelating agents is utilized for the treatment of toxic metal intoxication. Herein we present novel information indicating that monensin (applied as tetraethylammonium salt is a promising chelating agent for the treatment of Cd-induced renal and cardiac dysfunction. The study was performed using the ICR mouse model. Adult ICR male mice were divided into three groups with six animals in each group: control (received distilled water and food ad libitum for 28 days; Cd-intoxicated (treated orally with 20 mg/kg b.w. Cd(II acetate from day 1 to day 14 of the experimental protocol, and monensin treated group (intoxicated with Cd(II acetate as described for the Cd-intoxicated group followed by oral treatment with 16 mg/kg b.w. tetraethylammonium salt of monensic acid for 2 weeks. Cd intoxication of the animals resulted in an increase of the organ weight/body weight indexes. Cd elevated significantly creatinine and glucose level in serum. Monensin treatment improved the organ weight/body weight ratios. The therapy of the Cd-intoxicated animals with monensin ameliorated the creatinine and glucose level in serum and decreased the concentration of the toxic metal ions in the heart and kidneys by 54 % and 64 %, respectively

  1. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence.

    Science.gov (United States)

    Ma, Yonggang; Chiao, Ying Ann; Clark, Ryan; Flynn, Elizabeth R; Yabluchanskiy, Andriy; Ghasemi, Omid; Zouein, Fouad; Lindsey, Merry L; Jin, Yu-Fang

    2015-06-01

    Cardiac ageing involves the progressive development of cardiac fibrosis and diastolic dysfunction coordinated by MMP-9. Here, we report a cardiac ageing signature that encompasses macrophage pro-inflammatory signalling in the left ventricle (LV) and distinguishes biological from chronological ageing. Young (6-9 months), middle-aged (12-15 months), old (18-24 months), and senescent (26-34 months) mice of both C57BL/6J wild type (WT) and MMP-9 null were evaluated. Using an identified inflammatory pattern, we were able to define individual mice based on their biological, rather than chronological, age. Bcl6, Ccl24, and Il4 were the strongest inflammatory markers of the cardiac ageing signature. The decline in early-to-late LV filling ratio was most strongly predicted by Bcl6, Il1r1, Ccl24, Crp, and Cxcl13 patterns, whereas LV wall thickness was most predicted by Abcf1, Tollip, Scye1, and Mif patterns. With age, there was a linear increase in cardiac M1 macrophages and a decrease in cardiac M2 macrophages in WT mice; of which, both were prevented by MMP-9 deletion. In vitro, MMP-9 directly activated young macrophage polarization to an M1/M2 mid-transition state. Our results define the cardiac ageing inflammatory signature and assign MMP-9 roles in mediating the inflammaging profile by indirectly and directly modifying macrophage polarization. Our results explain early mechanisms that stimulate ageing-induced cardiac fibrosis and diastolic dysfunction. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  2. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias

    Science.gov (United States)

    Hara, Munetsugu; Takahashi, Tomoyuki; Mitsumasu, Chiaki; Igata, Sachiyo; Takano, Makoto; Minami, Tomoko; Yasukawa, Hideo; Okayama, Satoko; Nakamura, Keiichiro; Okabe, Yasunori; Tanaka, Eiichiro; Takemura, Genzou; Kosai, Ken-ichiro; Yamashita, Yushiro; Matsuishi, Toyojiro

    2015-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is an epigenetic regulator of gene expression that is essential for normal brain development. Mutations in MeCP2 lead to disrupted neuronal function and can cause Rett syndrome (RTT), a neurodevelopmental disorder. Previous studies reported cardiac dysfunction, including arrhythmias in both RTT patients and animal models of RTT. In addition, recent studies indicate that MeCP2 may be involved in cardiac development and dysfunction, but its role in the developing and adult heart remains unknown. In this study, we found that Mecp2-null ESCs could differentiate into cardiomyocytes, but the development and further differentiation of cardiovascular progenitors were significantly affected in MeCP2 deficiency. In addition, we revealed that loss of MeCP2 led to dysregulation of endogenous cardiac genes and myocardial structural alterations, although Mecp2-null mice did not exhibit obvious cardiac functional abnormalities. Furthermore, we detected methylation of the CpG islands in the Tbx5 locus, and showed that MeCP2 could target these sequences. Taken together, these results suggest that MeCP2 is an important regulator of the gene-expression program responsible for maintaining normal cardiac development and cardiomyocyte structure. PMID:26073556

  3. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.

    Science.gov (United States)

    Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-10-01

    Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.

  4. Prognostic implications of left ventricular diastolic dysfunction with preserved systolic function following acute myocardial infarction

    DEFF Research Database (Denmark)

    Poulsen, S H; Møller, J E; Nørager, B

    2001-01-01

    of the mitral and pulmonary venous flow, and the propagation velocity of early mitral flow by color M-mode Doppler echocardiography in 183 consecutive patients at day 5-7 following their first acute MI. Patients were classified into four groups: group A: preserved LV systolic and diastolic function (n = 73......%) and D (38%) compared to A (2%) (p class >or=II (p = 0.006), and age (0.008) as predictors of cardiac death or readmission due to heart failure. The presence of LV diastolic dysfunction with preserved......The contribution of diastolic dysfunction in patients with preserved left ventricular (LV) systolic function to impaired functional status and cardiac mortality in myocardial infarction (MI) is unknown. In the present study, assessment of LV diastolic function was performed by Doppler analysis...

  5. Edaravone Improves Septic Cardiac Function by Inducing an HIF-1α/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Chao He

    2018-01-01

    Full Text Available Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF- 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO- 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp. before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg, after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction.

  6. Clinical advantages of three dimensional cine cardiac images

    International Nuclear Information System (INIS)

    Kinosada, Yasutomi; Okuda, Yasuyuki; Nakagawa, Tsuyoshi; Itou, Takafumi; Hattori, Takao.

    1996-01-01

    We evaluated clinical advantages and the quantitativeness of computerized three-dimensional (3D) cinematic images of a human heart, which were produced with a set of magnetic resonance (MR) images by using the computer graphic technique. Many contiguous, multi-location and multi-phase short axis images were obtained with the ECG gated conventional and fast cardiac imaging sequences in normal volunteers and selected patients with myocardial infarction, hypertrophic cardiomyopathy, dilated cardiomyopathy and left ventricular dysfunction. Judging by visual impressions of the computerized 3D cinematic cardiac images, we could easily understand and evaluate the myocardial motions or the anatomic and volumetric changes of a heart according to the cardiac phases. These images were especially useful to compare the wall motion, the left ventricular ejection-fraction (LVEF), or other cardiac functions and conditions between before and after therapeutic procedures such as percutaneous transluminal coronary angioplasty for patients with myocardial infarction. A good correlation between the LVEF calculated from a set of computerized 3D cinematic images and the ultra sound examinations were found. The results of our study showed that computerized 3D cinematic cardiac images were clinically useful to understand the myocardial motions qualitatively and to evaluate cardiac functions such as the LVEF quantitatively. (author)

  7. Sacral Neuromodulation in Patients With a Cardiac Pacemaker

    Directory of Open Access Journals (Sweden)

    Abdullah A. Gahzi

    2016-09-01

    Full Text Available The objective of this study was to describe our experience using sacral neuromodulation to treat urinary urgency, frequency, urge incontinence, and chronic urinary retention in patients with cardiac pacemakers. With the increasingly widespread use of InterStim for bladder function restoration, we are seeing more complex patients with multiple comorbidities, including cardiac conditions. Herein, we report 3 cases of individuals with cardiac pacemakers who underwent InterStim implantation to treat urinary conditions. This study is a case series of 3 patients with cardiac pacemakers who underwent sacral neuromodulation to treat refractory voiding dysfunction. The initial patient screening for InterStim therapy involved percutaneous nerve evaluation (PNE, in which a temporary untined lead wire was placed through the S3 foramen. Patients who did not respond to PNE proceeded to a staged implant. All patients in this study had a greater than 50% improvement of their urinary symptoms during the initial trial and underwent placement of the InterStim implantable pulse generator (IPG. Postoperative programming was done under electrocardiogram monitoring by a cardiologist. No interference was observed between the Inter-Stim IPG and the cardiac pacemaker. In this group of patients, sacral neuromodulation in the presence of a cardiac pacemaker appears to have been safe.

  8. Wound ventilation : A new concept for prevention of complications in cardiac surgery

    OpenAIRE

    Persson, Mikael

    2003-01-01

    Cardiac surgery through an open chest wound is a major operation both in size and duration. The wound exposure to ambient air implies considerable risks. 1) Air may enter the heart and great vessels and embolize to the brain or cardiac muscle where it may cause dysfunction or permanent damage. 2) The wound is exposed to airborne bacterial contamination, which may lead to postoperative wound infection. 3) The wound is subjected to desiccation, which may lead to serious adhesi...

  9. Effect of autogenic training on cardiac autonomic nervous activity in high-risk fire service workers for posttraumatic stress disorder.

    Science.gov (United States)

    Mitani, Satoko; Fujita, Masatoshi; Sakamoto, Satoko; Shirakawa, Taro

    2006-05-01

    We investigated the effect of autogenic training (AT) on cardiac autonomic nervous activity in fire services workers with the use of the questionnaire of the Japanese-language version of Impact of Event Scale-Revised (IES-R-J) and indexes of heart rate variability. We studied 22 male fire services workers who were divided into posttraumatic stress disorder (PTSD)-related stress group (n=10) and control group (n=12). They underwent AT twice or three times a week for 2 months. Posttraumatic stress disorder-related stress group showed a significantly higher cardiac sympathetic nervous activity and a significantly lower cardiac parasympathetic nervous activity than control group at baseline. Autogenic training significantly decreased cardiac sympathetic nervous activity and significantly increased cardiac parasympathetic nervous activity in both groups. These changes were accompanied by a significant decrease in the total points of IES-R-J. Autogenic training is effective for ameliorating the disturbance of cardiac autonomic nervous activity and psychological issues secondary to PTSD.

  10. Effects of benazepril on cardiac fibrosis in STZ-induced diabetic rats.

    Science.gov (United States)

    Li, Qian; Wang, Yi; Sun, Shu-zhen; Tian, Yong-jie; Liu, Ming-hua

    2010-08-01

    The present study was designed to explore the roles of MMP-2/TIMP-2 in cardiac fibrosis and to study the effects of benazepril, an angiotensin-converting enzyme inhibitor (ACEI) on cardiac remodelling in streptozotocin(STZ)-induced diabetic rats. Male Wistar rats were randomly divided into three groups: a normal control group (NC), a diabetes mellitus-untreated group (DM) and a diabetes mellitus benazepril-treated group (DB). Diabetes mellitus was induced in the DM and DB groups by intraperitoneal injection of streptozotocin (60 mg/kg). DB rats were treated with benazepril 10 mg/kg/day for 12 weeks by remedial perfusing of the stomach. In the DM group, compared with the NC group, the gene and protein expression of MMP-2 decreased while the TIMP-2 gene and protein expression increased in heart tissues, along with a markedly cardiac collagen deposition.All the above changes were attenuated by benazepril treatment in the DB group. The imbalance of MMP-2 and TIMP-2 expressions in heart tissues might participate in interstitial fibrosis in diabetic myocardiopathy. Benazepril may ameliorate cardiac fibrosis partly by regulating the MMP-2/TIMP-2 system.

  11. Magnetic resonance imaging correlates of bee sting induced multiple organ dysfunction syndrome: A case report.

    Science.gov (United States)

    Das, Sushant K; Zeng, Li-Chuan; Li, Bing; Niu, Xiang-Ke; Wang, Jing-Liang; Bhetuwal, Anup; Yang, Han-Feng

    2014-09-28

    Occasionally systemic complications with high risk of death, such as multiple organ dysfunction syndrome (MODS), can occur following multiple bee stings. This case study reports a patient who presented with MODS, i.e., acute kidney injury, hepatic and cardiac dysfunction, after multiple bee stings. The standard clinical findings were then correlated with magnetic resonance imaging (MRI) findings, which demonstrates that MRI may be utilized as a simpler tool to use than other multiple diagnostics.

  12. An anthelmintic drug, pyrvinium pamoate, thwarts fibrosis and ameliorates myocardial contractile dysfunction in a mouse model of myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Motoaki Murakoshi

    Full Text Available Metabolic adaptation to limited supplies of oxygen and nutrients plays a pivotal role in health and disease. Heart attack results from insufficient delivery of oxygen and nutrients to the heart, where cardiomyocytes die and cardiac fibroblasts proliferate--the latter causing scar formation, which impedes regeneration and impairs contractility of the heart. We postulated that cardiac fibroblasts survive metabolic stress by adapting their intracellular metabolism to low oxygen and nutrients, and impeding this metabolic adaptation would thwart their survival and facilitate the repair of scarred heart. Herein, we show that an anthelmintic drug, Pyrvinium pamoate, which has been previously shown to compromise cancer cell survival under glucose starvation condition, also disables cardiac fibroblast survival specifically under glucose deficient condition. Furthermore, Pyrvinium pamoate reduces scar formation and improves cardiac contractility in a mouse model of myocardial infarction. As Pyrvinium pamoate is an FDA-approved drug, our results suggest a therapeutic use of this or other related drugs to repair scarred heart and possibly other organs.

  13. Impact of Cardiac Contractility during Cerebral Blood Flow in Ischemia

    Directory of Open Access Journals (Sweden)

    Silver, Brian

    2011-05-01

    Full Text Available Objective: In cerebral regions affected by ischemia, intrinsic vascular autoregulation is often lost. Blood flow delivery depends upon cardiac function and may be influenced by neuro-endocrine mediated myocardial suppression. Our objective is to evaluate the relation between ejection fraction (EF and transcranial doppler (TCD peak systolic velocities (PSV in patients with cerebral ischemic events.Methods: We conducted a retrospective cohort study from an existing TCD registry. We evaluated patients admitted within 24 hours of onset of a focal neurological deficit who had an echocardiogram and TCD performed within 72 hours of admission.Results: We identified 58 patients from March to October 2003. Eighty-one percent (n=47 had a hospital discharge diagnosis of ischemic stroke and 18.9% (n=11 had a diagnosis of transient ischemic attack. Fourteen patients had systolic dysfunction (EF50% compared to those with systolic dysfunction (EF<50% was as follows: middle cerebral artery 62.0 + 28.6 cm/s vs. 51.0 + 23.3 cm/s, p=0.11; anterior cerebral artery 52.1 + 21.6 cm/s vs. 45.9 + 22.7 cm/s, p=0.28; internal carotid artery 56.5 + 20.1 cm/s vs. 46.4 + 18.4 cm/s, p=0.04; ophthalmic artery 18.6 + 7.2 cm/s vs. 15.3 + 5.2 cm/s, p=0.11; vertebral artery 34.0 + 13.9 cm/s vs. 31.6 + 15.0 cm/s, p=0.44.Conclusion: Cerebral blood flow in the internal carotid artery territory appears to be higher in cerebral ischemia patients with preserved left ventricular contractility. Our study was unable to differentiate pre-existing cardiac dysfunction from neuro-endocrine mediated myocardial stunning. Future research is necessary to better understand heart-brain interactions in this setting and to further explore the underlying mechanisms and consequences of neuro-endocrine mediated cardiac dysfunction. [West J Emerg Med. 2011;12(2:227-232.

  14. NAD+ : A big player in cardiac and skeletal muscle remodeling and aging.

    Science.gov (United States)

    Chaturvedi, Pankaj; Tyagi, Suresh C

    2018-03-01

    In the past decade, NAD+ has gained importance for its beneficial effects as antioxidant and anti-aging molecule. A paper in science by Zhang et al. () has described that NAD+ when replenished, ameliorates muscle dystrophy in mice by improving mitochondrial function. NAD+ was also demonstrated by the authors to improve the life span of mice. Cox et al. () demonstrated the cardiac effects of NAD+ which mitigated chronic heart failure via mitochondrial redox state mechanism. Cox et al. () also demonstrated that NAD+ is provided in the drinking water, it improves cardiac relaxation in volume overload model of heart failure. Although NAD+ has a profound anti-aging and anti-oxidant effects, its effect on humans and use as a dietary supplement needs more exploration. © 2017 Wiley Periodicals, Inc.

  15. Effects of statin therapy on clinical outcomes after acute myocardial infarction in patients with advanced renal dysfunction: A propensity score-matched analysis.

    Science.gov (United States)

    Kim, Jin Sug; Kim, Weon; Park, Ji Yoon; Woo, Jong Shin; Lee, Tae Won; Ihm, Chun Gyoo; Kim, Yang Gyun; Moon, Ju-Young; Lee, Sang Ho; Jeong, Myung Ho; Jeong, Kyung Hwan

    2017-01-01

    Lipid lowering therapy is widely used for the prevention of cardiovascular complications after acute myocardial infarction (AMI). However, some studies show that this benefit is uncertain in patients with renal dysfunction, and the role of statins is based on the severity of renal dysfunction. In this study, we investigated the impact of statin therapy on major adverse cardiac events (MACEs) and all-cause mortality in patients with advanced renal dysfunction undergoing percutaneous coronary intervention (PCI) after AMI. This study was based on the Korea Acute Myocardial Infarction Registry database. We included 861 patients with advanced renal dysfunction from among 33,205 patients who underwent PCI after AMI between November 2005 and July 2012. Patients were divided into two groups: a statin group (n = 537) and a no-statin group (n = 324). We investigated the 12-month MACEs (cardiac death, myocardial infarction, repeated PCI or coronary artery bypass grafting) and all-cause mortality of each group. Subsequently, a propensity score-matched analysis was performed. In the total population studied, no significant differences were observed between the two groups with respect to the rate of recurrent MI, repeated PCI, coronary artery bypass grafting (CABG), or all-cause mortality. However, the cardiac death rate was significantly lower in the statin group (p = 0.009). Propensity score-matched analysis yielded 274 pairs demonstrating, results similar to those obtained from the total population. However, there was no significant difference in the cardiac death rate in the propensity score-matched population (p = 0.103). Cox-regression analysis revealed only left ventricular ejection fraction to be an independent predictor of 12-month MACEs (Hazard ratio [HR] of 0.979, 95% confidence interval [CI], 0962-0.996, p = 0.018). Statin therapy was not significantly associated with a reduction in the 12-month MACEs or all-cause mortality in patients with advanced renal dysfunction

  16. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2010-01-01

    Full Text Available Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p. for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways were examined.Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2 (*-. Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF.Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  17. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Science.gov (United States)

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  18. Protective effects of sea cucumber (Holothuria atra) extract on testicular dysfunction induced by immune suppressant drugs in Wistar rats.

    Science.gov (United States)

    Saad, D Y; Soliman, M M; Mohamed, A A; Youssef, G B

    2018-04-23

    The current study was aimed to evaluate the protective effect of Holothurian atra (HA) extract; naturally occurring marine resource, against methotrexate (MTX) induced testicular dysfunction. Mature rats received either MTX (20 mg/kg, intraperitoneally) or saline on the 7th day of experiment al design. Seven days prior and after MTX-injection, rats received HA at dose of 300 mg/kg intragastrically (HA + MTX group; HA group alone). Serum was extracted and testicular tissues were examined for the changes in serum biochemistry (liver & kidney biomarkers, testicular hormones and antioxidants), molecular and histopthological alterations using RT-PCR and immunohistochemistry. MTX-injected rats induced alteration in all testicular parameters. Prior administration of HA ameliorated the MTX-induced oxidative stress. HA administration normalised MTX-induced decrease in serum levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), reproductive hormones (FSH, LH and testosterone) and antioxidants GST, SOD and catalase. MTX-injected rats down-regulated mRNA expression of GST, SOD, steroidogenesis associated genes, IFN-γ, Bcl2 and NFKB. MTX up-regulated BAX expression and caspase 9 immunoreactivity that were ameliorated in HA + MTX group. Collectively, HA ameliorated and restored all altered genes. In conclusion, HA is a promising supplement that is helpful in protection against testicular cytotoxicity and dysfunction induced by methotrexate. © 2018 Blackwell Verlag GmbH.

  19. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery

    Directory of Open Access Journals (Sweden)

    Henning Bay Nielsen

    2014-03-01

    Full Text Available Near-infrared spectroscopy (NIRS is used to monitor regional cerebral oxygenation (rScO2 during cardiac surgery but is less established during non-cardiac surgery. This systematic review aimed i to determine the non-cardiac surgical procedures that provoke a reduction in rScO2 and ii to evaluate whether an intraoperative reduction in rScO2 influences postoperative outcome. The PubMed and Embase database were searched from inception until April 30, 2013 and inclusion criteria were intraoperative NIRS determined rScO2 in adult patients undergoing non-cardiac surgery. The type of surgery and number of patients included were recorded. There was included 113 articles and evidence suggests that rScO2 is reduced during thoracic surgery involving single lung ventilation, major abdominal surgery, hip surgery, and laparascopic surgery with the patient placed in anti-Tredelenburg’s position. Shoulder arthroscopy in the beach chair and carotid endarterectomy with clamped internal carotid artery also cause pronounced cerebral desaturation. A >20% reduction in rScO2 coincides with indices of regional and global cerebral ischemia during carotid endarterectomy. Following thoracic surgery, major orthopedic and abdominal surgery the occurrence of postoperative cognitive dysfunction might be related to intraoperative cerebral desaturation. In conclusion, certain non-cardiac surgical procedures is associated with an increased risk for the occurrence of regional cerebral oxygenation. Evidence for an association between cerebral desaturation and postoperative outcome parameters other than cognitive dysfunction needs to be established.

  20. Depletion of Tip60 from In Vivo Cardiomyocytes Increases Myocyte Density, Followed by Cardiac Dysfunction, Myocyte Fallout and Lethality.

    Directory of Open Access Journals (Sweden)

    Joseph B Fisher

    Full Text Available Tat-interactive protein 60 (Tip60, encoded by the Kat5 gene, is a member of the MYST family of acetyltransferases. Cancer biology studies have shown that Tip60 induces the DNA damage response, apoptosis, and cell-cycle inhibition. Although Tip60 is expressed in the myocardium, its role in cardiomyocytes (CMs is unclear. Earlier studies here showed that application of cardiac stress to globally targeted Kat5+/-haploinsufficient mice resulted in inhibition of apoptosis and activation of the CM cell-cycle, despite only modest reduction of Tip60 protein levels. It was therefore of interest to ascertain the effects of specifically and substantially depleting Tip60 from CMs using Kat5LoxP/-;Myh6-Cre mice in the absence of stress. We report initial findings using this model, in which the effects of specifically depleting Tip60 protein from ventricular CMs, beginning at early neonatal stages, were assessed in 2-12 week-old mice. Although 5'-bromodeoxyuridine immunostaining indicated that CM proliferation was not altered at any of these stages, CM density was increased in 2 week-old ventricles, which persisted in 4 week-old hearts when TUNEL staining revealed inhibition of apoptosis. By week 4, levels of connexin-43 were depleted, and its patterning was dysmorphic, concomitant with an increase in cardiac hypertrophy marker expression and interstitial fibrosis. This was followed by systolic dysfunction at 8 weeks, after which extensive apoptosis and CM fallout occurred, followed by lethality as mice approached 12 weeks of age. In summary, chronic depletion of Tip60 from the ventricular myocardium beginning at early stages of neonatal heart development causes CM death after 8 weeks; hence, Tip60 protein has a crucial function in the heart.

  1. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Simonsen, Jane Angel; Diederichsen, Axel Cosmus Pyndt

    2015-01-01

    inflammatory myopathies (IIM) by means of non-invasive techniques. METHODS: Fourteen patients with IIM (8 polymyositis, 4 dermatomyositis, 2 cancer-associated dermatomyositis) and 14 gender- and age- matched healthy control subjects were investigated. Participant assessments included a cardiac questionnaire...... in 8 (57%) of the patients compared to none of the controls (pgroup (p=0.01). Two patients had systolic dysfunction, and one diastolic dysfunction...

  2. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: a randomized clinical trial.

    Science.gov (United States)

    Nylander, Malin; Frøssing, Signe; Clausen, Helle V; Kistorp, Caroline; Faber, Jens; Skouby, Sven O

    2017-07-01

    Polycystic ovary syndrome (PCOS) encompasses an ovarian and a metabolic dysfunction. Glucagon-like peptide-1 (GLP-1) analogues facilitate weight loss and ameliorate metabolic dysfunction in overweight women with PCOS, but their effect on ovarian dysfunction is scarcely reported. In a double-blind, randomized trial, 72 women with PCOS were allocated to intervention with the GLP-1 analogue liraglutide or placebo (1.8 mg/day), in a 2:1 ratio. At baseline and 26-week follow-up, bleeding pattern, levels of AMH, sex hormones and gonadotrophins were assessed and ovarian morphology evaluated. Liraglutide caused 5.2 kg (95% CI 3.0 to 7.5, P Ovarian volume decreased by -1.6 ml (95% CI -3.3 to 0.1) with liraglutide versus placebo. Nausea and constipation were more prevalent in the liraglutide group. Liraglutide improved markers of ovarian function in overweight women with PCOS, and might be a possible intervention. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Cardiac MRI in restrictive cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Singh Gulati, G., E-mail: gulatigurpreet@rediffmail.com [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Seth, S. [Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Sharma, S. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India)

    2012-02-15

    Restrictive cardiomyopathy (RCM) is a specific group of heart muscle disorders characterized by inadequate ventricular relaxation during diastole. This leads to diastolic dysfunction with relative preservation of systolic function. Although short axis systolic function is usually preserved in RCM, the long axis systolic function may be severely impaired. Confirmation of diagnosis and information regarding aetiology, extent of myocardial damage, and response to treatment requires imaging. Importantly, differentiation from constrictive pericarditis (CCP) is needed, as only the latter is managed surgically. Echocardiography is the initial cardiac imaging technique but cannot reliably suggest a tissue diagnosis; although recent advances, especially tissue Doppler imaging and spectral tracking, have improved its ability to differentiate RCM from CCP. Cardiac catheterization is the reference standard, but is invasive, two-dimensional, and does not aid myocardial characterization. Cardiac magnetic resonance (CMR) is a versatile technique providing anatomical, morphological and functional information. In recent years, it has been shown to provide important information regarding disease mechanisms, and also been found useful to guide treatment, assess its outcome and predict patient prognosis. This review describes the CMR features of RCM, appearances in various diseases, its overall role in patient management, and how it compares with other imaging techniques.

  4. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  5. The heartbreak of depression: 'Psycho-cardiac' coupling in myocardial infarction.

    Science.gov (United States)

    Headrick, John P; Peart, Jason N; Budiono, Boris P; Shum, David H K; Neumann, David L; Stapelberg, Nicolas J C

    2017-05-01

    Ample evidence identifies strong links between major depressive disorder (MDD) and both risk of ischemic or coronary heart disease (CHD) and resultant morbidity and mortality. The molecular mechanistic bases of these linkages are poorly defined. Systemic factors linked to MDD, including vascular dysfunction, atherosclerosis, obesity and diabetes, together with associated behavioral changes, all elevate CHD risk. Nonetheless, experimental evidence indicates the myocardium is also directly modified in depression, independently of these factors, impairing infarct tolerance and cardioprotection. It may be that MDD effectively breaks the heart's intrinsic defense mechanisms. Four extrinsic processes are implicated in this psycho-cardiac coupling, presenting potential targets for therapeutic intervention if causally involved: sympathetic over-activity vs. vagal under-activity, together with hypothalamic-pituitary-adrenal (HPA) axis and immuno-inflammatory dysfunctions. However, direct evidence of their involvement remains limited, and whether targeting these upstream mediators is effective (or practical) in limiting the cardiac consequences of MDD is unknown. Detailing myocardial phenotype in MDD can also inform approaches to cardioprotection, yet cardiac molecular changes are similarly ill defined. Studies support myocardial sensitization to ischemic insult in models of MDD, including worsened oxidative and nitrosative damage, apoptosis (with altered Bcl-2 family expression) and infarction. Moreover, depression may de-sensitize hearts to protective conditioning stimuli. The mechanistic underpinnings of these changes await delineation. Such information not only advances our fundamental understanding of psychological determinants of health, but also better informs management of the cardiac consequences of MDD and implementing cardioprotection in this cohort. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  7. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  8. Cardiac computed tomography of an asymptomatic 48-year-old woman with ALCAPA syndrome.

    Science.gov (United States)

    Sajjadieh Khajouei, Amirreza; Samie-Nasab, Mohammadreza; Behjati, Mohaddeseh; Biederman, Robert W

    2016-12-01

    Untreated ALCAPA cases most often die in infancy. Adults with untreated ALCAPA commonly present with mitral regurgitation, severe left ventricular dysfunction, and sometimes myocardial infarction. Herein, we present an asymptomatic adult female with ALCAPA recognized through cardiac computed tomography (CT). In ALCAPA, like other coronary anomalies, cardiac CT is often instrumental in providing unique noninvasive and clinically relevant evaluation. Herein, we present an atypical presentation of an asymptomatic middle-aged adult female with ALCAPA. © 2016, Wiley Periodicals, Inc.

  9. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction

    DEFF Research Database (Denmark)

    González-Santamaría, José; Villalba, María; Busnadiego, Oscar

    2016-01-01

    arrhythmias, and sudden cardiac death. Cardiac fibrosis is characterized by extensive deposition of collagen and also by increased stiffness as a consequence of enhanced collagen cross-linking. Members of the lysyl oxidase (LOX) family of enzymes are responsible for the formation of collagen cross......-links. This study investigates the contribution of LOX family members to the heart response to MI. METHODS AND RESULTS: Experimental MI was induced in C57BL/6 mice by permanent ligation of the left anterior descending coronary artery. The expression of LOX isoforms (LOX and LOXL1-4) was strongly increased upon MI...... resulted in reduced ventricular dilatation and improved cardiac function. CONCLUSION: LOX family members contribute significantly to the detrimental effects of cardiac remodelling, highlighting LOX inhibition as a potential therapeutic strategy for post-infarction recovery....

  10. Oral treatment with herbal formula B307 alleviates cardiac failure in aging R6/2 mice with Huntington’s disease via suppressing oxidative stress, inflammation, and apoptosis

    Directory of Open Access Journals (Sweden)

    Lin CL

    2015-07-01

    Full Text Available Ching-Lung Lin,1 Sheue-Er Wang,2 Chih-Hsiang Hsu,1 Shuenn-Jyi Sheu,3 Chung-Hsin Wu1 1Department of Life Science, National Taiwan Normal University, Taipei, 2Department of Pathological Inspection, Soeurs de Saint Paul de Chartres Medical Corporate Body, Taoyuan City, 3Brion Research Institute of Taiwan, New Taipei City, Taiwan Abstract: Cardiac failure is often observed in aging patients with Huntington’s disease (HD. However, conventional pharmacological treatments for cardiac failure in HD patients have rarely been studied. Chinese herbal medicines, especially combined herbal formulas, have been widely used to treat cardiac dysfunctions over the centuries. Thus, we assess whether oral treatment with herbal formula B307 can alleviate cardiac failure in transgenic mice with HD. After oral B307 or vehicle treatment for 2 weeks, cardiac function and cardiomyocytes in 12-week-old male R6/2 HD mice and their wild-type littermate controls (WT were examined and then compared via echocardiography, immunohistochemistry, and Western blotting. We found that cardiac performance in aging R6/2 HD mice had significantly deteriorated in comparison with their WT (P<0.01. Cardiac expressions of superoxide dismutase 2 (SOD2 and B-cell lymphoma 2 (Bcl-2 in aging R6/2 HD mice were significantly lower than their WT (P<0.01, but cardiac expressions of tumor necrosis factor alpha (TNF-α, neurotrophin-3 (3-NT, 4-hydroxynonenal (4-HNE, Bcl-2-associated X protein (Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly higher than their WT (P<0.05. Furthermore, we found that cardiac performance in aging R6/2 HD mice had significantly improved under oral B307 treatment (P<0.05. Cardiac expressions of SOD2 and Bcl-2 of aging R6/2 HD mice were significantly higher under oral B307 treatment (P<0.01, but cardiac expressions of TNF-α, 3-NT, 4-HNE, Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly

  11. The pathogenesis and treatment of cardiac atrophy in cancer cachexia.

    Science.gov (United States)

    Murphy, Kate T

    2016-02-15

    Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. In addition to a loss of skeletal muscle mass and function, many patients with cancer cachexia also experience cardiac atrophy, remodeling, and dysfunction, which in the field of cancer cachexia is described as cardiac cachexia. The cardiac alterations may be due to underlying heart disease, the cancer itself, or problems initiated by the cancer treatment and, unfortunately, remains largely underappreciated by clinicians and basic scientists. Despite recent major advances in the treatment of cancer, little progress has been made in the treatment of cardiac cachexia in cancer, and much of this is due to lack of information regarding the mechanisms. This review focuses on the cardiac atrophy associated with cancer cachexia, describing some of the known mechanisms and discussing the current and future therapeutic strategies to treat this condition. Above all else, improved awareness of the condition and an increased focus on identification of mechanisms and therapeutic targets will facilitate the eventual development of an effective treatment for cardiac atrophy in cancer cachexia. Copyright © 2016 the American Physiological Society.

  12. Interaction between cardiac myosin-binding protein C and formin Fhod3.

    Science.gov (United States)

    Matsuyama, Sho; Kage, Yohko; Fujimoto, Noriko; Ushijima, Tomoki; Tsuruda, Toshihiro; Kitamura, Kazuo; Shiose, Akira; Asada, Yujiro; Sumimoto, Hideki; Takeya, Ryu

    2018-05-08

    Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.

  13. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  14. Interneuron progenitor transplantation to treat CNS dysfunction

    Directory of Open Access Journals (Sweden)

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  15. A comparison of dobutamine and levosimendan on hepatic blood flow in patients with a low cardiac output state after cardiac surgery: a randomised controlled study.

    Science.gov (United States)

    Alvarez, J; Baluja, A; Selas, S; Otero, P; Rial, M; Veiras, S; Caruezo, V; Taboada, M; Rodriguez, I; Castroagudin, J; Tome, S; Rodriguez, A; Rodriguez, J

    2013-11-01

    Liver dysfunction due to a low cardiac output state after cardiac surgery is associated with a poor prognosis, but whether one inotrope is superior to another in improving hepatic perfusion remains uncertain. This study compared the systemic and hepatic haemodynamic effects of levosimendan to dobutamine in patients with a low cardiac output state (cardiac index flow (ml/min): 614.0±124.7, 585.9±144.8; pulsatility index: 2.02±0,28, 2.98±0.27 versus the levosimendan group: cardiac index: 3.02± 0.27, 2.98± 0.30; portal vein flow: 723.0± 143.5, 702.9±117.8; pulsatility index: 1.71±0.26, 1.73±0.27). The improvement in portal vein blood flow at 48 hours was significantly better after levosimendan than dobutamine (41% vs. 11% increment from baseline, Pflow through both the hepatic artery and portal venous system, whereas dobutamine can only improve the portal venous blood flow without vasodilating the hepatic artery.

  16. LCZ696, Angiotensin II Receptor-Neprilysin Inhibitor, Ameliorates High-Salt-Induced Hypertension and Cardiovascular Injury More Than Valsartan Alone.

    Science.gov (United States)

    Kusaka, Hiroaki; Sueta, Daisuke; Koibuchi, Nobutaka; Hasegawa, Yu; Nakagawa, Takashi; Lin, BoWen; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2015-12-01

    LCZ696, an angiotensin receptor-neprilysin inhibitor, has recently been demonstrated to exert more beneficial effects on hypertensive or heart failure patients than conventional renin-angiotensin system blockers. However, the mechanism underlying the benefit of LCZ696 remains to be understood. The present study was undertaken to examine the effect of LCZ696 compared with valsartan on hypertension and cardiovascular injury. (i) Using telemetry, we compared the hypotensive effect of LCZ696 and valsartan in spontaneously hypertensive rats (SHR) that were fed a high-salt diet followed by a low-salt diet. (ii) We also examined the comparative effect of LCZ696 and valsartan on salt loaded SHRcp, a model of metabolic syndrome. (i) LCZ696 exerted a greater blood pressure (BP) lowering effect than valsartan in SHR regardless of high-salt or low-salt intake. Additive BP reduction by LCZ696 was associated with a significant increase in urinary sodium excretion and sympathetic activity suppression. (ii) LCZ696 significantly ameliorated cardiac hypertrophy and inflammation, coronary arterial remodeling, and vascular endothelial dysfunction in high-salt loaded SHRcp compared with valsartan. LCZ696 caused greater BP reduction than valsartan in SHR regardless of the degree of salt intake, which was associated with a significant enhancement in urinary sodium excretion and sympathetic activity suppression. Furthermore, an additive BP lowering effect of LCZ696 led to greater cardiovascular protection in hypertensive rats. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Cardiac Development and Transcription Factors: Insulin Signalling, Insulin Resistance, and Intrauterine Nutritional Programming of Cardiovascular Disease

    Science.gov (United States)

    Govindsamy, Annelene; Naidoo, Strinivasen

    2018-01-01

    Programming with an insult or stimulus during critical developmental life stages shapes metabolic disease through divergent mechanisms. Cardiovascular disease increasingly contributes to global morbidity and mortality, and the heart as an insulin-sensitive organ may become insulin resistant, which manifests as micro- and/or macrovascular complications due to diabetic complications. Cardiogenesis is a sequential process during which the heart develops into a mature organ and is regulated by several cardiac-specific transcription factors. Disrupted cardiac insulin signalling contributes to cardiac insulin resistance. Intrauterine under- or overnutrition alters offspring cardiac structure and function, notably cardiac hypertrophy, systolic and diastolic dysfunction, and hypertension that precede the onset of cardiovascular disease. Optimal intrauterine nutrition and oxygen saturation are required for normal cardiac development in offspring and the maintenance of their cardiovascular physiology. PMID:29484207

  18. Cognitive Ameliorating Effect of Acanthopanax koreanum Against Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Lee, Sunhee; Park, Ho Jae; Jeon, Se Jin; Kim, Eunji; Lee, Hyung Eun; Kim, Haneul; Kwon, Yubeen; Zhang, Jiabao; Jung, In Ho; Ryu, Jong Hoon

    2017-03-01

    Acanthopanax koreanum Nakai (Araliaceae) is one of the most widely cultivated medicinal plants in Jeju Island, Korea, and the roots and stem bark of A. koreanum have been traditionally used as a tonic agent for general weakness. However, the use of A. koreanum for general weakness observed in the elderly, including those with declined cognitive function, has not been intensively investigated. This study was performed to investigate the effect of the ethanol extract of A. koreanum (EEAK) on cholinergic blockade-induced memory impairment in mice. To evaluate the ameliorating effects of EEAK against scopolamine-induced memory impairment, mice were orally administered EEAK (25, 50, 100, or 200 mg/kg), and several behavioral tasks, including a passive avoidance task, the Y-maze, and a novel object recognition task, were employed. Besides, western blot analysis was conducted to examine whether EEAK affected memory-associated signaling molecules, such as protein kinase B (Akt), Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB). The administration of EEAK (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in the passive avoidance task, the Y-maze, and the novel object recognition task. The phosphorylation levels of both Akt and CaMKII were significantly increased by approximately two-fold compared with the control group because of the administration of EEAK (100 or 200 mg/kg) (p cognitive dysfunction induced by the cholinergic blockade, in part, via several memory-associated signaling molecules and may hold therapeutic potential against cognitive dysfunction, such as that presented in neurodegenerative diseases, for example, Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. N-terminal-pro-brain natriuretic peptide elevations in the course of septic and non-septic shock reflect systolic left ventricular dysfunction assessed by transpulmonary thermodilution

    Directory of Open Access Journals (Sweden)

    A.B. Johan Groeneveld

    2016-03-01

    Conclusions: In septic and non-septic shock, NT-proBNP elevations reflect systolic left ventricular dysfunction and are associated with a poor outcome. They may help recognition of cardiac dysfunction in shock and its management when invasive hemodynamic monitoring is not yet instituted.

  20. Uric acid level and erectile dysfunction in patients with coronary artery disease.

    Science.gov (United States)

    Solak, Yalcin; Akilli, Hakan; Kayrak, Mehmet; Aribas, Alpay; Gaipov, Abduzhappar; Turk, Suleyman; Perez-Pozo, Santos E; Covic, Adrian; McFann, Kim; Johnson, Richard J; Kanbay, Mehmet

    2014-01-01

    Erectile dysfunction (ED) is a frequent complaint of elderly subjects and is closely associated with endothelial dysfunction and cardiovascular disease (CVD). Uric acid is also associated with endothelial dysfunction, oxidative stress, and CVD, raising the hypothesis that an increased serum uric acid might predict ED in patients who are at risk for coronary artery disease (CAD). This study aims to evaluate the association of serum uric acid levels with presence and severity of ED in patients presenting with chest pain of presumed cardiac origin. This is a cross-sectional study of 312 adult male patients with suspected CAD who underwent exercise stress test (EST) for workup of chest pain and completed a sexual health inventory for men survey form to determine the presence and severity of ED. Routine serum biochemistry (and uric acid levels) were measured. Logistic regression analysis was used to assess risk factors for ED. The short version of the International Index of Erectile Function questionnaire diagnosed ED (cutoff score ≤ 21). Serum uric acid levels were determined. Patients with chest pain of suspected cardiac origin underwent an EST. One hundred forty-nine of 312 (47.7%) male subjects had ED by survey criteria. Patients with ED were older and had more frequent CAD, hypertension, diabetes and impaired renal function, and also had significantly higher levels of uric acid, fibrinogen, glucose, C-reactive protein, triglycerides compared with patients without ED. Uric acid levels were associated with ED by univariate analysis (odds ratio = 1.36, P = 0.002); however, this association was not observed in multivariate analysis adjusted for estimated glomerular filtration rate. Subjects presenting with chest pain of presumed cardiac origin are more likely to have ED if they have elevated uric acid levels. © 2013 International Society for Sexual Medicine.

  1. Dysfunctional breathing: a review of the literature and proposal for classification

    Directory of Open Access Journals (Sweden)

    Richard Boulding

    2016-09-01

    Full Text Available Dysfunctional breathing is a term describing breathing disorders where chronic changes in breathing pattern result in dyspnoea and other symptoms in the absence or in excess of the magnitude of physiological respiratory or cardiac disease. We reviewed the literature and propose a classification system for the common dysfunctional breathing patterns described. The literature was searched using the terms: dysfunctional breathing, hyperventilation, Nijmegen questionnaire and thoraco-abdominal asynchrony. We have summarised the presentation, assessment and treatment of dysfunctional breathing, and propose that the following system be used for classification. 1 Hyperventilation syndrome: associated with symptoms both related to respiratory alkalosis and independent of hypocapnia. 2 Periodic deep sighing: frequent sighing with an irregular breathing pattern. 3 Thoracic dominant breathing: can often manifest in somatic disease, if occurring without disease it may be considered dysfunctional and results in dyspnoea. 4 Forced abdominal expiration: these patients utilise inappropriate and excessive abdominal muscle contraction to aid expiration. 5 Thoraco-abdominal asynchrony: where there is delay between rib cage and abdominal contraction resulting in ineffective breathing mechanics. This review highlights the common abnormalities, current diagnostic methods and therapeutic implications in dysfunctional breathing. Future work should aim to further investigate the prevalence, clinical associations and treatment of these presentations.

  2. The effect of orexin-A on cardiac dysfunction mediated by NADPH oxidase-derived superoxide anion in ventrolateral medulla.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available Hypocretin/orexin-producing neurons, located in the perifornical region of the lateral hypothalamus area (LHA and projecting to the brain sites of rostral ventrolateral medulla (RVLM, involve in the increase of sympathetic activity, thereby regulating cardiovascular function. The current study was designed to test the hypothesis that the central orexin-A (OXA could be involved in the cardiovascular dysfunction of acute myocardial infarction (AMI by releasing NAD(PH oxidase-derived superoxide anion (O2 (- generation in RVLM, AMI rat model established by ligating the left anterior descending (LAD coronary artery to induce manifestation of cardiac dysfunction, monitored by the indicators as heart rate (HR, heart rate variability (HRV, mean arterial pressure (MAP and left intraventricular pressure. The results showed that the expressions of OXA in LHA and orexin 1 receptor (OX1R increased in RVLM of AMI rats. The double immunofluorescent staining indicated that OX1R positive cells and NAD(PH oxidative subunit gp91phox or p47phox-immunoreactive (IR cells were co-localized in RVLM. Microinjection of OXA into the cerebral ventricle significantly increased O2 (- production and mRNA expression of NAD(PH oxidase subunits when compared with aCSF-treated ones. Exogenous OXA administration in RVLM produced pressor and tachycardiac effects. Furthermore, the antagonist of OX1R and OX2R (SB-408124 and TCS OX2 29, respectively or apocynin (APO, an inhibitor of NAD(PH oxidase, partly abolished those cardiovascular responses of OXA. HRV power spectral analysis showed that exogenous OXA led to decreased HF component of HRV and increased LF/HF ratio in comparison with aCSF, which suggested that OXA might be related to sympathovagal imbalance. As indicated by the results, OXA might participate in the central regulation of cardiovascular activities by disturbing the sympathovagal balance in AMI, which could be explained by the possibility that OXR and NAD(PH-derived O

  3. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites

    DEFF Research Database (Denmark)

    Krag, A; Bendtsen, F; Møller, S

    2010-01-01

    (130 (SD 46) vs 78 (SD 29) mumol/l, psyndrome type 1 within 3 months was higher in the group with low CI than in the high CI group (43% vs 5%, p = 0.04). Patients with the lowest CI (N = 8) had significantly poorer survival at 3, 9, and 12 months......OBJECTIVES: Recent studies suggest that cardiac dysfunction precedes development of the hepatorenal syndrome. In this follow-up study, we aimed to investigate the relation between cardiac and renal function in patients with cirrhosis and ascites and the impact of cardiac systolic function...

  4. Changes in cardiac output and incidence of volume overload in cirrhotics receiving 20% albumin infusion.

    Science.gov (United States)

    Shasthry, Saggere M; Kumar, Manoj; Khumuckham, Jelen S; Sarin, Shiv Kumar

    2017-08-01

    Patients with cirrhosis are prone to develop volume over load, have increased capillary permeability and latent or overt cardiomyopathy. Whether albumin infusion causes volume overload in cirrhotics has not been adequately studied. Ninety nine consecutive cirrhotic patients receiving 1gm per kg albumin infusion were evaluated for development of volume overload. Clinical, echocardiographic and haemodynamic changes were closely monitored during and after albumin infusion. Thirty (30.30%) patients developed volume overload. Patients with higher BMI (P=.003), lower CTP (P=.01) and MELD (P=.034) were more often associated with the development of volume overload. Though baseline diastolic dysfunction was present in 82.8% of the patients, it did not influence the development of volume overload or changes in the cardiac output. The cardiac output increased significantly after albumin infusion (4.9±1.554 L/min to 5.86±1.85 L/min, Palbumin infusion develop volume overload, specially, those with higher BMI and lower severity of liver disease. Cardiac output increases after albumin infusion, and, baseline diastolic dysfunction has little effect on the development of volume overload or changes in cardiac output. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    Science.gov (United States)

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  6. Cardiac magnetic resonance imaging in Alström syndrome

    Directory of Open Access Journals (Sweden)

    Carey Catherine M

    2009-06-01

    Full Text Available Abstract Background A case series of the cardiac magnetic resonance imaging findings in seven adult Alström patients. Methods Seven patients from the National Specialist Commissioning Group Centre for Alström Disease, Torbay, England, UK, completed the cardiac magnetic resonance imaging protocol to assess cardiac structure and function in Alström cardiomyopathy. Results All patients had some degree of left and right ventricular dysfunction. Patchy mid wall gadolinium delayed enhancement was demonstrated, suggesting an underlying fibrotic process. Some degree of cardiomyopathy was universal. No evidence of myocardial infarction or fatty infiltration was demonstrated, but coronary artery disease cannot be completely excluded. Repeat scanning after 18 months in one subject showed progression of fibrosis and decreased left ventricular function. Conclusion Adult Alström cardiomyopathy appears to be a fibrotic process causing impairment of both ventricles. Serial cardiac magnetic resonance scanning has helped clarify the underlying disease progression and responses to treatment. Confirmation of significant mutations in the ALMS1 gene should lead to advice to screen the subject for cardiomyopathy, and metabolic disorders.

  7. Beta-Adrenergic Receptor Polymorphisms and Cardiac Graft Function in Potential Organ Donors

    Science.gov (United States)

    Khush, K.K.; Pawlikowska, L.; Menza, R.L.; Goldstein, B.A.; Hayden, V.; Nguyen, J.; Kim, H.; Poon, A.; Sapru, A.; Matthay, M.A.; Kwok, P.Y.; Young, W.L.; Baxter-Lowe, L.A.; Zaroff, J.G.

    2012-01-01

    Prior studies have demonstrated associations between β-adrenergic receptor polymorphisms and left ventricular dysfunction—an important cause of allograft non-utilization for transplantation. We hypothesized that βAR polymorphisms predispose donor hearts to LV dysfunction after brain death. 1,043 organ donors managed from 2001-2006 were initially studied. The following βAR single nucleotide polymorphisms were genotyped: β1AR 1165C/G (Arg389Gly), β1AR 145A/G (Ser49Gly), β2AR 46G/A (Gly16Arg), and β2AR 79C/G (Gln27Glu). In multivariable regression analyses, the β2AR46 SNP was significantly associated with LV systolic dysfunction, with each minor allele additively decreasing the odds for LV ejection fractiondonor management period: donors with the GG and AA genotypes had ORs of 2.64 (95% CI 1.52-4.57) and 2.70 (1.07-2.74) respectively for requiring >10 mcg/kg/min of dopamine compared to those with the CC and GG genotypes. However, no significant associations were found between βAR SNPs and cardiac dysfunction in 364 donors managed from 2007-2008, perhaps due to changes in donor management, lack of power in this validation cohort, or the absence of a true association. βAR polymorphisms may be associated with cardiac dysfunction after brain death, but these relationships require further study in independent donor cohorts. PMID:22994654

  8. Cardiac diastolic function after recovery from pre-eclampsia.

    Science.gov (United States)

    Soma-Pillay, P; Louw, M C; Adeyemo, A O; Makin, J; Pattinson, R C

    Pre-eclampsia is associated with significant changes to the cardiovascular system during pregnancy. Eccentric and concentric remodelling of the left ventricle occurs, resulting in impaired contractility and diastolic dysfunction. It is unclear whether these structural and functional changes resolve completely after delivery. The objective of the study was to determine cardiac diastolic function at delivery and one year post-partum in women with severe pre-eclampsia, and to determine possible future cardiovascular risk. This was a descriptive study performed at Steve Biko Academic Hospital, a tertiary referral hospital in Pretoria, South Africa. Ninety-six women with severe preeclampsia and 45 normotensive women with uncomplicated pregnancies were recruited during the delivery admission. Seventy-four (77.1%) women in the pre-eclamptic group were classified as a maternal near miss. Transthoracic Doppler echocardiography was performed at delivery and one year post-partum. At one year post-partum, women with pre-eclampsia had a higher diastolic blood pressure (p = 0.001) and body mass index (p = 0.02) than women in the normotensive control group. Women with early onset pre-eclampsia requiring delivery prior to 34 weeks' gestation had an increased risk of diastolic dysfunction at one year post-partum (RR 3.41, 95% CI: 1.11-10.5, p = 0.04) and this was irrespective of whether the patient had chronic hypertension or not. Women who develop early-onset pre-eclampsia requiring delivery before 34 weeks are at a significant risk of developing cardiac diastolic dysfunction one year after delivery compared to normotensive women with a history of a low-risk pregnancy.

  9. Indium-111-labelled antimyosin antibody imaging in a patient with cardiac sarcoidosis

    International Nuclear Information System (INIS)

    Knapp, W.H.; Bentrup, A.; Ohlmeier, H.

    1993-01-01

    The aetiology of cardiac dysfunction caused by sarcoid granulomatous inflammation may be difficult to clarify, and the potential of imaging methods is limited. We report on a patient who present with acute biventricular decompensation. Pulmonary sarcoidosis was confirmed after hospitalization. Four weeks after the initiation of corticosteroid treatment, scintigraphy with indium-111-labelled antimyosin antibody Fab fragments (AMAB) revealed distinct activity accumulation in major parts of the left ventricular wall (heart-lung ratio: 1.6) 72 h following injection. There may by a role for AMAB scintigraphy in the early detection of cardiac sacroidosis. (orig.)

  10. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury.

    Science.gov (United States)

    McDonough, Kathleen H; Virag, Jitka Ismail

    2006-01-01

    Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart