WorldWideScience

Sample records for ameliorate impaired neurodevelopment

  1. Brain Research to Ameliorate Impaired Neurodevelopment - Home-based Intervention Trial (BRAIN-HIT

    Directory of Open Access Journals (Sweden)

    Mahantshetti Niranjana S

    2010-04-01

    Full Text Available Abstract Background This randomized controlled trial aims to evaluate the effects of an early developmental intervention program on the development of young children in low- and low-middle-income countries who are at risk for neurodevelopmental disability because of birth asphyxia. A group of children without perinatal complications are evaluated in the same protocol to compare the effects of early developmental intervention in healthy infants in the same communities. Birth asphyxia is the leading specific cause of neonatal mortality in low- and low-middle-income countries and is also the main cause of neonatal and long-term morbidity including mental retardation, cerebral palsy, and other neurodevelopmental disorders. Mortality and morbidity from birth asphyxia disproportionately affect more infants in low- and low-middle-income countries, particularly those from the lowest socioeconomic groups. There is evidence that relatively inexpensive programs of early developmental intervention, delivered during home visit by parent trainers, are capable of improving neurodevelopment in infants following brain insult due to birth asphyxia. Methods/Design This trial is a block-randomized controlled trial that has enrolled 174 children with birth asphyxia and 257 without perinatal complications, comparing early developmental intervention plus health and safety counseling to the control intervention receiving health and safety counseling only, in sites in India, Pakistan, and Zambia. The interventions are delivered in home visits every two weeks by parent trainers from 2 weeks after birth until age 36 months. The primary outcome of the trial is cognitive development, and secondary outcomes include social-emotional and motor development. Child, parent, and family characteristics and number of home visits completed are evaluated as moderating factors. Discussion The trial is supervised by a trial steering committee, and an independent data monitoring

  2. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring.

    Science.gov (United States)

    Akitake, Yoshiharu; Katsuragi, Shinji; Hosokawa, Masato; Mishima, Kenichi; Ikeda, Tomoaki; Miyazato, Mikiya; Hosoda, Hiroshi

    2015-01-01

    Intrauterine growth retardation (IUGR) occurs in 3% to 7% of all pregnancies. Recent human studies have indicated that neurodevelopmental disabilities, learning disorders, memory impairment, and mood disturbance are common in IUGR offspring. However, the interactions between IUGR and neurodevelopmental disorders are unclear because of the wide range of causes of IUGR, such as maternal malnutrition, placental insufficiency, pregnancy toxemia, and fetal malformations. Meanwhile, many studies have shown that moderate food restriction enhances spatial learning and improves mood disturbance in adult humans and animals. To date, the effects of maternal moderate food restriction on fetal brain remain largely unknown. In this study, we hypothesized that IUGR would be caused by even moderate food restriction in pregnant females and that the offspring would have neurodevelopmental disabilities. Mid-pregnant mice received moderate food restriction through the early lactation period. The offspring were tested for aspects of physical development, behavior, and neurodevelopment. The results showed that moderate maternal food restriction induced IUGR. Offspring had low birth weight and delayed development of physical and coordinated movement. Moreover, IUGR offspring exhibited mental disabilities such as anxiety and poor cognitive function. In particular, male offspring exhibited significantly impaired cognitive function at 3 weeks of age. These results suggested that a restricted maternal diet could be a risk factor for developmental disability in IUGR offspring and that male offspring might be especially susceptible.

  3. N-Docosahexaenoylethanolamine ameliorates ethanol-induced impairment of neural stem cell neurogenic differentiation.

    Science.gov (United States)

    Rashid, Mohammad Abdur; Kim, Hee-Yong

    2016-03-01

    Previous studies demonstrated that prenatal exposure to ethanol interferes with embryonic and fetal development, and causes abnormal neurodevelopment. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid highly enriched in the brain, was shown to be essential for proper brain development and function. Recently, we found that N-docosahexenoyethanolamine (synaptamide), an endogenous metabolite of DHA, is a potent PKA-dependent neurogenic factor for neural stem cell (NSC) differentiation. In this study, we demonstrate that ethanol at pharmacologically relevant concentrations downregulates cAMP signaling in NSC and impairs neurogenic differentiation. In contrast, synaptamide reverses ethanol-impaired NSC neurogenic differentiation through counter-acting on the cAMP production system. NSC exposure to ethanol (25-50 mM) for 4 days dose-dependently decreased the number of Tuj-1 positive neurons and PKA/CREB phosphorylation with a concomitant reduction of cellular cAMP. Ethanol-induced cAMP reduction was accompanied by the inhibition of G-protein activation and expression of adenylyl cyclase (AC) 7 and AC8, as well as PDE4 upregulation. In contrast to ethanol, synaptamide increased cAMP production, GTPγS binding, and expression of AC7 and AC8 isoforms in a cAMP-dependent manner, offsetting the ethanol-induced impairment in neurogenic differentiation. These results indicate that synaptamide can reduce ethanol-induced impairment of neuronal differentiation by counter-affecting shared targets in G-protein coupled receptor (GPCR)/cAMP signaling. The synaptamide-mediated mechanism observed in this study may offer a possible avenue for ameliorating the adverse impact of fetal alcohol exposure on neurodevelopment.

  4. Iodine deficiency in the U.K.: an overlooked cause of impaired neurodevelopment?

    Science.gov (United States)

    Bath, Sarah C; Rayman, Margaret P

    2013-05-01

    This review describes historical iodine deficiency in the U.K., gives current information on dietary sources of iodine and summarises recent evidence of iodine deficiency and its association with child neurodevelopment. Iodine is required for the production of thyroid hormones that are needed for brain development, particularly during pregnancy. Iodine deficiency is a leading cause of preventable brain damage worldwide and is associated with impaired cognitive function. Despite a global focus on the elimination of iodine deficiency, iodine is a largely overlooked nutrient in the U.K., a situation we have endeavoured to address through a series of studies. Although the U.K. has been considered iodine-sufficient for many years, there is now concern that iodine deficiency may be prevalent, particularly in pregnant women and women of childbearing age; indeed we found mild-to-moderate iodine deficiency in pregnant women in Surrey. As the major dietary source of iodine in the U.K. is milk and dairy produce, it is relevant to note that we have found the iodine concentration of organic milk to be over 40% lower than that of conventional milk. In contrast to many countries, iodised table salt is unlikely to contribute to U.K. iodine intake as we have shown that its availability is low in grocery stores. This situation is of concern as the level of U.K. iodine deficiency is such that it is associated with adverse effects on offspring neurological development; we demonstrated a higher risk of low IQ and poorer reading-accuracy scores in U.K. children born to mothers who were iodine-deficient during pregnancy. Given our findings and those of others, iodine status in the U.K. population should be monitored, particularly in vulnerable subgroups such as pregnant women and children.

  5. Phytoceramide Shows Neuroprotection and Ameliorates Scopolamine-Induced Memory Impairment

    Directory of Open Access Journals (Sweden)

    Seikwan Oh

    2011-10-01

    Full Text Available The function and the role phytoceramide (PCER and phytosphingosine (PSO in the central nervous system has not been well studied. This study was aimed at investigating the possible roles of PCER and PSO in glutamate-induced neurotoxicity in cultured neuronal cells and memory function in mice. Phytoceramide showed neuro-protective activity in the glutamate-induced toxicity in cultured cortical neuronal cells. Neither phytosphingosine nor tetraacetylphytosphingosine (TAPS showed neuroproective effects in neuronal cells. PCER (50 mg/kg, p.o. recovered the scopolamine-induced reduction in step-through latency in the passive avoidance test; however, PSO did not modulate memory function on this task. The ameliorating effects of PCER on spatial memory were confirmed by the Morris water maze test. In conclusion, through behavioral and neurochemical experimental results, it was demonstrated that central administration of PCER produces amelioration of memory impairment. These results suggest that PCER plays an important role in neuroprotection and memory enhancement and PCER could be a potential new therapeutic agent for the treatment of neurodegenerative diseases such as Alzheimer’s disease.

  6. Nutrients, neurodevelopment, and mood.

    Science.gov (United States)

    Casper, Regina C

    2004-12-01

    Human neurodevelopment is the result of genetic and environmental interactions. This paper examines the role of prenatal nutrition relative to psychiatric disorders and explores the relationship among nutrients, mood changes, and mood disorders. Epidemiologic studies have found that adults who were born with a normal, yet low birth weight have an increased susceptibility to diseases such as coronary heart disease, diabetes, and stroke in adulthood. Prenatal caloric malnutrition, low birth weight, and prematurity also increase the risk for neurodevelopmental disorders, schizophrenia, affective disorders, and schizoid and antisocial personality disorders. Placebo-controlled studies in medicated patients suggest that add-on treatment with omega-3 fatty acids, particularly eicosapentaenoic acid, may ameliorate symptoms of major depressive disorder. Additional studies are necessary to confirm any benefits for bipolar disorders.

  7. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    Science.gov (United States)

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  8. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice.

    Science.gov (United States)

    Li, Zhigui; Hao, Shuang; Yin, Hongqiang; Gao, Jing; Yang, Zhuo

    2016-05-15

    The underlying mechanisms of cognitive impairment in diabetes remain incompletely characterized. Here we show that the autophagic inhibition by 3-methyladenine (3-MA) aggravates cognitive impairment in streptozotocin-induced diabetic mice, including exacerbation of anxiety-like behaviors and aggravation in spatial learning and memory, especially the spatial reversal memory. Further neuronal function identification confirmed that both long term potentiation (LTP) and depotentiation (DPT) were exacerbated by autophagic inhibition in diabetic mice, which indicating impairment of synaptic plasticity. However, no significant change of pair-pulse facilitation (PPF) was recorded in diabetic mice with autophagic suppression compared with the diabetic mice, which indicated that presynaptic function was not affected by autophagic inhibition in diabetes. Subsequent hippocampal neuronal cell death analysis showed that the apoptotic cell death, but not the regulated necrosis, significantly increased in autophagic suppression of diabetic mice. Finally, molecular mechanism that may lead to cell death was identified. The long non-coding RNA PVT1 (plasmacytoma variant translocation 1) expression was analyzed, and data revealed that PVT1 was decreased significantly by 3-MA in diabetes. These findings show that PVT1-mediated autophagy may protect hippocampal neurons from impairment of synaptic plasticity and apoptosis, and then ameliorates cognitive impairment in diabetes. These intriguing findings will help pave the way for exciting functional studies of autophagy in cognitive impairment and diabetes that may alter the existing paradigms.

  9. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    Science.gov (United States)

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  10. Bacopa monniera leaf extract ameliorates hypobaric hypoxia induced spatial memory impairment.

    Science.gov (United States)

    Hota, Sunil Kumar; Barhwal, Kalpana; Baitharu, Iswar; Prasad, Dipti; Singh, Shashi Bala; Ilavazhagan, Govindasamy

    2009-04-01

    Hypobaric hypoxia induced memory impairment has been attributed to several factors including increased oxidative stress, depleted mitochondrial bioenergetics, altered neurotransmission and apoptosis. This multifactorial response of the brain to hypobaric hypoxia limits the use of therapeutic agents that target individual pathways for ameliorating hypobaric hypoxia induced memory impairment. The present study aimed at exploring the therapeutic potential of a bacoside rich leaf extract of Bacopa monniera in improving the memory functions in hypobaric conditions. The learning ability was evaluated in male Sprague Dawley rats along with memory retrieval following exposure to hypobaric conditions simulating an altitude of 25,000 ft for different durations. The effect of bacoside administration on apoptosis, cytochrome c oxidase activity, ATP levels, and oxidative stress markers and on plasma corticosterone levels was investigated. Expression of NR1 subunit of N-methyl-d-aspartate receptors, neuronal cell adhesion molecules and was also studied along with CREB phosphorylation to elucidate the molecular mechanisms of bacoside action. Bacoside administration was seen to enhance learning ability in rats along with augmentation in memory retrieval and prevention of dendritic atrophy following hypoxic exposure. In addition, it decreased oxidative stress, plasma corticosterone levels and neuronal degeneration. Bacoside administration also increased cytochrome c oxidase activity along with a concomitant increase in ATP levels. Hence, administration of bacosides could be a useful therapeutic strategy in ameliorating hypobaric hypoxia induced cognitive dysfunctions and other related neurological disorders.

  11. Ameliorative Effect of Ginsenoside Rg1 on Lipopolysaccharide-Induced Cognitive Impairment: Role of Cholinergic System.

    Science.gov (United States)

    Jin, Yang; Peng, Jian; Wang, Xiaona; Zhang, Dong; Wang, Tianyin

    2017-01-11

    Bacterial endotoxin lipopolysaccharide (LPS) can induce systemic inflammation, and therefore disrupt learning and memory processes. Ginsenoside Rg1, a major bioactive component of ginseng, is shown to greatly improve cognitive function. The present study was designed to further investigate whether administration of ginsenoside Rg1 can ameliorate LPS-induced cognitive impairment in the Y-maze and Morris water maze (MWM) task, and to explore the underlying mechanisms. Results showed that exposure to LPS (500 μg/kg) significantly impaired working and spatial memory and that repeated treatment with ginsenoside Rg1 (200 mg/kg/day, for 30 days) could effectively alleviate the LPS-induced cognitive decline as indicated by increased working and spatial memory in the Y-maze and MWM tests. Furthermore, ginsenoside Rg1 treatment prevented LPS-induced decrease of acetylcholine (ACh) levels and increase of acetylcholinesterase (AChE) activity. Ginsenoside Rg1 treatment also reverted the decrease of alpha7 nicotinic acetylcholine receptor (α7 nAChR) protein expression in the prefrontal cortex (PFC) and hippocampus of LPS-treated rats. These findings suggest that ginsenoside Rg1 has protective effect against LPS-induced cognitive deficit and that prevention of LPS-induced changes in cholinergic system is crucial to this ameliorating effect.

  12. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation.

    Science.gov (United States)

    Xiao, Weihua; Chen, Peijie; Liu, Xiaoguang; Zhao, Linlin

    2015-10-21

    The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  13. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation

    Directory of Open Access Journals (Sweden)

    Weihua Xiao

    2015-10-01

    Full Text Available The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C Control, E Exercise, (E1 Exercise with one week to recover, (ES Exercise + Supplementation and (ES1 Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031, reactive oxygen species (ROS production (decreased by 26%, p = 0.003 and MHC II mRNA (decreased by 22%, p = 0.041 of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05. Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  14. Diesel Exhaust Particles Induce Impairment of Vascular and Cardiac Homeostasis in Mice: Ameliorative Effect of Emodin

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2015-07-01

    Full Text Available Background/Aim: There is strong epidemiological and clinical evidence that components of the cardiovascular system are adversely affected by particulate air pollutants through the generation of inflammation and oxidative stress. Emodin (1,3,8-trihydroxy-6-methylanthraquinone, which is commonly found in the roots of rhubarb plant, has strong antioxidant and anti-inflammatory effects. However, its possible protective effect on the cardiovascular effect of particulate air pollutants has never been reported before. Methods: We tested, in Tuck-Ordinary mice, the possible ameliorative effect of emodin on the acute (24h cardiovascular effects of diesel exhaust particles (DEP, 1 mg/kg or saline (control. Emodin (4 mg/kg was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty four h following DEP exposure, several cardiovascular endpoints were assessed. Results: Emodin significantly prevented the increase of leukocyte (n=8, Pin vivo prothrombotic effect of DEP in pial arterioles (n=6, Pin vitro in whole blood (n=4-5, PConclusion: We conclude that emodin treatment has consistently protected against DEP-induced impairment of vascular and cardiac homeostasis in mice. Our study provides experimental evidence that the use of functional food such as emodin, pending further studies, can be considered a useful agent and may have the potential to protect or mitigate the cardiovascular detrimental effects observed in people living in cities with high concentrations of particulate air pollution.

  15. Vanadium-enriched chickpea sprout ameliorated hyperglycemia and impaired memory in streptozotocin-induced diabetes rats.

    Science.gov (United States)

    Mao, Xueqin; Zhang, Ling; Xia, Qing; Sun, Zhaofeng; Zhao, Xiaomin; Cai, Hongxin; Yang, Xiaoda; Xia, Zuoli; Tang, Yujing

    2008-10-01

    Vanadium compounds have been recognized for their hypoglycemic effects; however, potential short and long-term vanadium toxicity has slowed the acceptance for therapeutic use. In the present work, three batches of vanadium-enriched chickpea sprout (VCS) were prepared by incubating chickpea seeds in presence of 200, 100, and 50 microg/ml of sodium orthovanadate (SOV). The effects of oral administration of chickpea sprout (CS) and VCS food for 8 weeks on streptozotocin-induced (STZ) diabetic rats were investigated. Both CS and VCS food was found to ameliorate some hyperglycemic symptoms of the diabetic rats, i.e. improve lipid metabolism, decrease blood glucose level, prevent body weight loss, and reduce impairment of diabetic related spatial learning and memory. Serum insulin was substantially elevated in treated diabetic rats, which is probably one important reason for the hypoglycemic effect. Compared with CS alone, VCS100 food exhibited remarkably enhanced effectiveness in alleviating diabetes induced hyperglycemia and memory loss. Moreover, vanadium-enriched chickpeas appeared to abolish the vanadium induced toxicity associated with administration of this metal for diabetes during the 8-week study period. This study suggested further work of the vanadium speciation in CS and novel hypoglycemic mechanism for the antidiabetic activity of vanadium agents. Vanadium containing (VCS) food could be a dietary supplement for the diabetic status.

  16. Nutrition and neurodevelopment: mechanisms of developmental dysfunction and disease in later life.

    Science.gov (United States)

    Dauncey, M J; Bicknell, R J

    1999-12-01

    Nutrition plays a central role in linking the fields of developmental neurobiology and cognitive neuroscience. It has a profound impact on the development of brain structure and function and malnutrition can result in developmental dysfunction and disease in later life. A number of diseases, including schizophrenia, may be related to neurodevelopmental insults such as malnutrition, hypoxia, viruses or in utero drug exposure. Some of the most significant findings on nutrition and neurodevelopment during the last three decades, and especially during the last few years, are discussed in this review. Attention is focused on the underlying cellular and molecular mechanisms by which diet exerts its effects. Randomized intervention studies have revealed important effects of early nutrition on later cognitive development, and recent epidemiological findings show that both genetics and environment are risk factors for schizophrenia. Particularly important is the effect of early nutrition on development of the hippocampus, a brain structure important in establishing learning and memory, and hence for cognitive performance. A major aim of future research should be to elucidate the molecular mechanisms underlying nutritionally-induced impairment of neurodevelopment and specifically to determine the mechanisms by which early nutritional experience affects later cognitive performance. Key research objectives should include: (1) increased understanding of mechanisms underlying the normal processes of ageing and neurodegenerative disorders; (2) assessment of the role of susceptibility genes in modulating the effects of early nutrition on neurodevelopment; and (3) development of nutritional and pharmaceutical strategies for preventing and/or ameliorating the adverse effects of early malnutrition on long-term programming.

  17. Mangiferin ameliorates the intestinal inflammatory response and the impaired gastrointestinal motility in mouse model of postoperative ileus.

    Science.gov (United States)

    Morais, Talita Cavalcante; Arruda, Bruno Rodrigues; de Sousa Magalhães, Hebert; Trevisan, Maria Teresa Salles; de Araújo Viana, Daniel; Rao, Vietla Satyanarayana; Santos, Flavia Almeida

    2015-05-01

    Our previous study has shown that mangiferin (MGF), a glucosylxanthone from Mangifera indica, exerts gastrointestinal prokinetic action involving a cholinergic mechanism. Postoperative ileus (POI) is a temporary disturbance in gastrointestinal motility following surgery, and intestinal inflammatory response plays a critical role in the pathogenesis of POI. The present study investigated to know whether MGF having anti-inflammatory and prokinetic actions can ameliorate the intestinal inflammation and impaired gastrointestinal transit seen in the mouse model of POI. Experimental POI was induced in adult male Swiss mice by standardized small intestinal manipulation (IM). Twenty-four hours later, gastrointestinal transit was assessed by charcoal transport. MGF was administered orally 1 h before the measurement of GIT. To evaluate the inflammatory response, plasma levels of proinflammatory cytokines TNF-α, IL-1β, IL-6, and chemokine MCP-1, and the myeloperoxidase activity, nitrate/nitrite level, and histological changes of ileum were determined in mice treated or not with MGF. Experimental POI in mice was characterized by decreased gastrointestinal transit and marked intestinal and systemic inflammatory response. MGF treatment led to recovery of the delayed intestinal transit induced by IM. MGF in ileum significantly inhibited the myeloperoxidase activity, a marker of neutrophil infiltration, and nitrate/nitrite level and reduced the plasma levels of TNF-α, IL-1β, IL-6, and MCP-1 as well. MGF treatment ameliorates the intestinal inflammatory response and the impaired gastrointestinal motility in the mouse model of POI.

  18. Dietary alpha-Lipoic Acid Alters Piglet Neurodevelopment

    Directory of Open Access Journals (Sweden)

    Austin T Mudd

    2016-05-01

    Full Text Available Introduction: Alpha-lipoic acid (a-LA is an antioxidant shown to ameliorate age-associated impairments of brain and cardiovascular function. Human milk is known to have high antioxidant capacity, however the role of antioxidants in the developing brain is largely uncharacterized. This exploratory study aimed to examine the dose response effects of a-LA on piglet growth and neurodevelopment. Methods: Beginning at 2 d of age, 31 male pigs received one of three diets: control (CONT [0 mg a-LA/100g], low a-LA (LOW [120 mg a-LA/100g], or high a-LA (HIGH [240 mg a-LA/100g]. From 14 to 28 d of age, pigs were subjected to spatial T-maze assessment and macrostructural and microstructural neuroimaging procedures were performed at 31 d of age.Results: No differences due to diet were observed for bodyweight gain or intestinal weight and length. Spatial T-maze assessment did not reveal learning differences due to diet in proportion of correct choices or latency to choice measures. Diffusion tensor imaging revealed decreased (P = 0.01 fractional anisotropy (FA in the internal capsule of HIGH fed pigs compared with both the CONT (P < 0.01 and LOW (P = 0.03 fed pigs, which were not different from one another. Analysis of axial diffusivity (AD within the internal capsule revealed a main effect of diet (P < 0.01 in which HIGH fed piglets exhibited smaller (P < 0.01 rates of diffusion compared with CONT piglets, but HIGH fed piglets were not different (P = 0.12 than LOW fed piglets. Tract-based spatial statistics, a comparison of FA values along white matter tracts, revealed 1,650 voxels where CONT piglets exhibited higher (P < 0.05 values compared with HIGH fed piglets. Conclusion: The lack of differences in intestinal and bodyweight measures among piglets indicate a-LA supplementation does not impact overall growth, regardless of concentration. Additionally, no observed differences between CONT and LOW fed piglets in behavior and neuroimaging measures indicate a

  19. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  20. Pioglitazone ameliorates the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.

    Science.gov (United States)

    Takada, Shingo; Hirabayashi, Kagami; Kinugawa, Shintaro; Yokota, Takashi; Matsushima, Shouji; Suga, Tadashi; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Mizushima, Wataru; Masaki, Yoshihiro; Furihata, Takaaki; Katsuyama, Ryoichi; Okita, Koichi; Tsutsui, Hiroyuki

    2014-10-05

    We have reported that exercise capacity is reduced in high fat diet (HFD)-induced diabetic mice, and that this reduction is associated with impaired mitochondrial function in skeletal muscle (SKM). However, it remains to be clarified whether the treatment of diabetes ameliorates the reduced exercise capacity. Therefore, we examined whether an insulin-sensitizing drug, pioglitazone, could improve exercise capacity in HFD mice. C57BL/6J mice were fed a normal diet (ND) or HFD, then treated with or without pioglitazone (3 mg/kg/day) to yield the following 4 groups: ND+vehicle, ND+pioglitazone, HFD+vehicle, and HFD+pioglitazone (n=10 each). After 8 weeks, body weight, plasma glucose, and insulin in the HFD+vehicle were significantly increased compared to the ND+vehicle group. Pioglitazone normalized the insulin levels in HFD-fed mice, but did not affect the body weight or plasma glucose. Exercise capacity determined by treadmill tests was significantly reduced in the HFD+vehicle, and this reduction was almost completely ameliorated in HFD+pioglitazone mice. ADP-dependent mitochondrial respiration, complex I and III activities, and citrate synthase activity were significantly decreased in the SKM of the HFD+vehicle animals, and these decreases were also attenuated by pioglitazone. NAD(P)H oxidase activity was significantly increased in the HFD+vehicle compared with the ND+vehicle, and this increase was ameliorated in HFD+pioglitazone mice. Pioglitazone improved the exercise capacity in diabetic mice, which was due to the improvement in mitochondrial function and attenuation of oxidative stress in the SKM. Our data suggest that pioglitazone may be useful as an agent for the treatment of diabetes mellitus.

  1. Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance.

    Science.gov (United States)

    Zhu, Zhiyuan; Yan, Jianming; Jiang, Wei; Yao, Xin-gang; Chen, Jing; Chen, Lili; Li, Chenjing; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2013-08-07

    Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.

  2. Nicotine ameliorates impairment of working memory in methamphetamine-treated rats.

    Science.gov (United States)

    Mizoguchi, Hiroyuki; Ibi, Daisuke; Takase, Fumiaki; Nagai, Taku; Kamei, Hiroyuki; Toth, Erika; Sato, Jun; Takuma, Kazuhiro; Yamada, Kiyofumi

    2011-06-20

    Nicotine is hypothesized to have therapeutic effects on attentional and cognitive abnormalities in psychosis. In this study, we investigated the effect of nicotine on impaired spatial working memory in repeated methamphetamine (METH)-treated rats. Rats were administered METH (4 mg/kg, s.c.) once a day for 7 days, and their working memory was assessed with a delayed spatial win-shift task in a radial arm maze. The task consisted of two phases, a training phase and a test phase, separated by a delay. Control animals showed impaired performance in the test phase when the delay time was increased to 120 min or longer, while METH-treated rats showed impaired performance with a shorter delay time of 90 min. Memory impairment in METH-treated rats persisted for at least 14 days after drug withdrawal. METH-induced impairment of working memory was reversed by nicotine (0.3mg/kg, p.o., for 7 days), but the effect was diminished 7 days after the withdrawal. In control rats, nicotine decreased the number of working memory errors in the test with delay time of 120 min when administered before the training phase. Neither post-training nor pre-test administration of nicotine had any effect on working memory. These findings suggest that nicotine may have some protective effect against the impairment of working memory.

  3. A cannabinoid CB(1) receptor antagonist ameliorates impairment of recognition memory on withdrawal from MDMA (Ecstasy).

    Science.gov (United States)

    Nawata, Yoko; Hiranita, Takato; Yamamoto, Tsuneyuki

    2010-01-01

    (+/-)-3,4-Methylenedioxymethamphetamine (MDMA, 'Ecstasy') abusers have persistent neuropsychiatric deficits including memory impairments after the cessation of abuse. On the other hand, cannabinoid CB(1) receptors have been implicated in learning/memory, and are highly expressed in the hippocampus, a region of the brain believed to have an important function in certain forms of learning and memory. In this study, we clarified the mechanism underlying the cognitive impairment that develops during MDMA withdrawal from the standpoint of the cannabinoid CB(1) receptors. Mice were administered MDMA (10 mg/kg, i.p.) once a day for 7 days. On the 7th day of withdrawal, a novel object recognition task was performed and the amount of cannabinoid CB(1) receptor protein was measured with western blotting. Recognition performance was impaired on the 7th day of withdrawal. This impairment was blocked by AM251, a cannabinoid CB(1) receptor antagonist, administered 30 min before the training trial or co-administered with MDMA. At this time, the level of cannabinoid CB(1) receptor protein increased significantly in the hippocampus but not the prefrontal cortex or striatum. This increase of CB(1) receptor protein in the hippocampus was also blocked by the co-administration of AM251. Furthermore, CB(1) receptor knockout mice showed no impairment of recognition performance on the withdrawal from MDMA. The impairment of recognition memory during withdrawal from MDMA may result from the activation of cannabinoid CB(1) receptors in the hippocampus.

  4. Ameliorating Effects of Ethanol Extract of Fructus mume on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Min-Soo Kim

    2015-01-01

    Full Text Available We previously reported that Fructus mume (F. mume extract shows protective effects on memory impairments and anti-inflammatory effects induced by chronic cerebral hypoperfusion. Neurodegeneration of basal cholinergic neurons is also observed in the brain with chronic cerebral hypoperfusion. Therefore, the present study was conducted to examine whether F. mume extracts enhance cognitive function via the action of cholinergic neuron using a scopolamine-induced animal model of memory impairments. F. mume (50, 100, or 200 mg/kg was administered to C57BL/6 mice for 14 days (days 1–14 and memory impairment was induced by scopolamine (1 mg/kg, a muscarinic receptor antagonist for 7 days (days 8–14. Spatial memory was assessed using Morris water maze and hippocampal level of acetylcholinesterase (AChE and choline acetyltransferase (ChAT was examined by ELISA and immunoblotting. Mice that received scopolamine alone showed impairments in acquisition and retention in Morris water maze task and increased activity of AChE in the hippocampus. Mice that received F. mume and scopolamine showed no scopolamine-induced memory impairment and increased activity of AChE. In addition, treatments of F. mume increased ChAT expression in the hippocampus. These results indicated that F. mume might enhance cognitive function via action of cholinergic neurons.

  5. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring.

  6. Capsaicin ameliorates stress-induced Alzheimer's disease-like pathological and cognitive impairments in rats.

    Science.gov (United States)

    Jiang, Xia; Jia, Lin-Wei; Li, Xiao-Hong; Cheng, Xiang-Shu; Xie, Jia-Zhao; Ma, Zhi-Wei; Xu, Wei-Jie; Liu, Yue; Yao, Yun; Du, Lai-Ling; Zhou, Xin-Wen

    2013-01-01

    Hyperphosphorylated tau aggregated into neurofibrillary tangles is a hallmark lesion of Alzheimer's disease (AD) and is linked to synaptic and cognitive impairments. In animal models, cold water stress (CWS) can cause cognitive disorder and tau hyperphosphorylation. Capsaicin (CAP), a specific TRPV1 agonist, is neuroprotective against stress-induced impairment, but the detailed mechanisms are still elusive. Here, we investigated whether CAP mitigates CWS-induced cognitive and AD-like pathological alterations in rats. The animals were administered CAP (10 mg/kg in 0.2 ml, 0.1% ethanol) or a control (0.2 ml normal saline, 0.1% ethanol) by intragastric infusion 1 h before CWS treatment. Our results showed that CAP significantly attenuated CWS-induced spatial memory impairment and suppression of PP-DG long-term potentiation; CAP abolished CWS-induced dendritic regression and enhanced several memory-associated proteins decreased by CWS, such as synapsin I and PSD93; CAP also prevented CWS-induced tau hyperphosphorylation by abolishing inhibition of protein phosphatase 2A. Taken together, this study demonstrated that activation of TRPV1 can mitigate CWS-induced AD-like neuropathological alterations and cognitive impairment and may be a promising target for therapeutic intervention in AD.

  7. Treatment with Akebia Saponin D Ameliorates Aβ1–42-Induced Memory Impairment and Neurotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Yongde Chen

    2016-03-01

    Full Text Available Amyloid-β peptide (Aβ is known to be directly associated with the progressive neuronal death observed in Alzheimer’s disease (AD. However, effective neuroprotective approaches against Aβ neurotoxicity are still unavailable. In the present study, we investigated the protective effects of Akebia saponin D (ASD, a typical compound isolated from the rhizome of Dipsacus asper Wall, on Aβ1–42-induced impairment of learning and memory formation and explored the probable underlying molecular mechanisms. We found that treatment with ASD (30, 90 or 270 mg/kg significantly ameliorated impaired spatial learning and memory in intracerebroventricularly (ICV Aβ1–42-injected rats, as evidenced by a decrease tendency in escape latency during acquisition trials and improvement in exploratory activities in the probe trial in Morris water maze (MWM. Further study showed that ASD reversed Aβ1–42-induced accumulation of Aβ1–42 and Aβ1–40 in the hippocampus through down-regulating the expression of BACE and Presenilin 2 accompanied with increased the expression of TACE, IDE and LRP-1. Taken together, our findings suggested that ASD exerted therapeutic effects on Aβ-induced cognitive deficits via amyloidogenic pathway.

  8. The Ameliorating Effect of Steamed and Fermented Codonopsis lanceolata on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Jin Bae Weon

    2013-01-01

    Full Text Available Codonopsis lanceolata (Campanulaceae have been traditionally used to treat lung inflammatory diseases, such as asthma, tonsillitis, and pharyngitis. The present study was performed to evaluate the cognitive-enhancing effects of steamed and fermented C. lanceolata in scopolamine-induced memory impairments in mice. Cognitive abilities were determined by the Morris water maze and passive avoidance tests. Mice orally received fermented C. lanceolata extract at doses of 100, 300, or 500 mg/kg body weight. Fermented C. lanceolata extract (500 mg/kg body weight, p.o. significantly shortened the escape latency times that were increased by scopolamine on the 4th day of trial sessions in the Morris water maze task. In addition, it exerted longer step-through latency times than those of the scopolamine-treated group in the passive avoidance test. Furthermore, the neuroprotective effects of fermented C. lanceolata extract on glutamate-induced neurocytotoxicity were investigated in HT22 cells. Fermented C. lanceolata extract showed a relative protection ratio of 59.62% at 500 μg/mL. In conclusion, fermented C. lanceolata extract ameliorated scopolamine-induced memory impairments, exerted neuroprotective effects, and improved activity compared to that found with original C. lanceolata. Further study will be required to investigate the mechanisms underlying this cognitive-enhancing activity.

  9. 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice

    Directory of Open Access Journals (Sweden)

    Yang Tan

    2016-11-01

    Full Text Available 7,8-Dihydroxyflavone (7,8-DHF, a tyrosine kinase B (TrkB agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE-KO mouse was associated with cognitive alteration via various mechanisms. Our present study investigated the possible mechanisms of cognitive impairment of ApoE-KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving spatial learning and memory in ApoE-KO mouse. 5-weeks-old ApoE-KO mice and C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5mg/kg or vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of 30 weeks to evaluate the cognitive performances. Afterwards, histology analysis and western blotting were performed. Spatial learning and memory deficits were observed in ApoE-KO mice, which were consistent with higher expression of active-asparaginyl endopeptidase (active-AEP as well as AEP-derived truncated tauN368 compared with normal group. In addition to that, long-term treatment of 7,8-DHF dramatically ameliorated cognitive decline in ApoE-KO mice, accompanied by the activation in phosphorylated protein kinase B (Akt/glycogen synthase kinase-3β (GSK-3β pathway and down-regulated expression of tau S396 and PHF-tau (phosphorylated tau at ser396 and ser404 epitope. These findings suggested that cognitive impairment of ApoE-KO mouse might associate with tau pathology and 7,8-DHF could activate AKT and then phosphorylate its downstream molecule to inhibit expression of abnormal tau, meanwhile, 7,8-DHF could reduce the expression of active-AEP and then inhibit production of truncated tauN368.

  10. Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine.

    Science.gov (United States)

    Abdel-Salam, Omar M E; El-Sayed El-Shamarka, Marwa; Salem, Neveen A; El-Mosallamy, Aliaa E M K; Sleem, Amany A

    2012-01-01

    Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms and impaired memory, owing to blockade of striatal dopamine D2 receptors. Cinnarizine is a calcium channel blocker with D2 receptor blocking properties which is widely used in treatment of vertiginous disorders. The present study aimed to see whether cinnarizine would worsen the effect of haloperidol on memory function and on oxidative stress in mice brain. Cinnarizine (5, 10 or 20 mg/kg), haloperidol, or haloperidol combined with cinnarizine was administered daily via the subcutaneous route and mice were examined on weekly basis for their ability to locate a submerged plate in the water maze test. Mice were euthanized 30 days after starting drug injection. Malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (nitrite/nitrate) were determined in brain. Haloperidol substantially impaired water maze performance. The mean time taken to find the escape platform (latency) was significantly delayed by haloperidol (2 mg/kg, i.p.) on weeks 1-8 of the test, compared with saline control group. In contrast, those treated with haloperidol and cinnarizine showed significantly shorter latencies, which indicated that learning had occurred immediately. Haloperidol resulted in increased MDA in cortex, striatum, cerebellum and midbrain. GSH decreased in cortex, striatum and cerebellum and nitric oxide increased in cortex. Meanwhile, treatment with cinnarizine (20 mg/kg) and haloperidol resulted in significant decrease in MDA cortex, striatum, cerebellum and midbrain and an increase in GSH in cortex and striatum, compared with haloperidol group. These data suggest that cinnarizine improves the haloperidol induced brain oxidative stress and impairment of learning and memory in the water maze test in mice.

  11. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats.

    Science.gov (United States)

    Hasanein, Parisa; Mahtaj, Azam Kazemian

    2015-01-12

    Rosmarinic acid (RA) is a natural phenol that exerts different biological activities, such as antioxidant activity and neuroprotective effects. In this study, we hypothesized that administration of RA (8, 16, and 32 mg/kg, p.o.) for 7 days would effect on scopolamine-induced cognitive dysfunction as an extensively used model of cognitive impairment. The rats were divided into 10 groups. The acquisition trial was done 1h after the last administration of RA. Animals were divided into control, RA (8, 16, and 32 mg/kg) and donepezil (2 mg/kg) treated controls, scopolamine, RA (8, 16, and 32 mg/kg), and donepezil (2 mg/kg) treated scopolamine groups. Memory impairment was induced by scopolamine treatment (1 mg/kg, i.p.) 30 min after the administration of RA, donepezil, or saline. Scopolamine administration caused cognition deficits in the PAL and memory paradigm. While orally RA administration (16 and 32 mg/kg) improved learning and memory in control rats, it reversed learning and memory deficits of scopolamine received groups. Administration of RA at the dose of 8 mg/kg did not alter cognitive function in control and scopolamine treated groups. The combination of anticholinesterase, neuroprotective, and antioxidant properties of RA may all be responsible for the observed effects. These results indicate the beneficial effects of subchronic RA administration in passive avoidance learning and memory in control rats as well as in a pharmacological model of cholinergic deficit which continue to expand the knowledge base in creating new treatment strategies for cognition deficits and dementia. Of course, further studies are warranted for clinical use of RA in the management of demented subjects.

  12. Panax notoginseng saponins ameliorate impaired arterial vasodilation in SHRSP.Z-Lepr(fa) /lzmDmcr rats with metabolic syndrome.

    Science.gov (United States)

    Wu, Ting; Sun, Jianning; Kagota, Satomi; Maruyama, Kana; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2016-04-01

    Panax notoginseng saponins (PNS) are major components of Panax notoginseng, a herb with established clinical efficacy against vascular diseases. SHRSP.Z-Lepr(fa) /IzmDmcr (SHRSP.ZF) rats, a new animal model for metabolic syndrome, display an impaired vasorelaxation response in aortas and mesenteric arteries that is mediated by nitric oxide (NO). This study investigated whether PNS and its components can ameliorate this vascular dysfunction in SHRSP.ZF rats. In an in vitro study, in the presence or absence of PNS and its components, vasodilation in response to nitroprusside was determined from myographs under isometric tension conditions in aortas and mesenteric arteries from male SHRSP.ZF rats at 18-20 weeks of age. In an in vivo study, PNS (30 mg/kg per day) was orally administered to SHRSP.ZF rats from 8 to 20 weeks of age. In vitro treatment with PNS and Ginsenoside Rb1 increased nitroprusside-induced relaxation of aortas and mesenteric arteries in SHRSP.ZF rats. The PNS-induced increase was not affected by a nitric oxide (NO) synthase inhibitor or endothelium denudation. Relaxation in response to a cell-permeable cGMP analogue was increased by PNS, but cGMP accumulation by nitroprusside was not altered. In vivo treatment with PNS in SHRSP.ZF rats lowered blood pressure and increased relaxation and the expression of soluble guanylyl cyclase protein in arteries, without affecting metabolic abnormalities. These results indicate that PNS causes an increase in vasodilation in response to NO and a decrease in blood pressure, resulting in protection against vascular dysfunction in SHRSP.ZF rats. PNS might be beneficial in alleviating impaired vasodilation in metabolic syndrome.

  13. Ameliorating effect of new constituents from the hooks of Uncaria rhynchophylla on scopolamine-induced memory impairment

    Institute of Scientific and Technical Information of China (English)

    SHIN Suk-Chul; LEE Dong-Ung

    2013-01-01

    AIM:To study the chemical constituents and their anti-amnesic effect from the hooks of Uncaria rhynchophylla.METHODS:The isolation of compounds was performed by chromatographic techniques and their structures were identified on the basis of spectral analysis.Their ameliorating effects on scopolamine-induced memory impairment in vivo using a Morris water-maze task and passive avoidance task system were evaluated.RESULTS:Activity-guided fractionation of the total extracts resulted in the isolation of four constituents,trans-anethole (1),p-anisaldehyde (2),estragole (3),and 3-oxo-olean-12-en-28-oic acid (4),which were found for the first time from this plant.CONCLUSION:Compound 1 exhibited a better memory enhancing effect than tacrine,a positive agent,at the same dose in the passive avoidance test and a similar property in the water-maze test,and its action may be mediated,in part,by the acetylcholine enhancing cholinergic nervous system.

  14. Propofol ameliorates electroconvulsive shock-induced learning and memory impairment by regulation of synaptic metaplasticity via autophosphorylation of CaMKIIa at Thr 305 in stressed rats.

    Science.gov (United States)

    Ren, Li; Zhang, Fan; Min, Su; Hao, Xuechao; Qin, Peipei; Zhu, Xianlin

    2016-06-30

    Electroconvulsive therapy (ECT) is an effective treatment for depression, but it can induce learning and memory impairment. Our previous study found propofol (γ-aminobutyric acid (GABA) receptor agonist) could ameliorate electroconvulsive shock (ECS, an analog of ECT to animals)-induced cognitive impairment, however, the underlying molecular mechanisms remain unclear. This study aimed to investigate the effects of propofol on metaplasticity and autophosphorylation of CaMKIIa in stressed rats receiving ECS. Depressive-like behavior and learning and memory function were assessed by sucrose preference test and Morris water test respectively. LTP were tested by electrophysiological experiment, the expression of CaMKIIa, p-T305-CaMKII in hippocampus and CaMKIIα in hippocampal PSD fraction were evaluated by western blot. Results suggested ECS raised the baseline fEPSP and impaired the subsequent LTP, increased the expression of p-T305-CaMKII and decreased the expression of CaMKIIα in hippocampal PSD fraction, leading to cognitive dysfunction in stressed rats. Propofol could down-regulate the baseline fEPSP and reversed the impairment of LTP partly, decreased the expression of p-T305-CaMKII and increased the expression of CaMKIIα in hippocampal PSD fraction and alleviated ECS-induced learning and memory impairment. In conclusion, propofol ameliorates ECS-induced learning and memory impairment, possibly by regulation of synaptic metaplasticity via p-T305-CaMKII.

  15. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    Science.gov (United States)

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits.

  16. Low-dose steroid pretreatment ameliorates the transient impairment of liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Toshihito Shibata; Toru Mizuguchi; Yukio Nakamura; Masaki Kawamoto; Makoto Meguro; Shigenori Ota; Koichi Hirata; Hidekazu Ooe; Toshihiro Mitaka

    2012-01-01

    AIM:To determine if liver regeneration (LR) could be disturbed following radiofrequency (RF) ablation and whether modification of LR by steroid administration occurs.METHOIDS:Sham operation,partial hepatectomy (PH),and partial hepatectomy with radiofrequency ablation (PHA) were performed on adult Fisher 344 rats.We investigated the recovery of liver volume,DNA synthetic activities,serum cytokine/chemokine levels and signal transducers and activators of transcription 3 DNA-binding activities in the nucleus after the operations.Additionally,the effects of steroid (dexamethasone) pretreatment in the PH group (S-PH) and the PHA group (S-PHA) were compared.RESULTS:The LR after PHA was impaired,with high serum cytokine/chemokine induction compared to PH,although the ratio of the residual liver weight to body weight was not significantly different.Steroid pretreatment disturbed LR in the S-PH group.On the other hand,low-dose steroid pretreatment improved LR and suppressed tumor necrosis factor (TNF)-α elevation in the S-PHA group,with recovery of STAT3 DNA-binding activity.On the other hand,low-dose steroid pretreatment improved LR and suppressed TNF-α elevation in the S-PHA group,with recovery of STAT3 DNA-binding activity.CONCLUSION:LR is disturbed after RF ablation,with high serum cytokine/chemokine induction.Low-dose steroid administration can improve LR after RF ablation with TNF-α suppression.

  17. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  18. 2,2',4'-trihydroxychalcone from Glycyrrhiza glabra as a new specific BACE1 inhibitor efficiently ameliorates memory impairment in mice.

    Science.gov (United States)

    Zhu, Zhiyuan; Li, Chenjing; Wang, Xu; Yang, Zhengyi; Chen, Jing; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2010-07-01

    Alzheimer's disease (AD) characterizes a progressive neurodegenerative disorder of the brain, while AD patients are afflicted with irreversible loss of neurons and further the intellectual abilities including memory and reasoning. One of the typical hallmarks of AD is the deposition of senile plaque that is contributed mainly by amyloid-beta (Abeta), whose production is initiated by beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1). Inhibition of BACE1 is thereby regarded as an attractive strategy for anti-AD drug discovery. Here, we reported that the natural product 2,2',4'-trihydroxychalcone (TDC) from Glycyrrhiza glabra functioned as a specific non-competitive inhibitor against BACE1 enzyme, and potently repressed beta-cleavage of APP and production of Abeta in human embryo kidney cells-APPswe cells. Moreover, the amelioration ability of this compound against the in vivo memory impairment was further evaluated by APP-PS1 double transgenic mice model. It is discovered that treatment of 9 mg/kg/day of TDC could obviously decrease Abeta production and Abeta plaque formation, while efficiently improve the memory impairment based on Morris water maze test. Our findings thus demonstrated that the natural product TDC as a new BACE1 inhibitor could ameliorate memory impairment in mice, and is expected to be potentially used as a lead compound for further anti-AD reagent development.

  19. Coenzyme Q10 enhances the anticonvulsant effect of phenytoin in pilocarpine-induced seizures in rats and ameliorates phenytoin-induced cognitive impairment and oxidative stress.

    Science.gov (United States)

    Tawfik, Mona K

    2011-12-01

    Conventional antiepileptic drugs fail to adequately control seizures and predispose to cognitive impairment and oxidative stress with chronic usage in a significant proportion of patients with epilepsy. Coenzyme Q10 (CoQ10), an antioxidant compound, exhibits a wide range of therapeutic effects that are attributed to its potent antioxidant capacity. To evaluate the neuroprotective effects of CoQ10 in rats against the observed oxidative stress during seizures induced by pilocarpine, and to study its interactions with the conventional antiepileptic drug phenytoin, two experiments were performed. Experiment 1 was conducted to test the effect of phenytoin, CoQ10, or both on seizure severity and oxidative markers in the pilocarpine model of epilepsy. Experiment 2 was conducted to test the effect of 2 weeks of chronic treatment with phenytoin, CoQ10, or both on oxidative markers and behavioral tests in rats. Overall, CoQ10 reduced the severity of pilocarpine-induced seizures and the severity of oxidative stress. Moreover, it potentiated the antiepileptic effects afforded by phenytoin treatment, with the potential safety and efficacy in ameliorating oxidative stress and cognitive impairment caused by chronic phenytoin therapy. Our findings strongly suggest that CoQ10 can be considered a safe and effective adjuvant to phenytoin therapy in epilepsy both to ameliorate seizure severity and to protect against seizure-induced oxidative damage by reducing the cognitive impairment and oxidative stress associated with chronic use of phenytoin.

  20. Neurodevelopment after fetal growth restriction.

    Science.gov (United States)

    Baschat, Ahmet A

    2014-01-01

    Fetal growth restriction (FGR) can emerge as a complication of placental dysfunction and increases the risk for neurodevelopmental delay. Marked elevations of umbilical artery (UA) Doppler resistance that set the stage for cardiovascular and biophysical deterioration with subsequent preterm birth characterize early-onset FGR. Minimal, or absent UA Doppler abnormalities and isolated cerebral Doppler changes with subtle deterioration and a high risk for unanticipated term stillbirth are characteristic for late-onset FGR. Nutritional deficiency manifested in lagging head growth is the most powerful predictor of developmental delay in all forms of FGR. Extremes of blood flow resistance and cardiovascular deterioration, prematurity and intracranial hemorrhage increase the risks for psychomotor delay and cerebral palsy. In late-onset FGR, regional cerebral vascular redistribution correlates with abnormal behavioral domains. Irrespective of the phenotype of FGR, prenatal tests that provide precise and independent stratification of risks for adverse neurodevelopment have yet to be determined.

  1. The ameliorative effects of exercise on cognitive impairment and white matter injury from blood-brain barrier disruption induced by chronic cerebral hypoperfusion in adolescent rats.

    Science.gov (United States)

    Lee, Jae-Min; Park, Jong-Min; Song, Min Kyung; Oh, Yoo Joung; Kim, Chang-Ju; Kim, Youn-Jung

    2017-01-18

    Vascular dementia is the progressive change in blood vessels that leads to neuronal injuries in vulnerable areas induced by chronic cerebral hypoperfusion (CCH). CCH induces disruption of blood-brain barrier (BBB), and this BBB disruption can initiate the cognitive impairment and white matter injury. In the present study, we evaluated the effect of treadmill exercise on the cognitive impairment, white matter injury, and BBB disruption induced by CCH. Vascular dementia was induced by permanent bilateral common carotid arteries occlusion (BCCAO) in rats. The rats in the exercise group were made to run on a treadmill for 30min once a day for 14 weeks, starting 4 weeks after birth. Our results revealed that treadmill exercise group was alleviated the cognitive impairment and myelin degradation induced by CCH. The disruption of BBB after CCH indicates degradation of occludin, zonula occluden-1 (ZO-1), and up-regulation of matrix metalloproteinases (MMPs). Treadmill exercise may provide protective effects on BBB disruption from degradation of occludin, ZO-1, and overexpression of MMP-9 after CCH. These findings suggest that treadmill exercise ameliorates cognitive impairment and white matter injury from BBB disruption induced by CCH in rats. The present study will be valuable for means of prophylactic and therapeutic intervention for patients with CCH.

  2. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function.

    Science.gov (United States)

    Xu, Bin; Li, Yan-Li; Xu, Ming; Yu, Chang-Chun; Lian, Meng-Qiao; Tang, Ze-Yao; Li, Chuan-Xun; Lin, Yuan

    2017-03-06

    Geniposide is an iridoid glycosides purified from the fruit of Gardenia jasminoides Ellis, which is known to have antiinflammatory, anti-oxidative and anti-tumor activities. The present study aimed to investigate the effects of geniposide on experimental rat colitis and to reveal the related mechanisms. Experimental rat colitis was induced by rectal administration of a TNBS solution. The rats were treated with geniposide (25, 50 mg·kg(-1)·d(-1), ig) or with sulfasalazine (SASP, 100 mg·kg(-1)·d(-1), ig) as positive control for 14 consecutive days. A Caco-2 cell monolayer exposed to lipopolysaccharides (LPS) was used as an epithelial barrier dysfunction model. Transepithelial electrical resistance (TER) was measured to evaluate intestinal barrier function. In rats with TNBS-induced colitis, administration of geniposide or SASP significantly increased the TNBS-decreased body weight and ameliorated TNBS-induced experimental colitis and related symptoms. Geniposide or SASP suppressed inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and neutrophil infiltration (myeloperoxidase activity) in the colon. In Caco-2 cells, geniposide (25-100 μmol/L) ameliorated LPS-induced endothelial barrier dysfunction via dose-dependently increasing transepithelial electrical resistance (TER). The results from both in vivo and in vitro studies revealed that geniposide down-regulated NF-κB, COX-2, iNOS and MLCK protein expression, up-regulated the expression of tight junction proteins (occludin and ZO-1), and facilitated AMPK phosphorylation. Both AMPK siRNA transfection and AMPK overexpression abrogated the geniposide-reduced MLCK protein expression, suggesting that geniposide ameliorated barrier dysfunction via AMPK-mediated inhibition of the MLCK pathway. In conclusion, geniposide ameliorated TNBS-induced experimental rat colitis by both reducing inflammation and modulating the disrupted epithelial barrier function via activating the AMPK signaling pathway..

  3. ErbB inhibitors ameliorate behavioral impairments of an animal model for schizophrenia: implication of their dopamine-modulatory actions.

    Science.gov (United States)

    Mizuno, M; Sotoyama, H; Namba, H; Shibuya, M; Eda, T; Wang, R; Okubo, T; Nagata, K; Iwakura, Y; Nawa, H

    2013-04-30

    Ligands for ErbB receptors, including epidermal growth factor (EGF) and neuregulin-1, have a neurotrophic activity on midbrain dopaminergic neurons and are implicated in the pathophysiology of schizophrenia. Although ErbB kinase inhibitors ameliorate behavioral deficits of the schizophrenia model that was established by hippocampal lesioning of rat pups, the antipsychotic action of ErbB kinase inhibitors and its general applicability to other models are not fully characterized. Using a different animal model, here, we examined whether and how ErbB kinase inhibitors ameliorate the behavioral endophenotypes relevant to schizophrenia. The animal model for schizophrenia was prepared by exposing neonatal rats to the cytokine EGF. Intraventricular infusion of the ErbB1 inhibitors ZD1839 and PD153035 in these animals ameliorated the deficits in startle response and prepulse inhibition in a dose-dependent manner. The deficits of latent inhibition of fear learning were also alleviated by ZD1839 with its limited effects on body weight gain or locomotor activity. ZD1839 infusion also decreased the busting activity of nigral dopamine (DA) neurons and reduced pallidal DA metabolism, a result that mimics the anti-dopaminergic profile of risperidone and haloperidol in this brain region. ErbB inhibitors appear to have anti-dopaminergic actions to alleviate some of the behavioral deficits common to animal models for schizophrenia.

  4. Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats.

    Science.gov (United States)

    Luo, Pan; Zhang, Xiaoxue; Lu, Yun; Chen, Cheng; Li, Changjun; Zhou, Mei; Lu, Qing; Xu, Xulin; Shen, Guanxin; Guo, Lianjun

    2016-01-01

    Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH.

  5. Baclofen ameliorates spatial working memory impairments induced by chronic cerebral hypoperfusion via up-regulation of HCN2 expression in the PFC in rats.

    Science.gov (United States)

    Luo, Pan; Chen, Cheng; Lu, Yun; Fu, TianLi; Lu, Qing; Xu, Xulin; Li, Changjun; He, Zhi; Guo, Lianjun

    2016-07-15

    Chronic cerebral hypoperfusion (CCH) causes memory deficits and increases the risk of vascular dementia (VD) through several biologically plausible pathways. However, whether CCH causes prefrontal cortex (PFC)-dependent spatial working memory impairments and Baclofen, a GABAB receptor agonist, could ameliorate the impairments is still not clear especially the mechanisms underlying the process. In this study, rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. Two weeks later, rats were treated with 25mg/kg Baclofen (intraperitioneal injection, i.p.) for 3 weeks. Spatial working memory was evaluated in a Morris water maze using a modified delayed matching-to-place (DMP) procedure. Western blotting and immunohistochemistry were used to quantify the protein levels and protein localization. Our results showed that 2VO caused striking spatial working memory impairments, accompanied with a decreased HCN2 expression in PFC, but the protein levels of protein gene product 9.5 (PGP9.5, a neuron specific protein), glial fibrillary acidic protein (GFAP), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), parvalbumin (PV) and HCN1 were not distinguishably changed as compared with sham-operated rats. Baclofen treatment significantly improved the spatial working memory impairments caused by 2VO, accompanied with a reversion of 2VO-induced down-regulation of HCN2. Furthermore, there was a co-localization of HCN2 subunits and parvalbumin-positive neurons in PFC. Therefore, HCN2 may target inhibitory interneurons that is implicated in working memory processes, which may be a possible mechanism of the up-regulation of HCN2 by Baclofen treatment that reliefs spatial working memory deficits in rats with CCH.

  6. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats.

    Science.gov (United States)

    Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min

    2010-04-01

    The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.

  7. Potency of pre–post treatment of coenzyme Q10 and melatonin supplement in ameliorating the impaired fatty acid profile in rodent model of autism

    Directory of Open Access Journals (Sweden)

    Afaf El-Ansary

    2016-03-01

    Full Text Available Background: Abnormalities in fatty acid metabolism and membrane fatty acid composition play a part in a wide range of neurodevelopmental and psychiatric disorders. Altered fatty acid homeostasis as a result of insufficient dietary supplementation, genetic defects, the function of enzymes involved in their metabolism, or mitochondrial dysfunction contributes to the development of autism. Objective: This study evaluates the association of altered brain lipid composition and neurotoxicity related to autism spectrum disorders in propionic acid (PA–treated rats. Design: Forty-eight young male western albino rats were used in this study. They were grouped into six equal groups with eight rats in each. The first group received only phosphate buffered saline (control group. The second group received a neurotoxic dose of buffered PA (250 mg/kg body weight/day for 3 consecutive days. The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight or melatonin (10 mg/kg body weight for 1 week (therapeutically treated groups. The fifth and sixth groups were administered both compounds for 1 week prior to PA (protected groups. Methyl esters of fatty acid were extracted with hexane, and the fatty acid composition of the extract was analyzed on a gas chromatography. Results: The obtained data proved that fatty acids are altered in brain tissue of PA-treated rats. All saturated fatty acids were increased while all unsaturated fatty acids were significantly decreased in the PA-treated group and relatively ameliorated in the pre–post melatonin and coenzyme Q groups. Conclusions: Melatonin and coenzyme Q were effective in restoring normal level of most of the impaired fatty acids in PA-intoxicated rats which could help suggest both as supplements to ameliorate the autistic features induced in rat pups.

  8. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII.

    Science.gov (United States)

    Zhang, Lei; Zhang, Hu-Qin; Liang, Xiang-Yan; Zhang, Hai-Feng; Zhang, Ting; Liu, Fang-E

    2013-11-01

    Sleep deprivation (SD) has been shown to induce oxidative stress which causes cognitive impairment. Melatonin, an endogenous potent antioxidant, protects neurons from oxidative stress in many disease models. The present study investigated the effect of melatonin against SD-induced cognitive impairment and attempted to define the possible mechanisms involved. SD was induced in rats using modified multiple platform model. Melatonin (15 mg/kg) was administered to the rats via intraperitoneal injection. The open field test and Morris water maze were used to evaluate cognitive ability. The cerebral cortex (CC) and hippocampus were dissected and homogenized. Nitric oxide (NO) and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) enzyme activity of hippocampal and cortical tissues (10% wet weight per volume) were performed to determine the level of oxidative stress. The expression of brain-derived neurotrophic factor (BDNF) and calcium-calmodulin dependent kinase II (CaMKII) proteins in CC and hippocampus was assayed by means of immunohistochemistry. The results revealed that SD impairs cognitive ability, while melatonin treatment prevented these changes. In addition, melatonin reversed SD-induced changes in NO, MDA and SOD in both of the CC and hippocampus. The results of immunoreactivity showed that SD decreased gray values of BDNF and CaMKII in CC and hippocamal CA1, CA3 and dentate gyrus regions, whereas melatonin improved the gray values. In conclusion, our results suggest that melatonin prevents cognitive impairment induced by SD. The possible mechanism may be attributed to its ability to reduce oxidative stress and increase the levels of CaMKII and BDNF in CC and hippocampus.

  9. Lactobacillus casei-01 facilitates the ameliorative effects of proanthocyanidins extracted from lotus seedpod on learning and memory impairment in scopolamine-induced amnesia mice.

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    Full Text Available Learning and memory abilities are associated with alterations in gut function. The two-way proanthocyanidins-microbiota interaction in vivo enhances the physiological activities of proanthocyanidins and promotes the regulation of gut function. Proanthocyanidins extracted from lotus seedpod (LSPC have shown the memory-enhancing ability. However, there has been no literature about whether Lactobacillus casei-01 (LC enhances the ameliorative effects of LSPC on learning and memory abilities. In this study, learning and memory abilities of scopolamine-induced amnesia mice were evaluated by Y-maze test after 20-day administration of LC (10(9 cfu/kg body weight (BW, LSPC (low dose was 60 mg/kg BW (L-LSPC and high dose was 90 mg/kg BW (H-LSPC, or LSPC and LC combinations (L-LSPC+LC and H-LSPC+LC. Alterations in antioxidant defense ability and oxidative damage of brain, serum and colon, and brain cholinergic system were investigated as the possible mechanisms. As a result, the error times of H-LSPC+LC group were reduced by 41.59% and 68.75% relative to those of H-LSPC and LC groups respectively. LSPC and LC combinations ameliorated scopolamine-induced memory impairment by improving total antioxidant capacity (TAOC level, glutathione peroxidase (GSH-Px and total superoxide dismutase (T-SOD activities of brain, serum and colon, suppressing malondialdehyde (MDA level of brain, serum and colon, and inhibiting brain acetylcholinesterase (AchE, myeloperoxidase, total nitric oxide synthase and neural nitric oxide synthase (nNOS activities, and nNOS mRNA level. Moreover, LC facilitated the ameliorative effects of H-LSPC on GSH-Px activity of colon, TAOC level, GSH-Px activity and ratio of T-SOD to MDA of brain and serum, and the inhibitory effects of H-LSPC on serum MDA level, brain nNOS mRNA level and AchE activity. These results indicated that LC promoted the memory-enhancing effect of LSPC in scopolamine-induced amnesia mice.

  10. Physical activity during pregnancy and offspring neurodevelopment and IQ in the first 4 years of life.

    Directory of Open Access Journals (Sweden)

    Marlos R Domingues

    Full Text Available Maternal physical activity during pregnancy could alter offspring's IQ and neurodevelopment in childhood.Children belonging to a birth cohort were followed at 3, 12, 24 and 48 months of age. Physical activity during pregnancy was assessed retrospectively at birth. Neurodevelopment was evaluated by Battelle's Development Inventory (12, 24 and 48 months and IQ by the Weschler's Intelligence Scale (48 months. Neurodevelopment was based on Battelles' (90th percentile and also analyzed as a continuous outcome. IQ was analyzed as a continuous outcome. Potential confounders were: family income, mother's age, schooling, skin color, number of previous births and smoking; and newborns': preterm birth, sex and low birth weight.From birth to 48 months, sample size decreased from 4231 to 3792. Crude analysis showed that IQ at 48 months was slightly higher (5 points among children from active women. The Battelle's score at 12 and 24 months was higher among offspring from active mothers. After controlling for confounders, physical activity during pregnancy was positively associated to the Battelle's Inventory at 12 months IQ, however, at 48 months no association was observed.Physical activity during pregnancy does not seem to impair children's neurodevelopment and children from active mothers presented better performance at 12 months.

  11. Carbon monoxide pollution and neurodevelopment: A public health concern.

    Science.gov (United States)

    Levy, Richard J

    2015-01-01

    Although an association between air pollution and adverse systemic health effects has been known for years, the effect of pollutants on neurodevelopment has been underappreciated. Recent evidence suggests a possible link between air pollution and neurocognitive impairment and behavioral disorders in children, however, the exact nature of this relationship remains poorly understood. Infants and children are uniquely vulnerable due to the potential for exposure in both the fetal and postnatal environments during critical periods in development. Carbon monoxide (CO), a common component of indoor and outdoor air pollution, can cross the placenta to gain access to the fetal circulation and the developing brain. Thus, CO is of particular interest as a known neurotoxin and a potential public health threat. Here we review overt CO toxicity and the policies regulating CO exposure, detail the evidence suggesting a potential link between CO-associated ambient air pollution, tobacco smoke, and learning and behavioral abnormalities in children, describe the effects of subclinical CO exposure on the brain during development, and provide mechanistic insight into a potential connection between CO exposure and neurodevelopmental outcome. CO can disrupt a number of critical processes in the developing brain, providing a better understanding of how this specific neurotoxin may impair neurodevelopment. However, further investigation is needed to better define the effects of perinatal CO exposure on the immature brain. Current policies regarding CO standards were established based on evidence of cardiovascular risk in adults with pre-existing comorbidities. Thus, recent and emerging data highlighted in this review regarding CO exposure in the fetus and developing child may be important to consider when the standards and guidelines are evaluated and revised in the future.

  12. Atorvastatin ameliorates cognitive impairment, Aβ1-42 production and Tau hyperphosphorylation in APP/PS1 transgenic mice.

    Science.gov (United States)

    Zhou, Dongsheng; Liu, Huaxia; Li, Chenli; Wang, Fangyan; Shi, Yaosheng; Liu, Lingjiang; Zhao, Xin; Liu, Aiming; Zhang, Junfang; Wang, Chuang; Chen, Zhongming

    2016-06-01

    Amyloid-beta (Aβ) interacts with the serine/threonine protein kinase AKT (also known as protein kinase B)/glycogen synthase kinase 3β (GSK3β) pathway and deactivates GSK3β signaling, which result in microtubule protein tau phosphorylation. Atorvastatin, a HMG-CoA reductase inhibitor, has been proven to improve learning and memory performance, reduce Aβ and phosphorylated tau levels in mouse model of Alzheimer's disease (AD). However, it still remains unclear whether atorvastatin is responsible for regulation of AKT/GSK3β signaling and contributes to subsequent down-regulation of Aβ1-42 and phosphorylated tau in APP/PS1 transgenic (Tg APP/PS1) mice. Herein, we aimed to investigate the possible impacts of atorvastatin (10 mg/kg, p.o.) on the memory deficit by behavioral tests and changes of AKT/GSK3β signaling in hippocampus and prefrontal cortex by western blot test in Tg APP/PS1 mice. The results showed that treatment with atorvastatin significantly reversed the memory deficit in the Tg APP/PS1 mice in a novel object recognition and the Morris water maze tests. Moreover, atorvastatin significantly attenuated Aβ1-42 accumulation and phosphorylation of tau (Ser396) in the hippocampus and prefrontal cortex of Tg APP/PS1 mice. In addition, atorvastatin treatment also increased phosphorylation of AKT, inhibited GSK3β activity by increasing phosphorylation of GSK3β (Ser9) and decreasing the beta-site APP cleaving enzyme 1 (BACE1) expression. These results indicated that the memory ameliorating effect of atorvastatin may be, in part, by regulation the AKT/GSK3β signaling which may contribute to down-regulation of Aβ1-42 and tau hyperphosphorylation.

  13. Schizandrin, an Antioxidant Lignan from Schisandra chinensis, Ameliorates Aβ1–42-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Di Hu

    2012-01-01

    Full Text Available In the present study, we examined the effect of schisandrin (SCH of Schisandra chinensis on the amyloid-beta1–42- (Aβ1–42- induced memory impairment in mice and elucidated the possible antioxidative mechanism. Mice were intracerebroventricular (i.c.v. injected with the aggregated Aβ1–42 and then treated with SCH (4, 12, and 36 mg/kg body weight or donepezil (DPZ, a reference drug (0.65 mg/kg by intragastric infusion for 14 days. Noncognitive disturbances and cognitive performance were evaluated by locomotor activity test, Y-maze test, and water maze test. Antioxidative enzyme activities including superoxide dismutase (SOD and glutathione peroxidase (GSH-px and levels of malondialdehyde (MDA, glutathione (GSH, and oxidized glutathione (GSSG within the cerebral cortex and hippocampus of mice were measured to elucidate the mechanism. Our results showed that SCH significantly improved Aβ1–42-induced short-term and spatial reference memory impairments in Y-maze test and water maze test. Furthermore, in the cerebral cortex and hippocampus of mice, SOD and GSH-px activities, GSH level, and GSH/GSSG ratio were increased, and levels of MDA and GSSG were decreased by the treatment of SCH. These results suggest that SCH is a potential cognitive enhancer against Alzheimer’s disease through antioxidative action.

  14. Schizandrin, an antioxidant lignan from Schisandra chinensis, ameliorates Aβ1-42-induced memory impairment in mice.

    Science.gov (United States)

    Hu, Di; Cao, Yunfeng; He, Rongrong; Han, Na; Liu, Zhihui; Miao, Lijing; Yin, Jun

    2012-01-01

    In the present study, we examined the effect of schisandrin (SCH) of Schisandra chinensis on the amyloid-beta(1-42)- (Aβ(1-42)-) induced memory impairment in mice and elucidated the possible antioxidative mechanism. Mice were intracerebroventricular (i.c.v.) injected with the aggregated Aβ(1-42) and then treated with SCH (4, 12, and 36 mg/kg body weight) or donepezil (DPZ), a reference drug (0.65 mg/kg) by intragastric infusion for 14 days. Noncognitive disturbances and cognitive performance were evaluated by locomotor activity test, Y-maze test, and water maze test. Antioxidative enzyme activities including superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) and levels of malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG) within the cerebral cortex and hippocampus of mice were measured to elucidate the mechanism. Our results showed that SCH significantly improved Aβ(1-42)-induced short-term and spatial reference memory impairments in Y-maze test and water maze test. Furthermore, in the cerebral cortex and hippocampus of mice, SOD and GSH-px activities, GSH level, and GSH/GSSG ratio were increased, and levels of MDA and GSSG were decreased by the treatment of SCH. These results suggest that SCH is a potential cognitive enhancer against Alzheimer's disease through antioxidative action.

  15. Guarana (Paullinia cupana) ameliorates memory impairment and modulates acetylcholinesterase activity in Poloxamer-407-induced hyperlipidemia in rat brain.

    Science.gov (United States)

    Ruchel, Jader B; Braun, Josiane B S; Adefegha, Stephen A; Guedes Manzoni, Alessandra; Abdalla, Fátima H; de Oliveira, Juliana S; Trelles, Kelly; Signor, Cristiane; Lopes, Sônia T A; da Silva, Cássia B; Castilhos, Lívia G; Rubin, Maribel A; Leal, Daniela B R

    2017-01-01

    Hyperlipidemia is a risk factor for the development of cognitive dysfunction and atherosclerosis. Natural compounds have recently received special attention in relation to the treatment of disease due to their low cost and wide margin of safety. Thus, the aim of this study was to determine the possible preventive effect of guarana powder (Paullinia cupana) on memory impairment and acetylcholinesterase (AChE) activity in the brain structures of rats with Poloxamer-407-induced hyperlipidemia. Adult male Wistar rats were pretreated with guarana (12.5, 25 and 50mg/kg/day) and caffeine (0.2mg/kg/day) by gavage for a period of 30days. Simvastatin (0.04mg/kg) was administered as a comparative standard. Acute hyperlipidemia was induced with intraperitoneal injections of 500mg/kg of Poloxamer-407. Memory tests and evaluations of anxiety were performed. The cortex, cerebellum, hippocampus, hypothalamus and striatum were separated to assess acetylcholinesterase activity. Our results revealed that guarana powder was able to reduce the levels of TC and LDL-C in a manner similar to simvastatin. Guarana powder also partially reduced the liver damage caused by hyperlipidemia. Guarana was able to prevent changes in the activity of AChE and improve memory impairment due to hyperlipidemia. Guarana powder may therefore be a source of promising phytochemicals that can be used as adjuvant therapy in the management of hyperlipidemia and cognitive disorders.

  16. Cadmium exposure during lactation causes learning and memory-impairment in F1 generation mice: amelioration by quercetin.

    Science.gov (United States)

    Halder, Sumita; Kar, Rajarshi; Galav, Vikas; Mehta, Ashish K; Bhattacharya, Swapan K; Mediratta, Pramod K; Banerjee, Basu D

    2016-01-01

    Cadmium (Cd) is a known pollutant present in the environment at low levels and is reported to affect reproduction in many ways. The present study was undertaken to explore the effect of Cd in F1 generation mice on cognitive parameters, and to further investigate whether quercetin could modulate these effects. In this study, female lactating mice were exposed to cadmium for seven days just after delivery. The new born pups in their adulthood were tested for learning and memory parameters by passive avoidance task and Morris water maze (MWM) test. It was observed that pups exposed to Cd showed significant impairment of memory in step down latency test, which was reversed by quercetin (100 mg/kg). In MWM test for spatial memory, animals exposed to Cd exhibited increased escape latency, which was reversed by quercetin (50 mg/kg) significantly. Quercetin alone (50 and 100 mg/kg) also demonstrated improved spatial memory, and showed improved retention memory in the passive avoidance paradigm at dose 50 mg/kg. On testing oxidative stress parameters, we observed significantly increased malondialdehyde (MDA) levels in brain tissue of Cd-treated mice. Moreover, co-treatment with quercetin (50 mg/kg) and Cd significantly reduced these MDA levels. The other doses (25 and 100 mg/kg) also showed reduction in MDA levels as compared to the group exposed to Cd alone, though the difference was not statistically significant. Hence, this study highlights the possibility of cognitive impairment in adulthood if there is Cd exposure during lactation and oxidative stress could possibly attribute to this effect.

  17. Impaired presynaptic cytosolic and mitochondrial calcium dynamics in aged compared to young adult hippocampal CA1 synapses ameliorated by calcium chelation.

    Science.gov (United States)

    Tonkikh, A A; Carlen, P L

    2009-04-10

    Impaired regulation of presynaptic intracellular calcium is thought to adversely affect synaptic plasticity and cognition in the aged brain. We studied presynaptic cytosolic and mitochondrial calcium (Ca) dynamics using axonally loaded Calcium Green-AM and Rhod-2 AM fluorescence respectively in young (2-3 months) and aged (23-26 months) CA3 to CA1 Schaffer collateral excitatory synapses in hippocampal brain slices from Fisher 344 rats. After a tetanus (100 Hz, 200 ms), the presynaptic cytosolic Ca peaked at approximately 10 s in the young and approximately 12 s in the aged synapses. Administration of the membrane permeant Ca chelator, bis (O-aminophenoxy)-ethane-N,N,N,N-tetraacetic acid (BAPTA-AM), significantly attenuated the Ca response in the aged slices, but not in the young slices. The presynaptic mitochondrial Ca signal was much slower, peaking at approximately 90 s in both young and aged synapses, returning to baseline by 300 s. BAPTA-AM significantly attenuated the mitochondrial calcium signal only in the young synapses. Uncoupling mitochondrial respiration by carbonyl cyanide m-chlorophenylhydrazone (CCCP) application evoked a massive intracellular cytosolic Ca increase and a significant drop of mitochondrial Ca, especially in aged slices wherein the cytosolic Ca signal disappeared after approximately 150 s of washout and the mitochondrial Ca signal disappeared after 25 s of washout. These signals were preserved in aged slices by BAPTA-AM. Five minutes of oxygen glucose deprivation (OGD) was associated with a significant increase in cytosolic Ca in both young and aged synapses, which was irreversible in the aged synapses. These responses were significantly attenuated by BAPTA-AM in both the young and aged synapses. These results support the hypothesis that increasing intracellular calcium neuronal buffering in aged rats ameliorates age-related impaired presynaptic Ca regulation.

  18. Ameliorative effects of a non-competitive BACE1 inhibitor TAK-070 on Aβ peptide levels and impaired learning behavior in aged rats.

    Science.gov (United States)

    Takahashi, Hideki; Fukumoto, Hiroaki; Maeda, Ryouta; Terauchi, Jun; Kato, Kaneyoshi; Miyamoto, Masaomi

    2010-11-18

    We examined the effects of TAK-070, a novel non-competitive β-secretase (BACE1) inhibitor, on the levels of Aβ peptides and behavioral deficits in rats. TAK-070 reduced soluble Aβ40 and Aβ42 levels of the cerebral cortex in a time- and dose-dependent manner in young rats. We found that the insoluble Aβ42 content increased significantly with aging from 22 months old without changing Aβ40 content. TAK-070 normalized the Aβ42 levels to those in young rats when they were fed chow containing TAK-070 starting at 19 months old for 6.5 months. Repeated administration of TAK-070 to aged rats for 2 weeks ameliorated the impaired spatial learning in the Morris water maze task and reduced the levels of soluble and insoluble Aβ peptides at doses of 0.3-1mg/kg, (p.o.). Interestingly, TAK-070 significantly recovered the reduced brain synaptophysin levels in aged rats to those in young rats. Our findings support the idea that partial inhibition of BACE1 by TAK-070 exerts symptomatic as well as disease-modifying effects for the treatment of Alzheimer's disease.

  19. Aminoguanidine treatment ameliorates inflammatory responses and memory impairment induced by amyloid-beta 25-35 injection in rats.

    Science.gov (United States)

    Díaz, Alfonso; Rojas, Karla; Espinosa, Blanca; Chávez, Raúl; Zenteno, Edgar; Limón, Daniel; Guevara, Jorge

    2014-06-01

    Alzheimer disease (AD) is a neurodegenerative disorder caused by accumulation of the amyloid-beta peptide (Aβ) in neuritic plaques. Its neurotoxic mechanisms are associated with inflammatory responses and nitrosative stress generation that promote expression of inducible nitric oxide synthase (iNOS) and increased nitric oxide causing neuronal death and memory impairment. Studies suggest that treatment with anti-inflammatory and anti-oxidant agents decreases the risk of developing AD. Aminoguanidine (AG) is an iNOS inhibitor with anti-inflammatory and anti-oxidant effects. In this study, we evaluated the effects of systemic administration of AG (100 mg/kg/day for 4 days) on spatial memory and inflammatory responses induced by an injection of Aβ(25-35) [100 μM] into the temporal cortex (TCx) of rats. A significant improvement of spatial memory was evident in the Aβ(25-35)-treated group at day 30 post-injection subjected to AG treatment; this effect was correlated with decreases in reactive gliosis, IL-1β, TNF-α, and nitrite levels, as well as a reduction in neurodegeneration in the TCx and hippocampus (Hp). These results suggest that AG treatment inhibited glia activation and cytokine release, which may help to counteract neurodegenerative events induced by the toxicity of Aβ.

  20. Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance.

    Directory of Open Access Journals (Sweden)

    Peng Yu

    Full Text Available Myocardial infarction leads to heart failure. Autophagy is excessively activated in myocardial ischemia/reperfusion (I/R in rats. The aim of this study is to investigate whether the protection of sevoflurane postconditioning (SPC in myocardial I/R is through restored impaired autophagic flux.Except for the sham control (SHAM group, each rat underwent 30 min occlusion of the left anterior descending coronary (LAD followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC staining. Cardiac function was examined by hemodynamics and echocardiography. The activation of autophagy was evaluated by autophagosome accumulation, LC3 conversion and p62 degradation. Potential molecular mechanisms were investigated by immunoblotting, real-time PCR and immunofluorescence staining.SPC improved the hemodynamic parameters, cardiac dysfunction, histopathological and ultrastructural damages, and decreased myocardial infarction size after myocardial I/R injury (P < 0.05 vs. I/R group. Compared with the cases in I/R group, myocardial ATP and NAD+ content, mitochondrial function related genes and proteins, and the expressions of SOD2 and HO-1 were increased, while the expressions of ROS and Vimentin were decreased in the SPC group (P < 0.05 vs. I/R group. SPC significantly activated Akt/mTOR signaling, and inhibited the formation of Vps34/Beclin1 complex via increasing expression of Bcl2 protein (P < 0.05 vs. I/R group. SPC suppressed elevated expressions of LC3 II/I ratio, Beclin1, Atg5 and Atg7 in I/R rat, which indicated that SPC inhibited over-activation of autophagy, and promoted autophagosome clearance. Meanwhile, SPC significantly suppressed the decline of Opa1 and increases of Drp1 and Parkin induced by I/R injury (P < 0.05 vs. I/R group. Moreover, SPC maintained the contents of ATP by reducing impaired mitochondria.SPC protects rat hearts against I/R injury via ameliorating mitochondrial impairment

  1. Harpagoside ameliorates the amyloid-β-induced cognitive impairment in rats via up-regulating BDNF expression and MAPK/PI3K pathways.

    Science.gov (United States)

    Li, J; Ding, X; Zhang, R; Jiang, W; Sun, X; Xia, Z; Wang, X; Wu, E; Zhang, Y; Hu, Y

    2015-09-10

    So far, no effective disease-modifying therapies for Alzheimer's disease (AD) aiming at protecting or reversing neurodegeneration of the disease have been established yet. The present work aims to elucidate the effect of Harpagoside (abbreviated HAR), an iridoid glycosides purified from the Chinese medicinal herb Scrophularia ningpoensis, on neurodegeneration induced by β-amyloid peptide (Aβ) and the underlying molecular mechanism. Here we show that HAR exerts neuroprotective effects against Aβ neurotoxicity. Rats injected aggregated Aβ₁₋₄₀ into the bilateral hippocampus displayed impaired spatial learning and memory ability in a Y-maze test and novel object recognition test, while HAR treatment ameliorated Aβ₁₋₄₀-induced behavioral deficits. Moreover, administration of HAR increased the expression levels of brain-derived neurotrophic factor (BDNF) and activated the extracellular-regulated protein kinase (ERK) and the phosphatidylinositol 3-kinase (PI3-kinase) pathways both in the cerebral cortex and hippocampus of the Aβ₁₋₄₀-insulted rat model. Furthermore, in cultured primary cortical neurons, Aβ₁₋₄₂ induced significant decrease of choline acetyltransferase (ChAT)-positive neuron number and neurite outgrowth length, both of which were dose dependently increased by HAR. In addition, HAR pretreatment also significantly attenuated the decrease of cell viability in Aβ₁₋₄₂-injured primary cortical neurons. Finally, when K252a, an inhibitor of Trk tyrosine kinases, and a BDNF neutralizing antibody were added to the culture medium 2 h prior to HAR addition, the protective effect of HAR on Aβ₁₋₄₂-induced neurodegeneration in the primary cortical neuron was almost inhibited. Taken together, HAR exerting neuroprotection effect and ameliorating learning and memory deficit appears to be associated, at least in part, with up-regulation of BDNF content as well as activating its downstream signaling pathways, e.g., MAPK

  2. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice.

    Science.gov (United States)

    Du, Erxia; Xiao, Liping; Hurley, Marja M

    2016-09-01

    High molecular weight FGF2 transgenic (HMWTg) mouse phenocopies the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with hypophosphatemis, and abnormal FGF23, FGFR, Klotho signaling in kidney. Since abnormal Wnt signaling was reported in Hyp mice we assessed whether Wnt signaling was impaired in HMWTg kidneys and the effect of blocking FGF receptor (FGFR) signaling. Bone mineral density and bone mineral content in female HMWTg mice were significantly reduced. HMWTg mice were gavaged with FGFR inhibitor NVP-BGJ398, or vehicle and were euthanized 24 h post treatment. Serum phosphate was significantly reduced and urine phosphate was significantly increased in HMWTg and was rescued by NVP-BGJ398. Analysis of kidneys revealed a significant reduction in Npt2a mRNA in HMWTg that was significantly increased by NVP-BGJ398. Increased FGFR1, KLOTHO, P-ERK1/2, and decreased NPT2a protein in HMWTg were rescued by NVP-BGJ398. Wnt inhibitor Engrailed-1 mRNA and protein was increased in HMWTg and was decreased by BGJ398. Akt mRNA and protein was decreased in HMWTg and was increased by NVP-BGJ398. The active form of glycogen synthase 3 beta (pGSK3-β) and phosphor-β-catenin were increased in HMWTg and were both decreased by NVP-BGJ398 while decreased active-β-catenin in HMWTg was increased by NVP-BGJ398. We conclude that FGFR blockade rescued hypophosphatemia by regulating FGF and WNT signaling in HMWTg kidneys. J. Cell. Biochem. 117: 1991-2000, 2016. © 2016 Wiley Periodicals, Inc.

  3. Maternal vegetarianism and neurodevelopment of children enrolled in The Danish National Birth Cohort

    DEFF Research Database (Denmark)

    Larsen, Pernille Stemann; Andersen, Anne-Marie Nybo; Uldall, Peter

    2014-01-01

    Clinical observations suggest that children born to vegan mothers may be at risk of severe neurodevelopmental impairments due to vitamin B12 (1-3), which is to be expected, as this vitamin is exclusively found in food of animal origin (4). Thus, children born to all vegetarians, not just vegans......, may be at increased risk of impaired neurodevelopment if they have an insufficient intake of dietary supplements (5). As a result, it has been suggested that mothers should be warned about the impact of vegetarianism, in particular a vegan diet, during childbearing. The aim of this study was to use...

  4. The impact of placental malaria on neurodevelopment of exposed infants: a role for the complement system?

    Science.gov (United States)

    McDonald, Chloe R; Elphinstone, Robyn E; Kain, Kevin C

    2013-05-01

    The in utero environment can have a profound impact on early brain development and subsequent childhood school performance and behavior. Over 125 million pregnant women are at risk of malaria each year, yet the impact of in utero malaria exposure on the neurological and cognitive development of their exposed infants is unknown. Based on recent evidence supporting a role for the complement system in regulating neurodevelopment, and mediating neuroinflammation and neurodegenerative diseases, we hypothesize that excessive complement activation induced by placental malaria may disrupt normal neurodevelopment resulting in neurocognitive impairment of infants exposed to malaria in utero. Complement components may mediate these effects through the initiation of neuroinflammation, dysregulation of neurovascular angiogenesis, and the disruption of normal synaptic pruning.

  5. Dexmedetomidine ameliorates intracerebral hemorrhage-induced memory impairment by inhibiting apoptosis and enhancing brain-derived neurotrophic factor expression in the rat hippocampus.

    Science.gov (United States)

    Hwang, Lakkyong; Choi, In-Young; Kim, Sung-Eun; Ko, Il-Gyu; Shin, Mal-Soon; Kim, Chang-Ju; Kim, Sang-Hoon; Jin, Jun-Jang; Chung, Jun-Young; Yi, Jae-Woo

    2013-05-01

    Intracerebral hemorrhage (ICH) is a severe type of stroke causing neurological dysfunction with a high mortality rate. Dexmedetomidine is an agonist for α2‑adrenoreceptors with sedative, anxiolytic, analgesic and anesthetic effects. In the present study, we investigated the effects of dexmedetomidine on short‑term and spatial learning memory, as well as its effects on apoptosis following the induction of ICH in rats. A rat model of IHC was created by an injection of collagenase into the hippocampus using a stereotaxic instrument. Dexmedetomidine was administered intraperitoneally daily for 14 consecutive days, commencing 1 day after the induction of ICH. The step‑down avoidance test for short‑term memory and the radial 8‑arm maze test for spatial learning memory were conducted. Terminal deoxynucleotidyl transferase‑mediated dUTP nick end-labeling (TUNEL) assay, immunohistochemistry for caspase‑3, and western blot analysis for Bcl‑2, Bax, Bid and caspase-3 expression were performed for the detection of apoptosis in the hippocampus. Western blot analysis for the brain‑derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was also performed for the detection of cell survival in the hippocampus. The induction of ICH deteriorated short‑term and spatial learning memory, increased apoptosis and suppressed BDNF and TrkB expression in the hippocampus. Treatment with dexmedetomidine ameliorated the ICH‑induced impairment of short‑term and spatial learning memory by suppressing apoptosis and enhancing BDNF and TrkB expression. In the normal rats, dexmedetomidine exerted no significant effects on memory function and apoptosis. The present results suggest the possibility that dexmedetomidine may be used as a therapeutic agent for the conservation of memory function in stroke patients.

  6. α₄β₂ Nicotinic receptor stimulation of the GABAergic system within the orbitofrontal cortex ameliorates the severe crossmodal object recognition impairment in ketamine-treated rats: implications for cognitive dysfunction in schizophrenia.

    Science.gov (United States)

    Cloke, Jacob M; Winters, Boyer D

    2015-03-01

    Schizophrenia is associated with atypical multisensory integration. Rats treated sub-chronically with NMDA receptor antagonists to model schizophrenia are severely impaired on a tactile-to-visual crossmodal object recognition (CMOR) task, and this deficit is reversed by systemic nicotine. The current study assessed the receptor specificity of the ameliorative effect of nicotine in the CMOR task, as well as the potential for nicotinic receptor (nAChR) interactions with GABA and glutamate. Male Long-Evans rats were treated sub-chronically for 10 days with ketamine or saline and then tested on the CMOR task after a 10-day washout. Systemic nicotine given before the sample phase of the CMOR task reversed the ketamine-induced impairment, but this effect was blocked by co-administration of the GABAA receptor antagonist bicuculline at a dosage that itself did not cause impairment. Pre-sample systemic co-administration of the NMDA receptor antagonist MK-801 did not block the remediating effect of nicotine in ketamine-treated rats. The selective α7 nAChR agonist GTS-21 and α4β2 nAChR agonist ABT-418 were also tested, with only the latter reversing the ketamine impairment dose-dependently; bicuculline also blocked this effect. Similarly, infusions of nicotine or ABT-418 into the orbitofrontal cortex (OFC) reversed the CMOR impairment in ketamine-treated rats, and systemic bicuculline blocked the effect of intra-OFC ABT-418. These results suggest that nicotine-induced agonism of α4β2 nAChRs within the OFC ameliorates CMOR deficits in ketamine-treated rats via stimulation of the GABAergic system. The findings of this research may have important implications for understanding the nature and potential treatment of cognitive impairment in schizophrenia.

  7. Iodine Deficiency in Pregnancy: The Effect on Neurodevelopment in the Child

    Directory of Open Access Journals (Sweden)

    Sheila A. Skeaff

    2011-02-01

    Full Text Available Iodine is an integral part of the thyroid hormones, thyroxine (T4 and tri-iodothyronine (T3, necessary for normal growth and development. An adequate supply of cerebral T3, generated in the fetal brain from maternal free T4 (fT4, is needed by the fetus for thyroid hormone dependent neurodevelopment, which begins in the second half of the first trimester of pregnancy. Around the beginning of the second trimester the fetal thyroid also begins to produce hormones but the reserves of the fetal gland are low, thus maternal thyroid hormones contribute to total fetal thyroid hormone concentrations until birth. In order for pregnant women to produce enough thyroid hormones to meet both her own and her baby’s requirements, a 50% increase in iodine intake is recommended. A lack of iodine in the diet may result in the mother becoming iodine deficient, and subsequently the fetus. In iodine deficiency, hypothyroxinemia (i.e., low maternal fT4 results in damage to the developing brain, which is further aggravated by hypothyroidism in the fetus. The most serious consequence of iodine deficiency is cretinism, characterised by profound mental retardation. There is unequivocal evidence that severe iodine deficiency in pregnancy impairs brain development in the child. However, only two intervention trials have assessed neurodevelopment in children of moderately iodine deficient mothers finding improved neurodevelopment in children of mothers supplemented earlier rather than later in pregnancy; both studies were not randomised and were uncontrolled. Thus, there is a need for well-designed trials to determine the effect of iodine supplementation in moderate to mildly iodine deficient pregnant women on neurodevelopment in the child.

  8. Fetal alcohol syndrome, chemo-biology and OMICS: ethanol effects on vitamin metabolism during neurodevelopment as measured by systems biology analysis.

    Science.gov (United States)

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego

    2014-06-01

    Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment.

  9. Fetal Alcohol Syndrome, Chemo-Biology and OMICS: Ethanol Effects on Vitamin Metabolism During Neurodevelopment as Measured by Systems Biology Analysis

    Science.gov (United States)

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães

    2014-01-01

    Abstract Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment. PMID:24816220

  10. Xanthoceraside Ameliorates Mitochondrial Dysfunction Contributing to the Improvement of Learning and Memory Impairment in Mice with Intracerebroventricular Injection of Aβ1-42

    Directory of Open Access Journals (Sweden)

    Xue-Fei Ji

    2014-01-01

    Full Text Available The effects of xanthoceraside on learning and memory impairment were investigated and the possible mechanism associated with the protection of mitochondria was also preliminarily explored in Alzheimer’s disease (AD mice model induced by intracerebroventricular (i.c.v. injection of Aβ1-42. The results indicated that xanthoceraside (0.08–0.32 mg/kg significantly improved learning and memory impairment in Morris water maze test and Y-maze test. Xanthoceraside significantly reversed the aberrant decrease of ATP levels and attenuated the abnormal increase of ROS levels both in the cerebral cortex and hippocampus in mice injected with Aβ1-42. Moreover, xanthoceraside dose dependently reversed the decrease of COX, PDHC, and KGDHC activity in isolated cerebral cortex mitochondria of the mice compared with Aβ1-42 injected model mice. In conclusion, xanthoceraside could improve learning and memory impairment, promote the function of mitochondria, decrease the production of ROS, and inhibit oxidative stress. The improvement effects on mitochondria may be through withstanding the damage of Aβ to mitochondrial respiratory chain and the key enzymes in Kreb’s cycle. Therefore, the results from present study and previous study indicate that xanthoceraside could be a competitive candidate for the treatment of AD.

  11. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Science.gov (United States)

    Zhao, Xu; Liu, Chunmei; Xu, Mengjie; Li, Xiaolong; Bi, Kaishun; Jia, Ying

    2016-01-01

    Lignan compounds extracted from Schisandra chinensis (Turcz.) Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS) on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg) to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC), as well as the level of malondialdehyde (MDA) both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM) could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP), change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway). Moreover, TLS also decreased the activity of β-secretase 1 (BACE1), crucial protease contributes to the hydrolysis of amyloid precursor protein (APP), and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  12. Defining the optimal window for cranial transplantation of human induced pluripotent stem cell-derived cells to ameliorate radiation-induced cognitive impairment.

    Science.gov (United States)

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Riparip, Lara; Strnadel, Jan; Parihar, Vipan K; Limoli, Charles L

    2015-01-01

    Past preclinical studies have demonstrated the capability of using human stem cell transplantation in the irradiated brain to ameliorate radiation-induced cognitive dysfunction. Intrahippocampal transplantation of human embryonic stem cells and human neural stem cells (hNSCs) was found to functionally restore cognition in rats 1 and 4 months after cranial irradiation. To optimize the potential therapeutic benefits of human stem cell transplantation, we have further defined optimal transplantation windows for maximizing cognitive benefits after irradiation and used induced pluripotent stem cell-derived hNSCs (iPSC-hNSCs) that may eventually help minimize graft rejection in the host brain. For these studies, animals given an acute head-only dose of 10 Gy were grafted with iPSC-hNSCs at 2 days, 2 weeks, or 4 weeks following irradiation. Animals receiving stem cell grafts showed improved hippocampal spatial memory and contextual fear-conditioning performance compared with irradiated sham-surgery controls when analyzed 1 month after transplantation surgery. Importantly, superior performance was evident when stem cell grafting was delayed by 4 weeks following irradiation compared with animals grafted at earlier times. Analysis of the 4-week cohort showed that the surviving grafted cells migrated throughout the CA1 and CA3 subfields of the host hippocampus and differentiated into neuronal (∼39%) and astroglial (∼14%) subtypes. Furthermore, radiation-induced inflammation was significantly attenuated across multiple hippocampal subfields in animals receiving iPSC-hNSCs at 4 weeks after irradiation. These studies expand our prior findings to demonstrate that protracted stem cell grafting provides improved cognitive benefits following irradiation that are associated with reduced neuroinflammation.

  13. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    Full Text Available Lignan compounds extracted from Schisandra chinensis (Turcz. Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC, as well as the level of malondialdehyde (MDA both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP, change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway. Moreover, TLS also decreased the activity of β-secretase 1 (BACE1, crucial protease contributes to the hydrolysis of amyloid precursor protein (APP, and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  14. Activation of Sigma-1 receptor ameliorates anxiety-like behavior and cognitive impairments in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Ji, Li-Li; Peng, Jun-Bo; Fu, Chang-Hai; Cao, Dong; Li, Dan; Tong, Lei; Wang, Zhen-Yu

    2016-09-15

    Among learning and memory processes, fear memories are crucial in some psychiatric disorders like post-traumatic stress disorder (PTSD). Accumulating evidence shows that the sigma-1 receptor (Sig-1R) has comprehensive involvement in cognitive impairment and neuroprotective effects. It has also been reported that BDNF appears to enhance extinction of fear in anxiety disorders via the MAPK signaling cascade. However, it remains unclear whether BDNF-TrkB-MAPK pathway may be mechanistically involved in the therapeutic effect of sigma-1 receptor in the development of PTSD. To address this question, rats were subjected to a classical single-prolonged stress procedure (SPS) and kept undisturbed for 7 days. After that, rats were re-stressed by re-exposure to the forced swim component of SPS (RSPS). Behavior tests were subsequently performed to assess anxiety and cognitive impairments. Furthermore, we analyzed the expression of BDNF and the phosphorylation of TrkB and three MAPK pathways, namely, the ERK, JNK and p38. We found that the levels of BDNF and p-TrkB were increased following the RSPS procedure, which were reversed by the administration of PRE-084. Meanwhile, among the three MAPK signaling pathways, only the p-ERK expression was increased following the RSPS procedure. Collectively, our results indicate that BDNF-TrkB-ERK signaling pathway may be involved in the activation of sigma-1 receptor to yield therapeutic benefits for PTSD.

  15. Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat

    Directory of Open Access Journals (Sweden)

    Gao F

    2014-11-01

    Full Text Available Fei Gao,1,* Ying Gao,2,* Yang-feng Liu,3 Li Wang,4 Ya-jun Li1 1Department of Neurology, First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China; 2Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, People’s Republic of China; 3Department of Neurology, People’s Liberation Army No. 451 Hospital, Xi’an, People’s Republic of China; 4Department of Scientific Research, First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Though new antiepileptic drugs are emerging, approximately a third of epileptic patients still suffer from recurrent convulsions and cognitive dysfunction. Therefore, we tested whether berberine (Ber, a vegetable drug, has an anticonvulsant property and attenuates memory impairment in a pilocarpine (Pilo-induced epilepsy model in rats. The rats were injected with 400 mg/kg Pilo to induce convulsions, and Ber 25, 50, and 100 mg/kg were administrated by the intragastric route once daily 7 days before Pilo injection until the experiment was over. Convulsions were observed after Pilo injection. For the rats that developed status epilepticus (SE, malondialdehyde, glutathione levels, superoxide dismutase, and catalase activity in the hippocampus were measured 24 hours after SE. The rats received the Morris water-maze test 2 weeks after SE, and then were killed for fluoro-jade B staining to detect the degenerating neurons. We found Ber delayed latency to the first seizure and the time to develop SE in a dose-dependent manner. Malondialdehyde levels were decreased, while glutathione and catalase activity were strengthened in Ber-injected SE rats. In the Morris water-maze test, Ber decreased escape latency compared to saline-treated SE rats. Additionally, Ber reduced the number of fluoro-jade B-positive cells in the

  16. Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat.

    Science.gov (United States)

    Gao, Fei; Gao, Ying; Liu, Yang-Feng; Wang, Li; Li, Ya-Jun

    2014-01-01

    Though new antiepileptic drugs are emerging, approximately a third of epileptic patients still suffer from recurrent convulsions and cognitive dysfunction. Therefore, we tested whether berberine (Ber), a vegetable drug, has an anticonvulsant property and attenuates memory impairment in a pilocarpine (Pilo)-induced epilepsy model in rats. The rats were injected with 400 mg/kg Pilo to induce convulsions, and Ber 25, 50, and 100 mg/kg were administrated by the intragastric route once daily 7 days before Pilo injection until the experiment was over. Convulsions were observed after Pilo injection. For the rats that developed status epilepticus (SE), malondialdehyde, glutathione levels, superoxide dismutase, and catalase activity in the hippocampus were measured 24 hours after SE. The rats received the Morris water-maze test 2 weeks after SE, and then were killed for fluoro-jade B staining to detect the degenerating neurons. We found Ber delayed latency to the first seizure and the time to develop SE in a dose-dependent manner. Malondialdehyde levels were decreased, while glutathione and catalase activity were strengthened in Ber-injected SE rats. In the Morris water-maze test, Ber decreased escape latency compared to saline-treated SE rats. Additionally, Ber reduced the number of fluoro-jade B-positive cells in the hippocampal CA1 region. Our data suggest that Ber exerts anticonvulsant and neuroprotective effects on Pilo-induced epilepsy in rats. Simultaneously, Ber attenuates memory impairment. The beneficial effect may be partly due to mitigation of the oxidative stress burden.

  17. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Towards the therapeutics of cognitive impairment of schizophrenia

    Directory of Open Access Journals (Sweden)

    Takashi eUehara

    2014-09-01

    Full Text Available Rationale Augmentation therapy with serotonin-1A (5-HT1A receptor partial agonists has been suggested to improve cognitive deficits in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production.Objectives and methods The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days of tandospirone (0.05 and 5 mg/kg on brain energy metabolism, as represented by extracellular lactate concentration (eLAC in the medial prefrontal cortex (mPFC of young adult rats..Results Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot shock stress (FS. Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment.Conclusions These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism based on brain energy metabolism by which 5-HT1A agonism improve cognitive impairment in schizophrenia and related disorders.

  18. Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma

    Directory of Open Access Journals (Sweden)

    Lance A. Johnson

    2016-01-01

    Full Text Available Obesity, metabolic syndrome (MetS and type 2 diabetes (T2D are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D, multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV, a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.

  19. Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma.

    Science.gov (United States)

    Johnson, Lance A; Zuloaga, Kristen L; Kugelman, Tara L; Mader, Kevin S; Morré, Jeff T; Zuloaga, Damian G; Weber, Sydney; Marzulla, Tessa; Mulford, Amelia; Button, Dana; Lindner, Jonathan R; Alkayed, Nabil J; Stevens, Jan F; Raber, Jacob

    2016-01-01

    Obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D) are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD)-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D), multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV), a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.

  20. Randomized outcome trial of nutrient-enriched formula and neurodevelopment outcome in preterm infants

    OpenAIRE

    Giannì, Maria Lorella; Roggero, Paola; Amato, Orsola; Picciolini, Odoardo; Piemontese, Pasqua; Liotto, Nadia; Taroni, Francesca; Mosca, Fabio

    2014-01-01

    Background Preterm infants are at risk for adverse neurodevelopment. Furthermore, nutrition may play a key role in supporting neurodevelopment. The aim of this study was to evaluate whether a nutrient-enriched formula fed to preterm infants after hospital discharge could improve their neurodevelopment at 24 months (term-corrected age). Methods We conducted an observer-blinded, single-center, randomized controlled trial in infants admitted to the Fondazione IRCCS Cà Granda Ospedale Maggiore Po...

  1. Maternal Thyroid Function during the Second Half of Pregnancy and Child Neurodevelopment at 6, 12, 24, and 60 Months of Age

    Directory of Open Access Journals (Sweden)

    Jonathan Chevrier

    2011-01-01

    Full Text Available Although evidence suggests that maternal hypothyroidism and mild hypothyroxinemia during the first half of pregnancy alters fetal neurodevelopment among euthyroid offspring, little data are available from later in gestation. In this study, we measured free T4 using direct equilibrium dialysis, as well as total T4 and TSH in 287 pregnant women at 27 weeks' gestation. We also assessed cognition, memory, language, motor functioning, and behavior in their children at 6, 12, 24, and 60 months of age. Increasing maternal TSH was related to better performance on tests of cognition and language at 12 months but not at later ages. At 60 months, there was inconsistent evidence that higher TSH was related to improved attention. We found no convincing evidence that maternal TH during the second half of pregnancy was related to impaired child neurodevelopment.

  2. THE IMPACT ON PSYCHOPATHOLOGY AND NEURODEVELOPMENT OF CHILDREN’S OF ALCOHOL DEPENDENT FATHER

    Directory of Open Access Journals (Sweden)

    Koustubh R.

    2015-05-01

    statistically significant. CONCLUSIONS: The current findings indicate that children of alcohol - dependent father are at increased risk for behavioral, emotional and cognitive deficits . Overall intellectual capacity and functioning in the areas of verbal comprehension, perceptual reasoning, working memory, processing speed was severely impaired in these children. Also they had more difficulty with Neurodevelopment tasks and frontal lobe functions

  3. Diarrhea, Stimulation and Growth Predict Neurodevelopment in Young North Indian Children

    OpenAIRE

    Ingrid Kvestad; Sunita Taneja; Mari Hysing; Tivendra Kumar; Nita Bhandari; Tor A. Strand

    2015-01-01

    Background and Objective. Infants and young children in low to middle-income countries are at risk for adverse neurodevelopment due to multiple risk factors. In this study, we sought to identify stimulation and learning opportunities, growth, and burden of respiratory infections and diarrhea as predictors for neurodevelopment. Methods. We visited 422 North Indian children 6 to 30 months old weekly for six months. Childhood illnesses were assessed biweekly. At end study, we assessed neurod...

  4. Nutrition and neurodevelopment in children: focus on NUTRIMENTHE project.

    Science.gov (United States)

    Anjos, Tania; Altmäe, Signe; Emmett, Pauline; Tiemeier, Henning; Closa-Monasterolo, Ricardo; Luque, Verónica; Wiseman, Sheila; Pérez-García, Miguel; Lattka, Eva; Demmelmair, Hans; Egan, Bernadette; Straub, Niels; Szajewska, Hania; Evans, Jayne; Horton, Claire; Paus, Tomas; Isaacs, Elizabeth; van Klinken, Jan Willem; Koletzko, Berthold; Campoy, Cristina

    2013-12-01

    There is growing evidence that early nutrition affects later cognitive performance. The idea that the diet of mothers, infants, and children could affect later mental performance has major implications for public health practice and policy development and for our understanding of human biology as well as for food product development, economic progress, and future wealth creation. To date, however, much of the evidence is from animal, retrospective studies and short-term nutritional intervention studies in humans. The positive effect of micronutrients on health, especially of pregnant women eating well to maximise their child's cognitive and behavioural outcomes, is commonly acknowledged. The current evidence of an association between gestational nutrition and brain development in healthy children is more credible for folate, n-3 fatty acids, and iron. Recent findings highlight the fact that single-nutrient supplementation is less adequate than supplementation with more complex formulae. However, the optimal content of micronutrient supplementation and whether there is a long-term impact on child's neurodevelopment needs to be investigated further. Moreover, it is also evident that future studies should take into account genetic heterogeneity when evaluating nutritional effects and also nutritional recommendations. The objective of the present review is to provide a background and update on the current knowledge linking nutrition to cognition and behaviour in children, and to show how the large collaborative European Project NUTRIMENTHE is working towards this aim.

  5. Genomic sister-disorders of neurodevelopment: an evolutionary approach.

    Science.gov (United States)

    Crespi, Bernard; Summers, Kyle; Dorus, Steve

    2009-02-01

    Genomic sister-disorders are defined here as diseases mediated by duplications versus deletions of the same region. Such disorders can provide unique information concerning the genomic underpinnings of human neurodevelopment because effects of diametric variation in gene copy number on cognitive and behavioral phenotypes can be inferred. We describe evidence from the literature on deletions versus duplications for the regions underlying the best-known human neurogenetic sister-disorders, including Williams syndrome, Velocardiofacial syndrome, and Smith-Magenis syndrome, as well as the X-chromosomal conditions Klinefelter and Turner syndromes. These data suggest that diametric copy-number alterations can, like diametric alterations to imprinted genes, generate contrasting phenotypes associated with autistic-spectrum and psychotic-spectrum conditions. Genomically based perturbations to the development of the human social brain are thus apparently mediated to a notable degree by effects of variation in gene copy number. We also conducted the first analyses of positive selection for genes in the regions affected by these disorders. We found evidence consistent with adaptive evolution of protein-coding genes, or selective sweeps, for three of the four sets of sister-syndromes analyzed. These studies of selection facilitate identification of candidate genes for the phenotypes observed and lend a novel evolutionary dimension to the analysis of human cognitive architecture and neurogenetic disorders.

  6. Lessons about neurodevelopment from anatomical magnetic resonance imaging.

    Science.gov (United States)

    Silk, Timothy J; Wood, Amanda G

    2011-01-01

    The arrival of magnetic resonance imaging (MRI) has offered major advances in our understanding of both normal and abnormal neurodevelopment. This review is a broad overview of the key findings that anatomical MRI research has provided in regard to the normal developing brain and presents key issues and consideration in pediatric imaging. Volumetric MRI studies, using various methods, have reliably found that gray-matter volume increases and peaks in late childhood, followed by a slow but continued loss, whereas white matter increases rapidly until age 10 years with continued development well beyond adolescence. The introduction of analysis techniques, such as voxel-based morphometry, cortical thickness measures, and cortical pattern mapping, have begun to answer more regionally specific questions. Pediatric neuroimaging studies carry specific requirements, given not only the high degree of variability between individuals, ages, and sexes but also issues of behavioral compliance, MR signal, and postprocessing methodologies such as appropriate normalization. Considerations in future pediatric imaging studies are presented. Ultimately, the promise of computational analysis of structural MRI data is to understand how changes in cerebral morphology relate to acquisition and enhancement of skills and behaviors in typical and atypical development.

  7. The INTERGROWTH-21st Project Neurodevelopment Package: A Novel Method for the Multi-Dimensional Assessment of Neurodevelopment in Pre-School Age Children

    Science.gov (United States)

    Fernandes, Michelle; Stein, Alan; Newton, Charles R.; Cheikh-Ismail, Leila; Kihara, Michael; Wulff, Katharina; de León Quintana, Enrique; Aranzeta, Luis; Soria-Frisch, Aureli; Acedo, Javier; Ibanez, David; Abubakar, Amina; Giuliani, Francesca; Lewis, Tamsin; Kennedy, Stephen; Villar, Jose

    2014-01-01

    Background The International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st) Project is a population-based, longitudinal study describing early growth and development in an optimally healthy cohort of 4607 mothers and newborns. At 24 months, children are assessed for neurodevelopmental outcomes with the INTERGROWTH-21st Neurodevelopment Package. This paper describes neurodevelopment tools for preschoolers and the systematic approach leading to the development of the Package. Methods An advisory panel shortlisted project-specific criteria (such as multi-dimensional assessments and suitability for international populations) to be fulfilled by a neurodevelopment instrument. A literature review of well-established tools for preschoolers revealed 47 candidates, none of which fulfilled all the project's criteria. A multi-dimensional assessment was, therefore, compiled using a package-based approach by: (i) categorizing desired outcomes into domains, (ii) devising domain-specific criteria for tool selection, and (iii) selecting the most appropriate measure for each domain. Results The Package measures vision (Cardiff tests); cortical auditory processing (auditory evoked potentials to a novelty oddball paradigm); and cognition, language skills, behavior, motor skills and attention (the INTERGROWTH-21st Neurodevelopment Assessment) in 35–45 minutes. Sleep-wake patterns (actigraphy) are also assessed. Tablet-based applications with integrated quality checks and automated, wireless electroencephalography make the Package easy to administer in the field by non-specialist staff. The Package is in use in Brazil, India, Italy, Kenya and the United Kingdom. Conclusions The INTERGROWTH-21st Neurodevelopment Package is a multi-dimensional instrument measuring early child development (ECD). Its developmental approach may be useful to those involved in large-scale ECD research and surveillance efforts. PMID:25423589

  8. The INTERGROWTH-21st Project Neurodevelopment Package: a novel method for the multi-dimensional assessment of neurodevelopment in pre-school age children.

    Directory of Open Access Journals (Sweden)

    Michelle Fernandes

    Full Text Available BACKGROUND: The International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st Project is a population-based, longitudinal study describing early growth and development in an optimally healthy cohort of 4607 mothers and newborns. At 24 months, children are assessed for neurodevelopmental outcomes with the INTERGROWTH-21st Neurodevelopment Package. This paper describes neurodevelopment tools for preschoolers and the systematic approach leading to the development of the Package. METHODS: An advisory panel shortlisted project-specific criteria (such as multi-dimensional assessments and suitability for international populations to be fulfilled by a neurodevelopment instrument. A literature review of well-established tools for preschoolers revealed 47 candidates, none of which fulfilled all the project's criteria. A multi-dimensional assessment was, therefore, compiled using a package-based approach by: (i categorizing desired outcomes into domains, (ii devising domain-specific criteria for tool selection, and (iii selecting the most appropriate measure for each domain. RESULTS: The Package measures vision (Cardiff tests; cortical auditory processing (auditory evoked potentials to a novelty oddball paradigm; and cognition, language skills, behavior, motor skills and attention (the INTERGROWTH-21st Neurodevelopment Assessment in 35-45 minutes. Sleep-wake patterns (actigraphy are also assessed. Tablet-based applications with integrated quality checks and automated, wireless electroencephalography make the Package easy to administer in the field by non-specialist staff. The Package is in use in Brazil, India, Italy, Kenya and the United Kingdom. CONCLUSIONS: The INTERGROWTH-21st Neurodevelopment Package is a multi-dimensional instrument measuring early child development (ECD. Its developmental approach may be useful to those involved in large-scale ECD research and surveillance efforts.

  9. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijck-Brouwer, D. A. Janneke; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Hadders-Algra, Mijna

    2011-01-01

    Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. The effects of DHA (220 mg/day, n=41), DHA+AA (220 mg/day, n=39) or placebo (n=34) during pregnancy and lactation on neurodevelopment at 18 months, and the relations between umbilical cord DHA, AA and Mead acid

  10. Impaired GABAergic Inhibition in the Prefrontal Cortex of Early Postnatal Phencyclidine (PCP)-Treated Rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Broberg, Brian V; Kristiansen, Uffe;

    2014-01-01

    A compromised ¿-aminobutyric acid (GABA)ergic system is hypothesized to be part of the underlying pathophysiology of schizophrenia. N-methyl-d-aspartate (NMDA) receptor hypofunction during neurodevelopment is proposed to disrupt maturation of interneurons causing an impaired GABAergic transmissio...

  11. Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model.

    Science.gov (United States)

    Mudd, Austin T; Dilger, Ryan N

    2017-01-01

    Optimal nutrition early in life is critical to ensure proper structural and functional development of infant organ systems. Although pediatric nutrition historically has emphasized research on the relation between nutrition, growth rates, and gastrointestinal maturation, efforts increasingly have focused on how nutrition influences neurodevelopment. The provision of human milk is considered the gold standard in pediatric nutrition; thus, there is interest in understanding how functional nutrients and bioactive components in milk may modulate developmental processes. The piglet has emerged as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young pigs and humans, the piglet is being used increasingly in developmental nutritional neuroscience studies. The piglet primarily has been used to assess the effects of dietary fatty acids and their accretion in the brain throughout neurodevelopment. However, recent research indicates that other dietary components, including choline, iron, cholesterol, gangliosides, and sialic acid, among other compounds, also affect neurodevelopment in the pig model. Moreover, novel analytical techniques, including but not limited to MRI, behavioral assessments, and molecular quantification, allow for a more holistic understanding of how nutrition affects neurodevelopmental patterns. By combining early-life nutritional interventions with innovative analytical approaches, opportunities abound to quantify factors affecting neurodevelopmental trajectories in the neonate. This review discusses research using the translational pig model with primary emphasis on early-life nutrition interventions assessing neurodevelopment outcomes, while also discussing nutritionally-sensitive methods to characterize brain maturation.

  12. Diarrhea, stimulation and growth predict neurodevelopment in young North Indian children.

    Directory of Open Access Journals (Sweden)

    Ingrid Kvestad

    Full Text Available Infants and young children in low to middle-income countries are at risk for adverse neurodevelopment due to multiple risk factors. In this study, we sought to identify stimulation and learning opportunities, growth, and burden of respiratory infections and diarrhea as predictors for neurodevelopment.We visited 422 North Indian children 6 to 30 months old weekly for six months. Childhood illnesses were assessed biweekly. At end study, we assessed neurodevelopment using the Ages and Stages Questionnaire 3rd ed. (ASQ-3 and gathered information on stimulation and learning opportunities. We identified predictors for ASQ-3 scores in multiple linear and logistic regression models.We were able to explain 30.5% of the variation in the total ASQ-3 score by the identified predictors. When adjusting for child characteristics and annual family income, stimulation and learning opportunities explained most of the variation by 25.1%. Height for age (standardized beta: 0.12, p<.05 and weight for height z-scores (std. beta: 0.09, p<.05 were positively associated with the total ASQ-3 score, while number of days with diarrhea was negatively associated with these scores (std. beta: -0.13, p<0.01.Our results support the importance of early child stimulation and general nutrition for child development. Our study also suggests that diarrhea is an additional risk factor for adverse neurodevelopment in vulnerable children.

  13. Beginnings and Beyond: The Relationship between Television Violence and Neurodevelopment of Young Children.

    Science.gov (United States)

    Eastman, Wayne

    2003-01-01

    Summarizes research findings on the effect of televised violence on young children's behavior and neurodevelopment. Suggests ways parents can manage their child's television viewing and outlines activities for early childhood educators to incorporate into their curriculum to help children cope with television. Asserts that it is essential that…

  14. How Trauma and Attachment Can Impact Neurodevelopment: Informing Our Understanding and Treatment of Sexual Behaviour Problems

    Science.gov (United States)

    Creeden, Kevin

    2009-01-01

    Over the last several years there has been a notable increase in neurological and neurodevelopmental research, with a keen interest in applying this research to our understanding of everyday human learning and behaviour. One aspect of this research has examined how the experience of trauma in childhood can affect neurodevelopment with implications…

  15. Processing Speed and Neurodevelopment in Adolescent-Onset Psychosis: Cognitive Slowing Predicts Social Function

    Science.gov (United States)

    Bachman, Peter; Niendam, Tara A.; Jalbrzikowkski, Maria; Park, Chan Y.; Daley, Melita; Cannon, Tyrone D.; Bearden, Carrie E.

    2012-01-01

    Onset of psychosis may be associated with abnormal adolescent neurodevelopment. Here we examined the neurocognitive profile of first-episode, adolescent onset psychosis (AOP) as compared to typically developing adolescents, and asked whether neurocognitive performance varied differentially as a function of age in the cases compared with controls.…

  16. Self-Referenced Processing, Neurodevelopment and Joint Attention in Autism

    Science.gov (United States)

    Mundy, Peter; Gwaltney, Mary; Henderson, Heather

    2010-01-01

    This article describes a parallel and distributed processing model (PDPM) of joint attention, self-referenced processing and autism. According to this model, autism involves early impairments in the capacity for rapid, integrated processing of self-referenced (proprioceptive and interoceptive) and other-referenced (exteroceptive) information.…

  17. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model.

    Science.gov (United States)

    Qi, Liqin; Ke, Linfang; Liu, Xiaohong; Liao, Lianming; Ke, Sujie; Liu, Xiaoying; Wang, Yanping; Lin, Xiaowei; Zhou, Yu; Wu, Lijuan; Chen, Zhou; Liu, Libin

    2016-07-15

    Type 2 diabetes mellitus is a risk factor for Alzheimer's disease (AD). The glucagon-like peptide-1 analog liraglutide, a novel long-lasting incretin hormone, has been used to treat type 2 diabetes mellitus. In addition, liraglutide has been shown to be neurotrophic and neuroprotective. Here, we investigated the effects of liraglutide on amyloid β protein (Aβ)-induced AD in mice and explored its mechanism of action. The results showed that subcutaneous administration of liraglutide (25nmol/day), once daily for 8 weeks, prevented memory impairments in the Y Maze and Morris Water Maze following Aβ1-42 intracerebroventricular injection, and alleviated the ultra-structural changes of pyramidal neurons and chemical synapses in the hippocampal CA1 region. Furthermore, liraglutide reduced Aβ1-42-induced tau phosphorylation via the protein kinase B and glycogen synthase kinase-3β pathways. Thus liraglutide may alleviate cognitive impairment in AD by at least decreasing the phosphorylation of tau.

  18. Poor nutrition during pregnancy and lactation negatively affects neurodevelopment of the offspring: evidence from a translational primate model123

    OpenAIRE

    Keenan, Kate; Bartlett, Thad Q; Nijland, Mark; Rodriguez, Jesse S; Nathanielsz, Peter W.; Zürcher, Nicole R.

    2013-01-01

    Background: Studies of the effects of prenatal nutrition on neurodevelopment in humans are complicated because poor nutrition occurs in the context of psychosocial stressors and other risk factors associated with poor developmental outcomes.

  19. Prenatal Dichlorodiphenyldichloroethylene (DDE) exposure and neurodevelopment: A follow-up from 12 to 30 months of age

    OpenAIRE

    Torres-Sánchez, Luisa; Schnaas, Lourdes; Cebrián, Mariano E.; Hernández, María del Carmen; Valencia, Erika Osorio; Hernández, Rosa María García; López-Carrillo, Lizbeth

    2009-01-01

    In order to evaluate the persistency of the association between DDE and infant neurodevelopment we assessed mental and psychomotor development between 12 and 30 months of age in an ongoing cohort in Mexico.

  20. Factors Influencing Neurodevelopment after Cardiac Surgery during Infancy

    Science.gov (United States)

    Hövels-Gürich, Hedwig Hubertine

    2016-01-01

    Short- and long-term neurodevelopmental (ND) disabilities with negative impact on psychosocial and academic performance, quality of life, and independence in adulthood are known to be the most common sequelae for surviving children after surgery for congenital heart disease (CHD). This article reviews influences and risk factors for ND impairment. For a long time, the search for independent risk factors was focused on the perioperative period and modalities of cardiopulmonary bypass (CPB). CPB operations to ensure intraoperative vital organ perfusion and oxygen supply with or without circulatory arrest or regional cerebral perfusion bear specific risks. Examples of such risks are embolization, deep hypothermia, flow rate, hemodilution, blood gas management, postoperative hyperthermia, systemic inflammatory response, and capillary leak syndrome. However, influences of these procedure-specific risk factors on ND outcome have not been found as strong as expected. Furthermore, modifications have not been found to support the effectiveness of the currently used neuroprotective strategies. Postoperative factors, such as need for extracorporal membrane oxygenation or assist device support and duration of hospital stay, significantly influence ND parameters. On the other hand, the so-called “innate,” less modifiable patient-specific risk factors have been found to exert significant influences on ND outcomes. Examples are type and severity of CHD, genetic or syndromic abnormalities, as well as prematurity and low birth weight. Structural and hemodynamic characteristics of different CHDs are assumed to result in impaired brain growth and delayed maturation with respect to the white matter. Beginning in the fetal period, this so-called “encephalopathy of CHD” is suggested a major innate risk factor for pre-, peri-, and postoperative additional hypoxic or ischemic brain injury and subsequent ND impairment. Furthermore, MRI studies on brain volume, structure, and

  1. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment

    OpenAIRE

    Campoy, C.; Escolano-Margarit, MV; Anjos, T.; Szajewska, H.; Uauy, R

    2012-01-01

    The aim of this review is to evaluate the effects of omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) supplementation in pregnant and lactating women and infants during postnatal life, on the visual acuity, psychomotor development, mental performance and growth of infants and children. Eighteen publications (11 sets of randomized control clinical trial [RCTs]) assessed the effects of the n-3 LCPUFA supplementation during pregnancy on neurodevelopment and growth, in the same subject...

  2. In Utero p,p′-DDE Exposure and Infant Neurodevelopment: A Perinatal Cohort in Mexico

    OpenAIRE

    Torres-Sánchez, Luisa; Rothenberg, Stephen J.; Schnaas, Lourdes; Cebrián, Mariano E.; Osorio, Erika; del Carmen Hernández, Maria; García-Hernández, Rosa M.; del Rio-Garcia, Constanza; Wolff, Mary S; López-Carrillo, Lizbeth

    2007-01-01

    Background Evidence suggests that p,p′-dichlorodiphenyldichloroethene (DDE) affects neurodevelopment in infants, although a critical exposure window has not yet been identified. Objectives Our goal was to assess the prenatal DDE exposure window and its effect on the psychomotor development index (PDI) and mental development index (MDI) during the first year of life. Methods We recruited 244 children whose pregnancies and deliveries were uncomplicated, and whose mothers were monitored througho...

  3. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function

    OpenAIRE

    Miller, Brooke H.; Zeier, Zane; Xi, Li; Lanz, Thomas A; Deng, Shibing; Strathmann, Julia; Willoughby, David; Kenny, Paul J.; Elsworth, John D.; Lawrence, Matthew S.; Roth, Robert H.; Edbauer, Dieter; KLEIMAN, ROBIN J.; Wahlestedt, Claes

    2012-01-01

    Schizophrenia is characterized by affective, cognitive, neuromorphological, and molecular abnormalities that may have a neurodevelopmental origin. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of 854 miRNAs in prefrontal cortical tissue from 100 control, schizophrenic, and bipolar subjects. The cyclic AMP-responsive element bind...

  4. Children of men with alcohol dependence: Psychopathology, neurodevelopment and family environment

    OpenAIRE

    Raman, Vijaya; Prasad, Suveera; Appaya, M. Prakash

    2010-01-01

    Background: Children of people with alcohol dependence (COAs) are at high risk for behavioral and cognitive problems. Aim: Aim of this study was to compare the nature and extent of these problems in children of men with and without alcohol dependence. Materials and Methods: 32 children (17 in study group and 15 controls) were evaluated for psychopathology, neurodevelopment, cognitive functioning and family environment. Tools used were: Socio-demographic data sheet, Malin’s Intelligence Scale ...

  5. Current clinical evidence on the effect of general anesthesia on neurodevelopment in children: an updated systematic review with meta-regression.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available BACKGROUND: Several epidemiological studies have been conducted to address the later effect of anesthesia on neurodevelopment in children. However, the results are still inconclusive. METHODS: We here conducted a systematic review and meta-analysis to summarize the currently available clinical and epidemiologic evidence on the association of anesthesia/surgery with neurodevelopmental outcomes in children by searching PubMed, EMBASE, and Web of Science database (from January-1 2000 to February-1, 2013. The evaluation of neurodevelopment includes language and learning disabilities, cognition, behavioral development, and academic performance. Both retrospective and prospective studies were included. Data were abstracted from seven eligible studies. We estimated the synthesized hazard ratios (HR and 95% confidence interval (CI according to inter-study heterogeneity. RESULTS: The pooled HR for the association of anesthesia/surgery with an adverse behavioral or developmental outcome was 1.25 (95% CI, 1.13-1.38, P<0.001; random-effects model in children undergoing the first anesthesia before the age of 4-year. Then we analyzed the factors for this association using meta-regression method. It showed that it was the number of times of exposure (HR = 1.75, 95% CI 1.31-2.33; P<0.001 rather than the time at exposure before 4-year (HR = 1.08, 95% CI 0.87-1.34 for the effect of per 1-year early exposure; P = 0.47 is a risk factor for neurodevelopmental impairment. CONCLUSION: The current clinical evidence suggests modestly elevated risk of adverse neurodevelopmental outcomes in children who were exposed to anesthesia/surgery during early childhood, especially for those with multiple times of exposure. Due to limitation of retrospective studies, prospective investigations are needed to determine whether anesthesia/surgery is causative.

  6. Dietary prebiotics, milk fat globule membrane and lactoferrin affects structural neurodevelopment in the young piglet

    Directory of Open Access Journals (Sweden)

    Austin T Mudd

    2016-02-01

    Full Text Available Introduction: Milk fat globule membrane (MFGM and lactoferrin have been identified as two components that have potential to affect neurodevelopment. While concentrations of some MFGM constituents in infant formulas are within human milk range, they may not be present at optimal or clinically effective levels. However, lactoferrin levels of infant formulas are consistently reported to be lower than human milk. This study sought to provide a novel combination of prebiotics, bovine-derived milk fat globule membrane and lactoferrin and assess their influence on neurodevelopment. Methods: Twenty-four male piglets were provided either TEST (n=12 or CONT (n=12 diet from 2 to 31 d of age. Piglets underwent spatial T-maze assessment starting at 17 d of age, were subjected to magnetic resonance imaging at 30 d of age, and were euthanized for tissue collection at 31 d of age. Results: Diffusion tensor imaging revealed differences in radial (P = 0.032 and mean (P = 0.028 diffusivities in the internal capsule, where CONT piglets had higher rates of diffusion compared with TEST piglets. Voxel-based morphometry indicated larger (P < 0.05 differences in cortical grey and white matter concentrations, with CONT piglets having larger tissue clusters in these regions compared with TEST piglets. In the spatial T-maze assessment, CONT piglets exhibited shorter latency to choice compared with TEST piglets on d 2 of acquisition and d 3 and 4 of reversal. Conclusion: Observed differences in microstructure maturation of the internal capsule and cortical tissue concentrations suggest that piglets provided TEST diet were more advanced developmentally than piglets provided CONT diet. Therefore, supplementation of infant formula with prebiotics, milk fat globule membrane and lactoferrin may support neurodevelopment in human infants.

  7. Prenatal urinary phthalate metabolites levels and neurodevelopment in children at two and three years of age

    Science.gov (United States)

    Téllez-Rojo, Martha M.; Cantoral, Alejandra; Cantonwine, David E.; Schnaas, Lourdes; Peterson, Karen; Hu, Howard; Meeker, John D.

    2013-01-01

    Background Previous studies suggest that prenatal phthalate exposure affects neurodevelopment and behavior during the first years of life. Objectives To evaluate the effect of maternal urinary concentrations of phthalate metabolites during pregnancy on mental and psychomotor development in children 24-36 months of age. Methods This analysis was conducted on the first three years of life among a subsample of 136 mother-child pairs from the ELEMENT cohort studies conducted in Mexico City. Maternal urine samples collected during the third trimester of pregnancy were analyzed for 9 phthalate metabolites: Mono-ethyl phthalate (MEP), Mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), mono-benzyl phthalate (MBzP), Mono-3-carboxypropyl phthalate (MCPP), and four di-2-ethylhexyl phthalate (DEHP) metabolites [mono-2-ethylhexyl-phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP)]. Among the 136 children, 135 (99.3%) completed the study period. Child neurodevelopment was assessed using mental and psychomotor development indexes (MDI and PDI) from a Bayley (BSID II) test at 24, 30, and 36 months of age. The effect of prenatal phthalate exposure on neurodevelopment was estimated using linear regression models for longitudinal data clustered at the individual level. Results No significant associations were observed among all children combined, but differential effects by gender were found. Among girls, there was a negative association between MDI and DEHP metabolites MEHP (β = −2.11 [95% CI: −3.73, −0.49]), MEHHP (β = −1.89 [95% CI: −3.64, −0.15]), MEOHP (β = −1.80 [95% CI: −3.58, −0.03]) MECPP (β = −2.52 [95% CI: −4.44, −0.61]), and DEHP (β = −3.41 [95% CI: −5.26, −1.55]); there was no significant effect among boys. Male PDI was positively related to MBzP (β = 1.79 [95% CI: 0.14, 3.45]) and MCPP (β = 1.64 [95% CI: 0

  8. An imaging and analysis toolset for the study of Caenorhabditis elegans neurodevelopment

    Science.gov (United States)

    Christensen, Ryan; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina, Javier; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter; McCreedy, Evan; Mohler, William; Bao, Zhirong; Colón-Ramos, Daniel; Shroff, Hari

    2015-03-01

    How an entire nervous system develops remains mysterious. We have developed a light-sheet microscope system to examine neurodevelopment in C. elegans embryos. Our system creates overlapping light sheets from two orthogonally positioned objectives, enabling imaging from the first cell division to hatching (~14 hours) with 350 nm isotropic resolution. We have also developed computer algorithms to computationally straighten nematode embryos, facilitating data comparison and combination from multiple animals. We plan to use these tools to create an atlas showing the position and morphology of all neurons in the developing embryo.

  9. Fetal and neonatal levels of omega-3: effects on neurodevelopment, nutrition, and growth.

    Science.gov (United States)

    Rombaldi Bernardi, Juliana; de Souza Escobar, Renata; Ferreira, Charles Francisco; Pelufo Silveira, Patrícia

    2012-01-01

    Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs) play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions). Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children's neurodevelopment, nutrition, and growth.

  10. Fetal and Neonatal Levels of Omega-3: Effects on Neurodevelopment, Nutrition, and Growth

    Directory of Open Access Journals (Sweden)

    Juliana Rombaldi Bernardi

    2012-01-01

    Full Text Available Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions. Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children’s neurodevelopment, nutrition, and growth.

  11. The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells.

    Science.gov (United States)

    Shi, Lingling; Chang, Xiao; Zhang, Peilin; Coba, Marcelo P; Lu, Wange; Wang, Kai

    2013-09-15

    Genetic mutations in NLGN4X (neuroligin 4), including point mutations and copy number variants (CNVs), have been associated with susceptibility to autism spectrum disorders (ASDs). However, it is unclear how mutations in NLGN4X result in neurodevelopmental defects. Here, we used neural stem cells (NSCs) as in vitro models to explore the impacts of NLGN4X knockdown on neurodevelopment. Using two shRNAmir-based vectors targeting NLGN4X and one control shRNAmir vector, we modulated NLGN4X expression and differentiated these NSCs into mature neurons. We monitored the neurodevelopmental process at Weeks 0, 0.5, 1, 2, 4 and 6, based on morphological analysis and whole-genome gene expression profiling. At the cellular level, in NSCs with NLGN4X knockdown, we observed increasingly delayed neuronal development and compromised neurite formation, starting from Week 2 through Week 6 post differentiation. At the molecular level, we identified multiple pathways, such as neurogenesis, neuron differentiation and muscle development, which are increasingly disturbed in cells with NLGN4X knockdown. Notably, several postsynaptic genes, including DLG4, NLGN1 and NLGN3, also have decreased expression. Based on in vitro models, NLGN4X knockdown directly impacts neurodevelopmental process during the formation of neurons and their connections. Our functional genomics study highlights the utility of NSCs models in understanding the functional roles of CNVs in affecting neurodevelopment and conferring susceptibility to neurodevelopmental diseases.

  12. Stress and the Commensal Microbiota: Importance in parturition and infant neurodevelopment

    Directory of Open Access Journals (Sweden)

    Tamar L Gur

    2015-02-01

    Full Text Available The body is colonized by an enormous array of microbes that are collectively called the microbiota. During quiescent periods, microbial communities within the gut are relatively resistant to change. However, several factors that disrupt homeostasis can also significantly change gut microbial community structure. One factor that has been shown to change the composition of the gut microbiota is exposure to psychological stressors. Studies demonstrate that the commensal microbiota are involved in stressor-induced immunomodulation, but other biological effects are not yet known. This review discusses emerging evidence that the microbiota can impact the brain and behavior and indicates that stressor-induced alterations in the composition of gut microbial communities contribute to stressor-induced behavioral changes. This review will also discuss the evidence that such effects are most evident early in life, where both stress and the microbiota have been linked to birth outcomes, such as prematurity, and neurodevelopment. When considered together, a paradigm emerges in which stressor-induced alterations in commensal microbial populations significantly impact parturition and infant neurodevelopment.

  13. Patterns of exposure to multiple metals and associations with neurodevelopment of preschool children from Montevideo, Uruguay.

    Science.gov (United States)

    Kordas, Katarzyna; Ardoino, Graciela; Coffman, Donna L; Queirolo, Elena I; Ciccariello, Daniela; Mañay, Nelly; Ettinger, Adrienne S

    2015-01-01

    While it is known that toxic metals contribute individually to child cognitive and behavioral deficits, we still know little about the effects of exposure to multiple metals, particularly when exposures are low. We studied the association between children's blood lead and hair arsenic, cadmium, and manganese and their performance on the Bayley Scales of Infant Development III. Ninety-two preschool children (age 13-42 months) from Montevideo, Uruguay, provided a hair sample and 78 had a blood lead level (BLL) measurement. Using latent class analysis (LCA), we identified four groups of exposure based on metal concentrations: (1) low metals, (2) low-to-moderate metals, (3) high lead and cadmium, and (4) high metals. Using the four-group exposure variable as the main predictor, and fitting raw scores on the cognitive, receptive vocabulary, and expressive vocabulary scales as dependent variables, both complete-case and multiple imputation (MI) analyses were conducted. We found no association between multiple-metal exposures and neurodevelopment in covariate-adjusted models. This study demonstrates the use of LCA together with MI to determine patterns of exposure to multiple toxic metals and relate these to child neurodevelopment. However, because the overall study population was small, other studies with larger sample sizes are needed to investigate these associations.

  14. Fish intake during pregnancy and foetal neurodevelopment--a systematic review of the evidence.

    Science.gov (United States)

    Starling, Phoebe; Charlton, Karen; McMahon, Anne T; Lucas, Catherine

    2015-03-18

    Fish is a source of several nutrients that are important for healthy foetal development. Guidelines from Australia, Europe and the USA encourage fish consumption during pregnancy. The potential for contamination by heavy metals, as well as risk of listeriosis requires careful consideration of the shaping of dietary messages related to fish intake during pregnancy. This review critically evaluates literature on fish intake in pregnant women, with a focus on the association between neurodevelopmental outcomes in the offspring and maternal fish intake during pregnancy. Peer-reviewed journal articles published between January 2000 and March 2014 were included. Eligible studies included those of healthy pregnant women who had experienced full term births and those that had measured fish or seafood intake and assessed neurodevelopmental outcomes in offspring. Medline, Scopus, Web of Science, ScienceDirect and the Cochrane Library were searched using the search terms: pregnant, neurodevelopment, cognition, fish and seafood. Of 279 papers sourced, eight were included in the final review. Due to heterogeneity in methodology and measured outcomes, a qualitative comparison of study findings was conducted. This review indicates that the benefits of diets providing moderate amounts of fish during pregnancy outweigh potential detrimental effects in regards to offspring neurodevelopment. It is important that the type of fish consumed is low in mercury.

  15. Visual Impairment

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Visual Impairment KidsHealth > For Teens > Visual Impairment Print A ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual ...

  16. Cerebellar Volume and Proton Magnetic Resonance Spectroscopy at Term, and Neurodevelopment at 2 Years of Age in Preterm Infants

    Science.gov (United States)

    van Kooij, Britt J. M.; Benders, Manon J. N. L.; Anbeek, Petronella; van Haastert, Ingrid C.; de Vries, Linda S.; Groenendaal, Floris

    2012-01-01

    Aim: To assess the relation between cerebellar volume and spectroscopy at term equivalent age, and neurodevelopment at 24 months corrected age in preterm infants. Methods: Magnetic resonance imaging of the brain was performed around term equivalent age in 112 preterm infants (mean gestational age 28wks 3d [SD 1wk 5d]; birthweight 1129g [SD 324g]).…

  17. BDNF and Schizophrenia: from Neurodevelopment to Neuronal Plasticity, Learning and Memory.

    Directory of Open Access Journals (Sweden)

    Rodrigo eNieto

    2013-06-01

    Full Text Available Brain Derived Neurotrophic Factor (BDNF is a neurotrophin that has been related not only to neurodevelopment and neuroprotection, but also to synapse regulation, learning and memory. Research focused on the neurobiology of schizophrenia has emphasized the relevance of neurodevelompental and neurotoxicity-related elements in the pathogenesis of this disease. Research focused on the clinical features of schizophrenia in the past decades has emphasized the relevance of cognitive deficits of this illness, considered a core manifestation and an important predictor for functional outcome. Variations in neurotrophins such as BDNF may have a role as part of the molecular mechanisms underlying these processes, from the neurodevelopmental alterations to the molecular mechanisms of cognitive dysfunction in patients with schizophrenia.

  18. Transcription factor SGF1 is critical for the neurodevelopment in the silkworm, Bombyx mori.

    Science.gov (United States)

    Liu, Zhao-Yang; Yu, Qi; Yang, Chun-Hong; Meng, Miao; Ren, Chun-Jiu; Mu, Zhi-Mei; Cui, Wei-Zheng; Liu, Qing-Xin

    2016-08-01

    FoxA transcription factors play vital roles in regulating the expression of organ-specific genes. BmSGF1, the sole FoxA family member in Bombyx mori, is required for development of the silk gland. However, the function of BmSGF1 in development of the nervous system in the silkworm remains unknown. Here, we show that the amino acids sequence of BmSGF1 is evolutionarily conserved in its middle region from Trichoplax adhaerens to human and diverged from the homologues in most other species in its N-terminal region. BmSGF1 expresses in the nervous system at the embryonic stage. Knockdown of Bmsgf1 by RNA interference (RNAi) results in abnormal development of axons. Therefore, our results demonstrate that BmSGF1 is an indispensable regulator for neurodevelopment.

  19. Neonatal Pain in Very Preterm Infants: Long-Term Effects on Brain, Neurodevelopment and Pain Reactivity

    Directory of Open Access Journals (Sweden)

    Ruth Eckstein Grunau

    2013-10-01

    Full Text Available Effects of early life psychosocial adversity have received a great deal of attention, such as maternal separation in experimental animal models and abuse/neglect in young humans. More recently, long-term effects of the physical stress of repetitive procedural pain have begun to be addressed in infants hospitalized in neonatal intensive care. Preterm infants are more sensitive to pain and stress, which cannot be distinguished in neonates. The focus of this review is clinical studies of long-term effects of repeated procedural pain-related stress in the neonatal intensive care unit (NICU in relation to brain development, neurodevelopment, programming of stress systems, and later pain sensitivity in infants born very preterm (24–32 weeks’ gestational age. Neonatal pain exposure has been quantified as the number of invasive and/or skin-breaking procedures during hospitalization in the NICU. Emerging studies provide convincing clinical evidence for an adverse impact of neonatal pain/stress in infants at a time of physiological immaturity, rapidly developing brain microstructure and networks, as well as programming of the hypothalamic-pituitary-adrenal axis. Currently it appears that early pain/stress may influence the developing brain and thereby neurodevelopment and stress-sensitive behaviors, particularly in the most immature neonates. However, there is no evidence for greater prevalence of pain syndromes compared to children and adults born healthy at full term. In addressing associations between pain/stress and outcomes, careful consideration of confounding clinical factors related to prematurity is essential. The need for pain management for humanitarian care is widely advocated. Non-pharmacological interventions to help parents reduce their infant’s stress may be brain-protective.

  20. Perinatal dioxin exposure and the neurodevelopment of Vietnamese toddlers at 1 year of age.

    Science.gov (United States)

    Pham, Tai The; Nishijo, Muneko; Nguyen, Anh Thi Nguyet; Tran, Nghi Ngoc; Van Hoang, Luong; Tran, Anh Hai; Nguyen, Trung Viet; Nishijo, Hisao

    2015-12-01

    Dioxin concentrations remain elevated in both the environment and in humans residing near former US Air Force bases in South Vietnam. This may potentially have adverse health effects, particularly on infant neurodevelopment. We followed 214 infants whose mothers resided in a dioxin-contaminated area in Da Nang, Vietnam, from birth until 1 year of age. Perinatal exposure to dioxins was estimated from toxic equivalent (TEQ) levels of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/Fs-TEQ), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) concentrations in breast milk. In infants, daily dioxin intake (DDI) was used as an index of postnatal exposure through breastfeeding. Neurodevelopment of toddlers was assessed using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). No significant differences in neurodevelopmental scores were exhibited for cognitive, language or motor functions between four exposure groups of PCDDs/Fs-TEQ or 2,3,7,8-TetraCDD. However, social-emotional scores were decreased in the high PCDDs/Fs-TEQ group and the high 2,3,7,8-TetraCDD group compared with those with mild exposure, after adjusting for confounding factors. Cognitive scores in the mild, moderate, and high DDI groups were significantly higher than those in low DDI group, but there were no differences in cognitive scores among the three higher DDI groups. These results suggest that perinatal exposure to dioxins may affect social-emotional development of 1-year-old toddlers, without diminishing global neurodevelopmental function.

  1. Effect of maternal job strain during pregnancy on infant neurodevelopment by gender at 6 and 12 months: Mothers and Children’s Environmental Health (MOCEH) study

    OpenAIRE

    Kim, Eunjeong; Park, Hyesook; Hong, Yun-Chul; Ha, Mina; Kim, Yangho; Lee, Bo-Eun; Ha, Eun-Hee

    2015-01-01

    Objectives Limited evidence is available regarding the association between prenatal job strain and infant neurodevelopment. Most studies used stress indicators other than job strain to explain the relationship between prenatal maternal stress and child development. The objective of this study was to investigate the association between maternal job strain during pregnancy and neurodevelopment in infancy. Methods Mothers and Children’s Environmental Health (MOCEH) study, an on-going prospective...

  2. 活性维生素D对糖尿病肾病大鼠足细胞损伤的抑制作用及其机制研究%The effects of calcitriol on ameliorating podocytes impairment and its possible mechanism in DN rats

    Institute of Scientific and Technical Information of China (English)

    宋志霞; 郭银凤; 周敏; 张晓良

    2014-01-01

    Objective To investigate the effects and underlying mechanism of calcitriol on ameliorating podocytes impairment in DN rats.Methods SD rats were randomly divided into four groups:normal control (NC) group,calcitriol treatment (VD) group:calcitriol 0.1μg· kg--1 d-1,diabetic nephropathy (DN) group:streptozocin (STZ) 58 mg/kg,DN treated with calcitriol (DN + VD) group:calcitriol 0.1 μg · kg-1 · d-1 + STZ 58 mg/kg.Rats were sacrificed at the end of 18 weeks.Results Compared with the DN group,the DN + VD group exhibited significantly lower proteinuria by 36%,improved renal histology at the end of the experiment (P < 0.05),and similar levels of blood glucose,serum urea nitrogen as well as body weight (P > 0.05).There were no significant differences in the serum concentrations of creatinine,calcium and phosphorus among the four groups (P > 0.05).In DN group,the expressions of nephrin,podocin,VDR,PI3K-p85 and p-Akt were significantly decreased and the expression of desmin was increased compared to NC group.Calcitriol treatment could attenuate the above changes.Additionally,a positive correlation was observed between the expressions of nephrin and VDR (r=0.776,P < 0.05).Likewise,the expression of nephrin was positively correlated with either PI3K -p85 or p-Akt (r=-0.736,r=0.855,all P < 0.05).Conclusion Calcitriol can ameliorate podocytes injury in DN rats,which might be related with the further up-regulation of PI3K/p-Akt signaling pathway.%目的 探讨活性维生素D对糖尿病肾病大鼠足细胞损伤的抑制作用及其可能机制.方法 将SD雄性大鼠随机分为四组:对照组(NC组)、活性维生素D组(VD组,骨化三醇0.1 μg· kg-1·d-1灌胃)、糖尿病肾病组(DN组,腹腔注射STZ 58 mg/kg)、糖尿病肾病+活性维生素D组(DN+VD组).定期检测血糖、体质量,收集尿标本,18周末处死动物,检测Scr、BUN和尿蛋白变化.PAS及MASSON染色观察肾脏病理改变.电镜观察足细胞超

  3. Excitation/Inhibition Imbalance and Impaired Synaptic Inhibition in Hippocampal Area CA3 of Mecp2 Knockout Mice

    OpenAIRE

    Calfa, Gaston; Li, Wei; Rutherford, John M.; Pozzo-Miller, Lucas

    2014-01-01

    Rett syndrome (RTT) is a neurodevelopment disorder associated with intellectual disabilities and caused by loss-of-function mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding Protein-2 (MeCP2). Neuronal dysfunction and changes in cortical excitability occur in RTT individuals and Mecp2-deficient mice, including hippocampal network hyperactivity and higher frequency of spontaneous multi-unit spikes in the CA3 cell body layer. Here, we describe impaired synaptic inh...

  4. Lead exposure and early child neurodevelopment among children 12-24 months in Kinshasa, the Democratic Republic of Congo.

    Science.gov (United States)

    Kashala-Abotnes, Espérance; Mumbere, Pépé Penghele; Mishika, Jeannette Mukanya; Ndjukendi, Ally Omba; Mpaka, Davin Beya; Bumoko, Makila-Mabe Guy; Kayembe, Tharcisse Kalula; Tshala-Katumbay, Désiré; Kazadi, Théodore Kayembe; Okitundu, Daniel Luwa E-Andjafono

    2016-12-01

    Childhood lead exposure remains a problem in developing countries, and little is known about its effects on early child neurodevelopment and temperament in the Democratic Republic of Congo (DRC). We, therefore, conducted this study to determine the association between lead exposure and the neurodevelopment and behaviour of children aged 12-24 months in Kinshasa, DRC. A cross-sectional study was conducted between February and June 2012, and parents of 104 children were invited to participate. Blood lead levels (BLLs) of each child were tested using the flame atomic spectrophotometry method. All children were subject to a clinical examination and assessed with two selected early child neurodevelopmental tools, the Gensini-Gavito and the baby characteristics questionnaire, to measure their neurodevelopment and temperament. Detectable BLLs ranged from 1 to 30 μg/dl with a geometric mean of 6.9 (SD 4.8) μg/dl. BLLs at 5-9 and ≥10 μg/dl were significantly associated with the child temperament (p lead were reported with more temperament difficulties at even blood lead levels lead exposure among children in Kinshasa, DRC.

  5. Neurodevelopment in perinatally HIV-infected children: a concern for adolescence

    Directory of Open Access Journals (Sweden)

    Barbara Laughton

    2013-06-01

    Full Text Available Globally, an estimated 3.4 million children are living with HIV, yet little is known about the effects of HIV and antiretroviral treatment (ART on the developing brain, and the neurodevelopmental and behavioural outcomes of perinatally HIV-infected (PHIV+ adolescents. We reviewed the literature on neurodevelopmental outcomes in PHIV+ children and adolescents, and summarized the current evidence on behaviour, general cognition, specific domains, hearing and language, school performance and physical disabilities due to neurological problems. Evidence suggests that PHIV+ children do not perform as well as controls on general cognitive tests, processing speed and visual–spatial tasks, and are at much higher risk for psychiatric and mental health problems. Children with AIDS-defining diagnoses are particularly at risk for poorer outcomes. A striking finding is the lack of published data specific to the adolescent age group (10–25 years, particularly from resource-constrained countries, which have the highest HIV prevalence. In addition, extreme heterogeneity in terms of timing and source of infection, and antiretroviral experience limits our ability to summarize findings of studies and generalize results to other settings. Due to the complex nature of the developing adolescent brain, environmental influences and variation in access to ART, there is an urgent need for research on the longitudinal trajectory of neurodevelopment among children and adolescents perinatally infected with HIV, especially in high burden resource-constrained settings.

  6. Exploring the caffeine-induced teratogenicity on neurodevelopment using early chick embryo.

    Directory of Open Access Journals (Sweden)

    Zheng-lai Ma

    Full Text Available Caffeine consumption is worldwide. It has been part of our diet for many centuries; indwelled in our foods, drinks, and medicines. It is often perceived as a "legal drug", and though it is known to have detrimental effects on our health, more specifically, disrupt the normal fetal development following excessive maternal intake, much ambiguity still surrounds the precise mechanisms and consequences of caffeine-induced toxicity. Here, we employed early chick embryos as a developmental model to assess the effects of caffeine on the development of the fetal nervous system. We found that administration of caffeine led to defective neural tube closures and expression of several abnormal morphological phenotypes, which included thickening of the cephalic mesenchymal tissues and scattering of somites. Immunocytochemistry of caffeine-treated embryos using neural crest cell markers also demonstrated uncharacteristic features; HNK1 labeled migratory crest cells exhibited an incontinuous dorsal-ventral migration trajectory, though Pax7 positive cells of the caffeine-treated groups were comparatively similar to the control. Furthermore, the number of neurons expressing neurofilament and the degree of neuronal branching were both significantly reduced following caffeine administration. The extent of these effects was dose-dependent. In conclusion, caffeine exposure can result in malformations of the neural tube and induce other teratogenic effects on neurodevelopment, although the exact mechanism of these effects requires further investigation.

  7. Markers of neurodevelopmental impairments in early-onset psychosis

    Directory of Open Access Journals (Sweden)

    Petruzzelli MG

    2015-07-01

    Full Text Available Maria Giuseppina Petruzzelli,1 Lucia Margari,1 Francesco Craig,1 Maria Gloria Campa,1 Domenico Martinelli,2 Adriana Pastore,3 Marta Simone,1 Francesco Margari3 1Child and Adolescence Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University “Aldo Moro” of Bari, 2Department of Medical and Surgical Sciences; University of Foggia, Foggia, 3Psychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organ, University “Aldo Moro” of Bari, Bari, Italy Background: The aim of this study was to assess the association between the clinical and neurobiological markers of neurodevelopmental impairments and early-onset schizophrenia spectrum psychosis. Methods: A sample of 36 patients with early-onset schizophrenia spectrum psychosis was compared to a control sample of 36 patients with migraine. We assessed early childhood neurodevelopmental milestones using a modified version of the General Developmental Scale, general intellectual ability using the Wechsler Intelligence Scale for Children–Revised or Leiter International Performance Scale–Revised for patients with speech and language abnormalities, and neurological soft signs with specific regard to subtle motor impairment. Results: Subjects with early-onset psychosis had a higher rate of impaired social development (P=0.001, learning difficulties (P=0.04, enuresis (P=0.0008, a lower intelligence quotient (P<0.001, and subtle motor impairments (P=0.005 than control subjects. Conclusion: We suggest that neurodevelopment in early-onset psychosis is characterized by a global impairment of functional and adaptive skills that manifests from early childhood, rather than a delay or limitation in language and motor development. The current evidence is based on a small sample and should be investigated in larger samples in future research. Keywords: early-onset psychosis, early-onset schizophrenia, neurodevelopment, social cognition

  8. Positive effect of human milk feeding during NICU hospitalization on 24 month neurodevelopment of very low birth weight infants: an Italian cohort study.

    Science.gov (United States)

    Gibertoni, Dino; Corvaglia, Luigi; Vandini, Silvia; Rucci, Paola; Savini, Silvia; Alessandroni, Rosina; Sansavini, Alessandra; Fantini, Maria Pia; Faldella, Giacomo

    2015-01-01

    The aim of this study was to determine the effect of human milk feeding during NICU hospitalization on neurodevelopment at 24 months of corrected age in very low birth weight infants. A cohort of 316 very low birth weight newborns (weight ≤ 1500 g) was prospectively enrolled in a follow-up program on admission to the Neonatal Intensive Care Unit of S. Orsola Hospital, Bologna, Italy, from January 2005 to June 2011. Neurodevelopment was evaluated at 24 months corrected age using the Griffiths Mental Development Scale. The effect of human milk nutrition on neurodevelopment was first investigated using a multiple linear regression model, to adjust for the effects of gestational age, small for gestational age, complications at birth and during hospitalization, growth restriction at discharge and socio-economic status. Path analysis was then used to refine the multiple regression model, taking into account the relationships among predictors and their temporal sequence. Human milk feeding during NICU hospitalization and higher socio-economic status were associated with better neurodevelopment at 24 months in both models. In the path analysis model intraventricular hemorrhage-periventricular leukomalacia and growth restriction at discharge proved to be directly and independently associated with poorer neurodevelopment. Gestational age and growth restriction at birth had indirect significant effects on neurodevelopment, which were mediated by complications that occurred at birth and during hospitalization, growth restriction at discharge and type of feeding. In conclusion, our findings suggest that mother's human milk feeding during hospitalization can be encouraged because it may improve neurodevelopment at 24 months corrected age.

  9. Positive effect of human milk feeding during NICU hospitalization on 24 month neurodevelopment of very low birth weight infants: an Italian cohort study.

    Directory of Open Access Journals (Sweden)

    Dino Gibertoni

    Full Text Available The aim of this study was to determine the effect of human milk feeding during NICU hospitalization on neurodevelopment at 24 months of corrected age in very low birth weight infants. A cohort of 316 very low birth weight newborns (weight ≤ 1500 g was prospectively enrolled in a follow-up program on admission to the Neonatal Intensive Care Unit of S. Orsola Hospital, Bologna, Italy, from January 2005 to June 2011. Neurodevelopment was evaluated at 24 months corrected age using the Griffiths Mental Development Scale. The effect of human milk nutrition on neurodevelopment was first investigated using a multiple linear regression model, to adjust for the effects of gestational age, small for gestational age, complications at birth and during hospitalization, growth restriction at discharge and socio-economic status. Path analysis was then used to refine the multiple regression model, taking into account the relationships among predictors and their temporal sequence. Human milk feeding during NICU hospitalization and higher socio-economic status were associated with better neurodevelopment at 24 months in both models. In the path analysis model intraventricular hemorrhage-periventricular leukomalacia and growth restriction at discharge proved to be directly and independently associated with poorer neurodevelopment. Gestational age and growth restriction at birth had indirect significant effects on neurodevelopment, which were mediated by complications that occurred at birth and during hospitalization, growth restriction at discharge and type of feeding. In conclusion, our findings suggest that mother's human milk feeding during hospitalization can be encouraged because it may improve neurodevelopment at 24 months corrected age.

  10. Mercury (Hg) exposure and its effects on Saudi breastfed infant's neurodevelopment.

    Science.gov (United States)

    Al-Saleh, Iman; Nester, Michael; Abduljabbar, Mai; Al-Rouqi, Reem; Eltabache, Chafica; Al-Rajudi, Tahreer; Elkhatib, Rola

    2016-01-01

    This cross-sectional study analyzed mercury (Hg) levels in healthy Saudi mothers and their infants (age 3-12 months) and examined the influence of Hg on the infants' neurodevelopment using screening tools, such as the Denver Developmental Screening Test II (DDST-II) and Parents' Evaluation of Developmental Status (PEDS). A total of 944 mothers and their 944 infants were recruited from 57 Primary Health Care Centers (PHCCs) in Riyadh. The total Hg (THg) levels were measured in the mothers' and infants' urine (UTHg-M and UTHg-I) and hair (HTHg-M and HTHg-I) samples and in the breast milk and mothers' blood. Methylmercury (MeHg) levels were determined in hair samples from the mothers (MeHg-M) and infants (MeHg-I). Only 40.1% of the infants were breast-fed when enrolled, and 59.9% had stopped breastfeeding. Only 1.8% of the mothers and 0.3% of the infants had MeHg levels above the Environmental Proection Agency (EPA) reference dose (1 μg/g), with low medians of 0.132 and 0.091 μg/g dw, respectively, but the MeHg levels were significantly associated with infant DDST-II performance. The levels of corrected UTHg-M for creatinine (Cr), HTHg-M, HTHg-I, and HMeHg-M, however, displayed an association with infant PEDS performance. The medians and percentage of the tested population that exceeded the recommended limits for Hg in urine and hair set by the World Health Organization (5 μg/g Cr) and EPA (1 μg/g) were 0.695 μg/g Cr and 3% UTHg, 0.118 μg/g dw and 4.1% HTHg-M, 0.101 μg/g dw and 2.8% HTHg-I, and 0.132 μg/g dw and 1.8% HMeHg-M. Our study provides evidence of an association between some Hg measures and delays in infant neurodevelopment, despite their low levels and regardless of the infant's breastfeeding status. The results are of potential concern, because delayed psychomotor or mental performance in infants could be an indicator of later neurocognitive development in children, which may persist into adulthood, as shown in other studies. The absence of local

  11. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-03-01

    Conclusions: Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism.

  12. Neurodevelopment of Amazonian Infants: Antenatal and Postnatal Exposure to Methyl- and Ethylmercury

    Directory of Open Access Journals (Sweden)

    José G. Dórea

    2012-01-01

    Full Text Available Neurodevelopment as Gesell development scores (GDSs in relation to mercury exposure in infants (<6 months of age of one urban center and two rural villages, respectively, of fisherman and cassiterite miners. Mean total hair-Hg (HHg concentrations of infants from Itapuã (3.95±1.8 ppm were statistically (P=0.0001 different from those of infants from Porto Velho (3.84±5.5 ppm and Bom Futuro (1.85±0.9 ppm. Differences in vaccine coverage among these populations resulted in significantly higher (P=0.0001 mean ethylmercury (EtHg exposure in urban infants (150 μg than in infants from either village (41.67 μg, Itapuã; 42.39 μg, Bom Futuro. There was an inverse significant (Spearman r=−0.2300; P=0.0376 correlation between HHg and GDS for infants from Porto Velho, but not for the rural infants from Bom Futuro (Spearman r=0.1336; P=0.0862 and Itapuã (Spearman r=0.1666; P=0.5182. Logistic regression applied to variables above or below the median GDS showed that EtHg exposure (estimated probability=−0.0157; P=0.0070 and breastfeeding score (estimated probability=−0.0066; P=0.0536 score were significantly associated with GDS. Conclusion. In nurslings whose mothers are exposed to different levels of fish-MeHg (HHg, a higher score of neurological development at six months was negatively associated with exposure to additional TCV-EtHg. Results should be interpreted with caution because of unaccounted variables.

  13. Evaluation of Neurodevelopment and Factors Affecting it in Children With Acyanotic Congenital Cardiac Disease

    Directory of Open Access Journals (Sweden)

    Ayten Ozmen

    2016-01-01

    Full Text Available Background: The rate of congenital heart disease is 0.8% in all live births. The majority of this, however, is acyanotic congenital heart disease. The survival rate of children with cardiac disease has increased with the developments provided in recent years and their lifetime is extended. Objectives: This study aims to evaluate neurodevelopment of children with uncomplicated acyanotic congenital heart disease in preschool period and determine the factors affecting their neurodevelopmental process. Patients and Methods: 132 children with acyanotic congenital heart disease aged 6 - 72 months were involved in the study. Mental development and intelligence levels of patients under 2 years old were assessed by using Bayley Development Scale-III, and Stanford Binet Intelligence test was employed for patients over 2 years old. Denver Developmental Screening Test II was applied to all patients for their personal-social, fine motor, gross motor and language development. Results: The average age of patients (67 girls, 65 boys included in the study was 35.2 ± 19.6 months. It was determined that there were subnormal mental level in 13 (10% patients and at least one specific developmental disorder in 33 (25% patients. Bayley Mental Development Scale score of patients who had received incubator care in perinatal period was found significantly low (88 ± 4.2 compared to those with no incubator care (93.17 ± 8.5 (P = 0.028. Low educational level of father was established to be linked with low mental development scores at the age of 2 and following that age (P < 0.05. Iron deficiency anemia was discovered to be related to low psychometric test scores at every age (P < 0.05. Conclusions: Neurodevelopmental problems in children with acyanotic congenital heart disease were found higher compared to those in society. Mental development and intelligence levels of patients were determined to be closely associated with receiving incubator care, father’s educational

  14. Visual Impairment

    Science.gov (United States)

    ... What Causes Visual Impairment? People rarely lose their eyesight during their teen years. When they do, it's ... inflammation in the eye. It's often found in poor rural countries that have overcrowded living conditions and ...

  15. Adverse Associations of both Prenatal and Postnatal Exposure to Organophosphorous Pesticides with Infant Neurodevelopment in an Agricultural Area of Jiangsu Province, China

    Science.gov (United States)

    Liu, Ping; Wu, Chunhua; Chang, Xiuli; Qi, Xiaojuan; Zheng, Minglan; Zhou, Zhijun

    2016-01-01

    Background: Prenatal exposure to organophosphorous (OP) pesticides has been found to be associated with adverse effects on child neurodevelopment, but evidence on potential effects induced by both prenatal and postnatal OP exposure in infants is limited. Objectives: Our aim was to investigate the associations of both prenatal and postnatal OP exposure with birth outcomes and infant neurodevelopment. Methods: Exposure to OP in 310 mother–infant pairs was assessed by measuring dimethylphosphate (DM), diethylphosphate (DE), and total dialkylphosphate (DAP) metabolites in urines from pregnant women and their children at 2 years of age. The Gesell Developmental Schedules was administered to examine neurodevelopment of 2-year-old children. Results: Based on the Gesell Developmental Schedules, the proportions of children with developmental delays were < 6%. Adverse associations between head circumference at birth and prenatal OP exposure were demonstrated. Both prenatal and postnatal OP exposure was significantly associated with increased risk of being developmentally delayed. Specifically, odds ratio (OR) value for prenatal DEs was 9.75 (95% CI: 1.28, 73.98, p = 0.028) in the adaptive area, whereas in the social area, OR values for postnatal DEs and DAPs were 9.56 (95% CI: 1.59, 57.57, p = 0.014) and 12.00 (95% CI: 1.23, 117.37, p = 0.033), respectively. Adverse associations were observed only in boys, not in girls. Conclusions: Both prenatal and postnatal OP exposure may adversely affect the neurodevelopment of infants living in the agricultural area. The present study adds to the accumulating evidence on associations of prenatal and postnatal OP exposure with infant neurodevelopment. Citation: Liu P, Wu C, Chang X, Qi X, Zheng M, Zhou Z. 2016. Adverse associations of both prenatal and postnatal exposure to organophosphorous pesticides with infant neurodevelopment in an agricultural area of Jiangsu Province, China. Environ Health Perspect 124:1637–1643; http

  16. Fucoidan Extracts Ameliorate Acute Colitis.

    Science.gov (United States)

    Lean, Qi Ying; Eri, Rajaraman D; Fitton, J Helen; Patel, Rahul P; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent

  17. Positive Effect of Human Milk Feeding during NICU Hospitalization on 24 Month Neurodevelopment of Very Low Birth Weight Infants: An Italian Cohort Study

    OpenAIRE

    Dino Gibertoni; Luigi Corvaglia; Silvia Vandini; Paola Rucci; Silvia Savini; Rosina Alessandroni; Alessandra Sansavini; Maria Pia Fantini; Giacomo Faldella

    2015-01-01

    The aim of this study was to determine the effect of human milk feeding during NICU hospitalization on neurodevelopment at 24 months of corrected age in very low birth weight infants. A cohort of 316 very low birth weight newborns (weight ≤ 1500 g) was prospectively enrolled in a follow-up program on admission to the Neonatal Intensive Care Unit of S. Orsola Hospital, Bologna, Italy, from January 2005 to June 2011. Neurodevelopment was evaluated at 24 months corrected age using the Griffiths ...

  18. Effect of maternal excessive iodine intake on neurodevelopment and cognitive function in rat offspring

    Directory of Open Access Journals (Sweden)

    Zhang Le

    2012-10-01

    Full Text Available Abstract Background Iodine deficiency and iodine excess are both associated with adverse health consequences. Iodine deficiency during pregnancy leads to insufficient maternal thyroid hormone, subsequently causing irreversible adverse effects on the neurological and cognitive functions of the offspring. The results of our previous epidemiological study suggested that mild iodine excess might increase the prevalence of subclinical hypothyroidism. In the present study, female Wistar rats maintained on low-iodine grain were randomly assigned to three groups based on iodated water concentration: low iodine (LI, 1.2 μg/d, normal iodine (NI, 5–6 μg/d, and 3-fold high iodine (3HI, 15–16 μg/d. The present study investigated whether higher-than-normal iodine intake (3HI by rats from before pregnancy until breastfeeding affects the postnatal (PN neurodevelopment (PN7 and PN45 of their offspring during particularly sensitive periods in brain development. Results After 12 weeks of treatment (before pregnancy, iodine concentrations in urine and thyroid tissue and circulating thyroxine of adult females correlated with iodine intake. Brain-derived neurotrophic factor (BDNF expression in the hippocampi of pups on PN7 and PN45 was decreased in 3HI group compared to the NI controls (P  0.05, all On PN7 and PN45, the BDNF levels of the 3HI pups were 83.5% and 88.8%, respectively, that of the NI pups. In addition, the 3HI group had a higher neuroendocrine-specific protein A (NSP-A level than the NI controls on PN7 (P  0.05. NSP-A levels of the 3HI pups were 117.0% that of the NI pups. No significant difference was observed in the expressions of c-Fos or c-Jun in the hippocampal CA1 region of the 3HI group compared to the controls (P > 0.05. Results from the Morris water maze test revealed that pups of the 3HI group had mild learning and spatial memory deficits. Conclusions The neurodevelopmental and cognitive deficits of the 3HI pups were

  19. Pattern of growth of very low birth weight preterm infants, assessed using the WHO Growth Standards, is associated with neurodevelopment.

    Science.gov (United States)

    Nash, Andrea; Dunn, Michael; Asztalos, Elizabeth; Corey, Mary; Mulvihill-Jory, Bridget; O'Connor, Deborah L

    2011-08-01

    Several Canadian professional organizations recently recommended that the growth of preterm infants be monitored using the World Health Organization Growth Standards (WHO-GS) after hospital discharge. The WHO-GS are a prescriptive set of growth charts that describe how term infants should grow under ideal environmental conditions. Whether preterm infants following this pattern of growth have better outcomes than infants that do not has yet to be evaluated. Our aim was to determine whether the pattern of growth of very low birth weight (VLBW) infants during the first 2 years, assessed using the WHO-GS or the traditional Centers for Disease Control and Prevention reference growth charts (CDC-RGC), is associated with neurodevelopment. Pattern of weight, length, and head circumference gain of appropriate-for-gestation VLBW preterm infants (n = 289) from birth to 18-24 months corrected age was classified, using the WHO-GS and CDC-RGC, as sustained (change in Z-score ≤1 SD), decelerated (decline >1 SD), or accelerated (incline >1 SD). Development was assessed using the Bayley Scales of Infant and Toddler Development (BSID)-III at 18-24 months corrected age. Using the WHO-GS, children with a decelerated pattern of weight gain had lower cognitive (10 points), language (6 points), and motor (4 points) scores than infants with sustained weight gain (p neurodevelopment scores on the BSID-III than a pattern of sustained growth.

  20. Smoking and alcohol drinking during pregnancy as the risk factors for poor child neurodevelopment – A review of epidemiological studies

    Directory of Open Access Journals (Sweden)

    Joanna Jurewicz

    2015-06-01

    Full Text Available Maternal active and passive smoking and low or moderate alcohol drinking during pregnancy, taking into account the level of exposure and developmental or behavioral outcomes, are recognized as a significant issue from both a clinical and a public health perspective. The article aims at evaluating the impact of prenatal exposure to tobacco smoke constituents and low or moderate alcohol drinking during pregnancy on children neurodevelopment by reviewing the most recently published literature. Relevant studies were identified by searching the Pubmed, Medline and Ebsco literature databases. This review is restricted to 29 human studies published in English in peer reviewed journals since 2006. The studies published recently continued to show some relationship between tobacco smoke exposure, from active and passive maternal smoking during pregnancy, and children’s psychomotor development independent of other variables, but this relationship is not straightforward. The association is mostly consistent for measures of academic achievements and behavioral problems which require further attention. The results of the studies on low or moderate exposure to alcohol are not fully conclusive, but some of them suggest that consumption of alcohol during pregnancy may adversely affect children’s intelligence quotient (IQ, mental health, memory and verbal or visual performance. As the reviewed studies indicate, maternal lifestyle during pregnancy like alcohol drinking or smoking may affect children neurodevelopment. All effort should be taken to eliminate such exposure to ensure appropriate children’s development.

  1. All Vision Impairment

    Science.gov (United States)

    ... Home > Statistics and Data > All Vision Impairment All Vision Impairment Vision Impairment Defined Vision impairment is defined as the ... Ethnicity 2010 U.S. Age-Specific Prevalence Rates for Vision Impairment by Age and Race/Ethnicity Table for ...

  2. Home environment and cord blood levels of lead, arsenic, and zinc on neurodevelopment of 24 months children living in Chitwan Valley, Nepal.

    Science.gov (United States)

    Parajuli, Rajendra Prasad; Fujiwara, Takeo; Umezaki, Masahiro; Watanabe, Chiho

    2015-01-01

    In a birth cohort living in Chitwan Valley, lowland Nepal, we have previously reported inverse associations between in utero levels of lead (Pb), arsenic (As) and neurodevelopment at birth measured by the Brazelton Neonatal Behavioral Assessment Scale, third edition (NBAS III). In the present paper, a follow-up of the same cohort was made on 24-month-old infants regarding the neurodevelopmental effects of these metals, taking the postnatal environment into account. In total, the same100 mother-infant pairs as the previous study, whose Pb, As, and Zn concentrations in cord blood were known, were recruited. Postnatal raising environment was evaluated using the Home Observation for Measurement of Environment (HOME) scale. Neurodevelopment of children at 24 months of age (n=74) was assessed using the Bayley Scale of Infant Development, Second Edition (BSID II). Multivariable regression adjusting for covariates was performed to determine the associations of in utero levels of toxic and essential elements and the home environment with neurodevelopment scores. Unlike the NBAS III conducted for newborns, none of the BSID II cluster scores in 24-month-old infants were associated with cord blood levels of Pb, As, and Zn. The total HOME score was positively associated with the mental development scale (MDI) score (coefficient=0.67, at 95% CI=0.03 to 1.31). In this cohort, a detrimental effect of in utero Pb and As on neurodevelopmental indicators observed at birth disappeared at 24 months, while an association between neurodevelopment and home environment continued.

  3. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Barranco, Miguel [Andalusian School of Public Health (EASP), Granada (Spain); Lacasaña, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.es [Andalusian School of Public Health (EASP), Granada (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Aguilar-Garduño, Clemente [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Centre Superior d' Investigació en Salut Pública, Conselleria de Sanitat, Valencia (Spain); Alguacil, Juan [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Biology and Public Health, University of Huelva, Huelva (Spain); Gil, Fernando [Department of Legal Medicine and Toxicology, University of Granada, Granada (Spain); González-Alzaga, Beatriz [Andalusian School of Public Health (EASP), Granada (Spain); Rojas-García, Antonio [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2013-06-01

    The aim of this study was to analyse the scientific evidence published to date on the potential effects on neurodevelopment and behavioural disorders in children exposed to arsenic, cadmium and manganese and to quantify the magnitude of the effect on neurodevelopment by pooling the results of the different studies. We conducted a systematic review of original articles from January 2000 until March 2012, that evaluate the effects on neurodevelopment and behavioural disorders due to pre or post natal exposure to arsenic, cadmium and manganese in children up to 16 years of age. We also conducted a meta-analysis assessing the effects of exposure to arsenic and manganese on neurodevelopment. Forty-one articles that evaluated the effects of metallic elements on neurodevelopment and behavioural disorders met the inclusion criteria: 18 examined arsenic, 6 cadmium and 17 manganese. Most studies evaluating exposure to arsenic (13 of 18) and manganese (14 of 17) reported a significant negative effect on neurodevelopment and behavioural disorders. Only two studies that evaluated exposure to cadmium found an association with neurodevelopmental or behavioural disorders. The results of our meta-analysis suggest that a 50% increase of arsenic levels in urine would be associated with a 0.4 decrease in the intelligence quotient (IQ) of children aged 5–15 years. Moreover a 50% increase of manganese levels in hair would be associated with a decrease of 0.7 points in the IQ of children aged 6–13 years. There is evidence that relates arsenic and manganese exposure with neurodevelopmental problems in children, but there is little information on cadmium exposure. Few studies have evaluated behavioural disorders due to exposure to these compounds, and manganese is the only one for which there is more evidence of the existence of association with attention deficit disorder with hyperactivity. - Highlights: • We evaluated the association between As, Cd and Mn with neurodevelopment in

  4. New Perspective on Impact of Folic Acid Supplementation during Pregnancy on Neurodevelopment/Autism in the Offspring Children - A Systematic Review.

    Science.gov (United States)

    Gao, Yunfei; Sheng, Chao; Xie, Ri-Hua; Sun, Wen; Asztalos, Elizabeth; Moddemann, Diane; Zwaigenbaum, Lonnie; Walker, Mark; Wen, Shi Wu

    2016-01-01

    It has been conclusively established that folic acid supplementation prior to and during early pregnancy (up to 12 weeks of gestation) can prevent neural tube defects (NTDs). We hypothesized that folate effects may extend from neuro-structural defects to alterations in neuro-behavioural and emotional skills including autism spectrum disorders (ASDs) and other developmental disorders. The objective of this review was to comprehensively evaluate evidence on the impact of folic acid on neurodevelopment other than NTDs. We conducted an online search of relevant literature compiled by the National Library of Medicine from Medline and EMBASE (searched on Dec 31, 2014: http://www.ncbi.nlm.nih.gov/entrez/query/fcgi and http://www.elsevier.com/online-tools/embase). We first created 3 files (search restricted to English literature) using the following key words: 1) folate or folic acid (171322 papers identified by this search); 2) maternal or pregnancy or pregnant or gestation or gestational or prenatal or antenatal or periconception or periconceptional (1349219 papers identified by this search); and 3) autism or autism spectrum disorders or developmental delay or development or neurodevelopment or mental or cognitive or language or personal-social or gross motor or fine motor or behaviour or intellectual or intelligence or Bayley Scale (8268145 papers identified by this search). We then merged the 3 files and reviewed the papers that addressed these three issues simultaneously. A total of 22 original papers that examined the association between folic acid supplementation in human pregnancy and neurodevelopment/autism were identified after the screening, with 15 studies showing a beneficial effect of folic acid supplementation on neurodevelopment/autism, 6 studies showed no statistically significant difference, while one study showed a harmful effect in > 5 mg folic acid supplementation/day during pregnancy. Folic acid supplementation in pregnancy may have beneficial effects

  5. Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration.

    Science.gov (United States)

    McMurtrey, Richard J

    2016-01-01

    Biomaterials are becoming an essential tool in the study and application of stem cell research. Various types of biomaterials enable three-dimensional culture of stem cells, and, more recently, also enable high-resolution patterning and organization of multicellular architectures. Biomaterials also hold potential to provide many additional advantages over cell transplants alone in regenerative medicine. This article describes novel designs for functionalized biomaterial constructs that guide tissue development to targeted regional identities and structures. Such designs comprise compartmentalized regions in the biomaterial structure that are functionalized with molecular factors that form concentration gradients through the construct and guide stem cell development, axis patterning, and tissue architecture, including rostral/caudal, ventral/dorsal, or medial/lateral identities of the central nervous system. The ability to recapitulate innate developmental processes in a three-dimensional environment and under specific controlled conditions has vital application to advanced models of neurodevelopment and for repair of specific sites of damaged or diseased neural tissue.

  6. 27 CFR 24.178 - Amelioration.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Amelioration. 24.178 Section 24.178 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... is calculated as tartaric acid for grapes, malic acid for apples, and citric acid for other...

  7. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    Directory of Open Access Journals (Sweden)

    Uta Waterhouse

    2016-10-01

    Full Text Available Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg at one of three neurodevelopmental time periods [gestation days (GD 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND 60] and included: prepulse inhibition (PPI, latent inhibition (LI and delayed non-matching to sample (DNMTS. Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously were administered, and animals were re-tested in the same tasks (PND 110. Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11 resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI and selective (LI improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI and induced a global enhancement of sensorimotor gating (PPI.

  8. Calcium ameliorates diarrhea in immune compromised children

    OpenAIRE

    Cheng, Sam X.; Bai, Harrison X.; Gonzalez-Peralta, Regino; Mistry, Pramod K.; Gorelick, Fred S.

    2013-01-01

    Treatment of infectious diarrheas remains a challenge, particularly in immunocompromised patients in whom infections usually persist and resultant diarrhea is often severe and protracted. Children with infectious diarrhea who become dehydrated are normally treated with oral or intravenous rehydration therapy. Although rehydration therapy can replace the loss of fluid, it does not ameliorate diarrhea. Thus, over the past decades, there has been continuous effort to search for ways to safely st...

  9. Prenatal and postnatal manganese teeth levels and neurodevelopment at 7, 9, and 10.5 years in the CHAMACOS cohort

    Science.gov (United States)

    Mora, Ana M.; Arora, Manish; Harley, Kim G.; Kogut, Katherine; Parra, Kimberly; Hernández-Bonilla, David; Gunier, Robert B.; Bradman, Asa; Smith, Donald R.; Eskenazi, Brenda

    2015-01-01

    Background Numerous cross-sectional studies of school-age children have observed that exposure to manganese (Mn) adversely affects neurodevelopment. However, few prospective studies have looked at the effects of both prenatal and postnatal Mn exposure on child neurodevelopment. Methods We measured Mn levels in prenatal and early postnatal dentine of shed teeth and examined their association with behavior, cognition, memory, and motor functioning in 248 children aged 7, 9, and/or 10.5 years living near agricultural fields treated with Mn-containing fungicides in California. We used generalized linear models and generalized additive models to test for linear and nonlinear associations, and generalized estimating equation models to assess longitudinal effects. Results We observed that higher prenatal and early postnatal Mn levels in dentine of deciduous teeth were adversely associated with behavioral outcomes, namely internalizing, externalizing, and hyperactivity problems, in boys and girls at 7 and 10.5 years. In contrast, higher Mn levels in prenatal and postnatal dentine were associated with better memory abilities at ages 9 and 10.5, and better cognitive and motor outcomes at ages 7 and 10.5 years, among boys only. Higher prenatal dentine Mn levels were also associated with poorer visuospatial memory outcomes at 9 years and worse cognitive scores at 7 and 10.5 years in children with higher prenatal lead levels (≥0.8 μg/dL). All these associations were linear and were consistent with findings from longitudinal analyses. Conclusions We observed that higher prenatal and early postnatal Mn levels measured in dentine of deciduous teeth, a novel biomarker that provides reliable information on the developmental timing of exposures to Mn, were associated with poorer behavioral outcomes in school-age boys and girls and better motor function, memory, and/or cognitive abilities in school-age boys. Additional research is needed to understand the inconsistencies in the

  10. Timing of nutritional interventions in very-low-birth-weight infants: optimal neurodevelopment compared with the onset of the metabolic syndrome.

    Science.gov (United States)

    Lafeber, Harrie N; van de Lagemaat, Monique; Rotteveel, Joost; van Weissenbruch, Mirjam

    2013-08-01

    Recent nutritional research in very-low-birth-weight (VLBW) infants is focused on the prevention of protein malnutrition during the first postnatal weeks. At this early age, nutritional protein fortification depends on amino acid infusion via a central vein because of the immature gastrointestinal tract. In 2010 new guidelines on nutrition were proposed by the European Society of Paediatric Gastroenterology, Hepatology, and Nutrition nutrition committee. In particular, the relative increase in the protein fraction in the nutrition of these infants aims to prevent early postnatal weight loss, to prevent morbidity, and to stimulate neurodevelopment. On the other hand, an increasing number of follow-up studies in VLBW infants indicate that, in particular, those infants who show rapid growth after preterm birth are at risk of metabolic consequences and cardiovascular disease later in life. In this review, we describe the quest to develop a customized diet that offers optimal nutrition at several time points of growth and development during the first year of life. This diet should prevent early malnutrition, enhance neurodevelopment, and limit the increase in total body fat during the first 6 mo. We question whether one type of early diet suffices for normal neurodevelopment with a normal body composition in later life or whether we need several types of diet at various stages of development.

  11. Milestone achievement and neurodevelopment of rural Amazonian toddlers (12 to 24 months) with different methylmercury and ethylmercury exposure.

    Science.gov (United States)

    Dórea, José G; Marques, Rejane C; Abreu, Luciana

    2014-01-01

    Neurological outcomes (Gesell development schedules [GDS]), age of walking, and age of talking were studied in 299 toddlers (12 to 24 mo) in relation to environmental (fish consumption and tin mining) exposure. Exposure to fish methylmercury (MeHg) consumption and iatrogenic ethylmercury (EtHg) in Thimerosal-containing vaccines (TCV) was quantified in toddlers from two rural villages (n = 91, Itapuã; n = 218, Bom Futuro) respectively populated by fishers and cassiterite miners. Median total hair Hg (HHg) concentrations of infants from Itapuã (3.5 μg/g) were significantly higher than those of infants from Bom Futuro (2.2 μg/g). Median EtHg exposure from TCV was also significantly higher in toddlers from Itapuã (137.5 μg) than in those from Bom Futuro (112.5 μg). There were no significant differences between groups for any of the Gesell schedules; however, there were proportionally more compromised toddlers (GDS neurodevelopment associated with either HHg or EtHg exposure; however, nutritional status was significantly associated with GDS. In conclusion, milestone achievement was delayed in toddlers from tin-ore mining communities. Despite significantly higher exposure to both forms of organic Hg (MeHg from maternal fish consumption, and EtHg from TCV) in toddlers from the fishing village, significant differences were seen only among the proportions of most severely affected toddlers (GDS < 70).

  12. Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration

    Science.gov (United States)

    McMurtrey, Richard J

    2016-01-01

    Biomaterials are becoming an essential tool in the study and application of stem cell research. Various types of biomaterials enable three-dimensional culture of stem cells, and, more recently, also enable high-resolution patterning and organization of multicellular architectures. Biomaterials also hold potential to provide many additional advantages over cell transplants alone in regenerative medicine. This article describes novel designs for functionalized biomaterial constructs that guide tissue development to targeted regional identities and structures. Such designs comprise compartmentalized regions in the biomaterial structure that are functionalized with molecular factors that form concentration gradients through the construct and guide stem cell development, axis patterning, and tissue architecture, including rostral/caudal, ventral/dorsal, or medial/lateral identities of the central nervous system. The ability to recapitulate innate developmental processes in a three-dimensional environment and under specific controlled conditions has vital application to advanced models of neurodevelopment and for repair of specific sites of damaged or diseased neural tissue. PMID:27766141

  13. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model.

    Science.gov (United States)

    Murai, Kiyohito; Sun, Guoqiang; Ye, Peng; Tian, E; Yang, Su; Cui, Qi; Sun, Guihua; Trinh, Daniel; Sun, Olivia; Hong, Teresa; Wen, Zhexing; Kalkum, Markus; Riggs, Arthur D; Song, Hongjun; Ming, Guo-li; Shi, Yanhong

    2016-03-11

    Dysregulated expression of miR-219, a brain-specific microRNA, has been observed in neurodevelopmental disorders, such as schizophrenia (SCZ). However, its role in normal mammalian neural stem cells (NSCs) and in SCZ pathogenesis remains unknown. We show here that the nuclear receptor TLX, an essential regulator of NSC proliferation and self-renewal, inhibits miR-219 processing. miR-219 suppresses mouse NSC proliferation downstream of TLX. Moreover, we demonstrate upregulation of miR-219 and downregulation of TLX expression in NSCs derived from SCZ patient iPSCs and DISC1-mutant isogenic iPSCs. SCZ NSCs exhibit reduced cell proliferation. Overexpression of TLX or inhibition of miR-219 action rescues the proliferative defect in SCZ NSCs. Therefore, this study uncovers an important role for TLX and miR-219 in both normal neurodevelopment and in SCZ patient iPSC-derived NSCs. Moreover, this study reveals an unexpected role for TLX in regulating microRNA processing, independent of its well-characterized role in transcriptional regulation.

  14. No relationship between mode of delivery and neonatal mortality and neurodevelopment in very low birth weight infants aged two years

    Institute of Scientific and Technical Information of China (English)

    Jia-Jun Zhu; Ying-Ying Bao; Guo-Lian Zhang; Li-Xin Ma; Ming-Yuan Wu

    2014-01-01

    Background: To compare neonatal mortality and neurodevelopmental outcomes at two years of age in very low birth weight infants (≤1500 g) born by cesarean with those by vaginal delivery. Methods: In this retrospective, case-control study, we evaluated neonatal mortality, medical conditions and neurodevelopmental outcomes at two years of corrected age in 710 very low birth weight (VLBW) infants born between January 2005 and December 2010. Of the 710 infants, 351 were born by the cesarean and 359/710 by vaginal route. Results: There were no significant differences in neonatal mortality between the cesarean delivery group and vaginal delivery group [56/351 (15.9%) vs. 71/359 (19.8%), P=0.20]. VLBW infants delivered by the cesarean procedure had a higher incidence of respiratory distress syndrome than those born by the vaginal route [221/351 (63.0%) vs. 178/359 (49.6%), P Conclusions: In neither neurodevelopment nor neonatal mortality did cesarean birth offered significant advantages to VLBW infants. Moreover, the operation might be associated with an increased risk of respiratory distress syndrome for VLBW infants. The mode of delivery of VLBW infants should be largely based on obstetric indications and maternal considerations rather than perceived better outcomes for the neonate.

  15. Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration

    Directory of Open Access Journals (Sweden)

    Richard J McMurtrey

    2016-10-01

    Full Text Available Biomaterials are becoming an essential tool in the study and application of stem cell research. Various types of biomaterials enable three-dimensional culture of stem cells, and, more recently, also enable high-resolution patterning and organization of multicellular architectures. Biomaterials also hold potential to provide many additional advantages over cell transplants alone in regenerative medicine. This article describes novel designs for functionalized biomaterial constructs that guide tissue development to targeted regional identities and structures. Such designs comprise compartmentalized regions in the biomaterial structure that are functionalized with molecular factors that form concentration gradients through the construct and guide stem cell development, axis patterning, and tissue architecture, including rostral/caudal, ventral/dorsal, or medial/lateral identities of the central nervous system. The ability to recapitulate innate developmental processes in a three-dimensional environment and under specific controlled conditions has vital application to advanced models of neurodevelopment and for repair of specific sites of damaged or diseased neural tissue.

  16. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease.

    Science.gov (United States)

    von Rhein, Michael; Buchmann, Andreas; Hagmann, Cornelia; Huber, Reto; Klaver, Peter; Knirsch, Walter; Latal, Beatrice

    2014-01-01

    Patients with complex congenital heart disease are at risk for neurodevelopmental impairments. Evidence suggests that brain maturation can be delayed and pre- and postoperative brain injury may occur, and there is limited information on the long-term effect of congenital heart disease on brain development and function in adolescent patients. At a mean age of 13.8 years, 39 adolescent survivors of childhood cardiopulmonary bypass surgery with no structural brain lesions evident through conventional cerebral magnetic resonance imaging and 32 healthy control subjects underwent extensive neurodevelopmental assessment and cerebral magnetic resonance imaging. Cerebral scans were analysed quantitatively using surface-based and voxel-based morphometry. Compared with control subjects, patients had lower total brain (P = 0.003), white matter (P = 0.004) and cortical grey matter (P = 0.005) volumes, whereas cerebrospinal fluid volumes were not different. Regional brain volume reduction ranged from 5.3% (cortical grey matter) to 11% (corpus callosum). Adolescents with cyanotic heart disease showed more brain volume loss than those with acyanotic heart disease, particularly in the white matter, thalami, hippocampi and corpus callosum (all P-values Brain volume reduction correlated significantly with cognitive, motor and executive functions (grey matter: P < 0.05, white matter: P < 0.01). Our findings suggest that there are long-lasting cerebral changes in adolescent survivors of cardiopulmonary bypass surgery for congenital heart disease and that these changes are associated with functional outcome.

  17. Cortical Visual Impairment

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  18. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  19. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells.

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-14

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  20. Acetylcholinesterase inhibition ameliorates deficits in motivational drive

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2012-03-01

    Full Text Available Abstract Background Apathy is frequently observed in numerous neurological disorders, including Alzheimer's and Parkinson's, as well as neuropsychiatric disorders including schizophrenia. Apathy is defined as a lack of motivation characterized by diminished goal-oriented behavior and self-initiated activity. This study evaluated a chronic restraint stress (CRS protocol in modeling apathetic behavior, and determined whether administration of an anticholinesterase had utility in attenuating CRS-induced phenotypes. Methods We assessed behavior as well as regional neuronal activity patterns using FosB immunohistochemistry after exposure to CRS for 6 h/d for a minimum of 21 d. Based on our FosB findings and recent clinical trials, we administered an anticholinesterase to evaluate attenuation of CRS-induced phenotypes. Results CRS resulted in behaviors that reflect motivational loss and diminished emotional responsiveness. CRS-exposed mice showed differences in FosB accumulation, including changes in the cholinergic basal forebrain system. Facilitating cholinergic signaling ameliorated CRS-induced deficits in initiation and motivational drive and rescued immediate early gene activation in the medial septum and nucleus accumbens. Conclusions Some CRS protocols may be useful for studying deficits in motivation and apathetic behavior. Amelioration of CRS-induced behaviors with an anticholinesterase supports a role for the cholinergic system in remediation of deficits in motivational drive.

  1. Cacao polyphenols ameliorate autoimmune myocarditis in mice.

    Science.gov (United States)

    Zempo, Hirofumi; Suzuki, Jun-ichi; Watanabe, Ryo; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2016-04-01

    Myocarditis is a clinically severe disease; however, no effective treatment has been established. The aim of this study was to determine whether cacao bean (Theobroma cacao) polyphenols ameliorate autoimmune myocarditis. We used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. Mice with induced EAM were treated with a cacao polyphenol extract (CPE, n=12) or vehicle (n=12). On day 21, hearts were harvested and analyzed. Elevated heart weight to body weight and fibrotic area ratios as well as high cardiac cell infiltration were observed in the vehicle-treated EAM mice. However, these increases were significantly suppressed in the CPE-treated mice. Reverse transcriptase-PCR revealed that mRNA expressions of interleukin (Il)-1β, Il-6, E-selectin, vascular cell adhesion molecule-1 and collagen type 1 were lower in the CPE group compared with the vehicle group. The mRNA expressions of nicotinamide adenine dinucleotide phosphate-oxidase (Nox)2 and Nox4 were increased in the vehicle-treated EAM hearts, although CPE treatment did not significantly suppress the transcription levels. However, compared with vehicle treatment of EAM hearts, CPE treatment significantly suppressed hydrogen peroxide concentrations. Cardiac myeloperoxidase activity, the intensity of dihydroethidium staining and the phosphorylation of nuclear factor-κB p65 were also lower in the CPE group compared with the vehicle group. Our data suggest that CPE ameliorates EAM in mice. CPE is a promising dietary supplement to suppress cardiovascular inflammation and oxidative stress.

  2. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  3. Perinatal complications associated with autism--a case control study in a neurodevelopment and early intervention clinic.

    Science.gov (United States)

    Nath, Saswati; Roy, Rita; Mukherjee, Suchandra

    2012-08-01

    Early and intensive intervention can have a profound impact on the quality of life for children at risk for autism. Hence a high degree of suspicion towards babies exposed to known risk factors is warranted. Previous studies have shown that different perinatal factors like antepartum bleeding, postmaturity, birth asphyxia, meconium aspiration syndrome, anaemia in early infancy and exposure to toxins of various origins makes an infant susceptible to development of autism; attention deficit hyperactivity disorder (ADHD) and other neurodevelopmental disorders in later life.This study aims to find out the association of perinatal risk factors in relation to development of autism spectrum disorders. All babies who are at least three years of age, attending the neurodevelopment and early intervention clinic at SSKM Hospital at Kolkata taken as cases. Age matched controls were taken from general paediatric OPD of the same hospital. After history taking, physical and neurological examination, developmental maturity was assessed by the Denver Developmental Screening Test (DDST) and Vineland Social Maturity Scale (VSMS). A semi-structured parent's questionnaire and the modified checklist for autism in toddlers (M-CHAT) was used to screen for autism. Diagnosis was confirmed by DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders - Fourth Edition, Text Revision) criteria. Significant correlation was found between presence of antepartum haemorrhage, pregnancy induced hypertension, preterm delivery and autism in the baby. Perinatal complications are important risk factor for autism. Knowing the risk factors will help clinicians to be aware of the avoidable complications, and to undertake either preventive steps or intense intervention to reduce the degree of disability.

  4. Exposure to ethanol during neurodevelopment modifies crucial offspring rat brain enzyme activities in a region-specific manner.

    Science.gov (United States)

    Stolakis, Vasileios; Liapi, Charis; Zarros, Apostolos; Kalopita, Konstantina; Memtsas, Vassilios; Botis, John; Tsagianni, Anastasia; Kimpizi, Despoina; Varatsos, Alexios; Tsakiris, Stylianos

    2015-12-01

    The experimental simulation of conditions falling within "the fetal alcohol spectrum disorder" (FASD) requires the maternal exposure to ethanol (EtOH) during crucial neurodevelopmental periods; EtOH has been linked to a number of neurotoxic effects on the fetus, which are dependent upon the extent and the magnitude of the maternal exposure to EtOH and for which very little is known with regard to the exact mechanism(s) involved. The current study has examined the effects of moderate maternal exposure to EtOH (10 % v/v in the drinking water) throughout gestation, or gestation and lactation, on crucial 21-day-old offspring Wistar rat brain parameters, such as the activities of acetylcholinesterase (AChE) and two adenosine triphosphatases (Na(+),K(+)-ATPase and Mg(2+)-ATPase), in major offspring CNS regions (frontal cortex, hippocampus, hypothalamus, cerebellum and pons). The implemented experimental setting has provided a comparative view of the neurotoxic effects of maternal exposure to EtOH between gestation alone and a wider exposure timeframe that better covers the human third trimester-matching CNS neurodevelopment period (gestation and lactation), and has revealed a CNS region-specific susceptibility of the examined crucial neurochemical parameters to the EtOH exposure schemes attempted. Amongst these parameters, of particular importance is the recorded extensive stimulation of Na(+),K(+)-ATPase in the frontal cortex of the EtOH-exposed offspring that seems to be a result of the deleterious effect of EtOH during gestation. Although this stimulation could be inversely related to the observed inhibition of AChE in the same CNS region, its dependency upon the EtOH-induced modulation of other systems of neurotransmission cannot be excluded and must be further clarified in future experimental attempts aiming to simulate and to shed more light on the milder forms of the FASD-related pathophysiology.

  5. Neurodevelopment and brain growth in classic Menkes disease is influenced by age and symptomatology at initiation of copper treatment.

    Science.gov (United States)

    Kaler, Stephen G

    2014-10-01

    Menkes disease is an X-linked recessive disorder of brain copper metabolism caused by mutations in an essential mammalian copper transport gene, ATP7A. Untreated affected individuals suffer failure to thrive and neurodevelopmental delays that usually commence at 6-8 weeks of age. Death by age three years is typical. While provision of working copies of ATP7A to the brain by viral vectors is a promising strategy under development, the only treatment currently available is subcutaneous copper injections. These can normalize circulating blood levels and may replete brain copper depending on the molecular context, e.g., the severity of ATP7A mutation and potential presence of mosaicism. In this paper, we summarize somatic growth and neurodevelopmental outcomes for 60 subjects enrolled in a recently concluded phase I/II clinical trial of copper histidine for Menkes disease (ClinicalTrials.gov Identifier: NCT00001262). Primary outcomes indicate highly statistically significant improvements in gross motor, fine motor/adaptive, personal-social, and language neurodevelopment in the cohort of subjects who received early treatment prior to onset of symptoms (n=35). Correlating with these findings, quantitative parameters of somatic growth indicated statistically significant greater growth in head circumference for the initially asymptomatic group, whereas weight and height/length at age three years (or at time of death) did not differ significantly. Mortality at age 3 was higher (50%) in subjects older and symptomatic when treatment commenced compared to the asymptomatic group (28.6%). We conclude that early copper histidine for Menkes disease is safe and efficacious, with treatment outcomes influenced by the timing of intervention, and ATP7A mutation.

  6. Association of late-onset neonatal sepsis with late neurodevelopment in the first two years of life of preterm infants with very low birth weight

    Directory of Open Access Journals (Sweden)

    Claudia Regina Hentges

    2014-01-01

    Full Text Available OBJECTIVE: To establish the influence of late-onset sepsis on neurodevelopment of preterm infants with very low birth weight (VLBW, according to the etiologic agent METHOD: This was a cohort of newborns with birth weight < 1,500 g and gestational age less than 32 weeks, admitted to the institutional intensive care unit (ICU with up to 48 hours of life, and followed-up at the outpatient follow-up clinic for preterm infants with VLBW until 2 years of corrected age. Exclusion criteria: death within the first 72 hours of life, congenital malformations and genetic syndromes, children with congenital infection by the human immunodeficiency virus (HIV, congenital infection (STORCH, presence of early-onset spesis and cases with more than one pathogen growth in blood cultures. Septic and non-septic infants were compared regarding neonatal outcomes and mortality. Neurodevelopment was assessed using the Bayley Scale (BSDI-II at 18 to 24 months of corrected age. RESULTS: 411 preterm infants with VLBW were eligible; the mean gestational age was 29 ± 2.2 weeks and mean birth weight was 1,041 ± 281grams. Late-onset sepsis occurred in 94 preterm infants with VLBW (22.8%. VLBW infants with Gram-positive infection showed motor deficit when compared to the non-septic group, 68.8% vs. 29.3%, respectively (OR 6; 1.6-21.8, p = 0.006; the cognitive development was similar between the groups. The overall mortality rate from infection was 26.7%; considering the pathogens, the rates were 18.7% for coagulase-negative Staphylococcus, 21.8% for Gram-positive bacteria, and 50% for Gram-negative bacteria and fungi. CONCLUSION: Neonatal sepsis has a significant influence on late neurodevelopment at 2 years of corrected age in preterm infants with VLBW, and Gram-positive infections are associated with motor deficit.

  7. Ameliorated GA approach for base station planning

    Science.gov (United States)

    Wang, Andong; Sun, Hongyue; Wu, Xiaomin

    2011-10-01

    In this paper, we aim at locating base station (BS) rationally to satisfy the most customs by using the least BSs. An ameliorated GA is proposed to search for the optimum solution. In the algorithm, we mesh the area to be planned according to least overlap length derived from coverage radius, bring into isometric grid encoding method to represent BS distribution as well as its number and develop select, crossover and mutation operators to serve our unique necessity. We also construct our comprehensive object function after synthesizing coverage ratio, overlap ratio, population and geographical conditions. Finally, after importing an electronic map of the area to be planned, a recommended strategy draft would be exported correspondingly. We eventually import HongKong, China to simulate and yield a satisfactory solution.

  8. Soybean β-Conglycinin Prevents Age-Related Hearing Impairment.

    Directory of Open Access Journals (Sweden)

    Tohru Tanigawa

    Full Text Available Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG, one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV, which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress.

  9. Fish oil ameliorates trimethylamine N-oxide-exacerbated glucose intolerance in high-fat diet-fed mice.

    Science.gov (United States)

    Gao, Xiang; Xu, Jie; Jiang, Chengzi; Zhang, Yi; Xue, Yong; Li, Zhaojie; Wang, Jingfeng; Xue, Changhu; Wang, Yuming

    2015-04-01

    Trimethylamine N-oxide (TMAO), a component commonly present in seafood, has been found to have a harmful impact on glucose tolerance in high-fat diet (HFD)-fed mice. However, seafood also contains fish oil (FO), which has been shown to have beneficial effects on metabolism. Here, we investigated the effect of FO on TMAO-induced impaired glucose tolerance in HFD-fed mice. Male C57BL/6 mice were randomly assigned to the high fat (HF), TMAO, and fish oil groups. The HF group was fed a diet containing 25% fat, the TMAO group was fed the HFD plus 0.2% TMAO, and the FO group was fed the HFD plus 0.2% TMAO and 2% fish oil for 12 weeks. After 10 weeks of feeding, oral glucose tolerance tests were performed. Dietary FO improved the fasting glucose level, the fasting insulin level, HOMA-IR value, QUICKI score and ameliorated TMAO-induced exacerbated impaired glucose tolerance in HFD-fed mice. These effects were associated with the expression of genes related to the insulin signalling pathway, glycogen synthesis, gluconeogenesis, and glucose transport in peripheral tissues. Dietary fish oil also decreased TMAO-aggravated adipose tissue inflammation. Our results suggested that dietary FO ameliorated TMAO-induced impaired glucose tolerance, insulin signal transduction in peripheral tissue, and adipose tissue inflammation in HFD-fed mice.

  10. 先天性心脏病儿童神经发育异常的预测%Prediction of abnormal neurodevelopment in children with congenital heart disease

    Institute of Scientific and Technical Information of China (English)

    刘东(综述); 刘斌(审校)

    2015-01-01

    A lot of children with congenital heart disease have an abnormal development of nervous system. A variety of biochemical and physical examination indices can be used to predict adverse outcome of neurodevelopment caused by congenital heart disease and they contribute to early intervention and improvement of neurodevelopmental disorders. In recent years, new progresses in the laboratory tests, neurological physiccal examination and perioperative management of the neurodevelopmental abnormalities caused by congenital heart disease have been made. The predictive factors of abnormal neurodevelopment caused by congenital heart disease were reviewed in this article.%相当一部分先天性心脏病患儿存在神经系统发育异常。多种生化及物理学检查指标可用于预测不良的神经发育预后,有助于早期干预和改善先天性心脏病所致的神经发育障碍。近年来,关于先天性心脏病神经发育异常的研究在实验室检测、神经物理学检查、围手术期处理等方面均取得了新进展。文章就预测先天性心脏病神经发育异常的相关因素进行综述。

  11. MECP2 Is Post-transcriptionally Regulated during Human Neurodevelopment by Combinatorial Action of RNA-Binding Proteins and miRNAs

    Directory of Open Access Journals (Sweden)

    Deivid C. Rodrigues

    2016-10-01

    Full Text Available A progressive increase in MECP2 protein levels is a crucial and precisely regulated event during neurodevelopment, but the underlying mechanism is unclear. We report that MECP2 is regulated post-transcriptionally during in vitro differentiation of human embryonic stem cells (hESCs into cortical neurons. Using reporters to identify functional RNA sequences in the MECP2 3′ UTR and genetic manipulations to explore the role of interacting factors on endogenous MECP2, we discover combinatorial mechanisms that regulate RNA stability and translation. The RNA-binding protein PUM1 and pluripotent-specific microRNAs destabilize the long MECP2 3′ UTR in hESCs. Hence, the 3′ UTR appears to lengthen during differentiation as the long isoform becomes stable in neurons. Meanwhile, translation of MECP2 is repressed by TIA1 in hESCs until HuC predominates in neurons, resulting in a switch to translational enhancement. Ultimately, 3′ UTR-directed translational fine-tuning differentially modulates MECP2 protein in the two cell types to levels appropriate for normal neurodevelopment.

  12. Visual Impairment, Including Blindness

    Science.gov (United States)

    ... Who Knows What? Survey Item Bank Search for: Visual Impairment, Including Blindness Links updated, April 2017 En ... doesn’t wear his glasses. Back to top Visual Impairments in Children Vision is one of our ...

  13. Amelioration of cisplatin-induced nephrotoxicity by statins

    Directory of Open Access Journals (Sweden)

    Rajesh A Maheshwari

    2013-01-01

    Conclusions: This finding suggests that simvastatin and rosuvastatin may have a protective effect against cisplatin-induced kidney damage via amelioration of lipid peroxidation as well as due to improvement of renal function, and lipid-lowering effects.

  14. Wnt7a treatment ameliorates muscular dystrophy.

    Science.gov (United States)

    von Maltzahn, Julia; Renaud, Jean-Marc; Parise, Gianni; Rudnicki, Michael A

    2012-12-11

    Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder of childhood marked by progressive debilitating muscle weakness and wasting, and ultimately death in the second or third decade of life. Wnt7a signaling through its receptor Fzd7 accelerates and augments regeneration by stimulating satellite stem cell expansion through the planar cell polarity pathway, as well as myofiber hypertrophy through the AKT/mammalian target of rapamycin (mTOR) anabolic pathway. We investigated the therapeutic potential of the secreted factor Wnt7a for focal treatment of dystrophic DMD muscles using the mdx mouse model, and found that Wnt7a treatment efficiently induced satellite cell expansion and myofiber hypertrophy in treated mucles in mdx mice. Importantly, Wnt7a treatment resulted in a significant increase in muscle strength, as determined by generation of specific force. Furthermore, Wnt7a reduced the level of contractile damage, likely by inducing a shift in fiber type toward slow-twitch. Finally, we found that Wnt7a similarly induced myotube hypertrophy and a shift in fiber type toward slow-twitch in human primary myotubes. Taken together, our findings suggest that Wnt7a is a promising candidate for development as an ameliorative treatment for DMD.

  15. Amelioration of safety management in infrastructure projects

    Directory of Open Access Journals (Sweden)

    Mr. Gopinath S.Mohite

    2014-11-01

    Full Text Available Accidents are a major public health concern, resulting in an estimated 1.2 million deaths and 50 million injuries worldwide each year specifically, the relationships between drivers' characteristics and road accidents are not fully understood. Many factors are involved in the accident occurrence at construction site. Some important elements that create a significant portion of accidents include: safety management error, poor training programs, human element, act of god, outdated procedure and no clear monitoring policy. Although some of these items are inevitable, but the occurrence of the largest part can be prevented. Therefore, for ameliorating the safety in a project each of these items should be analyzed and a practical approach introduced. In general, near miss, incident and accident are three dependent levels that mainly lead to injury. Risk and hazard are allocated in first level which means near miss, therefore, no on-time identification of hazard and risk causes to create incident and preventing accident in incident stage is unavoidable.

  16. Resveratrol Pretreatment Ameliorates TNBS Colitis in Rats.

    Science.gov (United States)

    Yildiz, Gulserap; Yildiz, Yuksel; Ulutas, Pinar A; Yaylali, Asl; Ural, Muruvvet

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease in humans constituting a major health concern today whose prevalence has been increasing over the world. Production of reactive oxygen species (ROS) and disturbed capacity of antioxidant defense in IBD subjects have been reported. Antioxidants may play a significant role in IBD treatment. This study aimed at evaluating ameliorative effects of intraperitoneal resveratrol pretreatment on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. Thirty five Wistar-Albino female rats were divided equally into five groups. Inflammation was induced by the intrarectal administration of TNBS under anesthesia. Intraperitoneal administration of resveratrol (RSV) at a concentration of 10mg/kg/day for 5 days before the induction of colitis significantly reduced microscopy score and malondialdehyde (MDA) levels and increased glutathione peroxidase (GSH Px) activity compared to TNBS and vehicle groups. Also an insignificant increase in catalase (CAT) activity was observed in the RSV treated group compared to TNBS and vehicle groups. In this paper, the most recent patent on the identification and treatment of IBD was indicated. In conclusion, antioxidant RSV proved to have a beneficial effect on TNBS colitis in rats. In light of these advantageous results, the RSV can be considered as adjuvant agent in IBD treatments.

  17. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease.

    Science.gov (United States)

    Ruiz, Stacey; Pergola, Pablo E; Zager, Richard A; Vaziri, Nosratola D

    2013-06-01

    Oxidative stress and inflammation are mediators in the development and progression of chronic kidney disease (CKD) and its complications, and they are inseparably linked as each begets and amplifies the other. CKD-associated oxidative stress is due to increased production of reactive oxygen species (ROS) and diminished antioxidant capacity. The latter is largely caused by impaired activation of Nrf2, the transcription factor that regulates genes encoding antioxidant and detoxifying molecules. Protective effects of Nrf2 are evidenced by amelioration of oxidative stress, inflammation, and kidney disease in response to natural Nrf2 activators in animal models, while Nrf2 deletion amplifies these pathogenic pathways and leads to autoimmune nephritis. Given the role of impaired Nrf2 activity in CKD-induced oxidative stress and inflammation, interventions aimed at restoring Nrf2 may be effective in retarding CKD progression. Clinical trials of the potent Nrf2 activator bardoxolone methyl showed significant improvement in renal function in CKD patients with type 2 diabetes. However, due to unforeseen complications the BEACON trial, which was designed to investigate the effect of this drug on time to end-stage renal disease or cardiovascular death in patients with advanced CKD, was prematurely terminated. This article provides an overview of the role of impaired Nrf2 activity in the pathogenesis of CKD-associated oxidative stress and inflammation and the potential utility of targeting Nrf2 in the treatment of CKD.

  18. A mucoactive drug carbocisteine ameliorates steroid resistance in rat COPD model.

    Science.gov (United States)

    Song, Yun; Yu, Ping; Lu, Juan-Juan; Lu, Hao-Zhong; Zhu, Liang; Yu, Zhi-Hua; Chen, Hong-Zhuan; Cui, Yong-Yao

    2016-08-01

    Steroid insensitivity has been commonly found in chronic obstructive pulmonary disease (COPD) patients, which is mediated by the reduction of histone deacetylase (HDAC) 2. Here we aimed to establish a steroid resistant model on experimental COPD rats and evaluate the effect of carbocisteine (S-CMC), a mucoactive drug. Exposure to cigarette smoke (CS) caused marked pathological features of COPD which are insensitive to DEX associated with the down-regulation of HDAC2 expression/activity. The DEX insensitivity observed in COPD featured rats was improved by S-CMC in the aspects of inhibiting chronic lung inflammation (total and differential inflammatory cell counts, inflammatory cytokines release and inflammatory cells infiltration); ameliorating airway remodeling (thickness of airway epithelium and smooth muscle, airway fibrosis, and the level of α-SMA and TGF-β1); improving emphysema (emphysema index D2, level of MMP-9 in BALF and the expression of alpha-1 antitrypsin) and preventing impairments of lung function (PEF, IP and IP-slope). Simultaneously, down-regulation of HDAC2 expression/activity was ameliorated by S-CMC treatment. These results indicate that the rat COPD model with steroid resistance was established by active smoking in a short time frame and demonstrate that the failure of steroid therapy can be restored by S-CMC accompanied by increasing HDAC2 expression/activity, providing additional evidence that S-CMC might be used for GC resistance in COPD.

  19. Honey Supplementation in Spontaneously Hypertensive Rats Elicits Antihypertensive Effect via Amelioration of Renal Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Omotayo O. Erejuwa

    2012-01-01

    Full Text Available Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP in spontaneously hypertensive rats (SHR. It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2 and glutathione S-transferase (GST were significantly downregulated while total antioxidant status (TAS and activities of GST and catalase (CAT were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.

  20. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  1. Insulin receptor isoform A ameliorates long-term glucose intolerance in diabetic mice.

    Science.gov (United States)

    Diaz-Castroverde, Sabela; Gómez-Hernández, Almudena; Fernández, Silvia; García-Gómez, Gema; Di Scala, Marianna; González-Aseguinolaza, Gloria; Fernández-Millán, Elisa; González-Rodríguez, Águeda; García-Bravo, María; Chambon, Pierre; Álvarez, Carmen; Perdomo, Liliana; Beneit, Nuria; Escribano, Oscar; Benito, Manuel

    2016-11-01

    Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion. Previous in vitro data showed that insulin receptor isoform A, but not B, favours basal glucose uptake through its specific association with endogenous GLUT1/2 in murine hepatocytes and beta cells. With this background, we hypothesized that hepatic expression of insulin receptor isoform A in a mouse model of type 2 diabetes could potentially increase the glucose uptake of these cells, decreasing the hyperglycaemia and therefore ameliorating the diabetic phenotype. To assure this hypothesis, we have developed recombinant adeno-associated viral vectors expressing insulin receptor isoform A (IRA) or isoform B (IRB) under the control of a hepatocyte--specific promoter. Our results demonstrate that in the long term, hepatic expression of IRA in diabetic mice is more efficient than IRB in ameliorating glucose intolerance. Consequently, it impairs the induction of compensatory mechanisms through beta cell hyperplasia and/or hypertrophy that finally lead to beta cell failure, reverting the diabetic phenotype in about 8 weeks. Our data suggest that long-term hepatic expression of IRA could be a promising therapeutic approach for the treatment of type 2 diabetes mellitus.

  2. Hesperidin and Silibinin Ameliorate Aluminum-Induced Neurotoxicity: Modulation of Antioxidants and Inflammatory Cytokines Level in Mice Hippocampus.

    Science.gov (United States)

    Jangra, Ashok; Kasbe, Prajapati; Pandey, Surya Narayan; Dwivedi, Shubham; Gurjar, Satendra S; Kwatra, Mohit; Mishra, Murli; Venu, Athira K; Sulakhiya, Kunjbihari; Gogoi, Ranadeep; Sarma, Nitul; Bezbaruah, Babul K; Lahkar, Mangala

    2015-12-01

    Mounting evidence suggests that long-term aluminum exposure results in severe toxic effects, including neurobehavioral and neurochemical anomalies. The present study was performed to examine the neuroprotective potential of hesperidin and silibinin against aluminum chloride (AlCl3)-induced neurotoxicity in mice. AlCl3 (100 mg/kg/day) was injected daily through oral gavage for 42 days. Concomitantly, hesperidin (50 and 100 mg/kg/day, p.o.) and silibinin (100 and 200 mg/kg/day, p.o.) was administered for 42 days in different groups. The extent of cognitive impairment was assessed by Morris water maze and novel object recognition test on the 43rd day. Neurotoxicity was assessed by measuring oxido-nitrosative stress and proinflammatory cytokines in the hippocampus of mice. Six weeks treatment with AlCl3 caused cognitive impairment as indicated by an increase in the retention latency time and reduction in the percentage of recognition index. AlCl3-treated group showed oxido-nitrosative stress as indicated by increase in the level of lipid peroxidation, nitrite and depleted reduced glutathione, catalase activity in the hippocampus. Moreover, the chronic AlCl3 administration raised the proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) level and increased acetylcholinesterase activity and reduced the BDNF content in the hippocampus of AlCl3-treated animals. However, chronic treatment with hesperidin and silibinin at higher doses significantly ameliorated the AlCl3-induced cognitive impairment and hippocampal biochemical anomalies. The present study clearly indicated that hesperidin and silibinin exert neuroprotective effects against AlCl3-induced cognitive impairment and neurochemical changes. Amelioration of cognitive impairment may be attributed to the impediment of oxido-nitrosative stress and inflammation in the hippocampus.

  3. Nutrients and neurodevelopment: lipids.

    Science.gov (United States)

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding.

  4. Smart Soup, a traditional Chinese medicine formula, ameliorates amyloid pathology and related cognitive deficits.

    Directory of Open Access Journals (Sweden)

    Yujun Hou

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease that causes substantial public health care burdens. Intensive efforts have been made to find effective and safe disease-modifying treatment and symptomatic intervention alternatives against AD. Smart Soup (SS, a Chinese medicine formula composed of Rhizoma Acori Tatarinowii (AT, Poria cum Radix Pini (PRP and Radix Polygalae (RP, is a typical prescription against memory deficits. Here, we assessed the efficacy of SS against AD. Oral administration of SS ameliorated the cognitive impairment of AD transgenic mice, with reduced Aβ levels, retarded Aβ amyloidosis and reduced Aβ-induced gliosis and neuronal loss in the brains of AD mice. Consistently, SS treatment reduced amyloid-related locomotor dysfunctions and premature death of AD transgenic Drosophila. Mechanistic studies showed that RP reduced Aβ generation, whereas AT and PRP exerted neuroprotective effects against Aβ. Taken together, our study indicates that SS could be effective against AD, providing a practical therapeutic strategy against the disease.

  5. Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice.

    Science.gov (United States)

    Chrisam, Martina; Pirozzi, Marinella; Castagnaro, Silvia; Blaauw, Bert; Polishchuck, Roman; Cecconi, Francesco; Grumati, Paolo; Bonaldo, Paolo

    2015-01-01

    Autophagy is a self-degradative process responsible for the clearance of damaged or unnecessary cellular components. We have previously found that persistence of dysfunctional organelles due to autophagy failure is a key event in the pathogenesis of COL6/collagen VI-related myopathies, and have demonstrated that reactivation of a proper autophagic flux rescues the muscle defects of Col6a1-null (col6a1(-/-)) mice. Here we show that treatment with spermidine, a naturally occurring nontoxic autophagy inducer, is beneficial for col6a1(-/-) mice. Systemic administration of spermidine in col6a1(-/-) mice reactivated autophagy in a dose-dependent manner, leading to a concurrent amelioration of the histological and ultrastructural muscle defects. The beneficial effects of spermidine, together with its being easy to administer and the lack of overt side effects, open the field for the design of novel nutraceutical strategies for the treatment of muscle diseases characterized by autophagy impairment.

  6. The Roles of Exercise and Yoga in Ameliorating Depression as a Risk Factor for Cognitive Decline

    Science.gov (United States)

    Rosenbaum, Simon

    2016-01-01

    Currently, there are no effective pharmaceutical treatments to reduce cognitive decline or prevent dementia. At the same time, the global population is aging, and rates of dementia and mild cognitive impairment (MCI) are on the rise. As such, there is an increasing interest in complementary and alternative interventions to treat or reduce the risk of cognitive decline. Depression is one potentially modifiable risk factor for cognitive decline and dementia. Notably, exercise and yoga are two interventions known to both reduce symptoms of depression and improve cognitive function. The current review discusses the efficacy of exercise and yoga to ameliorate depression and thereby reduce the risk of cognitive decline and potentially prevent dementia. Potential mechanisms of change, treatment implications, and future directions are discussed. PMID:28044084

  7. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats.

    Science.gov (United States)

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    Here, we investigated the effect of escitalopram pretreatment on protein kinase A (PKA)-induced tau hyperphosphorylation and spatial memory deficits in rats using western blot and behavioral tests, respectively. We demonstrated that escitalopram effectively ameliorated tau hyperphosphorylation and the spatial memory deficits induced by PKA activation. We measured the total and activity-dependent Ser9-phosphorylated levels of glycogen synthase kinase (GSK)-3β in hippocampal extracts. No significant change in the total level of GSK-3β was observed between the different groups. However, compared with forskolin injection alone, pretreatment with escitalopram increased the level of Ser9-phosphorylated GSK-3β. We also demonstrated that escitalopram increased Akt phosphorylation at Ser473 (the active form of Akt). Furthermore, we identified other important kinases and phosphatases, such as protein phosphatase 2A, extracellular signal-regulated kinases 1 and 2, and MAP kinase kinase-1/2, that have previously been reported to play a crucial role in tau phosphorylation; however, we did not detect any significant change in the activation of these kinases or phosphatases in our study. We unexpectedly demonstrated that forskolin caused anxiety-like behavior in rats, and pretreatment with escitalopram did not significantly ameliorate the anxiety-like behavior induced by forskolin. These data provide the first evidence that escitalopram ameliorates forskolin-induced tau hyperphosphorylation and spatial memory impairment in rats; these effects do not occur via the anti-anxiety activity of escitalopram but may involve the Akt/GSK-3β signaling pathway.

  8. Pomegranate: a fruit that ameliorates metabolic syndrome.

    Science.gov (United States)

    Medjakovic, Svjetlana; Jungbauer, Alois

    2013-01-01

    Pomegranate is an ancient fruit that is still part of the diet in the Mediterranean area, the Middle East, and India. Health-promoting effects have long been attributed to this fruit. Modern research corroborates the use of pomegranate as a folk remedy for diabetes and metabolic syndrome, and is responsible for a new evaluation of nutritional and pharmaceutical aspects of pomegranate in the general public. In the last decade, industry and agricultural production have been adapted to meet higher market demands for pomegranate. In vivo and in vitro studies have demonstrated that pomegranate exerts hypoglycaemic effects, including increased insulin sensitivity, inhibition of α-glucosidase, and impact on glucose transporter type 4 function, but is also responsible for a reduction of total cholesterol, and the improvement of blood lipid profiles, as well as anti-inflammatory effects through the modulation of peroxisome proliferator-activated receptor pathways. These effects may also explain how pomegranate-derived compounds function in the amelioration of adverse health effects caused by metabolic syndrome. Pomegranate contains polyphenols such as ellagitannins and anthocyanins, as well as phenolic acids, fatty acids and a variety of volatile compounds. Ellagitannins are some of the most prevalent compounds present in pomegranate, and may be responsible for certain benevolent characteristics associated with pomegranate. A brief overview of rising health problems due to obesity will be provided, followed by characterisation of the biological activity, bioavailability, and safety of pomegranate and pomegranate-derived compounds. Although the fruit is consumed in many countries, epidemiological and clinical studies are unavailable. Additional research is necessary to corroborate the promise of current in vivo and in vitro findings.

  9. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-01-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections.Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops.The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  10. Maternal Obesity, Overweight and Gestational Diabetes Affect the Offspring Neurodevelopment at 6 and 18 Months of Age--A Follow Up from the PREOBE Cohort.

    Directory of Open Access Journals (Sweden)

    Francisco J Torres-Espinola

    Full Text Available Brain development in fetal life and early infancy is critical to determine lifelong performance in various neuropsychological domains. Metabolic pathologies such as overweight, obesity, and gestational diabetes in pregnant women are prevalent and increasing risk factors that may adversely affect long-term brain development in their offspring.The objective of this research was to investigate the influence of maternal metabolic pathologies on the neurodevelopment of the offspring at 6 and 18 months of life.This was a prospective case-control study of 331 mother- and child pairs from Granada, Spain. The mothers were included during pregnancy into four groups according to their pre-gestational body mass index and their gestational diabetes status; overweight (n:56, obese (n:64, gestational diabetic (n:79, and healthy normal weight controls (n:132. At 6 months and 18 months we assessed the children with the Bayley III scales of neurodevelopment.At 6 months (n=215, we found significant group differences in cognition composite language, and expressive language. Post hoc test revealed unexpectedly higher scores in the obese group compared to the normal weight group and a similar trend in overweight and diabetic group. The effects on language remained significant after adjusting for confounders with an adjusted odds ratio for a value above median in composite language score of 3.3 (95% CI: 1.1, 10.0; p=0.035 for children of obese mothers. At 18 month (n=197, the offspring born to obese mothers had lost five points in language composite scores and the previous differences in language and cognition was replaced by a suggestive trend of lower gross motor scores in the overweight, obese, and diabetic groups.Infants of obese mothers had a temporary accelerated development of cognition and language, followed by a rapid deceleration until 18 months of age, particularly of language scores. This novel observation prompts further confirmative studies to explore

  11. Advancement in Research of Benzo[a]pyrene Toxicity on Neurodevelopment%B[a]P所致神经发育毒性的研究进展

    Institute of Scientific and Technical Information of China (English)

    段蕾; 聂继盛

    2011-01-01

    B[a]P(benzo[a]pyrene,B[a]P)是重要的职业和环境污染物之一,它的神经发育毒性与致癌性\\致畸性相比虽是一种弱效应,但会对处于发育中的机体造成不良后果,尤其是中枢神经系统对其更为敏感.本课题组以近年来国内外有关B[a]P神经发育毒性的研究为基础,综述其流行病学研究、实验动物研究以及可能的毒性机制等方面研究进展;结合本课题组的已有研究,认为由于B[a]P的神经发育毒性所致学习和记忆损伤应得到广泛关注.%Benzo[a]pyrene (B[a]P) is one of the most important occupational and environmental contaminants. Compared with its carcinogenicity and teratogenicity, its toxicity on neurodevelopment is a weak effect, but could cause serious and adverse consequences for the developing individuals, especially for the central nervous system, which is a very sensitive target. In this paper, based on the research progresses of B[a]P toxicity on neurodevelopment at home and abroad, we summarized the epidemiological studies, neurotoxicity in animal models, and plausible mechanism due to B[a]P exposure. Combined with our previous study, more attention should be paid to the damage to learning and memory by B[a]P exposure.

  12. Amelioration of painful crises in sickle cell disease by venesections.

    Science.gov (United States)

    Rombos, Yannis; Tzanetea, Revekka; Kalotychou, Vassiliki; Konstantopoulos, Kostas; Simitzis, Spyros; Tassiopoulos, Thomas; Aessopos, Athanasios; Fessas, Phaedon

    2002-01-01

    Sickle cell disease patients who acquire iron deficiency may experience a degree of amelioration from painful crises in terms of frequency, severity, and duration. This observation prompted us to identify the potential utility of iron load reduction in the management of this disease. Thirteen sickle cell patients not ameliorated by conventional treatment entered a weekly venesection protocol. Hematological values and painful crises of all degrees of severity were recorded and compared to those of the last 12 months before venesection for each case separately ("historical controls"). A decrease was noted in the frequency and intensity of several types of painful crises. Reduction of iron load by venesection seems to be a simple, safe, side-effect-free, and efficient way of preventing and ameliorating to a large extent painful crises in sickle cell disease. The biological effects of venesection on other parameters of sickle cell disease remain to be determined.

  13. Development or Impairment?

    Science.gov (United States)

    Hakansson, Gisela

    2010-01-01

    Joanne Paradis' Keynote Article on bilingualism and specific language impairment (SLI) is an impressive overview of research in language acquisition and language impairment. Studying different populations is crucial both for theorizing about language acquisition mechanisms, and for practical purposes of diagnosing and supporting children with…

  14. Specific Language Impairment

    Science.gov (United States)

    ... impairments. After studying a large group of Hispanic children who speak English as a second language, NIDCD-funded researchers have developed a dual language diagnostic test to identify bilingual children with language impairments. It’s now being tested in ...

  15. Vascular Cognitive Impairment.

    Science.gov (United States)

    Dichgans, Martin; Leys, Didier

    2017-02-03

    Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts.

  16. Social buffering ameliorates conditioned fear responses in female rats.

    Science.gov (United States)

    Ishii, Akiko; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-05-01

    The stress experienced by an animal is ameliorated when the animal is exposed to distressing stimuli along with a conspecific animal(s). This is known as social buffering. Previously, we found that the presence of an unfamiliar male rat induced social buffering and ameliorated conditioned fear responses of a male rat subjected to an auditory conditioned stimulus (CS). However, because our knowledge of social buffering is highly biased towards findings in male subjects, analyses using female subjects are crucial for comprehensively understanding the social buffering phenomenon. In the present studies, we assessed social buffering of conditioned fear responses in female rats. We found that the estrus cycle did not affect the intensity of the rats' fear responses to the CS or their degree of vigilance due to the presence of a conspecific animal. Based on these findings, we then assessed whether social buffering ameliorated conditioned fear responses in female rats without taking into account their estrus cycles. When fear conditioned female rats were exposed to the CS without the presence of a conspecific, they exhibited behavioral responses, including freezing, and elevated corticosterone levels. By contrast, the presence of an unfamiliar female rat suppressed these responses. Based on these findings, we conclude that social buffering can ameliorate conditioned fear responses in female rats.

  17. Glycine preconditioning to ameliorate pulmonary ischemia reperfusion injury in rats

    NARCIS (Netherlands)

    Sommer, Sebastian-Patrick; Sommer, Stefanie; Sinha, Bhanu; Leyh, Rainer G.

    2012-01-01

    This study examines the impact of glycine (Gly) preconditioning on ischemia reperfusion (IR)-induced pulmonary mitochondrial injury to research the previously, in pig lungs, demonstrated Gly-dependent amelioration of pulmonary IR injury. IR injury was induced in rat lungs by 30 min pulmonary hilum c

  18. Designing urban parks that ameliorate the effects of climate change

    NARCIS (Netherlands)

    Brown, R.D.; Vanos, J.; Kenny, N.; Lenzholzer, S.

    2015-01-01

    Many inhabitants of cities throughout the world suffer from health problems and discomfort that are caused by overheating of urban areas, and there is compelling evidence that these problems will be exacerbated by global climate change. Most cities are not designed to ameliorate these effects althou

  19. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade.

    Science.gov (United States)

    Barakat, Waleed; Safwet, Nancy; El-Maraghy, Nabila N; Zakaria, Mohamed N M

    2014-02-01

    Stroke is the second leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. The final outcome of stroke is determined not only by the volume of the ischemic core, but also by the extent of secondary brain damage inflicted to penumbral tissues by brain swelling, impaired microcirculation, and inflammation. The only drug approved for the treatment ischemic stroke is recombinant tissue plasminogen activator (rt-PA). The current study was designed to investigate the protective effects of candesartan (0.15 mg/kg, orally) and glycyrrhizin (30 mg/kg, orally) experimentally-induced ischemic brain damage in C57BL/6 mice (middle cerebral artery occlusion, MCAO) in comparison to the effects of a standard neuroprotective drug (cerebrolysin, 7.5 mg/kg, IP). All drugs were administered 30 min before and 24h after MCAO. Both candesartan and glycyrrhizin ameliorated the deleterious effects of MCAO as indicated by the improvement in the performance of the animals in behaviour tests, reduction in brain infarction, neuronal degeneration, and leukocyte infiltration. In addition, MCAO induced a significant upregulation in the different elements of the TLR pathway including TLR-2 and TLR-4, Myd88, TRIF and IRF-3 and the downstream effectors TNF-α, IL-1β, IL-6 and NF-kB. All these changes were significantly ameliorated by treatment with candesartan and glycyrrhizin. The results of the current study represent a new indication for both candesartan and glycyrrhizin in the management of ischemic stroke with effects comparable to those of the standard neuroprotective drug cerebrolysin.

  20. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takako Niikura

    Full Text Available Humanin (HN, a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer's disease (AD-related cytotoxicities, including exposure to amyloid beta (Abeta, in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN's functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APP(swe, tau(P310L, and PS-1(M146V that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD.

  1. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  2. Impairments to Vision

    Science.gov (United States)

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  3. Speech impairment (adult)

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003204.htm Speech impairment (adult) To use the sharing features on ... 2017, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM ...

  4. The dietary n6:n3 fatty acid ratio during pregnancy is inversely associated with child neurodevelopment in the EDEN mother-child cohort.

    Science.gov (United States)

    Bernard, Jonathan Y; De Agostini, Maria; Forhan, Anne; de Lauzon-Guillain, Blandine; Charles, Marie-Aline; Heude, Barbara

    2013-09-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) of the n6 (ω6) and n3 series are essential for the development of a child's brain. Fetal LC-PUFA exposure as well as infant exposure via breast milk depend on the maternal intake of these LC-PUFAs and of their respective dietary precursors (PUFAs). We aimed to investigate the associations between maternal LC-PUFA and PUFA [(LC)PUFA] dietary intake during pregnancy and child neurodevelopment at ages 2 and 3 y. In 1335 mother-child pairs from the EDEN cohort, we evaluated associations between daily maternal (LC)PUFA intake during the last 3 months of pregnancy with the child's language at age 2 y and with different assessments of development at age 3 y. Associations were investigated separately in breastfed and never-breastfed children. We examined interactions between the ratios of n6 and n3 (LC)PUFA intakes (n6:n3 fatty acid ratio) and duration of breastfeeding. Breastfeeding mothers had a lower n6:n3 fatty acid ratio (8.4 vs. 8.8; P = 0.02). Among never-breastfed children (n = 338), we found negative associations between maternal dietary n6:n3 fatty acid ratios and neurodevelopment, as reflected by the child's language at age 2 y (β ± SE = -2.1 ± 0.7; P = 0.001) and development assessed with the Ages and Stages Questionnaire at age 3 y (-1.5 ± 0.8; P = 0.05). Among mothers with a high n6:n3 fatty acid ratio only, breastfeeding duration was positively associated with language at age 2 y (P-interaction < 0.05). This suggests that the ratio between maternal dietary n6 and n3 (LC)PUFA intake possibly influences the child's brain development during fetal life but not during or by breastfeeding. However, breastfeeding might compensate for prenatal imbalance in maternal dietary n6:n3 fatty acid ratio.

  5. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Steven D Sheridan

    Full Text Available Fragile X syndrome (FXS is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5' untranslated region of the Fragile X Mental Retardation (FMR1 gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP. Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid

  6. Diffusion magnetic resonance imaging study of schizophrenia in the context of abnormal neurodevelopment using multiple site data in a Chinese Han population

    Science.gov (United States)

    Li, Y; Xie, S; Liu, B; Song, M; Chen, Y; Li, P; Lu, L; Lv, L; Wang, H; Yan, H; Yan, J; Zhang, H; Zhang, D; Jiang, T

    2016-01-01

    Schizophrenia has increasingly been considered a neurodevelopmental disorder, and the advancement of neuroimaging techniques and associated computational methods has enabled quantitative re-examination of this important theory on the pathogenesis of the disease. Inspired by previous findings from neonatal brains, we proposed that an increase in diffusion magnetic resonance imaging (dMRI) mean diffusivity (MD) should be observed in the cerebral cortex of schizophrenia patients compared with healthy controls, corresponding to lower tissue complexity and potentially a failure to reach cortical maturation. We tested this hypothesis using dMRI data from a Chinese Han population comprising patients from four different hospital sites. Utilizing data-driven methods based on the state-of-the-art tensor-based registration algorithm, significantly increased MD measurements were consistently observed in the cortex of schizophrenia patients across all four sites, despite differences in psychopathology, exposure to antipsychotic medication and scanners used for image acquisition. Specifically, we found increased MD in the limbic system of the schizophrenic brain, mainly involving the bilateral insular and prefrontal cortices. In light of the existing literature, we speculate that this may represent a neuroanatomical signature of the disorder, reflecting microstructural deficits due to developmental abnormalities. Our findings not only provide strong support to the abnormal neurodevelopment theory of schizophrenia, but also highlight an important neuroimaging endophenotype for monitoring the developmental trajectory of high-risk subjects of the disease, thereby facilitating early detection and prevention. PMID:26784969

  7. Voltage-Activated Calcium Channels as Functional Markers of Mature Neurons in Human Olfactory Neuroepithelial Cells: Implications for the Study of Neurodevelopment in Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Héctor Solís-Chagoyán

    2016-06-01

    Full Text Available In adulthood, differentiation of precursor cells into neurons continues in several brain structures as well as in the olfactory neuroepithelium. Isolated precursors allow the study of the neurodevelopmental process in vitro. The aim of this work was to determine whether the expression of functional Voltage-Activated Ca2+ Channels (VACC is dependent on the neurodevelopmental stage in neuronal cells obtained from the human olfactory epithelium of a single healthy donor. The presence of channel-forming proteins in Olfactory Sensory Neurons (OSN was demonstrated by immunofluorescent labeling, and VACC functioning was assessed by microfluorometry and the patch-clamp technique. VACC were immunodetected only in OSN. Mature neurons responded to forskolin with a five-fold increase in Ca2+. By contrast, in precursor cells, a subtle response was observed. The involvement of VACC in the precursors’ response was discarded for the absence of transmembrane inward Ca2+ movement evoked by step depolarizations. Data suggest differential expression of VACC in neuronal cells depending on their developmental stage and also that the expression of these channels is acquired by OSN during maturation, to enable specialized functions such as ion movement triggered by membrane depolarization. The results support that VACC in OSN could be considered as a functional marker to study neurodevelopment.

  8. Amelioration of Acute Mercury Toxicity by a Novel, Non-Toxic Lipid Soluble Chelator N,N′bis-(2-mercaptoethyl)isophthalamide: Effect on Animal Survival, Health, Mercury Excretion and Organ Accumulation

    OpenAIRE

    Clarke, David; Buchanan, Roger; Gupta, Niladri; Haley, Boyd

    2012-01-01

    The toxic effects of mercury are known to be complex with specific enzyme inhibitions and subsequent oxidative stress adding to the damaging effects. There are likely other factors involved, such as the development of impaired metal ion homeostasis and depletion of thiol and selenium based metabolites such as cysteine and selenium. Much of the toxicity of mercury occurs at the intracellular level via binding of Hg2+ to thiol groups in specific proteins. Therefore, amelioration of mercury toxi...

  9. Antibiotics can ameliorate circulatory complications of liver cirrhosis

    DEFF Research Database (Denmark)

    Madsen, Bjørn Stæhr; Schaffalitzky de Muckadell, Ove B

    2011-01-01

    Livercirrhosis can be complicated by a hyperdynamic circulatory syndrome. This is due to translocation of bacteria and bacterial product (bacterial DNA and endotoxins), which stimulate the splanchnic nitric oxide synthase and leads to splanchnic vasodilatation and haemodynamic derangement....... This review focuses on how broad spectrum antibiotics can ameliorate the haemodynamic consequences of bacterial translocation. It is possible that the use of broad spectrum antibiotics in the future may be used to prevent other complications of liver cirrhosis than spontaneous bacterial peritonitis...

  10. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  11. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington’s Disease Monkey Neural Cells

    Science.gov (United States)

    Carter, Richard L.; Prucha, Melinda S.; Yang, Jinjing; Parnpai, Rangsun; Chan, Anthony W. S.

    2016-01-01

    Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics. PMID:27631085

  12. Arsenic toxicity in mice and its possible amelioration

    Institute of Scientific and Technical Information of China (English)

    R. J. Verma; Archana Vasu, Abdu; Alim Saiyed

    2004-01-01

    Oral administration of arsenic trioxide(3 and 6 mg/kg body weight/d) for 30 d caused, as compared with vehicle control, dose- dependent significant reductions in body weight, absolute weight, protein, glycogen, as well as, total, dehydro and reduced ascorbic acid contents both in the liver) and kidney of arsenic- treated mice. Succinic dehydrogenase(SDH) and phosphorylase(only in the liver activities were significantly reduced in a dose-dependent manner. Acid phosphatase activity was significantly decreased in the liver of low dose arsenic-treated animals; however, significant rise in its activity was observed in high dose group. As compared with vehicle control, treatment also caused significant dose-dependent reductions in SDH, alkaline phosphatase and acid phosphatase activities in the kidney of mice. Vitamin E cotreatment as well as, 30 d withdrawal of arsenic trioxide treatment with or without vitamin E caused significant amelioration in arsenic-induced toxicity in mice. Administration of vitamin E during withdrawal of treatment also caused significant amelioration as compared from only withdrawal of the treatment. It is concluded that vitamin E ameliorates arsenic-induced toxicities in the liver and kidney of mice.

  13. Biochar from commercially cultivated seaweed for soil amelioration

    Science.gov (United States)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum – brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma – red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity. PMID:25856799

  14. Social communication impairments: pragmatics.

    Science.gov (United States)

    Russell, Robert L

    2007-06-01

    Social communication or pragmatic impairments are characterized and illustrated as involving inappropriate or ineffective use of language and gesture in social contexts. Three clinical vignettes illustrate different pragmatic impairments and the wealth of diagnostic information that can be garnered from observation of a child's social communication behavior. Definitions of, and developmental milestones in, domains of pragmatic competence are provided. Several screening instruments are suggested for use in assessing pragmatic competence within the time-frame of a pediatric examination. Frequent comorbid psychiatric conditions are described and a sample of current neurobiologic research is briefly summarized.

  15. Stimulation of Sigma-1 Receptor Ameliorates Depressive-like Behaviors in CaMKIV Null Mice.

    Science.gov (United States)

    Moriguchi, Shigeki; Sakagami, Hiroyuki; Yabuki, Yasushi; Sasaki, Yuzuru; Izumi, Hisanao; Zhang, Chen; Han, Feng; Fukunaga, Kohji

    2015-12-01

    Sigma-1 receptor (Sig-1R) is a molecular chaperone regulating calcium efflux from the neuronal endoplasmic reticulum to the mitochondria. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) null mice exhibit depressive-like behaviors and impaired neurogenesis as assessed by bromodeoxyuridine (BrdU) incorporation into newborn cells of the hippocampal dentate gyrus (DG). Here, we demonstrate that chronic stimulation of Sig-1R by treatment with the agonist SA4503 or the SSRI fluvoxamine for 14 days improves depressive-like behaviors in CaMKIV null mice. By contrast, treatment with paroxetine, which lacks affinity for Sig-1R, did not alter these behaviors. Reduced numbers of BrdU-positive cells and decreased brain-derived neurotrophic factor (BDNF) mRNA expression and protein kinase B (Akt; Ser-473) phosphorylation seen in the DG of CaMKIV null mice were significantly rescued by chronic Sig-1R stimulation. Interestingly, reduced ATP production observed in the DG of CaMKIV null mice was improved by chronic Sig-1R stimulation. Such stimulation also improved hippocampal long-term potentiation (LTP) induction and maintenance, which are impaired in the DG of CaMKIV null mice. LTP rescue was closely associated with both increases in calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and GluA1 (Ser-831) phosphorylation. Taken together, Sig-1R stimulation by SA4503 or fluvoxamine treatment increased hippocampal neurogenesis, which is closely associated with amelioration of depressive-like behaviors in CaMKIV null mice.

  16. Methylphenidate and environmental enrichment ameliorate the deleterious effects of prenatal stress on attention functioning.

    Science.gov (United States)

    Zubedat, Salman; Aga-Mizrachi, Shlomit; Cymerblit-Sabba, Adi; Ritter, Ami; Nachmani, Maayan; Avital, Avi

    2015-01-01

    Either pre- or post-natal environmental factors seem to play a key role in brain and behavioral development and to exert long-term effects. Increasing evidence suggests that exposure to prenatal stress (PS) leads to motor and learning deficits and elevated anxiety, while enriched environment (EE) shows protective effects. The dopaminergic system is also sensitive to environmental life circumstances and affects attention functioning, which serves as the preliminary gate to cognitive processes. However, the effects of methylphenidate (MPH) on the dopaminergic system and attentional functioning, in the context of these life experiences, remain unclear. Therefore, we aimed to examine the effects of EE or PS on distinct types of attention, along with possible effects of MPH exposure. We found that PS impaired selective attention as well as partial sustained attention, while EE had beneficial effects. Both EE and MPH ameliorated the deleterious effects of PS on attention functioning. Considering the possible psychostimulant effect of MPH, we examined both anxiety-like behavior as well as motor learning. We found that PS had a clear anxiogenic effect, whereas EE had an anxiolytic effect. Nevertheless, the treatment with both MPH and/or EE recovered the deleterious effects of PS. In the motor-learning task, the PS group showed superior performance while MPH led to impaired motor learning. Performance decrements were prevented in both the PS + MPH and EE + MPH groups. This study provides evidence that peripubertal exposure to EE (by providing enhanced sensory, motor, and social opportunities) or MPH treatments might be an optional therapeutic intervention in preventing the PS long-term adverse consequences.

  17. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats

    Science.gov (United States)

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-01-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation. PMID:28119873

  18. Lowered insulin signalling ameliorates age-related sleep fragmentation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Athanasios Metaxakis

    2014-04-01

    Full Text Available Sleep fragmentation, particularly reduced and interrupted night sleep, impairs the quality of life of older people. Strikingly similar declines in sleep quality are seen during ageing in laboratory animals, including the fruit fly Drosophila. We investigated whether reduced activity of the nutrient- and stress-sensing insulin/insulin-like growth factor (IIS/TOR signalling network, which ameliorates ageing in diverse organisms, could rescue the sleep fragmentation of ageing Drosophila. Lowered IIS/TOR network activity improved sleep quality, with increased night sleep and day activity and reduced sleep fragmentation. Reduced TOR activity, even when started for the first time late in life, improved sleep quality. The effects of reduced IIS/TOR network activity on day and night phenotypes were mediated through distinct mechanisms: Day activity was induced by adipokinetic hormone, dFOXO, and enhanced octopaminergic signalling. In contrast, night sleep duration and consolidation were dependent on reduced S6K and dopaminergic signalling. Our findings highlight the importance of different IIS/TOR components as potential therapeutic targets for pharmacological treatment of age-related sleep fragmentation in humans.

  19. AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Li, Zhilin; Khan, Mohd Moin; Kuja-Panula, Juha; Wang, Hongyun; Chen, Yu; Guo, Deyin; Chen, Zhi Jane; Lahesmaa, Riitta; Rauvala, Heikki; Tian, Li

    2017-05-01

    The immune function of AMIGO2 is currently unknown. Here, we revealed novel roles of AMIGO2 in modulating T-cell functions and EAE using Amigo2-knockout (AMG2KO) mice. Amigo2 was abundantly expressed by murine T helper (Th) cells. Its deficiency impaired transplanted T-cell infiltration into the secondary lymphoid organs and dampened Th-cell activation, but promoted splenic Th-cell proliferation and abundancy therein. AMG2KO Th cells had respectively elevated T-bet in Th1- and GATA-3 in Th2-lineage during early Th-cell differentiation, accompanied with increased IFN-γ and IL-10 but decreased IL-17A production. AMG2KO mice exhibited ameliorated EAE, dampened spinal T-cell accumulation, decreased serum IL-17A levels and enhanced splenic IL-10 production. Adoptive transfer of encephalitogenic AMG2KO T cells induced milder EAE and dampened spinal Th-cell accumulation and Tnf expression. Mechanistically, Amigo2-overexpression in 293T cells dampened NF-kB transcriptional activity, while Amigo2-deficiency enhanced Akt but suppressed GSK-3β phosphorylation and promoted nuclear translocations of NF-kB and NFAT1 in Th-cells. Collectively, our data demonstrate that AMIGO2 is important in regulating T-cell functions and EAE, and may be harnessed as a potential therapeutic target for multiple sclerosis.

  20. bFGF Protects Pre-oligodendrocytes from Oxygen/Glucose Deprivation Injury to Ameliorate Demyelination.

    Science.gov (United States)

    Qu, Xuebin; Guo, Rui; Zhang, Zhenzhong; Ma, Li; Wu, Xiuxiang; Luo, Mengjiao; Dong, Fuxing; Yao, Ruiqin

    2015-10-01

    One of the pathological hallmarks of periventricular white matter injury is the vulnerability of pre-oligodendrocytes (preOLs) to hypoxia-ischemia (HI). There is increasing evidence that basic fibroblast growth factor (bFGF) is an important signaling molecule for neurogenesis and neuroprotection in the central nervous system. However, it is unknown whether bFGF protects preOLs from oxygen/glucose deprivation (OGD) damage in vitro and promotes remyelination in HI-induced rats. In this present study, bFGF exerted a protective effect on myelin by increasing the myelin thickness, the number of myelinated axons, and myelin basic protein expression in the HI-induced demyelinated neonatal rat corpus callosum. In vitro, bFGF ameliorated the impaired mitochondria and cell processes induced by OGD to promote the survival of isolated O4-positive preOLs. Additionally, the expression of fibroblast growth factor receptor 3 (FGFR3) was dramatically up-regulated in the preOLs after bFGF administration in vivo and in vitro. Thus, bFGF-stimulated remyelination in HI-induced rats by protecting the preOLs from hypoxic injury, and the mechanism involved may be mediated by FGFR3.

  1. Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults.

    Science.gov (United States)

    Ochiai, Ryuji; Sugiura, Yoko; Otsuka, Kazuhiro; Katsuragi, Yoshihisa; Hashiguchi, Teruto

    2015-05-01

    To reveal the effect of coffee bean polyphenols (CBPs) on blood vessels, this study aimed to investigate the effect of CBPs on acute postprandial endothelial dysfunction. Thirteen healthy non-diabetic men (mean age, 44.9 ± 1.4 years) consumed a test beverage (active: containing CBPs, placebo: no CBPs) before a 554-kcal test meal containing 14 g of protein, 30 g of fat and 58 g of carbohydrates. Then, a crossover analysis was performed to investigate the time-dependent changes in flow-mediated dilation (FMD) in the brachial artery. In the active group, the postprandial impairment of FMD was significantly improved, the two-hour postprandial nitric oxide metabolite levels were significantly increased and the six-hour postprandial urinary 8-epi-prostaglandin F2α levels were significantly reduced compared to the placebo group. The test meal increased the levels of blood glucose, insulin and triglycerides in both groups with no significant intergroup differences. These findings indicate that CBPs intake ameliorates postprandial endothelial dysfunction in healthy men.

  2. Salvianolic acid B ameliorates CNS autoimmunity by suppressing Th1 responses.

    Science.gov (United States)

    Dong, Zhihui; Ma, Dihui; Gong, Ye; Yu, Tingmin; Yao, Gang

    2016-04-21

    Experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), is a Th1 and Th17 cell-mediated CNS autoimmune disease. Therefore, immune regulation is a key target for therapy. Salvianolic acid B (Sal B) is a major water-soluble bioactive component of the famous traditional Chinese medicine Salvia miltiorrhiza, which is notable for its anti-oxidative and anti-inflammatory effects. Thus Sal B, by impairing Th1 or Th17 responses in EAE/MS, might ameliorate the crippling symptoms. Here we show that the intraperitoneal administration of 30mg/kg Sal B daily for 14 days after the onset of MOG-induced EAE in mice effectively reduced its severity. Additionally, Sal B treatment downgraded the infiltration of inflammatory cells, limited astrogliosis and blocked Th1 responses other than that of Th17. These results indicated that Sal B may serve as an effective therapeutic agent for MS/EAE by inhibiting Th1 cell responses.

  3. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    Directory of Open Access Journals (Sweden)

    Lee Yun

    2012-08-01

    Full Text Available Abstract Background Arctium lappa L. (Asteraceae, burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD. Method EAL-I (100 mg·kg−1/day, EAL-II (200 mg·kg−1/day, and fluvastatin (3 mg·kg−1/day groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM-1, vascular cell adhesion molecule (VCAM-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  4. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    ... stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It can involve problems with memory, language, thinking and judgment that are greater than normal age-related changes. If you have mild cognitive impairment, you may ...

  5. Anarthria impairs subvocal counting.

    Science.gov (United States)

    Cubelli, R; Nichelli, P; Pentore, R

    1993-12-01

    We studied subvocal counting in two pure anarthric patients. Analysis showed that they performed definitively worse than normal subjects free to articulate subvocally and their scores were in the lower bounds of the performances of subjects suppressing articulation. These results suggest that subvocal counting is impaired after anarthria.

  6. Visual Impairment Training Reviewed.

    Science.gov (United States)

    Maychell, Karen; Smart, David

    1989-01-01

    A British study of training provided for social services workers with the visually impaired found that emphasis was on workers' learning the skills their clients would need, rather than on how to teach those skills; most training is geared toward the totally blind, a small proportion of the population; and workers felt the need to acquire…

  7. Electroacupuncture Ameliorates Learning and Memory via Activation of the CREB Signaling Pathway in the Hippocampus to Attenuate Apoptosis after Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Xiaohua Han

    2013-01-01

    Full Text Available Studies have shown that electroacupuncture (EA ameliorates learning and memory after ischemic injury. However, there have been few studies elucidating the mechanisms of EA on learning and memory in cerebral hypoperfusion. In this study, we explored the cAMP response element-binding protein (CREB signaling pathway-mediated antiapoptotic action involved in EA-induced improvement of learning and memory. EA at GV20 and GV14 acupoints was applied in cerebral hypoperfusion rats. A Morris water maze task was performed, and the immunoreactivities of pCREB, Bcl-2, and Bax in the hippocampal CA1 area were evaluated by the Western blotting technique. Our findings indicated that (1 EA ameliorated spatial learning and memory impairment in cerebral hypoperfusion rats; (2 EA increased the immunoreactivities of pCREB and Bcl-2 and decreased the immunoreactivity of Bax; (3 intracerebroventricular administration of H89 (the inhibitor of protein kinase A blocked EA-induced, pCREB-mediated antiapoptotic action and improved learning and memory. These results suggest that EA can ameliorate learning and memory via activation of the CREB signaling pathway in the hippocampus to attenuate apoptosis after cerebral hypoperfusion.

  8. Histamine ameliorates spatial memory deficits induced by MK-801 infusion into ventral hippocampus as evaluated by radial maze task in rats

    Institute of Scientific and Technical Information of China (English)

    Li-sha XU; Li-xia YANG; Wei-wei HU; Xiao YU; Li MA; Lu-ying LIU; Er-qing WEI; Zhong CHEN

    2005-01-01

    Aim: To investigate the role of histamine in memory deficits induced by MK-801 infusion into the ventral hippocampus in rats. Methods: An 8-arm radial maze (4arms baited) was used to assess spatial memory. Results: Bilateral ventral intrahippocampal (ih) infusion of MK-801 (0.3 μg/site), an N-methyl-D-aspartate (NMDA) antagonist, impaired the retrieval process in both working memory and reference memory. Intrahippocampal injection of histamine (25 or 50 ng/site) or intraperitoneal (ip) injection of histidine (25, 50 or 100 mg/kg) markedly ameliorated the spatial memory deficits induced by MK-801. Both the histamine H1 antagonist pyrilamine (0.5 or 1.0 μg/site, ih) and the H2 antagonist cimetidine (2.5 μg/site,ih) abolished the ameliorating effect of histidine (100 mg/kg, ip) on reference memory deficits, but not that on working memory deficits induced by MK-801. Conclusion:The results indicate that histamine in the ventral hippocampus can ameliorate MK-801-induced spatial memory deficits, and that histamine's effect on reference memory is mediated by postsynaptic histamine H1 and H2 receptors.

  9. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice.

    Science.gov (United States)

    Kim, Eunji; Ko, Hae Ju; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Ha Neul; Woo, Eun-Rhan; Ryu, Jong Hoon

    2016-03-01

    Erucic acid is a monounsaturated omega-9 fatty acid isolated from the seed of Raphanus sativus L. that is known to normalize the accumulation of very long chain fatty acids in the brains of patients suffering from X-linked adrenoleukodystrophy. Here, we investigated whether erucic acid enhanced cognitive function or ameliorated scopolamine-induced memory impairment using the passive avoidance, Y-maze and Morris water maze tasks. Erucic acid (3mg/kg, p.o.) enhanced memory performance in normal naïve mice. In addition, erucic acid (3mg/kg, p.o.) ameliorated scopolamine-induced memory impairment, as assessed via the behavioral tasks. We then investigated the underlying mechanism of the memory-enhancing effect of erucic acid. The administration of erucic acid increased the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K), protein kinase C zeta (PKCζ), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB) and additional protein kinase B (Akt) in the hippocampus. These results suggest that erucic acid has an ameliorative effect in mice with scopolamine-induced memory deficits and that the effect of erucic acid is partially due to the activation of PI3K-PKCζ-ERK-CREB signaling as well as an increase in phosphorylated Akt in the hippocampus. Therefore, erucic acid may be a novel therapeutic agent for diseases associated with cognitive deficits, such as Alzheimer's disease.

  10. Lacking power impairs executive functions

    NARCIS (Netherlands)

    Smith, P.K.; Jostmann, N.B.; Galinsky, A.D.; Dijk, W.W. van

    2008-01-01

    Four experiments explored whether lacking power impairs executive functioning, testing the hypothesis that the cognitive presses of powerlessness increase vulnerability to performance decrements during complex executive tasks. In the first three experiments, low power impaired performance on executi

  11. A note on inventory model for ameliorating items with time dependent second order demand rate

    Directory of Open Access Journals (Sweden)

    Gobinda Chandra Panda

    2013-03-01

    Full Text Available Background: This paper is concerned with the development of ameliorating inventory models. The ameliorating inventory is the inventory of goods whose utility increases over the time by ameliorating activation. Material and Methods: This study is performed according to two areas: one is an economic order quantity (EOQ model for the items whose utility is ameliorating in accordance with Weibull distribution, and the other is a partial selling quantity (PSQ model developed for selling the surplus inventory accumulated by ameliorating activation with linear demand. The aim of this paper was to develop a mathematical model for inventory type concerned in the paper. Numerical examples were presented show the effect of ameliorating rate on inventory polices.  Results and Conclusions:  The inventory model for items with Weibull ameliorating is developed. For the case of small ameliorating rate (less than linear demand rate, EOQ model is developed, and for the case where ameliorating rate is greater than linear demand rate, PSQ model is developed.  .  

  12. Landscape Planning of Forest Amelioration on Irrigated Soils

    Directory of Open Access Journals (Sweden)

    Ruleva Olga Vasilyevna

    2015-09-01

    Full Text Available The authors study the landscape program which supposes the formation of land use system aimed at connection of protective shelterbelts to geo-morphological watershed elements, relief, unsimilarity of agricultural territories, adapted to the dynamically balanced state of substance and energy within a landscape. Such approach favors the development of agricultural lands estimation system by means of forest amelioration. It happens due to transformation (reorganization of qualitative and quantitative characteristics of energy mass transfer. Consequently, the radiation, heat, soil, hydrophysical and hydrodynamical processes change as well. So, the area adjoining the protective forest belt is the area of determined processes, while further from the forest belt the space is open for changes of all the characteristics. While estimating lands geoecology, the agroforest landscape was considered as a modification of agricultural landscape forming and functioning under the influence of protective shelterbelts. The landscape unsimilarity of the territory should be taken into account during the optimum organization of irrigated farming. It was made by means of desiphering space photos. According to bioclimatical zonal indications, the dry steppe and desert steppe agrolandscape types have been determined. The irrigated soils of the Volgograd region are located mainly in dry steppe agroforest landscapes on dark-chestnut and chestnut soils within natural ameliorative areas of Privolzhskaya and Ergeninskaya Hills and partly in Zavolzhskaya river delta plain; in semi-desert agroforest landscapes on light-chestnut soils within Zavolzhskaya river delta plain and Sarpinskaya lowlands. The favourable hydrogeological ameliorative situation on the territory of southern Privolzhskaya Hill gives the opportunity to revive the irrigation in the Volgograd region and therefore to increase the productivity and sustainability of agricultural production on a higher scientific

  13. Lithium promotes neuronal repair and ameliorates depression-like behavior following trimethyltin-induced neuronal loss in the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Masanori Yoneyama

    Full Text Available Lithium, a mood stabilizer, is known to ameliorate the stress-induced decrease in hippocampal neurogenesis seen in animal models of stress-related disorders. However, it is unclear whether lithium has beneficial effect on neuronal repair following neuronal damage in neuronal degenerative diseases. Here, we evaluated the effect of in vivo treatment with lithium on the hippocampal neuronal repair in a mouse model of trimethyltin (TMT-induced neuronal loss/self-repair in the hippocampal dentate gyrus (such mice referred to as "impaired animals" [Ogita et al. (2005 J Neurosci Res 82: 609-621]. The impaired animals had a dramatically increased number of 5-bromo-2'-deoxyuridine (BrdU-incorporating cells in their dentate gyrus at the initial time window (days 3 to 5 post-TMT treatment of the self-repair stage. A single treatment with lithium produced no significant change in the number of BrdU-incorporating cells in the dentate granule cell layer and subgranular zone on day 3 post-TMT treatment. On day 5 post-TMT treatment, however, BrdU-incorporating cells were significantly increased in number by lithium treatment for 3 days. Most interestingly, chronic treatment (15 days with lithium increased the number of BrdU-incorporating cells positive for NeuN or doublecortin in the dentate granule cell layer of the impaired animals, but not in that of naïve animals. The results of a forced swimming test revealed that the chronic treatment with lithium improved the depression-like behavior seen in the impaired animals. Taken together, our data suggest that lithium had a beneficial effect on neuronal repair following neuronal loss in the dentate gyrus through promoted proliferation and survival/neuronal differentiation of neural stem/progenitor cells in the subgranular zone.

  14. Cryotherapy impairs proprioception function?

    OpenAIRE

    Cordeiro, Nuno; Henriques, Sara

    2014-01-01

    INTRODUCTION: Cryotherapy application over a joint causes a nerve conduction velocity decrease and proprioceptive changes. OBJECTIVE: This study aims to determine if cryotherapy impairs proprioception acuity. METHODS: Proprioception was assessed by joint position sense (JPS), measured with an isokinetic dynamometer Biodex System 3, in twenty one females on experimental group, before 15 minutes cryotherapy (T0) and immediately after (T1). A control group (n=20) performed also the JPS...

  15. Dietary sodium protects fish against copper-induced olfactory impairment.

    Science.gov (United States)

    Azizishirazi, Ali; Dew, William A; Bougas, Berenice; Bernatchez, Louis; Pyle, Greg G

    2015-04-01

    Exposure to low concentrations of copper impairs olfaction in fish. To determine the transcriptional changes in the olfactory epithelium induced by copper exposure, wild yellow perch (Perca flavescens) were exposed to 20 μg/L of copper for 3 and 24h. A novel yellow perch microarray with 1000 candidate genes was used to measure differential gene transcription in the olfactory epithelium. While three hours of exposure to copper changed the transcription of only one gene, the transcriptions of 70 genes were changed after 24h of exposure to copper. Real-time PCR was utilized to determine the effect of exposure duration on two specific genes of interest, two sub-units of Na/K-ATPase. At 24 and 48 h, Na/K-ATPase transcription was down-regulated by copper at olfactory rosettes. As copper-induced impairment of Na/K-ATPase activity in gills can be ameliorated by increased dietary sodium, rainbow trout (Oncorhynchus mykiss) were used to determine if elevated dietary sodium was also protective against copper-induced olfactory impairment. Measurement of the olfactory response of rainbow trout using electro-olfactography demonstrated that sodium was protective of copper-induced olfactory dysfunction. This work demonstrates that the transcriptions of both subunits of Na/K-ATPase in the olfactory epithelium of fish are affected by Cu exposure, and that dietary Na protects against Cu-induced olfactory dysfunction.

  16. Hyperbaric oxygen preconditioning attenuates postoperative cognitive impairment in aged rats.

    Science.gov (United States)

    Sun, Li; Xie, Keliang; Zhang, Changsheng; Song, Rui; Zhang, Hong

    2014-06-18

    Cognitive decline after surgery in the elderly population is a major clinical problem with high morbidity. Hyperbaric oxygen (HBO) preconditioning can induce significant neuroprotection against acute neurological injury. We hypothesized that HBO preconditioning would prevent the development of postoperative cognitive impairment. Elderly male rats (20 months old) underwent stabilized tibial fracture operation under general anesthesia after HBO preconditioning (once a day for 5 days). Separate cohorts of animals were tested for cognitive function with fear conditioning and Y-maze tests, or euthanized at different times to assess the blood-brain barrier integrity, systemic and hippocampal proinflammatory cytokines, and caspase-3 activity. Animals exhibited significant cognitive impairment evidenced by a decreased percentage of freezing time and an increased number of learning trials on days 1, 3, and 7 after surgery, which were significantly prevented by HBO preconditioning. Furthermore, HBO preconditioning significantly ameliorated the increase in serum and hippocampal proinflammatory cytokines tumor necrosis factor-α, interleukin-1 β (IL-1β), IL-6, and high-mobility group protein 1 in surgery-challenged animals. Moreover, HBO preconditioning markedly improved blood-brain barrier integrity and caspase-3 activity in the hippocampus of surgery-challenged animals. These findings suggest that HBO preconditioning could significantly mitigate surgery-induced cognitive impairment, which is strongly associated with the reduction of systemic and hippocampal proinflammatory cytokines and caspase-3 activity.

  17. Biochar Ameliorate Drought and Salt Stress in Plants

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib

    objectives of the present PhD project were to reveal the mechanisms by which biochar addition mitigates negative effect of drought and salinity stress on plants and to test the efficacy of biochar when applied in combination with already existing drought (like DI and PRD) and salt management (inoculation...... integrated drought (i.e., DI and PRD) and salt (i.e., inoculating plant with PGPB) management approaches. It is concluded that incorporation of biochar could be successfully used to ameliorate drought and salt stress in plants. However, further research is warranted under drought prone and salt affected...

  18. Heregulin ameliorates the dystrophic phenotype in mdx mice

    DEFF Research Database (Denmark)

    Krag, Thomas O B; Bogdanovich, Sasha; Jensen, Claus J

    2004-01-01

    Duchenne's muscular dystrophy (DMD) is a fatal neuromuscular disease caused by absence of dystrophin. Utrophin is a chromosome 6-encoded dystrophin-related protein (DRP), sharing functional motifs with dystrophin. Utrophin's ability to compensate for dystrophin during development and when...... ectodomain for 3 months in vivo resulted in up-regulation of utrophin, a marked improvement in the mechanical properties of muscle as evidenced by resistance to eccentric contraction mediated damage, and a reduction of muscle pathology. The amelioration of dystrophic phenotype by heregulin-mediated utrophin...

  19. The dietary n6:n3 fatty acid ratio during pregnancy is inversely associated with child neurodevelopment in the EDEN mother-child cohort. : Dietary PUFA in pregnancy and infant development

    OpenAIRE

    Bernard, Jonathan ,; De Agostini, Maria; Forhan, Anne; de Lauzon-Guillain, Blandine; Charles, Marie-Aline; Heude, Barbara

    2013-01-01

    International audience; Long-chain polyunsaturated fatty acids (LC-PUFAs) of the n6 (ω6) and n3 series are essential for the development of a child's brain. Fetal LC-PUFA exposure as well as infant exposure via breast milk depend on the maternal intake of these LC-PUFAs and of their respective dietary precursors (PUFAs). We aimed to investigate the associations between maternal LC-PUFA and PUFA [(LC)PUFA] dietary intake during pregnancy and child neurodevelopment at ages 2 and 3 y. In 1335 mo...

  20. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice

    Science.gov (United States)

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Martinez, Ana; Faghihi, Mohammad A.; Jope, Richard S.; Beurel, Eleonore

    2017-01-01

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA– or HDAC4 siRNA–induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1–/– mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets. PMID:28352664

  1. Incremental Beliefs About Ability Ameliorate Self-Doubt Effects

    Directory of Open Access Journals (Sweden)

    Qin Zhao

    2015-12-01

    Full Text Available Past research has typically shown negative effects of self-doubt on performance and psychological well-being. We suggest that these self-doubt effects largely may be due to an underlying assumption that ability is innate and fixed. The present research investigated the main hypothesis that incremental beliefs about ability might ameliorate negative effects of self-doubt. We examined our hypotheses using two lab tasks: verbal reasoning and anagram tasks. Participants’ self-doubt was measured and beliefs about ability were measured after participants read articles advocating either for incremental or entity theories of ability. American College Testing (ACT scores were obtained to index actual ability level. Consistent with our hypothesis, for participants who believed ability was relatively fixed, higher self-doubt was associated with increased negative affect and lower task performance and engagement. In contrast, for participants who believed that ability was malleable, negative self-doubt effects were ameliorated; self-doubt was even associated with better task performance. These effects were further moderated by participants’ academic ability. These findings suggest that mind-sets about ability moderate self-doubt effects. Self-doubt may have negative effects only when it is interpreted as signaling that ability is immutably low.

  2. Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms.

    Science.gov (United States)

    Nyström, Alexander; Thriene, Kerstin; Mittapalli, Venugopal; Kern, Johannes S; Kiritsi, Dimitra; Dengjel, Jörn; Bruckner-Tuderman, Leena

    2015-07-20

    Genetic loss of collagen VII causes recessive dystrophic epidermolysis bullosa (RDEB)-a severe skin fragility disorder associated with lifelong blistering and disabling progressive soft tissue fibrosis. Causative therapies for this complex disorder face major hurdles, and clinical implementation remains elusive. Here, we report an alternative evidence-based approach to ameliorate fibrosis and relieve symptoms in RDEB. Based on the findings that TGF-β activity is elevated in injured RDEB skin, we targeted TGF-β activity with losartan in a preclinical setting. Long-term treatment of RDEB mice efficiently reduced TGF-β signaling in chronically injured forepaws and halted fibrosis and subsequent fusion of the digits. In addition, proteomics analysis of losartan- vs. vehicle-treated RDEB skin uncovered changes in multiple proteins related to tissue inflammation. In line with this, losartan reduced inflammation and diminished TNF-α and IL-6 expression in injured forepaws. Collectively, the data argue that RDEB fibrosis is a consequence of a cascade encompassing tissue damage, TGF-β-mediated inflammation, and matrix remodeling. Inhibition of TGF-β activity limits these unwanted outcomes and thereby substantially ameliorates long-term symptoms.

  3. Ameliorative effect of melatonin against increased intestinal permeability in diabetic rats: possible involvement of MLCK-dependent MLC phosphorylation.

    Science.gov (United States)

    Yang, Xiaoping; Zou, Duobing; Tang, Songtao; Fan, Tingting; Su, Huan; Hu, Ruolei; Zhou, Qing; Gui, Shuyu; Zuo, Li; Wang, Yuan

    2016-05-01

    The increased intestinal permeability and functional impairment play an important role in type 2 diabetes (T2D), and melatonin may possess enteroprotection properties. Therefore, we used streptozotocin-induced diabetic rat model to investigate the regulation of intestinal permeability by melatonin. Rats were randomly divided into three groups, including control, diabetes mellitus (DM), and DM rats treated with melatonin. Melatonin was administered (10 mg/kg/day) by gavage for 24 weeks. The DM rats significantly increased the serum fasting blood glucose and lipid levels, which were alleviated by melatonin treatment. Importantly, the intestinal epithelial permeability was significantly increased in DM rats but was ameliorated following treatment with melatonin. These findings also indicated the expression of myosin light chain kinase (MLCK) and phosphorylation of MLC targeting subunit (MYPT) induced myosin light chain (MLC) phosphorylation level was markedly elevated in hyperglycemic and hyperlipidemic status. They were partly associated with down-regulated membrane type 1 and 2 (MT1 and MT2) expression, and up-regulated Rho-associated protein kinase (ROCK) expression and increased extracellular signal-regulated kinase (ERK) phosphorylation. However, the changes in target protein expression were reversed by melatonin. In conclusion, our results show melatonin beneficial effects on impaired intestinal epithelial permeability in T2D by suppressing ERK/MLCK- and ROCK/MCLP-dependent MLC phosphorylation.

  4. miR-378 Activates the Pyruvate-PEP Futile Cycle and Enhances Lipolysis to Ameliorate Obesity in Mice.

    Science.gov (United States)

    Zhang, Yong; Li, Changyin; Li, Hu; Song, Yipeng; Zhao, Yixia; Zhai, Lili; Wang, Haixia; Zhong, Ran; Tang, Huiru; Zhu, Dahai

    2016-03-01

    Obesity has been linked to many health problems, such as diabetes. However, there is no drug that effectively treats obesity. Here, we reveal that miR-378 transgenic mice display reduced fat mass, enhanced lipolysis, and increased energy expenditure. Notably, administering AgomiR-378 prevents and ameliorates obesity in mice. We also found that the energy deficiency seen in miR-378 transgenic mice was due to impaired glucose metabolism. This impairment was caused by an activated pyruvate-PEP futile cycle via the miR-378-Akt1-FoxO1-PEPCK pathway in skeletal muscle and enhanced lipolysis in adipose tissues mediated by miR-378-SCD1. Our findings demonstrate that activating the pyruvate-PEP futile cycle in skeletal muscle is the primary cause of elevated lipolysis in adipose tissues of miR-378 transgenic mice, and it helps orchestrate the crosstalk between muscle and fat to control energy homeostasis in mice. Thus, miR-378 may serve as a promising agent for preventing and treating obesity in humans.

  5. miR-378 Activates the Pyruvate-PEP Futile Cycle and Enhances Lipolysis to Ameliorate Obesity in Mice

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-03-01

    Full Text Available Obesity has been linked to many health problems, such as diabetes. However, there is no drug that effectively treats obesity. Here, we reveal that miR-378 transgenic mice display reduced fat mass, enhanced lipolysis, and increased energy expenditure. Notably, administering AgomiR-378 prevents and ameliorates obesity in mice. We also found that the energy deficiency seen in miR-378 transgenic mice was due to impaired glucose metabolism. This impairment was caused by an activated pyruvate-PEP futile cycle via the miR-378-Akt1-FoxO1-PEPCK pathway in skeletal muscle and enhanced lipolysis in adipose tissues mediated by miR-378-SCD1. Our findings demonstrate that activating the pyruvate-PEP futile cycle in skeletal muscle is the primary cause of elevated lipolysis in adipose tissues of miR-378 transgenic mice, and it helps orchestrate the crosstalk between muscle and fat to control energy homeostasis in mice. Thus, miR-378 may serve as a promising agent for preventing and treating obesity in humans.

  6. Saline-alkali land in the Yellow River Delta:amelioration zonation based on GIS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Soil salinization is one of the major land degradation types andhas greatly influenced sustainable agricultural development. Zonation of saline-alkali land is the precondition for effective amelioration. The present situation of saline-alkali land is monitored by remote sensing image processing. Causes for land salinization are analyzed, especially the two key factors, ground water depth and its mineralization degree, are analyzed by using long-term observation data. Previously,zonation of saline-alkali soil was made descriptively and artificially. Based on the present situation of saline-alkali land, ground water depth and ground water mineralization degree, the zonation of salinealkali land for amelioration in the Yellow River Delta was completed quantitatively. Four different ypes of saline-alkali land amelioration zones are delineated, namely, easy ameliorated zone,elatively difficult ameliorated zone, difficult ameliorated zone and unfavorable ameliorated zone.Countermeasures for ameliorating saline-alkali soils are put forward according to ecological conditions of different saline-alkali land zones.

  7. 27 CFR 24.304 - Chaptalization (Brix adjustment) and amelioration record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Chaptalization (Brix adjustment) and amelioration record. 24.304 Section 24.304 Alcohol, Tobacco Products and Firearms ALCOHOL AND... Chaptalization (Brix adjustment) and amelioration record. (a) General. A proprietor who chaptalizes juice...

  8. Resting-State Functional Connectivity and Cognitive Impairment in Children with Perinatal Stroke

    Directory of Open Access Journals (Sweden)

    Nigul Ilves

    2016-01-01

    Full Text Available Perinatal stroke is a leading cause of congenital hemiparesis and neurocognitive deficits in children. Dysfunctions in the large-scale resting-state functional networks may underlie cognitive and behavioral disability in these children. We studied resting-state functional connectivity in patients with perinatal stroke collected from the Estonian Pediatric Stroke Database. Neurodevelopment of children was assessed by the Pediatric Stroke Outcome Measurement and the Kaufman Assessment Battery. The study included 36 children (age range 7.6–17.9 years: 10 with periventricular venous infarction (PVI, 7 with arterial ischemic stroke (AIS, and 19 controls. There were no differences in severity of hemiparesis between the PVI and AIS groups. A significant increase in default mode network connectivity (FDR 0.1 and lower cognitive functions (p<0.05 were found in children with AIS compared to the controls and the PVI group. The children with PVI had no significant differences in the resting-state networks compared to the controls and their cognitive functions were normal. Our findings demonstrate impairment in cognitive functions and neural network profile in hemiparetic children with AIS compared to children with PVI and controls. Changes in the resting-state networks found in children with AIS could possibly serve as the underlying derangements of cognitive brain functions in these children.

  9. Language impairment and dyslexia genes influence language skills in children with autism spectrum disorders.

    Science.gov (United States)

    Eicher, John D; Gruen, Jeffrey R

    2015-04-01

    Language and communication development is a complex process influenced by numerous environmental and genetic factors. Many neurodevelopment disorders include deficits in language and communication skills in their diagnostic criteria, including autism spectrum disorders (ASD), language impairment (LI), and dyslexia. These disorders are polygenic and complex with a significant genetic component contributing to each. The similarity of language phenotypes and comorbidity of these disorders suggest that they may share genetic contributors. To test this, we examined the association of genes previously implicated in dyslexia, LI, and/or language-related traits with language skills in children with ASD. We used genetic and language data collected in the Autism Genome Research Exchange (AGRE) and Simons Simplex Collection (SSC) cohorts to perform a meta-analysis on performance on a receptive vocabulary task. There were associations with LI risk gene ATP2C2 and dyslexia risk gene MRPL19. Additionally, we found suggestive evidence of association with CMIP, GCFC2, KIAA0319L, the DYX2 locus (ACOT13, GPLD1, and FAM65B), and DRD2. Our results show that LI and dyslexia genes also contribute to language traits in children with ASD. These associations add to the growing literature of generalist genes that contribute to multiple related neurobehavioral traits. Future studies should examine whether other genetic contributors may be shared among these disorders and how risk variants interact with each other and the environment to modify clinical presentations.

  10. Mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Pavlović Dragan M.

    2009-01-01

    Full Text Available Mild cognitive impairment (MCI is a syndrome that spans the area between normal ageing and dementia. It is classified into amnestic and non-amnestic types, both with two subtypes: single domain and multiple domains. Prevalence of MCI depends on criteria and population and can vary from 0.1 to 42% persons of older age. In contrast to dementia, cognitive deterioration is less severe and activities of daily living are preserved. Most impaired higher cognitive functions in MCI are memory, executive functions, language, visuospatial functions, attention etc. Also there are depression, apathy or psychomotor agitation, and signs of psychosis. Aetiology of MCI is multiple, mostly neurodegenerative, vascular, psychiatric, internistic, neurological, traumatic and iatrogenic. Persons with amnestic MCI are at a higher risk of converting to Alzheimer's disease, while those with a single non-memory domain are at risk of developing frontotemporal dementia. Some MCI patients also progress to other dementia types, vascular among others. In contrast, some patients have a stationary course, some improve, while others even normalize. Every suspicion of MCI warrants a detailed clinical exploration to discover underlying aetiology, laboratory analyses, neuroimaging methods and some cases require a detailed neuropsychological assessment. At the present time there is no efficacious therapy for cognitive decline in MCI or the one that could postpone conversion to dementia. The treatment of curable causes, application of preventive measures and risk factor control are reasonable measures in the absence of specific therapy.

  11. Anti-amnesic effect of ESP-102 on Aβ(1-42)-induced memory impairment in mice.

    Science.gov (United States)

    Kim, Dong Hyun; Jung, Won Young; Park, Se Jin; Kim, Jong Min; Lee, Seungjoo; Kim, Young Choong; Ryu, Jong Hoon

    2010-12-01

    The aim of this study was to characterize the effects of ESP-102 on the memory impairments and pathological changes induced by amyloid-β (Aβ)(1-42) peptide in mice. The ameliorating effect of ESP-102 on memory impairment was investigated using the passive avoidance and the Morris water maze tasks, and the pathological changes were identified by immunohistochemistry and western blotting. Aβ(1-42) peptide (3μg/3μl) was administered by intracerebroventricular injection. By the single administration of ESP-102 (100mg/kg, p.o), the memory impairment induced by Aβ(1-42) peptide was significantly attenuated (PESP-102 (100mg/kg, p.o) significantly inhibited acetylcholinesterase (AChE) activity in the hippocampus compared to the Aβ(1-42) peptide-injected control group. In the subchronic treatment study, ESP-102 (50 or 100mg/kg/day, p.o) administration for seven days ameliorated the memory impairments induced by Aβ(1-42) peptide. Moreover, ESP-102 inhibited lipid peroxidation induced by Aβ(1-42) peptide in the hippocampus. Aβ(1-42)-induced increases in the expression of GFAP (an astrocyte marker) and inducible nitric oxide synthase (iNOS) in the hippocampal region were also attenuated by ESP-102 treatment. These results suggest that the ameliorating effect of ESP-102 on Aβ(1-42) peptide-induced memory impairment is mediated via its AChE inhibitory, antioxidative, and/or anti-inflammatory activities.

  12. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment

    Science.gov (United States)

    Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

    2015-01-01

    Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1+ microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU+/DCX+ cells. Minocycline reduced Iba1+ cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666

  13. Cysteamine treatment ameliorates alterations in GAD67 expression and spatial memory in heterozygous reeler mice.

    Science.gov (United States)

    Kutiyanawalla, Ammar; Promsote, Wanwisa; Terry, Alvin; Pillai, Anilkumar

    2012-09-01

    Brain-derived neurotrophic factor (BDNF) signalling through its receptor, TrkB is known to regulate GABAergic function and glutamic acid decarboxylase (GAD) 67 expression in neurons. Alterations in BDNF signalling have been implicated in the pathophysiology of schizophrenia and as a result, they are a potential therapeutic target. Interestingly, heterozygous reeler mice (HRM) have decreased GAD67 expression in the frontal cortex and hippocampus and they exhibit many behavioural and neurochemical abnormalities similar to schizophrenia. In this study, we evaluated the potential of cysteamine, a neuroprotective compound to improve the deficits in GAD67 expression and cognitive function in HRM. We found that cysteamine administration (150 mg/kg.d, through drinking water) for 30 d significantly ameliorated the decreases in GAD67, mature BDNF and full-length TrkB protein levels found in frontal cortex and hippocampus of HRM. A significant attenuation of the increased levels of truncated BDNF in frontal cortex and hippocampus, as well as truncated TrkB in frontal cortex of HRM was also observed following cysteamine treatment. In behavioural studies, HRM were impaired in a Y-maze spatial recognition memory task, but not in a spontaneous alternation task or a sensorimotor, prepulse inhibition (PPI) procedure. Cysteamine improved Y-maze spatial recognition in HRM to the level of wide-type controls and it improved PPI in both wild-type and HRM. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in GAD67 expression suggesting that TrkB signalling plays an important role in GAD67 regulation by cysteamine.

  14. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess.

    Science.gov (United States)

    Wyrwoll, Caitlin S; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R; Rog-Zielinska, Eva A; Moran, Carmel M; Seckl, Jonathan R; Chapman, Karen E; Holmes, Megan C

    2016-05-31

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction.

  15. Barnidipine ameliorates the vascular and renal injury in L-NAME-induced hypertensive rats.

    Science.gov (United States)

    Alp Yildirim, F Ilkay; Eker Kizilay, Deniz; Ergin, Bülent; Balci Ekmekçi, Özlem; Topal, Gökçe; Kucur, Mine; Demirci Tansel, Cihan; Uydeş Doğan, B Sönmez

    2015-10-05

    The present study was aimed to investigate the influence of Barnidipine treatment on early stage hypertension by determining the function and morphology of the mesenteric and renal arteries as well as the kidney in N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME)-induced hypertensive rats. Barnidipine (3 mg/kg/day p.o) was applied to rats after 2 weeks of L-NAME (60 mg/kg/day) administration, and continued for the next 3 weeks concomitantly with L-NAME. The systolic blood pressure (SBP) of rats was determined to decrease significantly in Barnidipine treated hypertensive group when compared to that of rats received L-NAME alone. Myograph studies demonstrated that the contractile reactivity to noradrenaline were significantly reduced in both of the resistance arteries while endothelium-dependent relaxations to acethylcholine were significantly diminished particularly in the mesenteric arteries of L-NAME-induced hypertensive rats. The impaired contractile and endothelial responses were completely restored by concomitant treatment of Barnidipine with L-NAME. Histopathological examinations verified structural alterations in the arteries as well as the kidney. Moreover, a decrease in endothelial nitric oxide synthase (eNOS) expression was presented both in the arteries and kidney of hypertensive rats which were increased following Barnidipine treatment. Elevated plasma levels of malondialdehyde (MDA) and myeloperoxidase (MPO) were also reduced in Barnidipine treated hypertensive rats. In conclusion, besides to its efficacy in reducing the elevated SBP, amelioration of vascular function, modulation of arterial and renal eNOS expressions as well as reduction of the plasma levels of oxidative and inflammatory biomarkers are possible supportive mechanisms mediating the favorable implications of Barnidipine in L-NAME-induced hypertension model.

  16. Inhibition of Lipolysis Ameliorates Diabetic Phenotype in a Mouse Model of Obstructive Sleep Apnea.

    Science.gov (United States)

    Weiszenstein, Martin; Shimoda, Larissa A; Koc, Michal; Seda, Ondrej; Polak, Jan

    2016-08-01

    Obstructive sleep apnea (OSA) is associated with insulin resistance, glucose intolerance, and type 2 diabetes. Causal mechanisms mediating this association are not well defined; however, augmented lipolysis in adipose might be involved. Here, we investigated the effect of acipimox treatment (lipolysis inhibitor) on glucose tolerance and insulin sensitivity in mice exposed to intermittent hypoxia (IH). C57BL6/J mice were exposed for 14 days to IH or control conditions. IH was created by decreasing the fraction of inspired oxygen from 20.9 to 6.5%, 60 times/h. Control exposure was air (fraction of inspired oxygen, 20.9%) delivered at an identical flow rate. Acipimox was provided in drinking water (0.5 g/ml) during exposures. After exposures, intraperitoneal insulin (0.5 IU/kg) and glucose (1 g/kg) tolerance tests were performed, and primary adipocytes were isolated for lipolysis experiments. IH elevated fasting glucose by 51% and worsened glucose tolerance and insulin sensitivity by 33 and 102%, respectively. In parallel, IH increased spontaneous lipolysis by 264%, and reduced epididymal fat mass by 15% and adipocyte size by 8%. Acipimox treatment prevented IH-induced lipolysis and increased epididymal fat mass and adipocyte size by 19 and 10%, respectively. Acipimox fully prevented IH-induced impairments in fasting glycemia, glucose tolerance, and insulin sensitivity. For all reported results, P less than 0.05 was considered significant. Augmented lipolysis contributes to insulin resistance and glucose intolerance observed in mice exposed to IH. Acipimox treatment ameliorated the metabolic consequences of IH and might represent a novel treatment option for patients with obstructive sleep apnea.

  17. Flemingia macrophylla Extract Ameliorates Experimental Osteoporosis in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ya Ho

    2011-01-01

    Full Text Available Flemingia macrophylla (Leguminosae, a native plant of Taiwan, is used as folk medicine. An in vitro study showed that a 75% ethanolic extract of F. macrophylla (FME inhibited osteoclast differentiation of cultured rat bone marrow cells, and the active component, lespedezaflavanone A (LDF-A, was isolated. It was found that oral administration of FME for 13 weeks suppressed bone loss in ovariectomized rats, an experimental model of osteoporosis. In addition, FME decreased urinary deoxypyridinoline concentrations but did not inhibit serum alkaline phosphatase activities, indicating that it ameliorated bone loss via inhibition of bone resorption. These results suggest that FME may represent a useful remedy for the treatment of bone resorption diseases, such as osteoporosis. In addition, LDF-A could be used as a marker compound to control the quality of FME.

  18. Calcitonin, as SMS 201-995, ameliorates the VIPoma syndrome.

    Science.gov (United States)

    Antonelli, A; Gambuzza, C; Bertoni, F; Baschieri, L

    1993-01-01

    A 72-year-old woman was referred to our hospital for diarrhea, abdominal and back pain, weight loss, low serum potassium level. Pathological findings and high circulating Vasoactive Intestinal Peptide (VIP) levels allowed us to diagnose "VIPoma syndrome". The patient underwent a treatment with SMS 201-995 with improvement of symptomatology and reduction of circulating VIP levels. After a wash-out period the patient was treated with salmon calcitonin with a net improvement of diarrhea, normalization of potassium serum level and reduction of VIP level. The symptomatology recurred after calcitonin withdrawal. These data confirm the effectiveness of SMS 201-995 in the VIPoma syndrome and suggest that calcitonin may ameliorate symptomatology and reduce circulating VIP level in patients with VIPoma tumor.

  19. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Junya Kawai

    2014-01-01

    Full Text Available Pleurotus eryngii (P. eryngii is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI. Intranasal instillation of lipopolysaccharide (LPS (10 μg/site/mouse induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection.

  20. KATP channel closure ameliorates the impaired insulinotropic effect of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Aaboe, Kasper; Knop, Filip Krag; Vilsboll, Tina

    2008-01-01

    (15 mM) hyperglycemic clamp on 4 separate days with concomitant infusion of one of the following: GIP; GIP + 10 mg sulfonylurea (SU, glipizide) taken orally 1 h before the clamp; saline + 10 mg SU; or saline alone. Blood was sampled to measure plasma concentrations of glucose, intact GIP, insulin, C...

  1. Cyclosporine A, FK506, and NIM811 ameliorate prolonged CBF reduction and impaired neurovascular coupling after cortical spreading depression

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Witgen, Brent Marvin; Rasmussen, Peter;

    2011-01-01

    Cortical spreading depression (CSD) is associated with mitochondrial depolarization, increasing intracellular Ca(2+), and the release of free fatty acids, which favor opening of the mitochondrial permeability transition pore (mPTP) and activation of calcineurin (CaN). Here, we test the hypothesis...... and the specific CaN blocker FK506. Cortical spreading depression was induced in rat frontal cortex. Electrocortical activity was recorded by glass microelectrodes, CBF by laser Doppler flowmetry, and tissue oxygen tension with polarographic microelectrodes. Electrocortical activity, basal CBF, CMRO(2...

  2. Restoring GM1 ganglioside expression ameliorates axonal outgrowth inhibition and cognitive impairments induced by blast traumatic brain injury

    Science.gov (United States)

    Rubovitch, Vardit; Zilberstein, Yael; Chapman, Joab; Schreiber, Shaul; Pick, Chaim G.

    2017-01-01

    Blast induced traumatic brain injury (B-TBI) may cause various degrees of cognitive and behavioral disturbances but the exact brain pathophysiology involved is poorly understood. It was previously suggested that ganglioside alteration on the axon surface as well as axonal regenerating inhibitors (ARIs) such as myelin associated glycoprotein (MAG) were involved in axonal outgrowth inhibition (AOI), leading to brain damage. GM1 ganglioside content in the brain was significantly reduced while GD1 ganglioside was not affected. The axonal regeneration was also reduced as seen by the phosphorylated NF-H expression. Moreover, B-TBI induced a significant elevation in MAG expression in the brains of the injured mice. The blast injured mice exhibited a significant decline in spatial memory as seen by the Y-maze test. In addition, the injured mice showed pronounced damage to the visual memory (as evaluated by the Novel object recognition test). A single low dose of GM1 (2 mg/kg; IP), shortly after the injury, prevented both the cognitive and the cellular changes in the brains of the injured mice. These results enlighten part of the complicated mechanism that underlies the damage induced by B-TBI and may also suggest a potential new treatment strategy for brain injuries. PMID:28112258

  3. Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia-Ischemia in Rats.

    Science.gov (United States)

    Arteaga, Olatz; Revuelta, M; Urigüen, L; Martínez-Millán, L; Hilario, E; Álvarez, A

    2016-10-29

    As the interest in the neuroprotective possibilities of docosahexaenoic acid (DHA) for brain injury has grown in the recent years, we aimed to investigate the long-term effects of this fatty acid in an experimental model of perinatal hypoxia-ischemia in rats. To this end, motor activity, aspects of learning, and memory function and anxiety, as well as corticofugal connections visualized by using tracer injections, were evaluated at adulthood. We found that in the hours immediately following the insult, DHA maintained mitochondrial inner membrane integrity and transmembrane potential, as well as the integrity of synaptic processes. Seven days later, morphological damage at the level of the middle hippocampus was reduced, since neurons and myelin were preserved and the astroglial reactive response and microglial activation were seen to be diminished. At adulthood, the behavioral tests revealed that treated animals presented better long-term working memory and less anxiety than non-treated hypoxic-ischemic animals, while no difference was found in the spontaneous locomotor activity. Interestingly, hypoxic-ischemic injury caused alterations in the anterograde corticofugal neuronal connections which were not so evident in rats treated with DHA. Thus, our results indicate that DHA treatment can lead to long-lasting neuroprotective effects in this experimental model of neonatal hypoxia-ischemic brain injury, not only by mitigating axonal changes but also by enhancing cognitive performance at adulthood.

  4. Aged garlic extract ameliorates immunotoxicity, hematotoxicity and impaired burn-healing in malathion- and carbaryl-treated male albino rats.

    Science.gov (United States)

    Ramadan, Gamal; El-Beih, Nadia M; Ahmed, Rehab S A

    2017-03-01

    Malathion and carbaryl are the most widely used organophosphate and carbamate insecticides, respectively, especially in developing countries; they pose a potential health hazard for both humans and animals. Here, we evaluated the protective effects of an odorless (free from allicin) Kyolic aged garlic extract (AGE, containing 0.1% S-allylcysteine; 200 mg/kg body weight) on the toxicity induced by 0.1 LD50 of malathion (89.5 mg/kg body weight) and/or carbaryl (33.9 mg/kg body weight) in male Wistar rats. Doses were orally administered to animals for four consecutive weeks. The present study showed that AGE completely modulated most adverse effects induced by malathion and/or carbaryl in rats including the normocytic normochromic anemia, immunosuppression, and the delay in the skin-burning healing process through normalizing the count of blood cells (erythrocytes, leucocytes and platelets), hemoglobin content, hematocrit value, blood glucose-6-phosphodehydrogenase activity, weights and cellularity of lymphoid organs, serum γ-globulin concentration, and the delayed type of hypersensitivity response to the control values, and accelerating the inflammatory and proliferative phases of burn-healing. In addition, AGE completely modulated the decrease in serum reduced glutathione (GSH) concentration and the increase in clotting time in malathion alone and carbaryl alone treated rats. Moreover, AGE induced a significant increase (P < 0.001) in serum GSH concentration (above the normal value) and accelerating burn-healing process in healthy rats. In conclusion, AGE was effective in modulating most adverse effects induced in rats by malathion and carbaryl, and hence may be useful as a dietary adjunct for alleviating the toxicity in highly vulnerable people to insecticides intoxication. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 789-798, 2017.

  5. Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex.

    Science.gov (United States)

    Kunisawa, K; Nakashima, N; Nagao, M; Nomura, T; Kinoshita, S; Hiramatsu, M

    2015-10-01

    Betaine plays important roles that include acting as a methyl donor and converting homocysteine (Hcy) to methionine. Elevated plasma Hcy levels are known as hyperhomocysteinemia (HHcy) and contribute to impairments of learning and memory. Although it is commonly known that betaine plays an important role in Hcy metabolism, the effects of betaine on Hcy-induced memory impairment have not been investigated. Previously, we demonstrated the beneficial effects of betaine on acute stress and lipopolysaccharide-induced memory impairment. In the present study, we investigated whether betaine ameliorates Hcy-induced memory impairment and the underlying mechanisms of this putative effect. Mice were treated with Hcy (0.162mg/kg, s.c.) twice a day for nine days, and betaine (25mg/kg, s.c.) was administered 30min before the Hcy injections. The memory functions were evaluated using a spontaneous alternation performance test (Y-maze) at seven days and a step-down type passive avoidance test (SD) at nine and ten days after Hcy injection. We found that betaine suppressed the memory impairment induced by repeated Hcy injections. However, the blood concentrations of Hcy were significantly increased in the Hcy-treated mice immediately after the passive avoidance test, and betaine did not prevent this increase. Furthermore, Hcy induces redox stress in part by activating matrix metalloproteinase-9 (MMP-9), which leads to BBB dysfunction. Therefore, we tested whether betaine affected MMP-9 activity. Interestingly, treatment with betaine significantly inhibited Hcy-induced MMP-9 activity in the frontal cortex but not in the hippocampus after acute Hcy injection. These results suggest that the changes in MMP-9 activity after betaine treatment might have been partially responsible for the amelioration of the memory deficits and that MMP-9 might be a candidate therapeutic target for HHcy.

  6. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats.

    Science.gov (United States)

    Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu

    2016-02-15

    Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent.

  7. Amelioration of arsenic toxicity by phosphate salts in mungbean seedlings.

    Science.gov (United States)

    Swarnakar, Arpita; Mukherji, Subhendu

    2005-07-01

    Sodium arsenate (Na2HAsO4.7H2O) is a potent inhibitor of mungbean seed germination and seedling growth. Germination is totally stopped at or above 50 microM Na2HAsO4.7H2O. Inhibition of seedling elongation started at a lower concentration of 5 microM As(V) and was drastically reduced at 20 microM As(V). Nutrients like salts of macroelements viz., NaH2PO4.2H2O, KH2PO4, K2SO4, MgSO4.7H2O, CaCl2.2H2O, (NH4)2SO4 NH4NO3 solutions at a concentration of 10mM and microelements viz., ZnSO4, CuSO4.5H2O, Na2MoO4.2H2O, MnCl2.4H2O, CoCl2.6H2O, FeSO4.7H2O solutions at a concentration of 1mM could help to ameliorate the toxic effects of As(V) to different degrees. Amelioration of As(V) toxicity was possible only when the mungbean seeds were pretreated with the above mentioned nutrients for 24 hr and then transferred to sodium arsenate. Simultaneous treatment of nutrients with As(V) or using nutrient solutions following As(V) treatment were of no help to reverse the toxic effects of sodium arsenate.

  8. [Multilingualism and specific language impairment].

    Science.gov (United States)

    Arkkila, Eva; Smolander, Sini; Laasonen, Marja

    2013-01-01

    Specific language impairment is one of the most common developmental disturbances in childhood. With the increase of the foreign language population group an increasing number of children assimilating several languages and causing concern in language development attend clinical examinations. Knowledge of factors underlying the specific language impairment and the specific impairment in general, special features of language development of those learning several languages, as well as the assessment and support of the linguistic skills of a multilingual child is essential. The risk of long-term problems and marginalization is high for children having specific language impairment.

  9. Multisensory Integration and Child Neurodevelopment

    Directory of Open Access Journals (Sweden)

    Emmanuelle Dionne-Dostie

    2015-02-01

    Full Text Available A considerable number of cognitive processes depend on the integration of multisensory information. The brain integrates this information, providing a complete representation of our surrounding world and giving us the ability to react optimally to the environment. Infancy is a period of great changes in brain structure and function that are reflected by the increase of processing capacities of the developing child. However, it is unclear if the optimal use of multisensory information is present early in childhood or develops only later, with experience. The first part of this review has focused on the typical development of multisensory integration (MSI. We have described the two hypotheses on the developmental process of MSI in neurotypical infants and children, and have introduced MSI and its neuroanatomic correlates. The second section has discussed the neurodevelopmental trajectory of MSI in cognitively-challenged infants and children. A few studies have brought to light various difficulties to integrate sensory information in children with a neurodevelopmental disorder. Consequently, we have exposed certain possible neurophysiological relationships between MSI deficits and neurodevelopmental disorders, especially dyslexia and attention deficit disorder with/without hyperactivity.

  10. Introduction: biomarkers in neurodevelopment toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Needleman, H.L.

    1987-10-01

    The search for markers of toxicant exposure and effect upon the development of organisms presents a set of challenges that differ in many ways from those encountered in the study of markers in reproduction or pregnancy. These latter two fields specify a relatively narrow set of organs or biological systems. The term development, on the other hand, can apply to any organ system, or to any set of phenomena that changes in an ordered way over time. For this reason the papers presented in the session on development were chosen to narrow the focus to neurodevelopmental markers, as such markers may be altered by neurotoxic exposure. In attempting to meet this task, the authors have been able to select a group of investigators who work at the leading edges of their respective fields of developmental neuroanatomy, neurotoxicology, neuroendocrinology, neuropsychology, and infant development. The notion that toxicants could affect behavior certainly is not new. Recent knowledge that behavioral aberrations can occur at exposures below those which produce organic changes, and that behavioral aberrations can occur at exposures below those which produce organic changes, and that behavioral observation might provide early markers of effect has given rise to two new fields: behavioral toxicology and behavioral teratology.

  11. Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice.

    Science.gov (United States)

    Zhao, Ran-Ran; Xu, Xiao-Chen; Xu, Fei; Zhang, Wei-Li; Zhang, Wen-Lin; Liu, Liang-Min; Wang, Wei-Ping

    2014-06-13

    Cognitive impairment, the most common and severe comorbidity of epilepsy, greatly diminishes the quality of life. However, current therapeutic interventions for epilepsy can also cause untoward cognitive effects. Thus, there is an urgent need for new kinds of agents targeting both seizures and cognition deficits. Oxidative stress is considered to play an important role in epileptogenesis and cognitive deficits, and antioxidants have a putative antiepileptic potential. Metformin, the most commonly prescribed antidiabetic oral drug, has antioxidant properties. This study was designed to evaluate the ameliorative effects of metformin on seizures, cognitive impairment and brain oxidative stress markers observed in pentylenetetrazole-induced kindling animals. Male C57BL/6 mice were administered with subconvulsive dose of pentylenetetrazole (37 mg/kg, i.p.) every other day for 14 injections. Metformin was injected intraperitoneally in dose of 200mg/kg along with alternate-day PTZ. We found that metformin suppressed the progression of kindling, ameliorated the cognitive impairment and decreased brain oxidative stress. Thus the present study concluded that metformin may be a potential agent for the treatment of epilepsy as well as a protective medicine against cognitive impairment induced by seizures.

  12. Impairments that Influence Physical Function among Survivors of Childhood Cancer

    Directory of Open Access Journals (Sweden)

    Carmen L. Wilson

    2015-01-01

    Full Text Available Children treated for cancer are at increased risk of developing chronic health conditions, some of which may manifest during or soon after treatment while others emerge many years after therapy. These health problems may limit physical performance and functional capacity, interfering with participation in work, social, and recreational activities. In this review, we discuss treatment-induced impairments in the endocrine, musculoskeletal, neurological, and cardiopulmonary systems and their influence on mobility and physical function. We found that cranial radiation at a young age was associated with a broad range of chronic conditions including obesity, short stature, low bone mineral density and neuromotor impairments. Anthracyclines and chest radiation are associated with both short and long-term cardiotoxicity. Although numerous chronic conditions are documented among individuals treated for childhood cancer, the impact of these conditions on mobility and function are not well characterized, with most studies limited to survivors of acute lymphoblastic leukemia and brain tumors. Moving forward, further research assessing the impact of chronic conditions on participation in work and social activities is required. Moreover, interventions to prevent or ameliorate the loss of physical function among children treated for cancer are likely to become an important area of survivorship research.

  13. Neurodevelopment anomalies assessment in autistic children%孤独症儿童神经发育异常评定的研究

    Institute of Scientific and Technical Information of China (English)

    卢建平; 杨志伟

    2004-01-01

    目的探讨儿童孤独症早期神经发育异常的评定与测量.方法采用发育异常评定量表(DAS)对45例各个符合国际疾病诊断与分类(ICD-10)诊断标准的孤独症儿童和28例精神发育迟滞儿童及21例正常对照组儿童分别进行评定;采用儿童孤独症证定量表(CARS)、孤独症儿童行为检查表(ABC)对发育异常评定高分组(DAS≥5分)与发育异常评定低分组(DAS<5分)分别进行评定,对评定结果进行组间比较.结果孤独症儿童的轻微躯体异常评定量表(MPAS),手发育不良评分(HMS),增被项目评分及发育异常评定量表部分(DAS)均高于正常对照组,MPAS及DAS评分两组之前存在显著性差(P<0.01).孤独症儿童的轻微身体异常评定量表(P<0.01,P<0.05).孤独症儿童发育异常评定高分组(DAS≥5分)与发育异常评定低分组(DAS<5)的ABC及CARS量表评定结果无显著性差异.结论孤独症儿童存在胚胎期神经发育不良.%Objective: To explore the evaluation and measurement of early stage neurodevelopment anomalies in autistic children. Methods: 45 outpatients satisfying the ICD-10 criteria for child autistic disorder, 28 patients with mental retardation and 21 normal controls were examined by development anomalies scale (DAS), patients with autism were also examined with child autism rating scale (CARS) and autism behavior check list (ABC). Results: The score of minor physical anomalies scale (MPAS), hand mal-development score (HMS), supplemental items and total score of DAS in autistic group were higher than those in normal control group, and there was a significant difference between autism group and normal control group (P<0.01).The score of MPAS, supplemental items and total score of DAS were significantly lower than that of mental retardation group (P<0.01, P<0.05). There was no significant difference between DAS high anomalies group (DAS≥5) and DAS low anomalies group (DAS<5) by CARS and ABC evaluation

  14. Impaired executive function following ischemic stroke in the rat medial prefrontal cortex.

    Science.gov (United States)

    Cordova, Chris A; Jackson, Danielle; Langdon, Kristopher D; Hewlett, Krista A; Corbett, Dale

    2014-01-01

    Small (lacunar) infarcts frequently arise in frontal and midline thalamic regions in the absence of major stroke. Damage to these areas often leads to impairment of executive function likely as a result of interrupting connections of the prefrontal cortex. Thus, patients experience frontal-like symptoms such as impaired ability to shift ongoing behavior and attention. In contrast, executive dysfunction has not been demonstrated in rodent models of stroke, thereby limiting the development of potential therapies for human executive dysfunction. Male Sprague-Dawley rats (n=40) underwent either sham surgery or bilateral endothelin-1 injections in the mediodorsal nucleus of the thalamus or in the medial prefrontal cortex. Executive function was assessed using a rodent attention set shifting test that requires animals to shift attention to stimuli in different stimulus dimensions. Medial prefrontal cortex ischemia impaired attention shift performance between different stimulus dimensions while sparing stimulus discrimination and attention shifts within a stimulus dimension, indicating a selective attention set-shift deficit. Rats with mediodorsal thalamic lacunar damage did not exhibit a cognitive impairment relative to sham controls. The selective attention set shift impairment observed in this study is consistent with clinical data demonstrating selective executive disorders following stroke within specific sub-regions of frontal cortex. These data contribute to the development and validation of a preclinical animal model of executive dysfunction, that can be employed to identify potential therapies for ameliorating cognitive deficits following stroke.

  15. Effects of ginseol k-g3, an Rg3-enriched fraction, on scopolamine-induced memory impairment and learning deficit in mice

    Directory of Open Access Journals (Sweden)

    Ike dela Peña

    2014-01-01

    Conclusion: The effects of ginseol k-g3 in ameliorating scopolamine-induced memory impairment in the passive avoidance and Morris water maze tests indicate its specific influence on reference or long-term memory. The mechanism underlying the reversal of scopolamine-induced amnesia by ginseol k-g3 is not yet known, but is not related to anticholinesterase-like activity.

  16. Transcranial amelioration of inflammation and cell death after brain injury

    Science.gov (United States)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  17. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  18. Magnesium lithospermate B ameliorates renal cortical microperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    Chun-guang CHEN; Yi-ping WANG

    2006-01-01

    Aim: To investigate the effects of magnesium lithospermate B (MLB) isolated from Salviae miltiorrhizae on renal microcirculation, and renal and systemic hemodynamics in Sprague-Dawley rats. Methods: MLB (10, 30, and 60 mg/kg) was injected intravenously and renal blood flow (RBF), renal cortical microperfusion (RCM), and systemic hemodynamic function parameters including heart rate (HR),mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), and maximal velocity of pressure increase (dp/dtmax) were measured for 45 min after administration. Results: Intravenous MLB at doses of 10, 30, and 60 mg/kg increased RCM significantly, but had no obvious effects on RBF or systemic hemodynamics. The effect of MLB on RCM reached its peak 15 min after injection and returned to baseline after 45 min. Up to60 mg/kg MLB increased RCM by 62.4%±20.2% (changes from baseline, P<0.01),whereas RBF (3.7%±9.7% vs baseline) and renal vascular resistance (-1.4%±9.1%vs baseline) did not obviously change. Conclusion: These results indicate that MLB ameliorates renal microcirculation in a dose-dependent manner, which may be related to the renoprotective effects of MLB.

  19. Ozone therapy ameliorates paraquat-induced lung injury in rats.

    Science.gov (United States)

    Kaldirim, Umit; Uysal, Bulent; Yuksel, Ramazan; Macit, Enis; Eyi, Yusuf E; Toygar, Mehmet; Tuncer, Salim K; Ardic, Sukru; Arziman, Ibrahim; Aydin, Ibrahim; Oztas, Yesim; Karslioglu, Yildirim; Topal, Turgut

    2014-12-01

    Paraquat (PQ) overdose can cause acute lung injury and death. Ozone therapy (OT) was previously demonstrated to alleviate inflammation and necrosis in various pathologies. We therefore hypothesized that OT has ameliorative and preventive effects on PQ-induced lung damage due to anti-inflammatory and antioxidants properties. Sprague-Dawley rats (n = 24) were separated into three groups: sham, PQ, and PQ+OT groups. 15 mg/kg PQ was administered intraperitoneally in PQ and PQ+OT groups to induce experimental lung injury. One hour after PQ treatment, PQ+OT group was administered a single dose of ozone-oxygen mixture (1 mg/kg/day) by intraperitoneal route for four consecutive days. The animals were sacrificed on fifth day after PQ administration. Blood samples and lung tissues were collected to evaluate the inflammatory processes, antioxidant defense and pulmonary damage. Serum lactate dehydrogenase (LDH) and neopterin levels, tissue oxidative stress parameters, total TGF-β1 levels, and histological injury scores in PQ+OT group were significantly lower than PQ group (Ptherapy.

  20. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke.

    Science.gov (United States)

    Yang, Fan; Wang, Ziying; Wei, Xinbing; Han, Huirong; Meng, Xianfang; Zhang, Yan; Shi, Weichen; Li, Fengli; Xin, Tao; Pang, Qi; Yi, Fan

    2014-04-01

    Although the innate immune response to induce postischemic inflammation is considered as an essential step in the progression of cerebral ischemia injury, the role of innate immunity mediator NLRP3 in the pathogenesis of ischemic stroke is unknown. In this study, focal ischemia was induced by middle cerebral artery occlusion in NLRP3(-/-), NOX2(-/-), or wild-type (WT) mice. By magnetic resonance imaging (MRI), Evans blue permeability, and electron microscopic analyses, we found that NLRP3 deficiency ameliorated cerebral injury in mice after ischemic stroke by reducing infarcts and blood-brain barrier (BBB) damage. We further showed that the contribution of NLRP3 to neurovascular damage was associated with an autocrine/paracrine pattern of NLRP3-mediated interleukin-1β (IL-1β) release as evidenced by increased brain microvessel endothelial cell permeability and microglia-mediated neurotoxicity. Finally, we found that NOX2 deficiency improved outcomes after ischemic stroke by mediating NLRP3 signaling. This study for the first time shows the contribution of NLRP3 to neurovascular damage and provides direct evidence that NLRP3 as an important target molecule links NOX2-mediated oxidative stress to neurovascular damage in ischemic stroke. Pharmacological targeting of NLRP3-mediated inflammatory response at multiple levels may help design a new approach to develop therapeutic strategies for prevention of deterioration of cerebral function and for the treatment of stroke.

  1. Astragaloside IV ameliorates renal injury in db/db mice

    Science.gov (United States)

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-09-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways.

  2. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    Science.gov (United States)

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  3. Emodin ameliorates lipopolysaccharides-induced corneal inflammation in rats

    Institute of Scientific and Technical Information of China (English)

    Guo-Ling; Chen; Jing-Jing; Zhang; Xin; Kao; Lu-Wan; Wei; Zhi-Yu; Liu

    2015-01-01

    · AIM: To investigate the effect of emodin on pseudomonas aeruginosa lipopolysaccharides(LPS)-induced corneal inflammation in rats.· METHODS: Corneal infection was induced by pseudomonas aeruginosa LPS in Wistar rats. The inflammation induced by LPS were examined by slit lamp microscope and cytological checkup of aqueous humor.Corneal tissue structure was observed by hematoxylin and eosin(HE) staining. The activation of nuclear factor kappa B(NF-κB) was determined by Western blot.Messenger ribonucleic acid(m RNA) of tumor necrosis factor-α(TNF-α) and intercellular adhesion molecule-1(ICAM-1) in LPS-challenged rat corneas were measured with reverse transcription-polymerase chain reaction(RT-PCR).· RESULTS: Typical manifestations of acute corneal inflammation were observed in LPS-induce rat model,and the corneal inflammatory response and structure were improved in rats pretreated with emodin. Treatment with emodin could improve corneal structure, reduce corneal injure by reducing corneal inflammatory response. Emodin could inhibit the decreasing lever of inhibitor of kappa B alpha(IкBα) express, and the m RNA expression of TNF-α and ICAM-1 in corneal tissues was also inhibited by emodin. The differences were statistically significant between groups treated with emodin and those without treatment(P <0.01).·CONCLUSION: Emodin could ameliorate LPS-induced corneal inflammation, which might via inhibiting the activation of NF-κB.

  4. Bushen Yisui Capsule ameliorates axonal injury in experimental autoimmune encephalomyelitis

    Institute of Scientific and Technical Information of China (English)

    Ling Fang; Lei Wang; Qi Zheng; Tao Yang; Hui Zhao; Qiuxia Zhang; Kangning Li; Li Zhou; Haiyang Gong; Yongping Fan

    2013-01-01

    A preliminary clinical study by our group demonstrated Bushen Yisui Capsule (formerly cal ed Er-huang Formula) in combination with conventional therapy is an effective prescription for the treat-ment of multiple sclerosis. However, its effect on axonal injury during early multiple sclerosis re-mains unclear. In this study, a MOG 35-55-immunized C57BL/6 mouse model of experimental au-toimmune encephalomyelitis was intragastrical y administered Bushen Yisui Capsule. The results showed that Bushen Yisui Capsule effectively improved clinical symptoms and neurological function of experimental autoimmune encephalomyelitis. In addition, amyloid precursor protein expression was down-regulated and microtubule-associated protein 2 was up-regulated. Experimental findings indicate that the disease-preventive mechanism of Bushen Yisui Capsule in experimental autoim-mune encephalomyelitis was mediated by amelioration of axonal damage and promotion of rege-neration. But the effects of the high-dose Bushen Yisui Capsule group was not better than that of the medium-dose and low-dose Bushen Yisui Capsule group in preventing neurological dysfunction.

  5. Yangjing Capsule Ameliorates Spermatogenesis in Male Mice Exposed to Cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Hongle Zhao

    2015-01-01

    Full Text Available Yangjing capsule (YC, a traditional Chinese compound herbal preparation, has been proven as an effective drug to improve spermatogenesis in clinical practice. However, its pharmacological mechanisms were not fully clarified. This study was designed to investigate the protective effects of YC on spermatogenesis in the mouse model of spermatogenesis dysfunction induced by cyclophosphamide (CP. The administration of YC significantly increased the epididymal index, sperm count, and sperm motility of model mice. Histopathological changes demonstrated that CP caused obvious structural damage to testis, which were reversed by the administration of YC. Results from TUNEL assay showed that treatment with YC dramatically decreased the apoptosis of spermatogenic cell induced by CP. Moreover, YC treatment could inhibit the mRNA and protein expression of Bax to Bcl-2 and also raised expression of AR at both mRNA and protein levels. These data suggest that YC might ameliorate spermatogenesis in male mice exposed to CP through inhibiting the apoptosis of spermatogenic cell and enhancing the actions of testosterone in spermatogenesis.

  6. Role of methylmercury exposure (from fish consumption) on growth and neurodevelopment of children under 5 years of age living in a transitioning (tin-mining) area of the western Amazon, Brazil.

    Science.gov (United States)

    Marques, Rejane C; Dórea, José G; Leão, Renata S; Dos Santos, Verusca G; Bueno, Lucélia; Marques, Rayson C; Brandão, Katiane G; Palermo, Elisabete F A; Guimarães, Jean Remy D

    2012-02-01

    Human occupation of the Amazon region has recently increased, bringing deforestation for agriculture and open-cast mining, activities that cause environmental degradation and pollution. Families of new settlers in mining areas might have a diet less dependent on abundant fish and their children might also be impacted by exposures to mining environments. Therefore, there is compounded interest in assessing young children's nutritional status and neurobehavioral development with regard to family fish consumption. Anthropometric (z-scores, WHO standards) and neurologic [Gesell developmental scores (GDS)] development in 688 preschool children (1-59 months of age) was studied. Overall, the prevalence of malnutrition [i.e., moderate stunting (≤2 H/A-Z), underweight (≤2 W/A-Z), and wasting (≤2 W/H-Z) were respectively 0.3% (n = 2), 1.6% (n = 11), and 2.5% (n = 17). Children's mean hair Hg (HHg) concentration was 2.56 μg/g (SD = 1.67); only 14% of children had HHg concentrations lower than 1 μg/g and 1.7% had ≥5 μg/g. The biomarker of fish consumption was weakly but positively correlated with GDS (Spearman r = 0.080; p = 0.035). In the bivariate model, attained W/H-Z scores were not significantly correlated with GDS. A moderate level of GDS deficits (70-84%) was seen in 20% of children. There was significant correlation between family fish consumption and children's hair Hg (HHg) (Spearman r = 0.1756; p neurodevelopment. Health hazards attendant on a high prevalence of moderate neurodevelopment delays coexisting with exposure to multiple neurotoxic substances merits further investigation in poor environmental settings of tin-mining areas.

  7. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Anthony Sinadinos

    2015-10-01

    .038, diaphragm (p = 0.042, and heart muscles (p < 0.001. We show that the amelioration of symptoms was proportional to the extent of receptor depletion and that improvements were observed following administration of two P2RX7 antagonists (CK, p = 0.030 and p = 0.050 without any detectable side effects. However, approaches successful in animal models still need to be proved effective in clinical practice.These results are, to our knowledge, the first to establish that a single treatment can improve muscle function both short and long term and also correct cognitive impairment and bone loss in DMD model mice. The wide-ranging improvements reflect the convergence of P2RX7 ablation on multiple disease mechanisms affecting skeletal and cardiac muscles, inflammatory cells, brain, and bone. Given the impact of P2RX7 blockade in the DMD mouse model, this receptor is an attractive target for translational research: existing drugs with established safety records could potentially be repurposed for treatment of this lethal disease.

  8. Fetal Alcohol Syndrome, Chemo-Biology and OMICS: Ethanol Effects on Vitamin Metabolism During Neurodevelopment as Measured by Systems Biology Analysis

    OpenAIRE

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego

    2014-01-01

    Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the...

  9. Specific Language Impairment in Families: Evidence for Co-Occurrence with Reading Impairments.

    Science.gov (United States)

    Flax, Judy F.; Realpe-Bonilla, Teresa; Hirsch, Linda S.; Brzustowicz, Linda M.; Bartlett, Christopher W.; Tallal, Paula

    2003-01-01

    Two family aggregation studies involving 25 children (ages 5-10) with specific language impairment (SLI) report the occurrence and co-occurrence of oral language impairments and reading impairments. Results indicate that when language impairments occur within families of SLI probands, these impairments generally co-occur with reading impairments.…

  10. EEG in Specific Language Impairment

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-11-01

    Full Text Available The value of routine wake electroencephalography in children with specific language impairment was reviewed retrospectively in 111 children examined over a 10-year interval at Montreal Children’s Hospital, Quebec, Çanada.

  11. Intracerebral hemorrhage and cognitive impairment.

    Science.gov (United States)

    Xiong, Li; Reijmer, Yael D; Charidimou, Andreas; Cordonnier, Charlotte; Viswanathan, Anand

    2016-05-01

    Vascular cognitive impairment and vascular dementia are composed of cognitive deficits resulted from a range of vascular lesions and pathologies, including both ischemic and hemorrhagic. However the contribution of spontaneous intracerebral hemorrhage presumed due to small vessel diseases on cognitive impairment is underestimated, in contrast to the numerous studies about the role of ischemic vascular disorders on cognition. In this review we summarize recent findings from clinical studies and appropriate basic science research to better elucidate the role and possible mechanisms of intracerebral hemorrhage in cognitive impairment and dementia. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.

  12. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Fei; Zhai, Zanjing; Jiang, Chuan; Liu, Xuqiang; Li, Haowei; Qu, Xinhua [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 (China); Fan, Qiming; Tang, Tingting [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Gu, Dongyun, E-mail: dongyungu@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education of PR China (China); School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2015-01-01

    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.

  13. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity.

    Directory of Open Access Journals (Sweden)

    Paola Gauffin Cano

    Full Text Available BACKGROUND: Associations have been made between obesity and reduced intestinal numbers of members of the phylum Bacteroidetes, but there is no direct evidence of the role these bacteria play in obesity. Herein, the effects of Bacteroides uniformis CECT 7771 on obesity-related metabolic and immune alterations have been evaluated. METHODS AND FINDINGS: Adult (6-8 week male wild-type C57BL-6 mice were fed a standard diet or a high-fat-diet HFD to induce obesity, supplemented or not with B. uniformis CECT 7771 for seven weeks. Animal weight was monitored and histologic, biochemical, immunocompetent cell functions, and features of the faecal microbiota were analysed after intervention. The oral administration of B. uniformis CECT 7771 reduced body weight gain, liver steatosis and liver cholesterol and triglyceride concentrations and increased small adipocyte numbers in HFD-fed mice. The strain also reduced serum cholesterol, triglyceride, glucose, insulin and leptin levels, and improved oral tolerance to glucose in HFD fed mice. The bacterial strain also reduced dietary fat absorption, as indicated by the reduced number of fat micelles detected in enterocytes. Moreover, B. uniformis CECT 7771 improved immune defence mechanisms, impaired in obesity. HFD-induced obesity led to a decrease in TNF-α production by peritoneal macrophages stimulated with LPS, conversely, the administration of B. uniformis CECT 7771 increased TNF-α production and phagocytosis. Administering this strain also increased TNF-α production by dendritic cells (DCs in response to LPS stimulation, which was significantly reduced by HFD. B. uniformis CECT 7771 also restored the capacity of DCs to induce a T-cell proliferation response, which was impaired in obese mice. HFD induced marked changes in gut microbiota composition, which were partially restored by the intervention. CONCLUSIONS: Altogether, the findings indicate that administration of B. uniformis CECT 7771 ameliorates HFD

  14. Chemistry for the Visually Impaired

    Science.gov (United States)

    Ratliff, Judy L.

    1997-06-01

    Methods used to try to provide a valuable experience for visually impaired students in a general education or an introductory chemistry class are discussed. Modifications that can be made cheaply and with little time commitment which will allow visually impaired students to participate productively in the laboratory are examined. A conductivity tester that cost less than $4.00 to construct, is easy to assemble, very rugged, and provides a great deal of entertainment for sighted and non-sighted students is described.

  15. Emotional impairment in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    CHEN Hai-bo

    2013-08-01

    Full Text Available Emotional impairment is the common complication of Parkinson's disease (PD. Depression, anxiety and apathy affect the quality of life and the prognosis of PD patients. Neuropsychological and neuroimaging studies of emotional impairment in PD patients suggest abnormalities involving mesolimbic and mesocortical dopaminergic pathways, but the specific mechanism needs further study. In this review we discuss the clinical manifestation, possible pathological mechanism, diagnosis and treatment in PD patients.

  16. ENVIRONMENTAL INJUSTICE AND MOBILITY IMPAIRMENT

    Directory of Open Access Journals (Sweden)

    Michael Cahill

    2013-06-01

    Full Text Available The study of mobility is a growth area in the social sciences.  The car system (automobility has had as one of its consequences reduced opportunities for mobility impaired people to walk in their local environment. Immobility has resulted for many people with disabilities. Despite the promotion of physical activity by public health guidance local environments are often hazardous for mobility impaired people.  In particular, there is a problem with cars parking on pavements and pavement cycling.

  17. Growth hormone ameliorates adipose dysfunction during oxidative stress and inflammation and improves glucose tolerance in obese mice.

    Science.gov (United States)

    Fukushima, M; Okamoto, Y; Katsumata, H; Ishikawa, M; Ishii, S; Okamoto, M; Minami, S

    2014-08-01

    Patients with adult growth hormone deficiency exhibit visceral fat accumulation, which gives rise to a cluster of metabolic disorders such as impaired glucose tolerance and dyslipidemia. Plasma growth hormone levels are lower in obese patients with metabolic syndrome than in healthy subjects. Here we examined the hypothesis that exogenous growth hormone administration regulates function of adipose tissue to improve glucose tolerance in diet-induced obese mice. Twelve-week-old obese male C57BL/6 J mice received bovine growth hormone daily for 6 weeks. In epididymal fat, growth hormone treatment antagonized diet-induced changes in the gene expression of adiponectin, leptin, and monocyte chemoattractant protein-1, and significantly increased the gene expression of interleukin-10 and CD206. Growth hormone also suppressed the accumulation of oxidative stress marker, thiobarbituric acid-reactive substances, in the epididymal fat and enhanced the gene expression of anti-oxidant enzymes. Moreover, growth hormone significantly restored glucose tolerance in obese mice. In cultured 3T3-L1 adipocytes, growth hormone prevented the decline in adiponectin gene expression in the presence of hydrogen peroxide. These results suggest that growth hormone administration ameliorates glucose intolerance in obese mice presumably by decreasing adipose mass, oxidative stress, and chronic inflammation in the visceral fat.

  18. 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse.

    Science.gov (United States)

    Tokui, Keisuke; Adachi, Hiroaki; Waza, Masahiro; Katsuno, Masahisa; Minamiyama, Makoto; Doi, Hideki; Tanaka, Keiji; Hamazaki, Jun; Murata, Shigeo; Tanaka, Fumiaki; Sobue, Gen

    2009-03-01

    The ubiquitin-proteasome system (UPS) is the principal protein degradation system that tags and targets short-lived proteins, as well as damaged or misfolded proteins, for destruction. In spinal and bulbar muscular atrophy (SBMA), the androgen receptor (AR), an Hsp90 client protein, is such a misfolded protein that tends to aggregate in neurons. Hsp90 inhibitors promote the degradation of Hsp90 client proteins via the UPS. In a transgenic mouse model of SBMA, we examined whether a functioning UPS is preserved, if it was capable of degrading polyglutamine-expanded mutant AR, and what might be the therapeutic effects of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), an oral Hsp90 inhibitor. Ubiquitin-proteasomal function was well preserved in SBMA mice and was even increased during advanced stages when the mice developed severe phenotypes. Administration of 17-DMAG markedly ameliorated motor impairments in SBMA mice without detectable toxicity and reduced amounts of monomeric and nuclear-accumulated mutant AR. Mutant AR was preferentially degraded in the presence of 17-DMAG in both SBMA cell and mouse models when compared with wild-type AR. 17-DMAG also significantly induced Hsp70 and Hsp40. Thus, 17-DMAG would exert a therapeutic effect on SBMA via preserved proteasome function.

  19. Decreased stathmin expression ameliorates neuromuscular defects but fails to prolong survival in a mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Wen, Hsin-Lan; Ting, Chen-Hung; Liu, Huei-Chun; Li, Hung; Lin-Chao, Sue

    2013-04-01

    Spinal muscular atrophy (SMA), a genetic neurodegenerative disorder, is caused by mutations or deletions in the survival of motor neuron 1 (SMN1) gene that result in SMN deficiency. SMN deficiency impairs microtubule networks in Smn-deficient cells and in SMA-like motor neuron cultures. Microtubule defects can be restored by knockdown of the stathmin gene (Stmn), which is upregulated in SMA. However, whether in vivo reduction of stathmin levels could improve the pathology of SMA has not been investigated. Here we generated SMA-like mice in a Stmn knockout (KO) background through a series of genetic crosses. Analyses of motor performance and histology showed that heterozygous StmnKO (Stmn(+/-)) but not homozygous StmnKO (Stmn(-/-)) ameliorates some SMA defects, with increased microtubule densities in sciatic axons, improved motor performance, enhanced NMJ maturation, and mitigated neuroinflammation. However, Stmn deletion does not prolong the lifespan of SMA-like mice, suggesting that stathmin dysregulation and microtubule disruption are not a cause but rather a consequence of SMA pathology. This work demonstrates that limiting the amount of stathmin in SMA-like mice is effective in reducing their neuromuscular defects, whereas induced aberrant expression of stathmin in SMA-like animals is detrimental.

  20. Ameliorative effects of Compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats

    Science.gov (United States)

    Chen, Xu-Jia; Liu, Wen-Jing; Wen, Meng-Liang; Liang, Hong; Wu, Shao-Mei; Zhu, Yun-Zhen; Zhao, Jiang-Yuan; Dong, Xiang-Qian; Li, Ming-Gang; Bian, Li; Zou, Cheng-Gang; Ma, Lan-Qing

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease, which has no standard treatment available. Panax notoginseng saponines (PNS) have recently been reported to protect liver against hepatocyte injury induced by ethanol or high fat diet (HFD) in rats. Compound K and ginsenoside Rh1 are the main metabolites of PNS. In this study, we evaluated the effects of CK and Rh1 on NAFLD. Rats fed HFD showed significant elevations in liver function markers, lipids, glucose tolerance, and insulin resistance. Treatment with CK or Rh1 either alone or in combination dramatically ameliorated the liver function impairment induced by HFD. Histologically, CK and Rh1 significantly reversed HFD-induced hepatocyte injury and liver fibrosis. In vitro experiments demonstrated that treatment with CK or Rh1 alone or in combination markedly induced cell apoptosis, and inhibited cell proliferation and activation in HSC-T6 cells. Additionally, CK and Rh1, either alone or in combination, also repressed the expression of fibrotic factors TIMP-1, PC-I, and PC-III. Taken together, our results demonstrate that CK and Rh1 have positive effects on NAFLD via the anti-fibrotic and hepatoprotective activity. PMID:28106137

  1. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism.

    Science.gov (United States)

    Jiang, Xu-Guang; Sun, Kai; Liu, Yu-Ying; Yan, Li; Wang, Ming-Xia; Fan, Jing-Yu; Mu, Hong-Na; Li, Chong; Chen, Yuan-Yuan; Wang, Chuan-She; Han, Jing-Yan

    2017-02-02

    Dysfunction of energy metabolism is involved in inflammatory bowel disease (IBD). This study was designed to investigate the potential of astragaloside IV (ASIV), an active ingredient of Radix Astragalus, to ameliorate colonic mucosal injury, with focusing on the implication of energy restoration in the underlying mechanism. Experimental colitis model was established in rats by injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) through anus. After 24 hours, ASIV was administrated once daily by gavage for 6 days. On day 1 and day 7, colon tissue was collected for macroscopic and histological examination, ELISA, Western blot and immunohistochemical analysis. TNBS impaired colonic mucosa with an injured epithelial architecture, increased inflammatory cell infiltration, and decreased colonic blood flow. Lgr5 positive cell number in crypt and β-catenin nuclear translocation were down-regulated by TNBS treatment. TNBS induced epithelial F-actin disruption and junctional protein degradation. Furthermore, adenosine triphosphate (ATP) content and ATP synthase subunit β expression in the colon tissue were significantly decreased after TNBS stimulation. All of the aforementioned alterations were relieved by ASIV post-treatment. The present study revealed that ASIV promoted mucosal healing process in TNBS-induced colitis, which was most likely attributed to regulating energy metabolism.

  2. Telmisartan ameliorates carbon tetrachloride-induced acute hepatotoxicity in rats.

    Science.gov (United States)

    Atawia, Reem T; Esmat, Ahmed; Elsherbiny, Doaa A; El-Demerdash, Ebtehal

    2017-02-01

    This study assessed the potential hepatoprotective effect of telmisartan (TLM), a selective angiotensin II type 1 (AT1 ) receptor blocker, on carbon tetrachloride (CCl4 )-induced acute hepatotoxity in rats. Intraperitoneal injection of male Wistar rats with CCl4 1 mL kg(-1) , 1:1 mixture with corn oil for 3 days increased serum alanine transaminase, aspartate transaminase, and alkaline phosphatase activities as well as total bilirubin, triglycerides and total cholesterol levels. This is in addition to the disrupted histological architecture in the CCl4 group. Rats receiving CCl4 and co-treated with TLM (3 and 10 mg kg(-1) , orally) showed ameliorated serum biochemical and histological changes almost to the control level. Nevertheless, rats treated with TLM (1 mg kg(-1) ) didn't show any significant changes compared to CCl4 intoxicated group. In addition, TLM rectified oxidative status disrupted by CCl4 intoxication. Interestingly, TLM protected against CCl4 -induced expressions of nuclear factor-κB, inducible nitric oxide synthase and cyclooxygenase-II, in a dose related manner. Moreover, TLM (3 and 10 mg kg(-1) ) significantly modified CCl4 -induced elevation in tumor necrosis factor-α and nitric oxide levels. Furthermore, TLM showed a marked decline in CD68+ cells stained areas and reduced activity of myeloperoxidase enzyme compared to CCl4 -intoxicated group. In conclusion, both doses of TLM (3 and 10 mg kg(-1) ) showed significant hepato-protective effects. However, TLM at a dose of 10 mg kg(-1) didn't show significant efficacy above 3 mg kg(-1) which is nearly equivalent to the human anti-hypertensive dose of 40 mg. Thus, may be effective in guarding against several hepatic complications due to its antioxidant and anti-inflammatory activities. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 359-370, 2017.

  3. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available BACKGROUND: Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE. FINDINGS: Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number. CONCLUSIONS: Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  4. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  5. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    Directory of Open Access Journals (Sweden)

    J Pedro Fernández-Murray

    2016-01-01

    Full Text Available Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  6. Matrine ameliorates spontaneously developed colitis in interleukin-10-deficient mice.

    Science.gov (United States)

    Wu, Cong; Xu, Zheng; Gai, Renhua; Huang, Kehe

    2016-07-01

    Interleukin-10 (IL-10)-deficient mice spontaneously develop T cell-mediated colitis. Previous reports have shown that Matrine may reduce the symptoms of acute colitis induced by trinitrobenzene sulfonic acid (TNBS). However, whether Matrine impacts chronic colitis remains unknown. In this study, we investigated whether Matrine could limit the symptoms of spontaneously developed colitis and its potential molecular mechanisms. IL-10 deficient mice were given Matrine or a PBS control by oral gavage daily for 4weeks and were euthanized at week 2 or week 4. We measured body weight, colon length and weight, and histological scores. We also evaluated the spontaneous secretion of IL-12/23p40, IFN-γ and IL-17 in colon explant cultures as well as IFN-γ and IL-17 secretion in unseparated mesenteric lymph node (MLN) cells, and assessed IFN-γ, IL-17, IL-1β and IL-6 mRNA expression in colon tissue. In addition, we analyzed the proportions of CD4-positive and CD8-positive cells in unseparated MLN cells. Our results show that Matrine-treated mice exhibited better body weight recovery than controls and that histological scores and spontaneously secreted IL-12/23p40, IFN-γ and IL-17 in colon tissue were significantly decreased in treated mice compared with controls. The proportion of CD4-positive cells of MLNs in treated mice was significantly smaller than that in controls at week 4. Both cytokine production and mRNA expression of IFN-γ and IL-17 were significantly reduced in treated mice compared with controls. Taken together, our results indicate that Matrine may ameliorate spontaneously developed chronic colitis and could be considered as a therapeutic alternative for chronic colitis.

  7. Aedes aegypti salivary gland extract ameliorates experimental inflammatory bowel disease.

    Science.gov (United States)

    Sales-Campos, Helioswilton; de Souza, Patricia Reis; Basso, Paulo José; Ramos, Anderson Daniel; Nardini, Viviani; Chica, Javier Emílio Lazo; Capurro, Margareth Lara; Sá-Nunes, Anderson; de Barros Cardoso, Cristina Ribeiro

    2015-05-01

    Current therapies for inflammatory bowel disease (IBD) are not totally effective, resulting in persistent and recurrent disease for many patients. Mosquito saliva contains immunomodulatory molecules and therein could represent a novel therapy for IBD. Here, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Aedes aegypti on dextran sulfate sodium (DSS)-induced colitis. For this purpose, C57BL/6 male mice were exposed to 3% DSS in drinking water and treated with SGE at early (days 3-5) or late (days 5-8) time points, followed by euthanasia on days 6 and 9, respectively, for sample collection. The results showed an improvement in clinical disease outcome and postmortem scores after SGE treatment, accompanied by the systemic reduction in peripheral blood lymphocytes, with no impact on bone marrow and mesenteric lymph nodes cellularity or macrophages toxicity. Moreover, a local diminishment of IFN-γ, TNF-α, IL-1β and IL-5 cytokines together with a reduction in the inflammatory area were observed in the colon of SGE-treated mice. Strikingly, early treatment with SGE led to mice protection from a late DSS re-challenging, as observed by decreased clinical and postmortem scores, besides reduced circulating lymphocytes, indicating that the mosquito saliva may present components able to prevent disease relapse. Indeed, high performance liquid chromatography (HPLC) experiments pointed to a major SGE pool fraction (F3) able to ameliorate disease signs. In conclusion, SGE and its components might represent a source of important immunomodulatory molecules with promising therapeutic activity for IBD.

  8. Amelioration of acidic soil using various renewable waste resources.

    Science.gov (United States)

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished.

  9. Dystypia: isolated typing impairment without aphasia, apraxia or visuospatial impairment.

    Science.gov (United States)

    Otsuki, Mika; Soma, Yoshiaki; Arihiro, Shoji; Watanabe, Yoshimasa; Moriwaki, Hiroshi; Naritomi, Hiroaki

    2002-01-01

    We report a 60-year-old right-handed Japanese man who showed an isolated persistent typing impairment without aphasia, agraphia, apraxia or any other neuropsychological deficit. We coined the term 'dystypia' for this peculiar neuropsychological manifestation. The symptom was caused by an infarction in the left frontal lobe involving the foot of the second frontal convolution and the frontal operculum. The patient's typing impairment was not attributable to a disturbance of the linguistic process, since he had no aphasia or agraphia. The impairment was not attributable to the impairment of the motor execution process either, since he had no apraxia. Thus, his typing impairment was deduced to be based on a disturbance of the intermediate process where the linguistic phonological information is converted into the corresponding performance. We hypothesized that there is a specific process for typing which branches from the motor programming process presented in neurolinguistic models. The foot of the left second frontal convolution and the operculum may play an important role in the manifestation of 'dystypia'.

  10. Corticotropin releasing factor impairs sustained attention in male and female rats.

    Science.gov (United States)

    Cole, Robert D; Kawasumi, Yushi; Parikh, Vinay; Bangasser, Debra A

    2016-01-01

    Stressful life events and stress-related psychiatric disorders impair sustained attention, the ability to monitor rare and unpredictable stimulus events over prolonged periods of time. Despite the link between stress and attentional disruptions, the neurobiological basis for stress regulation of attention systems remains underexplored. Here we examined whether corticotropin releasing factor (CRF), which orchestrates stress responses and is hypersecreted in patients with stress-related psychiatric disorders, impairs sustained attention. To this end, male and female rats received central infusions of CRF prior to testing on an operant sustained attention task (SAT), where rats were trained to discriminate signaled from non-signaled events. CRF caused a dose-dependent decrease in SAT performance in both male and female rats. Females were more impaired than males following a moderate dose of CRF, particularly during the middle part of the session. This sex difference was moderated by ovarian hormones. Females in the estrous cycle stage characterized by lower ovarian hormones had a greater CRF-induced attentional impairment than males and females in other cycle stages. Collectively, these studies highlight CRF as a critical stress-related factor that can regulate attentional performance. As sustained attention subserves other cognitive processes, these studies suggest that mitigating high levels of CRF in patients with stress-related psychiatric disorders may ameliorate their cognitive deficits.

  11. Local amplification of glucocorticoids in the ageing brain and impaired spatial memory

    Directory of Open Access Journals (Sweden)

    Joyce L.W. Yau

    2012-08-01

    Full Text Available The hippocampus is a prime target for glucocorticoids (GCs and a brain structure particularly vulnerable to ageing. Prolonged exposure to excess GCs compromises hippocampal electrophysiology, structure and function. Blood GC levels tend to increase with ageing and correlate with impaired spatial memory in ageing rodents and humans. The magnitude of GC action within tissues depends not only on levels of steroid hormone that enter the cells from the periphery and the density of intracellular receptors but also on the local metabolism of GCs by 11ß-hydroxysteroid dehydrogenases (11ß-HSD. The predominant isozyme in the adult brain, 11ß-HSD1, locally regenerates active GCs from inert 11-keto forms thus amplifying GC levels within specific target cells including in the hippocampus and cortex. Ageing associates with elevated hippocampal and neocortical 11ß-HSD1 and impaired spatial learning while deficiency of 11ß-HSD1 in knockout mice prevents the emergence of cognitive decline with age. Furthermore, short-term pharmacological inhibition of 11ß-HSD1 in already aged mice reverses spatial memory impairments. Here, we review research findings that support a key role for GCs with special emphasis on their intracellular regulation by 11ß-HSD1 in the emergence of spatial memory deficits with ageing, and discuss the use of 11ß-HSD1 inhibitors as a promising novel treatment in ameliorating/improving age-related memory impairments.

  12. Exendin-4 induced glucagon-like peptide-1 receptor activation reverses behavioral impairments of mild traumatic brain injury in mice.

    Science.gov (United States)

    Rachmany, Lital; Tweedie, David; Li, Yazhou; Rubovitch, Vardit; Holloway, Harold W; Miller, Jonathan; Hoffer, Barry J; Greig, Nigel H; Pick, Chaim G

    2013-10-01

    Mild traumatic brain injury (mTBI) represents a major and increasing public health concern and is both the most frequent cause of mortality and disability in young adults and a chief cause of morbidity in the elderly. Albeit mTBI patients do not show clear structural brain defects and, generally, do not require hospitalization, they frequently suffer from long-lasting cognitive, behavioral, and emotional problems. No effective pharmaceutical therapy is available, and existing treatment chiefly involves intensive care management after injury. The diffuse neural cell death evident after mTBI is considered mediated by oxidative stress and glutamate-induced excitotoxicity. Prior studies of the long-acting GLP-1 receptor agonist, exendin-4 (Ex-4), an incretin mimetic approved for type 2 diabetes mellitus treatment, demonstrated its neurotrophic/protective activity in cellular and animal models of stroke, Alzheimer's and Parkinson's diseases, and, consequent to commonalities in mechanisms underpinning these disorders, Ex-4 was assessed in a mouse mTBI model. In neuronal cultures in this study, Ex-4 ameliorated H2O2-induced oxidative stress and glutamate toxicity. To evaluate in vivo translation, we administered steady-state Ex-4 (3.5 pM/kg/min) or saline to control and mTBI mice over 7 days starting 48 h prior to or 1 h post-sham or mTBI (30 g weight drop under anesthesia). Ex-4 proved well-tolerated and fully ameliorated mTBI-induced deficits in novel object recognition 7 and 30 days post-trauma. Less mTBI-induced impairment was evident in Y-maze, elevated plus maze, and passive avoidance paradigms, but when impairment was apparent Ex-4 induced amelioration. Together, these results suggest that Ex-4 may act as a neurotrophic/neuroprotective drug to minimize mTBI impairment.

  13. Gadobutrol in Renally Impaired Patients

    Science.gov (United States)

    Michaely, Henrik J.; Aschauer, Manuela; Deutschmann, Hannes; Bongartz, Georg; Gutberlet, Matthias; Woitek, Ramona; Ertl-Wagner, Birgit; Kucharczyk, Walter; Hammerstingl, Renate; De Cobelli, Francesco; Rosenberg, Martin; Balzer, Thomas; Endrikat, Jan

    2017-01-01

    Objective The aim of this study was to assess the potential risk of gadobutrol-enhanced magnetic resonance imaging (MRI) in patients with moderate to severe renal impairment for the development of nephrogenic systemic fibrosis (NSF). Materials and Methods We performed a prospective, international, multicenter, open-label study in 55 centers. Patients with moderate to severe renal impairment scheduled for any gadobutrol-enhanced MRI were included. All patients received a single intravenous bolus injection of gadobutrol at a dose of 0.1 mmol/kg body weight. The primary target variable was the number of patients who develop NSF within a 2-year follow-up period. Results A total of 908 patients were enrolled, including 586 with moderate and 284 with severe renal impairment who are at highest risk for developing NSF. The mean time since renal disease diagnosis was 1.83 and 5.49 years in the moderate and severe renal impairment cohort, respectively. Overall, 184 patients (20.3%) underwent further contrast-enhanced MRI with other gadolinium-based contrast agents within the 2-year follow-up. No patient developed symptoms conclusive of NSF. Conclusions No safety concerns with gadobutrol in patients with moderate to severe renal impairment were identified. There were no NSF cases. PMID:27529464

  14. Oxytocin ameliorates the immediate myocardial injury in heart transplant through down regulation of the neutrophil dependent myocardial apoptosis

    Directory of Open Access Journals (Sweden)

    F Fadhil Al-Amran

    2014-01-01

    Conclusion: Oxytocin ameliorates myocardial injury in heart transplant through down-regulation the myocardial inflammatory response, reactive oxygen species, and neutrophil-dependant myocardial apoptosis.

  15. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents

    DEFF Research Database (Denmark)

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte;

    2014-01-01

    an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central...... PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801...

  16. Assessment of changes of some functions of Ukrainian acid soils after chemical amelioration

    Directory of Open Access Journals (Sweden)

    Zapko Yurij

    2014-09-01

    Full Text Available The objective of the article was to determine the effectiveness of lime of different origin for chemical amelioration of soils and examine its impact on soil functions such as productivity, habitat, regulation of water quality, and the protective buffer biogeocenotic screen. Limy ameliorants were applied in small local field experiment on Luvic Chernozem, and experiment with lysimeter columns was carried out on Albic Luvisol. The number of the main groups of microflora and enzymatic activity of soil was determined in soil samples taken for the analysis from the root zone. Research concerning the influence of natural and industrial origin ameliorants on soil as habitat showed the correlation of sugar beets productivity with soil biogenic. The increase of biomultiplicity of soil microbiota after addition of a cement dust and negative influence of red sludge on soil as habitat for living organisms was observed. Research involving the influence of ameliorants on soil by lime as the protective buffer biogeocenotic screen was carried out using lysimeter columns. It was stated that the addition of limy ameliorants reduces mobility of heavy metals.

  17. Language Impairment and Generative Analysis

    Directory of Open Access Journals (Sweden)

    Andrej Stopar

    2004-12-01

    Full Text Available This article deals with different types of language impairment from the perspective of generative grammar. The paper focuses on syntactic deficiencies observed in aphasic and SLI (specific language impairment patients. We show that the observed ungrammatical structures do not appear in a random fashion but can be predicted by that theory of universal sentence structure which posits a strict hierarchy of its constituent parts. The article shows that while the hierarchically lower elements remain unaffected, the higher positions in the hierarchy show various degrees of syntactic impairment. The paper supports the implementation of recent developments in the field of generative grammar with the intention of encouraging further theoretical, experimental and therapeutic research in the field.

  18. Bosutinib Therapy Ameliorates Lung Inflammation and Fibrosis in Experimental Silicosis

    Science.gov (United States)

    Carneiro, Priscila J.; Clevelario, Amanda L.; Padilha, Gisele A.; Silva, Johnatas D.; Kitoko, Jamil Z.; Olsen, Priscilla C.; Capelozzi, Vera L.; Rocco, Patricia R. M.; Cruz, Fernanda F.

    2017-01-01

    Silicosis is an occupational lung disease for which no effective therapy exists. We hypothesized that bosutinib, a tyrosine kinase inhibitor, might ameliorate inflammatory responses, attenuate pulmonary fibrosis, and thus improve lung function in experimental silicosis. For this purpose, we investigated the potential efficacy of bosutinib in the treatment of experimental silicosis induced in C57BL/6 mice by intratracheal administration of silica particles. After 15 days, once disease was established, animals were randomly assigned to receive DMSO or bosutinib (1 mg/kg/dose in 0.1 mL 1% DMSO) by oral gavage, twice daily for 14 days. On day 30, lung mechanics and morphometry, total and differential cell count in alveolar septa and granuloma, levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, transforming growth factor (TGF)-β, and vascular endothelial growth factor in lung homogenate, M1 and M2 macrophages, total leukocytes, and T cells in BALF, lymph nodes, and thymus, and collagen fiber content in alveolar septa and granuloma were analyzed. In a separate in vitro experiment, RAW264.7 macrophages were exposed to silica particles in the presence or absence of bosutinib. After 24 h, gene expressions of arginase-1, IL-10, IL-12, inducible nitric oxide synthase (iNOS), metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, and caspase-3 were evaluated. In vivo, in silicotic animals, bosutinib, compared to DMSO, decreased: (1) fraction area of collapsed alveoli, (2) size and number of granulomas, and mononuclear cell granuloma infiltration; (3) IL-1β, TNF-α, IFN-γ, and TGF-β levels in lung homogenates, (4) collagen fiber content in lung parenchyma, and (5) viscoelastic pressure and static lung elastance. Bosutinib also reduced M1 cell counts while increasing M2 macrophage population in both lung parenchyma and granulomas. Total leukocyte, regulatory T, CD4+, and CD8+ cell counts in the lung-draining lymph

  19. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    deficiency of SIRT2 ameliorates iNOS, NO expression and reactive oxygen species production with suppressing LPS-induced activation of NFκB in macrophages.

  20. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis.

    Science.gov (United States)

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-12-01

    amelioration at low concentrations and an aggravation at high concentrations. Low concentrations of HNPs may contribute to the maintenance of intestinal homeostasis.

  1. Polymerase I pathway inhibitor ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Achiron, Anat; Mashiach, Roi; Zilkha-Falb, Rina; Meijler, Michael M; Gurevich, Michael

    2013-10-15

    Applying high throughput gene expression microarrays we identified that the suppression of polymerase 1 (POL1) pathway is associated with benign course of multiple sclerosis (MS). This finding supports the rationale for direct targeting of the POL1 transcription machinery as an innovative strategy to suppress MS. To evaluate the effects of a specific polymerase I inhibitor (POL1-I) on experimental autoimmune encephalomyelitis (EAE), we immunized female C57BL/6J mice (8 weeks) with MOG35-55/CFA. A new POL1-I was administered at a daily dose of 12.5mg/kg body weight by oral gavage either from the day of immunization until disease onset (EAE score 1.0, immunization model), at disease onset (EAE score=1.0) for the following 14 days (treatment model), or by alternate daily dose of 25.0mg/kg body weight, by oral gavage from the day of immunization for the following 25 days (combined model). POL1-I remarkably suppressed EAE in the immunization model; while in the Vehicle group the onset of EAE occurred on day 10.0±0.4 with maximal clinical score of 3.2±0.2, in the POL1-I treated mice onset was significantly delayed and occurred on day 16.9±1.1 (p=0.001), and maximal disease score 2.0±0.1 was reduced (p=0.004). In the treatment model POL1-I treatment significantly reduced disease activity; maximal score was 2.0±0.5 while in the Vehicle group it reached a mean maximal score of 3.9±0.1, (p=0.0008). In the combined model, POL1-I treatment completely inhibited disease activity. The effect of POL1-I treatment was modulated through decreased expression of POL1 pathway key-related genes LRPPRC, pre-RNA, POLR1D and RRN3 together with activation of P53 dependent apoptosis of CD4+ splenocytes. Our findings demonstrate that POL1 pathway inhibition delayed and suppressed the development of EAE and ameliorated the disease in mice with persistent clinical signs.

  2. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats

    Directory of Open Access Journals (Sweden)

    Ramalingayya GV

    2017-03-01

    Full Text Available Grandhi Venkata Ramalingayya, Sri Pragnya Cheruku, Pawan G Nayak, Anoop Kishore, Rekha Shenoy, Chamallamudi Mallikarjuna Rao, Nandakumar Krishnadas Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India Abstract: Doxorubicin (DOX is the most widely used broad-spectrum anticancer agent, either alone or in combination, for most cancers including breast cancer. Long-term use of chemotherapeutic agents to treat breast cancer patients results in cognitive complications with a negative impact on survivors’ quality of life. The study objective was to evaluate rutin (RUT for its neuroprotective effect against DOX in human neuroblastoma (IMR32 cells in vitro and study its potential to ameliorate DOX-induced cognitive dysfunction in Wistar rats. Cell viability assay (3-[4,5 dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide, neurite growth assay, detection of apoptosis by (acridine orange/ethidium bromide staining, intracellular reactive oxygen species (ROS assay, and flowcytometric analysis were carried out to assess neuroprotective potential against DOX. An in vivo study was conducted for assessing protective effect of RUT against memory deficit associated with DOX-induced chemobrain using object recognition task (ORT. Locomotion was assessed using open field test. Serum biochemistry, acetylcholinesterase, oxidative stress markers in hippocampus, and frontal cortex were assessed. Histopathological analysis of major organ systems was also carried out. Prior exposure to RUT at 100 µM protected IMR32 cells from DOX (1 µM neurotoxicity. DOX exposure resulted in increased cellular death, apoptosis, and intracellular ROS generation with inhibition of neurite growth in differentiated IMR32 cells, which was significantly ameliorated by RUT. Cognitive dysfunction was induced in Wistar rats by administering ten cycles of DOX (2.5 mg/kg, intraperitoneal, once in 5 days, as we observed

  3. Honokiol improves learning and memory impairments induced by scopolamine in mice.

    Science.gov (United States)

    Xian, Yan-Fang; Ip, Siu-Po; Mao, Qing-Qiu; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Lin, Zhi-Xiu

    2015-08-01

    Honokiol, a lignan isolated from the bark of Magnolia officinalis, has been reported to ameliorate the learning and memory impairments in senesed (SAMP8) mice. However, whether honokiol could improve scopolamine (SCOP)-induced learning and memory deficits in mice is still unknown. In this study, we aimed to investigate whether honokiol could reverse the SCOP-induced learning and memory impairments in mice and to elucidate its underlying mechanisms of action. Mice were given daily intraperitoneal injection of honokiol (10 and 20mg/kg) for 21 consecutive days. The results showed that honokiol significantly improved spatial learning and memory function (as assessed by the Morris water maze test) in the SCOP-treated mice. In addition, treatment with honokiol significantly decreased the protein and mRNA levels of interleukin (IL)-1β and the activity of acetylcholinesterase (AChE), while significantly increased the protein and mRNA levels of IL-10, and the level of acetylcholine (Ach) in the brain of the SCOP-treated mice. Moreover, honokiol also significantly suppressed the production of prostaglandin E 2 (PGE2) and mRNA expression of cyclooxygenase-2 (COX-2) in the brain of the SCOP-treated mice. Mechanistic investigations revealed that honokiol could markedly reverse the amount of phosphorylated Akt and extracellular regulated kinases 1/2 (ERK1/2) changes in the brain of the SCOP-treated mice. These results amply demonstrated that honokiol could improve learning and memory impairments induced by SCOP in mice, and the protective action may be mediated, at least in part, by inhibition of AChE activity, and amelioration of the neuroinflammatory processes in the SCOP-treated mice.

  4. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice.

    Science.gov (United States)

    Rajasekar, N; Dwivedi, Subhash; Tota, Santosh Kumar; Kamat, Pradeep Kumar; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2013-09-05

    Okadaic acid (OKA) has been observed to cause memory impairment in human subjects having seafood contaminated with dinoflagellate (Helicondria okadai). OKA induces tau hyperphosphorylation and oxidative stress leading to memory impairment as our previous study has shown. Curcumin a natural antioxidant has demonstrated neuroprotection in various models of neurodegeneration. However, the effect of curcumin has not been explored in OKA induced memory impairment. Therefore, present study evaluated the effect of curcumin on OKA (100ng, intracerebrally) induced memory impairment in male Swiss albino mice as evaluated in Morris water maze (MWM) and passive avoidance tests (PAT). OKA administration resulted in memory impairment with a decreased cerebral blood flow (CBF) (measured by laser doppler flowmetry), ATP level and increased mitochondrial (Ca(2+))i, neuroinflammation (increased TNF-α, IL-1β, COX-2 and GFAP), oxidative-nitrosative stress, increased Caspase-9 and cholinergic dysfunction (decreased AChE activity/expression and α7 nicotinic acetylcholine receptor expression) in cerebral cortex and hippocampus of mice brain. Oral administration of curcumin (50mg/kg) for 13 days significantly improved memory function in both MWM and PAT along with brain energy metabolism, CBF and cholinergic function. It decreased mitochondrial (Ca(2+))i, and ameliorated neuroinflammation and oxidative-nitrostative stress in different brain regions of OKA treated mice. Curcumin also inhibited astrocyte activation as evidenced by decreased GFAP expression. This neuroprotective effect of curcumin is due to its potent anti-oxidant action thus confirming previous studies. Therefore, use of curcumin should be encouraged in people consuming sea food (contaminated with dinoflagellates) to prevent cognitive impairment.

  5. Repetitive training for ameliorating upper limbs spasm of hemiplegic patients

    Institute of Scientific and Technical Information of China (English)

    Lin Zhu; Lin Liu; Weiqun Song

    2006-01-01

    BACKGROUND:The main aim of rehabilitation is to ameliorate motor function and use the damaged limbs in the activities of daily living.Several factors are needed in the self-recovery of the patients,and the most important one is to reduce spasm.Some mechanical repetitive movements can affect and change the excitability of motor neurons.OBJECTIVE:To observe the effect of repetitive training on ameliorating spasm of upper limbs of hemiplegic patients.DESIGN:A self-controlled observation before and after training.SETTING:Department of Rehabilitation,Xuanwu Hospital of Capital Medical University.PARTICI PANTS: Seven hemiplegic patients induced by brain injury were selected from the Department of Rehabilitation,Xuanwu Hospital,Capital Medical University from March to June in 2005.Inclusive criteria:①Agreed and able to participate in the 30-minute training of hand function; ②Without disturbance of understanding.The patients with aphasia or apraxia,manifestation of shoulder pain,and severe neurological or mental defects.For the 7 patients,the Rivermead motor assessment(RMA)scores ranged 0-10 points,the Rivermead mobility index(RMI)ranged 1-3,and modified Ashworth scale(MAS)was grade 2-4.Their horizontal extension of shoulder joint was 0°-30°,anteflextion was 0°-50°,internal rotation was 50°-90°,external rotation was 0°-10°:and the elbow joint could extend for 15°-135°.METHODS:The viva 2 serial MOTOmed exerciser(Reck Company,Germany)was used.There were three phases of A-B-A.①The phase A lasted for 1 week.The patient sat on a chair facting to the MOTOmed screen.and did the circumduction of upper limbs forwardly,30 minutes a day and 5 days a week.②The phase B lasted for 3 weeks.The training consisted of forward circumduction of upper limbs for 15 minutes.followed by backward ones for 15 minutes and 5-minute rest.③The training in the phase A was performed again for 2 weeks.The extensions of upper limbs were recorded at phase A,the extension and flexion of

  6. Ginger and alpha lipoic acid ameliorate age-related ultrastructural changes in rat liver.

    Science.gov (United States)

    Mahmoud, Y I; Hegazy, H G

    2016-01-01

    Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats.

  7. Vitamin E ameliorates aflatoxin-induced biochemical changes in the testis of mice

    Institute of Scientific and Technical Information of China (English)

    R.J. Verma; Anita Nair

    2001-01-01

    Aim: To assess the effect of aflatoxin on biochemical changes in the testis of mice and the possibility of amelioration by vitamin E treatment. Methods: Adult male albino mice were orally administered with 25 or 50 tg of aflatoxin/animal/day (750 or 1500 μg/kg body weight) for 45 days. The testis was isolated and processed for biochemical analysis. Results: There was a significant, dose-dependent reduction in DNA, RNA, protein, sialic acid contents and the activities of succinic dehydrogenase, adenosine triphosphatase and alkaline phosphatase in the testis of aflatoxintreated mice as compared to the vehicle control. However, the acid phosphatase activity was significantly increased in the aflatoxin-treated mice. Vitamin E (2 mg/animal/day) treatment significantly ameliorated the aflatoxin-induced changes, except the acid and alkaline phosphatase activities in the high dose group. Conclusion: Vitamin E treatment ameliorates the aflatoxin-induced changes in the testis of mice.

  8. Spatial compression impairs prism-adaptation in healthy individuals

    Directory of Open Access Journals (Sweden)

    Rachel J Scriven

    2013-05-01

    Full Text Available Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation is effective in ameliorating some neglect behaviours, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control processes in prism-adaptation may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced strategic control might result from a failure to detect prism-induced reaching errors properly either because a the size of the error is underestimated in compressed visual space or b pathologically increased error detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether strategic control and subsequent aftereffects were abnormal compared to standard prism adaptation. Each participant completed three prism-adaptation procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During prism-adaptation, visual-feedback of the reach could be compressed, perturbed by noise or represented veridically. Compressed visual space significantly reduced strategic control and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms.

  9. Oceanography for the Visually Impaired

    Science.gov (United States)

    Fraser, Kate

    2008-01-01

    Amy Bower is a physical oceanographer and senior scientist at the Woods Hole Oceanographic Institution (WHOI) in Woods Hole, Massachusetts--she has also been legally blind for 14 years. Through her partnership with the Perkins School for the Blind in Watertown, Massachusetts, the oldest K-12 school for the visually impaired in the United States,…

  10. Language Impairment in Cerebellar Ataxia

    NARCIS (Netherlands)

    van Gaalen, Judith; de Swart, Bert J. M.; Oostveen, Judith; Knuijt, Simone; van de Warrenburg, Bart P. C.; Kremer, Berry (H. ) P. H.

    2014-01-01

    Background: Several studies have suggested that language impairment can be observed in patients with cerebellar pathology. The aim of this study was to investigate language performance in patients with spinocerebellar ataxia type 6 (SCA6). Methods: We assessed speech and language in 29 SCA6 patients

  11. Electrophysiology in visually impaired children

    NARCIS (Netherlands)

    Genderen, Maria Michielde van

    2006-01-01

    Inherited retinal disorders and posterior visual pathway abnormalities are important causes of visual impairment in children. Visual electrophysiology often is indispensable in diagnosing these conditions. This thesis shows the wide range of use of pediatric electro-ophthalmology, and demonstrates i

  12. Specificity of specific language impairment

    NARCIS (Netherlands)

    GoorhuisBrouwer, SM; WijnbergWilliams, BJ

    1996-01-01

    In children with specific language impairment (SLI) their problems are supposed to be specifically restricted to language. However, both on a theoretical basis as well as on a practical basis it is often difficult to make a sharp distinction between specific and nonspecific language disorders. In a

  13. Language Impairment in Autistic Children.

    Science.gov (United States)

    Deaton, Ann Virginia

    Discussed is the language impairment of children with infantile autism. The speech patterns of autistic children, including echolalia, pronomial reversal, silent language, and voice imitation, are described. The clinical picture of the autistic child is compared to that of children with such other disorders as deafness, retardation, and…

  14. Parkinson's Disease and Cognitive Impairment.

    Science.gov (United States)

    Yang, Yang; Tang, Bei-Sha; Guo, Ji-Feng

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease primarily characterized by the hallmarks of motor symptoms, such as tremor, bradykinesia, rigidity, and postural instability. However, through clinical investigations in patients and experimental findings in animal models of Parkinson's disease for years, it is now well recognized that Parkinson's disease is more than just a motor-deficit disorder. The majority of Parkinson's disease patients suffer from nonmotor disabilities, for instance, cognitive impairment, autonomic dysfunction, sensory dysfunction, and sleep disorder. So far, anti-PD prescriptions and surgical treatments have been mainly focusing on motor dysfunctions, leaving cognitive impairment a marginal clinical field. Within the nonmotor symptoms, cognitive impairment is one of the most common and significant aspects of Parkinson's disease, and cognitive deficits such as dysexecutive syndrome and visuospatial disturbances could seriously affect the quality of life, reduce life expectancy, prolong the duration of hospitalization, and therefore increase burdens of caregiver and medical costs. In this review, we have done a retrospective study of the recent related researches on epidemiology, clinical manifestation and diagnosis, genetics, and potential treatment of cognitive deficits in Parkinson's disease, aiming to provide a summary of cognitive impairment in Parkinson's disease and make it easy for clinicians to tackle this challenging issue in their future practice.

  15. Parkinson's Disease and Cognitive Impairment

    Science.gov (United States)

    Tang, Bei-sha

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease primarily characterized by the hallmarks of motor symptoms, such as tremor, bradykinesia, rigidity, and postural instability. However, through clinical investigations in patients and experimental findings in animal models of Parkinson's disease for years, it is now well recognized that Parkinson's disease is more than just a motor-deficit disorder. The majority of Parkinson's disease patients suffer from nonmotor disabilities, for instance, cognitive impairment, autonomic dysfunction, sensory dysfunction, and sleep disorder. So far, anti-PD prescriptions and surgical treatments have been mainly focusing on motor dysfunctions, leaving cognitive impairment a marginal clinical field. Within the nonmotor symptoms, cognitive impairment is one of the most common and significant aspects of Parkinson's disease, and cognitive deficits such as dysexecutive syndrome and visuospatial disturbances could seriously affect the quality of life, reduce life expectancy, prolong the duration of hospitalization, and therefore increase burdens of caregiver and medical costs. In this review, we have done a retrospective study of the recent related researches on epidemiology, clinical manifestation and diagnosis, genetics, and potential treatment of cognitive deficits in Parkinson's disease, aiming to provide a summary of cognitive impairment in Parkinson's disease and make it easy for clinicians to tackle this challenging issue in their future practice. PMID:28058128

  16. Cognitive Impairment in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Farnaz Etesam

    2014-01-01

    Full Text Available Cognitive impairment can emerge in the earliest phases of multiple sclerosis. It strongly impacts different aspects of Multiple Sclerosis (MS patients' lives, like employment, social relationships and the overall quality of life; thus, its on-time recognition and treatment is mandatory. This paper discusses issues, diagnostic methods and treatment options for cognitive dysfunctions in MS. This paper is a descriptive review of the related studies in the recent 10 years, performing a keyword search in the main databases4T. Cognitive impairment mostly involves aspects of information processing, memory and executive functioning in MS. Neuropsychological tests like MACFIMS and BRB-N are recommended for its assessment. Still, there is no fully efficient treatment for cognitive impairment. Researchers have shown some positive effects, using disease-modifying therapies and cognitive rehabilitation. Depression, pain, fatigue and other factors influencing cognitive functions must be paid attention to4T. Recognizing cognitive impairment as a major symptom for MS, makes studying this subject one of the priorities in dealing with the disease. Therefore, a consecutive research for identification and management of this part of quality of life in MS patients is obligatory4T.4T

  17. Assessment of the Visually Impaired.

    Science.gov (United States)

    Chase, Joan B.

    1985-01-01

    Assessment of visually impaired students is traced historically, and current practices in visual functioning, movement and spatial awareness, cognition, tactile performance, and emotional/social development are noted. Federal requirements for assessment are discussed and recommended assessment practices for six major assessment domains are listed.…

  18. Keratinocyte growth factor gene therapy ameliorates ulcerative colitis in rats

    Institute of Scientific and Technical Information of China (English)

    Chun-Jie Liu; Ji-De Jin; Tong-De Lv; Zu-Ze Wu; Xiao-Qin Ha

    2011-01-01

    /mg, P < 0.01; d 10: 46.10 ± 6.23 vs 25.35 ± 4.76 and 27.82 ± 6.42 U/mg, P < 0.01) and MDA contents decreased accordingly (d 7: 7.40 ± 0.88 vs 9.81 ± 1.21 and 10.45 ± 1.40 nmol/mg, P < 0.01; d 10: 4.36 ± 0.62 vs 8.41 ± 0.92 and 8.71 ± 1.27 nmol/mg, P < 0.01), compared with SP and control groups. CONCLUSION: KGF gene therapy mediated by attenuated Salmonella ameliorates ulcerative colitis induced by acetic acids, and it may be a safe and effective treatment for ulcerative colitis.

  19. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype

    Directory of Open Access Journals (Sweden)

    De Lisle Robert C

    2010-09-01

    Full Text Available Abstract Background Cystic fibrosis (CF is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Methods Cftrtm1UNC (CF and wildtype (WT littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Results Crypt width in control CF mice was 700% that of WT mice (P P = 0.001. Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008. Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005. Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P P P = 0.024 but not in CF mice (P = 0.377. Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. Conclusions These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice

  20. Mechanism of alcohol-induced impairment in renal development: Could it be reduced by retinoic acid?

    Science.gov (United States)

    Gray, Stephen P; Cullen-McEwen, Luise A; Bertram, John F; Moritz, Karen M

    2012-09-01

    1. Prenatal alcohol exposure impairs kidney development, resulting in a reduced nephron number. However, the mechanism through which alcohol acts to disrupt renal development is largely unknown. Retinoic acid (RA) is critically involved in kidney development and it has been proposed that a diminished concentration of RA is a contributing factor to fetal alcohol syndrome. 2. In the present study we proposed that the ethanol-induced inhibition of ureteric branching morphogenesis and glomerular development in the cultured rat kidney would be ameliorated by coculture with exogenous RA and that examining the expression profile of key genes involved in the development of the kidney would provide insights into the potential molecular pathways involved. 3. Whole rat metanephroi cultured in the presence of exogenous RA (10-20 nmol/L) without ethanol appeared larger and had significantly more ureteric branch points, tips and glomeruli than metanephroi cultured in control media. Those cultured in the presence of ethanol alone (0.2%) had 20% fewer ureteric branch points, tips and glomeruli, which was ameliorated by coculture with retinoic acid. 4. Gene expression analysis identified changes in the expression of enzymes involved in the metabolism of alcohol in conjunction with changes in key regulators of kidney development, including cRET. 5. These results demonstrate that the teratogenic effects of alcohol in vitro on kidney development resulting in reduced ureteric branching morphogenesis and glomerular development can be ameliorated through coculture with RA. These results provide the foundation for future research into the mechanism through which alcohol acts to disrupt kidney development.

  1. Effect of Soil Ameliorators on Ectomycorrhizal Fungal Communities that Colonize Seedlings of Pinus densiflora in Abandoned Coal Mine Spoils.

    Science.gov (United States)

    Lee, Eun-Hwa; Eo, Ju-Kyeong; Lee, Chang-Seok; Eom, Ahn-Heum

    2012-09-01

    In this study, the effect of soil ameliorators on ectomycorrhizal (ECM) fungal communities in coal mine spoils was investigated. Organic fertilizers and slaked lime were applied as soil ameliorators in 3 abandoned coal mine spoils. One year after the initial treatment, roots of Pinus densiflora seedlings were collected and the number of ECM species, colonization rate, and species diversity were assessed. The results showed that the soil ameliorators significantly increased ECM colonization on the roots of P. densiflora. The results suggest that soil ameliorators can have a positive effect on ECM fungi in terms of growth of host plants and show the potential use of soil ameliorator treatment for revegetation with ECM-colonized pine seedlings in the coal mine spoils.

  2. Isocitrate ameliorates anemia by suppressing the erythroid iron restriction response.

    Science.gov (United States)

    Richardson, Chanté L; Delehanty, Lorrie L; Bullock, Grant C; Rival, Claudia M; Tung, Kenneth S; Kimpel, Donald L; Gardenghi, Sara; Rivella, Stefano; Goldfarb, Adam N

    2013-08-01

    The unique sensitivity of early red cell progenitors to iron deprivation, known as the erythroid iron restriction response, serves as a basis for human anemias globally. This response impairs erythropoietin-driven erythropoiesis and underlies erythropoietic repression in iron deficiency anemia. Mechanistically, the erythroid iron restriction response results from inactivation of aconitase enzymes and can be suppressed by providing the aconitase product isocitrate. Recent studies have implicated the erythroid iron restriction response in anemia of chronic disease and inflammation (ACDI), offering new therapeutic avenues for a major clinical problem; however, inflammatory signals may also directly repress erythropoiesis in ACDI. Here, we show that suppression of the erythroid iron restriction response by isocitrate administration corrected anemia and erythropoietic defects in rats with ACDI. In vitro studies demonstrated that erythroid repression by inflammatory signaling is potently modulated by the erythroid iron restriction response in a kinase-dependent pathway involving induction of the erythroid-inhibitory transcription factor PU.1. These results reveal the integration of iron and inflammatory inputs in a therapeutically tractable erythropoietic regulatory circuit.

  3. Amelioration of Auditory Response by DA9801 in Diabetic Mouse

    Directory of Open Access Journals (Sweden)

    Yeong Ro Lee

    2015-01-01

    Full Text Available Diabetes mellitus (DM is a metabolic disease that involves disorders such as diabetic retinopathy, diabetic neuropathy, and diabetic hearing loss. Recently, neurotrophin has become a treatment target that has shown to be an attractive alternative in recovering auditory function altered by DM. The aim of this study was to evaluate the effect of DA9801, a mixture of Dioscorea nipponica and Dioscorea japonica extracts, in the auditory function damage produced in a STZ-induced diabetic model and to provide evidence of the mechanisms involved in enhancing these protective effects. We found a potential application of DA9801 on hearing impairment in the STZ-induced diabetic model, demonstrated by reducing the deterioration produced by DM in ABR threshold in response to clicks and normalizing wave I–IV latencies and Pa latencies in AMLR. We also show evidence that these effects might be elicited by inducing NGF related through Nr3c1 and Akt. Therefore, this result suggests that the neuroprotective effects of DA9801 on the auditory damage produced by DM may be affected by NGF increase resulting from Nr3c1 via Akt transformation.

  4. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment.

    Science.gov (United States)

    Ahmed, Iltaf; Buchert, Rebecca; Zhou, Mi; Jiao, Xinfu; Mittal, Kirti; Sheikh, Taimoor I; Scheller, Ute; Vasli, Nasim; Rafiq, Muhammad Arshad; Brohi, M Qasim; Mikhailov, Anna; Ayaz, Muhammad; Bhatti, Attya; Sticht, Heinrich; Nasr, Tanveer; Carter, Melissa T; Uebe, Steffen; Reis, André; Ayub, Muhammad; John, Peter; Kiledjian, Megerditch; Vincent, John B; Jamra, Rami Abou

    2015-06-01

    There are two known mRNA degradation pathways, 3' to 5' and 5' to 3'. We identified likely pathogenic variants in two genes involved in these two pathways in individuals with intellectual disability. In a large family with multiple branches, we identified biallelic variants in DCPS in three affected individuals; a splice site variant (c.636+1G>A) that results in an in-frame insertion of 45 nucleotides and a missense variant (c.947C>T; p.Thr316Met). DCPS decaps the cap structure generated by 3' to 5' exonucleolytic degradation of mRNA. In vitro decapping assays showed an ablation of decapping function for both variants in DCPS. In another family, we identified a homozygous mutation (c.161T>C; p.Phe54Ser) in EDC3 in two affected children. EDC3 stimulates DCP2, which decaps mRNAs at the beginning of the 5' to 3' degradation pathway. In vitro decapping assays showed that altered EDC3 is unable to enhance DCP2 decapping at low concentrations and even inhibits DCP2 decapping at high concentration. We show that individuals with biallelic mutations in these genes of seemingly central functions are viable and that these possibly lead to impairment of neurological functions linking mRNA decapping to normal cognition. Our results further affirm an emerging theme linking aberrant mRNA metabolism to neurological defects.

  5. Perioperative care of the visually impaired.

    Science.gov (United States)

    Dobson, F

    1991-07-01

    Eighty-three per cent of sensory input is received optically. Sight impaired patients thus experience substantial sensory deficit, so nursing any visually impaired patient through surgery requires special considerations.

  6. Impaired sleep and allostatic load

    DEFF Research Database (Denmark)

    Clark, Alice Jessie; Dich, Nadya; Lange, Theis

    2014-01-01

    Objective: Understanding the mechanisms linking sleep impairment to morbidity and mortality is important for future prevention, but these mechanisms are far from elucidated. We aimed to determine the relation between impaired sleep, both in terms of duration and disturbed sleep, and allostatic load...... Biobank with comprehensive information on sleep duration, disturbed sleep, objective measures of an extensive range of biological risk markers, and physical conditions. Results: Long sleep (mean difference 0.23; 95% confidence interval, 0.13, 0.32) and disturbed sleep (0.14; 0.06, 0.22) were associated...... with higher AL as well as with high-risk levels of risk markers from the anthropometric, metabolic, and immune system. Sub-analyses suggested that the association between disturbed sleep and AL might be explained by underlying disorders. Whereas there was no association between short sleep and AL...

  7. Relevance theory and pragmatic impairment.

    Science.gov (United States)

    Leinonen, E; Kerbel, D

    1999-01-01

    This paper summarizes aspects of relevance theory that are useful for exploring impairment of pragmatic comprehension in children. It explores data from three children with pragmatic language difficulties within this framework. Relevance theory is seen to provide a means of explaining why, in a given context, a particular utterance is problematic. It thus enables one to move on from mere description of problematic behaviours towards their explanation. The theory provides a clearer delineation between the explicit and the implicit, and hence between semantics and pragmatics. This enables one to place certain difficulties more firmly within semantics and others within pragmatics. Relevance, and its maximization in communication, are squarely placed within human cognition, which suggests a close connection between pragmatic and cognitive (dis)functioning. Relevance theory thus emerges as a powerful tool in the exploration and understanding of pragmatic language difficulties in children and offers therapeutically valuable insight into the nature of interactions involving individuals with such impairments.

  8. Chronic oxidative-nitrosative stress impairs coronary vasodilation in metabolic syndrome model rats.

    Science.gov (United States)

    Kagota, Satomi; Maruyama, Kana; Tada, Yukari; Fukushima, Kazuhito; Umetani, Keiji; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2013-07-01

    Metabolic syndrome (MetS) is a combination of clinical disorders that together increase the risk for cardiovascular disease and diabetes. SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP.ZF) rats with MetS show impaired nitric oxide-mediated relaxation in coronary and mesenteric arteries, and angiotensin II receptor type 1 blockers protect against dysfunction and oxidative-nitrosative stress independently of metabolic effects. We hypothesize that superoxide contributes to functional deterioration in SHRSP.ZF rats. To test our hypothesis, we studied effects of treatment with tempol, a membrane-permeable radical scavenger, on impaired vasodilation in SHRSP.ZF rats. Tempol did not alter body weight, high blood pressure, or metabolic abnormalities, but prevented impairment of acetylcholine-induced and nitroprusside-induced vasodilation in the coronary and mesenteric arteries. Furthermore, tempol reduced the levels of serum thiobarbituric acid reactive substance (TBARS) and 3-nitrotyrosine content in mesenteric arteries. Systemic administration of tempol elevated the expression of soluble guanylate cyclase (sGC) above basal levels in mesenteric arteries of SHRSP.ZF rats. However, acute treatment with tempol or ebselen, a peroxynitrite scavenger, did not ameliorate impaired relaxation of isolated mesenteric arteries. No nitration of tyrosine residues in sGC was observed; however, sGC mRNA expression levels in the arteries of SHRSP.ZF rats were lower than those in the arteries of Wistar-Kyoto rats. Levels of Thr(496)- and Ser(1177)-phosphorylated endothelial nitric oxide synthase (eNOS) were lower in arteries of SHRSP.ZF rats, and acetylcholine decreased Thr(496)-phosphorylated eNOS levels. These results indicated that prolonged superoxide production, leading to oxidative-nitrosative stress, was associated with impaired vasodilation in SHRSP.ZF rats with MetS. Down-regulated sGC expression may be linked to dysfunction, while reduced NO bioavailability/eNOS activity and modified s

  9. Amelioration of anti-tuberculosis drug induced oxidative stress in kidneys by Spirulina fusiformis in a rat model.

    Science.gov (United States)

    Martin, Sherry Joseph; Sabina, Evan Prince

    2016-08-01

    Nephrotoxicity is a rare complication caused by anti-tuberculosis therapy-induced oxidative stress. The Cyanobacterium Spirulina fusiformis Voronikhin belonging to Oscillatoriaceae family is used traditionally as a source of antioxidants against oxidative stress. We aimed to investigate the efficacy of S. fusiformis in modifying isoniazid (INH) and rifampicin (RIF)-induced changes in Wistar rat kidneys. Animals were divided into six groups: normal control rats; toxic control (INH & RIF-50 mg/kg b.w./d each; p.o.); INH & RIF + S. fusiformis (400 mg/kg b.w./d); INH & RIF + S. fusiformis (800 mg/kg b.w./d); S. fusiformis (800 mg/kg b.w./d) alone-treated rats; INH & RIF + silymarin (25 mg/kg b.w./d). Study duration was 28 d after which blood and kidneys were analyzed. We also studied the binding and interactions of the transcription factors Liver X Receptor (LXR) and Farnesoid X Receptor (FXR) with INH, RIF, and representative active compounds of S. fusiformis by in silico methods. INH & RIF treatment caused significant (p< 0.05) decrease in antioxidant levels and significant (p< 0.05) increase in the levels of creatinine, urea, and uric acid showing impaired kidney function. Spirulina fusiformis ameliorated these effects in a dose dependent manner. Histological examination of kidneys supported these findings. Results of the in silico analyses showed that selected active components of S. fusiformis interact with LXR and FXR and could be a possible mechanism of action. S. fusiformis rendered protection against anti-tuberculosis drugs-induced oxidative stress in kidney tissues of rats.

  10. Ameliorative Effect and Its Mechanism of Forsythiaside on Learning and Memory of Composite Alzheimer’s Disease Model Mice

    Institute of Scientific and Technical Information of China (English)

    XIONG Yu-ping; TIAN Ya-jie

    2016-01-01

    Objective: To explore the ameliorative effect of forsythiaside and its mechanism on learning and memory of composite Alzheimer’s disease (AD) model mice. Methods: Fifty SAMP8 mice of 8 months old were randomly divided into negative control group (gavage of distilled water), positive control group (gavage of donepezil), low-, middle-, and high-dose groups (gavage of forsythiaside 60, 120, and 240 mg/kg, respectively), 10 cases for each group. Another 10 SAMR1 male mice of 8-month old were designed as blank control group (gavage of distilled water). After gavage for 30 consecutive days, Morris water maze test was used to conduct behavioral test 1 h after gavage everyday. 24 h after completing behavior test, the vitality of superoxide dismutase (SOD), acetylcholine esterase (AchE), choline acetyl transferase (ChAT), monoamine oxidase (MAO), and glutathion peroxidase (GSH-PX) as well as the content of malondialdehyde (MDA) and nitric oxide (NO) in brain tissue of mice in each group were tested. Results:In water maze test, forsythiaside could improve the learning and memory ability of composite AD model mice. After being given different doses of forsythiaside for a long term, the activity of SOD, ChAT, and GSH-PX increased inordinately and the content of MDA and NO reduced in varying degrees in a dose-dependent manner. Of all, the high-dose forsythiaside group was the best in therapeutic effect. Conclusion: Forsythiaside has a therapeutic effect on the learning and memory impairment of composite AD model mice probably by regulating the mechanism of the cholinergic system and antioxygenation.

  11. Ameliorative Effect and Its Mechanism of Forsythiaside on Learning and Memory of Composite Alzheimer's Disease Model Mice

    Directory of Open Access Journals (Sweden)

    Yu-ping XIONG

    2016-03-01

    Full Text Available Objective: To explore the ameliorative effect of forsythiaside and its mechanism on learning and memory of composite Alzheimer’s disease (AD model mice. Methods: Fifty SAMP8 mice of 8 months old were randomly divided into negative control group (gavage of distilled water, positive control group (gavage of donepezil, low-, middle-, and high-dose groups (gavage of forsythiaside 60, 120, and 240 mg/kg, respectively, 10 cases for each group. Another 10 SAMR1 male mice of 8-month old were designed as blank control group (gavage of distilled water. After gavage for 30 consecutive days, Morris water maze test was used to conduct behavioral test 1 h after gavage everyday. 24 h after completing behavior test, the vitality of superoxide dismutase (SOD, acetylcholine esterase (AchE, choline acetyl transferase (ChAT, monoamine oxidase (MAO, and glutathion peroxidase (GSH-PX as well as the content of malondialdehyde (MDA and nitric oxide (NO in brain tissue of mice in each group were tested. Results: In water maze test, forsythiaside could improve the learning and memory ability of composite AD model mice. After being given different doses of forsythiaside for a long term, the activity of SOD, ChAT, and GSH-PX increased inordinately and the content of MDA and NO reduced in varying degrees in a dose-dependent manner. Of all, the high-dose forsythiaside group was the best in therapeutic effect. Conclusion: Forsythiaside has a therapeutic effect on the learning and memory impairment of composite AD model mice probably by regulating the mechanism of the cholinergic system and antioxygenation.

  12. Dietary Curcumin Increases Antioxidant Defenses in Lung, Ameliorates Radiation-Induced Pulmonary Fibrosis, and Improves Survival in Mice

    Science.gov (United States)

    Lee, James C.; Kinniry, Paul A.; Arguiri, Evguenia; Serota, Matthew; Kanterakis, Stathis; Chatterjee, Shampa; Solomides, Charalambos C.; Javvadi, Prashanthi; Koumenis, Constantinos; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2010-01-01

    The effectiveness of lung radiotherapy is limited by radiation tolerance of normal tissues and by the intrinsic radiosensitivity of lung cancer cells. The chemopreventive agent curcumin has known antioxidant and tumor cell radiosensitizing properties. Its usefulness in preventing radiation-induced pneumonopathy has not been tested previously. We evaluated dietary curcumin in radiation-induced pneumonopathy and lung tumor regression in a murine model. Mice were given 1%or 5%(w/w) dietary curcumin or control diet prior to irradiation and for the duration of the experiment. Lungs were evaluated at 3 weeks after irradiation for acute lung injury and inflammation by evaluating bronchoalveolar lavage (BAL) fluid content for proteins, neutrophils and at 4 months for pulmonary fibrosis. In a separate series of experiments, an orthotopic model of lung cancer using intravenously injected Lewis lung carcinoma (LLC) cells was used to exclude possible tumor radioprotection by dietary curcumin. In vitro, curcumin boosted antioxidant defenses by increasing heme oxygenase 1 (HO-1) levels in primary lung endothelial and fibroblast cells and blocked radiation-induced generation of reactive oxygen species (ROS). Dietary curcumin significantly increased HO-1 in lungs as early as after 1 week of feeding, coinciding with a steady-state level of curcumin in plasma. Although both 1% and 5% w/w dietary curcumin exerted physiological changes in lung tissues by significantly decreasing LPS-induced TNF-α production in lungs, only 5%dietary curcumin significantly improved survival of mice after irradiation and decreased radiation-induced lung fibrosis. Importantly, dietary curcumin did not protect LLC pulmonary metastases from radiation killing. Thus dietary curcumin ameliorates radiation-induced pulmonary fibrosis and increases mouse survival while not impairing tumor cell killing by radiation. PMID:20426658

  13. Glucose-Dependent Insulinotropic Polypeptide Ameliorates Mild Traumatic Brain Injury-Induced Cognitive and Sensorimotor Deficits and Neuroinflammation in Rats

    Science.gov (United States)

    Yu, Yu-Wen; Hsieh, Tsung-Hsun; Chen, Kai-Yun; Wu, John Chung-Che; Hoffer, Barry J.; Greig, Nigel H.; Li, Yazhou; Lai, Jing-Huei; Chang, Cheng-Fu; Lin, Jia-Wei; Chen, Yu-Hsin

    2016-01-01

    Abstract Mild traumatic brain injury (mTBI) is a major public health issue, representing 75–90% of all cases of TBI. In clinical settings, mTBI, which is defined as a Glascow Coma Scale (GCS) score of 13–15, can lead to various physical, cognitive, emotional, and psychological-related symptoms. To date, there are no pharmaceutical-based therapies to manage the development of the pathological deficits associated with mTBI. In this study, the neurotrophic and neuroprotective properties of glucose-dependent insulinotropic polypeptide (GIP), an incretin similar to glucagon-like peptide-1 (GLP-1), was investigated after its steady-state subcutaneous administration, focusing on behavior after mTBI in an in vivo animal model. The mTBI rat model was generated by a mild controlled cortical impact (mCCI) and used to evaluate the therapeutic potential of GIP. We used the Morris water maze and novel object recognition tests, which are tasks for spatial and recognition memory, respectively, to identify the putative therapeutic effects of GIP on cognitive function. Further, beam walking and the adhesive removal tests were used to evaluate locomotor activity and somatosensory functions in rats with and without GIP administration after mCCI lesion. Lastly, we used immunohistochemical (IHC) staining and Western blot analyses to evaluate the inflammatory markers, glial fibrillary acidic protein (GFAP), amyloid-β precursor protein (APP), and bone marrow tyrosine kinase gene in chromosome X (BMX) in animals with mTBI. GIP was well tolerated and ameliorated mTBI-induced memory impairments, poor balance, and sensorimotor deficits after initiation in the post-injury period. In addition, GIP mitigated mTBI-induced neuroinflammatory changes on GFAP, APP, and BMX protein levels. These findings suggest GIP has significant benefits in managing mTBI-related symptoms and represents a novel strategy for mTBI treatment. PMID:26972789

  14. Activation of PPARα ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress.

    Science.gov (United States)

    Chan, Stanley M H; Sun, Ruo-Qiong; Zeng, Xiao-Yi; Choong, Zi-Heng; Wang, Hao; Watt, Matthew J; Ye, Ji-Ming

    2013-06-01

    Endoplasmic reticulum (ER) stress is suggested to cause hepatic insulin resistance by increasing de novo lipogenesis (DNL) and directly interfering with insulin signaling through the activation of the c-Jun N-terminal kinase (JNK) and IκB kinase (IKK) pathway. The current study interrogated these two proposed mechanisms in a mouse model of hepatic insulin resistance induced by a high fructose (HFru) diet with the treatment of fenofibrate (FB) 100 mg/kg/day, a peroxisome proliferator-activated receptor α (PPARα) agonist known to reduce lipid accumulation while maintaining elevated DNL in the liver. FB administration completely corrected HFru-induced glucose intolerance, hepatic steatosis, and the impaired hepatic insulin signaling (pAkt and pGSK3β). Of note, both the IRE1/XBP1 and PERK/eIF2α arms of unfolded protein response (UPR) signaling were activated. While retaining the elevated DNL (indicated by the upregulation of SREBP1c, ACC, FAS, and SCD1 and [3H]H2O incorporation into lipids), FB treatment markedly increased fatty acid oxidation (indicated by induction of ACOX1, p-ACC, β-HAD activity, and [14C]palmitate oxidation) and eliminated the accumulation of diacylglycerols (DAGs), which is known to have an impact on insulin signaling. Despite the marked activation of UPR signaling, neither JNK nor IKK appeared to be activated. These findings suggest that lipid accumulation (mainly DAGs), rather than the activation of JNK or IKK, is pivotal for ER stress to cause hepatic insulin resistance. Therefore, by reducing the accumulation of deleterious lipids, activation of PPARα can ameliorate hepatic insulin resistance against increased ER stress.

  15. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease.

    Science.gov (United States)

    Akchurin, Oleh; Sureshbabu, Angara; Doty, Steve B; Zhu, Yuan-Shan; Patino, Edwin; Cunningham-Rundles, Susanna; Choi, Mary E; Boskey, Adele; Rivella, Stefano

    2016-11-01

    Growth delay is common in children with chronic kidney disease (CKD), often associated with poor quality of life. The role of anemia in uremic growth delay is poorly understood. Here we describe an induction of uremic growth retardation by a 0.2% adenine diet in wild-type (WT) and hepcidin gene (Hamp) knockout (KO) mice, compared with their respective littermates fed a regular diet. Experiments were started at weaning (3 wk). After 8 wk, blood was collected and mice were euthanized. Adenine-fed WT mice developed CKD (blood urea nitrogen 82.8 ± 11.6 mg/dl and creatinine 0.57 ± 0.07 mg/dl) and were 2.1 cm shorter compared with WT controls. WT adenine-fed mice were anemic and had low serum iron, elevated Hamp, and elevated IL6 and TNF-α. WT adenine-fed mice had advanced mineral bone disease (serum phosphorus 16.9 ± 3.1 mg/dl and FGF23 204.0 ± 115.0 ng/ml) with loss of cortical and trabecular bone volume seen on microcomputed tomography. Hamp disruption rescued the anemia phenotype resulting in improved growth rate in mice with CKD, thus providing direct experimental evidence of the relationship between Hamp pathway and growth impairment in CKD. Hamp disruption ameliorated CKD-induced growth hormone-insulin-like growth factor 1 axis derangements and growth plate alterations. Disruption of Hamp did not mitigate the development of uremia, inflammation, and mineral and bone disease in this model. Taken together, these results indicate that an adenine diet can be successfully used to study growth in mice with CKD. Hepcidin appears to be related to pathways of growth retardation in CKD suggesting that investigation of hepcidin-lowering therapies in juvenile CKD is warranted.

  16. Melatonin ameliorates oxidative stress, inflammation, proteinuria, and progression of renal damage in rats with renal mass reduction.

    Science.gov (United States)

    Quiroz, Yasmir; Ferrebuz, Atilio; Romero, Freddy; Vaziri, Nosratola D; Rodriguez-Iturbe, Bernardo

    2008-02-01

    The progressive deterioration of renal function and structure resulting from renal mass reduction are mediated by a variety of mechanisms, including oxidative stress and inflammation. Melatonin, the major product of the pineal gland, has potent_antioxidant and anti-inflammatory properties, and its production is impaired in chronic renal failure. We therefore investigated if melatonin treatment would modify the course of chronic renal failure in the remnant kidney model. We studied rats followed 12 wk after renal ablation untreated (Nx group, n = 7) and treated with melatonin administered in the drinking water (10 mg/100 ml) (Nx + MEL group, n = 8). Sham-operated rats (n = 10) were used as controls. Melatonin administration increased 13-15 times the endogenous hormone levels. Rats in the Nx + MEL group had reduced oxidative stress (malondialdehyde levels in plasma and in the remnant kidney as well as nitrotyrosine renal abundance) and renal inflammation (p65 nuclear factor-kappaB-positive renal interstitial cells and infiltration of lymphocytes and macrophages). Collagen, alpha-smooth muscle actin, and transforming growth factor-beta renal abundance were all increased in the remnant kidney of the untreated rats and were reduced significantly by melatonin treatment. Deterioration of renal function (plasma creatinine and proteinuria) and structure (glomerulosclerosis and tubulointerstitial damage) resulting from renal ablation were ameliorated significantly with melatonin treatment. In conclusion, melatonin administration improves the course of chronic renal failure in rats with renal mass reduction. Further studies are necessary to define the potential usefulness of this treatment in other animal models and in patients with chronic renal disease.

  17. Activation of Transcription Factor MEF2D by Bis(3)-cognitin Protects Dopaminergic Neurons and Ameliorates Parkinsonian Motor Defects*

    Science.gov (United States)

    Yao, Lu; Li, Wenming; She, Hua; Dou, Juan; Jia, Leili; He, Yingli; Yang, Qian; Zhu, Jinqiu; Cápiro, Natalie L.; Walker, Douglas I.; Pennell, Kurt D.; Pang, Yuanping; Liu, Yong; Han, Yifan; Mao, Zixu

    2012-01-01

    Parkinson disease (PD) is characterized by the selective demise of dopaminergic (DA) neurons in the substantial nigra pars compacta. Dysregulation of transcriptional factor myocyte enhancer factor 2D (MEF2D) has been implicated in the pathogenic process in in vivo and in vitro models of PD. Here, we identified a small molecule bis(3)-cognitin (B3C) as a potent activator of MEF2D. We showed that B3C attenuated the toxic effects of neurotoxin 1-methyl-4-phenylpyridinium (MPP+) by activating MEF2D via multiple mechanisms. B3C significantly reduced MPP+-induced oxidative stress and potentiated Akt to down-regulate the activity of MEF2 inhibitor glycogen synthase kinase 3β (GSK3β) in a DA neuronal cell line SN4741. Furthermore, B3C effectively rescued MEF2D from MPP+-induced decline in both nucleic and mitochondrial compartments. B3C offered SN4741 cells potent protection against MPP+-induced apoptosis via MEF2D. Interestingly, B3C also protected SN4741 cells from wild type or mutant A53T α-synuclein-induced cytotoxicity. Using the in vivo PD model of C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), we showed that B3C maintained redox homeostasis, promoted Akt function activity, and restored MEF2D level in midbrain neurons. Moreover, B3C greatly prevented the loss of tyrosine hydroxylase signal in substantial nigra pars compacta DA neurons and ameliorated behavioral impairments in mice treated with MPTP. Collectedly, our studies identified B3C as a potent neuroprotective agent whose effectiveness relies on its ability to effectively up-regulate MEF2D in DA neurons against toxic stress in models of PD in vitro and in vivo. PMID:22891246

  18. Activation of transcription factor MEF2D by bis(3)-cognitin protects dopaminergic neurons and ameliorates Parkinsonian motor defects.

    Science.gov (United States)

    Yao, Lu; Li, Wenming; She, Hua; Dou, Juan; Jia, Leili; He, Yingli; Yang, Qian; Zhu, Jinqiu; Cápiro, Natalie L; Walker, Douglas I; Pennell, Kurt D; Pang, Yuanping; Liu, Yong; Han, Yifan; Mao, Zixu

    2012-10-05

    Parkinson disease (PD) is characterized by the selective demise of dopaminergic (DA) neurons in the substantial nigra pars compacta. Dysregulation of transcriptional factor myocyte enhancer factor 2D (MEF2D) has been implicated in the pathogenic process in in vivo and in vitro models of PD. Here, we identified a small molecule bis(3)-cognitin (B3C) as a potent activator of MEF2D. We showed that B3C attenuated the toxic effects of neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) by activating MEF2D via multiple mechanisms. B3C significantly reduced MPP(+)-induced oxidative stress and potentiated Akt to down-regulate the activity of MEF2 inhibitor glycogen synthase kinase 3β (GSK3β) in a DA neuronal cell line SN4741. Furthermore, B3C effectively rescued MEF2D from MPP(+)-induced decline in both nucleic and mitochondrial compartments. B3C offered SN4741 cells potent protection against MPP(+)-induced apoptosis via MEF2D. Interestingly, B3C also protected SN4741 cells from wild type or mutant A53T α-synuclein-induced cytotoxicity. Using the in vivo PD model of C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), we showed that B3C maintained redox homeostasis, promoted Akt function activity, and restored MEF2D level in midbrain neurons. Moreover, B3C greatly prevented the loss of tyrosine hydroxylase signal in substantial nigra pars compacta DA neurons and ameliorated behavioral impairments in mice treated with MPTP. Collectedly, our studies identified B3C as a potent neuroprotective agent whose effectiveness relies on its ability to effectively up-regulate MEF2D in DA neurons against toxic stress in models of PD in vitro and in vivo.

  19. An Overview of Sleep Deprivation and The Ameliorative Effects of Modafinil

    Science.gov (United States)

    2002-11-01

    Nap: Evolution, Chronobiology, and Functions of Polyphasic and Ultrashort Sleep , C. Stampi, Editor. 1992, Birkhauser: Boston. p. 217-241. 3. Babkoff...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013763 TITLE: An Overview of Sleep Deprivation and The Ameliorative...Effects of Modafinil DISTRIBUTION: Approved for public release, distribution unlimited rhis paper is part of the following report: TITLE: Sleep

  20. Clinical Aspects of Pregnancy-induced Amelioration of Rheumatoid Arthritis: PARA-study

    NARCIS (Netherlands)

    Y.A. de Man (Yael)

    2009-01-01

    textabstractIn this PhD thesis, embedded in the PARA (Pregnancy-induced Amelioration of Rheumatoid Arthritis) study, several clinical aspects of the spontaneously occurring pregnancy-induced improvement of rheumatoid arthritis (RA) are addressed. An overview is given of inflammatory rheumatic disea

  1. Synergistic antioxidant action of Phikud Navakot ameliorates hydrogen peroxide-induced stress in human endothelial cells

    Directory of Open Access Journals (Sweden)

    Nonthaneth Nalinratana

    2014-06-01

    Conclusion: Our findings demonstrate that the synergistic antioxidant action of PN ameliorates endothelial stress, which may provide some clues for understanding the traditional use of PN for the treatment of circulatory disorder. Additionally, the selection of a suitable solvent for the extraction of PN herbal combination is essential for maximal efficacy and safety.

  2. Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats

    NARCIS (Netherlands)

    Waanders, Femke; Rienstra, Heleen; Boer, Mark Walther; Zandvoort, Andre; Rozing, Jan; Navis, Gerjan; van Goor, Harry; Hillebrands, Jan-Luuk

    2009-01-01

    Waanders F, Rienstra H, Walther Boer M, Zandvoort A, Rozing J, Navis G, van Goor H, Hillebrands JL. Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats. Am J Physiol Renal Physiol 296: F1072-F1079, 2009. First published February 25, 2009; doi:10.1152/aj

  3. 18 CFR 2.23 - Use of reserved authority in hydropower licenses to ameliorate cumulative impacts.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Use of reserved authority in hydropower licenses to ameliorate cumulative impacts. 2.23 Section 2.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES...

  4. Diagnosis advances in vascular cognitive impairment

    Institute of Scientific and Technical Information of China (English)

    Hua Zhou; Zhong Zhao

    2009-01-01

    Vascular cognitive impairment(VCI) encompasses the entire range of cognitive deficits associated with cerebrovascular disease(CVD), from mild deficits with little or no functional impairment, such as vascular cognitive impairment-no dementia(VCIND), to full-blown vascular dementia(VaD). Accurate diagnosis of vascular cognitive impairment is important but may be difficult. In this review we report advances in VCI in the following areas: etiology, subtypes, neuropsychology, biomarkers, neuroimaging, and diagnostic criteria.

  5. Visual Impairment Due to Lissencephaly

    OpenAIRE

    Marqués-Fernández, V. E.; Sánchez-Tocino, H.; Escudero-Caro, M.T.; Cancho-Candela, R.; García-Zamora, M.

    2016-01-01

    Lissencephaly is a rare disorder due to abnormal neural migration, causing neurological impairment and clinically characterised by mental retardation and epilepsy. Any disturbance of the visual pathway can cause loss of vision. The authors describe a case of a 6-year-old boy referred to the ophthalmologist presenting poor bilateral vision. This child had no other known medical conditions, and neurological examination was completely normal. Only when a magnetic resonance imaging was made that ...

  6. Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats.

    Science.gov (United States)

    Tuzcu, Mehmet; Baydas, Giyasettin

    2006-05-10

    Previous studies indicate that diabetes mellitus might be accompanied by a certain erosion of brain function such as cognitive impairment. The aim of this study was to examine and compare the effects of melatonin and vitamin E on cognitive functions in diabetic rats. Diabetes was induced in male albino rats via intraperitoneal streptozotocin injection. Learning and memory behaviors were investigated using a spatial version of the Morris water maze test. The levels of lipid peroxidation and glutathione were detected in hippocampus and frontal cortex. The diabetic rats developed significant impairment in learning and memory behaviors as indicated by the deficits in water maze tests as compared to control rats. Furthermore, lipid peroxidation levels increased and glutathione concentration decreased in diabetic rats. Treatment with melatonin and vitamin E significantly ameliorated learning and memory performance. Furthermore, both antioxidants reversed lipid peroxidation and glutathione levels toward their control values. These results suggest that oxidative stress may contribute to learning and memory deficits in diabetes and further suggest that antioxidant melatonin and vitamin E can improve cognitive impairment in streptozotocin-induced diabetes.

  7. Cannabidiol prevents motor and cognitive impairments induced by reserpine in rats

    Directory of Open Access Journals (Sweden)

    Fernanda Fiel Peres

    2016-09-01

    Full Text Available Cannabidiol (CBD is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory and neuroprotective effects. In Parkinson’s disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life. Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson’s disease. The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats. Male Wistar rats received four injections of CBD (0.5 or 5 mg/kg or vehicle (days 2-5. On days 3 and 5, animals received also one injection of 1 mg/kg reserpine or vehicle. Locomotor activity, vacuous chewing movements and catalepsy were assessed from day 1 to day 7. On days 8 and 9, we evaluated animals’ performance on the plus-maze discriminative avoidance task, for learning/memory assessment. CBD (0.5 and 5 mg/kg attenuated the increase in catalepsy behavior and in oral movements – but not the decrease in locomotion – induced by reserpine. CBD (0.5 mg/kg also ameliorated the reserpine-induced memory deficit in the discriminative avoidance task. Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson’s disease and tardive dyskinesia.

  8. Cannabidiol Prevents Motor and Cognitive Impairments Induced by Reserpine in Rats

    Science.gov (United States)

    Peres, Fernanda F.; Levin, Raquel; Suiama, Mayra A.; Diana, Mariana C.; Gouvêa, Douglas A.; Almeida, Valéria; Santos, Camila M.; Lungato, Lisandro; Zuardi, Antônio W.; Hallak, Jaime E. C.; Crippa, José A.; Vânia, D’Almeida; Silva, Regina H.; Abílio, Vanessa C.

    2016-01-01

    Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. In Parkinson’s disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life. Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson’s disease. The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats. Male Wistar rats received four injections of CBD (0.5 or 5 mg/kg) or vehicle (days 2–5). On days 3 and 5, animals received also one injection of 1 mg/kg reserpine or vehicle. Locomotor activity, vacuous chewing movements, and catalepsy were assessed from day 1 to day 7. On days 8 and 9, we evaluated animals’ performance on the plus-maze discriminative avoidance task, for learning/memory assessment. CBD (0.5 and 5 mg/kg) attenuated the increase in catalepsy behavior and in oral movements – but not the decrease in locomotion – induced by reserpine. CBD (0.5 mg/kg) also ameliorated the reserpine-induced memory deficit in the discriminative avoidance task. Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson’s disease and tardive dyskinesia. PMID:27733830

  9. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging.

    Science.gov (United States)

    Tang, Duozhuang; Tao, Si; Chen, Zhiyang; Koliesnik, Ievgen Oleksandrovich; Calmes, Philip Gerald; Hoerr, Verena; Han, Bing; Gebert, Nadja; Zörnig, Martin; Löffler, Bettina; Morita, Yohei; Rudolph, Karl Lenhard

    2016-04-01

    Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways.

  10. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice

    Science.gov (United States)

    Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD.

  11. Mandatory notification of impaired doctors.

    Science.gov (United States)

    Beran, R G

    2014-12-01

    Mandatory reporting of impaired doctors is compulsory in Australasia. Australian Health Practitioner Regulation Agency guidelines for notification claim high benchmark though the Royal Australasian College of Surgeons and the Royal Australasian College of Physicians suggest they still obstruct doctors seeking help. Western Australia excludes mandatory reporting of practitioner-patients. This study examines reporting, consequences and international experiences with notification. Depressed doctors avoid diagnosis and treatment, fearing consequences, yet are more prone to marital problems, substance dependence and needing psychotherapy. South African research confirms isolation of impaired doctors and delayed seeking help with definable characteristics of those at risk. New Zealand data acknowledge: errors occur; questionable contribution from mandatory reporting; issues concerning competence assessment; favouring reporting to senior colleagues or self-intervention to compliance with mandatory reporting. UK found an anaesthetist guilty of professional misconduct for not reporting and sanctioned doctors regarding Harold Shipman. Australians are reluctant to report, fearing legalistic intrusion into care. Australian research confirmed definable characteristics for doctors with psychiatric illness or alcohol abuse. Exposure to legal medicine evokes personal disenchantment for doctors involved. Medicine poses barriers for impaired doctors. Spanish and UK doctors do not use general practitioners and may have suboptimal care. US and European doctors self-medicate using samples. US drug-dependent doctors also prescribe for spouses. Junior doctors are losing empathy with the profession. UK doctors favour private care, avoiding public scrutiny. NZ and Brazil created specific services for doctors, which appear effective. Mandatory reporting may be counterproductive requiring reappraisal.

  12. Cardioprotection against ischemia/reperfusion injury by QiShenYiQi Pill® via ameliorate of multiple mitochondrial dysfunctions

    Directory of Open Access Journals (Sweden)

    Chen JR

    2015-06-01

    Full Text Available Jing Rui Chen,1–3 Jing Wei,1–3 Ling Yan Wang,1–3 Yan Zhu,1–3 Lan Li,1–3 Mary Akinyi Olunga,1–3 Xiu Mei Gao,1–3 Guan Wei Fan1–31Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China; 2Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, 3Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of ChinaAim: To investigate the potential cardioprotective effects of QiShenYiQi Pill® (QSYQ on myocardial ischemia/reperfusion (I/R injury through antioxidative stress and mitochondrial protection.Methods and results: Sprague Dawley rats were pretreated with QSYQ or saline for 7 days and subjected to ischemia (30 minutes occlusion of the left anterior descending coronary artery and reperfusion (120 minutes. Cardiac functions were evaluated by echocardiogram and hemodynamics. Myocardial mitochondria were obtained to evaluate changes in mitochondrial structure and function, immediately after 120 minutes reperfusion. Pretreatment with QSYQ protected against I/R-induced myocardial structural injury and improved cardiac hemodynamics, as demonstrated by normalized serum creatine kinase and suppressed oxidative stress. Moreover, the impaired myocardial mitochondrial structure and function decreased level of ATP (accompanied by reduction of ATP5D and increase in the expression of cytochrome C. Myocardial fiber rupture, interstitial edema, and infiltrated leukocytes were all significantly ameliorated by pretreatment with QSYQ.Conclusion: Pretreatment of QSYQ in Sprague Dawley rats improves ventricular function and energy metabolism and reduces oxidative stress via ameliorating multiple mitochondrial dysfunctions during I/R injury.Keywords: QSYQ, ischemia/reperfusion injury, energy metabolism, mitochondria

  13. From waste water treatment to land management: Conversion of aquatic biomass to biochar for soil amelioration and the fortification of crops with essential trace elements.

    Science.gov (United States)

    Roberts, David A; Paul, Nicholas A; Cole, Andrew J; de Nys, Rocky

    2015-07-01

    Macroalgae can be grown in industrial waste water to sequester metals and the resulting biomass used for biotechnological applications. We have previously cultivated the freshwater macroalga Oedogonium at a coal-fired power station to treat a metal-contaminated effluent from that facility. We then produced biochar from this biomass and determined the suitability of both the biomass and the biochar for soil amelioration. The dried biomass of Oedogonium cultivated in the waste water contained several elements for which there are terrestrial biosolids criteria (As, Cd, Cr, Cu, Pb, Ni, Se and Zn) and leached significant amounts of these elements into solution. Here, we demonstrate that these biomass leachates impair the germination and growth of radishes as a model crop. However, the biochar produced from this same biomass leaches negligible amounts of metal into solution and the leachates support high germination and growth of radishes. Biochar produced at 750 °C leaches the least metal and has the highest recalcitrant C content. When this biochar is added to a low-quality soil it improves the retention of nutrients (N, P, Ca, Mg, K and Mo) from fertilizer in the soil and the growth of radishes by 35-40%. Radishes grown in the soils amended with the biochar have equal or lower metal contents than radishes grown in soil without biochar, but much higher concentrations of essential trace elements (Mo) and macro nutrients (P, K, Ca and Mg). The cultivation of macroalgae is an effective waste water bioremediation technology that also produces biomass that can be used as a feedstock for conversion to biochar for soil amelioration.

  14. Berberine ameliorates chronic kidney injury caused by atherosclerotic renovascular disease through the suppression of NFκB signaling pathway in rats.

    Directory of Open Access Journals (Sweden)

    Xin Wan

    Full Text Available BACKGROUND AND OBJECTIVES: Impaired renal function in atherosclerotic renovascular disease (ARD may be the result of crosstalk between atherosclerotic renovascular stenosis and amplified oxidative stress, inflammation and fibrosis. Berberine (BBR regulates cholesterol metabolism and exerts antioxidant effects. Accordingly, we hypothesized that BBR treatment may ameliorate ARD-induced kidney injury through its cholesterol-lowering effect and also suppression of the pathways involved in oxidative stress, inflammation and NFκB activation. METHODS: Male rats were subjected to unilateral renal artery stenosis with silver-irritant coil, and then fed with 12-week hypercholesterolemic diet. Rats with renal artery stenosis were randomly assigned to two groups (n = 6 each - ARD, or ARD+BBR - according to diet alone or in combination with BBR. Similarly, age-matched rats underwent sham operation and were also fed with hypercholesterolemic diet alone or in combination with BBR as two corresponding controls. Single-kidney hemodynamic metrics were measured in vivo with Doppler ultrasound to determine renal artery flow. The metrics reflecting hyperlipidemia, oxidative stress, renal structure and function, inflammation and NFκB activation were measured, respectively. RESULTS: Compared with control rats, ARD rats had a significant increase in urinary albumin, plasma cholesterol, LDL and thiobarbituric acid reactive substances (TBARS and a significant decrease in SOD activity. When exposed to 12-week BBR, ARD rats had significantly lower levels in blood pressure, LDL, urinary albumin, and TBARS. In addition, there were significantly lower expression levels of iNOS and TGF-β in the ARD+BBR group than in the ARD group, with attenuated NFκB-DNA binding activity and down-regulated protein levels of subunits p65 and p50 as well as IKKβ. CONCLUSIONS: We conclude that BBR can improve hypercholesterolemia and redox status in the kidney, eventually ameliorating

  15. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  16. Inferential Functioning in Visually Impaired Children

    Science.gov (United States)

    Puche-Navarro, Rebeca; Millan, Rafael

    2007-01-01

    The current study explores the inferential abilities of visually impaired children in a task presented in two formats, manipulative and verbal. The results showed that in the group of visually impaired children, just as with children with normal sight, there was a wide range of inference types. It was found that the visually impaired children…

  17. Communication Skills and Learning in Impaired Individuals

    Science.gov (United States)

    Eliöz, Murat

    2016-01-01

    The purpose of this study is to compare the communication skills of individuals with different disabilities with athletes and sedentary people and to examine their learning abilities which influence the development of communication. A total of 159 male subjects 31 sedentary, 30 visually impaired, 27 hearing impaired, 40 physically impaired and 31…

  18. Familial Aggregation in Specific Language Impairment.

    Science.gov (United States)

    Tallal, Paula; Hirsch, Linda S.; Realpe-Bonilla, Teresa; Miller, Steve; Brzustowicz, Linda M.; Bartlett, Christopher; Flax, Judy F.

    2001-01-01

    A case-control family study design examined the current language-related abilities of all biological, primary relatives of probands (N=22) with specific language impairment (SLI) and of matched controls. Impairment rates for family members of SLI probands was significantly higher than for controls. Also, impairment rates estimated from a family…

  19. Impairment of TrkB-PSD-95 signaling in Angelman syndrome.

    Directory of Open Access Journals (Sweden)

    Cong Cao

    Full Text Available Angelman syndrome (AS is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1. Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1 with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk pathway intact. A bridged cyclic peptide (CN2097, shown by nuclear magnetic resonance (NMR studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95

  20. Voluntary exercise counteracts Aβ25-35-induced memory impairment in mice.

    Science.gov (United States)

    Wang, Qin; Xu, Zhiqiang; Tang, Jinrong; Sun, Jianguo; Gao, Junying; Wu, Ting; Xiao, Ming

    2013-11-01

    Exercise has been shown to enhance hippocampus-related cognition and slow the progression of Alzheimer's disease (AD). However, whether voluntary exercise directly decreases the neurotoxicity of amyloid peptide (Aβ) needs to be determined. In the present study, two-month old male C57bl/6 mice were intracerebroventricularly injected with Aβ25-35, and then allowed for voluntary exercise for 12 days. Y-maze test revealed that voluntary exercise mitigated spatial memory impairment induced by Aβ25-35. Consistently, Aβ25-35 treated mice with exercise showed reduced neuronal degeneration and synaptic protein loss in the hippocampus compared with sedentary controls. Moreover, voluntary exercise significantly ameliorated oxidative stress markers and increased vessel branches in the hippocampus of Aβ25-35 treated mice. Our results suggest that voluntary exercise counteracts the neurotoxicity of Aβ by reducing oxidative stress and increasing angiogenesis, which may underlie the beneficial effect of exercise on AD.

  1. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation.

    Science.gov (United States)

    Pearce, Laura R; Atanassova, Neli; Banton, Matthew C; Bottomley, Bill; van der Klaauw, Agatha A; Revelli, Jean-Pierre; Hendricks, Audrey; Keogh, Julia M; Henning, Elana; Doree, Deon; Jeter-Jones, Sabrina; Garg, Sumedha; Bochukova, Elena G; Bounds, Rebecca; Ashford, Sofie; Gayton, Emma; Hindmarsh, Peter C; Shield, Julian P H; Crowne, Elizabeth; Barford, David; Wareham, Nick J; O'Rahilly, Stephen; Murphy, Michael P; Powell, David R; Barroso, Ines; Farooqi, I Sadaf

    2013-11-07

    Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEKERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes.

  2. Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop

    Institute of Scientific and Technical Information of China (English)

    Ling-ling Shen; Li-juan Yang; Ying Xu; Jun Dong; Ming-liang Jiang; Si-si Liu; Min-chun Cai; Zhong-qiu Hong; Li-qing Lin; Yan-yan Xing; Gui-lin Chen; Rui Pan

    2015-01-01

    Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extra-cellular microelectrode recording techniques, this study conifrmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca2+concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gp120 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.

  3. Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop

    Directory of Open Access Journals (Sweden)

    Ling-ling Shen

    2015-01-01

    Full Text Available Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techniques, this study confirmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca 2+ concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gp120 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.

  4. Diabetes mellitus and cognitive impairments

    Science.gov (United States)

    Saedi, Elham; Gheini, Mohammad Reza; Faiz, Firoozeh; Arami, Mohammad Ali

    2016-01-01

    There is strong evidence that diabetes mellitus increases the risk of cognitive impairment and dementia. Insulin signaling dysregulation and small vessel disease in the base of diabetes may be important contributing factors in Alzheimer’s disease and vascular dementia pathogenesis, respectively. Optimal glycemic control in type 1 diabetes and identification of diabetic risk factors and prophylactic approach in type 2 diabetes are very important in the prevention of cognitive complications. In addition, hypoglycemic attacks in children and elderly should be avoided. Anti-diabetic medications especially Insulin may have a role in the management of cognitive dysfunction and dementia but further investigation is needed to validate these findings. PMID:27660698

  5. Cognitive Impairment in Heart Failure

    Directory of Open Access Journals (Sweden)

    Efthimios Dardiotis

    2012-01-01

    Full Text Available Cognitive impairment (CI is increasingly recognized as a common adverse consequence of heart failure (HF. Although the exact mechanisms remain unclear, microembolism, chronic or intermittent cerebral hypoperfusion, and/or impaired cerebral vessel reactivity that lead to cerebral hypoxia and ischemic brain damage seem to underlie the development of CI in HF. Cognitive decline in HF is characterized by deficits in one or more cognition domains, including attention, memory, executive function, and psychomotor speed. These deficits may affect patients’ decision-making capacity and interfere with their ability to comply with treatment requirements, recognize and self-manage disease worsening symptoms. CI may have fluctuations in severity over time, improve with effective HF treatment or progress to dementia. CI is independently associated with disability, mortality, and decreased quality of life of HF patients. It is essential therefore for health professionals in their routine evaluations of HF patients to become familiar with assessment of cognitive performance using standardized screening instruments. Future studies should focus on elucidating the mechanisms that underlie CI in HF and establishing preventive strategies and treatment approaches.

  6. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  7. Mental fatigue impairs emotion regulation.

    Science.gov (United States)

    Grillon, Christian; Quispe-Escudero, David; Mathur, Ambika; Ernst, Monique

    2015-06-01

    Because healthy physical and mental functioning depends on the ability to regulate emotions, it is important to identify moderators of such regulations. Whether mental fatigue, subsequent to the depletion of cognitive resources, impairs explicit emotion regulation to negative stimuli is currently unknown. This study explored this possibility. In a within-subject design over 2 separate sessions, healthy individuals performed easy (control session) or difficult (depletion session) cognitive tasks. Subsequently, they were presented with neutral and negative pictures, with instructions to either maintain or regulate (i.e., reduce) the emotions evoked by the pictures. Emotional reactivity was probed with the startle reflex. The negative pictures evoked a similar aversive state in the control and depletion sessions as measured by startle potentiation. However, subjects were able to down-regulate their aversive state only in the control session, not in the depletion session. These results indicate that mental fatigue following performance of cognitive tasks impairs emotion regulation without affecting emotional reactivity. These findings suggest that mental fatigue needs to be incorporated into models of emotion regulation.

  8. Fenofibrate Reverses Palmitate Induced Impairment in Glucose Uptake in Skeletal Muscle Cells by Preventing Cytosolic Ceramide Accumulation

    Directory of Open Access Journals (Sweden)

    Sudarshan Bhattacharjee

    2015-10-01

    Full Text Available Backgrounds/Aims: The lipid induced insulin resistance is a major pathophysiologic mechanism underlying glucose intolerance of varying severity. PPARα-agonists are proven as effective hypolipidemic agents. The aim of this study was to see if impaired glucose uptake in palmitate treated myotubes is reversed by fenofibrate. Methods: Palmitate-treated myotubes were used as a model for insulin resistance, impaired glucose uptake, fatty acid oxidation and ceramide synthesis. mRNA levels of CPT1 and CPT2 were determined by PCR array and Q-PCR. Results: The incubation of myotubes with 750 uM palmitate not only reduced glucose uptake but also impaired fatty acid oxidation and cytosolic ceramide accumulation. Palmitate upregulated CPT1b expression in L6 myotubes, while CPT2 expression level remained unchanged. The altered stoichiometric ratio between the two CPT isoforms led to reduced fatty acid oxidation (FAO, ceramide accumulation and impaired glucose uptake, whereas administration of 200 µM fenofibrate signifcantly reversed the above abnormalities by increasing CPT2 mRNA levels and restoring CPT1b to CPT2 ratio. Conclusion: Palmitate-induced alteration in the stoichiometric ratio of mitochondrial CPT isoforms leads to incomplete FAO and enhanced cytosolic ceramide accumulation that lead to insulin resistance. Fenofibrate ameliorated insulin resistance by restoring the altered stoichiometry by upregulating CPT2 and preventing, cytoplasmic ceramide accumulation.

  9. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia.

    Science.gov (United States)

    Saggu, Raman; Schumacher, Toni; Gerich, Florian; Rakers, Cordula; Tai, Khalid; Delekate, Andrea; Petzold, Gabor C

    2016-08-04

    Vascular cognitive impairment is the second most common form of dementia. The pathogenic pathways leading to vascular cognitive impairment remain unclear but clinical and experimental data have shown that chronic reactive astrogliosis occurs within white matter lesions, indicating that a sustained pro-inflammatory environment affecting the white matter may contribute towards disease progression. To model vascular cognitive impairment, we induced prolonged mild cerebral hypoperfusion in mice by bilateral common carotid artery stenosis. This chronic hypoperfusion resulted in reactive gliosis of astrocytes and microglia within white matter tracts, demyelination and axonal degeneration, consecutive spatial memory deficits, and loss of white matter integrity, as measured by ultra high-field magnetic resonance diffusion tensor imaging. White matter astrogliosis was accompanied by activation of the pro-inflammatory transcription factor nuclear factor (NF)-kB in reactive astrocytes. Using mice expressing a dominant negative inhibitor of NF-kB under the control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter (GFAP-IkBα-dn), we found that transgenic inhibition of astroglial NF-kB signaling ameliorated gliosis and axonal loss, maintained white matter structural integrity, and preserved memory function. Collectively, our results imply that pro-inflammatory changes in white matter astrocytes may represent an important detrimental component in the pathogenesis of vascular cognitive impairment, and that targeting these pathways may lead to novel therapeutic strategies.

  10. An eye opening experience: A critical turning point in the life of a young woman with a severe visual impairment

    Directory of Open Access Journals (Sweden)

    Nikki Wedgwood

    2013-08-01

    Full Text Available Research on social inclusion often focuses on social exclusion. However, in order to gain greater insights into ways to facilitate social change, it is equally important to research the social inclusion of those normally excluded. Indeed, while one important purpose of studying disabilism is to catalogue and critique all its forms, another critical purpose is to better understand how disabilism can be resisted and/or ameliorated at individual and/or societal levels. Thus, it is equally important to understand when, why and how disabilism does not negatively impact the lives of people with impairments as well as when it does. This paper presents a single case study of Lynette, a young woman with a severe visual impairment who has a life-changing experience in an inclusive environment. In particular, it explores the impact of exclusive and inclusive contexts on Lynette's identity development as she transitions to adulthood. By juxtaposing Lynette's experiences of exclusion with those of inclusion, it highlights contexts in which there is a critical mass of people with impairments living alongside able-bodied people as a possible antecedent/impetus for greater social inclusion of people with impairments in society more generally.

  11. Hypomethylating agent 5-aza-2'-deoxycytidine (DAC) ameliorates multiple sclerosis in mouse models.

    Science.gov (United States)

    Mangano, Katia; Fagone, Paolo; Bendtzen, Klaus; Meroni, Pier Luigi; Quattrocchi, Cinzia; Mammana, Santa; Di Rosa, Michelino; Malaguarnera, Lucia; Coco, Marinella; Magro, Gaetano; Di Marco, Roberto; Nicoletti, Ferdinando

    2014-12-01

    Increasing evidence supports the role of epigenetics in the development of autoimmune disorders and the possibility of using epigenetic modifying drugs in the context of MS has not yet been investigated. We have explored the effect of the hypomethylating agent 5-aza-2'-deoxycytidine (DAC) in two murine models of experimental allergic encephalomyelitis (EAE). DAC treatment was associated with a significant amelioration of the clinical and histological hallmarks of EAE in both models. These effects were observed both in prophylactic and therapeutic regimens. The milder course of the disease was associated with a reduction in the number of spinal cord infiltrating lymphocytes and amelioration of the histopathological signs associated with EAE. In addition, increased transcript levels of anti-inflammatory cytokines and decreased mRNA expression of pro-inflammatory mediators were also observed. Finally, DAC treatment increased the percentage of circulating regulatory T cells by inducing Foxp3 expression via demethylation of a CpG island in Foxp3.

  12. Sesamin ameliorates oxidative liver injury induced by carbon tetrachloride in rat.

    Science.gov (United States)

    Lv, Dan; Zhu, Chang-Qing; Liu, Li

    2015-01-01

    Sesamin is naturally occurring lignan from sesame oil with putative antioxidant property. The present study was designed to investigate the protective role of sesamin against carbon tetrachloride induced oxidative liver injury. Male Wistar albino rats (180-200 g) were divided in to 5 groups (n=6). Hepatotoxicity was induced by the administration of CCl4 (0.1 ml/100 g bw., 50% v/v with olive oil) intraperitoneally. Sesamin was administered in two different dose (5 and 10 ml/kg bw) to evaluate the hepatoprotective activity. Sesamin significantly reduced the elevated serum liver marker enzymes (Psesamin treated groups shows the amelioration of oxidative stress induced by CCl4. Histopathological report also supported the hepatoprotection offered by sesamin. Sesamin effects in both the dose were in comparable to reference standard drug silymarin. From these above findings it has been concluded that sesamin ameliorate the oxidative liver injury in terms of reduction of lipid peroxidation and enhancement of liver antioxidant enzymes.

  13. Ameliorate Threshold Distributed Energy Efficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    MOSTAFA BAGHOURI

    2014-06-01

    Full Text Available Ameliorating the lifetime in heterogeneous wireless sensor network is an important task because the sensor nodes are limited in the resource energy. The best way to improve a WSN lifetime is the clustering based algorithms in which each cluster is managed by a leader called Cluster Head. Each other node must communicate with this CH to send the data sensing. The nearest base station nodes must also send their data to their leaders, this causes a loss of energy. In this paper, we propose a new approach to ameliorate a threshold distributed energy efficient clustering protocol for heterogeneous wireless sensor networks by excluding closest nodes to the base station in the clustering process. We show by simulation in MATLAB that the proposed approach increases obviously the number of the received packet messages and prolongs the lifetime of the network compared to TDEEC protocol.

  14. Selecting an economically justifiable method of calculating ameliorant application rates for solonetzes with different sodium contents

    Science.gov (United States)

    Voropaeva, Z. I.

    2010-01-01

    The comparative assessment of methods for the calculation of the gypsum application rates based on the exchangeable sodium (Gedroits, Schollenberger), the estimated sodium (Schoonover), and the soil’s requirement for calcium (the version of the Omsk State Agrarian University) showed that, for the chemical amelioration of solonetzes with different contents of exchangeable sodium in Western Siberia, it is economically and ecologically advisable to calculate the ameliorant application rates from the estimated sodium. It was experimentally shown that the content of displaced magnesium used by Schoonover is a more efficient unified criterion than the value of the calcium adsorption by zonal soils. For improving the method’s accuracy, it was proposed to change the conditions of the soil preparation by regulating the concentration of the displacing solution, the interaction time, and the temperature.

  15. Cancer ameliorating potential of Phyllanthus amarus: In vivo and in vitro studies against Aflatoxin B1 toxicity

    Directory of Open Access Journals (Sweden)

    Md. Sultan Ahmad

    2015-10-01

    Conclusion: Ameliorating potential of P. amarus was dose and duration dependant. These extracts significantly reduced the mutagenicity and genotoxicity that were produced due to AFB1 treatment both in vitro and in vivo.

  16. Ameliorative effect of antioxidants (vitamins C and E against abamectin toxicity in liver, kidney and testis of male albino rats

    Directory of Open Access Journals (Sweden)

    B. Wilson Magdy

    2016-10-01

    In conclusion, it appears that vitamins C and E, or in combination (as antioxidants ameliorate the hepato-renal and testicular toxicity of abamectin, but are not completely protective, especially in liver tissue.

  17. Lagenaria siceraria ameliorates atheromatous lesions by modulating HMG–CoA reductase and lipoprotein lipase enzymes activity in hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Mithun Singh Rajput

    2014-01-01

    Conclusion: It can be concluded that ethanolic extract of fruits of L. siceraria contains active components which ameliorates the atheromatous lesions in rat aorta and lowers the risk of atherosclerosis in hypercholesterolemic rats.

  18. Sodium fusidate (fusidin) ameliorates the course of monophasic experimental allergic encephalomyelitis in the Lewis rat

    DEFF Research Database (Denmark)

    Di Marco, R; Puglisi, G; Papaccio, G;

    2001-01-01

    We have evaluated the effect of the immunosuppressant sodium fusidate (fusidin) on the course of acute monophasic experimental encephalomyelitis (EAE) in male Lewis rats. Prophylactic treatment with fusidin, 80 or 120 mg/kg bd wt., markedly ameliorated the course of the disease in rats immunized ....... These data provide further evidence for the anti-inflammatory effect of fusidin and suggest that this drug may be valuable for the treatment of human multiple sclerosis....

  19. Effect of sodium fluoride in maternal and offspring rats and its amelioration

    Directory of Open Access Journals (Sweden)

    Sneha Panchal

    2014-03-01

    Full Text Available High fluoride content is known to cause dental and skeletal abnormalities. In addition, present review indicates that sodium fluoride consumption caused increased number of r=esorptions and dead foetuses. Various skeletal anomalies such as wavy ribs, presence of 14th ribs, lacking 6th sternebrae and incompete ossification of skull occur. All these changes could be due to oxidative stress caused by fluoride consumption. Fluoride-induced changes could be successfully ameliorated by cotreatment with vitamins and calcium.

  20. Vulnerability of Gastric Mucosa in Diabetic Rats, Its Pathogenesis and Amelioration by Cuminum cyminum

    OpenAIRE

    2012-01-01

    Various studies have indicated that peptic ulcers occurring during the course of diabetic state are more severe and often associated with complications such as gastrointestinal bleeding. This study is the first attempt to understand the pathogenesis of gastric ulcers occurring during the diabetic state considering alternate biochemical pathways using suitable markers and its amelioration by Cuminum cyminum. In this study, diabetic rats showed a progressive increase in the stomach advanced gly...

  1. Synergism of atenolol and nitrendipine on hemody-namic amelioration and organ protection in hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    He-huiXIE; Chao-yuMIAO; Yuan-yingJIANG; Ding-fengSU

    2004-01-01

    AIM: This study was designed to investigate the possible synergism of atenolol and nitrendipine on blood pressure (BP) and blood pressure variability (BPV) reductions, baroreflex sensitivity (BRS) amelioration, and organ protection in hypertensive rats. METHODS:The dose is 20 mg/kg for atenolol, 10 mg/kg for nitrendipine and the combination of these two drugs. In acute study, a single dose was given via a catheter previously inserted

  2. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model

    OpenAIRE

    Chun-Yan Yeung; Wai-Tao Chan; Chun-Bin Jiang; Mei-Lien Cheng; Chia-Yuan Liu; Szu-Wen Chang; Jen-Shiu Chiang Chiau; Hung-Chang Lee

    2015-01-01

    Background and Aims Intestinal mucositis is a frequently encountered side effect in oncology patients undergoing chemotherapy. No well-established or up to date therapeutic strategies are available. To study a novel way to alleviate mucositis, we investigate the effects and safety of probiotic supplementation in ameliorating 5-FU-induced intestinal mucositis in a mouse model. Methods Seventy-two mice were injected saline or 5-Fluorouracil (5-FU) intraperitoneally daily. Mice were either orall...

  3. Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats

    OpenAIRE

    Hua-Ying Fan; Ming-Yan Yang; Dong Qi; Zuo-Kai Zhang; Lin Zhu; Xiu-Xin Shang-Guan; Ke Liu; Hui Xu; Xin Che

    2015-01-01

    Nephrotic syndrome (NS) is still a therapeutic challenge. To date there is no ideal treatment. Evidence suggest that multidrug therapy has more effect than monotherapy in amelioration of renal injury. Salvianolic acid A (SAA) is the major active component of Salviae Miltiorrhizae Bunge. Previous studies have demonstrated that SAA is a multi-target agent and has various pharmacological activities. The pleiotropic properties of SAA predict its potential in the treatment of NS. The study investi...

  4. Effect of sodium fluoride in maternal and offspring rats and its amelioration

    Institute of Scientific and Technical Information of China (English)

    SnehaPanchal; RamtejJ. Verma

    2014-01-01

    High fluoride content is known to cause dental and skeletal abnormalities. In addition, present review indicates that sodium fluoride consumption caused increased number of r=esorptions and dead foetuses. Various skeletal anomalies such as wavy ribs, presence of 14th ribs, lacking 6th sternebrae and incompete ossification of skull occur. All these changes could be due to oxidative stress caused by fluoride consumption. Fluoride-induced changes could be successfully ameliorated by cotreatment with vitamins and calcium.

  5. Use of vegetation to ameliorate building microclimates: an assessment of energy-conservation potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, B.A.; Taylor, F.G.; Wendt, R.L.

    1982-04-01

    The space-conditioning energy conservation potentials of landscapes designed to ameliorate building microclimates are evaluated. The physical bases for vegetative modifications of climate are discussed, and results of past study of the effects of vegetation on space-conditioning energy consumption in buildings are reviewed. The state-of-the-art of energy-conserving landscape designs is assessed and recommendations are presented for further research.

  6. Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice.

    Science.gov (United States)

    Calfa, Gaston; Li, Wei; Rutherford, John M; Pozzo-Miller, Lucas

    2015-02-01

    Rett syndrome (RTT) is a neurodevelopment disorder associated with intellectual disabilities and caused by loss-of-function mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding Protein-2 (MeCP2). Neuronal dysfunction and changes in cortical excitability occur in RTT individuals and Mecp2-deficient mice, including hippocampal network hyperactivity and higher frequency of spontaneous multiunit spikes in the CA3 cell body layer. Here, we describe impaired synaptic inhibition and an excitation/inhibition (E/I) imbalance in area CA3 of acute slices from symptomatic Mecp2 knockout male mice (referred to as Mecp2(-/y) ). The amplitude of TTX-resistant miniature inhibitory postsynaptic currents (mIPSC) was smaller in CA3 pyramidal neurons of Mecp2(-/y) slices than in wildtype controls, while the amplitude of miniature excitatory postsynaptic currents (mEPSC) was significantly larger in Mecp2(-/y) neurons. Consistently, quantitative confocal immunohistochemistry revealed significantly lower intensity of the alpha-1 subunit of GABAA Rs in the CA3 cell body layer of Mecp2(-/y) mice, while GluA1 puncta intensities were significantly higher in the CA3 dendritic layers of Mecp2(-/y) mice. In addition, the input/output (I/O) relationship of evoked IPSCs had a shallower slope in CA3 pyramidal neurons Mecp2(-/y) neurons. Consistent with the absence of neuronal degeneration in RTT and MeCP2-based mouse models, the density of parvalbumin- and somatostatin-expressing interneurons in area CA3 was not affected in Mecp2(-/y) mice. Furthermore, the intrinsic membrane properties of several interneuron subtypes in area CA3 were not affected by Mecp2 loss. However, mEPSCs are smaller and less frequent in CA3 fast-spiking basket cells of Mecp2(-/y) mice, suggesting an impaired glutamatergic drive in this interneuron population. These results demonstrate that a loss-of-function mutation in Mecp2 causes impaired E/I balance onto CA3 pyramidal neurons, leading to a

  7. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye, E-mail: dryetian@hotmail.com

    2014-01-10

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  8. Impaired mitochondrial trafficking in Huntington's disease

    OpenAIRE

    Li, Xiao-Jiang; Orr, Adam L.; Li, Shihua

    2009-01-01

    Abstract Impaired mitochondrial function has been well documented in Huntington?s disease. Mutant huntingtin is found to affect mitochondria via various mechanisms including the dysregulation of gene transcription and impairment of mitochondrial function or trafficking. The lengthy and highly branched neuronal processes constitute complex neural networks in which there is a large demand for mitochondria-generated energy. Thus, the impaired mitochondria trafficking in neuronal cells...

  9. Mucosal Administration of Collagen V Ameliorates the Atherosclerotic Plaque Burden by Inducing Interleukin 35-dependent Tolerance.

    Science.gov (United States)

    Park, Arick C; Huang, Guorui; Jankowska-Gan, Ewa; Massoudi, Dawiyat; Kernien, John F; Vignali, Dario A; Sullivan, Jeremy A; Wilkes, David S; Burlingham, William J; Greenspan, Daniel S

    2016-02-12

    We have shown previously that collagen V (col(V)) autoimmunity is a consistent feature of atherosclerosis in human coronary artery disease and in the Apoe(-/-) mouse model. We have also shown sensitization of Apoe(-/-) mice with col(V) to markedly increase the atherosclerotic burden, providing evidence of a causative role for col(V) autoimmunity in atherosclerotic pathogenesis. Here we sought to determine whether induction of immune tolerance to col(V) might ameliorate atherosclerosis, providing further evidence for a causal role for col(V) autoimmunity in atherogenesis and providing insights into the potential for immunomodulatory therapeutic interventions. Mucosal inoculation successfully induced immune tolerance to col(V) with an accompanying reduction in plaque burden in Ldlr(-/-) mice on a high-cholesterol diet. The results therefore demonstrate that inoculation with col(V) can successfully ameliorate the atherosclerotic burden, suggesting novel approaches for therapeutic interventions. Surprisingly, tolerance and reduced atherosclerotic burden were both dependent on the recently described IL-35 and not on IL-10, the immunosuppressive cytokine usually studied in the context of induced tolerance and amelioration of atherosclerotic symptoms. In addition to the above, using recombinant protein fragments, we were able to localize two epitopes of the α1(V) chain involved in col(V) autoimmunity in atherosclerotic Ldlr(-/-) mice, suggesting future courses of experimentation for the characterization of such epitopes.

  10. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    Science.gov (United States)

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness.

  11. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    Science.gov (United States)

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2016-01-01

    T-cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathologic immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite that multiple pharmacologic properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4(+) T-cell subsets by regulating the expression and production of T-cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited TCR-mediated Akt and NF-κB signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as 2,4,6-trinitrochlorobenzene-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4(+) T cell differentiation and overall immune responses.

  12. The Ameliorative Effects of L-2-Oxothiazolidine-4-Carboxylate on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Jun Ho Shin

    2013-03-01

    Full Text Available The aim of the study was to investigate the ameliorative effects and the mechanism of action of L-2-oxothiazolidine-4-carboxylate (OTC on acetaminophen (APAP-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH production and glutathione peroxidase (GSH-px activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.

  13. β-glycosphingolipids ameliorated non-alcoholic steatohepatitis in the Psammomys obesus model

    Directory of Open Access Journals (Sweden)

    Zigmond E

    2014-10-01

    Full Text Available Ehud Zigmond,1,* Oshrat Tayer-Shifman,1,* Gadi Lalazar,1 Ami Ben Ya'acov,1 Sarah Weksler-Zangen,2 David Shasha,1 Miriam Sklair-Levy,3 Lidya Zolotarov,1 Zvi Shalev,1 Rony Kalman,2 Ehud Ziv,2 Itamar Raz,2 Yaron Ilan1 1Liver Unit, 2Diabetes Unit, 3Department of Radiology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel *These authors contributed equally to this workAbstract: Liver steatosis is a common characteristic of obesity and type 2 diabetes, and fatty liver disease is increasingly recognized as a major health burden. Accumulating evidence suggests that β-glycosphingolipids play an important role in insulin sensitivity and thus could affect hepatic steatosis. To determine the effect associated with β-glycosphingolipid-mediated amelioration of liver injury, seven groups of Psammomys obesus on a high-energy diet were studied. Animals were treated with daily injections of β-glucosylceramide, β-lactosylceramide, or a combination of both. β-glycosphingolipids ameliorated the hepatic injury manifested by decreased liver enzymes, liver weight, and hepatic fat, and improved liver histology. Administration of both β-glucosylceramide and β-lactosylceramide also decreased interferon (IFN-γ serum levels. These effects were associated with improved serum cholesterol and triglyceride levels. These data suggest that β-glycosphingolipids ameliorate liver injury in an animal model of nonalcoholic steatohepatitis.Keywords: NAFLD, glycolipids, STAT, NASH, insulin resistance, diabetes

  14. Ameliorative effect of vitamin E on aflatoxin-induced lipid peroxidation in the testis of mice

    Institute of Scientific and Technical Information of China (English)

    R.J. Verma; Anita Nair

    2001-01-01

    Aim: To evaluate the ameliorative effect of vitamin E on aflatoxin-induced lipid peroxidation in the testis. Methods: Adult male albino mice were orally administered 25 or 50 μg of aflatoxin in 0.2 mL olive oil per d for 45 d.The testis was isolated, blotted free of blood and processed for biochemical analysis. Results: There was a dose-dependent significantlyhigher lipid peroxidation in the testis of aflatoxin treated mice than in the controls. The levels of non-enzymatic antioxidants such as glutathione, total and reduced ascorbic acid, as well as the activities of enzymatic antioxidants, such as superoxide dismutase, glutathione peroxidase and catalase were significantly lower in the testis of aflatoxin treated mice. Vitamin E (2 mg/d per animal; orally) pretreatment significantly ameliorates the aflatoxin-induced lipid peroxidation which could be due to higher enzymatic and non-enzymatic antioxidants in the testis of mice as compared with those given aflatoxin alone. Conclusion: Vitamin E pretreatment significantly ameliorates aflatoxininduced lipid peroxidation in the testis of mice.

  15. Can Speed of Processing Training Ameliorate Depressive Symptomatology in Adults with HIV?

    OpenAIRE

    Vance, David E.; Humphrey, Shameka C.; Nicholson, William C.; Jablonski-Jaudon, Rita

    2014-01-01

    Despite advances in combination Antiretroviral Therapy (cART), adults with HIV continue to experience cognitive impairments. In addition to these cognitive impairments, research suggests as many as 40% and 20% of adults with HIV are diagnosed with depression and anxiety, respectively. The impact of these cognitive and emotional deficits increases caregiver burden, impairs occupational and driving performance, contributes to poor emotional processing, increases cognitive complaints, and reduce...

  16. Management of impaired fracture healing: Historical aspects

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2005-01-01

    Full Text Available Introduction Establishing continuity of long bones in cases of impaired bone healing and pseudo-arthrosis is one of the most complex problems in orthopedics. Impaired bone healing The problem of impaired fracture healing is not new. As in other areas of human life, the roots of modern treatment of impaired bone healing lie in ancient medicine. A relatively high percentage of impaired bone healing, as well as unsatisfactory results of standard therapies of impaired bone healing and pseudoarthrosis demonstrate the actuality of this problem. This paper represents an attempt to pay respect to some of those who have dedicated their work to this problem in orthopedic surgery, and it is a historical review on impaired bone fracture healing. At the same time it should be an additional stimulus and challenge for orthopedic surgeons to further study impaired bone fracture healing, improve the existing and find new methods for their adequate treatment. Conclusion The authors are certain that the number of researchers throughout the world who have contributed to treatment modalities of impaired bone healing, is much higher, but not all are mentioned in this paper. However, it does not lessen their contributions to orthopedics.

  17. The Differences Between Revaluation and Assets Impairment

    Directory of Open Access Journals (Sweden)

    BOBIȚAN Nicolae

    2013-05-01

    Full Text Available Impairment and revaluation are terms closely related to one another, with subtle differences. Revaluation and impairment both require the company to evaluate the assets for their fair value, and then take appropriate action in updating the accounting books. The major difference between the two is that a revaluation can be made upwards (to increase the value of the asset to market value or downwards (to ecrease the value. An impairment, on the other hand, only refers to one of the two, a fall in the market value which is then written down. The purpose of the paper is to establish what are the differences between revaluation and impairment of assets.

  18. Cognitive impairment and mortality among nonagenarians

    DEFF Research Database (Denmark)

    Andersen, Kjeld; Nybo, Hanne; Gaist, David;

    2002-01-01

    the impact of cognitive impairment on mortality over a 2-year period. No cognitive impairment was defined as a score of 24-30 points on the Mini Mental State Examination, mild cognitive impairment was defined as a score of 18-23 points, and severe impairment was defined as a score of 0-17 points. Cox...... regression analysis was applied to adjust for a number of known and suspected factors known or suspected of being associated with cognition and mortality (e.g. sociodemographic factors, sex, smoking, alcohol consumption, depressive symptoms, and physical abilities), and yielded hazard ratios (95% confidence...

  19. Language impairment in Huntington's disease.

    Science.gov (United States)

    Azambuja, Mariana Jardim; Radanovic, Marcia; Haddad, Mônica Santoro; Adda, Carla Cristina; Barbosa, Egberto Reis; Mansur, Letícia Lessa

    2012-06-01

    Language alterations in Huntington's disease (HD) are reported, but their nature and correlation with other cognitive impairments are still under investigation. This study aimed to characterize the language disturbances in HD and to correlate them to motor and cognitive aspects of the disease. We studied 23 HD patients and 23 controls, matched for age and schooling, using the Boston Diagnostic Aphasia Examination, Boston Naming Test, the Token Test, Animal fluency, Action fluency, FAS-COWA, the Symbol Digit Modalities Test, the Stroop Test and the Hooper Visual Organization Test (HVOT). HD patients performed poorer in verbal fluency (poral comprehension (preading comprehension (p=0.034) and narrative writing (p<0.0001). There was a moderate correlation between the Expressive Component and Language Competency Indexes and the HVOT (r=0.519, p=0.011 and r=0.450, p=0.031, respectively). Language alterations in HD seem to reflect a derangement in both frontostriatal and frontotemporal regions.

  20. Cognitive impairment in Wilson's disease

    Directory of Open Access Journals (Sweden)

    Norberto Anizio Ferreira Frota

    Full Text Available Abstract Wilson's disease (WD or hepatolenticular degeneration is a rare, genetic and systemic disease, caused by a deficit in the metabolism of copper, leading to its accumulation in different organs, mainly the liver, followed by the central nervous system, especially the basal ganglia. When symptoms begin between the second and third decades of life, approximately 50% of the patients show neurological symptoms. Although dystonia and dysarthria are the most common neurological signs, cognitive changes have been reported since the first cases were described in 1912. Memory change is one of the most common impairments, but other cognitive changes have been reported, including dementia in untreated cases. In this article we review the cognitive changes in WD patients and the occurrence of dementia.

  1. Cognitive impairment in Parkinson's disease.

    Science.gov (United States)

    Ransmayr, Gerhard

    2015-12-01

    Parkinson's disease is the second most frequent neurodegenerative disorder. There is significantly elevated risk of cognitive decline and associated neuropsychiatric symptoms. Dementia may develop insidiously several years after manifestation of Parkinson motor symptoms (dementia associated with Parkinson's disease; Parkinson's disease dementia) or in close temporal relationship (within one year) after onset of motor symptoms (Dementia with Lewy bodies). There are clinical, pathophysiological and therapeutic similarities between these two conditions. Men are more frequently affected than women. Risk factor or indicators are advanced age at disease onset, disease duration, rigidity, akinesia and posture and gait impairment and falls as opposed to tremor dominance, and associated neuropsychiatric symptoms (depression, apathy, hallucinosis, delirium). Dementia is treatable with cholinesterase inhibitors (rivastigmine, donepezil), memantine, and adjustment of the pharmacological regimen of parkinsonian motor symptoms. Concomitant autonomic nervous system symptoms and neuropsychiatric complications warrant early clinical awareness and are accessible to pharmacological therapy.

  2. Exposure to Kynurenic Acid during Adolescence Increases Sign-tracking and Impairs Long-term Potentiation in Adulthood

    Directory of Open Access Journals (Sweden)

    Nicole eDeAngeli

    2015-01-01

    Full Text Available Changes in brain reward systems are thought to contribute significantly to the cognitive and behavioral impairments of schizophrenia, as well as the propensity to develop co-occurring substance abuse disorders. Presently there are few treatments for persons with a dual-diagnosis and little is known about the neural substrates that underlie co-occurring schizophrenia and substance abuse. One goal of the present study was to determine if a change in the concentration of kynurenic acid (KYNA, a tryptophan metabolite that is increased in the brains of people with schizophrenia, affects reward-related behavior. KYNA is an endogenous antagonist of NMDA glutamate receptors and α7 nicotinic acetylcholine receptors, both of which are critically involved in neurodevelopment, plasticity, and behavior. In Experiment 1, rats were treated throughout adolescence with l-kynurenine (L-KYN, the precursor of KYNA. As adults, the rats were tested drug-free in an autoshaping procedure in which a lever was paired with food. Rats treated with L-KYN during adolescence exhibited increased sign-tracking behavior (lever pressing when they were tested as adults. Sign-tracking is thought to reflect the lever acquiring incentive salience (motivational value as a result of its pairing with reward. Thus, KYNA exposure may increase the incentive salience of cues associated with reward, perhaps contributing to an increase in sensitivity to drug-related cues in persons with schizophrenia. In Experiment 2, we tested the effects of exposure to KYNA during adolescence on hippocampal long-term potentiation (LTP. Rats treated with L-KYN exhibited no LTP after a burst of high frequency stimulation that was sufficient to produce robust LTP in vehicle-treated rats. This finding represents the first demonstrated consequence of elevated KYNA concentration during development and provides insight into the basis for cognitive and behavioral deficits that result from exposure to KYNA during

  3. Clean Water Act 303(d) Listed Impaired Waters and their Causes of Impairment from All Years

    Data.gov (United States)

    U.S. Environmental Protection Agency — Waters identified as impaired as well as their associated causes of impairment from all approved Clean Water Act 303(d) lists submitted by the states. Includes all...

  4. De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment

    NARCIS (Netherlands)

    Hempel, Maja; Cremer, Kirsten; Ockeloen, Charlotte W.; Lichtenbelt, Klaske D.; Herkert, Johanna C.; Denecke, Jonas; Haack, Tobias B.; Zink, Alexander M.; Becker, Jessica; Wohlleber, Eva; Johannsen, Jessika; Alhaddad, Bader; Pfundt, Rolph; Fuchs, Sigrid; Wieczorek, Dagmar; Strom, Tim M.; van Gassen, Koen L. I.; Kleefstra, Tjitske; Kubisch, Christian; Engels, Hartmut; Lessel, Davor

    2015-01-01

    CHAMP1 encodes a protein with a function in kinetochore-microtubule attachment and in the regulation of chromosome segregation, both of which are known to be important for neurodevelopment. By trio whole-exome sequencing, we have identified de novo deleterious mutations in CHAMP1 in five unrelated i

  5. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function

    Science.gov (United States)

    Gonzalez-Rey, Elena; Martin, Francisco; Oliver, F. Javier

    2017-01-01

    Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.

  6. Ameliorative Effect of Quercetin on Neurochemical and Behavioral Deficits in Rotenone Rat Model of Parkinson's Disease: Modulating Autophagy (Quercetin on Experimental Parkinson's Disease).

    Science.gov (United States)

    El-Horany, Hemat E; El-Latif, Rania N Abd; ElBatsh, Maha M; Emam, Marwa N

    2016-07-01

    Autophagy is necessary for neuronal homeostasis and its dysfunction has been implicated in Parkinson's disease (PD) as it can exacerbate endoplasmic reticulum (ER) stress and ER stress-induced apoptosis. Quercetin is a flavonoid known for its neuroprotective and antioxidant effects. The present study investigated the protective, autophagy-modulating effects of quercetin in the rotenone rat model of PD. Rotenone was intraperitoneally injected at dose of 2 ml/kg/day for 4 weeks. Simultaneous intraperitoneal injection of quercetin was given at a dose of 50 mg/kg/day also for 4 weeks. Neurobehavioral changes were studied. Oxidative/antioxidant status, C/EBP homologous protein (CHOP), Beclin-1, and dopamine levels were assessed. DNA fragmentation and histopathological changes were evaluated. This research work revealed that quercetin significantly attenuated rotenone-induced behavioral impairment, augmented autophagy, ameliorated ER stress- induced apoptosis with attenuated oxidative stress. From the current study, quercetin can act as an autophagy enhancer in PD rat model and modulates the microenvironment that leads to neuronal death.

  7. Selenium-containing polysaccharides from Ziyang green tea ameliorate high-fructose diet induced insulin resistance and hepatic oxidative stress in mice.

    Science.gov (United States)

    Ren, Daoyuan; Hu, Yuanyuan; Luo, Yiyang; Yang, Xingbin

    2015-10-01

    The present study was designed to evaluate the effects of selenium-containing tea polysaccharides (Se-GTP) from a new variety of selenium-enriched Ziyang green tea against high fructose (HF)-induced insulin resistance and hepatic oxidative stress in mice. Healthy male Kunming mice were fed 20% high fructose water and administered 200, 400 and 800 mg per kg bw Se-GTP for 8 weeks. Mice fed HF in drinking water displayed significant insulin resistance, hepatic steatosis and oxidative stress observed by hyperglycemia and hyperinsulinemia, as well as increases in hepatic non-esterified fatty acid (NEFA) and malonaldehyde (MDA). The administration of Se-GTP at 400 and 800 mg per kg bw significantly improved insulin sensitivity, and reduced liver steatosis and oxidative stress damage, and brought back the antioxidants and hepatic lipids towards near-normal values. In the oral glucose tolerance test, the administration of Se-GTP at 400 and 800 mg per kg bw had reduced plasma glucose concentrations after 30 min of glucose loading in HF-fed mice, suggesting that Se-GTP improved glucose intolerance. Histopathological examination indicated that the impaired pancreatic/hepatic tissues were effectively restored in HF-fed mice following the Se-GTP treatment. This is the first report showing that Se-GTP can ameliorate the high fructose-induced insulin resistance and hepatic oxidative injury.

  8. Effects of prolonged consumption of water with elevated nitrate levels on certain metabolic parameters of dairy cattle and use of clinoptilolite for their amelioration.

    Science.gov (United States)

    Katsoulos, P D; Karatzia, M A; Polizopoulou, Z; Florou-Paneri, P; Karatzias, H

    2015-06-01

    Elevated levels of nitrates in feed and water can pose a significant risk for dairy cattle, due to their cumulative action. The effect of prolonged consumption of water naturally contaminated with nitrates on some metabolic parameters in dairy cows was investigated at the present study. Concurrently, whether in-feed inclusion of clinoptilolite, a natural zeolite with high selectivity for ammonia cations, could ameliorate nitrate consumption consequences was examined. Two experiments were run simultaneously in two farms each. In both, farms were assigned into two groups according to nitrate levels in borehole water (NG > 40 ppm; CG < 40 ppm). Furthermore, in experiment 2, the incorporation of clinoptilolite in the ration was taken into account (NC-clinoptilolite feeding; CNC-controls). In experiment 1, blood urea nitrogen (BUN) and beta-hydroxybutyrate (BHBA) concentrations appeared to be affected by nitrate consumption and were significantly higher in NG animals. In experiment 2, BUN concentration was significantly lower in the NC group. The prolonged consumption of water with increased nitrate levels seemed, to some degree, to impair protein metabolism and glucose utilization, while the dietary administration of clinoptilolite could alleviate the nitrates' effects.

  9. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Per Anderson

    2017-01-01

    Full Text Available Multipotent mesenchymal stromal cells (MSCs have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS. Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS and cyclooxygenase- (COX- 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS- induced maturation of dendritic cells (DCs in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG E2 in this process. In vivo, early administration of murine and human ASCs (hASCs ameliorated myelin oligodendrocyte protein- (MOG35-55- induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+ DCs in draining lymph nodes (DLNs. In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.

  10. Treatment of chronically Trypanosoma cruzi-infected mice with a CCR1/CCR5 antagonist (Met-RANTES) results in amelioration of cardiac tissue damage.

    Science.gov (United States)

    Medeiros, Gabriela A; Silvério, Jaline C; Marino, Ana Paula M P; Roffê, Ester; Vieira, Valeska; Kroll-Palhares, Karina; Carvalho, Cristiano E; Silva, Andréa Alice; Teixeira, Mauro M; Lannes-Vieira, Joseli

    2009-02-01

    The comprehension of the molecular mechanisms leading to Trypanosoma cruzi-elicited heart dysfunction might contribute to design novel therapeutic strategies aiming to ameliorate chronic Chagas disease cardiomyopathy. In C3H/He mice infected with the low virulence T. cruzi Colombian strain, the persistent cardiac inflammation composed mainly of CCR5(+) T lymphocytes parallels the expression of CC-chemokines in a pro-inflammatory IFN-gamma and TNF-alpha milieu. The chronic myocarditis is accompanied by increased frequency of peripheral CCR5(+)LFA-1(+) T lymphocytes. The treatment of chronically T. cruzi-infected mice with Met-RANTES, a selective CCR1/CCR5 antagonist, led to a 20-30% decrease in CD4(+) cell numbers as well as IL-10, IL-13 and TNF-alpha expression. Further, Met-RANTES administration impaired the re-compartmentalization of the activated CD4(+)CCR5(+) lymphocytes. Importantly, Met-RANTES treatment resulted in significant reduction in parasite load and fibronectin deposition in the heart tissue. Moreover, Met-RANTES treatment significantly protected T. cruzi-infected mice against connexin 43 loss in heart tissue and CK-MB level enhancement, markers of heart dysfunction. Thus, our results corroborate that therapeutic strategies based on the modulation of CCR1/CCR5-mediated cell migration and/or effector function may contribute to cardiac tissue damage limitation during chronic Chagas disease.

  11. Bacopa monniera Attenuates Scopolamine-Induced Impairment of Spatial Memory in Mice

    Directory of Open Access Journals (Sweden)

    Manish Kumar Saraf

    2011-01-01

    Full Text Available Scopolamine, an anticholinergic, is an attractive amnesic agent for discerning the action of candidate antiamnesic drugs. Bacopa monniera Linn (Syn. Brahmi is one such antiamnesic agent that is frequently used in the ancient Indian medical system. We have earlier reported the reversal of diazepam-induced amnesia with B. monniera. In this study we wanted to test if scopolamine-induced impairment of spatial memory can also be ameliorated by B. monniera using water maze mouse model. The objective of study was to study the effect of B. monniera on scopolamine-induced amnesia. We employed Morris water maze scale to test the amnesic effect of scopolamine and its reversal by B. monniera. Rotarod test was conducted to screen muscle coordination activity of mice. Scopolamine significantly impaired the acquisition and retrieval of memory producing both anterograde and retrograde amnesia. Bacopa monniera extract was able to reverse both anterograde and retrograde amnesia. We propose that B. monniera's effects on cholinergic system may be helpful for developing alternative therapeutic approaches for the treatment of Alzheimer's disease.

  12. Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes.

    Science.gov (United States)

    Liu, Ming; Lara-Lemus, Roberto; Shan, Shu-ou; Wright, Jordan; Haataja, Leena; Barbetti, Fabrizio; Guo, Huan; Larkin, Dennis; Arvan, Peter

    2012-04-01

    Recently, missense mutations upstream of preproinsulin's signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular mechanisms underlying β-cell failure plus a novel strategy that might ameliorate the MIDY syndrome. We find that whereas preproinsulin-A(SP23)S is efficiently cleaved, producing authentic proinsulin and insulin, preproinsulin-A(SP24)D is inefficiently cleaved at an improper site, producing two subpopulations of molecules. Both show impaired oxidative folding and are retained in the endoplasmic reticulum (ER). Preproinsulin-A(SP24)D also blocks ER exit of coexpressed wild-type proinsulin, accounting for its dominant-negative behavior. Upon increased expression of ER-oxidoreductin-1, preproinsulin-A(SP24)D remains blocked but oxidative folding of wild-type proinsulin improves, accelerating its ER export and increasing wild-type insulin production. We conclude that the efficiency of SP cleavage is linked to the oxidation of (pre)proinsulin. In turn, impaired (pre)proinsulin oxidation affects ER export of the mutant as well as that of coexpressed wild-type proinsulin. Improving oxidative folding of wild-type proinsulin may provide a feasible way to rescue insulin production in patients with MIDY.

  13. Critical Role of Endoplasmic Reticulum Stress in Cognitive Impairment Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Fei Cai

    2015-11-01

    Full Text Available Recent studies showed that cyanobacteria-derived microcystin-leucine-arginine (MCLR can cause hippocampal pathological damage and trigger cognitive impairment; but the underlying mechanisms have not been well understood. The objective of the present study was to investigate the mechanism of MCLR-induced cognitive deficit; with a focus on endoplasmic reticulum (ER stress. The Morris water maze test and electrophysiological study demonstrated that MCLR caused spatial memory injury in male Wistar rats; which could be inhibited by ER stress blocker; tauroursodeoxycholic acid (TUDCA. Meanwhile; real-time polymerase chain reaction (real-time PCR and immunohistochemistry demonstrated that the expression level of the 78-kDa glucose-regulated protein (GRP78; C/EBP homologous protein (CHOP and caspase 12 were significantly up-regulated. These effects were rescued by co-administration of TUDCA. In agreement with this; we also observed that treatment of rats with TUDCA blocked the alterations in ER ultrastructure and apoptotic cell death in CA1 neurons from rats exposed to MCLR. Taken together; the present results suggested that ER stress plays an important role in potential memory impairments in rats treated with MCLR; and amelioration of ER stress may serve as a novel strategy to alleviate damaged cognitive function triggered by MCLR.

  14. Impaired synthesis contributes to diabetes-induced decrease in liver glutathione.

    Science.gov (United States)

    Furfaro, Anna Lisa; Nitti, Mariapaola; Marengo, Barbara; Domenicotti, Cinzia; Cottalasso, Damiano; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Traverso, Nicola

    2012-05-01

    Diabetes-induced glutathione (GSH) decrease is usually ascribed to GSH oxidation. Here we investigate, in streptozotocin-treated rats, if impairment of GSH synthesis contributes to GSH decrease in diabetic liver, and if antioxidant treatments can provide protection. Diabetic rats were divided into 3 groups: untreated diabetic rats (UD); N-acetyl-cysteine (NAC)-treated diabetic rats; taurine (TAU)-treated diabetic rats; a group of non-streptozotocin-treated rats was used as control (CTR). All rats were sacrificed at 40 weeks of age. Diabetes induced hepatic glutathione decrease, but oxidized glutathione (GSSG) did not increase significantly. Accumulations of cysteine and cysteinyl-glycine in UD suggest respectively decreased glutathione synthesis and increased loss through the plasma membrane with subsequent degradation. Decreased expression of γ-glutamyl-cysteine synthetase in UD is consistent with repressed GSH synthesis. Moreover, diabetes caused increase of GSSG/GSH ratio and induction of heme oxygenase-1, both signs of oxidative stress. Supplementation with NAC or TAU resulted in amelioration of glutathione levels, probably depending on antioxidant activity, more efficient glutathione synthesis and decreased GSH loss and degradation. In conclusion, impaired synthesis and increased loss and degradation of GSH appear to contribute to a decrease in GSH levels in diabetic liver. NAC and TAU are able to partially protect from oxidative stress and GSH decrease, while enhancing GSH synthesis and restricting GSH loss.

  15. Environmental Interpretation for the Visually Impaired.

    Science.gov (United States)

    Seven, Steven M.

    1980-01-01

    The paper concerns itself with the art of environmental interpretation and addresses its application specifically to the visually impaired, considering the adaptations and alterations available which will make the environmental interpretation a beneficial and meaningful experience for the visually impaired. (Author)

  16. Dual-Retrieval Models and Neurocognitive Impairment

    Science.gov (United States)

    Brainerd, C. J.; Reyna, V. F.; Gomes, C. F. A.; Kenney, A. E.; Gross, C. J.; Taub, E. S.; Spreng, R. N.

    2014-01-01

    Advances in dual-retrieval models of recall make it possible to use clinical data to test theoretical hypotheses about mild cognitive impairment (MCI) and Alzheimer's dementia (AD), the most common forms of neurocognitive impairment. Hypotheses about the nature of the episodic memory declines in these diseases, about decline versus sparing of…

  17. Affective Education for Visually Impaired Children.

    Science.gov (United States)

    Locke, Don C.; Gerler, Edwin R., Jr.

    1981-01-01

    Evaluated the effectiveness of the Human Development Program (HDP) and the Developing Understanding of Self and Others (DUSO) program used with visually impaired children. Although HDP and DUSO affected the behavior of visually impaired children, they did not have any effect on children's attitudes toward school. (RC)

  18. Cognitive impairment in COPD: a systematic review

    Directory of Open Access Journals (Sweden)

    Irene Torres-Sánchez

    2015-04-01

    Full Text Available The objectives of this study were to characterize and clarify the relationships between the various cognitive domains affected in COPD patients and the disease itself, as well as to determine the prevalence of impairment in the various cognitive domains in such patients. To that end, we performed a systematic review using the following databases: PubMed, Scopus, and ScienceDirect. We included articles that provided information on cognitive impairment in COPD patients. The review of the findings of the articles showed a significant relationship between COPD and cognitive impairment. The most widely studied cognitive domains are memory and attention. Verbal memory and learning constitute the second most commonly impaired cognitive domain in patients with COPD. The prevalence of impairment in visuospatial memory and intermediate visual memory is 26.9% and 19.2%, respectively. We found that cognitive impairment is associated with the profile of COPD severity and its comorbidities. The articles reviewed demonstrated that there is considerable impairment of the cognitive domains memory and attention in patients with COPD. Future studies should address impairments in different cognitive domains according to the disease stage in patients with COPD.

  19. Library Automation Design for Visually Impaired People

    Science.gov (United States)

    Yurtay, Nilufer; Bicil, Yucel; Celebi, Sait; Cit, Guluzar; Dural, Deniz

    2011-01-01

    Speech synthesis is a technology used in many different areas in computer science. This technology can bring a solution to reading activity of visually impaired people due to its text to speech conversion. Based on this problem, in this study, a system is designed needed for a visually impaired person to make use of all the library facilities in…

  20. 38 CFR 4.10 - Functional impairment.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Functional impairment. 4... RATING DISABILITIES General Policy in Rating § 4.10 Functional impairment. The basis of disability... addition to the etiological, anatomical, pathological, laboratory and prognostic data required for...

  1. Pragmatic language impairment and associated behavioural problems

    NARCIS (Netherlands)

    Ketelaars, M.P.; Cuperus, J.; Jansonius, K.; Verhoeven, L.

    2010-01-01

    Background: Specific language impairment (SLI) is diagnosed when a child shows isolated structural language problems. The diagnosis of pragmatic language impairment (PLI) is given to children who show difficulties with the use of language in context. Unlike children with SLI, these children tend to

  2. Survivable Impairment-Aware Traffic Grooming

    NARCIS (Netherlands)

    Beshir, A.; Nuijts, R.; Malhotra, R.; Kuipers, F.

    2011-01-01

    Traffic grooming allows efficient utilization of network capacity by aggregating several independent traffic streams into a wavelength. In addition, survivability and impairment-awareness (i.e., taking into account the effect of physical impairments) are two important issues that have gained a lot o

  3. Identification of Adults with Developmental Language Impairments

    Science.gov (United States)

    Fidler, Lesley J.; Plante, Elena; Vance, Rebecca

    2011-01-01

    Purpose: To assess the utility of a wide range of language measures (phonology, morphology, syntax, and semantics) for the identification of adults with developmental language impairment. Method: Measures were administered to 3 groups of adults, each representing a population expected to demonstrate high levels of language impairment, and to…

  4. Evacuation characteristics of visually impaired people

    DEFF Research Database (Denmark)

    Sørensen, Janne Gress; Dederichs, Anne

    2015-01-01

    Evacuation characteristics for blind and visually impaired people are presented in the current study. The study was carried out in 2011 and engaged 40 participants in the age from 10 to 69 years. The participants had impairments for all of the four Danish categories for visual impairments (A......-bodied adults. It was found that people with visual impairments were able to uphold a higher walking speed descending stairs than able-bodied adults for increasing person density. The initial walking speed on horizontal planes is lower than the value suggested by the N&M-model. The horizontal mean free walking...... speed depends on the degree of vision loss. The design of the building environment is important for the ability to orientation for people with reduced sight. Walls and handrails are important for the orientation possibilities for people with visual impairments. Furthermore, obstacles placed...

  5. 早期康复对早产儿神经发育的作用研究%Analysis of the effect of early rehabilitation on preterm infant neurodevelopment

    Institute of Scientific and Technical Information of China (English)

    何芳; 李南平; 辜蕊洁; 张恒; 马秀伟; 封志纯

    2014-01-01

    Objective To determine the effect of early rehabilitation on adverse neurodevelopmental outcomes in preterm infants with certain risk factors.Method This was a retrospective study. 2374 preterm infants were chosen from our hospital's follow up system in 2004-2012,1027 of whom were eliminated because they only followed up once.The remaining 654 premature infants were divided into two groups according to whether accepting early intervention.The outcome of neurodevelopment was confirmed by Gesell scores. The effect of early rehabilitation on the neurodevelopmental outcome of preterm infants with certain risk factors was determined by two independent sample t-tests. AP< 0.05 was considered statistically significant. Result The DQ value of the early rehabilitation group was significantly higher than the non-early rehabilitation group for all five aspects of the Gesell score including Adaptive,Gross motor,Fine motor,Language and Personal social (P < 0.01).Conclusion A positive effect of early rehabilitation was identified, which suggests an approach for improving neurodevelopmental outcomes,even reduce the incidence of cerebral palsy of preterm infants with these risk factors.%目的:研究早期康复对具有高危因素的早产儿神经发育的作用。方法对2004年至2012年在本院健康门诊就诊的2374例早产儿进行回顾性研究,剔除1027例仅随访一次的早产儿,将符合要求的654例早产儿按有无早期干预分为两组,早产儿神经发育情况通过 Gesell 发育评估确定。组间比较运用两样本 t 检验方法,P<0.05代表具有统计学意义。结果早期康复组较对照组在适应性、大运动、精细运动、语言及个人社交5个方面比较差异均有显著性(P<0.01),早期康复组优于对照组。结论早期康复对早产儿的神经发育具有促进作用,可以降低脑瘫的发生率。

  6. Surdez infantil Childhood hearing impairment

    Directory of Open Access Journals (Sweden)

    Pedro Oliveira

    2002-05-01

    Full Text Available A Surdez Infantil é considerada actualmente um verdadeiro problema de Saúde Pública devido não só à sua elevada prevalência, mas sobretudo às múltiplas conseqüências que acarreta sob os mais variados prismas. Trata-se de um tema em constante evolução, sendo necessárias freqüentes actualizações por forma a acompanhar os avanços da técnica e do conhecimento. Este trabalho visa abordar de uma forma global mas sucinta o problema Surdez Infantil, dando particular ênfase aos Modelos de Rastreio e aos Métodos utilizados com esse fim.Childhood Hearing Impairment is nowadays considered as a Health Care matter due to its high prevalence and to its multiple consequences. As a developing subject, frequent updates are justified to keep up with the evolution of techniques and knowledge. This paper aims to discuss the matter from a global point of view, paying particular attention to the Screening Models and Instruments available.

  7. Language impairment in Huntington's disease

    Directory of Open Access Journals (Sweden)

    Mariana Jardim Azambuja

    2012-06-01

    Full Text Available Language alterations in Huntington's disease (HD are reported, but their nature and correlation with other cognitive impairments are still under investigation. This study aimed to characterize the language disturbances in HD and to correlate them to motor and cognitive aspects of the disease. We studied 23 HD patients and 23 controls, matched for age and schooling, using the Boston Diagnostic Aphasia Examination, Boston Naming Test, the Token Test, Animal fluency, Action fluency, FAS-COWA, the Symbol Digit Modalities Test, the Stroop Test and the Hooper Visual Organization Test (HVOT. HD patients performed poorer in verbal fluency (p<0.0001, oral comprehension (p<0.0001, repetition (p<0.0001, oral agility (p<0.0001, reading comprehension (p=0.034 and narrative writing (p<0.0001. There was a moderate correlation between the Expressive Component and Language Competency Indexes and the HVOT (r=0.519, p=0.011 and r=0.450, p=0.031, respectively. Language alterations in HD seem to reflect a derangement in both frontostriatal and frontotemporal regions.

  8. Current therapy for cognitive impairments

    Directory of Open Access Journals (Sweden)

    Natalia Vasilyevna Vakhnina

    2011-01-01

    Full Text Available Cognitive impairments (CIs are a highly common type of neurological disorders particularly in elderly patients. Choice of a therapeutic strategy for CI is determined by the etiology of abnormalities and their degree. Measures to prevent CI progression and dementia: adequate treatment of existing cardiovascular diseases, prevention of stroke, balanced nutrition, moderate physical and intellectual exercises, and combatting overweight and low activity are of basic value in treating mild and moderate CIs. According to the data of a number of investigations, the above measures reduce the risk of dementia, including in the genetically predisposed. Pharmacotherapy for mild and moderate CIs generally comprises vasoactive, neurometabolic, and noradrenergic agents. The indication for the use of memantine and/or acetylcholinergic agents, i.e. basic therapy for the most common forms of dementia (Alzheimer's disease, Lewy body dementia, vascular, and mixed dementia, hepatic colics is severe CIs. The long-term use of memantine and/or acetylcholinergic agents alleviates the cognitive and behavioral symptoms of dementia, enhances self-dependence in patients, and prolongs their active lifetime.

  9. Synergism of irbesartan and amlodipine on hemodynamic amelioration and organ protection in spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Wen SHANG; Ping HAN; Cheng-bing YANG; Xiao-wen GU; Wei ZHANG; Li-ping XU; Shou-ting FU; Ding-feng SU; He-hui XlE

    2011-01-01

    To investigate the synergism of low-doses of amlodipine and irbesartan on reduction of blood pressure variability (BPV),amelioration of baroreflex sensitivity (BRS) and organ protection in spontaneously hypertensive rats (SHR).Methods:The rats were administered amlodipine (1 mg-kgl.dl) alone,irbesartan (10 mg·kg-1·d-1) alone,or the combination of the two drugs for 4 months.The drugs were mixed into the rat chow.Blood pressure (BP) was continuously monitored in conscious animals.After the determination of BRS,the rats were killed for morphological evaluation of organ damages.Results:The combination of low-dose irbesartan and amlodipine had statistically significant synergism on reduction of BP and BPV,amelioration of BRS and organ protection in SHR.Multiple regression analysis showed that the decrease in left ventricular hypertrophy was associated with the decrease in systolic BPV (r=0.665,P<0.01); the decrease in aortic hypertrophy was associated with the increase in BRS (r=0.656,P<0.01); and the amelioration in renal lesion was associated with the increase in BRS (r=0.763,P<0.01)and the decrease in systolic BPV (r=0.706,P<0.01).Conclusion:Long-term treatment with a combination of low-doses of amlodipine and irbesartan showed significant synergism on reduction of BP and BPV,restoration of BRS and organ protection in SHR.Besides BP reduction,the enhancement of BRS and reduction of BPV might contribute to the organ protection.

  10. Exercise Ameliorates High Fat Diet Induced Cardiac Dysfunction by Increasing Interleukin 10

    Directory of Open Access Journals (Sweden)

    Varun eKesherwani

    2015-04-01

    Full Text Available Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α and attenuation of anti-inflammatory cytokine such as interleukin10 (IL-10 contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, eight week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1hr/day for 5 days/week for eight weeks. The four treatment groups: normal diet (ND, HFD, HFD + exercise (HFD + Ex and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

  11. Dietary -carbamylglutamate and rumen-protected -arginine supplementation ameliorate fetal growth restriction in undernourished ewes.

    Science.gov (United States)

    Zhang, H; Sun, L W; Wang, Z Y; Deng, M T; Zhang, G M; Guo, R H; Ma, T W; Wang, F

    2016-05-01

    This study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary -carbamylglutamate (NCG) and rumen-protected -Arg (RP-Arg) supplementation are effective in ameliorating fetal growth restriction in undernourished ewes. Beginning on d 35 of gestation, ewes were fed a diet providing 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations (50% NRC), 50% of NRC recommendations supplemented with 20 g/d RP-Arg (providing 10 g/d of Arg), and 50% of NRC recommendations supplemented with 5 g/d NCG product (providing 2.5 g/d of NCG). On d 110, maternal, fetal, and placental tissues and fluids were collected and weighed. Ewe weights were lower ( < 0.05) in nutrient-restricted ewes compared with adequately fed ewes. Maternal RP-Arg or NCG supplementation did not alter ( = 0.26) maternal BW in nutrient-restricted ewes. Weights of most fetal organs were increased ( < 0.05) in RP-Arg-treated and NCG-treated underfed ewes compared with 50% NRC-fed ewes. Supplementation of RP-Arg or NCG reduced ( < 0.05) concentrations of β-hydroxybutyrate, triglycerides, and ammonia in serum of underfed ewes but had no effect on concentrations of lactate and GH. Maternal RP-Arg or NCG supplementation markedly improved ( < 0.05) concentrations of AA (particularly arginine-family AA and branched-chain AA) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids within nutrient-restricted ewes. These novel results indicate that dietary NCG and RP-Arg supplementation to underfed ewes ameliorated fetal growth restriction, at least in part, by increasing the availability of AA in the conceptus and provide support for its clinical use to ameliorate IUGR in humans and sheep industry production.

  12. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Pillai, Ayyappan Harikrishna [Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Harikumar, Sankaran Kutty; Mishra, Santosh Kumar [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India)

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  13. CD44 antibodies and immune thrombocytopenia in the amelioration of murine inflammatory arthritis.

    Directory of Open Access Journals (Sweden)

    Patrick J Mott

    Full Text Available Antibodies to CD44 have been used to successfully ameliorate murine models of autoimmune disease. The most often studied disease model has been murine inflammatory arthritis, where a clear mechanism for the efficacy of CD44 antibodies has not been established. We have recently shown in a murine passive-model of the autoimmune disease immune thrombocytopenia (ITP that some CD44 antibodies themselves can induce thrombocytopenia in mice, and the CD44 antibody causing the most severe thrombocytopenia (IM7, also is known to be highly effective in ameliorating murine models of arthritis. Recent work in the K/BxN serum-induced model of arthritis demonstrated that antibody-induced thrombocytopenia reduced arthritis, causing us to question whether CD44 antibodies might primarily ameliorate arthritis through their thrombocytopenic effect. We evaluated IM7, IRAWB14.4, 5035-41.1D, KM201, KM114, and KM81, and found that while all could induce thrombocytopenia, the degree of protection against serum-induced arthritis was not closely related to the length or severity of the thrombocytopenia. CD44 antibody treatment was also able to reverse established inflammation, while thrombocytopenia induced by an anti-platelet antibody targeting the GPIIbIIIa platelet antigen, could not mediate this effect. While CD44 antibody-induced thrombocytopenia may contribute to some of its therapeutic effect against the initiation of arthritis, for established disease there are likely other mechanisms contributing to its efficacy. Humans are not known to express CD44 on platelets, and are therefore unlikely to develop thrombocytopenia after CD44 antibody treatment. An understanding of the relationship between arthritis, thrombocytopenia, and CD44 antibody treatment remains critical for continued development of CD44 antibody therapeutics.

  14. Antimicrobial Peptide LL-37 and IDR-1 Ameliorate MRSA Pneumonia in Vivo

    Directory of Open Access Journals (Sweden)

    Man Hou

    2013-09-01

    Full Text Available Background: The only human cathelicidin, LL-37, and the innate defense regulator peptide IDR-1, which have been proven to have antimicrobial activity, represent essential elements of immunity. Our previous study showed that the peptide LL-37 was protective in vitro to attenuate LTA-induced inflammatory effects. Methicillin-resistant staphylococcus aureus (MRSA causes a multitude of serious and sometimes life-threatening diseases around the globe. However, the effect of LL-37 and IDR-1 in MRSA-induced pneumonia is unknown. In the present study, we explored the potential of LL-37 and IDR-1 in ameliorating MRSA-induced pneumonia in vivo. Methods: C57BL/6 mice were randomly divided into four groups and perfused intratracheally with PBS, peptide, MRSA and MRSA plus peptide, respectively. Pulmonary tissue pathology, ELISA and quantitative RT-PCR were employed. The relative signal pathways were further explored by western blot analysis. Results: Pathological analysis of the lung tissue sections demonstrated that, when compared with the MRSA-treated group, both the LL-37 and IDR-1 could ameliorate the MRSA-induced pneumonia. The phosphorylation of JNK and Akt were markedly decreased in the peptide plus MRSA-treated group compared with the MRSA-treated group. Furthermore, both of them also reduced TNF-α and IL-6 production in the bronchoalveolar lavage fluid (BALF and serum in vivo. Conclusion: We report the first evidence of peptides inhibiting inflammation, decreasing the release of inflammatory cytokines and restoring pulmonary function in vivo. The antimicrobial peptide LL-37 and IDR-1 could ameliorate MRSA-induced pneumonia by exerting an anti-inflammatory property and attenuating pro-inflammatory cytokine release, thus providing support for the hypothesis that both innate and synthetic peptides could protect against MRSA in vivo.

  15. Cognitive impairment in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Kutashov V.A.

    2016-06-01

    Full Text Available Aim: to identify the degree of cognitive impairment (CN and to optimize the treatment of patients with multiple sclerosis (MS. Material and methods. A total of 695 patients (278 men and 417 women were ranged from 18 to 63 years. The mean age was 30.2±0.7 years: women (417 28.5±0.5 years, while for men (278 31.8±0.7 years. Relaps-ing-remitting type (RT of MS was established in 520 patients (74.8%, secondary progressive type (VPT MS in 132 patients (18.9% and primary progressive type (PPT MS in 10 patients (1.5%. Clinically isolated syndrome (CIS was detected in 33 patients (4.8%. The diagnosis of MS 662 patients according to the criteria McDonald etal. (2005. Score of neurologic deficit was carried out on an extended scale of disability (Expanded Disability Status Scale — EDSS. CN were evaluated by conventional tests. To estimate the orientation in time, assessment of short-term and long-term memory, attention and concentration, as well as executive functions, memory, language, evaluation of optical-spatial activities, conceptual thinking, the account used by the Montreal Cognitive Assessment Scale (MoCA. For the screening of dementia with a primary lesion of the frontal lobes and subcortical cerebral structures used battery frontal test to assess frontal dysfunction. Results. The ratio of male (265 and female (397 was 1:1.5. The severity of the condition patients EDSS scale ranged from 1.5 to 8.0 points, and the average score was 3.5±1.2. In the group of patients with RT RS average score EDSS was more than a half (2.5±1.1, than in the group of patients with MS VAC (5.5±1.2 and POS PC (6.5±1.2. In the study of history, it was found that the development of the RS (662 patients was preceded by the following conditions: a viral infection in 277 patients (41.84%; fatigue in 147 patients (22.21%; transferred psycho-emotional load from 218 (32.93%; after pregnancy and childbirth in 20 patients (3.02%. Conclusion. Among the patients with MS

  16. Effects of thioperamide on seizure development and memory impairment induced by pentylenetetrazole-kindling epilepsy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-san; CHEN Jie-fang; CHEN Guan-feng; HU Xing-yue; DING Mei-ping

    2013-01-01

    Background Histamine H3 receptor antagonists have been considered as potential drugs to treat central nervous system diseases.However,whether these drugs can inhibit epileptogenesis remains unclear.This study aimed to investigate the effects of thioperamide,a selective and potent histamine H3 receptor antagonist,on the seizure development and memory impairment induced by pentylenetetrazole (PTZ)-kindling epilepsy in rats.Methods Chemical kindling was elicited by repeated intraperitoneal (ip) injections of a subconvulsant dose of PTZ (35 mg/kg) once every 48 hours for 12 times,and seizure activity of kindling was recorded for 30 minutes.Control rats were ip injected with saline instead of PTZ.Morris water maze was used to evaluate the spatial memory.Phosphorylated cyclic adenosine monophosphate response element binding protein (p-CREB) was tested by Western blotting in hippocampus.Results Intracerebroventricular (icv) injections with thioperamide (10 μg,20 μg) 30 minutes before every PTZ injections,significantly prolonged the onset of PTZ-kindling and inhibited the seizure stages.PTZ-kindling seizures led to the impairment of spatial memory in rats,and thioperamide ameliorated the impairment of spatial learning and memory.Compared to non-kindling rats,there was a significant decrease in p-CREB level in hippocampus of the PTZ-kindling rats,which was reversed by thioperamide.Conclusions Thioperamide plays a protective role in seizure development and cognitive impairment of PTZ-induced kindling in rats.The protection of thioperamide in cognitive impairment is possibly associated with the enhancement of CREB-dependent transcription.

  17. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets.

    Science.gov (United States)

    Bielohuby, Maximilian; Sisley, Stephanie; Sandoval, Darleen; Herbach, Nadja; Zengin, Ayse; Fischereder, Michael; Menhofer, Dominik; Stoehr, Barbara J M; Stemmer, Kerstin; Wanke, Rüdiger; Tschöp, Matthias H; Seeley, Randy J; Bidlingmaier, Martin

    2013-11-01

    Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic β-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects.

  18. Effect of infrared lamps to ameliorate cold stress in Vrindavani calves

    OpenAIRE

    Showkat A. Bhat; Bharat Bhushan; Sajad A. Sheikh; Chandrasekar, T.; Asu Singh Godara; Pranay Bharti; K. Puhle Japheth

    2015-01-01

    Aim: This study was conducted to determine the effect of infrared lamps to ameliorate cold stress in Vrindavani (Holstein Friesian × Brown Swiss × Jersey × Hariana) calves. Materials and Methods: For the present investigation, ten newborn Vrindavani calves were randomly divided into two groups (G1 and G2) of five each. The experiment was conducted from 2nd November to 8th February when the environmental temperature was at the lowest. The calves of G1 were provided with no additional protec...

  19. Ameliorative Effect of Ocimum Sanctum on Meloxicam Induced Toxicity in Wistar Rats

    OpenAIRE

    Mahaprabhu, R.; Bhandarkar, A. G.; Jangir, Babu Lal; Rahangadale, S. P.; Kurkure, N. V.

    2011-01-01

    An ameliorating effect of Ocimum sanctum on the toxic effect of meloxicam, a new non-steroidal anti-inflammatory drug was studied by evaluating haemato-biochemical parameters, oxidative stress, gross and histopathological changes in various organs of Wistar rats. A total of thirty-six male rats were divided in six experimental groups each comprising of six rats and numbered from G1 to G6. Meloxicam toxicity was induced by oral feeding of meloxicam at 1.2 mg/kg and 2.4 mg/kg body weight in G2 ...

  20. Blocking IL-21 signaling ameliorates xenogeneic GVHD induced by human lymphocytes

    OpenAIRE

    Hippen, Keli L.; Bucher, Christoph; Schirm, Dawn K.; Bearl, Amanda M.; Brender, Ty; Mink, Kathy A.; Waggie, Kimberly S; Peffault de Latour, Regis; Janin, Anne; Curtsinger, Julie M.; Dillon, Stacey R.; Miller, Jeffrey S.; Socie, Gerard; Blazar, Bruce R.

    2012-01-01

    In rodent graft-versus-host disease (GVHD) models, anti–IL-21 neutralizing mAb treatment ameliorates lethality and is associated with decreases in Th1 cytokine production and gastrointestinal tract injury. GVHD prevention was dependent on the in vivo generation of donor-inducible regulatory T cells (Tregs). To determine whether the IL-21 pathway might be targeted for GVHD prevention, skin and colon samples obtained from patients with no GVHD or grade 2 to 4 GVHD were analyzed for IL-21 protei...

  1. Ameliorating Hemorheology by Direct Hemoperfusion with a Polymyxin B-immobilized Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Li Yuan; Wang Xiang; Gao Wei; Cai Shaoxi

    2004-01-01

    Direct hemoperfusion (DHP) with an adsorbent column using polymyxin B-immobilized polystyrene beads has been used to investigate the changes of hemorheology in rabbits with endotoxemia. We measured whole blood viscosity and hemotocrit before and after DHP with polymyxin B-immobilized polystyrene beads. Reduction in blood endotoxin concentration by DHP therapy positively correlated with improvement in hemorheological indexs. Our findings indicate that the amelioration in hemorheology was related directly to endotoxin removal by the adsorbent column with polymyxin B-immobilize polystyrene beads. So DHP with polymyxin B-immobilized polystyrene beads seems to be an important therapeutic strategy for endotoxemia.

  2. Effect of Furfural Residue on Control of Soil Alkalization and Amelioration of Solonetz

    Institute of Scientific and Technical Information of China (English)

    CAIAXING; SONGRONGHUA; 等

    1998-01-01

    Furfural residue ,an industrial waste,is a kind of strongly acidic organic materials.Its comprehensive utilization in agriculture showed a significant effect on control of soil alkaliztion,amelioration of solonetz and increase of crop yields.In detail it may adjust pH,depress alkalinity,reduce bulk density and compactness and increase water permeability and retention ability of the soil.Meanwhile agricultural use of furfural residue provided an effective way to avoid its pollution of the soil,water and air.

  3. K-ATP Channel Closure Ameliorates the Impaired Insulinotropic Effect of Glucose-Dependent Insulinotropic Polypeptide in Patients with Type 2 Diabetes

    DEFF Research Database (Denmark)

    Aaboe, K.; Knop, K.; Vilsboll, T.

    2009-01-01

    (15 mM) hyperglycemic clamp on 4 separate days with concomitant infusion of one of the following: GIP; GIP + 10 mg sulfonylurea (SU, glipizide) taken orally 1 h before the clamp; saline + 10 mg SU; or saline alone. Blood was sampled to measure plasma concentrations of glucose, intact GIP, insulin, C...

  4. Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria.

    Science.gov (United States)

    Santos, N A G; Bezerra, C S Catão; Martins, N M; Curti, C; Bianchi, M L P; Santos, A C

    2008-01-01

    Nephrotoxicity is the major dose-limiting factor of cisplatin chemotherapy. Reactive oxygen species generated in mitochondria are thought to be the main cause of cellular damage in such injury. The present study examined, in vivo, the protective potential of the hydroxyl radical scavenger dimethylthiourea (DMTU) against cisplatin-induced effects on renal mitochondrial bioenergetics, redox state and oxidative stress. Adult male Wistar rats (200 to 220 g) were divided into four groups of eight animals each. The control group was treated only with an intraperitoneal (i.p.) injection of saline solution (1 ml/100 g body weight). The second group was given only DMTU (500 mg/kg body weight, i.p, followed by 125 mg/Kg, i.p., twice a day until they were killed). The third group was given a single injection of cisplatin (10 mg/kg body weight, i.p.). The fourth group was given DMTU (500 mg/kg body weight, i.p.), just before the cisplatin injection (10 mg/kg body weight, i.p.), followed by injections of DMTU (125 mg/kg body weight, i.p.) twice a day until they were killed. Animals were killed 72 h after the treatment. Besides not presenting any direct effect on mitochondria, DMTU substantially inhibited cisplatin-induced mitochondrial injury and cellular death by apoptosis, suppressing the occurrence of acute renal failure. All the following cisplatin-induced effects were prevented by DMTU: (1) increased plasmatic levels of creatinine and blood urea nitrogen (BUN); (2) decreased ATP content, calcium uptake and electrochemical potential; (3) oxidation of lipids, including cardiolipin; and oxidation of proteins, including sulfhydryl, and aconitase enzyme, as well as accumulation of carbonyl proteins; (4) depletion of the antioxidant defense (NADPH and GSH) and (5) increased activity of the apoptosis executioner caspase-3. Our findings show the important role played by mitochondria and hydroxyl radicals in cisplatin-induced nephrotoxicity, as well as the effectiveness of DMTU in preventing the renal mitochondrial damage caused by cisplatin. These results strongly suggest that protection of mitochondria by hydroxyl radical scavengers may be an interesting approach to prevent the kidney tissue damage caused by cisplatin-chemotherapy.

  5. Ameliorating of Memory Impairment and Apoptosis in Amyloid β-Injected Rats Via Inhibition of Nitric Oxide Synthase: Possible Participation of Autophagy

    Science.gov (United States)

    Shariatpanahi, Marjan; Khodagholi, Fariba; Ashabi, Ghorbangol; Aghazadeh Khasraghi, Azar; Azimi, Leila; Abdollahi, Mohammad; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Noorbakhsh, Farshid; Sharifzadeh, Mohammad

    2015-01-01

    It has been proposed that appearance of amyloid beta (Aβ) in hippocampus is one of the characteristic features of Alzheimer’s disease (AD). The role of Nitric oxide (NO) in neurodegenerative disorders is controversy in different contexts. Here, we examined the effect of NO on spatial memory. For this purpose, we compared the effects of three different concentrations of L-NG-Nitroarginine Methyl Ester (L-NAME) as a nitric oxide synthase (NOS) inhibitor. We used Morris water maze (MWM) for evaluation of behavioral alterations. We also assessed the apoptosis and autophagy markers as two possible interfering pathways with NO signaling by western blot method. We found that in Aβ pretreated rats, intra-hippocampal injection of 1or 2 (μg/side) of L-NAME caused a significant reduction in escape latency and traveled distance comparing to Aβ-treatment group. Our molecular findings revealed that L-NAME could induce autophagy and attenuate apoptosis dose dependently. The protective role of autophagy and the deteriorative role of apoptosis is the hypothesis that can vindicate our findings. Thus using NOS inhibitors at low concentrations can be one of the therapeutic approaches in the future studies. PMID:26330869

  6. Mild cognitive impairment in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    LUO Xiao-guang

    2013-08-01

    Full Text Available Cognitive impairment is one of the most common non-motor symptoms of Parkinson's disease (PD and a major influencing factor on patients' daily living ability. Mild cognitive impairment (MCI is a cognitive state between normal aging and dementia, and the living capability of MCI patients relatively remains. MCI often occurs in PD, with its clinical features presenting as the impairment in working memory and (or attention, executive function, language ability, memory and visuospatial function. Here we try to depict the general picture of PD-MCI from the view of epidemiology, pathology, clinical presentation, imaging and diagnostic criteria.

  7. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-04

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.

  8. Relative clause reading in hearing impairment: Different profiles of syntactic impairment

    Directory of Open Access Journals (Sweden)

    Ronit eSzterman

    2014-11-01

    Full Text Available Children with hearing impairment show difficulties in sentences derived by Wh-movement, such as relative clauses and Wh-questions. This study examines the nature of this deficit in 48 hearing impaired children aged 9-12 years and 38 hearing controls. The task involved reading aloud and paraphrasing of object relatives that include a noun-verb heterophonic homograph. The correct pronunciation of the homograph in these sentences depended upon the correct construction of the syntactic structure of the sentence. An analysis of the reading and paraphrasing of each participant exposed two different patterns of syntactic impairment. Some hearing-impaired children paraphrased the object relatives incorrectly but could still read the homograph, indicating impaired assignment of thematic roles alongside good syntactic structure building; other hearing-impaired children could neither read the homograph nor paraphrase the sentence, indicating a structural deficit in the syntactic tree. Further testing of these children confirmed the different impairments: some are impaired only in Wh-movement, whereas others have CP impairment. The syntactic impairment correlated with whether or not a hearing device was fitted by the age of one year, but not with the type of hearing device or the depth of hearing loss: children who had a hearing device fitted during the first year of life had better syntactic abilities than children whose hearing devices were fitted later.

  9. The Role of Gangliosides in Neurodevelopment

    Directory of Open Access Journals (Sweden)

    Kate Palmano

    2015-05-01

    Full Text Available Gangliosides are important components of neuronal cell membranes and it is widely accepted that they play a critical role in neuronal and brain development. They are functionally involved in neurotransmission and are thought to support the formation and stabilization of functional synapses and neural circuits required as the structural basis of memory and learning. Available evidence, as reviewed herein, suggests that dietary gangliosides may impact positively on cognitive functions, particularly in the early postnatal period when the brain is still growing. Further, new evidence suggests that the mechanism of action may be through an effect on the neuroplasticity of the brain, mediated through enhanced synaptic plasticity in the hippocampus and nigro-striatal dopaminergic pathway.

  10. Cannabinoid receptor 1 signaling in embryo neurodevelopment.

    Science.gov (United States)

    Psychoyos, Delphine; Vinod, K Yaragudri; Cao, Jin; Xie, Shan; Hyson, Richard L; Wlodarczyk, Bogdan; He, Weimin; Cooper, Thomas B; Hungund, Basalingappa L; Finnell, Richard H

    2012-04-01

    In utero exposure to tetrahydrocannabinol, the psychoactive component of marijuana, is associated with an increased risk for neurodevelopmental defects in the offspring by interfering with the functioning of the endocannabinoid (eCB) system. At the present time, it is not clearly known whether the eCB system is present before neurogenesis. Using an array of biochemical techniques, we analyzed the levels of CB1 receptors, eCBs (AEA and 2-AG), and the enzymes (NAPE-PLD, DAGLα, DAGLβ, MAGL, and FAAH) involved in the metabolism of the eCBs in chick and mouse models during development. The findings demonstrate the presence of eCB system in early embryo before neurogenesis. The eCB system might play a critical role in early embryogenesis and there might be adverse developmental consequences of in utero exposure to marijuana and other drugs of abuse during this period.

  11. Gene-environment effects on hippocampal neurodevelopment

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    Mental disorders like schizophrenia and autism put a heavy load on today’s societies, creating a steady call for revealing underlying disease mechanisms and the development of effective treatments. The etiology of major psychiatric illnesses is complex involving gene by environment susceptibility...... factors. Hence, a deeper understanding is needed of how cortical neurodevelopmental deficiencies can arise from such gene-environment interactions. The convergence of genetic and environmental risk factors is a recent field of research. It is now clear that disease, infection and stress factors may...

  12. Fibroblast growth factors in neurodevelopment and psychopathology

    NARCIS (Netherlands)

    Terwisscha van Scheltinga, Afke F; Bakker, Steven C; Kahn, René S; Kas, Martien J H

    2013-01-01

    In psychiatric disorders, the effect of genetic and environmental factors may converge on molecular pathways and brain circuits related to growth factor functioning. In this review, we describe how disturbances in fibroblast growth factors (FGFs) and their receptors influence behavior by affecting b

  13. Hydrographic and Impairment Statistics Database: ADAM

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  14. Hydrographic and Impairment Statistics Database: INDE

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  15. Hydrographic and Impairment Statistics Database: PIMA

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  16. Hydrographic and Impairment Statistics Database: ROWI

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  17. Hydrographic and Impairment Statistics Database: TOSY

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  18. Hydrographic and Impairment Statistics Database: APIS

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  19. Hydrographic and Impairment Statistics Database: CHIR

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  20. Hydrographic and Impairment Statistics Database: CONG

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  1. Hydrographic and Impairment Statistics Database: MORR

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  2. Hydrographic and Impairment Statistics Database: GUCO

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  3. Hydrographic and Impairment Statistics Database: ANTI

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  4. Hydrographic and Impairment Statistics Database: ORPI

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  5. Hydrographic and Impairment Statistics Database: AMIS

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  6. Hydrographic and Impairment Statistics Database: PAAL

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  7. Hydrographic and Impairment Statistics Database: GLBA

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  8. Hydrographic and Impairment Statistics Database: MIMI

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  9. Hydrographic and Impairment Statistics Database: CAGR

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  10. Hydrographic and Impairment Statistics Database: GRTE

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  11. Hydrographic and Impairment Statistics Database: LACH

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  12. Hydrographic and Impairment Statistics Database: SAMA

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  13. Hydrographic and Impairment Statistics Database: DESO

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  14. Hydrographic and Impairment Statistics Database: MAWA

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  15. Hydrographic and Impairment Statistics Database: GETT

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  16. Hydrographic and Impairment Statistics Database: STEA

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  17. Hydrographic and Impairment Statistics Database: BIBE

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  18. Hydrographic and Impairment Statistics Database: NAVA

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  19. Hydrographic and Impairment Statistics Database: CASA

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...

  20. Hydrographic and Impairment Statistics Database: BITH

    Data.gov (United States)

    National Park Service, Department of the Interior — Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in...