WorldWideScience

Sample records for ameliorate disease pathogenesis

  1. Pathogenesis of Parkinson's disease

    OpenAIRE

    Riederer, Peter; Lange, Klaus W.

    1992-01-01

    The importance of genetic aspects, ageing, environmental factors, head trauma, defective mitochondrial respiration, altered iron metabolism, oxidative stress and glutamatergic overactivity of the basal ganglia in the pathogenesis of Parkinson's disease (PD) are considered in this review.

  2. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  3. Pathogenesis of diverticulosis and diverticular disease.

    Science.gov (United States)

    Walker, Marjorie M; Harris, Angela K

    2017-06-01

    Diverticulosis is defined by the presence of diverticula due to herniation of mucosa and muscularis mucosa through the muscularis propria at sites of vascular penetration in the colon and is asymptomatic in the vast majority affected. There are global differences of distribution, in Western industrialized societies, the most common site is in the left colon, but in Asia right sided diverticulosis predominates. Whilst present in 17.5% of a general population and 42% of all comers at endoscopy it is seen in 71% of those aged ≥80 years. Diverticular disease is defined as clinically significant and symptomatic diverticulosis, which may have an absence of macroscopically overt colitis and in true diverticulitis there is macroscopic inflammation of diverticula with related acute or chronic complications. Whilst overall, diverticulitis affects only 4% of those with diverticulosis, in younger patients (aged 40-49 years) this peaks at 11%. Diverticulosis is one of the most common chronic diseases, yet research in this field on pathogenesis has lagged behind other common conditions such as diabetes mellitus. However, in the last decade there have been major advances in taxonomy that can be used to relate to patients' outcome and treatment in both medicine and surgery. It has been shown there is an association with age, diet, drugs and smoking. Genetic studies have shown a familial association and a specific gene, TNFSF 15 may predict severity of disease. The role of the microbiome has been explored and microbial and metabolomic signatures are also important in predicting disease severity. That diverticulosis is a chronic disease is shown by mucosal pathology with subtle chronic inflammation present in those with asymptomatic diverticulosis and inflammation may lead to muscular hypertrophy, enteric nerve remodeling with disordered motility. The diverticulitis quality of life instrument shows that this condition impacts markedly on patients' well-being and prevention and

  4. Plumbagin, a vitamin K3 analogue ameliorate malaria pathogenesis by inhibiting oxidative stress and inflammation.

    Science.gov (United States)

    Gupta, Amit Chand; Mohanty, Shilpa; Saxena, Archana; Maurya, Anil Kumar; Bawankule, Dnyaneshwar U

    2018-03-22

    Plumbagin, a vitamin K3 analogue is the major active constituent in several plants including root of Plumbago indica Linn. This compound has been shown to exhibit a wide spectrum of pharmacological activities. The present investigation was to evaluate the ameliorative effects of plumbagin (PL) against severe malaria pathogenesis due to involvement of oxidative stress and inflammatory response in Plasmodium berghei infected malaria in mice. Malaria pathogenesis was induced by intra-peritoneal injection of P. berghei infected red blood cells into the Swiss albino mice. PL was administered orally at doses of 3, 10 and 30 mg/kg/day following Peter's 4 day suppression test. Oral administration of PL showed significant reduction of parasitaemia and increase in mean survival time. PL treatment is also attributed to significant increase in the blood glucose and haemoglobin level when compared with vehicle-treated infected mice. Significant inhibition in level of oxidative stress and pro-inflammation related markers were observed in PL treated group. The trend of inhibition in oxidative stress markers level after oral treatment of PL was MPO > LPO > ROS in organ injury in P. berghei infected mice. This study showed that plumbagin is able to ameliorate malaria pathogenesis by augmenting anti-oxidative and anti-inflammatory mechanism apart from its effect on reducing parasitaemia and increasing mean survival time of malaria-induced mice.

  5. [Anatomy and pathogenesis of diverticular disease].

    Science.gov (United States)

    Wedel, T; Böttner, M

    2014-04-01

    Although diverticular disease is one of the most frequent gastrointestinal disorders the pathogenesis is not yet sufficiently clarified. The aim is to define the anatomy and pathogenesis of diverticular disease considering the risk factors and description of structural and functional alterations of the bowel wall. This article gives an appraisal of the literature, presentation and evaluation of classical etiological factors, analysis and discussion of novel pathogenetic concepts. Colonic diverticulosis is defined as an acquired out-pouching of multiple and initially asymptomatic pseudodiverticula through muscular gaps in the colon wall. Diverticular disease is characterized by diverticular bleeding and/or inflammatory processes (diverticulitis) with corresponding complications (e.g. abscess formation, fistula, covered and open perforation, peritonitis and stenosis). Risk factors for diverticular disease include increasing age, genetic predisposition, congenital connective tissue diseases, low fiber diet, high meat consumption and pronounced overweight. Alterations of connective tissue cause a weakening of preformed exit sites of diverticula and rigidity of the bowel wall with reduced flexibility. It is assumed that intestinal innervation disorders and structural alterations of the musculature induce abnormal contractile patterns with increased intraluminal pressure, thereby promoting the development of diverticula. Moreover, an increased release of pain-mediating neurotransmitters is considered to be responsible for persistent pain in chronic diverticular disease. According to the present data the pathogenesis of diverticular disease cannot be attributed to a single factor but should be considered as a multifactorial event.

  6. Mitochondrial Contribution to Parkinson's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Anthony H. V. Schapira

    2011-01-01

    Full Text Available The identification of the etiologies and pathogenesis of Parkinson's disease (PD should play an important role in enabling the development of novel treatment strategies to prevent or slow the progression of the disease. The last few years have seen enormous progress in this respect. Abnormalities of mitochondrial function and increased free radical mediated damage were described in post mortem PD brain before the first gene mutations causing familial PD were published. Several genetic causes are now known to induce loss of dopaminergic cells and parkinsonism, and study of the mechanisms by which these mutations produce this effect has provided important insights into the pathogenesis of PD and confirmed mitochondrial dysfunction and oxidative stress pathways as central to PD pathogenesis. Abnormalities of protein metabolism including protein mis-folding and aggregation are also crucial to the pathology of PD. Genetic causes of PD have specifically highlighted the importance of mitochondrial dysfunction to PD: PINK1, parkin, DJ-1 and most recently alpha-synuclein proteins have been shown to localise to mitochondria and influence function. The turnover of mitochondria by autophagy (mitophagy has also become a focus of attention. This review summarises recent discoveries in the contribution of mitochondrial abnormalities to PD etiology and pathogenesis.

  7. Immunological pathogenesis of inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Seung Hoon Lee

    2018-01-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory state of the gastrointestinal tract and can be classified into 2 main clinical phenomena: Crohn's disease (CD and ulcerative colitis (UC. The pathogenesis of IBD, including CD and UC, involves the presence of pathogenic factors such as abnormal gut microbiota, immune response dysregulation, environmental changes, and gene variants. Although many investigations have tried to identify novel pathogenic factors associated with IBD that are related to environmental, genetic, microbial, and immune response factors, a full understanding of IBD pathogenesis is unclear. Thus, IBD treatment is far from optimal, and patient outcomes can be unsatisfactory. As result of massive studying on IBD, T helper 17 (Th17 cells and innate lymphoid cells (ILCs are investigated on their effects on IBD. A recent study of the plasticity of Th17 cells focused primarily on colitis. ILCs also emerging as novel cell family, which play a role in the pathogenesis of IBD. IBD immunopathogenesis is key to understanding the causes of IBD and can lead to the development of IBD therapies. The aim of this review is to explain the pathogenesis of IBD, with a focus on immunological factors and therapies.

  8. Physiology and pathogenesis of gastroesophageal reflux disease.

    Science.gov (United States)

    Mikami, Dean J; Murayama, Kenric M

    2015-06-01

    Gastroesophageal reflux disease (GERD) is one of the most common problems treated by primary care physicians. Almost 20% of the population in the United States experiences occasional regurgitation, heartburn, or retrosternal pain because of GERD. Reflux disease is complex, and the physiology and pathogenesis are still incompletely understood. However, abnormalities of any one or a combination of the three physiologic processes, namely, esophageal motility, lower esophageal sphincter function, and gastric motility or emptying, can lead to GERD. There are many diagnostic and therapeutic approaches to GERD today, but more studies are needed to better understand this complex disease process. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Polycystic Kidney Disease: Pathogenesis and Potential Therapies

    Science.gov (United States)

    Takiar, Vinita; Caplan, Michael J.

    2011-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent, inherited condition for which there is currently no effective specific clinical therapy. The disease is characterized by the progressive development of fluid-filled cysts derived from renal tubular epithelial cells which gradually compress the parenchyma and compromise renal function. Current interests in the field focus on understanding and exploiting signaling mechanisms underlying disease pathogenesis as well as delineating the role of the primary cilium in cystogenesis. This review highlights the pathogenetic pathways underlying renal cyst formation as well as novel therapeutic targets for the treatment of PKD. PMID:21146605

  10. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.

    Science.gov (United States)

    Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood

    2018-01-15

    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.

  11. Pathogenesis of Graves' disease and therapeutic implications

    International Nuclear Information System (INIS)

    Seif, F.J.

    1997-01-01

    Graves' disease presents itself clinically mainly as hyperthyroidism and infiltrative ophthalmopathy and to a minimal extent also as dermopathy and acropachy. Autoimmune processes are the basic pathogenesis. Stimulating antibodies against the TSH receptor cause hyperthyroidism. Autoantibodies and autoreactive T lymphocytes against primarily thyroidal antigens cross-react with similar antigens of the eye muscles and orbital connective tissue, thus spreading the disease from the thyroid to the eyes. The therapeutic goal comprises not only the treatment of hyperthyroidism, but also the induction of a steady immuntolerance in order to minimize the irreversible damage to the eye. The therapeutic armamentarium is formed by antithyroid drugs, glucocorticoids, retrobulbar radition and thyroid ablation, either by nearly total thyroidectomy or by radioiodine. The different indications for both ablative procedures are discussed. (orig.) [de

  12. Pathogenesis of Nervous and Mental Diseases in Children.

    Science.gov (United States)

    Harms, Ernest, Ed.

    Major pathogenic sources of mental diseases in children and a classification of these diseases are considered. Contributions include the following: pathogenesis of mental diseases in childhood by Ernest Harms, organ inferiority and psychiatric disorders by Bernard Shulman and Howard Klapman, pathogenesis of neurological disorders by George Gold,…

  13. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment

    Science.gov (United States)

    Gujral, Naiyana; Freeman, Hugh J; Thomson, Alan BR

    2012-01-01

    Celiac disease (CD) is one of the most common diseases, resulting from both environmental (gluten) and genetic factors [human leukocyte antigen (HLA) and non-HLA genes]. The prevalence of CD has been estimated to approximate 0.5%-1% in different parts of the world. However, the population with diabetes, autoimmune disorder or relatives of CD individuals have even higher risk for the development of CD, at least in part, because of shared HLA typing. Gliadin gains access to the basal surface of the epithelium, and interact directly with the immune system, via both trans- and para-cellular routes. From a diagnostic perspective, symptoms may be viewed as either “typical” or “atypical”. In both positive serological screening results suggestive of CD, should lead to small bowel biopsy followed by a favourable clinical and serological response to the gluten-free diet (GFD) to confirm the diagnosis. Positive anti-tissue transglutaminase antibody or anti-endomysial antibody during the clinical course helps to confirm the diagnosis of CD because of their over 99% specificities when small bowel villous atrophy is present on biopsy. Currently, the only treatment available for CD individuals is a strict life-long GFD. A greater understanding of the pathogenesis of CD allows alternative future CD treatments to hydrolyse toxic gliadin peptide, prevent toxic gliadin peptide absorption, blockage of selective deamidation of specific glutamine residues by tissue, restore immune tolerance towards gluten, modulation of immune response to dietary gliadin, and restoration of intestinal architecture. PMID:23155333

  14. The Pathogenesis of Ebola Virus Disease.

    Science.gov (United States)

    Baseler, Laura; Chertow, Daniel S; Johnson, Karl M; Feldmann, Heinz; Morens, David M

    2017-01-24

    For almost 50 years, ebolaviruses and related filoviruses have been repeatedly reemerging across the vast equatorial belt of the African continent to cause epidemics of highly fatal hemorrhagic fever. The 2013-2015 West African epidemic, by far the most geographically extensive, most fatal, and longest lasting epidemic in Ebola's history, presented an enormous international public health challenge, but it also provided insights into Ebola's pathogenesis and natural history, clinical expression, treatment, prevention, and control. Growing understanding of ebolavirus pathogenetic mechanisms and important new clinical observations of the disease course provide fresh clues about prevention and treatment approaches. Although viral cytopathology and immune-mediated cell damage in ebolavirus disease often result in severe compromise of multiple organs, tissue repair and organ function recovery can be expected if patients receive supportive care with fluids and electrolytes; maintenance of oxygenation and tissue perfusion; and respiratory, renal, and cardiovascular support. Major challenges for managing future Ebola epidemics include establishment of early and aggressive epidemic control and earlier and better patient care and treatment in remote, resource-poor areas where Ebola typically reemerges. In addition, it will be important to further develop Ebola vaccines and to adopt policies for their use in epidemic and pre-epidemic situations.

  15. Research advances in the pathogenesis of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    WANG Hu

    2017-04-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD has been developing rapidly in recent years and has become one of the most common liver diseases. However, its pathogenesis remains unclear, and there are no widely accepted therapeutic regimens. NAFLD has a complex pathogenesis with multiple factors involved, including insulin resistance, oxidative stress, bile acid metabolic disorders, and autophagy. This article reviews the pathogenesis of NAFLD in order to provide a reference for further research and clinical treatment in the future.

  16. Aetiology and pathogenesis of alcoholic liver disease.

    Science.gov (United States)

    Lieber, C S

    1993-09-01

    carcinogens and even nutritional factors such as vitamin A. Ethanol causes not only vitamin A depletion but it also enhances its hepatotoxicity. Furthermore, induction of the microsomal pathway contributes to increased acetaldehyde generation, with formation of protein adducts, resulting in antibody production, enzyme inactivation and decreased DNA repair; it is also associated with a striking impairment of the capacity of the liver to utilize oxygen. Moreover, acetaldehyde promotes glutathione depletion, free-radical mediated toxicity and lipid peroxidation. In addition, acetaldehyde affects hepatic collagen synthesis: both in vivo and in vitro (in cultured myofibroblasts and lipocytes), ethanol and its metabolite acetaldehyde were found to increase collagen accumulation and mRNA levels for collagen. This new understanding of the pathogenesis of alcoholic liver disease may eventually improve therapy with drugs and nutrients.

  17. Alzheimer's Disease: Genes, pathogenesis and risk prediction

    NARCIS (Netherlands)

    K. Sleegers (Kristel); C.M. van Duijn (Cornelia)

    2001-01-01

    textabstractWith the aging of western society the contribution to morbidity of diseases of the elderly, such as dementia, will increase exponentially. Thorough preventative and curative strategies are needed to constrain the increasing prevalence of these disabling diseases. Better understanding of

  18. Extrahepatic manifestations of cholestatic liver diseases: pathogenesis and therapy

    NARCIS (Netherlands)

    Pusl, Thomas; Beuers, Ulrich

    2005-01-01

    Pruritus, fatigue, and metabolic bone disease are frequent complications of cholestatic liver diseases, which can be quite distressing for the patient and can considerably reduce the quality of life. The molecular pathogenesis of these extrahepatic manifestations of cholestasis is poorly understood,

  19. STAT6 deficiency ameliorates Graves' disease severity by suppressing thyroid epithelial cell hyperplasia.

    Science.gov (United States)

    Jiang, Xuechao; Zha, Bingbing; Liu, Xiaoming; Liu, Ronghua; Liu, Jun; Huang, Enyu; Qian, Tingting; Liu, Jiajing; Wang, Zhiming; Zhang, Dan; Wang, Luman; Chu, Yiwei

    2016-12-01

    Signal transducer and activator of transcription 6 (STAT6) is involved in epithelial cell growth. However, little is known regarding the STAT6 phosphorylation status in Graves' disease (GD) and its role in thyroid epithelial cells (TECs). In this study, we found that STAT6 phosphorylation (p-STAT6) was significantly increased in TECs from both GD patients and experimental autoimmune Graves' disease mice and that STAT6 deficiency ameliorated GD symptoms. Autocrine IL-4 signalling in TECs activated the phosphorylation of STAT6 via IL-4 R engagement, and the downstream targets of STAT6 were Bcl-xL and cyclin D1. Thus, the IL-4-STAT6-Bcl-xL/cyclin D1 pathway is crucial for TEC hyperplasia, which aggravates GD. More importantly, in vitro and in vivo experiments demonstrated that STAT6 phosphorylation inhibited by AS1517499 decreased TEC hyperplasia, thereby reducing serum T3 and T4 and ameliorating GD. Thus, our study reveals that in addition to the traditional pathogenesis of GD, in which autoantibody TRAb stimulates thyroid-stimulating hormone receptors and consequently produces T3, T4, TRAb could also trigger TECs producing IL-4, and IL-4 then acts in an autocrine manner to activate p-STAT6 signalling and stimulate unrestricted cell growth, thus aggravating GD. These findings suggest that STAT6 inhibitors could be potent therapeutics for treating GD.

  20. Nasal Colivelin treatment ameliorates memory impairment related to Alzheimer's disease.

    Science.gov (United States)

    Yamada, Marina; Chiba, Tomohiro; Sasabe, Jumpei; Terashita, Kenzo; Aiso, Sadakazu; Matsuoka, Masaaki

    2008-07-01

    Humanin (HN) and its derivatives, such as Colivelin (CLN), suppress neuronal death induced by insults related to Alzheimer's disease (AD) by activating STAT3 in vitro. They also ameliorate functional memory impairment of mice induced by anticholinergic drugs or soluble toxic amyloid-beta (Abeta) in vivo when either is directly administered into the cerebral ventricle or intraperitoneally injected. However, the mechanism underlying the in vivo effect remains uncharacterized. In addition, from the standpoint of clinical application, drug delivery methods that are less invasive and specific to the central nervous system (CNS) should be developed. In this study, we show that intranasally (i.n.) administered CLN can be successfully transferred to CNS via the olfactory bulb. Using several behavioral tests, we have demonstrated that i.n. administered CLN ameliorates memory impairment of AD models in a dose-responsive manner. Attenuation of AD-related memory impairment by HN derivatives such as CLN appears to be correlated with an increase in STAT3 phosphorylation levels in the septohippocampal region, suggesting that anti-AD activities of HN derivatives may be mediated by activation of STAT3 in vivo as they are in vitro. We further demonstrate that CLN treatment inhibits an Abeta induced decrease in the number of choline acetyltransferase (ChAT)-positive neurons in the medial septum. Combined with the finding that HN derivatives upregulate mRNA expression of neuronal ChAT and vesicular acetylcholine transporter (VAChT) in vitro, it is assumed that CLN may ameliorate memory impairment of AD models by supporting cholinergic neurotransmission, which is at least partly mediated by STAT3-mediated transcriptional upregulation of ChAT and VAChT.

  1. Understanding rare disease pathogenesis: a grand challenge for model organisms.

    Science.gov (United States)

    Hieter, Philip; Boycott, Kym M

    2014-10-01

    In this commentary, Philip Hieter and Kym Boycott discuss the importance of model organisms for understanding pathogenesis of rare human genetic diseases, and highlight the work of Brooks et al., "Dysfunction of 60S ribosomal protein L10 (RPL10) disrupts neurodevelopment and causes X-linked microcephaly in humans," published in this issue of GENETICS. Copyright © 2014 by the Genetics Society of America.

  2. HIV-1 Nef in Macrophage-Mediated Disease Pathogenesis

    Science.gov (United States)

    Lamers, Susanna L.; Fogel, Gary B.; Singer, Elyse J.; Salemi, Marco; Nolan, David J.; Huysentruyt, Leanne C.; McGrath, Michael S.

    2013-01-01

    Combined anti-retroviral therapy (cART) has significantly reduced the number of AIDS-associated illnesses and changed the course of HIV-1 disease in developed countries. Despite the ability of cART to maintain high CD4+ T-cell counts, a number of macrophage-mediated diseases can still occur in HIV-infected subjects. These diseases include lymphoma, metabolic diseases, and HIV-associated neurological disorders. Within macrophages, the HIV-1 regulatory protein “Nef” can modulate surface receptors, interact with signaling pathways, and promote specific environments that contribute to each of these pathologies. Moreover, genetic variation in Nef may also guide the macrophage response. Herein, we review findings relating to the Nef–macrophage interaction and how this relationship contributes to disease pathogenesis. PMID:23215766

  3. Genes, autoimmunity and pathogenesis of rheumatic heart disease

    International Nuclear Information System (INIS)

    Guilherme, L; Köhler, K F; Postol, E; Kalil, J

    2011-01-01

    Pathogenesis of rheumatic heart disease (RHD) remains incompletely understood. Several genes associated with RHD have been described; most of these are involved with immune responses. Single nucleotide polymorphisms in a number of genes affect patients with RHD compared to controls. Molecular mimicry between streptococcal antigens and human proteins, including cardiac myosin epitopes, vimentin and other intracellular proteins is central to the pathogenesis of RHD. Autoreactive T cells migrate from the peripheral blood to the heart and proliferate in the valves in response to stimulation with specific cytokines. The types of cells involved in the inflammation as well as different cytokine profiles in these patients are being investigated. High TNF alpha, interferon gamma, and low IL4 are found in the rheumatic valve suggesting an imbalance between Th1 and Th2 cytokines and probably contributing to the progressive and permanent valve damage. Animal model of ARF in the Lewis rat may further contribute towards understanding the ARF

  4. MicroRNAs in the pathogenesis of cystic kidney disease.

    Science.gov (United States)

    Phua, Yu Leng; Ho, Jacqueline

    2015-04-01

    Cystic kidney diseases are common renal disorders characterized by the formation of fluid-filled epithelial cysts in the kidneys. The progressive growth and expansion of the renal cysts replace existing renal tissue within the renal parenchyma, leading to reduced renal function. While several genes have been identified in association with inherited causes of cystic kidney disease, the molecular mechanisms that regulate these genes in the context of post-transcriptional regulation are still poorly understood. There is increasing evidence that microRNA (miRNA) dysregulation is associated with the pathogenesis of cystic kidney disease. In this review, recent studies that implicate dysregulation of miRNA expression in cystogenesis will be discussed. The relationship of specific miRNAs, such as the miR-17∼92 cluster and cystic kidney disease, miR-92a and von Hippel-Lindau syndrome, and alterations in LIN28-LET7 expression in Wilms tumor will be explored. At present, there are no specific treatments available for patients with cystic kidney disease. Understanding and identifying specific miRNAs involved in the pathogenesis of these disorders may have the potential to lead to the development of novel therapies and biomarkers.

  5. Contribution of pertussis toxin to the pathogenesis of pertussis disease

    Science.gov (United States)

    Carbonetti, Nicholas H.

    2015-01-01

    Pertussis toxin (PT) is a multisubunit protein toxin secreted by Bordetella pertussis, the bacterial agent of the disease pertussis or whooping cough. PT in detoxified form is a component of all licensed acellular pertussis vaccines, since it is considered to be an important virulence factor for this pathogen. PT inhibits G protein-coupled receptor signaling through Gi proteins in mammalian cells, an activity that has led to its widespread use as a cell biology tool. But how does this activity of PT contribute to pertussis, including the severe respiratory symptoms of this disease? In this minireview, the contribution of PT to the pathogenesis of pertussis disease will be considered based on evidence from both human infections and animal model studies. Although definitive proof of the role of PT in humans is lacking, substantial evidence supports the idea that PT is a major contributor to pertussis pathology, including the severe respiratory symptoms associated with this disease. PMID:26394801

  6. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms.

    Science.gov (United States)

    Ramos-Leví, Ana Maria; Marazuela, Mónica

    2016-10-01

    Hashimoto's thyroiditis (HT) and Graves' disease (GD) are two very common organ-specific autoimmune diseases which are characterized by circulating antibodies and lymphocyte infiltration. Although humoral and cellular mechanisms have been classically considered separately in the pathogenesis of autoimmune thyroid diseases (AITD), recent research suggests a close reciprocal relationship between these two immune pathways. Several B- and T-cell activation pathways through antigen-presenting cells (APCs) and cytokine production lead to specific differentiation of T helper (Th) and T regulatory (Treg) cells. This review will focus on the cellular mechanisms involved in the pathogenesis of AITD. Specifically, it will provide reasons for discarding the traditional simplistic dichotomous view of the T helper type 1 and 2 pathways (Th1/Th2) and will focus on the role of the recently characterized T cells, Treg and Th17 lymphocytes, as well as B lymphocytes and APCs, especially dendritic cells (DCs). Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases.

    Science.gov (United States)

    Dolan, Kyle T; Chang, Eugene B

    2017-01-01

    The rising incidence of inflammatory bowel diseases in recent decades has notably paralleled changing lifestyle habits in Western nations, which are now making their way into more traditional societies. Diet plays a key role in IBD pathogenesis, and there is a growing appreciation that the interaction between diet and microbes in a susceptible person contributes significantly to the onset of disease. In this review, we examine what is known about dietary and microbial factors that promote IBD. We summarize recent findings regarding the effects of diet in IBD epidemiology from prospective population cohort studies, as well as new insights into IBD-associated dysbiosis. Microbial metabolism of dietary components can influence the epithelial barrier and the mucosal immune system, and understanding how these interactions generate or suppress inflammation will be a significant focus of IBD research. Our knowledge of dietary and microbial risk factors for IBD provides important considerations for developing therapeutic approaches through dietary modification or re-shaping the microbiota. We conclude by calling for increased sophistication in designing studies on the role of diet and microbes in IBD pathogenesis and disease resolution in order to accelerate progress in response to the growing challenge posed by these complex disorders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease.

    Science.gov (United States)

    Barage, Sagar H; Sonawane, Kailas D

    2015-08-01

    Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Selected Aspects in the Pathogenesis of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    György Nagy

    2015-01-01

    Full Text Available Autoimmune processes can be found in physiological circumstances. However, they are quenched with properly functioning regulatory mechanisms and do not evolve into full-blown autoimmune diseases. Once developed, autoimmune diseases are characterized by signature clinical features, accompanied by sustained cellular and/or humoral immunological abnormalities. Genetic, environmental, and hormonal defects, as well as a quantitative and qualitative impairment of immunoregulatory functions, have been shown in parallel to the relative dominance of proinflammatory Th17 cells in many of these diseases. In this review we focus on the derailed balance between regulatory and Th17 cells in the pathogenesis of autoimmune diseases. Additionally, we depict a cytokine imbalance, which gives rise to a biased T-cell homeostasis. The assessment of Th17/Treg-cell ratio and the simultaneous quantitation of cytokines, may give a useful diagnostic tool in autoimmune diseases. We also depict the multifaceted role of dendritic cells, serving as antigen presenting cells, contributing to the development of the pathognomonic cytokine signature and promote cellular and humoral autoimmune responses. Finally we describe the function and role of extracellular vesicles in particular autoimmune diseases. Targeting these key players of disease progression in patients with autoimmune diseases by immunomodulating therapy may be beneficial in future therapeutic strategies.

  10. The pathogenesis of foot-and-mouth disease in pigs

    Directory of Open Access Journals (Sweden)

    Carolina eStenfeldt

    2016-05-01

    Full Text Available The greatest proportion of foot-and-mouth disease (FMD clinical research has been dedicated to elucidating pathogenesis and enhancing vaccine protection in cattle with less efforts invested in studies specific to pigs. However, accumulated evidence from FMD outbreaks and experimental investigations suggest that critical components of FMD pathogenesis, immunology, and vaccinology cannot be extrapolated from investigations performed in cattle to explain or predict outcomes of infection or vaccination in pigs. Furthermore, it has been shown that failure to account for these differences may have substantial consequences when FMD outbreaks occur in areas with dense pig populations. Recent experimental studies have confirmed some aspects of conventional wisdom by demonstrating that pigs are more susceptible to FMD virus (FMDV infection via exposure of the upper gastrointestinal tract (oropharynx than through inhalation of virus. The infection spreads rapidly within groups of pigs that are housed together, although efficiency of transmission may vary depending on virus strain and exposure intensity. Multiple investigations have demonstrated that physical separation of pigs is sufficient to prevent virus transmission under experimental conditions. Detailed pathogenesis studies have recently demonstrated that specialized epithelium within porcine oropharyngeal tonsils constitute the primary infection sites following simulated-natural virus exposure. Furthermore, epithelium of the tonsil of the soft palate supports substantial virus replication during the clinical phase of infection, thus providing large amounts of virus that can be shed into the environment. Due to massive amplification and shedding of virus, acutely infected pigs constitute a considerable source of contagion. FMDV infection results in modulation of several components of the host immune response. The infection is ultimately cleared in association with a strong humoral response and, in

  11. Molecular Mechanisms of Disease Pathogenesis Differ in Krabbe Disease Variants

    DEFF Research Database (Denmark)

    Spratley, Samantha J; Hill, Chris H; Viuff, Agnete H

    2016-01-01

    different mutations have been identified in GALC that cause Krabbe disease but the mechanisms by which they cause disease remain unclear. We have generated monoclonal antibodies against full-length human GALC and used these to monitor the trafficking and processing of GALC variants in cell-based assays...

  12. Sugary drinks in the pathogenesis of obesity and cardiovascular diseases.

    Science.gov (United States)

    Brown, C M; Dulloo, A G; Montani, J-P

    2008-12-01

    Soft drink overconsumption is now considered to be a major public health concern with implications for cardiovascular diseases. This follows a number of studies performed in animals suggesting that chronic consumption of refined sugars can contribute to metabolic and cardiovascular dysregulation. In particular, the monosaccharide fructose has been attracting increasing attention as the more harmful sugar component in terms of weight gain and metabolic disturbances. High-fructose corn syrup is gradually replacing sucrose as the main sweetener in soft drinks and has been blamed as a potential contributor to the current high prevalence of obesity. There is also considerable evidence that fructose, rather than glucose, is the more damaging sugar component in terms of cardiovascular risk. This review focuses on the potential role of sugar drinks, particularly the fructose component, in the pathogenesis of obesity and cardiovascular diseases.

  13. New Insights into the Pathogenesis of Celiac Disease.

    Science.gov (United States)

    De Re, Valli; Magris, Raffaella; Cannizzaro, Renato

    2017-01-01

    Celiac disease (CD) is an autoimmune and multisystem gluten-related disorder that causes symptoms involving the gastrointestinal tract and other organs. Pathogenesis of CD is only partially known. It had been established that ingestion of gluten proteins present in wheat and other cereals are necessary for the disease and develops in individuals genetically predisposed carrying the DQ2 or DQ8 human leukocyte antigen haplotypes. In this review, we had pay specific attention on the last discoveries regarding the three cellular components mainly involved in the development and maintenance of CD: T-cells, B-cells, and microbioma. All of them had been showed critical for the interaction between inflammatory immune response and gluten peptides. Although the mechanisms of interaction among overall these components are not yet fully understood, recent proteomics and molecular studies had shed some lights in the pathogenic role of tissue transglutaminase 2 in CD and in the alteration of the intestinal barrier function induced by host microbiota.

  14. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  15. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease

    Science.gov (United States)

    Gagnon, Philippe; Guenette, Jordan A; Langer, Daniel; Laviolette, Louis; Mainguy, Vincent; Maltais, François; Ribeiro, Fernanda; Saey, Didier

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a preventable and treatable lung disease characterized by airflow limitation that is not fully reversible. In a significant proportion of patients with COPD, reduced lung elastic recoil combined with expiratory flow limitation leads to lung hyperinflation during the course of the disease. Development of hyperinflation during the course of COPD is insidious. Dynamic hyperinflation is highly prevalent in the advanced stages of COPD, and new evidence suggests that it also occurs in many patients with mild disease, independently of the presence of resting hyperinflation. Hyperinflation is clinically relevant for patients with COPD mainly because it contributes to dyspnea, exercise intolerance, skeletal muscle limitations, morbidity, and reduced physical activity levels associated with the disease. Various pharmacological and nonpharmacological interventions have been shown to reduce hyperinflation and delay the onset of ventilatory limitation in patients with COPD. The aim of this review is to address the more recent literature regarding the pathogenesis, assessment, and management of both static and dynamic lung hyperinflation in patients with COPD. We also address the influence of biological sex and obesity and new developments in our understanding of hyperinflation in patients with mild COPD and its evolution during progression of the disease. PMID:24600216

  16. Roles of T Cells in the Pathogenesis of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Dinglei Su

    2013-01-01

    Full Text Available γδ T cells are a minor population of T cells that express the TCR γδ chains, mainly distributed in the mucosal and epithelial tissue and accounting for less than 5% of the total T cells in the peripheral blood. By bridging innate and adaptive immunity, γδ T cells play important roles in the anti-infection, antitumor, and autoimmune responses. Previous research on γδ T cells was primarily concentrated on infectious diseases and tumors, whereas their functions in autoimmune diseases attracted much attention. In this paper, we summarized the various functions of γδ T cells in two prototypical autoimmune connective tissue diseases, that is, SLE and RA, elaborating on their antigen-presenting capacity, secretion of proinflammatory cytokines, immunomodulatory effects, and auxiliary function for B cells, which contribute to overproduction of proinflammatory cytokines and pathogenic autoantibodies, ultimately leading to the onset of these autoimmune diseases. Elucidation of the roles of γδ T cells in autoimmune diseases is not only conducive to in-depth understanding of the pathogenesis of these diseases, but also beneficial in providing theoretical support for the development of γδ T-cell-targeted therapy.

  17. Is Spinal Muscular Atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications?

    Science.gov (United States)

    Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B.; Corti, Stefania

    2016-01-01

    Spinal Muscular Atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the Survival Motor Neuron 1 (SMN1) gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. These contribution of non-motor neuronal cells to disease pathogenesis has important therapeutic implications: in fact, even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It will be crucial to take this evidence into account before clinical translation of the novel therapeutic approaches that are currently under development. PMID:26681261

  18. [Advances in the pathogenesis of non alcoholic fatty liver disease].

    Science.gov (United States)

    Pár, Alajos; Pár, Gabriella

    2017-06-01

    Non alcoholic fatty liver disease is the hepatic manifestation of metabolic syndrome, and the most common liver disease. Its more aggressive form is the non alcoholic steatohepatitis. Multiple genetic and environmental factors lead to the accumulation of triglicerides and the inflammatory cascade. High fat diet, obesity, adipocyte dysfunction with cytokine production, insulin resistance and increased lipolysis with free fatty acid flux into the liver - all are the drivers of liver cell injury. Activation of inflammasome by damage- or pathogen-associated molecular patterns results in "steril inflammation" and immune response, while the hepatic stellate cells and progenitor cells lead to fibrogenesis. Small intestinal bacterial overgrowth and gut dysbiosis are also of pivotal importance in the inflammation. Among the susceptible genetic factors, mutations of patatin-like phospholipase domain containing 3 and the transmembrane 6 superfamily 2 genes play a role in the development and progression of the disease, similarly as do epigenetic regulators such as microRNAs and extracellular vesicles. Better understanding of the pathogenesis of non alcoholic fatty liver disease may identify novel therapeutic agents that improve the outcome of the disease. Orv Hetil. 2017; 158(23): 882-894.

  19. Current concepts of the pathogenesis of inflammatory bowel disease.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    Although the cause of inflammatory bowel disease is not known, the pathogenesis involves an immune-mediated tissue damage that is the result of an interaction among genetic predisposing factors, exogenous triggers and endogenous modifying influences. Multiple genes are involved and operate at the level of the immune response and at the target organ. Exogenous triggers include the enteric microflora which might stimulate the mucosal immune system in genetically predisposed individuals. Endogenous modifying factors such as the psychoneuroendocrine system have regulatory effects on the immune system and the inflammatory response, and may influence the course of the disease. While autoimmune phenomena do occur, particularly in ulcerative colitis, there is no evidence that they are directly responsible for the tissue damage. It appears more likely, particularly in Crohn\\'s disease, that tissue injury may occur as an indirect or "bystander" effect of mucosal T-cell hyperactivation, perhaps in response to a normal enteric microbial antigen. Most of the immunologic and histologic features of Crohn\\'s disease can be explained by the effects of T-cell derived and other cytokines on the epithelium, the local immune system, the microvasculature, and the recruitment of auxiliary effector cells such as neutrophils.

  20. Pilonidal sinus disease - Etiological factors, pathogenesis and clinical features

    Directory of Open Access Journals (Sweden)

    Kazim Duman

    2016-12-01

    Full Text Available and lsquo;Pilonidal sinus' disease, which is most commonly seen in reproductive populations, such as young adults - mostly in males who are in their twenties - is actually a controversial disease in that there is no consensus on its many facets. It is sometimes seen as an infected abscess draining from an opening or a lesion extending to the perineum. It may also present as a draining fistula opening to skin. In terms of etiological factors, various theories (main theories being congenital and acquired have been established since it was first described, no universal understanding achieved. A long and significant post-operative care period with different lengths of recovery depending on the type of operation are quite prevalent with regards to recurrence and complication status. In order to prevent recurrence and improve the quality of life, etiological and predisposing factors as well as clinical features of sacrococcygeal pilonidal disease should be well known, a detailed differential diagnosis should be made, and a suitable and timely intervention should be performed. It was aimed here to explain the etiological factors, pathogenesis and clinical features of the disease that may present with various clinical symptoms. [Arch Clin Exp Surg 2016; 5(4.000: 228-232

  1. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gagnon P

    2014-02-01

    Full Text Available Philippe Gagnon,1,2 Jordan A Guenette,3,4 Daniel Langer,5 Louis Laviolette,2 Vincent Mainguy,1 François Maltais,1,2 Fernanda Ribeiro,1,2 Didier Saey1,2 1Faculté de Médecine, Université Laval, 2Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, 3Centre for Heart Lung Innovation, University of British Columbia, St Paul's Hospital, 4Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada; 5Department of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium Abstract: Chronic obstructive pulmonary disease (COPD is a preventable and treatable lung disease characterized by airflow limitation that is not fully reversible. In a significant proportion of patients with COPD, reduced lung elastic recoil combined with expiratory flow limitation leads to lung hyperinflation during the course of the disease. Development of hyperinflation during the course of COPD is insidious. Dynamic hyperinflation is highly prevalent in the advanced stages of COPD, and new evidence suggests that it also occurs in many patients with mild disease, independently of the presence of resting hyperinflation. Hyperinflation is clinically relevant for patients with COPD mainly because it contributes to dyspnea, exercise intolerance, skeletal muscle limitations, morbidity, and reduced physical activity levels associated with the disease. Various pharmacological and nonpharmacological interventions have been shown to reduce hyperinflation and delay the onset of ventilatory limitation in patients with COPD. The aim of this review is to address the more recent literature regarding the pathogenesis, assessment, and management of both static and dynamic lung hyperinflation in patients with COPD. We also address the influence of biological sex and obesity and new developments in our understanding of hyperinflation in patients with mild COPD and its evolution during

  2. The pathogenesis of amyloidosis in periodic disease: Some aspects

    Directory of Open Access Journals (Sweden)

    Z. T. Djndoyan

    2014-07-01

    Full Text Available Sufficient information indicating the implication of dysfunction of interleukins (IL-6 and IL-1 in particular in the pathogenesis of amyloidosis in a number of autoinflammatory, rheumatic, and autoimmune diseases, including those in periodic disease (PD, has been recently accumulated. Its genetic defect – pirin mutation – gives rise to an alternative innate immune response (phagocytic cell activation to secrete IL-1 by macrophages and to activate T-helper cells. This causes imbalance in the synthesis of proinflammatory (IL-6, IL-8, and TNF-α and anti-inflammatory (IL-4, IL-10, and IL-1 receptor antagonist cytokines. Moreover, the uncontrolled macrophage (monocyte secretion of a great deal of IL-6 that together with IL-1 is a mediator of the synthesis of the serum amyloid fibril protein precursor SAA by hepatocytes, neutrophils, and fibroblasts plays one of the key roles in the pathogenesis of PD through amyloidosis. With this, IL-6 stimulates the inflammatory process, by enhancing the release of lysosomal enzymes, reactive oxygen species, and eicosanoids (prostaglandins, leukotrienes, thromboxane from the polymorphic nuclear leukocytes, macrophages, endotheliocytes, and fibroblasts and by augmenting the chemotaxis of macrophages and neutrophils, and the degranulation of the latter, i.e. through its action on the effector cells of inflammation, and prepares the tissue basis for amyloid deposits in this fashion. Thus, the analysis of literary and own materials gives grounds to suggest that pirin mutation is a trigger of the synthesis of IL-1 and IL-6 in PD and their hypersecretion is an initial link of the synthesis of SAA.

  3. Edaravone injection ameliorates cognitive deficits in rat model of Alzheimer's disease.

    Science.gov (United States)

    Yang, Rui; Wang, Qingjun; Li, Fang; Li, Jian; Liu, Xuewen

    2015-11-01

    Oxidative stress plays important role in the pathogenesis of Alzheimer's disease (AD). Edaravone is a potent free radical scavenger that exerts antioxidant effects. Therefore, in this study we aimed to investigate neuroprotective effects of edaravone for AD. Wistar rats were randomly divided into three groups (n = 15): control group, model group, and treatment group, which were injected with phosphate buffered saline, Aβ1-40, and Aβ1-40 together with 5 mg/kg edaravone, respectively, into the right hippocampal dentate gyrus. Spatial learning and memory of the rats were examined by Morris water maze test. 4-Hydroxynonenal (4-HNE) level in rat hippocampus was analyzed by immunohistochemistry. Acetylcholinesterase (AChE) and choline acetylase (ChAT) activities were assayed by commercial kits. We found that edaravone ameliorated spatial learning and memory deficits in the rats. 4-HNE level in the hippocampus as well as AChE and ChAT activities in the hippocampus was significantly lower in treatment group than in model group. In conclusion, edaravone may be developed as a novel agent for the treatment of AD for improving cholinergic system and protecting neurons from oxidative toxicity.

  4. Microbial Endocrinology in the Pathogenesis of Infectious Disease.

    Science.gov (United States)

    Lyte, Mark

    2016-04-01

    Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology-based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.

  5. New Insights into the Pathogenesis of Celiac Disease

    Directory of Open Access Journals (Sweden)

    Valli De Re

    2017-08-01

    Full Text Available Celiac disease (CD is an autoimmune and multisystem gluten-related disorder that causes symptoms involving the gastrointestinal tract and other organs. Pathogenesis of CD is only partially known. It had been established that ingestion of gluten proteins present in wheat and other cereals are necessary for the disease and develops in individuals genetically predisposed carrying the DQ2 or DQ8 human leukocyte antigen haplotypes. In this review, we had pay specific attention on the last discoveries regarding the three cellular components mainly involved in the development and maintenance of CD: T-cells, B-cells, and microbioma. All of them had been showed critical for the interaction between inflammatory immune response and gluten peptides. Although the mechanisms of interaction among overall these components are not yet fully understood, recent proteomics and molecular studies had shed some lights in the pathogenic role of tissue transglutaminase 2 in CD and in the alteration of the intestinal barrier function induced by host microbiota.

  6. Pathogenesis of peptic ulcer disease and current trends in therapy.

    Science.gov (United States)

    Desai, J K; Goyal, R K; Parmar, N S

    1997-01-01

    Traditionally drugs used in peptic ulcer have been directed mainly against a single luminal damaging agent i.e. hydrochloric acid and a plethora of drugs like antacids, anticholinergics, histamine H2-antagonists etc. have flooded the market. An increase in 'aggressive' factors like acid and pepsin is found only in a minority of peptic ulcer patients. These factors do not alter during or after spontaneous healing. It is well-known that the gastric mucosa can resist auto-digestion though it is exposed to numerous 'insults' like high concentration of hydrochloric acid, pepsin, reflux of bile, spicy food, microorganisms and at times alcohol and irritant drugs. It is thus evident that the integrity of the gastric mucosa is maintained by defense mechanisms against these 'aggressive' damaging factors. Recently, attention has been focused more on gastroduodenal defense mechanisms leading to the concept of 'Cytoprotection'. The old dictum "no acid--no ulcer" now extends to "if acid--why ulcer"? as a fundamental question. During last decade more information has poured in about the prevalence and changing pattern of the disease, the influence of environmental factors and speculation on the role of a recently characterized bacterial organism, Helicobacter pylori which colonizes in the gastric mucosa, particularly the antral region. This review briefly describes current knowledge about the pathogenesis of peptic ulcer disease and discusses strategies for its treatment.

  7. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis.

    Science.gov (United States)

    Viola, Kirsten L; Klein, William L

    2015-02-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they

  8. Novel lipid signaling pathways in Alzheimer's disease pathogenesis.

    Science.gov (United States)

    Giannopoulos, Phillip F; Joshi, Yash B; Praticò, Domenico

    2014-04-15

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. With an increasing longevity and the absence of a cure, AD has become not only a major health problem but also a heavy social and economic burden worldwide. In addition to the presence of abundant intra- and extra-cellular neurotoxic amyloid β (Aβ) peptides, which form the amyloid plaques, and intracellular hyperphosphorylated tau protein, the main component of neurofibrillary tangles, consistent evidence indicates that the AD brain is characterized by extensive neuroinflammatory processes. The 5-lipoxygenase (5LO) is a pro-inflammatory enzymatic pathway widely distributed within the central nervous system and is up-regulated in AD. In the last five years our group has been involved in unraveling the neurobiology of this protein and investigating its relationship with cellular and molecular events of functional importance in AD pathogenesis. By using a combination of in vitro and in vivo experimental tools and implementing genetic as well as pharmacological approaches today we know that 5LO is likely an endogenous regulator of Aβ formation via the modulation of the γ-secretase complex, and tau metabolism by modulating its phosphorylation state at specific epitopes via the cyclin-dependent kinase-5 (cdk-5). In addition, 5LO influences synaptic function and integrity and by doing so significantly affects learning and memory in the Tg2576 and 3xTg AD transgenic mouse models. Taken together our data establish this protein as a pleiotropic contributor to the development of the full spectrum of the AD-like phenotype in these mouse models of the disease, making it a viable therapeutic target for the treatment of AD in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Distinct Roles of Wnt/β-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Shi, Juan; Li, Feng; Luo, Meihui; Wei, Jun

    2017-01-01

    Wnt signaling pathways are tightly controlled under a physiological condition, under which they play key roles in many biological functions, including cell fate specification and tissue regeneration. Increasing lines of evidence recently demonstrated that a dysregulated activation of Wnt signaling, particularly the Wnt/β-catenin signaling, was involved in the pathogenesis of chronic pulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). In this respect, Wnt signaling interacts with other cellular signaling pathways to regulate the initiation and pathogenic procedures of airway inflammation and remodeling, pulmonary myofibroblast proliferation, epithelial-to-mesenchymal transition (EMT), and development of emphysema. Intriguingly, Wnt/β-catenin signaling is activated in IPF; an inhibition of this signaling leads to an alleviation of pulmonary inflammation and fibrosis in experimental models. Conversely, Wnt/β-catenin signaling is inactivated in COPD tissues, and its reactivation results in an amelioration of airspace enlargement with a restored alveolar epithelial structure and function in emphysema models. These studies thus imply distinct mechanisms of Wnt/β-catenin signaling in the pathogenesis of these two chronic pulmonary diseases, indicating potential targets for COPD and IPF treatments. This review article aims to summarize the involvement and pathogenic roles of Wnt signaling pathways in the COPD and IPF, with a focus on the implication of Wnt/β-catenin signaling as underlying mechanisms and therapeutic targets in these two incurable diseases. PMID:28588349

  10. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Martin

    2011-01-01

    Full Text Available Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Parkinson's disease, supranuclear palsy, Huntington's disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This paper focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.

  11. Neuroprotective effect and mechanism of daucosterol palmitate in ameliorating learning and memory impairment in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Ji, Zhi-Hong; Xu, Zhong-Qi; Zhao, Hong; Yu, Xin-Yu

    2017-03-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory decline and cognitive impairment. Amyloid beta (Aβ) has been proposed as the causative role for the pathogenesis of AD. Accumulating evidence demonstrates that Aβ neurotoxicity is mediated by glutamate excitotoxicity. Daucosterol palmitate (DSP), a plant steroid with anti-glutamate excitotoxicity effect, was isolated from the anti-aging traditional Chinese medicinal herb Alpinia oxyphylla Miq. in our previous study. Based on the anti-glutamate excitotoxicity effect of DSP, in this study we investigated potential benefit and mechanism of DSP in ameliorating learning and memory impairment in AD model rats. Results from this study showed that DSP administration effectively ameliorated Aβ-induced learning and memory impairment in rats, markedly inhibited Aβ-induced hippocampal ROS production, effectively prevented Aβ-induced hippocampal neuronal damage and significantly restored hippocampal synaptophysin expression level. This study suggests that DSP may be a potential candidate for development as a therapeutic agent for AD cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Kallistatin Ameliorates Influenza Virus Pathogenesis by Inhibition of Kallikrein-Related Peptidase 1-Mediated Cleavage of Viral Hemagglutinin

    Science.gov (United States)

    Leu, Chia-Hsing; Yang, Mei-Lin; Chung, Nai-Hui; Huang, Yen-Jang; Su, Yu-Chu; Chen, Yi-Cheng; Lin, Chia-Cheng; Shieh, Gia-Shing; Chang, Meng-Ya; Wang, Shainn-Wei; Chang, Yao; Chao, Julie; Chao, Lee

    2015-01-01

    Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses. PMID:26149981

  13. Peripheral Ulcerative Keratitis Associated with Autoimmune Disease: Pathogenesis and Treatment

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2017-01-01

    Full Text Available Peripheral ulcerative keratitis (PUK is type of crescent-shaped inflammatory damage that occurs in the limbal region of the cornea. PUK is always combined with an epithelial defect and the destruction of the peripheral corneal stroma. PUK may have a connection to systemic conditions, such as long-standing rheumatoid arthritis (RA, systemic lupus erythematosus (SLE, Wegener granulomatosis (WG, relapsing polychondritis, classic polyarteritis nodosa and its variants, microscopic polyangiitis, and Churg-Strauss syndrome. However, the most common connection is with RA, which is also the focus of this review. The pathogenesis of PUK is still unclear. It is thought that circulating immune complexes and cytokines exert an important influence on the progression of this syndrome. Treatment is applied to inhibit certain aspects of PUK pathogenesis.

  14. Clinical implications of shared genetics and pathogenesis in autoimmune diseases

    NARCIS (Netherlands)

    Zhernakova, Alexandra; Withoff, Sebo; Wijmenga, Cisca

    2013-01-01

    Many endocrine diseases, including type 1 diabetes mellitus, Graves disease, Addison disease and Hashimoto disease, originate as an autoimmune reaction that affects disease-specific target organs. These autoimmune diseases are characterized by the development of specific autoantibodies and by the

  15. Pathogenesis of salivary gland disease and xerostomia. The conception of Mikulicz's disease based on new knowledge

    International Nuclear Information System (INIS)

    Himi, Tetsuo; Kanaizumi, Etsuko; Ogasawara, Noriko; Yamamoto, Motohisa; Takahashi, Hiroki

    2007-01-01

    This review focuses on two topics of salivary gland diseases regarding xerostomia. First, the pathogenesis and treatment of xerostomia after radiotherapy against head and neck cancer is discussed. It is well known that the extent of radiation-induced salivary dysfunction and mucositis depends on the radiation dose and field. Moreover, the balance in the defense system of oropharyngeal cavity alters after radiotherapy. This altered balance may impair the ability to maintain the stable immunological control mechanism. Second, the newly established concept about Mikulicz's disease is discussed. Recently, elevated IgG4 concentration in serum and prominent infiltrating by plasmacytes expressing IgG4 in the salivary glands in Mikulicz's disease were revealed. Mikulicz's disease is different from Sjoegren's syndrome, and may be a systemic IgG4-related plasmacytic disease. (author)

  16. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  17. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.

    Science.gov (United States)

    Aflaki, Elma; Stubblefield, Barbara K; Maniwang, Emerson; Lopez, Grisel; Moaven, Nima; Goldin, Ehud; Marugan, Juan; Patnaik, Samarjit; Dutra, Amalia; Southall, Noel; Zheng, Wei; Tayebi, Nahid; Sidransky, Ellen

    2014-06-11

    Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes, particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore, we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition, we created induced pluripotent stem cell (iPSC)-derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages, reduced glycolipid storage, and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development. Copyright © 2014, American Association for the Advancement of Science.

  18. Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.

    Science.gov (United States)

    Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D

    2011-11-01

    Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.

  19. Influence of intestinal microbiota in celiac disease pathogenesis and risk

    OpenAIRE

    OLIVARES SEVILLA, MARTA

    2016-01-01

    [EN] Celiac disease (CD) is a chronic enteropathy triggered by cereal gluten proteins in genetically predisposed individuals. The etiology is strongly associated with the genes of the human leukocyte antigen (HLA) encoding the DQ2/DQ8 molecules. Most CD patients carry this genotype but this is also present in the 40% of the general population and only a small percentage develops the disease. Thus, the HLA-DQ genotype is necessary but not solely responsible for the disease development. Gluten ...

  20. ETIOLOGY, PATHOGENESIS AND CLINICAL DIAGNOSIS OF PEYRONIE’S DISEASE

    Directory of Open Access Journals (Sweden)

    Тарас Валерьевич Шатылко

    2017-03-01

    Full Text Available Peyronie’s disease remains an understudied progressing disease being  one of the relevant problems of modern urology and andrology. This condition may cause erectile dysfunction in men of fertile age and its negative impact on sexual function adversely affects patients’ quality of life. This article reviews epidemiology, pathophysiology and specifics of recording history and clinical diagnosis of Peyronie’s disease, that includes questionnaires, physical examination, evaluation of erectile function and penile deformity.

  1. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  2. A potential role of Chlamydia pneumoniae in the pathogenesis of periodontal disease in adolescents and adults.

    Science.gov (United States)

    Ajonuma, Louis Chukwuemeka

    2010-01-01

    Periodontal diseases are among the most common human infections that not only impact oral health but also are associated with adverse systemic diseases such as cardiovascular diseases, stroke, diabetes, and respiratory diseases. Periodontal diseases is a chronic severe inflammatory process of the gingiva leading to the destruction of tooth-supporting structures, alveolar bone, and subsequently tooth loss due to bacteria infection. While it has been reported that several oral biofilm-forming bacteria might be involved, the role of C. pneumoniae infection in the pathogenesis of periodontal disease remains unknown. The present hypothesis proposes that C. pneumoniae is involved in the pathogenesis of periodontal diseases. This will lead to a better understanding of the etiopathogenesis of periodontal disease, better treatment strategy and savings on total health care costs.

  3. Review: Cytokines in Gaucher disease: Role in the pathogenesis of ...

    African Journals Online (AJOL)

    Gaucher disease (GD) is the most frequently encountered lysosomal storage disease caused by inborn defects of themembrane-bound lysosomal enzyme, acid b-glucosidase or glucocerebrosidase. This defective activity causes an accumulation of glucocerebroside (glucosylceramide) in the lysosomes of cells derived from ...

  4. The epidemiology and the pathogenesis of inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Karlinger, Kinga E-mail: karlking@radi.sote.hu; Gyoerke, Tamas; Makoe, Erno; Mester, Adam; Tarjan, Zsolt

    2000-09-01

    The etiology of inflammatory bowel disease (IBD) is still unknown. However, a satisfactory solution cannot be far away. IBD actually encompasses two diseases, i.e. Crohn's disease (CD) and ulcerous colitis (UC). These diseases resemble each other so closely that they cannot be distinguished even pathologically, but differ from each other sufficiently to regard them as independent entities. Epidemiological observations may be helpful in identifying the true causative factors of this evasive disease. Geographically, the prevalence of the disease has a slope from North to South and, to a lesser degree, from West to East. The Western-Eastern discrepancy can be attributed to a difference in Western life styles. The incidence of the disease has been increasing world-wide of late, but its spread has been slowing down in highly affected countries. Racial and ethnic relations in different populations and immigration studies offer interesting data which can reflect genetic, inherited, environmental and behavioural factors. The disease seems to have a characteristic racial-ethnic distribution: the Jewish population is highly susceptible everywhere, but its prevalence in that population nears that of the domestic society in which they live. In Hungary, the Roma (Gypsies) have a considerably lower prevalence than the average population. This can be attributed to a genetic or environmental influence. According to age, the onset of the disease occurs more often in the second or the third decade of life, but there also is another peak in the 60s. Regarding sexual distribution, there is a slight preponderance of colitis ulcerosa in men and of Crohn's disease in women. It may correspond to the stronger auto-immune affection in the process of Crohn's disease. Environmental factors and behavioural influences also are investigated. Diet, the role of the early ages, smoking habits and the influence of hormonal status and drugs are viewed as useful contributing factors in

  5. The epidemiology and the pathogenesis of inflammatory bowel disease

    International Nuclear Information System (INIS)

    Karlinger, Kinga; Gyoerke, Tamas; Makoe, Erno; Mester, Adam; Tarjan, Zsolt

    2000-01-01

    The etiology of inflammatory bowel disease (IBD) is still unknown. However, a satisfactory solution cannot be far away. IBD actually encompasses two diseases, i.e. Crohn's disease (CD) and ulcerous colitis (UC). These diseases resemble each other so closely that they cannot be distinguished even pathologically, but differ from each other sufficiently to regard them as independent entities. Epidemiological observations may be helpful in identifying the true causative factors of this evasive disease. Geographically, the prevalence of the disease has a slope from North to South and, to a lesser degree, from West to East. The Western-Eastern discrepancy can be attributed to a difference in Western life styles. The incidence of the disease has been increasing world-wide of late, but its spread has been slowing down in highly affected countries. Racial and ethnic relations in different populations and immigration studies offer interesting data which can reflect genetic, inherited, environmental and behavioural factors. The disease seems to have a characteristic racial-ethnic distribution: the Jewish population is highly susceptible everywhere, but its prevalence in that population nears that of the domestic society in which they live. In Hungary, the Roma (Gypsies) have a considerably lower prevalence than the average population. This can be attributed to a genetic or environmental influence. According to age, the onset of the disease occurs more often in the second or the third decade of life, but there also is another peak in the 60s. Regarding sexual distribution, there is a slight preponderance of colitis ulcerosa in men and of Crohn's disease in women. It may correspond to the stronger auto-immune affection in the process of Crohn's disease. Environmental factors and behavioural influences also are investigated. Diet, the role of the early ages, smoking habits and the influence of hormonal status and drugs are viewed as useful contributing factors in the

  6. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  7. Cytokines in Gaucher disease: Role in the pathogenesis of bone ...

    African Journals Online (AJOL)

    Azza A.G. Tantawy

    2015-03-03

    Mar 3, 2015 ... The impact of therapy on bone manifestations of Gaucher disease . ... types: classical or alternative, depending on the predominant cytokine in the .... avascular necrosis, bone infarcts and localised cortical thin- ning may be ...

  8. Autoimmune Addison's disease - An update on pathogenesis.

    Science.gov (United States)

    Hellesen, Alexander; Bratland, Eirik; Husebye, Eystein S

    2018-06-01

    Autoimmunity against the adrenal cortex is the leading cause of Addison's disease in industrialized countries, with prevalence estimates ranging from 93-220 per million in Europe. The immune-mediated attack on adrenocortical cells cripples their ability to synthesize vital steroid hormones and necessitates life-long hormone replacement therapy. The autoimmune disease etiology is multifactorial involving variants in immune genes and environmental factors. Recently, we have come to appreciate that the adrenocortical cell itself is an active player in the autoimmune process. Here we summarize the complex interplay between the immune system and the adrenal cortex and highlight unanswered questions and gaps in our current understanding of the disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Pathogenesis and potential therapy of autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    O.O. Melnyk

    2017-10-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is a hereditary disease characterized by progressive growth of the cyst and an increase in the total volume of the kidneys which leads to kidney failure. The main causes of ADPKD are mutations in the genes PKD1 and PKD2 which encode the formation of polycystin-1 and polycystin-2 proteins. There is a connection between structural and functional defects in the primary cilia with the ADPKD. The most promising drugs for the treatment of ADPKD today are vasopressin-2 receptor antagonists, m-TOR and c-AMP inhibitors.

  10. Radiosensitivity in Huntington's disease: implications for pathogenesis and presymptomatic diagnosis

    International Nuclear Information System (INIS)

    Moshell, A.N.; Tarone, R.E.; Barrett, S.F.; Robbins, J.H.

    1980-01-01

    Huntington's disease (HD) is a dominantly inherited fatal disorder characterised by premature death of nerve cells. Cultured lymphocyte lines from four patients with HD were abnormally sensitive to the lethal effects of X rays, as were lines from two of five subjects at risk for HD. The hypersensitivity is specific for ionising radiation, since HD lines had normal survival after exposure to ultraviolet radiation. The hypersensitivity, which may reflect an inherited defect in DNA repair, provides the basis for a presymptomatic diagnostic test for the disease. (author)

  11. Inhibition of miR-142-5P ameliorates disease in mouse models of experimental colitis.

    Directory of Open Access Journals (Sweden)

    Nicolette W Duijvis

    Full Text Available MicroRNAs (miRNAs are epigenetically involved in regulating gene expression. They may be of importance in the pathogenesis of inflammatory bowel disease (IBD. The aim of this study was to determine the role of miRNAs by their specific blocking in the CD4+CB45RBhi T-cell transfer model of chronic experimental colitis.Colitis caused by transfer of WT CD4+CD45RBhi T cells in severe combined immunodeficiency (SCID mice shares many features with human IBD. Colonic miRNA expression levels were measured at three time points in colitic mice, where a time-dependent upregulation of multiple miRNAs was seen. To inhibit these miRNAs, specific locked-nucleic-acid-modified (LNA oligonucleotides were administered in further experiments at the moment the mice demonstrated the first signs of colitis. As controls, PBS and a scrambled sequence of anti-miRNA were used. Genome-wide expression analyses were also performed in order to detect candidate target genes of miR-142-5p, of which inhibition resulted in most effective amelioration of colitis.Anti-miR-142-5p reduced colitis and related wasting disease when administered in the T-cell transfer model, reflected in reduced weight loss and a lower disease activity index (DAI. In further validation experiments we also observed a higher survival rate and less colonic histological inflammation in the antagomir-treated mice. Moreover, by genome-wide expression analyses, we found downstream activation of the anti-inflammatory IL10RA pathway, including three genes also found in the top-20 candidate target genes of miR-142-5p.In conclusion, CD4+CD45RBhi-transfer colitis induces miR-142-5p. Blocking miR-142-5p reduced colitis and prevented wasting disease, possibly by activation of the IL10RA pathway.

  12. Parkinson's disease : The syndrome, the pathogenesis and pathophysiology

    NARCIS (Netherlands)

    Bartels, Anna L.; Leenders, Klaus L.

    Parkinson's disease (PD) is characterised by a slowly expanding degeneration of neurons particularly in the mesencephalon. The causes are unknown although risk factors in the genetic and toxic domain are being discovered. An important pathophysiological feature in PD is the loss of part of the

  13. Astrogliosis : An integral player in the pathogenesis of Alzheimer's disease

    NARCIS (Netherlands)

    Osborn, Lana M.; Kamphuis, Willem; Wadman, Wytse J.; Hol, Elly M.

    Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta

  14. Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease

    NARCIS (Netherlands)

    Osborn, L.M.; Kamphuis, W.; Wadman, W.J.; Hol, E.M.

    2016-01-01

    Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta

  15. Astrogliosis : An integral player in the pathogenesis of Alzheimer's disease

    NARCIS (Netherlands)

    Osborn, Lana M; Kamphuis, W.; Wadman, Wytse J; Hol, Elly M

    2016-01-01

    Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta

  16. Contribution of inflammatory pathways to Fabry disease pathogenesis.

    Science.gov (United States)

    Rozenfeld, Paula; Feriozzi, Sandro

    2017-11-01

    Lysosomal storage diseases are usually considered to be pathologies in which the passive deposition of unwanted materials leads to functional changes in lysosomes. Lysosomal deposition of unmetabolized glycolipid substrates stimulates the activation of pathogenic cascades, including immunological processes, and particularly the activation of inflammation. In lysosomal storage diseases, the inflammatory response is continuously being activated because the stimulus cannot be eliminated. Consequently, inflammation becomes a chronic process. Lysosomes play a role in many steps of the immune response. Leukocyte perturbation and over-expression of immune molecules have been reported in Fabry disease. Innate immunity is activated by signals originating from dendritic cells via interactions between toll-like receptors and globotriaosylceramide (Gb3) and/or globotriaosylsphingosine (lyso-Gb3). Evidence indicates that these glycolipids can activate toll-like receptors, thus triggering inflammation and fibrosis cascades. In the kidney, Gb3 deposition is associated with the increased release of transforming growth factor beta and with epithelial-to-mesenchymal cell transition, leading to the over-expression of pro-fibrotic molecules and to renal fibrosis. Interstitial fibrosis is also a typical feature of heart involvement in Fabry disease. Endomyocardial biopsies show infiltration of lymphocytes and macrophages, suggesting a role for inflammation in causing tissue damage. Inflammation is present in all tissues and may be associated with other potentially pathologic processes such as apoptosis, impaired autophagy, and increases in pro-oxidative molecules, which could all contribute synergistically to tissue damage. In Fabry disease, the activation of chronic inflammation over time leads to organ damage. Therefore, enzyme replacement therapy must be started early, before this process becomes irreversible. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights

  17. Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases

    Science.gov (United States)

    Mohammad Hosseini, Akbar; Majidi, Jafar; Baradaran, Behzad; Yousefi, Mehdi

    2015-01-01

    Human Toll-like receptors (TLRs) are a family of transmembrane receptors, which play a key role in both innate and adaptive immune responses. Beside of recognizing specific molecular patterns that associated with different types of pathogens, TLRs may also detect a number of self-proteins and endogenous nucleic acids. Activating TLRs lead to the heightened expression of various inflammatory genes, which have a protective role against infection. Data rising predominantly from human patients and animal models of autoimmune disease indicate that, inappropriate triggering of TLR pathways by exogenous or endogenous ligands may cause the initiation and/or perpetuation of autoimmune reactions and tissue damage. Given their important role in infectious and non-infectious disease process, TLRs and its signaling pathways emerge as appealing targets for therapeutics. In this review, we demonstrate how TLRs pathways could be involved in autoimmune disorders and their therapeutic application. PMID:26793605

  18. New insights in the pathogenesis of atopic disease.

    Science.gov (United States)

    Ionescu, John G

    2009-01-01

    A causal link between the increasing environmental pollution and the fast spreading of allergic diseases is currently discussed. The exogenic and endogenic noxious agents contributing to the total environmental load are primarily acting through immunotoxic, sensitizing and neurotoxic mechanisms in animal experiments and in humans. Beside classic allergic-triggering factors (allergen potency, intermittent exposure to different allergen concentrations, presence of microbial bodies and sensitizing phenols), the adjuvant role of environmental pollutants gains increasing importance in allergy induction. Our therapy experience with more than 18.000 atopic eczema patients shows that beside allergic reactions pseudoallergic mechanisms through toxic environmental agents (formaldehyde, industrial and traffic smog, wood preservatives, microbial toxins, additive-rich food, nicotine, alcohol, pesticides, solvents, amalgam-heavy metals) are increasingly incriminated as causal factors for the complex symptomatology. The avoidance and elimination of such triggering factors before and during pregnancy and in early childhood may result in a significant decrease of the incidence of atopic diseases.

  19. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Ramón Cacabelos

    2017-03-01

    Full Text Available Parkinson’s disease (PD is the second most important age-related neurodegenerative disorder in developed societies, after Alzheimer’s disease, with a prevalence ranging from 41 per 100,000 in the fourth decade of life to over 1900 per 100,000 in people over 80 years of age. As a movement disorder, the PD phenotype is characterized by rigidity, resting tremor, and bradykinesia. Parkinson’s disease -related neurodegeneration is likely to occur several decades before the onset of the motor symptoms. Potential risk factors include environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular damage, and genomic defects. Parkinson’s disease neuropathology is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta, with widespread involvement of other central nervous system (CNS structures and peripheral tissues. Pathogenic mechanisms associated with genomic, epigenetic and environmental factors lead to conformational changes and deposits of key proteins due to abnormalities in the ubiquitin–proteasome system together with dysregulation of mitochondrial function and oxidative stress. Conventional pharmacological treatments for PD are dopamine precursors (levodopa, l-DOPA, l-3,4 dihidroxifenilalanina, and other symptomatic treatments including dopamine agonists (amantadine, apomorphine, bromocriptine, cabergoline, lisuride, pergolide, pramipexole, ropinirole, rotigotine, monoamine oxidase (MAO inhibitors (selegiline, rasagiline, and catechol-O-methyltransferase (COMT inhibitors (entacapone, tolcapone. The chronic administration of antiparkinsonian drugs currently induces the “wearing-off phenomenon”, with additional psychomotor and autonomic complications. In order to minimize these clinical complications, novel compounds have been developed. Novel drugs and bioproducts for the treatment of PD should address dopaminergic neuroprotection to reduce premature neurodegeneration in

  20. New Insights in the Pathogenesis of Atopic Disease

    OpenAIRE

    Ionescu, GJ

    2009-01-01

    A causal link between the increasing environmental pollution and the fast spreading of allergic diseases is currently discussed. The exogenic and endogenic noxious agents contributing to the total environmental load are primarily acting through immunotoxic, sensitizing and neurotoxic mechanisms in animal experiments and in humans. Beside classic allergic-triggering factors (allergen potency, intermittent exposure to different allergen concentrations, presence of microbial bodies and sensitizi...

  1. Molecular pathogenesis of sporadic prion diseases in man

    Science.gov (United States)

    Safar, Jiri G.

    2012-01-01

    The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare. PMID:22421210

  2. Edema in renal diseases – current view on pathogenesis

    Directory of Open Access Journals (Sweden)

    Irina Bobkova

    2016-10-01

    Full Text Available Edema is a common complication of numerous renal disease. In the recent past several aspects of the pathophysiology of this condition have been elucidated. We herein present a case of nephrotic syndrome in a 30 year-old men. The discussion revolves around the following key questions on fluid accumulation in renal disease: 1. What is edema? What diseases can cause edema? 2. What are the mechanisms of edema in nephrotic syndrome?   2a. The “underfill” theory   2b. The “overfill” theory   2c. Tubulointerstitial inflammation   2d. Vascular permeability 3. What are the mechanisms of edema in nephritic syndrome? 4. How can the volume status be assessed in patients with nephrotic syndrome? 5. What are therapeutic strategies for edema management? 6. What are the factors affecting response to diuretics? 7. How can we overcome the diuretics resistance?   7a. Effective doses of loop diuretics   7b. Combined diuretic therapy   7c. Intravenous administration of diuretics   7d. Albumin infusions   7e. Alternative methods of edema management 8. Conclusion.

  3. Molecular and cellular pathogenesis of autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    A.P. Bastos

    2011-07-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is one of the most common human life-threatening monogenic disorders. The disease is characterized by bilateral, progressive renal cystogenesis and cyst and kidney enlargement, often leading to end-stage renal disease, and may include extrarenal manifestations. ADPKD is caused by mutation in one of two genes, PKD1 and PKD2, which encode polycystin-1 (PC1 and polycystin-2 (PC2, respectively. PC2 is a non-selective cation channel permeable to Ca2+, while PC1 is thought to function as a membrane receptor. The cyst cell phenotype includes increased proliferation and apoptosis, dedifferentiation, defective planar polarity, and a secretory pattern associated with extracellular matrix remodeling. The two-hit model for cyst formation has been recently extended by the demonstration that early gene inactivation leads to rapid and diffuse development of renal cysts, while inactivation in adult life is followed by focal and late cyst formation. Renal ischemia/reperfusion, however, can function as a third hit, triggering rapid cyst development in kidneys with Pkd1 inactivation induced in adult life. The PC1-PC2 complex behaves as a sensor in the primary cilium, mediating signal transduction via Ca2+ signaling. The intracellular Ca2+ homeostasis is impaired in ADPKD, being apparently responsible for the cAMP accumulation and abnormal cell proliferative response to cAMP. Activated mammalian target for rapamycin (mTOR and cell cycle dysregulation are also significant features of PKD. Based on the identification of pathways altered in PKD, a large number of preclinical studies have been performed and are underway, providing a basis for clinical trials in ADPKD and helping the design of future trials.

  4. Pathogenesis and Treatment of Sole Ulcers and White Line Disease.

    Science.gov (United States)

    Shearer, J K; van Amstel, Sarel R

    2017-07-01

    Sole ulcers and white line disease are 2 of the most common claw horn lesions in confined dairy cattle. Predisposing causes include unbalanced weight bearing, and metabolic, enzymatic, and hormonal changes. The white line serves as the junction between the sole and axial and abaxial wall. It is vulnerable to trauma and separation, permitting organic matter to become entrapped. Colonization contributes to retrograde movement of the infection to the solar and perioplic corium, where an abscess forms resulting in pain and lameness. Successful treatment requires an orthopedic foot block to the healthy claw and corrective trimming of the lesion. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Molecular and cellular pathogenesis of hemoglobin SC disease.

    OpenAIRE

    Bunn, H F; Noguchi, C T; Hofrichter, J; Schechter, G P; Schechter, A N; Eaton, W A

    1982-01-01

    Solution and cell studies were performed to ascertain why individuals with hemoglobin (Hb) SC have disease whereas those with Hb AS do not. The polymerization of deoxygenated mixtures containing sickle cell Hb (Hb S; alpha 2 beta 2(6)Glu leads to Val) and Hb C (alpha 2 beta 2(6)Glu leads to Lys) was investigated by measurements of delay times and solubilities. In mixtures containing more than 40% Hb S, polymerization takes place by the same mechanism as in solutions of Hb S alone, with no evi...

  6. CAPS--pathogenesis, presentation and treatment of an autoinflammatory disease.

    Science.gov (United States)

    Kuemmerle-Deschner, Jasmin B

    2015-07-01

    The cryopyrin-associated periodic syndrome (CAPS) is a severity spectrum of rare diseases. CAPS comprises the three conditions previously described as familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disorder (NOMID), also known as chronic infantile neurologic, cutaneous, and articular (CINCA) syndrome. The clinical phenotype of CAPS is characterized by systemic inflammation. General symptoms are fatigue and fever. Local manifestations affect multiple tissues such as skin, joints, muscles, eyes, and the central nervous system. Distinct clinical features are characteristic for each subphenotype. In FCAS, these are cold-induced urticaria and fever, in MWS systemic amyloidosis and hearing loss and in NOMID/CINCA central nervous system inflammation and bone deformities. CAPS is caused by single heterozygous germline or somatic gain of function mutations in the NLRP3 gene encoding the protein cryopyrin. Cryopyrin nucleates an NLRP3 inflammasome, which regulates the activation and cleavage of caspase-1 that cleaves the pro-inflammatory cytokines, IL-1β and IL-18. IL-1β plays the key role in the induction of inflammation in CAPS. This has been confirmed by the application of IL-1 blocking agents, which lead not only to a rapid and sustained reversal of daily symptoms but also to some extent of long-term disease sequelae. To prevent CAPS-induced organ damage, early diagnosis and swift initiation of effective treatment are mandatory.

  7. Microparticles as players in the pathogenesis of cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Alexandru, N.; Georgescu, A.

    2015-07-01

    Cardiovascular diseases (CVD) are the largest cause of morbidity and mortality in the world and include all diseases and conditions of the heart and blood vessels. The main cause of most CVD is atherosclerosis, which is an abnormal build-up of fat and other substances which form plaque inside the arteries. Atherosclerosis is most serious when it leads to reduced or blocked blood supply to the heart (causing angina or heart attack) or to the brain (causing a stroke). The majority of CVD is caused by risk factors that can be controlled, treated or modified. Microparticles (MPs) are now recognized as potential biomarkers and key elements in the development of CVD. Although MP generation is a physiological phenomenon, their shedding from a variety of cell types into body fluid is intensified in response to cellular activation, high shear stress, as well as cellular apoptosis. In this review we outline distinct aspect of MP generation and their side as players n the CVD development.

  8. Studies on the pathogenesis of Aleutian disease of mink

    International Nuclear Information System (INIS)

    Mueller-Peddinghaus, R.; Meyer zu Schwabedissen, H.; Kalden, J.R.; Trautwein, G.; Ueberschaer, S.

    1980-01-01

    Aleutian disease (AD) of mink most closely resembles systemic lupus erythematosus (SLE) in man; both are immune complex disease. In experimental AD serum immune complexes are determined by the 125 J-C 1 q-binding test using human C 1 q. Mink (n = 12) infected intraperitoneally with Aleutian disease virus (ADV), grown in fetal mink kidney cells, developed during the course of infection a mean of 125 I-C 1 q serum binding equivalent to 3.62 +- 1.68 mg./ml. aggr. HGG. (aggregated human immunoglobulin). Sera of mink (n = 8) which were infected with ADV grown in L-cells showed a less marked 125 I-C 1 q binding with a mean equivalent to 2.52 +- 1.43 mg./ml. aggr. HGG. In contrast control animals (n = 8) treated with non-ADV-infected mink epidermal fibroblasts or Eagle's minimal essential medium substituted with fetal calf serum only bound 125 I-C 1 q equivalent to 1.02 +- 0.99 mg./ml. aggr. HGG. In mink infected with ADV propagated in fetal mink kidney cells a constant increase in the 125 I-C 1 q serum binding occurred from the 4th to the 7th and 13th week after ADV infection. Mink which were infected with ADV propagated in mouse L-cells exhibited a different pattern of the 125 I-C 1 q serum binding capacity with a sharp increase from the 4th to the 7th week, followed by a decline towards the 13th week post infection. The serum 125 I-C 1 q binding capacity of all experimental animal groups exhibited at different times of the experiment a significant correlation with the presence of hypergammaglobulinaemia and raised ADV-antibody titers. From the data obtained it appears that the 125 I-C 1 q binding test, utilizing human C 1 q, is a suitable method for the detection of circulating serum immune complexes in mink during the course of ADV-infection. (orig.) [de

  9. [Insulin resistance in the pathogenesis of polycystic ovarian disease (PCOD)].

    Science.gov (United States)

    Jakowicki, J

    1994-10-01

    In polycystic ovarian disease there is a strong association between hyperinsulinemia and hyperandrogenism but not with obesity alone. The magnitude of peripheral insulin resistance is similar to that seen in non-insulin-dependent diabetes mellitus. Mild hyperinsulinemia in PCOD patients is not impair the carbohydrate metabolism. The elimination of the cause of hyperandrogenism by bilateral oophorectomy, long-acting Gn-RH agonist or antiandrogen cyproterone acetate did not improve the associated insulin resistance. In opposition to insulin resistance in the tissues responsible for metabolism of carbohydrate, the ovary remains sensitive to the effects of pancreatic hormone. Presumably this mechanism involved the interaction with IGF-I receptors to stimulate thecal and stromal androgen production. Insulin may sensitize the stroma to the stimulatory effect of LH. In the mechanism of follicular arrest take part increased level of binding proteins for IGF-I, mainly IGFBP 2, -4 and 5 inhibit FSH and IGF-I action.

  10. Clinical Relevance of Environmental Factors in the Pathogenesis of Autoimmune Thyroid Disease

    NARCIS (Netherlands)

    Wiersinga, Wilmar M.

    2016-01-01

    Genetic factors contribute for about 70% to 80% and environmental factors for about 20% to 30% to the pathogenesis of autoimmune thyroid disease (AITD). Relatives of AITD patients carry a risk to contract AITD themselves. The 5-year risk can be quantified by the so-called Thyroid Events

  11. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.

    Science.gov (United States)

    Jin, Sheng; Teng, Xu; Xiao, Lin; Xue, Hongmei; Guo, Qi; Duan, Xiaocui; Chen, Yuhong; Wu, Yuming

    2017-12-01

    Reductions in hydrogen sulfide (H 2 S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in N ω -nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dt max and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and

  12. Secondary syphilis in cali, Colombia: new concepts in disease pathogenesis.

    Directory of Open Access Journals (Sweden)

    Adriana R Cruz

    2010-05-01

    Full Text Available Venereal syphilis is a multi-stage, sexually transmitted disease caused by the spirochetal bacterium Treponema pallidum (Tp. Herein we describe a cohort of 57 patients (age 18-68 years with secondary syphilis (SS identified through a network of public sector primary health care providers in Cali, Colombia. To be eligible for participation, study subjects were required to have cutaneous lesions consistent with SS, a reactive Rapid Plasma Reagin test (RPR-titer > or = 1 : 4, and a confirmatory treponemal test (Fluorescent Treponemal Antibody Absorption test- FTA-ABS. Most subjects enrolled were women (64.9%, predominantly Afro-Colombian (38.6% or mestizo (56.1%, and all were of low socio-economic status. Three (5.3% subjects were newly diagnosed with HIV infection at study entry. The duration of signs and symptoms in most patients (53.6% was less than 30 days; however, some patients reported being symptomatic for several months (range 5-240 days. The typical palmar and plantar exanthem of SS was the most common dermal manifestation (63%, followed by diffuse hypo- or hyperpigmented macules and papules on the trunk, abdomen and extremities. Three patients had patchy alopecia. Whole blood (WB samples and punch biopsy material from a subset of SS patients were assayed for the presence of Tp DNA polymerase I gene (polA target by real-time qualitative and quantitative PCR methods. Twelve (46% of the 26 WB samples studied had quantifiable Tp DNA (ranging between 194.9 and 1954.2 Tp polA copies/ml blood and seven (64% were positive when WB DNA was extracted within 24 hours of collection. Tp DNA was also present in 8/12 (66% skin biopsies available for testing. Strain typing analysis was attempted in all skin and WB samples with detectable Tp DNA. Using arp repeat size analysis and tpr RFLP patterns four different strain types were identified (14d, 16d, 13d and 22a. None of the WB samples had sufficient DNA for typing. The clinical and microbiologic

  13. Amyloid-β and chronic cerebral hypoperfusion in the early pathogenesis of Alzheimer’s disease

    OpenAIRE

    Salvadores Bersezio, Natalia

    2016-01-01

    Alzheimer’s disease (AD) is a severe age-related neurodegenerative disorder and is the most common form of dementia. Although the pathogenesis of AD remains unknown, the deterioration of the cerebrovascular system constitutes a risk factor associated with the development of the disease. Notably, brain hypoperfusion, a feature of healthy ageing brain and AD, occurs prior to the onset of cognitive decline in AD and correlates with the severity of dementia. Although there is a cle...

  14. The role of clusterin in Alzheimer's disease: pathways, pathogenesis, and therapy.

    Science.gov (United States)

    Yu, Jin-Tai; Tan, Lan

    2012-04-01

    Genetic variation in clusterin gene, also known as apolipoprotein J, has been associated with Alzheimer's disease (AD) through replicated genome-wide studies, and plasma clusterin levels are associated with brain atrophy, baseline prevalence and severity, and rapid clinical progression in patients with AD, highlighting the importance of clusterin in AD pathogenesis. Emerging data suggest that clusterin contributes to AD through various pathways, including amyloid-β aggregation and clearance, lipid metabolism, neuroinflammation, and neuronal cell cycle control and apoptosis. Moreover, epigenetic regulation of the clusterin expression also seems to play an important role in the pathogenesis of AD. Emerging knowledge of the contribution of clusterin to the pathogenesis of AD presents new opportunities for AD therapy.

  15. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson's disease model.

    Science.gov (United States)

    Sharma, Shrestha; Narang, Jasjeet K; Ali, Javed; Baboota, Sanjula

    2016-09-16

    Oxidative stress is the leading cause in the pathogenesis of Parkinson's disease. Rutin is a naturally occurring strong antioxidant molecule with wide therapeutic applications. It suffers from the problem of low oral bioavailability which is due to its poor aqueous solubility. In order to increase the solubility self-nanoemulsifying drug delivery systems (SNEDDS) of rutin were prepared. The oil, surfactant and co-surfactant were selected based on solubility/miscibility studies. Optimization was done by a three-factor, four-level (34) Box-Behnken design. The independent factors were oil, surfactant and co-surfactant concentration and the dependent variables were globule size, self-emulsification time, % transmittance and cumulative percentage of drug release. The optimized SNEDDS formulation (RSE6) was evaluated for various release studies. Antioxidant activity was assessed by various in vitro tests such as 2,2-diphenyl-1-picrylhydrazyl and reducing power assay. Oxidative stress models which had Parkinson's-type symptoms were used to determine the antioxidant potential of rutin SNEDDS in vivo. Permeation was assessed through confocal laser scanning microscopy. An optimized SNEDDS formulation consisting of Sefsol + vitamin E-Solutol HS 15-Transcutol P at proportions of 25:35:17.5 (w/w) was prepared and characterized. The globule size and polydispersity index of the optimized formulation was found to be 16.08 ± 0.02 nm and 0.124 ± 0.01, respectively. A significant (p < 0.05) increase in the percentage of drug release was achieved in the case of the optimized formulation as compared to rutin suspension. Pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability. The optimized formulation had significant in vitro and in vivo antioxidant activity. Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing the oral bioavailability and efficacy of rutin, thus helping in ameliorating oxidative stress in

  16. Deregulation of protein translation control, a potential game-changing hypothesis for Parkinson's disease pathogenesis.

    Science.gov (United States)

    Taymans, Jean-Marc; Nkiliza, Aurore; Chartier-Harlin, Marie-Christine

    2015-08-01

    Protein translation is one of the most fundamental and exquisitely controlled processes in biology, and is energetically demanding. The deregulation of this process is deleterious to cells, as demonstrated by several diseases caused by mutations in protein translation machinery. Emerging evidence now points to a role for protein translation in the pathogenesis of Parkinson's disease (PD); a debilitating neurodegenerative movement disorder. In this paper, we propose a hypothesis that protein translation machinery, PD-associated proteins and PD pathology are connected in a functional network linking cell survival to protein translation control. This hypothesis is a potential game changer in the field of the molecular pathogenesis of PD, with implications for the development of PD diagnostics and disease-modifying therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases

    Science.gov (United States)

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-01-01

    The last decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of the G protein-coupled receptors. Free Fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. PMID:21663979

  18. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases.

    Science.gov (United States)

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-09-01

    The past decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of G-protein-coupled receptors (GPCRs). Free fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review paper, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Using megestrol acetate to ameliorate protein-energy wasting in chronic kidney disease.

    Science.gov (United States)

    Smith, Christine Skouberdis; Logomarsino, John V

    2016-03-01

    Various populations are affected by chronic kidney disease (CKD), and a low dose appetite stimulant megestrol acetate (MA) is sometimes recommended in patients with CKD to ameliorate protein-energy wasting (PEW). Patients with CKD are at greater risk of developing PEW since the progression of their disease can cause decreased nutrient intake, catabolic effects, systemic inflammation and metabolic changes. Providers can detect PEW in CKD by identifying low serum levels ≤3.8 g/dl of albumin, protein and energy intake increases from 27% to 42%. There are potential adverse effects of using MA in CKD. After reviewing the available literature, the benefits of using MA should be evaluated against the potential side effects. For further examination of MA's potential benefits, long-term, prospective, large clinical trials should be carried out. © 2015 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  20. [Neurosis and genetic theory of etiology and pathogenesis of ulcer disease].

    Science.gov (United States)

    Kolotilova, M L; Ivanov, L N

    2014-01-01

    Based on the analysis of literature data and our own research, we have developed the original concept of etiology and pathogenesis of peptic ulcer disease. An analysis of the literature shows that none of the theories of pathogenesis of peptic ulcer disease does not cover the full diversity of the involved functions and their shifts, which lead to the development of ulcers in the stomach and the duodenum. Our neurogenic-genetic theory of etiology and pathogenesis of gastric ulcer and duodenal ulcer very best explains the cause-and-effect relationships in the patient peptic ulcer, allowing options for predominance in one or the other case factors of neurosis or genetic factors. However, it is clear that the only other: combination of neurogenic factor with genetically modified reactivity of gastroduodenal system (the presence of the target organ) cause the chronicity of the sores. The theory of peptic ulcer disease related to psychosomatic pathologies allows us to develop effective schema therapy, including drugs with psychocorrective action. On the basis of our theory of the role of Helicobacter pylori infection is treated as a pathogenetic factor in the development of peptic ulcer disease.

  1. The role of gut microbiota in the pathogenesis of rheumatic diseases.

    Science.gov (United States)

    Zhong, Danli; Wu, Chanyuan; Zeng, Xiaofeng; Wang, Qian

    2018-01-01

    Rheumatic diseases refer to many diseases with a loss of immune self-tolerance, leading to a chronic inflammation, degeneration, or metabolic derangement in multiple organs or tissues. The cause of rheumatic diseases remains to be elucidated, though both environmental and genetic factors are required for the development of rheumatic diseases. Over the past decades, emerging studies suggested that alteration of intestinal microbiota, known as gut dysbiosis, contributed to the occurrence or development of a range of rheumatic diseases, including rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, systemic sclerosis, and Sjogren's syndrome, through profoundly affecting the balance between pro- and anti-inflammatory immune responses. In this article, we discussed the role of gut microbiota in the pathogenesis of rheumatic diseases based on a large number of experimental and clinical materials, thereby providing a new insight for microbiota-targeted therapies to prevent or cure rheumatic diseases.

  2. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer's Disease.

    Science.gov (United States)

    Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai

    2018-01-01

    Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer's disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD.

  3. Inhibition of G0/G1 Switch 2 Ameliorates Renal Inflammation in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Naoya Matsunaga

    2016-11-01

    Full Text Available Chronic kidney disease (CKD is a global health problem, and novel therapies to treat CKD are urgently needed. Here, we show that inhibition of G0/G1 switch 2 (G0s2 ameliorates renal inflammation in a mouse model of CKD. Renal expression of chemokine (C-C motif ligand 2 (Ccl2 was increased in response to p65 activation in the kidneys of wild-type 5/6 nephrectomy (5/6Nx mice. Moreover, 5/6Nx Clk/Clk mice, which carry homozygous mutations in the gene encoding circadian locomotor output cycles kaput (CLOCK, did not exhibit aggravation of apoptosis or induction of F4/80-positive cells. The renal expression of G0s2 in wild-type 5/6Nx mice was important for the transactivation of Ccl2 by p65. These pathologies were ameliorated by G0s2 knockdown. Furthermore, a novel small-molecule inhibitor of G0s2 expression was identified by high-throughput chemical screening, and the inhibitor suppressed renal inflammation in 5/6Nx mice. These findings indicated that G0s2 inhibitors may have applications in the treatment of CKD.

  4. A review of the role of oxidative stress in the pathogenesis of eye diseases

    Directory of Open Access Journals (Sweden)

    O. A. Oduntan

    2011-12-01

    Full Text Available Free radicals, referred to as oxidants are molecules in the body with unpaired electrons, hence are unstable and ready to bond with other molecules with unpaired electrons.  They include Reactive Oxygen Species (ROS such as superoxide anion radicals (·O¯, hydrogen peroxide (H202, and hydroxyl free radicals (·OH.  Endogenous sources of ROS include metabolic and other organic processes, while exogenous sources include ultraviolet radiation and environmental toxins such as smoke.  Antioxidants (oxidant scavengers such as ascorbate, alpha-tocopherol and glutathione as well as various enzymatic compounds such as superoxide dismutase (SOD, catalase and glutathione reductase are also present in the body and in manyfoods or food supplements.  An imbalance between oxidants and antioxidants in favour of oxidantsis termed oxidative stress and can lead to cell or tissue damage and aging. Oxidative stress has been implicated in the pathogenesis of many serious systemic diseases such as diabetes, cancer and neurological disorders.  Also, laboratory and epidemiological studies have implicated oxidative stress in the pathogenesis of the majority of common serious eye diseases such as cataract, primary open angle glaucoma and age-related macular degeneration. In this article, we reviewed the current information on the roles of oxidative stress in the pathogenesis of various eye diseases and the probable roles of antioxidants.  Eye care practitioners will find this article useful as it provides information on the pathogenesis of common eye diseases. (S Afr Optom 2011 70(4 182-190

  5. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-01-01

    Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.

  6. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Science.gov (United States)

    Nishiwaki, Satoshi; Nakayama, Takayuki; Murata, Makoto; Nishida, Tetsuya; Terakura, Seitaro; Saito, Shigeki; Kato, Tomonori; Mizuno, Hiroki; Imahashi, Nobuhiko; Seto, Aika; Ozawa, Yukiyasu; Miyamura, Koichi; Ito, Masafumi; Takeshita, Kyosuke; Kato, Hidefumi; Toyokuni, Shinya; Nagao, Keisuke; Ueda, Ryuzo; Naoe, Tomoki

    2014-01-01

    Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP), a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  7. Current roles of specific bacteria in the pathogenesis of inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Lucy McMullen

    2015-12-01

    Full Text Available The relevance of alterations in gut microbiota in the pathogenesis of inflammatory bowel disease (IBD remains unclear. Currently there is conflicting evidence with regards to the roles of specific bacterial species. Escherichia coli (particularly the adherent invasive strain are more prevalent in those with IBD and are associated with higher risk of IBD. However, the organisms are also present in healthy individuals and colonisation does not correlate with the degree of inflammation in IBD. Campylobacter concisus is more prevalent in those with IBD and higher levels of C. concisus specific IgG antibodies are found in the serum of those with IBD compared to healthy controls. Further, C. concisus has immunogenic properties that stimulate an antibody response suggesting the bacteria might trigger or exacerbate disease. Conversely most mycobacteria are unlikely to be causative as they are not presentin microbial stool cultures early in disease. In various studies,Mycobacterium aviumparatuberculosishas been detected both more frequently and not at all in individuals with Crohn's disease. Similar conflict exists with respect to Yersinia enterocolitica,Bacteroidesvulgatus and Helicobacter hepaticus, which are also more prevalent in IBD. However, these organisms appear more likely to contribute to disease persistence than initial disease development. This review aims to summarise the current understanding of key bacterial species implicated in the pathogenesis of IBD.

  8. THE ROLE OF EPIDERMAL BARRIER IMPAIRMENTS IN ATOPIC DERMATITIS: MODERN CONCEPTS OF DISEASE PATHOGENESIS

    Directory of Open Access Journals (Sweden)

    Nikolay N. Murashkin

    2018-01-01

    Full Text Available Atopic dermatitis is a common chronic inflammatory skin disease characterized by a recurring course and progressive decrease in the quality of life. Recent studies in this area demonstrate the multifaceted pathogenesis of atopic dermatitis. Interaction of such factors as epidermal dysfunction, immune system disorders, and the consequences of genetic mutations contributes not only to the development of the disease but also to its progression and chronic course. The article presents various components of the etiopathogenesis of atopic dermatitis, describes the role of lipids, thereby the new therapeutic targets are revealed to specialists.

  9. Online testable concept maps: benefits for learning about the pathogenesis of disease.

    Science.gov (United States)

    Ho, Veronica; Kumar, Rakesh K; Velan, Gary

    2014-07-01

    Concept maps have been used to promote meaningful learning and critical thinking. Although these are crucially important in all disciplines, evidence for the benefits of concept mapping for learning in medicine is limited. We performed a randomised crossover study to assess the benefits of online testable concept maps for learning in pathology by volunteer junior medical students. Participants (n = 65) were randomly allocated to either of two groups with equivalent mean prior academic performance, in which they were given access to either online maps or existing online resources for a 2-week block on renal disease. Groups then crossed over for a 2-week block on hepatic disease. Outcomes were assessed using timed online quizzes, which included questions unrelated to topics in the pathogenesis maps as an internal control. Questionnaires were administered to evaluate students' acceptance of the maps. In both blocks, the group with access to pathogenesis maps achieved significantly higher average scores than the control group on quiz questions related to topics covered by the maps (Block 1: p online testable pathogenesis maps are well accepted and can improve learning of concepts in pathology by medical students. © 2014 John Wiley & Sons Ltd.

  10. Circulating microbial products and acute phase proteins as markers of pathogenesis in lymphatic filarial disease.

    Directory of Open Access Journals (Sweden)

    R Anuradha

    Full Text Available Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+ or without (CP Ag- active infection; with clinically asymptomatic infections (INF; and in those without infection (endemic normal [EN]. Comparisons between the two actively infected groups (CP Ag+ compared to INF and those without active infection (CP Ag- compared to EN were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein, acute phase proteins (haptoglobin and serum amyloid protein-A, and inflammatory cytokines (IL-1β, IL-12, and TNF-α are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins.

  11. Cardiac Hemodynamics in the Pathogenesis of Congenital Heart Disease and Aortic Valve Calcification

    Science.gov (United States)

    Nigam, Vishal

    2011-11-01

    An improved understanding of the roles of hemodynamic forces play in cardiac development and the pathogenesis of cardiac disease will have significant scientific and clinical impact. I will focus on the role of fluid dynamics in congenital heart disease and aortic valve calcification. Congenital heart defects are the most common form of birth defect. Aortic valve calcification/stenosis is the third leading cause of adult heart disease and the most common form of acquired valvular disease in developed countries. Given the high incidence of these diseases and their associated morbidity and mortality, the potential translational impact of an improved understanding of cardiac hemodynamic forces is very large. Division of Pediatric Cardiology, Rady Children's Hospital, San Diego

  12. Multi-platform ’Omics Analysis of Human Ebola Virus Disease Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Eisfeld, Amie J.; Halfmann, Peter J.; Wendler, Jason P.; Kyle, Jennifer E.; Burnum-Johnson, Kristin E.; Peralta, Zuleyma; Maemura, Tadashi; Walters, Kevin B.; Watanabe, Tokiko; Fukuyama, Satoshi; Yamashita, Makoto; Jacobs, Jon M.; Kim, Young-Mo; Casey, Cameron P.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gritsenko, Marina A.; Monroe, Matthew E.; Weitz, Karl K.; Shukla, Anil K.; Tian, Mingyuan; Neumann, Gabriele; Reed, Jennifer L.; van Bakel, Harm; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; N' jai, Alhaji; Sahr, Foday; Kawaoka, Yoshihiro

    2017-12-01

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform ’omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.

  13. The Role of the Immune Response in the Pathogenesis of Thyroid Eye Disease: A Reassessment.

    Directory of Open Access Journals (Sweden)

    James T Rosenbaum

    Full Text Available Although thyroid eye disease is a common complication of Graves' disease, the pathogenesis of the orbital disease is poorly understood. Most authorities implicate the immune response as an important causal factor. We sought to clarify pathogenesis by using gene expression microarray.An international consortium of ocular pathologists and orbital surgeons contributed formalin fixed orbital biopsies. RNA was extracted from orbital tissue from 20 healthy controls, 25 patients with thyroid eye disease (TED, 25 patients with nonspecific orbital inflammation (NSOI, 7 patients with sarcoidosis and 6 patients with granulomatosis with polyangiitis (GPA. Tissue was divided into a discovery set and a validation set. Gene expression was quantified using Affymetrix U133 Plus 2.0 microarrays which include 54,000 probe sets.Principal component analysis showed that gene expression from tissue from patients with TED more closely resembled gene expression from healthy control tissue in comparison to gene expression characteristic of sarcoidosis, NSOI, or granulomatosis with polyangiitis. Unsupervised cluster dendrograms further indicated the similarity between TED and healthy controls. Heat maps based on gene expression for cytokines, chemokines, or their receptors showed that these inflammatory markers were associated with NSOI, sarcoidosis, or GPA much more frequently than with TED.This is the first study to compare gene expression in TED to gene expression associated with other causes of exophthalmos. The juxtaposition shows that inflammatory markers are far less characteristic of TED relative to other orbital inflammatory diseases.

  14. Extracorporeal Shock Wave Therapy for Coronary Artery Disease: Relationship of Symptom Amelioration and Ischemia Improvement

    Directory of Open Access Journals (Sweden)

    Youko Takakuwa

    2018-01-01

    Full Text Available Objective(s: The current management of coronary artery disease (CAD relies on three major therapeutic options, namely medication, percutaneous coronary intervention (PCI, and coronary artery bypass grafting (CABG. However, severe CAD that is not indicated for PCI or CABG still bears a poor prognosis due to the lack of effective treatments. In 2006, extracorporeal cardiac shock wave (SW therapy reported on human for the first time. This treatment resulted in better myocardial perfusion as evaluated by dipyridamole stress thallium scintigraphy, angina symptoms, and exercise tolerance. The aim of the present study was to investigate myocardial perfusion images and evaluate the relationship between the ischemia improvement and symptom amelioration by SW therapy. Methods: We treated ten patients (i.e., nine males and one female with cardiac SW therapy who had CAD but not indicated for PCI or CABG and aged 63–89 years old. After the SW therapy, all patients were followed up for three months to evaluate any amelioration of the myocardial ischemia based on symptoms, adenosine stress thallium scintigraphy, transthoracic echocardiography, and blood biochemical examinations. Results: The changes in various parameters were evaluated before and after cardiac SW therapy. The cardiac SW therapy resulted in a significant improvement in the symptoms as evaluated by the Canadian Cardiovascular Society [CCS] class score (P=0.016 and a tendency to improve in summed stress score (SSS (P=0.068. However, no significant improvement was observed in the summed rest score (SRS, summed difference score (SDS, left ventricular wall motion score index (LVWMSI, N-terminal pro-brain natriuretic, and troponin I. The difference of CCS class score (ΔCCS was significantly correlated with those of SSS (ΔSSS and SDS (ΔSDS (r=0.69, P=0.028 and r=0.70, P=0.025, respectively. There was no significant correlation between ΔCCS and other parameters. Furthermore, no significant

  15. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice.

    Science.gov (United States)

    Crosby, Jeff R; Zhao, Chenguang; Jiang, Chong; Bai, Dong; Katz, Melanie; Greenlee, Sarah; Kawabe, Hiroshi; McCaleb, Michael; Rotin, Daniela; Guo, Shuling; Monia, Brett P

    2017-11-01

    Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  16. Pathogenesis of Lafora Disease: Transition of Soluble Glycogen to Insoluble Polyglucosan.

    Science.gov (United States)

    Sullivan, Mitchell A; Nitschke, Silvia; Steup, Martin; Minassian, Berge A; Nitschke, Felix

    2017-08-11

    Lafora disease (LD, OMIM #254780) is a rare, recessively inherited neurodegenerative disease with adolescent onset, resulting in progressive myoclonus epilepsy which is fatal usually within ten years of symptom onset. The disease is caused by loss-of-function mutations in either of the two genes EPM2A (laforin) or EPM2B (malin). It characteristically involves the accumulation of insoluble glycogen-derived particles, named Lafora bodies (LBs), which are considered neurotoxic and causative of the disease. The pathogenesis of LD is therefore centred on the question of how insoluble LBs emerge from soluble glycogen. Recent data clearly show that an abnormal glycogen chain length distribution, but neither hyperphosphorylation nor impairment of general autophagy, strictly correlates with glycogen accumulation and the presence of LBs. This review summarizes results obtained with patients, mouse models, and cell lines and consolidates apparent paradoxes in the LD literature. Based on the growing body of evidence, it proposes that LD is predominantly caused by an impairment in chain-length regulation affecting only a small proportion of the cellular glycogen. A better grasp of LD pathogenesis will further develop our understanding of glycogen metabolism and structure. It will also facilitate the development of clinical interventions that appropriately target the underlying cause of LD.

  17. Dysregulated microRNAs in neural system: Implication in pathogenesis and biomarker development in Parkinson's disease.

    Science.gov (United States)

    Lu, Jiangkun; Xu, Yan; Quan, Zhenzhen; Chen, Zixuan; Sun, Zhenzhen; Qing, Hong

    2017-12-04

    Parkinson's disease is a debilitating neurodegenerative movement disorder, characterized by the progressive and selective loss of dopaminergic neurons located in the substantia nigra, leading to clinical motor symptoms. The factors involved in PD are rather multifaceted. There are many cellular pathways contributing to its neuro-pathogenesis, which include abnormal protein aggregation, impaired ubiquitin proteasome system, autophagy, and neuroinflammation. However, despite years of investigation, still little is known about early events in the molecular pathogenesis. MicroRNAs are small non-coding RNAs that can regulate post-transcriptional expression of mRNAs. Since they somewhat modulate many mRNA targets simultaneously, many cellular pathways may be affected by one individual miRNA. Moreover, miRNAs can stably circulate in cerebrospinal fluid and blood, and their expression pattern can reflect the molecular pathophysiology, thus making them promising biomarkers in PD diagnosis and prognosis. In this review, we will review the recent progress on miRNA's mechanism in PD pathogenesis and discuss the possibilities of miRNAs as PD molecular biomarkers. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Tooth loss might not alter molecular pathogenesis in an aged transgenic Alzheimer's disease model mouse.

    Science.gov (United States)

    Oue, Hiroshi; Miyamoto, Yasunari; Koretake, Katsunori; Okada, Shinsuke; Doi, Kazuya; Jung, Cha-Gyun; Michikawa, Makoto; Akagawa, Yasumasa

    2016-09-01

    Previous studies have reported that tooth loss is a risk factor of Alzheimer's disease (AD). However, the association between tooth loss and cognition and the impact of tooth loss on the molecular pathogenesis of AD remain elusive. In this study, we tested the effect of tooth loss on learning and memory and on the molecular pathogenesis of AD in an aged AD model mice. We divided 14-month-old amyloid precursor protein (APP) transgenic mice, an AD model mouse line, into upper molar extracted group (experimental) and molar intact group (control). At 18 months old, we analysed not only the changes of amyloid-beta (Aβ), pyramidal cells in the brain but also the learning and memory ability with step-through passive avoidance test. The amount of Aβ and the number of pyramidal cells in the hippocampus were not significantly different between the experimental and control group. Similarly, the difference of learning and memory ability could not be distinguished between the groups. Neither molecular pathogenesis of AD nor associated learning and memory were aggravated by tooth loss in these mice. The limited results of this study which used the aged mice may help the dental profession to plan and explain treatments to patients with AD, which must be designed while taking into account the severity of the AD symptoms. © 2014 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  19. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 7 - Pathogenesis and Molecular Biology.

    Science.gov (United States)

    Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W

    2016-06-01

    We assessed research knowledge gaps in the fields of FMDV (foot-and-mouth disease virus) pathogenesis and molecular biology by performing a literature review (2011-15) and collecting research updates (2014) from 33 institutes from across the world. Findings were used to identify priority areas for future research. There have been important advances in FMDV pathogenesis; FMDV remains in lymph nodes of many recovered animals that otherwise do not appear persistently infected, even in species previously not associated with the carrier state. Whether virus retention helps maintain host immunity and/or virus survival is not known. Studies of FMDV pathogenesis in wildlife have provided insights into disease epidemiology, in endemic and epidemic settings. Many aspects of FMDV infection and virus entry remain unknown; however, at the cellular level, we know that expression level and availability of integrins (that permit viral entry), rate of clearance of infected cells and strength of anti-viral type I IFN (interferon) response are key determinants of tissue tropism. Extending findings to improved understanding of transmission requires a standardized approach and adoption of natural routes of infection during experimental study. There has been recognition of the importance of autophagosomes for FMDV entry into the cytoplasm following cell surface receptor binding, and that distinct internal cellular membranes are exploited for viral replication and immune evasion. New roles for viral proteins in blocking type I IFN production and downstream signalling have been identified facilitating research in anti-viral therapeutics. We know more about how infection affects cell protein expression, and research into molecular determinants of capsid stability has aided the development of stable vaccines. We have an expanding knowledge of viral and host molecular determinates of virulence and infectiousness, and of how phylogenetics may be used to estimate vaccine match and strain

  20. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Wang, Lei; Hao, Ke; Yang, Ting; Wang, Chen

    2017-09-05

    The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.

  1. Liver mitochondrial dysfunction and oxidative stress in the pathogenesis of experimental nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Oliveira C.P.M.S.

    2006-01-01

    Full Text Available Oxidative stress and hepatic mitochondria play a role in the pathogenesis of nonalcoholic fatty liver disease. The aim of the present study was to evaluate the role of hepatic mitochondrial dysfunction and oxidative stress in the pathogenesis of the disease. Fatty liver was induced in Wistar rats with a choline-deficient diet (CD; N = 7 or a high-fat diet enriched with PUFAs-omega-3 (H; N = 7 for 4 weeks. The control group (N = 7 was fed a standard diet. Liver mitochondrial oxidation and phosphorylation were measured polarographically and oxidative stress was estimated on the basis of malondialdehyde and glutathione concentrations. Moderate macrovacuolar liver steatosis was observed in the CD group and mild liver steatosis was observed in the periportal area in the H group. There was an increase in the oxygen consumption rate by liver mitochondria in respiratory state 4 (S4 and a decrease in respiratory control rate (RCR in the CD group (S4: 32.70 ± 3.35; RCR: 2.55 ± 0.15 ng atoms of O2 min-1 mg protein-1 when compared to the H and control groups (S4: 23.09 ± 1.53, 17.04 ± 2.03, RCR: 3.15 ± 0.15, 3.68 ± 0.15 ng atoms of O2 min-1 mg protein-1, respectively, P < 0.05. Hepatic lipoperoxide concentrations were significantly increased and the concentration of reduced glutathione was significantly reduced in the CD group. A choline-deficient diet causes moderate steatosis with disruption of liver mitochondrial function and increased oxidative stress. These data suggest that lipid peroxidation products can impair the flow of electrons along the respiratory chain, causing overreduction of respiratory chain components and enhanced mitochondrial reactive oxygen species. These findings are important in the pathogenesis of nonalcoholic fatty liver disease.

  2. Clinical Relevance of Environmental Factors in the Pathogenesis of Autoimmune Thyroid Disease

    OpenAIRE

    Wiersinga, Wilmar M.

    2016-01-01

    Genetic factors contribute for about 70% to 80% and environmental factors for about 20% to 30% to the pathogenesis of autoimmune thyroid disease (AITD). Relatives of AITD patients carry a risk to contract AITD themselves. The 5-year risk can be quantified by the so-called Thyroid Events Amsterdam-score, based on serum thyroid-stimulating hormone, thyroid peroxidase (TPO)-antibodies and family history. Subjects at risk may ask what they can do to prevent development of AITD. This review summar...

  3. Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I.

    Science.gov (United States)

    Heppner, Jonathan M; Zaucke, Frank; Clarke, Lorne A

    2015-02-01

    Progressive skeletal and connective tissue disease represents a significant clinical burden in all of the mucopolysaccharidoses. Despite the introduction of enzyme replacement strategies for many of the mucopolysaccharidoses, symptomatology related to bone and joint disease appears to be recalcitrant to current therapies. In order to address these unmet medical needs a clearer understanding of skeletal and connective tissue disease pathogenesis is required. Historically the pathogenesis of the mucopolysaccharidoses has been assumed to directly relate to progressive storage of glycosaminoglycans. It is now apparent for many lysosomal storage disorders that more complex pathogenic mechanisms underlie patients' clinical symptoms. We have used proteomic and genome wide expression studies in the murine mucopolysaccharidosis I model to identify early pathogenic events occurring in micro-dissected growth plate tissue. Studies were conducted using 3 and 5-week-old mice thus representing a time at which no obvious morphological changes of bone or joints have taken place. An unbiased iTRAQ differential proteomic approach was used to identify candidates followed by validation with multiple reaction monitoring mass spectrometry and immunohistochemistry. These studies reveal significant decreases in six key structural and signaling extracellular matrix proteins; biglycan, fibromodulin, PRELP, type I collagen, lactotransferrin, and SERPINF1. Genome-wide expression studies in embryonic day 13.5 limb cartilage and 5 week growth plate cartilage followed by specific gene candidate qPCR studies in the 5week growth plate identified fourteen significantly deregulated mRNAs (Adamts12, Aspn, Chad, Col2a1, Col9a1, Hapln4, Lum, Matn1, Mmp3, Ogn, Omd, P4ha2, Prelp, and Rab32). The involvement of biglycan, PRELP and fibromodulin; all members of the small leucine repeat proteoglycan family is intriguing, as this protein family is implicated in the pathogenesis of late onset osteoarthritis

  4. [Role of the endocrine system in the pathogenesis of non-alcoholic fatty liver disease].

    Science.gov (United States)

    Hagymási, Krisztina; Reismann, Péter; Rácz, Károly; Tulassay, Zsolt

    2009-11-29

    The most frequent liver disorder in metabolic syndrome is the nonalcoholic fatty liver disease. Its pathogenesis is a complex, multifactorial process, characterized by insulin resistance and involvement of the endocrine system. Hypothyroidism may lead to nonalcoholic steatohepatitis via hyperlipidemia and obesity. Adult patients with growth hormone deficiency have a metabolic syndrome-like phenotype with obesity and many characteristic metabolic alterations. The chronic activation of the hypothalamic-pituitary-adrenal axis results in metabolic syndrome as well. Cushing's syndrome has also features of metabolic syndrome. Mild elevation of transaminase activities is commonly seen in patients with adrenal failure. Non-alcoholic steatosis is twice as common in postmenopusal as in premenopausal women and hormonal replacement therapy decreases the risk of steatosis. Insulin resistance, diabetes mellitus type 2, sleeping apnoe syndrome, cardiovascular disorders and non-alcoholic fatty liver disease are more frequent in polycystic ovary syndrome. Hypoandrogenism in males and hyperandrogenism in females may lead to fatty liver via obesity and insulin resistance. Adipokines (leptin, acylation stimulating protein, adiponectin) have a potential role in the pathogenesis of nonalcoholic fatty liver. The alterations of endocrine system must be considered in the background of cryptogenic liver diseases. The endocrine perspective may help the therapeutic approaches in the future.

  5. Fimasartan Ameliorates Nonalcoholic Fatty Liver Disease through PPARδ Regulation in Hyperlipidemic and Hypertensive Conditions

    Directory of Open Access Journals (Sweden)

    Yong-Jik Lee

    2017-01-01

    Full Text Available To investigate the effects of fimasartan on nonalcoholic fatty liver disease in hyperlipidemic and hypertensive conditions, the levels of biomarkers related to fatty acid metabolism were determined in HepG2 and differentiated 3T3-L1 cells treated by high fatty acid and liver and visceral fat tissue samples of spontaneously hypertensive rats (SHRs given high-fat diet. In HepG2 cells and liver tissues, fimasartan was shown to increase the protein levels of peroxisome proliferator-activated receptor delta (PPARδ, phosphorylated 5′ adenosine monophosphate-activated protein kinase (p-AMPK, phosphorylated acetyl-CoA carboxylase (p-ACC, malonyl-CoA decarboxylase (MCD, medium chain acyl-CoA dehydrogenase (MCAD, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α, and it led to a decrease in the protein levels of 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSDH1, fatty acid synthase (FAS, and tumor necrosis factor-alpha (TNF-α. Fimasartan decreased lipid contents in HepG2 and differentiated 3T3-L1 cells and liver tissues. In addition, fimasartan increased the adiponectin level in visceral fat tissues. The antiadipogenic effects of fimasartan were offset by PPARδ antagonist (GSK0660. Consequently, fimasartan ameliorates nonalcoholic fatty liver disease mainly through the activation of oxidative metabolism represented by PPARδ-AMPK-PGC-1α pathway.

  6. Research progress on the pathogenesis of rapid eye movement sleep behavior disorder and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Hai-yang JIANG

    2017-10-01

    Full Text Available Rapid eye movement sleep behavior disorder (RBD is a sleep disorder characterized by the disappearance of muscle relaxation and enacting one's dreams during rapid eye movement (REM, with most of the dreams being violent or aggressive. Prevalence of RBD, based on population, is 0.38%-2.01%, but it becomes much higher in patients with neurodegenerative diseases, especially α - synucleinopathies. RBD may herald the emergence of α-synucleinopathies by decades, thus it may be used as an effective early marker of neurodegenerative diseases. In this review, we summarized the progress on the pathogenesis of RBD and its relationship with neurodegenerative diseases. DOI: 10.3969/j.issn.1672-6731.2017.10.003

  7. The role of high mobility group box 1(HMGB1)in the pathogenesis of kidney diseases

    Institute of Scientific and Technical Information of China (English)

    Qingjie Chen; Xiaofeng Guan; Xiaocong Zuo; Jianglin Wang; Wenjun Yin

    2016-01-01

    High mobility group box 1(HMGB1) is a nuclear protein that can bind to DNA and act as a co-factor for gene transcription. When released into extracellular fluid, it plays a proinflammatory role by acting as a damage-associated molecular pattern molecule(DAMP)(also known as an alarmin) to initiate innate immune responses by activating multiple cell surface receptors such as the receptor for advanced glycation end-products(RAGE) and toll-like receptors(TLRs), TLR2, TLR4 or TLR9. This proinflammatory role is now considered to be important in the pathogenesis of a wide range of kidney diseases whether they result from hemodynamic changes, renal tubular epithelial cell apoptosis, kidney tissue fibrosis or inflammation. This review summarizes our current understanding of the role of HMGB1 in kidney diseases and how the HMGB1-mediated signaling pathway may constitute a new strategy for the treatment of kidney diseases.

  8. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  9. The pathogenesis of Newcastle disease: A comparison of selected Newcastle disease virus wild-type strains and their infectious clones

    International Nuclear Information System (INIS)

    Wakamatsu, Nobuko; King, Daniel J.; Seal, Bruce S.; Samal, Siba K.; Brown, Corrie C.

    2006-01-01

    The effect of mutations of Newcastle disease virus (NDV) fusion (F) gene, hemagglutinin-neuraminidase (HN) gene, and phosphoprotein (P) gene and HN chimeras between the virulent Beaudette C and low virulence LaSota strains on pathogenesis and pathogenicity was examined in fully susceptible chickens. A virulent F cleavage site motif within a LaSota backbone increased pathogenicity and severity of clinical disease. A LaSota HN within a Beaudette C backbone decreased pathogenicity indices and disease severity. A Beaudette C HN within a LaSota backbone did not change either pathogenicity indices or severity of disease in chickens. Loss of glycosylation at site 4 of the HN or modified P gene of Beaudette C decreased pathogenicity indices and caused no overt clinicopathologic disease in chickens. Both pathogenicity indices and clinicopathologic examination demonstrated that the F, HN, and P genes of NDV collectively or individually can contribute to viral virulence

  10. Inflammatory bowel diseases (IBD) - critical discussion of etiology, pathogenesis, diagnostics, and therapy

    International Nuclear Information System (INIS)

    Ochsenkuehn, T.; Sackmann, M.; Goeke, B.

    2003-01-01

    Aims Crohn's disease and ulcerative colitis are the most frequent inflammatory bowel diseases (IBD) with a prevalence of approximately one out of 500.Cytokine research opened new and potent treatment options and thus stimulated clinical and basic research.However, the IBD still remain a challenge for patients and physicians,demanding close cooperation between gastroenterologists,radiologists and surgeons.The basic understanding of IBD,which is necessary for efficient diagnostic and therapeutic concepts is reviewed. Based upon recent publications and our clinical experience we discuss aspects of etiology,pathogenesis,diagnostics,and therapy of Crohn's disease and ulcerative colitis. A genetically influenced, exaggerated and sustained immune response against the own gut flora seems to be one of the most important factors in the pathogenesis of IBD.Not less important are environmental influences.For instance, cigarette smoking had been judged to have some negative influence on the natural course of Crohn's disease.Now,however, recent studies show that smoking is even a significant independent risk factor in the pathogenesis of IBD. Since IBD and especially Crohn's disease can effect the whole body, detailed analysis of inflammatory organ involvement is necessary before therapy.For instance, the MRIenteroclysis technique adds a necessary diagnostic tool for the exploration of those parts of the small bowel that cannot been reached by routine endoscopy like the upper ileum and the lower jejunum. In terms of therapy, a change of paradigms can be observed: patients will no longer be treated only when symptoms arise, but will early be integrated into a therapeutic concept, which is determined by site and extent of the disease and adapted to the abilities and needs of the patient.Furthermore,immunosuppressive agents like azathioprine and 6-mercaptopurine will establish as central concept in the medical treatment of IBD.Discussion IBD-therapy should rather be adapted to the

  11. The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases.

    Science.gov (United States)

    Brodziak, Andrzej; Ziółko, Ewa; Muc-Wierzgoń, Małgorzata; Nowakowska-Zajdel, Ewa; Kokot, Teresa; Klakla, Katarzyna

    2012-06-01

    This paper presents a new, recently formulated theory, which concerns the etiopathological process of autoimmune diseases. This theory takes into account the existence in the human genome, since approximately 40 million years, of so-called human endogenous retroviruses (HERVs), which are transmitted to descendants "vertically" by the germ cells. It was recently established that these generally silent sequences perform some physiological roles, but occasionally become active and influence the development of some chronic diseases like diabetes, some neoplasms, chronic diseases of the nervous system (eg, sclerosis multiplex), schizophrenia and autoimmune diseases. We present a short synopsis of immunological processes involved in the pathogenesis of autoimmune diseases, such as molecular mimicry, epitope spreading and activation of the superantigen. We then focus on experimental findings related to systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and some diseases of hepar and otorhinal tissues. We conclude the outline of this new model of the development of chronic diseases and indicate the conclusions important for the teaching of the basis of pathology.

  12. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Christina Rose Kyrtsos

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ deposition and the presence of neurofibrillary tangles (NFTs within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.

  13. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kyrtsos, Christina Rose; Baras, John S

    2015-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.

  14. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression.

    Directory of Open Access Journals (Sweden)

    Cristin D Davidson

    2009-09-01

    Full Text Available Niemann-Pick type C (NPC disease is a fatal neurodegenerative disorder caused most commonly by a defect in the NPC1 protein and characterized by widespread intracellular accumulation of unesterified cholesterol and glycosphingolipids (GSLs. While current treatment therapies are limited, a few drugs tested in Npc1(-/- mice have shown partial benefit. During a combination treatment trial using two such compounds, N-butyldeoxynojirimycin (NB-DNJ and allopregnanolone, we noted increased lifespan for Npc1(-/- mice receiving only 2-hydroxypropyl-beta-cyclodextrin (CD, the vehicle for allopregnanolone. This finding suggested that administration of CD alone, but with greater frequency, might provide additional benefit.Administration of CD to Npc1(-/- mice beginning at either P7 or P21 and continuing every other day delayed clinical onset, reduced intraneuronal cholesterol and GSL storage as well as free sphingosine accumulation, reduced markers of neurodegeneration, and led to longer survival than any previous treatment regime. We reasoned that other lysosomal diseases characterized by cholesterol and GSL accumulation, including NPC disease due to NPC2 deficiency, GM1 gangliosidosis and mucopolysaccharidosis (MPS type IIIA, might likewise benefit from CD treatment. Treated Npc2(-/- mice showed benefits similar to NPC1 disease, however, mice with GM1 gangliosidosis or MPS IIIA failed to show reduction in storage.Treatment with CD delayed clinical disease onset, reduced intraneuronal storage and secondary markers of neurodegeneration, and significantly increased lifespan of both Npc1(-/- and Npc2(-/- mice. In contrast, CD failed to ameliorate cholesterol or glycosphingolipid storage in GM1 gangliosidosis and MPS IIIA disease. Understanding the mechanism(s by which CD leads to reduced neuronal storage may provide important new opportunities for treatment of NPC and related neurodegenerative diseases characterized by cholesterol dyshomeostasis.

  15. Foot-and-mouth disease virus infection in young lambs: pathogenesis and tissue tropism

    DEFF Research Database (Denmark)

    Ryan, Eoin; Horsington, Jacquelyn; Durand, Stephanie

    2008-01-01

    Foot-and-mouth disease (FMD) in adult sheep usually causes milder clinical signs than in cattle or pigs, and is often subtle enough to go undiagnosed. In contrast, FMD in lambs has been reported to cause high mortality during field outbreaks. In order to investigate the pathogenesis of FMD in lambs......, two groups, aged 10–14 days, were infected with foot-and-mouth disease virus (FMDV) type O UKG. One group of lambs (n = 8) was inoculated with FMDV in the coronary band, while the other (n = 4) was infected by direct contact with FMDV-inoculated ewes. Daily serum samples and temperature measurements...... were taken. Lambs were killed sequentially and tissue samples taken for analysis. Using real-time RT-PCR, viral RNA levels in tissue samples and serum were measured, and a novel strand-specific real-time RT-PCR assay was used to quantify viral replication levels in tissues. Tissue sections were...

  16. The Green Tea Catechin Epigallocatechin Gallate Ameliorates Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Sabine Westphal

    Full Text Available Allogeneic hematopoetic stem cell transplantation (allo-HSCT is a standard treatment for leukemia and other hematologic malignancies. The major complication of allo-HSCT is graft-versus-host-disease (GVHD, a progressive inflammatory illness characterized by donor immune cells attacking the organs of the recipient. Current GVHD prevention and treatment strategies use immune suppressive drugs and/or anti-T cell reagents these can lead to increased risk of infections and tumor relapse. Recent research demonstrated that epigallocatechin gallate (EGCG, a component found in green tea leaves at a level of 25-35% at dry weight, may be useful in the inhibition of GVHD due to its immune modulatory, anti-oxidative and anti-angiogenic capacities. In murine allo-HSCT recipients treated with EGCG, we found significantly reduced GVHD scores, reduced target organ GVHD and improved survival. EGCG treated allo-HSCT recipients had significantly higher numbers of regulatory T cells in GVHD target organs and in the blood. Furthermore, EGCG treatment resulted in diminished oxidative stress indicated by significant changes of glutathione blood levels as well as glutathione peroxidase in the colon. In summary, our study provides novel evidence demonstrating that EGCG ameliorates lethal GVHD and reduces GVHD-related target organ damage. Possible mechanisms are increased regulatory T cell numbers and reduced oxidative stress.

  17. The significance of the psychosocial factors influence in pathogenesis of cardiovascular disease.

    Science.gov (United States)

    Masic, Izet; Alajbegovic, Jasmin

    2013-11-01

    Cardiovascular diseases (CVD) are the leading cause of death in the world today. Risk factors are those factors that influence the development of CVD. Risk factors can be divided into materialistic (genetic predisposition, smoking, alcohol) and non-materialistic (psychosocial factors). Our goal is to note the role of the health system, to emphasize the importance of psychosocial factors in the pathogenesis of CVD, explain the relationship between psychosocial factors and other risk factors, stress the importance of prevention through the provision of management of the cardiovascular system (CVS) diseases. A DESCRIPTIVE ANALYSIS WAS PERFORMED ON SCIENTIFIC STUDIES IN SEVERAL PUBLISHED ARTICLES IN JOURNALS ON CVS: Public Health Reviews, CVD, European Heart Journal, Materia Socio Medica and other indexed journals that publish articles on CVS. THE IMPORTANCE AND ROLE OF THE HEALTH SYSTEM IN THE EARLY DETECTION, DIAGNOSIS, THERAPY AND CVS DISEASE PREVENTION IS PRESENTED THROUGH THREE THEMATIC AREAS: (a) The incidence and prevalence of CVS diseases; (b) treatment of CVS diseases and (c) promotion of health in patients with CVS disease and those the risk of their occurrence. Health promotion is the most important aspect of the health system monitoring. Health promotion is adequately implemented ifthe management ofCVD is proper. The main objectives of CVD management are: Preventing or delaying the occurrence of CVD, reducing the number and severity of worsening and complications of CVD. Management Includes: Individual and family, the health system and the community. Materialistic and non-materialistic risk factors together contribute to the development of CVD.

  18. MiR-150 deficiency ameliorated hepatosteatosis and insulin resistance in nonalcoholic fatty liver disease via targeting CASP8 and FADD-like apoptosis regulator.

    Science.gov (United States)

    Zhuge, Baozhong; Li, Guohong

    2017-12-16

    The prevalence of Non-alcoholic fatty liver diseases (NAFLD) increased rapidly in the world. However, the pathogenesis of is still unclear. Hepatic steatosis and insulin resistance are considered to be central to the pathophysiology of NAFLD. MicroRNAs are short non-coding RNAs and has been reported to be involved in pathogenesis of NAFLD and related metabolic diseases. Here, we investigated the mechanisms by which miR-150 regulate hepatic steatosis and insulin resistance in high fat diet (HFD) induced NAFLD model. The expression of miR-150 was up-regulated dramatically in both human NAFLD patients and HFD mice model, as well as in hepatocytes treated with oleic acid. miR-150 deficiency ameliorated the hepatic steatosis and insulin resistance significantly in NAFLD mice. miR-150 deficiency decreased the expression of genes related to fatty acid uptake, synthesis and gluconeogenesis, while increased the expression of genes related to fatty acid β-oxidation. Further, we identified that CFLAR is a direct downstream target of miR-150. Overexpression of miR-150 reduced both the mRNA and protein levels of CFLAR in vitro. And overexpression of miR-150 significantly inhibited the luciferase activity of CFLAR 3'-UTR, while the effect of miR-150 was blocked when the binding site of miR-150 within the CFLAR 3'-UTR was mutated. We also found that miR-150 deficiency decreased the expression of p-Jnk1 and p-Ask1, while the effect of miR-150 on steatosis and insulin signaling was blocked by CFLAR overexpression. In conclusion, our data indicated that miR-150 potentially contributes to the hepatic steatosis and insulin resistance in NAFLD. miR-150/CFLAR pathway may be a new therapeutic strategy against NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Transgenic animal models for study of the pathogenesis of Huntington’s disease and therapy

    Directory of Open Access Journals (Sweden)

    Chang RB

    2015-04-01

    Full Text Available Renbao Chang,1 Xudong Liu,1 Shihua Li,2 Xiao-Jiang Li1,2 1State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China; 2Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA Abstract: Huntington’s disease (HD is caused by a genetic mutation that results in polyglutamine expansion in the N-terminal regions of huntingtin. As a result, this polyQ expansion leads to the misfolding and aggregation of mutant huntingtin as well as age-dependent neurodegeneration. The genetic mutation in HD allows for generating a variety of animal models that express different forms of mutant huntingtin and show differential pathology. Studies of these animal models have provided an important insight into the pathogenesis of HD. Mouse models of HD include transgenic mice, which express N-terminal or full-length mutant huntingtin ubiquitously or selectively in different cell types, and knock-in mice that express full-length mutant Htt at the endogenous level. Large animals, such as pig, sheep, and monkeys, have also been used to generate animal HD models. This review focuses on the different features of commonly used transgenic HD mouse models as well as transgenic large animal models of HD, and also discusses how to use them to identify potential therapeutics. Since HD shares many pathological features with other neurodegenerative diseases, identification of therapies for HD would also help to develop effective treatment for different neurodegenerative diseases that are also caused by protein misfolding and occur in an age-dependent manner. Keywords: transgenic animal models, Huntington’s disease, pathogenesis, therapy

  20. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    OpenAIRE

    Martin, Antonio; De Vivo, Giulia; Gentile, Vittorio

    2011-01-01

    Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Pa...

  1. Molecular insights into the pathogenesis of Alzheimer's disease and its relationship to normal aging.

    Directory of Open Access Journals (Sweden)

    Alexei A Podtelezhnikov

    Full Text Available Alzheimer's disease (AD is a complex neurodegenerative disorder that diverges from the process of normal brain aging by unknown mechanisms. We analyzed the global structure of age- and disease-dependent gene expression patterns in three regions from more than 600 brains. Gene expression variation could be almost completely explained by four transcriptional biomarkers that we named BioAge (biological age, Alz (Alzheimer, Inflame (inflammation, and NdStress (neurodegenerative stress. BioAge captures the first principal component of variation and includes genes statistically associated with neuronal loss, glial activation, and lipid metabolism. Normally BioAge increases with chronological age, but in AD it is prematurely expressed as if some of the subjects were 140 years old. A component of BioAge, Lipa, contains the AD risk factor APOE and reflects an apparent early disturbance in lipid metabolism. The rate of biological aging in AD patients, which cannot be explained by BioAge, is associated instead with NdStress, which includes genes related to protein folding and metabolism. Inflame, comprised of inflammatory cytokines and microglial genes, is broadly activated and appears early in the disease process. In contrast, the disease-specific biomarker Alz was selectively present only in the affected areas of the AD brain, appears later in pathogenesis, and is enriched in genes associated with the signaling and cell adhesion changes during the epithelial to mesenchymal (EMT transition. Together these biomarkers provide detailed description of the aging process and its contribution to Alzheimer's disease progression.

  2. Clinical Relevance of Environmental Factors in the Pathogenesis of Autoimmune Thyroid Disease

    Directory of Open Access Journals (Sweden)

    Wilmar M. Wiersinga

    2016-06-01

    Full Text Available Genetic factors contribute for about 70% to 80% and environmental factors for about 20% to 30% to the pathogenesis of autoimmune thyroid disease (AITD. Relatives of AITD patients carry a risk to contract AITD themselves. The 5-year risk can be quantified by the so-called Thyroid Events Amsterdam-score, based on serum thyroid-stimulating hormone, thyroid peroxidase (TPO-antibodies and family history. Subjects at risk may ask what they can do to prevent development of AITD. This review summarizes what is known about modulation of exposure to environmental factors in terms of AITD prevention. To stop smoking decreases the risk on Graves disease but increases the risk on Hashimoto disease. Moderate alcohol intake provides some protection against both Graves and Hashimoto disease. Low selenium intake is associated with a higher prevalence of thyroid autoimmunity, but evidence that selenium supplementation may lower TPO antibodies and prevent subclinical hypothyroidism remains inconclusive. Low serum vitamin D levels are associated with a higher prevalence of TPO antibodies, but intervention studies with extra vitamin D have not been done yet. Stress may provoke Graves hyperthyroidism but not Hashimoto thyroiditis. Estrogen use have been linked to a lower prevalence of Graves disease. The postpartum period is associated with an increased risk of AITD. Taking together, preventive interventions to diminish the risk of AITD are few, not always feasible, and probably of limited efficacy.

  3. Evaluation of circulating zonulin as a potential marker in the pathogenesis of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Hendy, Olfat M; Elsabaawy, Maha M; Aref, Mona M; Khalaf, Fatma M; Oda, Abdel Moaty A; El Shazly, Helmy M

    2017-07-01

    Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders ranging from simple hepatic steatosis up to nonalcoholic steatohepatitis (NASH) evolving to cirrhosis and hepatocellular carcinoma (HCC). Liver biopsy is still the gold standard modality for diagnosing and staging NAFLD. The linkage between intestinal microbiota and NAFLD, might suggest a potential role of serum zonulin in NAFLD diagnosis. To appraise the role of circulating zonulin in NAFLD pathogenesis, 56 subjects with proved NAFLD by ultrasonography and liver biopsy, as well as 20 healthy controls were tested. Liver function tests, serum glucose, fasting insulin, C peptide, lipid profile, homeostasis model assessment of insulin resistance (HOMA-IR), IL-6, and circulating zonulin were performed to all subjects. Aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (GGT), triglycerides, HDL-c, fasting insulin, C peptide, HOMA-IR, IL-6, and serum zonulin were higher in NAFLD group than in controls (p Zonulin was positively correlated with body mass index (BMI), ALT, triglycerides, fasting insulin, HOMA-IR, liver histopathology, and serum IL-6 (p zonulin was found to be of diagnostic value of NASH occurrence with 100% sensitivity and specificity (AUR = 1.000, p-value = zonulin levels in NAFLD patients with steep rise in NASH group denotes a possible role in pathogenesis of NAFLD occurrence and progression. This could open a new avenue of implicating zonulin antagonists as targeted therapies in NAFLD prevention. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  4. The Role of Carbohydrate Related Factors in Pathogenesis of Nonalcoholic Fatty Liver Disease: A Review

    Directory of Open Access Journals (Sweden)

    Saeed Sherafatmanesh

    2017-06-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is among the most common causes of chronic liver disease worldwide and its prevalence is increasing nowadays. This review article discusses the role of carbohydrate in NAFLD. We reviewed 57 papers out of which 48 randomized controlled trials and review articles with good quality were collected. The key words used for the search were: “Carbohydrate”, “Fructose”, “Weight”, “Low carbohydrate, ketogenic diet”, in combination with “NAFLD” for searching in “Pubmed”, ”Science direct” and “Google Scholar” databases. We limited our search to studies published in English. The available data provided adequate scientific evidence which pointed toward the considerable potential effects between high intake of carbohydrates, fructose, high glycemic index foods and low dietary fiber and incidence of the NAFLD. This review provided sufficient evidence that higher consumption of carbohydrates and fructose sources may exacerbate NAFLD which leads to more accumulation of fat in the liver; while higher intake of fiber and low GI carbohydrate tends to ameliorate NAFLD.

  5. A new perspective on the pathogenesis of chronic renal disease in captive cheetahs (Acinonyx jubatus).

    Science.gov (United States)

    Mitchell, Emily P; Prozesky, Leon; Lawrence, John

    2018-01-01

    The sustainability of captive cheetah populations is limited by high mortality due to chronic renal disease. This necropsy study, conducted on 243 captive cheetahs from one institution, investigated the relationships between focal palatine erosions, gastritis, enterocolitis, glomerulosclerosis, chronic renal infarcts, renal cortical and medullary fibrosis, and renal medullary amyloidosis at death. Associations between the individual renal lesions and death due to chronic renal disease and comparisons of lesion prevalence between captive bred and wild born and between normal and king coated cheetahs were also assessed. All lesions were significantly positively correlated with age at death. Renal medullary fibrosis was the only lesion associated with the likelihood of death being due to chronic renal disease, and cheetahs with this lesion were younger, on average, than cheetahs with other renal lesions. Alimentary tract lesions were not associated with amyloidosis. All lesions, except for palatine erosions, were more common in wild born than in captive bred cheetahs; the former were older at death than the latter. Having a king coat had no clear effect on disease prevalence. These results suggest that age and renal medullary fibrosis are the primary factors influencing the pathogenesis of chronic renal disease in captive cheetahs. Apart from amyloidosis, these findings are analogous to those described in chronic renal disease in domestic cats, which is postulated to result primarily from repetitive hypoxic injury of renal tubules, mediated by age and stress. Cheetahs may be particularly susceptible to acute renal tubular injury due to their propensity for stress and their extended life span in captivity, as well as their adaptation for fecundity (rather than longevity) and adrenaline-mediated high speed prey chases. The presence of chronic renal disease in subadult cheetahs suggests that prevention, identification and mitigation of stress are critical to the

  6. Extranodal Rosai-Dorfman disease of bone, subcutaneous tissue and paranasal sinus mucosa with a review of its pathogenesis

    International Nuclear Information System (INIS)

    Yoon, Angela J.; Parisien, May; Feldman, Frieda; Young-In Lee, Francis

    2005-01-01

    We report an unusual case of extranodal Rosai-Dorfman disease presenting in a 36-year-old man with lesions of bone, subcutaneous tissue of the arm and maxillary sinus mucosa unassociated with lymphadenopathy or systemic symptoms. These lesions appeared metachronously within a 6-month period. The diagnostic light microscopic and immunohistochemical findings and pathogenesis of this interesting disease are discussed. (orig.)

  7. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes.

    Science.gov (United States)

    Patel, Tushar P; Rawal, Komal; Bagchi, Ashim K; Akolkar, Gauri; Bernardes, Nathalia; Dias, Danielle da Silva; Gupta, Sarita; Singal, Pawan K

    2016-01-01

    Sedentary life style and high calorie dietary habits are prominent leading cause of metabolic syndrome in modern world. Obesity plays a central role in occurrence of various diseases like hyperinsulinemia, hyperglycemia and hyperlipidemia, which lead to insulin resistance and metabolic derangements like cardiovascular diseases (CVDs) mediated by oxidative stress. The mortality rate due to CVDs is on the rise in developing countries. Insulin resistance (IR) leads to micro or macro angiopathy, peripheral arterial dysfunction, hampered blood flow, hypertension, as well as the cardiomyocyte and the endothelial cell dysfunctions, thus increasing risk factors for coronary artery blockage, stroke and heart failure suggesting that there is a strong association between IR and CVDs. The plausible linkages between these two pathophysiological conditions are altered levels of insulin signaling proteins such as IR-β, IRS-1, PI3K, Akt, Glut4 and PGC-1α that hamper insulin-mediated glucose uptake as well as other functions of insulin in the cardiomyocytes and the endothelial cells of the heart. Reduced AMPK, PFK-2 and elevated levels of NADP(H)-dependent oxidases produced by activated M1 macrophages of the adipose tissue and elevated levels of circulating angiotensin are also cause of CVD in diabetes mellitus condition. Insulin sensitizers, angiotensin blockers, superoxide scavengers are used as therapeutics in the amelioration of CVD. It evidently becomes important to unravel the mechanisms of the association between IR and CVDs in order to formulate novel efficient drugs to treat patients suffering from insulin resistance-mediated cardiovascular diseases. The possible associations between insulin resistance and cardiovascular diseases are reviewed here.

  8. Molecular Targets in Alzheimer’s Disease: From Pathogenesis to Therapeutics

    Directory of Open Access Journals (Sweden)

    Xuan Cheng

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD.

  9. High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity.

    Directory of Open Access Journals (Sweden)

    Lisa Gruber

    Full Text Available BACKGROUND: Obesity has been associated with a more severe disease course in inflammatory bowel disease (IBD and epidemiological data identified dietary fats but not obesity as risk factors for the development of IBD. Crohn's disease is one of the two major IBD phenotypes and mostly affects the terminal ileum. Despite recent observations that high fat diets (HFD impair intestinal barrier functions and drive pathobiont selection relevant for chronic inflammation in the colon, mechanisms of high fat diets in the pathogenesis of Crohn's disease are not known. The aim of this study was to characterize the effect of HFD on the development of chronic ileal inflammation in a murine model of Crohn's disease-like ileitis. METHODS: TNF(ΔARE/WT mice and wildtype C57BL/6 littermates were fed a HFD compared to control diet for different durations. Intestinal pathology and metabolic parameters (glucose tolerance, mesenteric tissue characteristics were assessed. Intestinal barrier integrity was characterized at different levels including polyethylene glycol (PEG translocation, endotoxin in portal vein plasma and cellular markers of barrier function. Inflammatory activation of epithelial cells as well as immune cell infiltration into ileal tissue were determined and related to luminal factors. RESULTS: HFD aggravated ileal inflammation but did not induce significant overweight or typical metabolic disorders in TNF(ΔARE/WT. Expression of the tight junction protein Occludin was markedly reduced in the ileal epithelium of HFD mice independently of inflammation, and translocation of endotoxin was increased. Epithelial cells showed enhanced expression of inflammation-related activation markers, along with enhanced luminal factors-driven recruitment of dendritic cells and Th17-biased lymphocyte infiltration into the lamina propria. CONCLUSIONS: HFD feeding, independently of obesity, accelerated disease onset of small intestinal inflammation in Crohn's disease

  10. Advances in understanding gray matter pathology in multiple sclerosis: Are we ready to redefine disease pathogenesis?

    Directory of Open Access Journals (Sweden)

    Zivadinov Robert

    2012-03-01

    Full Text Available Abstract The purpose of this special issue in BMC Neurology is to summarize advances in our understanding of the pathological, immunological, imaging and clinical concepts of gray matter (GM pathology in patients with multiple sclerosis (MS. Review articles by Lucchinetti and Popescu, Walker and colleagues, Hulst and colleagues and Horakova and colleagues summarize important recent advances in understanding GM damage and its implications to MS pathogenesis. They also raise a number of important new questions and outline comprehensive approaches to addressing those questions in years to come. In the last decade, the use of immunohistochemistry staining methods and more advanced imaging techniques to detect GM lesions, like double inversion recovery, contributed to a surge of studies related to cortical and subcortical GM pathology in MS. It is becoming more apparent from recent biopsy studies that subpial cortical lesions in early MS are highly inflammatory. The mechanisms responsible for triggering meningeal inflammation in MS patients are not yet elucidated, and they should be further investigated in relation to their role in initiating and perpetuating the disease process. Determining the role of antigens, environmental and genetic factors in the pathogenesis of GM involvement in MS is critical. The early involvement of cortical and subcortical GM damage in MS is very intriguing and needs to be further studied. As established in numerous cross-sectional and longitudinal studies, GM damage is a better predictor of physical disability and cognitive impairment than WM damage. Monitoring the evolution of GM damage is becoming an important marker in predicting future disease course and response to therapy in MS patients.

  11. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model.

    Science.gov (United States)

    Li, Fengling; Wu, Xiqing; Li, Jing; Niu, Qingliang

    2016-06-01

    The complex etiopathogenesis of Alzheimer's disease (AD) has limited progression in the identification of effective therapeutic agents. Amyloid precursor protein (APP) and presenilin‑1 (PS1) are always overexpressed in AD, and are considered to be the initiators of the formation of β‑amyloid plaques and the symptoms of AD. In the present study, a transgenic AD model, constructed via the overexpression of APP and PS1, was used to verify the protective effects of ginsenoside Rg1 on memory performance and synaptic plasticity. AD mice (6‑month‑old) were treated via intraperitoneal injection of 0.1‑10 mg/kg ginsenoside Rg1. Long‑term memory, synaptic plasticity, and the levels of AD‑associated and synaptic plasticity‑associated proteins were measured following treatment. Memory was measured using a fear conditioning task and protein expression levels were investigated using western blotting. All the data was analyzed by one-way analysis of variance or t‑test. Following 30 days of consecutive treatment, memory in the AD mouse model was ameliorated in the 10 mg/kg ginsenoside Rg1 treatment group. As demonstrated by biochemical experiments, ginsenoside Rg1 treatment reduced the accumulations of β‑amyloid 1‑42 and phosphorylated (p)‑Tau in the AD model. Additionally, brain-derived neurotrophic factor (BDNF) and p‑TrkB synaptic plasticity‑associated proteins were upregulated following ginsenoside Rg1 application. Correspondingly, long‑term potentiation (LTP) was restored following ginsenoside Rg1 application in the AD mice model. Taken together, ginsenoside Rg1 repaired hippocampal LTP and memory, likely through facilitating the clearance of AD‑associated proteins and through activation of the BDNF‑TrkB pathway. Therefore, ginsenoside Rg1 may be a candidate drug for the treatment of AD.

  12. A unified pathogenesis for kidney diseases, including genetic diseases and cancers, by the protein-homeostasis-system hypothesis.

    Science.gov (United States)

    Lee, Kyung-Yil

    2017-06-01

    Every cell of an organism is separated and protected by a cell membrane. It is proposed that harmony between intercellular communication and the health of an organism is controlled by a system, designated the protein-homeostasis-system (PHS). Kidneys consist of a variety of types of renal cells, each with its own characteristic cell-receptor interactions and producing characteristic proteins. A functional union of these renal cells can be determined by various renal function tests, and harmonious intercellular communication is essential for the healthy state of the host. Injury to a kind of renal cells can impair renal function and induce an imbalance in total body health. Every acute or chronic renal disease has unknown etiologic substances that are responsible for renal cell injury at the molecular level. The immune/repair system of the host should control the etiologic substances acting against renal cells; if this system fails, the disease progresses to end stage renal disease. Each renal disease has its characteristic pathologic lesions where immune cells and immune proteins, such as immunoglobulins and complements, are infiltrated. These immune cells and immune proteins may control the etiologic substances involved in renal pathologic lesions. Also, genetic renal diseases and cancers may originate from a protein deficiency or malfunctioning protein under the PHS. A unified pathogenesis for renal diseases, including acute glomerulonephritis, idiopathic nephrotic syndrome, immunoglobulin A nephropathy, genetic renal diseases such as Alport syndrome, and malignancies such as Wilms tumor and renal cell carcinoma, is proposed using the PHS hypothesis.

  13. Parkinson's disease--the debate on the clinical phenomenology, aetiology, pathology and pathogenesis.

    Science.gov (United States)

    Jenner, Peter; Morris, Huw R; Robbins, Trevor W; Goedert, Michel; Hardy, John; Ben-Shlomo, Yoav; Bolam, Paul; Burn, David; Hindle, John V; Brooks, David

    2013-01-01

    The definition of Parkinson's disease (PD) is changing with the expansion of clinical phenomenology and improved understanding of environmental and genetic influences that impact on the pathogenesis of the disease at the cellular and molecular level. This had led to debate and discussion with as yet, no general acceptance of the direction that change should take either at the level of diagnosis or of what should and should not be sheltered under an umbrella of PD. This article is one contribution to this on-going discussion. There are two different themes running through the article--widening the definition of PD/LBD/synucleinopathies and the heterogeneity that exists within PD itself from a clinical, pathological and genetic perspective. The conclusion reached is that in the future, further diagnostic categories will need to be recognized. These are likely to include--Parkinson's syndrome, Parkinson's syndrome likely to be Lewy body PD, clinical PD (defined by QSBB criteria), Lewy body disease (PD, LBD, REM SBD) and synucleinopathies (including LBD, MSA).

  14. Parkinson’s Disease – the Debate on the Clinical Phenomenology, Aetiology, Pathology and Pathogenesis

    Science.gov (United States)

    Jenner, Peter; Morris, Huw R.; Robbins, Trevor W.; Goedert, Michel; Hardy, John; Ben-Shlomo, Yoav; Bolam, Paul; Burn, David; Hindle, John V.; Brooks, David

    2014-01-01

    The definition of Parkinson’s disease (PD) is changing with the expansion of clinical phenomenology and improved understanding of environmental and genetic influences that impact on the pathogenesis of the disease at the cellular and molecular level. This had led to debate and discussion with as yet, no general acceptance of the direction that change should take either at the level of diagnosis or of what should and should not be sheltered under an umbrella of PD. This article is one contribution to this on-going discussion. There are two different themes running through the article - widening the definition of PD/LBD/synucleinopathies and the heterogeneity that exists within PD itself from a clinical, pathological and genetic per-spective. The conclusion reached is that in the future, further diagnostic categories will need to be recognized. These are likely to include - Parkinson’s syndrome, Parkinson’s syndrome likely to be Lewy body PD, clinical PD (defined by QSBB criteria), Lewy body disease (PD, LBD, REM SBD) and synucleinopathies (including LBD, MSA). PMID:23938306

  15. When aging-onset diabetes is coming across with Alzheimer disease: comparable pathogenesis and therapy.

    Science.gov (United States)

    Tang, Jun; Pei, Yijin; Zhou, Guangji

    2013-08-01

    Diabetes mellitus is a metabolic disorder that is characterized by high blood glucose because of the insulin-resistance and insulin-deficiency in Type 2, while the insulin deficiency due to destruction of islet cells in the pancreas in Type 1. The development of Type 2 diabetes is caused by a combination of lifestyle and genetic factors. Aging patients with diabetes are at increased risk of developing cognitive and memory dysfunctions, which is one of the significant symptoms of Alzheimer disease (AD). Also, over 2/3 of AD patients were clinically indentified with impairment of glucose. Cognitive dysfunction would be associated with poor self-care ability in diabetes patients. This review will briefly summarize the current knowledge of the pathogenesis of these two diseases and highlight similarities in their pathophysiologies. Furthermore, we will shortly discuss recent progress in the insulin-targeted strategy, aiming to explore the inner linkage between these two diseases in aging populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background

    Science.gov (United States)

    Marsh, Sharon; Hu, Junbo; Feng, Wenke

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and it comprises a spectrum of hepatic abnormalities from simple hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, and liver cancer. While the pathogenesis of NAFLD remains incompletely understood, a multihit model has been proposed that accommodates causal factors from a variety of sources, including intestinal and adipose proinflammatory stimuli acting on the liver simultaneously. Prior cellular and molecular studies of patient and animal models have characterized several common pathogenic mechanisms of NAFLD, including proinflammation cytokines, lipotoxicity, oxidative stress, and endoplasmic reticulum stress. In recent years, gut microbiota has gained much attention, and dysbiosis is recognized as a crucial factor in NAFLD. Moreover, several genetic variants have been identified through genome-wide association studies, particularly rs738409 (Ile748Met) in PNPLA3 and rs58542926 (Glu167Lys) in TM6SF2, which are critical risk alleles of the disease. Although a high-fat diet and inactive lifestyles are typical risk factors for NAFLD, the interplay between diet, gut microbiota, and genetic background is believed to be more important in the development and progression of NAFLD. This review summarizes the common pathogenic mechanisms, the gut microbiota relevant mechanisms, and the major genetic variants leading to NAFLD and its progression. PMID:27247565

  17. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice.

    Science.gov (United States)

    Deguise, Marc-Olivier; De Repentigny, Yves; McFall, Emily; Auclair, Nicole; Sad, Subash; Kothary, Rashmi

    2017-02-15

    Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn depletion led to severe alterations in the thymus and spleen of two different mouse models of SMA. The spleen from Smn depleted mice was dramatically smaller at a very young age and its histological architecture was marked by mislocalization of immune cells in the Smn2B/- model mice. In comparison, the thymus was relatively spared in gross morphology but showed many histological alterations including cortex thinning in both mouse models at symptomatic ages. Thymocyte development was also impaired as evidenced by abnormal population frequencies in the Smn2B/- thymus. Cytokine profiling revealed major changes in different tissues of both mouse models. Consistent with our observations, we found that survival motor neuron (Smn) protein levels were relatively high in lymphoid organs compared to skeletal muscle and spinal cord during postnatal development in wild type mice. Genetic introduction of one copy of the human SMN2 transgene was enough to rescue splenic and thymic defects in Smn2B/- mice. Thus, Smn is required for the normal development of lymphoid organs, and altered immune function may contribute to SMA disease pathogenesis. © The Author 2017. Published by Oxford University Press.

  18. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy.

    Science.gov (United States)

    Chang, Renbao; Liu, Xudong; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    Huntington's disease (HD) is caused by a genetic mutation that results in polyglutamine expansion in the N-terminal regions of huntingtin. As a result, this polyQ expansion leads to the misfolding and aggregation of mutant huntingtin as well as age-dependent neurodegeneration. The genetic mutation in HD allows for generating a variety of animal models that express different forms of mutant huntingtin and show differential pathology. Studies of these animal models have provided an important insight into the pathogenesis of HD. Mouse models of HD include transgenic mice, which express N-terminal or full-length mutant huntingtin ubiquitously or selectively in different cell types, and knock-in mice that express full-length mutant Htt at the endogenous level. Large animals, such as pig, sheep, and monkeys, have also been used to generate animal HD models. This review focuses on the different features of commonly used transgenic HD mouse models as well as transgenic large animal models of HD, and also discusses how to use them to identify potential therapeutics. Since HD shares many pathological features with other neurodegenerative diseases, identification of therapies for HD would also help to develop effective treatment for different neurodegenerative diseases that are also caused by protein misfolding and occur in an age-dependent manner.

  19. Toward molecular pathogenesis of an autoimmune disease: Refined genetic mapping of autoimmune polyglandular disease type I (APECED)

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, J.; Bjoerses, P.; Peltonen, L. [National Public Health Institute, Helsinki (Finland)] [and others

    1994-09-01

    Autoimmune reactions encoupled to many human diseases are still only partially understood. Unravelling the molecular pathogenesis of inherited diseases with a strong autoimmune component in their clinical expression could help to dissect individual components in the molecular background of abnormal immune response. One such genetic disorder is autosomal recessive autoimmune polyglandular disease type I (PGD I), also known as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, MIM 240300). The disease is especially enriched in the genetically isolated population of Finland and we have assigned the APECED locus to human chromosome 21q22.3 in 14 Finnish families by linkage analyses. The best positional lod score of 6.49 was observed with marker D21S49. Based on the history of the Finns, the gene pool of this population clearly demonstrates the consequences of a founder effect and consequent isolation. In the Finnish population, we can take advantage of linkage disequilibrium and allelic association studies to more precisely define the critical DNA region for our disease gene of interest than would be possible by linkage analyses alone. We are now able to define the chromosomal region of interest between two flanking markers locating 1 cM apart. Linkage disequilibrium is observed with three of the markers used in the analyses and this suggests a distance of less than 500 kb to the disease locus, well approachable with molecular cloning techniques. Overlapping YAC and cosmid clones spanning our region of interest will facilitate the cloning of APECED gene in the near future.

  20. Alpha-chymotrypcin ameliorates neuroinflammation and apoptosis characterizing Alzheimer's disease-induced in ovarictomized rats.

    Science.gov (United States)

    El Dayem, Samiha M Abd; Ahmed, Hanaa H; Metwally, Fateheya; Foda, Fatma M Aly; Shalby, Aziza B; Zaazaa, Asmaa M A

    2013-07-01

    -chymotrypcin showed great improvement in the brain morphological structure with the disappearance of amyloid plaques. This study revealed that α-chymotrypcin significantly ameliorates the neuroinflammation characterizing Alzheimer's disease in ovariectomized rats due to it's proteolytic activity as well as it's anti-inflammatory effect. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice.

    Science.gov (United States)

    Qu, Wenhui; Johnson, Andrea; Kim, Joo Hyun; Lukowicz, Abigail; Svedberg, Daniel; Cvetanovic, Marija

    2017-05-25

    Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1. Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age. PLX treatment resulted in the elimination of 70-80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function. A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice.

  2. Genetic prion disease: no role for the immune system in disease pathogenesis?

    Science.gov (United States)

    Friedman-Levi, Yael; Binyamin, Orli; Frid, Kati; Ovadia, Haim; Gabizon, Ruth

    2014-08-01

    Prion diseases, which can manifest by transmissible, sporadic or genetic etiologies, share several common features, such as a fatal neurodegenerative outcome and the aberrant accumulation of proteinase K (PK)-resistant PrP forms in the CNS. In infectious prion diseases, such as scrapie in mice, prions first replicate in immune organs, then invade the CNS via ascending peripheral tracts, finally causing death. Accelerated neuroinvasion and death occurs when activated prion-infected immune cells infiltrate into the CNS, as is the case for scrapie-infected mice induced for experimental autoimmune encephalomyelitis (EAE), a CNS inflammatory insult. To establish whether the immune system plays such a central role also in genetic prion diseases, we induced EAE in TgMHu2ME199K mice, a line mimicking for late onset genetic Creutzfeldt Jacob disease (gCJD), a human prion disease. We show here that EAE induction of TgMHu2ME199K mice neither accelerated nor aggravated prion disease manifestation. Concomitantly, we present evidence that PK-resistant PrP forms were absent from CNS immune infiltrates, and most surprisingly also from lymph nodes and spleens of TgMHu2ME199K mice at all ages and stages of disease. These results imply that the mechanism of genetic prion disease differs widely from that of the infectious presentation, and that the conversion of mutant PrPs into PK resistant forms occurs mostly/only in the CNS. If the absence of pathogenic PrP forms form immune organs is also true for gCJD patients, it may suggest their blood is devoid of prion infectivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Chronic obstructive pulmonary disease with lung cancer: Prevalence, severity, and common pathogenesis

    Directory of Open Access Journals (Sweden)

    Griffin JP

    2016-01-01

    Full Text Available Objectives: To develop a clinical prediction model of contribution of chronic obstructive pulmonary disease (COPD to the pathogenesis of lung cancer, by reporting the estimated prevalence and severity by GOLD criteria in a single-institution cohort of patients with newly diagnosed lung cancer. Primary objective was investigating the effects of impaired lung function with various histological cell types on crude survival, while considering the initial staging of disease extent. Materials & methods: A total of 441 patients, in this historical cohort from electronic medical records, completed spirometry prior to invasive diagnostic procedures and initial treatment of their lung cancer. All statistical analyses, including ANOVA and survival analysis, were performed using SAS version 9.1 software. Results: Estimated prevalence of COPD was 79.1% (95% confidence interval: 71.3%-82.9%. Lung function as measured by spirometry was a significant predictor of survival time in months (p<0.0001 both with and without adjusting for tumor-cell-type, age, and stage of disease. Median survival was similar (p=0.32 and longer among those patients with normal pulmonary function, those with restrictive disease patterns, and those with COPD–GOLD-1 defects. Median survival was shortest among patients with COPD–GOLD-4 impairment (p=0.001. Those patients with COPD–GOLD-2 and COPD-GOLD-3 impairment levels had intermediate survival times (p=0.003. Conclusions: This investigation suggests that strategies for early detection and slowing the progression of COPD before the development of lung cancer might increase patient survival. As demonstrated in this study, the presence and severity of COPD in lung cancer patients is an independent predictor of survival time, different from the established staging of initial extent of disease.

  4. Insights into mechanisms of transmission and pathogenesis from transgenic mouse models of prion diseases

    Science.gov (United States)

    Moreno, Julie A.; Telling, Glenn C.

    2018-01-01

    Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSE’s), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSE’s, is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer’s and Parkinson’s diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect inter-species prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review we will focus on advances in our understanding of prion biology that

  5. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease

    Science.gov (United States)

    Harris, Steven A.; Harris, Elizabeth A.

    2018-01-01

    This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical

  6. Host immune response and acute disease in a zebrafish model of francisella pathogenesis

    Science.gov (United States)

    Vojtech, L.N.; Sanders, G.E.; Conway, C.; Ostland, V.; Hansen, J.D.

    2009-01-01

    Members of the bacterial genus Francisella are highly virulent and infectious pathogens. New models to study Francisella pathogenesis in evolutionarily distinct species are needed to provide comparative insight, as the mechanisms of host resistance and pathogen virulence are not well understood. We took advantage of the recent discovery of a novel species of Francisella to establish a zebrafish/Francisella comparative model of pathogenesis and host immune response. Adult zebraflsh were susceptible to acute Francisella-induced disease and suffered mortality in a dose-dependent manner. Using immunohistochemical analysis, we localized bacterial antigens primarily to lymphoid tissues and livers of zebraflsh following infection by intraperitoneal injection, which corresponded to regions of local cellular necrosis. Francisella sp. bacteria replicated rapidly in these tissues beginning 12 h postinfection, and bacterial titers rose steadily, leveled off, and then decreased by 7 days postinfection. Zebraflsh mounted a significant tissue-specific proinflammatory response to infection as measured by the upregulation of interleukin-l?? (IL-1??), gamma interferon, and tumor necrosis factor alpha mRNA beginning by 6 h postinfection and persisting for up to 7 days postinfection. In addition, exposure of zebraflsh to heat-killed bacteria demonstrated that the significant induction of IL-?? was highly specific to live bacteria. Taken together, the pathology and immune response to acute Francisella infection in zebraflsh share many features with those in mammals, highlighting the usefulness of this new model system for addressing both general and specific questions about Francisella host-pathogen interactions via an evolutionary approach. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  7. Microglial Scavenger Receptors and Their Roles in the Pathogenesis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Kim Wilkinson

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is increasing in prevalence with the aging population. Deposition of amyloid-β (Aβ in the brain of AD patients is a hallmark of the disease and is associated with increased microglial numbers and activation state. The interaction of microglia with Aβ appears to play a dichotomous role in AD pathogenesis. On one hand, microglia can phagocytose and clear Aβ, but binding of microglia to Aβ also increases their ability to produce inflammatory cytokines, chemokines, and neurotoxic reactive oxygen species (ROS. Scavenger receptors, a group of evolutionally conserved proteins expressed on the surface of microglia act as receptors for Aβ. Of particular interest are SCARA-1 (scavenger receptor A-1, CD36, and RAGE (receptor for advanced glycation end products. SCARA-1 appears to be involved in the clearance of Aβ, while CD36 and RAGE are involved in activation of microglia by Aβ. In this review, we discuss the roles of various scavenger receptors in the interaction of microglia with Aβ and propose that these receptors play complementary, nonredundant functions in the development of AD pathology. We also discuss potential therapeutic applications for these receptors in AD.

  8. A novel pathogenesis of inflammatory bowel disease from the perspective of glyco-immunology.

    Science.gov (United States)

    Shinzaki, Shinichiro; Iijima, Hideki; Fujii, Hironobu; Kamada, Yoshihiro; Naka, Tetsuji; Takehara, Tetsuo; Miyoshi, Eiji

    2017-05-01

    Oligosaccharide modifications play an essential role in various inflammatory diseases and cancers, but their pathophysiologic roles, especially in inflammation, are not clear. Inflammatory bowel disease (IBD) is an intractable chronic inflammatory disorder with an unknown aetiology, and the number of patients with IBD is increasing throughout the world. Certain types of immunosuppressant drugs, such as corticosteroids, are effective for IBD, suggesting that immune function is closely associated with the pathophysiology of IBD. Recent progress in the analysis of oligosaccharides revealed a role for oligosaccharides in intestinal inflammation based on both experimental models and human samples from IBD patients. Moreover, changes in the oligosaccharide structures on glycoproteins in the sera and tissue samples may serve as biomarkers of IBD. Here, we present current studies of IBD with regard to the immunologic aspects of glycobiology, suggesting a novel concept for IBD pathogenesis and the function of oligosaccharides on immune cells, termed "glyco-immunology". © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  9. Pathogenesis of Graves` disease and therapeutic implications; Pathogenese des Morbus Basedow und therapeutische Implikationen

    Energy Technology Data Exchange (ETDEWEB)

    Seif, F.J. [Tuebingen Univ. (Germany). Medizinische Klinik und Poliklinik

    1997-12-01

    Graves` disease presents itself clinically mainly as hyperthyroidism and infiltrative ophthalmopathy and to a minimal extent also as dermopathy and acropachy. Autoimmune processes are the basic pathogenesis. Stimulating antibodies against the TSH receptor cause hyperthyroidism. Autoantibodies and autoreactive T lymphocytes against primarily thyroidal antigens cross-react with similar antigens of the eye muscles and orbital connective tissue, thus spreading the disease from the thyroid to the eyes. The therapeutic goal comprises not only the treatment of hyperthyroidism, but also the induction of a steady immuntolerance in order to minimize the irreversible damage to the eye. The therapeutic armamentarium is formed by antithyroid drugs, glucocorticoids, retrobulbar radition and thyroid ablation, either by nearly total thyroidectomy or by radioiodine. The different indications for both ablative procedures are discussed. (orig.) [Deutsch] Der Morbus Basedow manifestiert sich klinisch hauptsaechlich als Hyperthyreose und infiltrative Orbitopathie, waehrend Demopathie und Akropathie selten sind. Der Krankheit liegt ein Autoimmunprozess zugrunde, wobei stimuliernde Autoantikoerper gegen den TSH-Rezeptor die Hyperthyreose hervorrufen. Autoantikoerper und T-Lymphozyten gegen primaer thyreoidale Antigene verursachen durch Kreuzreaktion mit aehnlichen Antigenen an den Augenmuskeln und orbitalem Bindegewebe die Orbitopathie. Das therapeutsiche Ziel besteht nicht nur in der Behandlung der Hyperthyreose, sondern vor allem in der Induktion einer immuntoleranten Remission, um die irreversiblen Schaeden am Auge zu minimieren. Die Therapie umfasst Thyreostatika, Glukokortikoide und Orbitaspitzenbestrahlung sowie eine Schilddruesenablation entweder durch fast totale Schilddruesenresektion oder durch Radiojodtherapie. Die Differentialindikationen fuer die beiden ablativen Massnahmen werden eroertert. (orig.)

  10. IL-1 signal affects both protection and pathogenesis of virus-induced chronic CNS demyelinating disease

    Directory of Open Access Journals (Sweden)

    Kim Byung S

    2012-09-01

    Full Text Available Abstract Background Theiler’s virus infection induces chronic demyelinating disease in mice and has been investigated as an infectious model for multiple sclerosis (MS. IL-1 plays an important role in the pathogenesis of both the autoimmune disease model (EAE and this viral model for MS. However, IL-1 is known to play an important protective role against certain viral infections. Therefore, it is unclear whether IL-1-mediated signaling plays a protective or pathogenic role in the development of TMEV-induced demyelinating disease. Methods Female C57BL/6 mice and B6.129S7-Il1r1tm1Imx/J mice (IL-1R KO were infected with Theiler’s murine encephalomyelitis virus (1 x 106 PFU. Differences in the development of demyelinating disease and changes in the histopathology were compared. Viral persistence, cytokine production, and immune responses in the CNS of infected mice were analyzed using quantitative PCR, ELISA, and flow cytometry. Results Administration of IL-1β, thereby rending resistant B6 mice susceptible to TMEV-induced demyelinating disease, induced a high level of Th17 response. Interestingly, infection of TMEV into IL-1R-deficient resistant C57BL/6 (B6 mice also induced TMEV-induced demyelinating disease. High viral persistence was found in the late stage of viral infection in IL-1R-deficient mice, although there were few differences in the initial anti-viral immune responses and viral persistent levels between the WT B6 and IL-1R-deficiecent mice. The initial type I IFN responses and the expression of PDL-1 and Tim-3 were higher in the CNS of TMEV-infected IL-1R-deficient mice, leading to deficiencies in T cell function that permit viral persistence. Conclusions These results suggest that the presence of high IL-1 level exerts the pathogenic role by elevating pathogenic Th17 responses, whereas the lack of IL-1 signals promotes viral persistence in the spinal cord due to insufficient T cell activation by elevating the production of

  11. Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction

    Directory of Open Access Journals (Sweden)

    Yu-Xia Dong

    2018-01-01

    Full Text Available The APPSwe/PSEN1dE9 (APP/PS1 transgenic mouse model is an Alzheimer’s disease mouse model exhibiting symptoms of dementia, and is commonly used to explore pathological changes in the development of Alzheimer’s disease. Previous clinical autopsy and imaging studies suggest that Alzheimer’s disease patients have white matter and oligodendrocyte damage, but the underlying mechanisms of these have not been revealed. Therefore, the present study used APP/PS1 mice to assess cognitive change, myelin loss, and corresponding changes in oligodendrocytes, and to explore the underlying mechanisms. Morris water maze tests were performed to evaluate cognitive change in APP/PS1 mice and normal C57BL/6 mice aged 3 and 6 months. Luxol fast blue staining of the corpus callosum and quantitative reverse transcription-polymerase chain reaction (qRT-PCR for myelin basic protein (MBP mRNA were carried out to quantify myelin damage. Immunohistochemistry staining for NG2 and qRT-PCR for monocarboxylic acid transporter 1 (MCT1 mRNA were conducted to assess corresponding changes in oligodendrocytes. Our results demonstrate that compared with C57BL/6 mice, there was a downregulation of MBP mRNA in APP/PS1 mice aged 3 months. This became more obvious in APP/PS1 mice aged 6 months accompanied by other abnormalities such as prolonged escape latency in the Morris water maze test, shrinkage of the corpus callosum, upregulation of NG2-immunoreactive cells, and downregulation of MCT1 mRNA. These findings indicate that the involvement of early demyelination at 3 months and the oligodendrocyte dysfunction at 6 months in APP/PS1 mice are in association with Alzheimer’s disease pathogenesis.

  12. Specific immunotherapy ameliorates ulcerative colitis.

    Science.gov (United States)

    Cai, Min; Zeng, Lu; Li, Lin-Jing; Mo, Li-Hua; Xie, Rui-Di; Feng, Bai-Sui; Zheng, Peng-Yuan; Liu, Zhi-Gang; Liu, Zhan-Ju; Yang, Ping-Chang

    2016-01-01

    Hypersensitivity reaction to certain allergens plays a role in the pathogenesis of inflammatory bowel disease (IBD). This study aims to observe the effect of specific immunotherapy in a group of IBD patients. Patients with both ulcerative colitis (UC) and food allergy were recruited into this study. Food allergy was diagnosed by skin prick test and serum specific IgE. The patients were treated with specific immunotherapy (SIT) and Clostridium butyricum (CB) capsules. After treating with SIT and CB, the clinical symptoms of UC were markedly suppressed as shown by reduced truncated Mayo scores and medication scores. The serum levels of specific IgE, interleukin (IL)-4 and tumor necrosis factor (TNF)-α were also suppressed. Treating with SIT alone or CB alone did not show appreciable improvement of the clinical symptoms of UC. UC with food allergy can be ameliorated by administration with SIT and butyrate-production probiotics.

  13. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability. © The Author(s) 2016.

  14. Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle.

    Science.gov (United States)

    Arzt, Jonathan; Pacheco, Juan M; Stenfeldt, Carolina; Rodriguez, Luis L

    2017-05-02

    Understanding the mechanisms of attenuation and virulence of foot-and-mouth disease virus (FMDV) in the natural host species is critical for development of next-generation countermeasures such as live-attenuated vaccines. Functional genomics analyses of FMDV have identified few virulence factors of which the leader proteinase (L pro ) is the most thoroughly investigated. Previous work from our laboratory has characterized host factors in cattle inoculated with virulent FMDV and attenuated mutant strains with transposon insertions within L pro . In the current study, the characteristics defining virulence of FMDV in cattle were further investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). The only difference between the two viruses was an insertion mutation in the inter-AUG region of the leader proteinase of FMDV-Mut. All cattle were infected by simulated-natural, aerosol inoculation. Both viruses were demonstrated to establish primary infection in the nasopharyngeal mucosa with subsequent dissemination to the lungs. Immunomicroscopic localization of FMDV antigens indicated that both viruses infected superficial epithelial cells of the nasopharynx and lungs. The critical differences between the two viruses were a more rapid establishment of infection by FMDV-WT and quantitatively greater virus loads in secretions and infected tissues compared to FMDV-Mut. The slower replicating FMDV-Mut established a subclinical infection that was limited to respiratory epithelial sites, whereas the faster replication of FMDV-WT facilitated establishment of viremia, systemic dissemination of infection, and clinical disease. The mutant FMDV was capable of achieving all the same early pathogenesis landmarks as FMDV-WT, but was unable to establish systemic infection. The precise mechanism of attenuation remains undetermined; but current data suggests that the impaired replication

  15. Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Rommy eVon Bernhardi

    2015-10-01

    Full Text Available Aging is the main risk factor for Alzheimer’s disease (AD; being associated with conspicuous changes on microglia activation. Aged microglia exhibit an increased expression of cytokines, exacerbated reactivity to various stimuli, oxidative stress, and reduced phagocytosis of Aβ. Whereas normal inflammation is protective, it becomes dysregulated in the presence of a persistent stimulus, or in the context of an inflammatory environment, as observed in aging. Thus, neuroinflammation can be a self-perpetuating deleterious response, becoming a source of additional injury to host cells in neurodegenerative diseases. In aged individuals, although TGFβ is upregulated, its canonical Smad3 signaling is greatly reduced and neuroinflammation persists. This age-related Smad3 impairment reduces protective activation while facilitating cytotoxic activation of microglia through several cellular mechanisms, potentiating microglia-mediated neurodegeneration. Here, we critically discuss the role of TGFβ-Smad signaling on the cytotoxic activation of microglia and its relevance in the pathogenesis of AD. Other protective functions, such as phagocytosis, although observed in aged animals, are not further induced by inflammatory stimuli and TGFβ1. Analysis in silico revealed that increased expression of receptor SR-A, involved in Aβ uptake and cell activation, by microglia exposed to TGFβ, through a Smad3-dependent mechanism could be mediated by transcriptional co-factors Smad2/3 over the MSR1 gene. We discuss that changes of TGFβ-mediated regulation could at least partially mediate age-associated microglia changes, and, together with other changes on inflammatory response, could result in the reduction of protective activation and the potentiation of cytotoxicity of microglia, resulting in the promotion of neurodegenerative diseases.

  16. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease.

    Science.gov (United States)

    Kerr, Jonathan R

    2016-04-01

    Human parvovirus B19 is a single-stranded DNA virus which preferentially targets the erythroblasts in the bone marrow. B19 infection commonly causes erythema infectiosum, arthralgia, fetal death, transient aplastic crisis in patients with shortened red cell survival, and persistent infection in people who are immunocompromised. Less common clinical manifestations include atypical skin rashes, neurological syndromes, cardiac syndromes, and various cytopenias. B19 infection has also been associated with development of a variety of different autoimmune diseases, including rheumatological, neurological, neuromuscular, cardiovascular, haematological, nephrological and metabolic. Production of a variety of autoantibodies has been demonstrated to occur during B19 infection and these have been shown to be key to the pathogenesis of the particular disease process in a significant number of cases, for example, production of rheumatoid factor in cases of B19-associated rheumatoid arthritis and production of anti-glutamic acid decarboxylase (GAD) in patients with B19-associated type 1 diabetes mellitus. B19 infection has also been associated with the development of multiple autoimmune diseases in 12 individuals. Documented mechanisms in B19-associated autoimmunity include molecular mimicry (IgG antibody to B19 proteins has been shown to cross react with a variety of recognised human autoantigens, including collagen II, keratin, angiotensin II type 1 receptor, myelin basic protein, cardiolipin, and platelet membrane glycoprotein IIb/IIIa), B19-induced apoptosis with presentation of self-antigens to T lymphocytes, and the phospholipase activity of the B19 unique VP1 protein. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin.

    Science.gov (United States)

    Retta, Saverio Francesco; Glading, Angela J

    2016-12-01

    factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. The role of bile acids in the pathogenesis of bowel diseases

    Directory of Open Access Journals (Sweden)

    Magdalena Panek-Jeziorna

    2017-08-01

    Full Text Available Bile acids not only play a cardinal role in the digestion and absorption of fat and fat-soluble vitamins, but also significantly affect gastrointestinal motor, sensory and secretory functions, intestinal barrier permeability and the regulation of the inflammatory response. The results of recent studies have revealed complex interactions between bile acids and the gut microbiota. In addition, bile acids also play a role of signaling molecules regulating the activity of lipid and glucose metabolic pathways, as well as a role of ligands for transcription factors. Genetic factors associated with the regulation of bile acid synthesis, transport and action may significantly influence gastrointestinal function and predispose to diarrhea resulting from bile acid malabsorption. Methods used in the diagnosis of bile acid malabsorption include 75selenium-homotaurocholic acid test, serum C4 and fibroblast growth factor 19 (FGF19, as well as fecal bile acid levels. The paper presents the latest data on the role of bile acid in the pathogenesis of irritable bowel syndrome, inflammatory bowel diseases and colorectal cancer. Advances in the treatment of disturbances in bile acids absorption and synthesis are also presented. A better understanding of molecular mechanisms regulating bile acid action may have implication for colorectal cancer prevention.

  19. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review

    Directory of Open Access Journals (Sweden)

    Xiaoshi Ma

    2017-10-01

    Full Text Available The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD. Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.

  20. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Salminen, Antero; Jouhten, Paula; Sarajärvi, Timo; Haapasalo, Annakaisa; Hiltunen, Mikko

    2016-01-01

    We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  2. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Aliev, Gjumrakch; Gasimov, Eldar; Obrenovich, Mark E; Fischbach, Kathryn; Shenk, Justin C; Smith, Mark A; Perry, George

    2008-01-01

    The pathogenesis that is primarily responsible for Alzheimer's disease (AD) and cerebrovascular accidents (CVA) appears to involve chronic hypoperfusion. We studied the ultrastructural features of vascular lesions and mitochondria in brain vascular wall cells from human AD biopsy samples and two transgenic mouse models of AD, yeast artificial chromosome (YAC) and C57B6/SJL Tg (+), which overexpress human amyloid beta precursor protein (AbetaPP). In situ hybridization using probes for normal and 5 kb deleted human and mouse mitochondrial DNA (mtDNA) was performed along with immunocytochemistry using antibodies against the Abeta peptide processed from AbetaPP, 8-hydroxy-2'-guanosine (8OHG), and cytochrome c oxidase (COX). More amyloid deposition, oxidative stress markers as well as mitochondrial DNA deletions and structural abnormalities were present in the vascular walls of the human AD samples and the AbetaPP-YAC and C57B6/SJL Tg (+) transgenic mice compared to age-matched controls. Ultrastructural damage in perivascular cells highly correlated with endothelial lesions in all samples. Therefore, pharmacological interventions, directed at correcting the chronic hypoperfusion state, may change the natural course of the development of dementing neurodegeneration.

  3. Is Oxidative Stress Associated with Activation and Pathogenesis of Inflammatory Bowel Disease?

    Directory of Open Access Journals (Sweden)

    Yuksel Mahmut

    2017-08-01

    Full Text Available Background: We aimed to determine the levels of total antioxidant status (TAS, total oxidant status (TOS, oxidative stress index (OSI and paraoxonase1/arylesterase levels in inflammatory bowel disease (IBD, and the relation be - tween these molecules and the activity index of the disease. Methods: Eighty IBD patients (ulcerative colitis (UC/Crohn disease (CD 40/40 and 80 control group participants were included in the study. Oxidative stress parameters were measured using the colorimetric method. As disease activity indexes, the endoscopic activity index (EAI was used for UC and the CD activity index (CDAI was used for CD. Results: In IBD patients, mean TAS (1.3±0.2 vs 1.9±0.2, respectively; p<0.001 and arylesterase (963.9±232.2 vs 1252.9±275, respectively; p<0.001 levels were found to be lower and TOS level (5.6±1.6 vs 4.0±1.0, respectively; p<0.001 and OSI rate (4.5±1.6 vs 2.2±0.8, respectively; p<0.001 were found to be higher compared to the control group. A strong positive correlation was found between EAI and TOS levels (r=0.948, p<0.001 and OSI rate (r=0.894, p<0.001 for UC patients. A very strong positive correlation was found between EAI and TOS levels (r=0.964, p<0.001 and OSI rate (r=0.917, p<0.001 for CD patients. It was found in a stepwise regression model that C-reactive protein, OSI and arylesterase risk factors were predictors of IBD compared to the control group. Conclusion: Increased oxidative stress level in IBD patients and the detection of OSI rate as an independent predictor for disease activity indexes lead to the idea that oxidative stress might be related to the pathogenesis of IBD.

  4. The pathogenesis of Chagas' disease: when autoimmune and parasite-specific immune responses meet

    Directory of Open Access Journals (Sweden)

    MILENA B. P. SOARES

    2001-12-01

    Full Text Available Chagas' disease is a major health problem in Latin America, where it constitutes one of the leading causes of heart failure. About one fourth of Trypanosoma cruzi-infected individuals develop chronic chagasic cardiomyopathy (CChC, the most severe form of the disease. CChC is histologically characterized by the presence of multifocal inflammatory infiltrates in the heart, composed mainly by mononuclear cells, usually adhered to myocytes and leading to myocytolysis, and frequently by interstitial fibrosis. The pathogenesis of CChC is still unclear, despite intense investigations both in human beings and in animal models of the disease. Although tissue parasitism is rare in the chronic phase of infection, an immune response targeted to persistent parasites or parasite antigens is suggested, by some authors, as the pathogenic mechanism of CChC. Other researchers affirm that the lack of correlation between tissue parasitism and intensity of inflammation suggests, along with the presence of autoreactive immune responses, that CChC results from the action of an autoimmune response. Herein we review reports from the literature and our own data, which together indicate, on one hand, the participation of parasite-specific immune responses and, on the other hand, clearly demonstrate the participation of heart-specific immune responses in the pathogenesis of CChC. Moreover, multiple factors may determine whether an individual in the indeterminate form of the disease will develop CChC. The mechanisms by which T. cruzi breaks immunological tolerance to heart antigens are also discussed.A doença de Chagas constitui um grave problema de saúde pública na América Latina, onde é uma das principais causas de problemas cardíacos. A cardiopatia chagásica crônica (CChC, forma mais grave da doença, manifesta-se em cerca de 25% dos indivíduos infectados pelo Trypanosoma cruzi, e é caracterizada, a nível histopatológico, pela presença de infiltrados

  5. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    2017-12-01

    Full Text Available Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases

  6. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This

  7. Nonalcoholic fatty liver disease: Update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine

    Science.gov (United States)

    Mato, José M; Lu, Shelly C

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide affecting over one-third of the population in the U.S. It has been associated with obesity, type 2 diabetes, hyperlipidemia, and insulin resistance and is initiated by the accumulation of triglycerides in hepatocytes. Isolated hepatic steatosis (IHS) remains a benign process, while a subset develops superimposed inflammatory activity and progression to nonalcoholic steatohepatitis (NASH) with or without fibrosis. However, the molecular mechanisms underlying NAFLD progression are not completely understood. Liver biopsy is still required to differentiate IHS from NASH as easily accessible noninvasive biomarkers are lacking. In terms of treatments for NASH, pioglitazone, vitamin E, and obeticholic acid have shown some benefit. All of these agents have potential complications associated with long-term use. Nowadays, a complex hypothesis suggests that multiple parallel hits are involved in NASH development. However, the ‘key switch’ between IHS and NASH remains to be discovered. We have recently shown that knocking out enzymes involved in S-adenosylmethionine (SAMe) metabolism, the main biological methyl donor in humans that is abundant in the liver, will lead to NASH development in mice. This could be due to the fact that a normal SAMe level is required to establish the proper ratio of phosphatidylethanolamine to phosphatidylcholine that has been found to be important in NAFLD progression. New data from humans have also suggested that these enzymes play a role in the pathogenesis of NAFLD and that some of SAMe cycle metabolites may serve as noninvasive biomarkers of NASH. In this review, we discuss the evidence of the role of SAMe in animal models and humans with NAFLD and how studying this area may lead to the discovery of new noninvasive biomarkers and possibly personalized treatment for NASH. PMID:25873078

  8. Disordered glycometabolism involved in pathogenesis of Kashin–Beck disease, an endemic osteoarthritis in China

    International Nuclear Information System (INIS)

    Wu, Cuiyan; Lei, Ronghui; Tiainen, Mika; Wu, Shixun; Zhang, Qiang; Pei, Fuxing; Guo, Xiong

    2014-01-01

    Kashin–Beck disease (KBD) is a chronic endemic osteoarthritis in China. Previous studies have suggested a role of metabolic dysfunction in causation of this disease. In this investigation, the metabolomics approach and cell experiments were used to discover the metabolic changes and their effects on KBD chondrocytes. Nuclear magnetic resonance ( 1 H NMR) spectroscopy was used to examine serum samples from both the KBD patients and normal controls. The pattern recognition multivariate analysis (OSC–PLS) and quantitative analysis (QMTLS iterator) revealed altered glycometabolism in KBD, with increased glucose and decreased lactate and citrate levels. IPA biological analysis showed the centric location of glucose in the metabolic network. Massive glycogen deposits in chondrocytes and increased uptake of glucose by chondrocytes further confirmed disordered glycometabolism in KBD. An in vitro study showed the effects of disordered glycometabolism in chondrocytes. When chondrocytes were treated with high glucose, expression of type II collagen and aggrecan were decreased, while TNF-α expression, the level of cellular reactive oxygen species and cell apoptosis rates all were increased. Therefore, our results demonstrated that disordered glycometabolism in patients with KBD was linked to the damage of chondrocytes. This may provide a new basis for understanding the pathogenesis of KBD. - Highlights: • Disordered glycometabolism in KBD was demonstrated by combining serum metabolomics and chondrocyte studies. • Glucose and TNF-α were key molecules linked to altered metabolism and inflammation in the pathophysiology of KBD. • The glycometabolism disorder was linked to expression of type II collagen and aggrecan, ROS and apoptosis of KBD chondrocytes

  9. Disordered glycometabolism involved in pathogenesis of Kashin–Beck disease, an endemic osteoarthritis in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cuiyan, E-mail: xj.cy.69@stu.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China); Lei, Ronghui, E-mail: leirh@mail.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China); Tiainen, Mika, E-mail: mika.tiainen@uef.fi [School of Pharmacy, University of Eastern Finland, Kuopio (Finland); Wu, Shixun, E-mail: wushixun313@stu.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China); Zhang, Qiang, E-mail: wdrr@163.com [Department of Kashin–Beck Disease, Qinghai Institute for Endemic Disease Control and Prevention, Xining, Qinghai 811602 (China); Pei, Fuxing, E-mail: peifuxing@vip.163.com [Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Guo, Xiong, E-mail: guox@mail.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China)

    2014-08-15

    Kashin–Beck disease (KBD) is a chronic endemic osteoarthritis in China. Previous studies have suggested a role of metabolic dysfunction in causation of this disease. In this investigation, the metabolomics approach and cell experiments were used to discover the metabolic changes and their effects on KBD chondrocytes. Nuclear magnetic resonance ({sup 1}H NMR) spectroscopy was used to examine serum samples from both the KBD patients and normal controls. The pattern recognition multivariate analysis (OSC–PLS) and quantitative analysis (QMTLS iterator) revealed altered glycometabolism in KBD, with increased glucose and decreased lactate and citrate levels. IPA biological analysis showed the centric location of glucose in the metabolic network. Massive glycogen deposits in chondrocytes and increased uptake of glucose by chondrocytes further confirmed disordered glycometabolism in KBD. An in vitro study showed the effects of disordered glycometabolism in chondrocytes. When chondrocytes were treated with high glucose, expression of type II collagen and aggrecan were decreased, while TNF-α expression, the level of cellular reactive oxygen species and cell apoptosis rates all were increased. Therefore, our results demonstrated that disordered glycometabolism in patients with KBD was linked to the damage of chondrocytes. This may provide a new basis for understanding the pathogenesis of KBD. - Highlights: • Disordered glycometabolism in KBD was demonstrated by combining serum metabolomics and chondrocyte studies. • Glucose and TNF-α were key molecules linked to altered metabolism and inflammation in the pathophysiology of KBD. • The glycometabolism disorder was linked to expression of type II collagen and aggrecan, ROS and apoptosis of KBD chondrocytes.

  10. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms

    Science.gov (United States)

    Phillips, William D.; Vincent, Angela

    2016-01-01

    Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms. PMID:27408701

  11. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms.

    Science.gov (United States)

    Phillips, William D; Vincent, Angela

    2016-01-01

    Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms.

  12. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    William D. Phillips

    2016-06-01

    Full Text Available Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (IgG1 and IgG3 antibodies to the acetylcholine receptor (AChR. They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK, or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4, are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms.

  13. Epidemiology, Pathogenesis, and Control of a Tick-Borne Disease- Kyasanur Forest Disease: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Syed Z. Shah

    2018-05-01

    Full Text Available In South Asia, Haemaphysalis spinigera tick transmits Kyasanur Forest Disease Virus (KFDV, a flavivirus that causes severe hemorrhagic fever with neurological manifestations such as mental disturbances, severe headache, tremors, and vision deficits in infected human beings with a fatality rate of 3–10%. The disease was first reported in March 1957 from Kyasanur forest of Karnataka (India from sick and dying monkeys. Since then, between 400 and 500 humans cases per year have been recorded; monkeys and small mammals are common hosts of this virus. KFDV can cause epizootics with high fatality in primates and is a level-4 virus according to the international biosafety rules. The density of tick vectors in a given year correlates with the incidence of human disease. The virus is a positive strand RNA virus and its genome was discovered to code for one polyprotein that is cleaved post-translationally into 3 structural proteins (Capsid protein, Envelope Glycoprotein M and Envelope Glycoprotein E and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. KFDV has a high degree of sequence homology with most members of the TBEV serocomplex. Alkhurma virus is a KFDV variant sharing a sequence similarity of 97%. KFDV is classified as a NIAID Category C priority pathogen due to its extreme pathogenicity and lack of US FDA approved vaccines and therapeutics; also, the infectious dose is currently unknown for KFD. In India, formalin-inactivated KFDV vaccine produced in chick embryo fibroblast is being used. Nevertheless, further efforts are required to enhance its long-term efficacy. KFDV remains an understudied virus and there remains a lack of insight into its pathogenesis; moreover, specific treatment to the disease is not available to date. Environmental and climatic factors involved in disseminating Kyasanur Forest Disease are required to be fully explored. There should be a mapping of endemic areas and cross-border veterinary

  14. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders.

    Science.gov (United States)

    Theoharides, T C; Tsilioni, I; Patel, A B; Doyle, R

    2016-06-28

    Autism spectrum disorders (ASDs) affect as many as 1 in 45 children and are characterized by deficits in sociability and communication, as well as stereotypic movements. Many children also show severe anxiety. The lack of distinct pathogenesis and reliable biomarkers hampers the development of effective treatments. As a result, most children with ASD are prescribed psychopharmacologic agents that do not address the core symptoms of ASD. Autoantibodies against brain epitopes in mothers of children with ASD and many such children strongly correlate with allergic symptoms and indicate an aberrant immune response, as well as disruption of the blood-brain barrier (BBB). Recent epidemiological studies have shown a strong statistical correlation between risk for ASD and either maternal or infantile atopic diseases, such as asthma, eczema, food allergies and food intolerance, all of which involve activation of mast cells (MCs). These unique tissue immune cells are located perivascularly in all tissues, including the thalamus and hypothalamus, which regulate emotions. MC-derived inflammatory and vasoactive mediators increase BBB permeability. Expression of the inflammatory molecules interleukin (IL-1β), IL-6, 1 L-17 and tumor necrosis factor (TNF) is increased in the brain, cerebrospinal fluid and serum of some patients with ASD, while NF-kB is activated in brain samples and stimulated peripheral blood immune cells of other patients; however, these molecules are not specific. Instead the peptide neurotensin is uniquely elevated in the serum of children with ASD, as is corticotropin-releasing hormone, secreted from the hypothalamus under stress. Both peptides trigger MC to release IL-6 and TNF, which in turn, stimulate microglia proliferation and activation, leading to disruption of neuronal connectivity. MC-derived IL-6 and TGFβ induce maturation of Th17 cells and MCs also secrete IL-17, which is increased in ASD. Serum IL-6 and TNF may define an ASD subgroup that

  15. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer’s Disease

    Science.gov (United States)

    Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai

    2018-01-01

    Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer’s disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD. PMID:29636677

  16. Extracellular Zn2+ Influx into Nigral Dopaminergic Neurons Plays a Key Role for Pathogenesis of 6-Hydroxydopamine-Induced Parkinson's Disease in Rats.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Morioka, Hiroki; Takeda, Atsushi

    2018-04-29

    Parkinson's disease (PD) is a progressive neurological disease characterized by a selective loss of nigrostriatal dopaminergic neurons. The exact cause of the neuronal loss remains unclear. Here, we report a unique mechanism of nigrostriatal dopaminergic neurodegeneration, in which extracellular Zn 2+ influx plays a key role for PD pathogenesis induced with 6-hydroxydopamine (6-OHDA) in rats. 6-OHDA rapidly increased intracellular Zn 2+ only in the substantia nigra pars compacta (SNpc) of brain slices and this increase was blocked in the presence of CaEDTA, an extracellular Zn 2+ chelator, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, indicating that 6-OHDA rapidly increases extracellular Zn 2+ influx via AMPA receptor activation in the SNpc. Extracellular Zn 2+ concentration was decreased under in vivo SNpc perfusion with 6-OHDA and this decrease was blocked by co-perfusion with CNQX, supporting 6-OHDA-induced Zn 2+ influx via AMPA receptor activation in the SNpc. Interestingly, both 6-OHDA-induced loss of nigrostriatal dopaminergic neurons and turning behavior to apomorphine were ameliorated by co-injection of intracellular Zn 2+ chelators, i.e., ZnAF-2DA and N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Co-injection of TPEN into the SNpc blocked 6-OHDA-induced increase in intracellular Zn 2+ but not in intracellular Ca 2+ . These results suggest that the rapid influx of extracellular Zn 2+ into dopaminergic neurons via AMPA receptor activation in the SNpc induces nigrostriatal dopaminergic neurodegeneration, resulting in 6-OHDA-induced PD in rats.

  17. Antiresistin RNA Oligonucleotide Ameliorates Diet-Induced Nonalcoholic Fatty Liver Disease in Mice through Attenuating Proinflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Yi Tan

    2015-01-01

    Full Text Available The aim of this study was to determine whether inhibition of resistin by a synthetic antiresistin RNA (oligonucleotide oligo ameliorates metabolic and histological abnormalities in nonalcoholic fatty liver disease (NAFLD induced by high-fat diet (HFD in mice. The antiresistin RNA oligo and a scrambled control oligo (25 mg/kg of body weight were i.p. injected to HFD mice. Serum metabolic parameters and hepatic enzymes were measured after 4-week treatment. The treatment significantly reduced epididymal fat and attenuated the elevated serum resistin, cholesterol, triglycerides, glucose, and insulin with an improved glucose tolerance test. Antiresistin RNA oligo also normalized serum AST and ALT levels with improved pathohistology of NAFLD. Immunoblotting and qRT-PCR revealed that decreased protein and mRNA expression of resistin in fat and liver tissues of the treated mice were associated with reduction of adipose TNF-α and IL-6 expression and secretion into circulation. mRNA and protein expression of hepatic phosphoenolpyruvate carboxykinase (PEPCK and sterol regulatory element-binding protein-1c (SREBP-1c were also significantly decreased in the treated mice. Our results suggest that resistin may exacerbate NAFLD in metabolic syndrome through upregulating inflammatory cytokines and hepatic PEPCK and SREBP-1c. Antiresistin RNA oligo ameliorated metabolic abnormalities and histopathology of NAFLD through attenuating proinflammatory cytokines.

  18. Inhibition of Myeloperoxidase at the Peak of Experimental Autoimmune Encephalomyelitis Restores Blood-Brain-Barrier Integrity and Ameliorates Disease Severity.

    Science.gov (United States)

    Zhang, Hao; Ray, Avijit; Miller, Nichole M; Hartwig, Danielle; Pritchard, Kirkwood A; Dittel, Bonnie N

    2015-11-12

    Oxidative stress is thought to contribute to disease pathogenesis in the central nervous system (CNS) disease multiple sclerosis (MS). Myeloperoxidase (MPO), a potent peroxidase that generates toxic radicals and oxidants, is increased in the CNS during MS. However, the exact mechanism whereby MPO drives MS pathology is not known. We addressed this question by inhibiting MPO in mice with experimental autoimmune encephalomyelitis (EAE) using our non-toxic MPO inhibitor KYC. We found that therapeutic administration of KYC for five days starting at the peak of disease significantly attenuated EAE disease severity, reduced myeloid cell numbers and permeability of the blood-brain-barrier (BBB). These data indicate that inhibition of MPO by KYC restores BBB integrity thereby limiting migration of myeloid cells into the CNS that drive EAE pathogenesis. In addition, these observations indicate that KYC may be an effective therapeutic agent for the treatment of MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases.

    Science.gov (United States)

    Chen, Beidi; Sun, Luxi; Zhang, Xuan

    2017-09-01

    The interaction between genetic predisposition and environmental factors are of great significance in the pathogenesis and development of autoimmune diseases (AIDs). The human mucosa is the most frequent site that interacts with the exterior environment, and commensal microbiota at the gut and other human mucosal cavities play a crucial role in the regulation of immune system. Growing evidence has shown that the compositional and functional changes of mucosal microbiota are closely related to AIDs. Gut dysbiosis not only influence the expression level of Toll-like receptors (TLRs) of antigen presenting cells, but also contribute to Th17/Treg imbalance. Epigenetic modifications triggered by environmental factors is an important mechanism that leads to altered gene expression. Researches addressing the role of DNA methylation, histone modification and non-coding RNA in AIDs have been increasing in recent years. Furthermore, studies showed that human microbiota and their metabolites can regulate immune cells and cytokines via epigenomic modifications. For example, short-chain fatty acids (SCFAs) produced by gut microbiota promote the differentiation of naïve T cell into Treg by suppressing histone deacetylases (HDACs). Therefore, we propose that dysbiosis and resulting metabolites may cause aberrant immune responses via epigenetic modifications, and lead to AIDs. With the development of high-throughput sequencing, metagenome analysis has been applied to investigate the dysbiosis in AIDs patients. We have tested the fecal, dental and salivary samples from treatment-naïve rheumatoid arthritis (RA) individuals by metagenomic shotgun sequencing and a metagenome-wide association study. Dysbiosis was detected in the gut and oral microbiomes of RA patients, but it was partially restored after treatment. We also found functional changes of microbiota and molecular mimicry of human antigens in RA individuals. By integrating the analysis of multi-omics of microbiome and

  20. Clonally expanded cytotoxic CD4+ T cells and the pathogenesis of IgG4-related disease.

    Science.gov (United States)

    Mattoo, Hamid; Stone, John H; Pillai, Shiv

    2017-02-01

    IgG4-related disease (IgG4-RD) is a systemic condition of unknown cause characterized by highly fibrotic lesions, with dense lymphoplasmacytic infiltrates containing a preponderance of IgG4-expressing plasma cells. CD4 + T cells and B cells constitute the major inflammatory cell populations in IgG4-RD lesions. IgG4-RD patients with active, untreated disease show a marked expansion of plasmablasts in the circulation. Although the therapeutic depletion of B cells suggests a role for these cells in the disease, a direct role for B cells or IgG4 in the pathogenesis of IgG4-RD is yet to be demonstrated. Among the CD4 + T-cell subsets, Th2 cells were initially thought to contribute to IgG4-RD pathogenesis, but many previous studies were confounded by the concomitant history of allergic diseases in the patients studied and the failure to use multi-color staining to definitively identify T-cell subsets in tissue samples. More recently, using an unbiased approach to characterize CD4 + T-cell subsets in patients with IgG4-RD - based on their clonal expansion and ability to infiltrate affected tissue sites - CD4 + CTLs have been identified as the major CD4 + T-cell subset in disease lesions as well as in the circulation. CD4 + CTLs in affected tissues secrete pro-fibrotic cytokines including IL-1β, TGF-β1, and IFN-γ as well as cytolytic molecules such as perforin and granzymes A and B. In this review, we examine possible mechanisms by which activated B cells and plasmablasts may collaborate with the expanded CD4 + CTLs in driving the fibrotic pathology of the disease and describe the lacunae in the field and in our understanding of IgG4-RD pathogenesis.

  1. Evaluation of the oxidant and antioxidant balance in the pathogenesis of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    C. Cristóvão

    2013-03-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is one of the most common chronic diseases and a major cause of morbidity and mortality. An imbalance between oxidants and antioxidants (oxidative stress has been proposed as a critical event in the pathogenesis of COPD. The increased oxidative stress in patients with COPD is the result of exogenous oxidants namely pollutants and cigarette smoke as well as endogenous oxidant production during inflammation. The aim of the present study was to clarify the hypothesis about the presence of an imbalance between oxidants and the antioxidant defences associated to COPD. In this study, we evaluated a biomarker of oxidative stress (malondialdehyde, a lipid peroxidation derived product and non-enzymatic antioxidants (vitamin C and the sulphydryl groups in COPD patients and healthy controls. The marker of oxidative stress was found to be significantly (p < 0.001 higher in COPD patients when compared with control group. No age dependent changes in the plasma levels of lipid peroxidation products were found. COPD patients had a significant (p < 0.001 decrease in antioxidant status as compared with control group. Our results show that oxidative stress is an important pathophysiologic change in COPD. Resumo: A doença pulmonar obstrutiva crónica (DPOC é uma das doenças crónicas mais comuns e representa uma importante causa de morbilidade e mortalidade. Um desequilíbrio entre oxidantes e antioxidantes (stress oxidativo tem sido proposto como um acontecimento importante na patogénese da DPOC. O aumento do stress oxidativo em doentes com DPOC é o resultado da presença de oxidantes exógenos, nomeadamente, poluentes e fumo do tabaco, assim como oxidantes endógenos produzidos durante a inflamação. O objetivo do presente estudo consistiu em clarificar a hipótese sobre a existência de um desequilíbrio entre oxidantes e as defesas antioxidantes associado à DPOC. Neste estudo, avaliou-se um biomarcador do

  2. Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Eric R Kallwitz; Alan McLachlan; Scott J Cotler

    2008-01-01

    Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and can result in nonalcoholic steatohepatitis (NASH) and progressive liver disease including cirrhosis and hepatocellular carcinoma. A growing body of literature implicates the peroxisorne proliferators- activated receptors (PPARs) in the pathogenesis and treatment of NAFLD. These nuclear hormone receptors impact on hepatic triglyceride accumulation and insulin resistance. The aim of this review is to describe the data linking PPARα and PPARγ to NAFLD/NASH and to discuss the use of PPAR ligands for the treatment of NASH.

  3. Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance.

    Science.gov (United States)

    Zhu, Zhiyuan; Yan, Jianming; Jiang, Wei; Yao, Xin-gang; Chen, Jing; Chen, Lili; Li, Chenjing; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2013-08-07

    Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.

  4. RISC in PD: The Impact of MicroRNAs in Parkinson’s Disease Cellular and Molecular Pathogenesis

    Directory of Open Access Journals (Sweden)

    Sabrina Mahalia Heman-Ackah

    2013-11-01

    Full Text Available Parkinson’s disease (PD is a debilitating neurodegenerative disease characterized primarily by the selective death of dopaminergic (DA neurons in the substantia nigra pars compacta of the midbrain. Although several genetic forms of PD have been identified, the precise molecular mechanisms underlying DA neuron loss in PD remain elusive. In recent years, microRNAs (miRNAs have been recognized as potent post-transcriptional regulators of gene expression with fundamental roles in numerous biological processes. Although their role in PD pathogenesis is still a very active area of investigation, several seminal studies have contributed significantly to our understanding of the roles these small non-coding RNAs play in the disease process. Among these are studies which have demonstrated specific miRNAs that target and down-regulate the expression of PD-related genes as well as those demonstrating a reciprocal relationship in which PD-related genes act to regulate miRNA processing machinery. Concurrently, a wealth of knowledge has become available regarding the molecular mechanisms that unify the underlying etiology of genetic and sporadic PD pathogenesis, including dysregulated protein quality control by the ubiquitin-proteasome system and autophagy pathway, activation of programmed cell death, mitochondrial damage and aberrant DA neurodevelopment and maintenance. Following a discussion of the interactions between PD-related genes and miRNAs, this review highlights those studies which have elucidated the roles of these pathways in PD pathogenesis. We highlight the potential of miRNAs to serve a critical regulatory role in the implicated disease pathways, given their capacity to modulate the expression of entire families of related genes. Although few studies have directly linked miRNA regulation of these pathways to PD, a strong foundation for investigation has been laid and this area holds promise to reveal novel therapeutic targets for PD.

  5. Gypenosides ameliorate memory deficits in MPTP-lesioned mouse model of Parkinson's disease treated with L-DOPA.

    Science.gov (United States)

    Zhao, Ting Ting; Kim, Kyung Sook; Shin, Keon Sung; Park, Hyun Jin; Kim, Hyun Jeong; Lee, Kyung Eun; Lee, Myung Koo

    2017-09-06

    Previous studies have revealed that gypenosides (GPS) improve the symptoms of anxiety disorders in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rat model of Parkinson's disease (PD). The present study aimed to investigate the effects of GPS on memory deficits in an MPTP-lesioned mouse model of PD treated with L-3,4-dihydroxyphenylalanine (L-DOPA). MPTP (30 mg/kg/day, 5 days)-lesioned mice were treated with GPS (50 mg/kg) and/or L-DOPA (10 and 25 mg/kg) for 21 days. After the final treatments, behavioral changes were assessed in all mice using passive avoidance and elevated plus-maze tests. We then evaluated the biochemical influences of GPS treatment on levels of tyrosine hydroxylase (TH), dopamine, N-methyl-D-aspartate (NMDA) receptors, extracellular signal-regulated kinase (ERK1/2), and cyclic AMP-response element binding protein (CREB) phosphorylation. MPTP-lesioned mice exhibited deficits associated with habit learning and spatial memory, which were further aggravated by treatment with L-DOPA (25 mg/kg). However, treatment with GPS (50 mg/kg) ameliorated memory deficits. Treatment with GPS (50 mg/kg) also improved L-DOPA (25 mg/kg)-treated MPTP lesion-induced decreases in retention latency on the passive avoidance test, as well as levels of TH-immunopositive cells and dopamine in the substantia nigra and striatum. GPS treatment also attenuated increases in retention transfer latency on the elevated plus-maze test and in NMDA receptor expression, as well as decreases in the phosphorylation of ERK1/2 and CREB in the hippocampus. Treatment with L-DOPA (10 mg/kg) also ameliorated deficits in habit learning and spatial memory in MPTP-lesioned mice, and this effect was further enhanced by treatment with GPS (50 mg/kg). GPS ameliorate deficits in habit learning and spatial memory by modulating the dopaminergic neuronal and N-methyl-D-aspartate receptor-mediated signaling systems in MPTP-lesioned mice treated with L-DOPA. GPS may serve as an adjuvant

  6. A point of view: quantitative and qualitative imbalance in disease pathogenesis; pulmonary surfactant protein A genetic variants as a model.

    Science.gov (United States)

    Floros, J; Wang, G

    2001-05-01

    The high degree of similarity at the molecular level, between humans and other species, has provided the rationale for the use of a variety of species as model systems in research, resulting in enormous advances in biological sciences and medicine. In contrast, the individual variability observed among humans, for example, in external physique, organ functionality and others, is accounted for, by only a fraction of 1% of differences at the DNA level. These small differences, which are essential for understanding disease pathogenesis, have posed enormous challenges in medicine, as we try to understand why patients may respond differently to drugs or why one patient has complications and another does not. Differences in outcome are most likely the result of interactions among genetic components themselves and/or the environment at the molecular, cellular, organ, or organismal level, or the macroenvironment. In this paper: (1) we consider some issues for multifactorial disease pathogenesis; (2) we provide a review of human SP-A and how the knowledge gained and the characteristics of the hSP-A system may serve as a model in the study of disease with multifactorial etiology; and (3) we describe examples where hSP-A has been used in the study of disease.

  7. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  8. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    OpenAIRE

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John W.; Metz, Thomas O.

    2009-01-01

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the ...

  9. Epithelial hyperplasia in human polycystic kidney diseases. Its role in pathogenesis and risk of neoplasia.

    OpenAIRE

    Bernstein, J.; Evan, A. P.; Gardner, K. D.

    1987-01-01

    The importance of tubular epithelial hyperplasia in polycystic kidney diseases has become apparent during the last decade. Micropapillary hyperplasia occurs in autosomal dominant polycystic kidney disease, in localized cystic disease, and in acquired cystic disease. Neoplastic or severely dysplastic epithelial hyperplasia occurs in von Hippel-Lindau disease. A histopathologically distinctive epithelial hyperplasia occurs in tuberous sclerosis. In each of these conditions, epithelial hyperplas...

  10. Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Bukhari, Hassan; Glotzbach, Annika; Kolbe, Katharina; Leonhardt, Gregor; Loosse, Christina; Müller, Thorsten

    2017-09-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease with tens of millions of people affected worldwide. The pathogenesis is still poorly understood and various therapeutical approaches targeting the amyloid β (Aβ) peptide, a product of the amyloidogenic cleavage of the amyloid precursor protein (APP), failed. Moreover, a couple of studies critically questioned the relevance of Aβ in the pathogenesis of AD. Thus, new ideas need to be studied and one highly interesting hypothesis is the APP mediated signal transduction to the nucleus. As a consequence nuclear -potentially toxic- structures emerge, which were recently found to a high extent in human AD tissue and thus, may contribute to neurodegeneration. Relevant for the signaling machinery are modifications at the very C-terminal end of the precursor protein, the APP intracellular domain (AICD). In this review we update the knowledge on mechanisms on AICD referring to our 2008 article: The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-Relevance for Alzheimer's disease (T. Muller, et al., 2008). We summarize how AICD is generated and degraded, we describe its intramolecular motifs, translational modifications, and how those as well as APP dimerization influence AICD generation and function. Moreover, we resume the AICD interactome and elucidate AICDs involvement in nuclear signaling, transcriptional regulation, cell death, DNA repair and cell cycle re-entry and we give insights in its physiological function. Results are summarized in the comprehensive poster "The world of AICD". Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor–mediated disease

    Science.gov (United States)

    Chua, Jason P.; Reddy, Satya L.; Yu, Zhigang; Giorgetti, Elisa; Montie, Heather L.; Mukherjee, Sarmistha; Higgins, Jake; McEachin, Richard C.; Robins, Diane M.; Merry, Diane E.; Iñiguez-Lluhí, Jorge A.; Lieberman, Andrew P.

    2015-01-01

    Expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR) causes neuromuscular degeneration in individuals with spinobulbar muscular atrophy (SBMA). PolyQ AR has diminished transcriptional function and exhibits ligand-dependent proteotoxicity, features that have both been implicated in SBMA; however, the extent to which altered AR transcriptional function contributes to pathogenesis remains controversial. Here, we sought to dissociate effects of diminished AR function from polyQ-mediated proteotoxicity by enhancing the transcriptional activity of polyQ AR. To accomplish this, we bypassed the inhibitory effect of AR SUMOylation (where SUMO indicates small ubiquitin-like modifier) by mutating conserved lysines in the polyQ AR that are sites of SUMOylation. We determined that replacement of these residues by arginine enhances polyQ AR activity as a hormone-dependent transcriptional regulator. In a murine model, disruption of polyQ AR SUMOylation rescued exercise endurance and type I muscle fiber atrophy; it also prolonged survival. These changes occurred without overt alterations in polyQ AR expression or aggregation, revealing the favorable trophic support exerted by the ligand-activated receptor. Our findings demonstrate beneficial effects of enhancing the transcriptional function of the ligand-activated polyQ AR and indicate that the SUMOylation pathway may be a potential target for therapeutic intervention in SBMA. PMID:25607844

  12. The pathogenesis of liver disease in the setting of HIV-hepatitis B virus coinfection.

    Science.gov (United States)

    Iser, David M; Lewin, Sharon R

    2009-01-01

    There are many potential reasons for increased liver-related mortality in HIV-hepatitis B virus (HBV) coinfection compared with either infection alone. HIV infects multiple cells in the liver and might potentially alter the life cycle of HBV, although evidence to date is limited. Unique mutations in HBV have been defined in HIV-HBV-coinfected individuals and might directly alter pathogenesis. In addition, an impaired HBV-specific T-cell immune response is likely to be important. The roles of microbial translocation, immune activation and increased hepatic stellate cell activation will be important areas for future study.

  13. The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases.

    Science.gov (United States)

    Esparvarinha, Mojgan; Nickho, Hamid; Mohammadi, Hamed; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Majidi, Jafar

    2017-07-01

    Kappa (κ) or lambda (λ) free light chains (FLCs) are produced from B cells during immunoglobulin synthesis. FLCs have been shown to participate in several key processes of immune responses. They are necessary to adjust PMN functions and assist PMN pre-stimulation. Moreover, they cause mast cell degranulation which releases pro-inflammatory mediators and stimulates local inflammatory responses in some conditions such as inflammatory bowel disease (IBD). Having low molecular weights which may straightly be toxic to proximal tubule cells (PTCs), FLCs can also have an important role in renal diseases. In this review we have highlighted the involvement of light chains in the pathogenesis of some inflammatory diseases and discussed their potential to be the targets of therapeutic purposes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer's disease.

    Science.gov (United States)

    Bagheri, Maryam; Joghataei, Mohammad-Taghi; Mohseni, Simin; Roghani, Mehrdad

    2011-03-01

    Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by increased β-amyloid (Aβ) deposition and neuronal dysfunction leading to impaired learning and recall. Ageing, heredity, and induced oxidative stress are among proposed risk factors. The increased frequency of the disease in women also suggests a role for estrogen in development of AD. In the present study, effects of the phytoestrogen genistein (10mg/kg) on learning and memory impairments was assessed in intrahippocampal Aβ(1-40)-injected rats. The estrogen receptor antagonist fulvestrant was injected intracerebroventricularly in a group of Aβ-lesioned rats. The Aβ-injected animals exhibited the following: lower spontaneous alternation score in Y-maze tasks, impaired retention and recall capability in the passive avoidance test, and fewer correct choices and more errors in the RAM task. Genistein, but not genistein and fulvestrant, significantly improved most of these parameters. Measurements of oxidative stress markers in hippocampal tissue of Aβ-injected rats showed an elevation of malondialdehyde (MDA) and nitrite content, and a reduction of superoxide dismutase (SOD) activity. Genistein significantly attenuated the increased MDA content but did not affect the nitrite content or SOD activity. These results indicate that genistein pretreatment ameliorates Aβ-induced impairment of short-term spatial memory in rats through an estrogenic pathway and by inducing attenuation of oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease.

    Science.gov (United States)

    Woodhouse, C A; Patel, V C; Singanayagam, A; Shawcross, D L

    2018-01-01

    Mortality from chronic liver disease is rising exponentially. The liver is intimately linked to the gut via the portal vein, and exposure to gut microbiota and their metabolites translocating across the gut lumen may impact upon both the healthy and diseased liver. Modulation of gut microbiota could prove to be a potential therapeutic target. To characterise the changes in the gut microbiome that occur in chronic liver disease and to assess the impact of manipulation of the microbiome on the liver. We conducted a PubMed search using search terms including 'microbiome', 'liver' and 'cirrhosis' as well as 'non-alcoholic fatty liver disease', 'steatohepatitis', 'alcohol' and 'primary sclerosing cholangitis'. Relevant articles were also selected from references of articles and review of the ClinicalTrials.gov website. Reduced bacterial diversity, alcohol sensitivity and the development of gut dysbiosis are seen in several chronic liver diseases, including non-alcoholic fatty liver disease, alcohol-related liver disease and primary sclerosing cholangitis. Perturbations in gut commensals could lead to deficient priming of the immune system predisposing the development of immune-mediated diseases. Furthermore, transfer of stool from an animal with the metabolic syndrome may induce steatosis in a healthy counterpart. Patients with cirrhosis develop dysbiosis, small bowel bacterial overgrowth and increased gut wall permeability, allowing bacterial translocation and uptake of endotoxin inducing hepatic and systemic inflammation. Manipulation of the gut microbiota with diet, probiotics or faecal microbiota transplantation to promote the growth of "healthy" bacteria may ameliorate the dysbiosis and alter prognosis. © 2017 John Wiley & Sons Ltd.

  16. Role of the Innate Immune System in the Pathogenesis of Inflammatory Bowel Disease

    NARCIS (Netherlands)

    van Lierop, Pieter P. E.; Samsom, Janneke N.; Escher, Johanna C.; Nieuwenhuis, Edward E. S.

    Crohn disease and ulcerative colitis are chronic inflammatory diseases of the intestinal tract commonly denoted as inflammatory bowel diseases. It has been proposed that these diseases result from aberrant mucosal immune responses to nonpathogenic microbial residents of the intestines. Recently, it

  17. The curiously suspicious: infectious disease may ameliorate an ongoing autoimmune destruction in systemic lupus erythematosus patients.

    Science.gov (United States)

    Praprotnik, Sonja; Sodin-Semrl, Snezna; Tomsic, Matija; Shoenfeld, Yehuda

    2008-01-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, which can arise from a combination of genetic and environmental factors. In the past, infections (Epstein Barr virus, parvovirus B-19) have been indicated to play a causative role in the development of autoimmune diseases, such as SLE. On the other hand, with the emergence of the "hygiene hypothesis" infections have also shown to play a protective role in autoimmune diseases. Two case studies are presented which provide clinical evidence of SLE patients with severe, long-term disease, despite immunosuppresive therapy. The course of both diseases changed remarkably after they experienced infections with multiple microbes (bacterial, viral and fungal). Surprisingly, their clinical and laboratory signs of SLE normalized and they are now symptom-free after 5 and 3year follow-ups. The second patient has even had a normal pregnancy, which was a trigger factor for disease flare in the past. The infections presumably changed the host immune systems and the mechanisms of their protective effects are most likely multifactorial. Our cases illustrate that infections could be beneficial in SLE patients and re-directing research toward novel innate-based SLE therapy should be explored.

  18. The role of dendritic cell subsets and innate immunity in the pathogenesis of type 1 diabetes and other autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Price

    2015-06-01

    Full Text Available Dendritic cells (DCs are key antigen presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are 4 main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include: impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.

  19. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer’s Disease Pathogenesis

    Science.gov (United States)

    Kyrtsos, Christina Rose; Baras, John S.

    2015-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain. PMID:26448331

  20. Plaque hemorrhage in carotid artery disease: Pathogenesis, clinical and biomechanical considerations

    Science.gov (United States)

    Teng, Zhongzhao; Sadat, Umar; Brown, Adam J.; Gillard, Jonathan H.

    2014-01-01

    Stroke remains the most prevalent disabling illness today, with internal carotid artery luminal stenosis due to atheroma formation responsible for the majority of ischemic cerebrovascular events. Severity of luminal stenosis continues to dictate both patient risk stratification and the likelihood of surgical intervention. But there is growing evidence to suggest that plaque morphology may help improve pre-existing risk stratification criteria. Plaque components such a fibrous tissue, lipid rich necrotic core and calcium have been well investigated but plaque hemorrhage (PH) has been somewhat overlooked. In this review we discuss the pathogenesis of PH, its role in dictating plaque vulnerability, PH imaging techniques, marterial properties of atherosclerotic tissues, in particular, those obtained based on in vivo measurements and effect of PH in modulating local biomechanics. PMID:24485514

  1. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    Science.gov (United States)

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Underlying role of mitochondrial mutagenesis in the pathogenesis of a disease and current approaches for translational research.

    Science.gov (United States)

    Paraskevaidi, Maria; Martin-Hirsch, Pierre L; Kyrgiou, Maria; Martin, Francis L

    2017-05-01

    Mitochondrial diseases have been extensively investigated over the last three decades, but many questions regarding their underlying aetiologies remain unanswered. Mitochondrial dysfunction is not only responsible for a range of neurological and myopathy diseases but also considered pivotal in a broader spectrum of common diseases such as epilepsy, autism and bipolar disorder. These disorders are a challenge to diagnose and treat, as their aetiology might be multifactorial. In this review, the focus is placed on potential mechanisms capable of introducing defects in mitochondria resulting in disease. Special attention is given to the influence of xenobiotics on mitochondria; environmental factors inducing mutations or epigenetic changes in the mitochondrial genome can alter its expression and impair the whole cell's functionality. Specifically, we suggest that environmental agents can cause damage in mitochondrial DNA and consequently lead to mutagenesis. Moreover, we describe current approaches for handling mitochondrial diseases, as well as available prenatal diagnostic tests, towards eliminating these maternally inherited diseases. Undoubtedly, more research is required, as current therapeutic approaches mostly employ palliative therapies rather than targeting primary mechanisms or prophylactic approaches. Much effort is needed into further unravelling the relationship between xenobiotics and mitochondria, as the extent of influence in mitochondrial pathogenesis is increasingly recognised. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Vascular toxicity of urea, a new "old player" in the pathogenesis of chronic renal failure induced cardiovascular diseases.

    Science.gov (United States)

    Giardino, Ida; D'Apolito, Maria; Brownlee, Michael; Maffione, Angela Bruna; Colia, Anna Laura; Sacco, Michele; Ferrara, Pietro; Pettoello-Mantovani, Massimo

    2017-12-01

    Chronic kidney disease in children is an irreversible process that may lead to end-stage renal disease. The mortality rate in children with end-stage renal disease who receive dialysis increased dramatically in the last decade, and it is significantly higher compared with the general pediatric population. Furthermore, dialysis and transplant patients, who have developed end-stage renal disease during childhood, live respectively far less as compared with age/race-matched populations. Different reports show that cardiovascular disease is the leading cause of death in children with end-stage renal disease and in adults with childhood-onset chronic kidney disease, and that children with chronic kidney disease are in the highest risk group for the development of cardiovascular disease. Urea, which is generated in the liver during catabolism of amino acids and other nitrogenous metabolites, is normally excreted into the urine by the kidneys as rapidly as it is produced. When renal function is impaired, increasing concentrations of blood urea will steadily accumulate. For a long time, urea has been considered to have negligible toxicity. However, the finding that plasma urea is the only significant predictor of aortic plaque area fraction in an animal model of chronic renal failure -accelerated atherosclerosis, suggests that the high levels of urea found in chronic dialysis patients might play an important role in accelerated atherosclerosis in this group of patients. The aim of this review was to provide novel insights into the role played by urea in the pathogenesis of accelerated cardiovascular disease in renal failure.

  4. Vascular toxicity of urea, a new “old player” in the pathogenesis of chronic renal failure induced cardiovascular diseases

    Science.gov (United States)

    D’Apolito, Maria; Brownlee, Michael; Maffione, Angela Bruna; Colia, Anna Laura; Sacco, Michele; Ferrara, Pietro; Pettoello-Mantovani, Massimo

    2017-01-01

    Chronic kidney disease in children is an irreversible process that may lead to end-stage renal disease. The mortality rate in children with end-stage renal disease who receive dialysis increased dramatically in the last decade, and it is significantly higher compared with the general pediatric population. Furthermore, dialysis and transplant patients, who have developed end-stage renal disease during childhood, live respectively far less as compared with age/race-matched populations. Different reports show that cardiovascular disease is the leading cause of death in children with end-stage renal disease and in adults with childhood-onset chronic kidney disease, and that children with chronic kidney disease are in the highest risk group for the development of cardiovascular disease. Urea, which is generated in the liver during catabolism of amino acids and other nitrogenous metabolites, is normally excreted into the urine by the kidneys as rapidly as it is produced. When renal function is impaired, increasing concentrations of blood urea will steadily accumulate. For a long time, urea has been considered to have negligible toxicity. However, the finding that plasma urea is the only significant predictor of aortic plaque area fraction in an animal model of chronic renal failure -accelerated atherosclerosis, suggests that the high levels of urea found in chronic dialysis patients might play an important role in accelerated atherosclerosis in this group of patients. The aim of this review was to provide novel insights into the role played by urea in the pathogenesis of accelerated cardiovascular disease in renal failure. PMID:29483797

  5. A tale of two maladies? Pathogenesis of depression with and without the Huntington’s disease gene mutation

    Directory of Open Access Journals (Sweden)

    Xin eDu

    2013-07-01

    Full Text Available Huntington’s disease (HD is an autosomal dominant disorder caused by a tandem repeat expansion encoding an expanded tract of glutamines in the huntingtin protein. HD is progressive and manifests as psychiatric symptoms (including depression, cognitive deficits (culminating in dementia and motor abnormalities (including chorea. Having reached the 20th anniversary of the discovery of the ‘genetic stutter’ which causes HD, we still lack sophisticated insight into why so many HD patients exhibit affective disorders such as depression at very early stages, prior to overt appearance of motor deficits. In this review, we will focus on depression as the major psychiatric manifestation of HD, discuss potential mechanisms of pathogenesis identified from animal models, and compare depression in HD patients with that of the wider gene-negative population. The discovery of depressive-like behaviours as well as cellular and molecular correlates of depression in transgenic HD mice has added strong support to the hypothesis that the HD mutation adds significantly to the genetic load for depression. A key question is whether HD-associated depression differs from that in the general population. Whilst preclinical studies, clinical data and treatment responses suggest striking similarities, there are also some apparent differences. We discuss various molecular and cellular mechanisms which may contribute to depression in HD, and whether they may generalise to other depressive disorders. The autosomal dominant nature of HD and the existence of models with excellent construct validity provide a unique opportunity to understand the pathogenesis of depression and associated gene-environment interactions. Thus, understanding the pathogenesis of depression in HD may not only facilitate tailored therapeutic approaches for HD sufferers, but may also translate to the clinical depression which devastates the lives of so many people.

  6. An Overview on the Role of α -Synuclein in Experimental Models of Parkinson's Disease from Pathogenesis to Therapeutics.

    Science.gov (United States)

    Javed, Hayate; Kamal, Mohammad Amjad; Ojha, Shreesh

    2016-01-01

    Parkinson's disease (PD) is a devastating and progressive movement disorder characterized by symptoms of muscles rigidity, tremor, postural instability and slow physical movements. Biochemically, PD is characterized by lack of dopamine production and its action due to loss of dopaminergic neurons and neuropathologically by the presence of intracytoplasmic inclusions known as Lewy bodies, which mainly consist of presynaptic neuronal protein, α-synuclein (α-syn). It is believed that alteration in α-syn homeostasis leads to increased accumulation and aggregation of α-syn in Lewy body. Based on the important role of α-syn from pathogenesis to therapeutics, the recent researches are mainly focused on deciphering the critical role of α-syn at advanced level. Being a major protein in Lewy body that has a key role in pathogenesis of PD, several model systems including immortalized cell lines (SH-SY5Y), primary neuronal cultures, yeast (saccharomyces cerevisiae), drosophila (fruit flies), nematodes (Caenorhabditis elegans) and rodents are being employed to understand the PD pathogenesis and treatment. In order to study the etiopathogensis and develop novel therapeutic target for α -syn aggregation, majority of investigators rely on toxin (rotenone, 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine, 6-hydroxydopamine, paraquat)-induced animal models of PD as a tool for basic research. Whereas, cell and tissue based models are mostly utilized to elucidate the mechanistic and molecular pathways underlying the α -syn induced toxicity and therapeutic approaches in PD. Gene modified mouse models based on α-syn expression are fascinating for modeling familial PD and toxin induced models provide a suitable approach for sporadic PD. The purpose of this review is to provide a summary and a critical review of the involvement of α-syn in various in vitro and in vivo models of PD based on use of neurotoxins as well as genetic modifications.

  7. Ameliorating Role Exerted by Al-Hijamah in Autoimmune Diseases: Effect on Serum Autoantibodies and Inflammatory Mediators

    Science.gov (United States)

    Baghdadi, Hussam; Abdel-Aziz, Nada; Ahmed, Nagwa Sayed; Mahmoud, Hany Salah; Barghash, Ayman; Nasrat, Abdullah; Nabo, Manal Mohamed Helmy; El Sayed, Salah Mohamed

    2015-01-01

    Autoimmune diseases have common properties characterized by abnormal blood chemistry with high serum autoimmune antibodies, and inflammatory mediators. Those causative pathological substances (CPS) cannot be excreted by physiological mechanisms. Current treatments for autoimmune diseases involve steroids, cytotoxic drugs, plasmapheresis and monoclonal antibodies. Wet cupping therapy (WCT) of prophetic medicine is called Al-hijamah that treats numerous diseases having different etiology and pathogenesis via a pressure-dependent and size-dependent non-specific filtration then excretion of CPS causing clearance of blood and interstitial fluids. Al-hijamah clears blood passing through the fenestrated skin capillaries. Medical bases of Al-hijamah were reported in the evidence-based Taibah mechanism (Taibah theory). Al-hijamah was reported to be an excellent treatment for rheumatoid arthritis that improved patients’ blood chemistry and induced significant clinical improvement and pharmacological potentiation. Al-hijamah improved the natural immunity and suppressed the pathological immunity through decreasing the serum level of autoantibodies, inflammatory mediators, and serum ferritin (a key player in autoimmunity). Al-hijamah reduced significantly pain severity, number of swollen joints and disease activity with no significant side effects. Main steps of Al-hijamah are skin suction (cupping), scarification (sharatmihjam in Arabic) and second suction (triple S technique) that is better therapeutically than the traditional WCT (double S technique). Whenever an excess noxious substance is to be removed from patients’ blood and interstitial fluids, Al-hijamah is indicated. Shartatmihjam is a curative treatment in prophetic teachings according to the prophetic hadeeth: “Cure is in three: in shartatmihjam, oral honey and cauterization. I do not recommend my nation to cauterize”. Al-hijamah may have better therapeutic benefits than plasmapheresis. Al-hijamah may be

  8. The emerging role of interleukin (IL)-1 in the pathogenesis and treatment of inflammatory and degenerative eye diseases.

    Science.gov (United States)

    Fabiani, Claudia; Sota, Jurgen; Tosi, Gian Marco; Franceschini, Rossella; Frediani, Bruno; Galeazzi, Mauro; Rigante, Donato; Cantarini, Luca

    2017-10-01

    Interleukin (IL)-1 plays a key role in the pathogenesis and thereafter in the search for specific treatments of different inflammatory and degenerative eye diseases. Indeed, an overactivity of IL-1 might be an initiating factor for many immunopathologic sceneries in the eye, as proven by the efficacy of the specific IL-1 blockade in different ocular diseases. For instance, the uveitis in monogenic autoinflammatory disorders, such as Blau syndrome and cryopyrin-associated periodic syndrome, or in complex polygenic autoinflammatory disorders, such as Behçet's disease, has been successfully treated with IL-1 blockers. Similarly, therapy with the IL-1 receptor antagonist anakinra has proven successful also in scleritis and episcleritis in the context of different rheumatic conditions. Moreover, interesting findings deriving from animal models of ocular disease have set a rational basis from a therapeutic viewpoint to manage patients also with dry eye disease and a broadening number of ocular inflammatory and degenerative conditions, which start from an imbalance between IL-1 and its receptor antagonist.

  9. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John; Metz, Thomas O.

    2008-12-18

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide on overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.

  10. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease.

    Science.gov (United States)

    Zhang, Qibin; Ames, Jennifer M; Smith, Richard D; Baynes, John W; Metz, Thomas O

    2009-02-01

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.

  11. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Oyinkan Sofola

    2010-09-01

    Full Text Available Abeta peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer's disease (AD, with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3 is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Abeta42 specifically in adult neurons, to avoid developmental effects. Abeta42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Abeta42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment rescued Abeta42 toxicity. Abeta42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Abeta42. The GSK-3-mediated effects on Abeta42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Abeta42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Abeta42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Abeta42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD.

  12. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Yao Hongwei; Rahman, Irfan

    2011-01-01

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.

  13. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Lai, Yi-Syuan; Lee, Wan-Ching; Lin, Yu-En; Ho, Chi-Tang; Lu, Kuan-Hung; Lin, Shih-Hang; Panyod, Suraphan; Chu, Yung-Lin; Sheen, Lee-Yan

    2016-03-16

    The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management.

  14. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    Science.gov (United States)

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  15. Pros and cons of a prion-like pathogenesis in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Brotchie Jonathan M

    2011-06-01

    Full Text Available Abstract Background Parkinson's disease (PD is a slowly progressive neurodegenerative disorder which affects widespread areas of the brainstem, basal ganglia and cerebral cortex. A number of proteins are known to accumulate in parkinsonian brains including ubiquitin and α-synuclein. Prion diseases are sporadic, genetic or infectious disorders with various clinical and histopathological features caused by prion proteins as infectious proteinaceous particles transmitting a misfolded protein configuration through brain tissue. The most important form is Creutzfeldt-Jakob disease which is associated with a self-propagating pathological precursor form of the prion protein that is physiologically widely distributed in the central nervous system. Discussion It has recently been found that α-synuclein may behave similarly to the prion precursor and propagate between cells. The post-mortem proof of α-synuclein containing Lewy bodies in embryonic dopamine cells transplants in PD patient suggests that the misfolded protein might be transmitted from the diseased host to donor neurons reminiscent of prion behavior. The involvement of the basal ganglia and brainstem in the degenerative process are other congruencies between Parkinson's and Creutzfeldt-Jakob disease. However, a number of issues advise caution before categorizing Parkinson's disease as a prion disorder, because clinical appearance, brain imaging, cerebrospinal fluid and neuropathological findings exhibit fundamental differences between both disease entities. Most of all, infectiousness, a crucial hallmark of prion diseases, has never been observed in PD so far. Moreover, the cellular propagation of the prion protein has not been clearly defined and it is, therefore, difficult to assess the molecular similarities between the two disease entities. Summary At the current state of knowledge, the molecular pathways of transmissible pathogenic proteins are not yet fully understood. Their exact

  16. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration

    NARCIS (Netherlands)

    Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud

    2015-01-01

    Systemic inflammation is associated with loss of blood-brain barrier integrity and neuroinflammation that lead to the exacerbation of neurodegenerative diseases. It is also associated specifically with the characteristic amyloid-β and tau pathologies of Alzheimer's disease. We have previously

  17. Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases

    NARCIS (Netherlands)

    Liu, Gang; Cooley, Marion A; Jarnicki, Andrew G; Hsu, Alan C-Y; Nair, Prema M; Haw, Tatt Jhong; Fricker, Michael; Gellatly, Shaan L; Kim, Richard Y; Inman, Mark D; Tjin, Gavin; Wark, Peter A B; Walker, Marjorie M; Horvat, Jay C; Oliver, Brian G; Argraves, W Scott; Knight, Darryl A; Burgess, Janette K; Hansbro, Philip M

    2016-01-01

    Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein

  18. A rare case of Riedel's thyroiditis, 6 years after retroperitoneal fibrosis: two diseases with one pathogenesis?

    NARCIS (Netherlands)

    de Boer, W. A.; van Coevorden, F.; Wiersinga, W. M.

    1992-01-01

    We describe a 70-yr-old female patient in whom both a retroperitoneal fibrosis and 6 years later a Riedel's thyroiditis were diagnosed. Both diseases belong to the group of fibrotic diseases called "multifocal fibrosis". Retroperitoneal fibrosis is now known to be an auto-allergic reaction to lipid

  19. BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Burke, Rebecca M; Norman, Timothy A; Haydar, Tarik F; Slack, Barbara E; Leeman, Susan E; Blusztajn, Jan Krzysztof; Mellott, Tiffany J

    2013-11-26

    Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer's disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.

  20. Study of the participation of MMP-7, EMMPRIN and cyclophilin A in the pathogenesis of periodontal disease.

    Science.gov (United States)

    de Oliveira Nóbrega, Fernando José; de Oliveira, Denise Hélen Imaculada Pereira; Vasconcelos, Rodrigo Gadelha; Nonaka, Cassiano Francisco Weege; Queiroz, Lélia Maria Guedes

    2016-12-01

    Periodontal disease is an infectious disease resulting from the immunoinflammatory response of the host to microorganisms present in the dental biofilm which causes tissue destruction. The objective of this study was to evaluate the immunohistochemical expression of matrix metalloproteinase 7 (MMP-7), extracellular matrix metalloproteinase inducer (EMMPRIN) and cyclophilin A (CypA) in periodontal disease. Gingival tissue samples were divided as follows: clinically healthy gingiva (n=32), biofilm-induced gingivitis (n=28), and chronic periodontitis (n=30). Histological sections of 3μm were submitted to immunoperoxidase method and undergone quantitative analysis. The results were analyzed statistically by the Mann-Whitney and Spearman correlation tests, with the level of significance set at 0.05 (α=0.05). Immunopositivity for MMP-7, EMMPRIN and CypA differed significantly between the three groups, with higher percentages of staining in chronic periodontitis specimens, followed by chronic gingivitis and healthy gingiva specimens (pEMMPRIN (r=0.289; p=0.006). In addition, there was a significant positive correlation between probing depth and expression of MMP-7 (r=0.726; pEMMPRIN (r=0.345; p=0.001), and CypA (r=0.803; pEMMPRIN and CypA are associated with the pathogenesis and progression of periodontal disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Role of T-lymphocytes and pro-inflammatory mediators in the pathogenesis of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Aneal Gadgil

    2008-11-01

    Full Text Available Aneal Gadgil, Steven R DuncanDivision of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USAAbstract: Chronic obstructive pulmonary disease (COPD is the fourth leading cause of death in the US and a major worldwide healthcare problem. The pathophysiologic mechanisms that drive development and progression of this disease are complex and only poorly understood. While tobacco smoking is the primary risk factor, other disease processes also appear to play a role. Components of the innate immune system (eg, macrophages and neutrophils have long been believed to be important in the development of COPD. More recent evidence also suggests involvement of the adaptive immune system in pathogenesis of this disease. Here we will review the literature supporting the participation of T-cells in the development of COPD, and comment on the potential antigenic stimuli that may account for these responses. We will further explore the prospective contributions of T-cell derived mediators that could contribute to the inflammation, alveolar wall destruction, and small airway fibrosis of advanced COPD. A better understanding of these complex immune processes will lead to new insights that could result in improved preventative and/or treatment strategies.Keywords: COPD, T-lymphocytes, adaptive immunity, cytokines

  2. Hepatitis C Virus, Cholesterol and Lipoproteins — Impact for the Viral Life Cycle and Pathogenesis of Liver Disease

    Science.gov (United States)

    Felmlee, Daniel J.; Hafirassou, Mohamed Lamine; Lefevre, Mathieu; Baumert, Thomas F.; Schuster, Catherine

    2013-01-01

    Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects. PMID:23698400

  3. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model.

    Science.gov (United States)

    Ricobaraza, Ana; Cuadrado-Tejedor, Mar; Pérez-Mediavilla, Alberto; Frechilla, Diana; Del Río, Joaquin; García-Osta, Ana

    2009-06-01

    Chromatin modification through histone acetylation is a molecular pathway involved in the regulation of transcription underlying memory storage. Sodium 4-phenylbutyrate (4-PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. In this study, we report that administration of 4-PBA reversed spatial learning and memory deficits in an established mouse model of Alzheimer's disease (AD) without altering beta-amyloid burden. We also observed that the phosphorylated form of tau was decreased in the AD mouse brain after 4-PBA treatment, an effect probably due to an increase in the inactive form of the glycogen synthase kinase 3beta (GSK3beta). Interestingly, we found a dramatic decrease in brain histone acetylation in the transgenic mice that may reflect an indirect transcriptional repression underlying memory impairment. The administration of 4-PBA restored brain histone acetylation levels and, as a most likely consequence, activated the transcription of synaptic plasticity markers such as the GluR1 subunit of the AMPA receptor, PSD95, and microtubule-associated protein-2. The results suggest that 4-PBA, a drug already approved for clinical use, may provide a novel approach for the treatment of AD.

  4. Combination of vildagliptin and rosiglitazone ameliorates nonalcoholic fatty liver disease in C57BL/6 mice.

    Science.gov (United States)

    Mookkan, Jeyamurugan; De, Soumita; Shetty, Pranesha; Kulkarni, Nagaraj M; Devisingh, Vijayaraj; Jaji, Mallikarjun S; Lakshmi, Vinitha P; Chaudhary, Shilpee; Kulathingal, Jayanarayan; Rajesh, Navin B; Narayanan, Shridhar

    2014-01-01

    To evaluate the effect of vildagliptin alone and in combination with metformin or rosiglitazone on murine hepatic steatosis in diet-induced nonalcoholic fatty liver disease (NAFLD). Male C57BL/6 mice were fed with high fat diet (60 Kcal %) and fructose (40%) in drinking water for 60 days to induce NAFLD. After the induction period, animals were divided into different groups and treated with vildagliptin (10 mg/kg), metformin (350 mg/kg), rosiglitazone (10 mg/kg), vildagliptin (10 mg/kg) + metformin (350 mg/kg), or vildagliptin (10 mg/kg) + rosiglitazone (10 mg/kg) orally for 28 days. Following parameters were measured: body weight, food intake, plasma glucose, triglyceride (TG), total cholesterol, liver function tests, and liver TG. Liver histopathology was also examined. Oral administration of vildagliptin and rosiglitazone in combination showed a significant reduction in fasting plasma glucose, hepatic steatosis, and liver TGs. While other treatments showed less or no improvement in the measured parameters. These preliminary results demonstrate that administration of vildagliptin in combination with rosiglitazone could be a promising therapeutic strategy for the treatment of NAFLD.

  5. Role of APOE Isforms in the Pathogenesis of TBI Induced Alzheimer’s Disease

    Science.gov (United States)

    2014-10-01

    the inheritance of APOe4 is the only proven genetic risk factor for sporadic Alzheimer disease (AD). Importantly, TBI is a risk factor for the...mediated through ABCA1. 2 Keywords Traumatic brain injury, APOE isoforms, ABCA1, Alzheimer disease, APPmice, amyloid beta, axonal injury, inflamma...and Anticipated problems 3 OVERALL PROJECT SUMMARY Trough activation of LXR/RXR transcription factors this ligand causes up regulation of Abca1 and

  6. Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe?

    Science.gov (United States)

    Tushuizen, Maarten E; Diamant, Michaela; Sturk, Augueste; Nieuwland, Rienk

    2011-01-01

    Microparticles are ascribed important roles in coagulation, inflammation, and endothelial function. These processes are mandatory to safeguard the integrity of the organism, and their derangements contribute to the development of atherosclerosis and cardiovascular disease. More recently, the presumed solely harmful role of microparticles has been challenged because microparticles may also be involved in the maintenance and preservation of cellular homeostasis and in promoting defense mechanisms. Here, we summarize recent studies revealing these 2 faces of microparticles in cardiovascular disease.

  7. Long Non-Coding RNA Profiling in a Non-Alcoholic Fatty Liver Disease Rodent Model: New Insight into Pathogenesis

    Directory of Open Access Journals (Sweden)

    Yi Chen

    2017-01-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent chronic liver diseases worldwide with an unclear mechanism. Long non-coding RNAs (lncRNAs have recently emerged as important regulatory molecules. To better understand NAFLD pathogenesis, lncRNA and messenger RNA (mRNA microarrays were conducted in an NAFLD rodent model. Potential target genes of significantly changed lncRNA were predicted using cis/trans-regulatory algorithms. Gene Ontology (GO analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analysis were then performed to explore their function. In the current analysis, 89 upregulated and 177 downregulated mRNAs were identified, together with 291 deregulated lncRNAs. Bioinformatic analysis of these RNAs has categorized these RNAs into pathways including arachidonic acid metabolism, circadian rhythm, linoleic acid metabolism, peroxisome proliferator-activated receptor (PPAR signaling pathway, sphingolipid metabolism, steroid biosynthesis, tryptophan metabolism and tyrosine metabolism were compromised. Quantitative polymerase chain reaction (qPCR of representative nine mRNAs and eight lncRNAs (named fatty liver-related lncRNA, FLRL was conducted and this verified previous microarray results. Several lncRNAs, such as FLRL1, FLRL6 and FLRL2 demonstrated to be involved in circadian rhythm targeting period circadian clock 3 (Per3, Per2 and aryl hydrocarbon receptor nuclear translocator-like (Arntl, respectively. While FLRL8, FLRL3 and FLRL7 showed a potential role in PPAR signaling pathway through interaction with fatty acid binding protein 5 (Fabp5, lipoprotein lipase (Lpl and fatty acid desaturase 2 (Fads2. Functional experiments showed that interfering of lncRNA FLRL2 expression affected the expression of predicted target, circadian rhythm gene Arntl. Moreover, both FLRL2 and Arntl were downregulated in the NAFLD cellular model. The current study identified lncRNA and corresponding mRNA in NAFLD

  8. Metabolomic Quantitative Trait Loci (mQTL Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.

    Directory of Open Access Journals (Sweden)

    William E Kraus

    2015-11-01

    Full Text Available Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA, long-chain dicarboxylacylcarnitine (LCDA and medium chain acylcarnitine (MCA metabolites are heritable and predict cardiovascular disease (CVD events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490, we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1 These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10. Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2. Expression quantitative trait loci (eQTL pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.

  9. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis.

    Directory of Open Access Journals (Sweden)

    S Rochelle Mikkelsen

    2011-02-01

    Full Text Available Feline immunodeficiency virus (FIV infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+CD25(hiFoxP3(+ immunosuppressive regulatory T (Treg cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+ T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.

  10. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis.

    Science.gov (United States)

    Mikkelsen, S Rochelle; Long, Julie M; Zhang, Lin; Galemore, Erin R; VandeWoude, Sue; Dean, Gregg A

    2011-02-25

    Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+)CD25(hi)FoxP3(+) immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+) T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.

  11. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer's disease.

    Science.gov (United States)

    Olajide, Olayemi Joseph; Yawson, Emmanuel Olusola; Gbadamosi, Ismail Temitayo; Arogundade, Tolulope Timothy; Lambe, Ezra; Obasi, Kosisochukwu; Lawal, Ismail Tayo; Ibrahim, Abdulmumin; Ogunrinola, Kehinde Yomi

    2017-03-01

    Exploring the links between neural pathobiology and behavioural deficits in Alzheimer's disease (AD), and investigating substances with known therapeutic advantages over subcellular mechanisms underlying these dysfunctions could advance the development of potent therapeutic molecules for AD treatment. Here we investigated the efficacy of ascorbic acid (AA) in reversing aluminium chloride (AlCl 3 )-induced behavioural deficits and neurotoxic cascades within prefrontal cortex (PFC) and hippocampus of rats. A group of rats administered oral AlCl 3 (100mg/kg) daily for 15days showed degenerative changes characterised by significant weight loss, reduced exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety during behavioural assessments compared to control. Subsequent analysis showed that oxidative impairment-indicated by depleted superoxide dismutase and lipid peroxidation (related to glutathione-S-transferase activity), cholinergic deficits seen by increased neural acetylcholinesterase (AChE) expression and elevated lactate dehydrogenase underlie behavioural alterations. Furthermore, evidences of proteolysis were seen by reduced Nissl profiles in neuronal axons and dendrites which correspond to apoptotic changes observed in H&E staining of PFC and hippocampal sections. Interestingly, AA (100mg/kg daily for 15days) significantly attenuated behavioural deficits in rats through inhibition of molecular and cellular stressor proteins activated by AlCl 3. Our results showed that the primary mechanisms underlying AA therapeutic advantages relates closely with its abilities to scavenge free radicals, prevent membrane lipid peroxidation, modulate neuronal bioenergetics, act as AChE inhibitor and through its anti-proteolytic properties. These findings suggest that supplementing endogenous AA capacity through its pharmacological intake may inhibit progression of AD-related neurodegenerative processes and behavioural

  12. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Yaakov A Levine

    Full Text Available The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model.Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed.Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02, a 57% reduction in ankle diameter (area under curve; p = 0.02 and 46% reduction overall histological arthritis score (p = 0.01 with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02, accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01.The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.

  13. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor

    Science.gov (United States)

    Zhang, Xianxie; Wang, Yuguang; Ma, Zengchun; Liang, Qiande; Tang, Xianglin; Hu, Donghua; Tan, Hongling; Xiao, Chengrong; Gao, Yue

    2015-01-01

    Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People’s Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility. PMID:26674743

  14. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis.

    Science.gov (United States)

    Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer

    2014-06-20

    Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis.

    Science.gov (United States)

    Drasdo, Dirk; Hoehme, Stefan; Hengstler, Jan G

    2014-10-01

    From the more than 100 liver diseases described, many of those with high incidence rates manifest themselves by histopathological changes, such as hepatitis, alcoholic liver disease, fatty liver disease, fibrosis, and, in its later stages, cirrhosis, hepatocellular carcinoma, primary biliary cirrhosis and other disorders. Studies of disease pathogeneses are largely based on integrating -omics data pooled from cells at different locations with spatial information from stained liver structures in animal models. Even though this has led to significant insights, the complexity of interactions as well as the involvement of processes at many different time and length scales constrains the possibility to condense disease processes in illustrations, schemes and tables. The combination of modern imaging modalities with image processing and analysis, and mathematical models opens up a promising new approach towards a quantitative understanding of pathologies and of disease processes. This strategy is discussed for two examples, ammonia metabolism after drug-induced acute liver damage, and the recovery of liver mass as well as architecture during the subsequent regeneration process. This interdisciplinary approach permits integration of biological mechanisms and models of processes contributing to disease progression at various scales into mathematical models. These can be used to perform in silico simulations to promote unravelling the relation between architecture and function as below illustrated for liver regeneration, and bridging from the in vitro situation and animal models to humans. In the near future novel mechanisms will usually not be directly elucidated by modelling. However, models will falsify hypotheses and guide towards the most informative experimental design. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  16. ALLERGIC EYE DISEASES IN CHILDREN. MODERN VIEW ON PATHOGENESIS AND TREATMENT

    Directory of Open Access Journals (Sweden)

    E. Y. Markova

    2017-01-01

    Full Text Available The prevalence off allergic diseases has  been  significantly increased among  adults  and children during last 30-40 years. International study has  shown  that  the  frequency  of atopy  in developed  countries, including Russia,   is higher  than  in developing.  Often atopic dermatitis, started in infancy, can develop into an “allergic march”  — food allergy, followed by the formation of allergic rhinitis, allergic conjunctivitis and  other  allergic diseases. The problem  of prophylaxis and  treatment of allergic pathology  becomes actual  for these reasons. An opinion according some  preventive  measures has  changed in recent. It was  noted  that  in families  with many children, where  children  were  often  sick  with respiratory infections,  the  incidence  of allergic  diseases was  lower  than  among  rarely sick children.  It is explained by the  “hygienic theory” — insufficient “training” of the  Th1 response in rarely sick children.  Allergic diseases, which are  based on IgE-mediated inflammation,  have a common  pathogenetic nature and,  consequently, general  principles of therapy, in which, as  is well known,  antihistamines take  a significant  place.  This is cased by the  mandatory involvement of histamine  in the mechanism of development of the main symptoms of allergic diseases. Current  capabilities  of local ophthalmologic  antiallergic therapy includes medicines  with multiple action mechanisms, such as mast cell stabilizers, antihistamines, combined  agents, steroids and nonsteroidal anti-inflammatory effects. The latest generation antihistamine drug — olopatadine hydrochloride  0.2% is a new form of the molecule of olopatadine, which is intended  to increase the duration  of the action.  The article considers the main modern directions in prevention  and treatment of allergic diseases, including allergic eye diseases, which are  a

  17. Weathering the storm: Improving therapeutic interventions for cytokine storm syndromes by targeting disease pathogenesis.

    Science.gov (United States)

    Weaver, Lehn K; Behrens, Edward M

    2017-03-01

    Cytokine storm syndromes require rapid diagnosis and treatment to limit the morbidity and mortality caused by the hyperinflammatory state that characterizes these devastating conditions. Herein, we discuss the current knowledge that guides our therapeutic decision-making and personalization of treatment for patients with cytokine storm syndromes. Firstly, ICU-level supportive care is often required to stabilize patients with fulminant disease while additional diagnostic evaluations proceed to determine the underlying cause of cytokine storm. Pharmacologic interventions should be focused on removing the inciting trigger of inflammation and initiation of an individualized immunosuppressive regimen when immune activation is central to the underlying disease pathophysiology. Monitoring for a clinical response is required to ensure that changes in the therapeutic regimen can be made as clinically warranted. Escalation of immunosuppression may be required if patients respond poorly to the initial therapeutic interventions, while a slow wean of immunosuppression in patients who improve can limit medication-related toxicities. In certain scenarios, a decision must be made whether an individual patient requires hematopoietic cell transplantation to prevent recurrence of disease. Despite these interventions, significant morbidity and mortality remains for cytokine storm patients. Therefore, we use this review to propose a clinical schema to guide current and future attempts to design rational therapeutic interventions for patients suffering from these devastating conditions, which we believe speeds the diagnosis of disease, limits medication-related toxicities, and improves clinical outcomes by targeting the heterogeneous and dynamic mechanisms driving disease in each individual patient.

  18. The Role of Oxidative Stress on the Pathogenesis of Graves' Disease

    Directory of Open Access Journals (Sweden)

    Miloš Žarković

    2012-01-01

    Full Text Available Graves' disease is a most common cause of hyperthyroidism. It is an autoimmune disease, and autoimmune process induces an inflammatory reaction, and reactive oxygen species (ROSs are among its products. When balance between oxidants and antioxidants is disturbed, in favour of the oxidants it is termed “oxidative stress” (OS. Increased OS characterizes Graves' disease. It seems that the level of OS is increased in subjects with Graves' ophthalmopathy compared to the other subjects with Graves' disease. Among the other factors, OS is involved in proliferation of orbital fibroblasts. Polymorphism of the 8-oxoG DNA N-glycosylase 1 (hOGG1 involved in repair of the oxidative damaged DNA increases in the risk for developing Grave's disease. Treatment with glucocorticoids reduces levels of OS markers. A recent large clinical trial evaluated effect of selenium on mild Graves' ophthalmopathy. Selenium treatment was associated with an improved quality of life and less eye involvement and slowed the progression of Graves' orbitopathy, compared to placebo.

  19. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson's disease.

    Science.gov (United States)

    Khurana, Navneet; Gajbhiye, Asmita

    2013-12-01

    Present study focused on the evaluation of aqueous extract of Sida cordifolia (AESC), and its different fractions; hexane (HFSC), chloroform (CFSC) and aqueous (AFSC), against rotenone induced biochemical, neurochemical, histopathological and behavioral alterations in a rat model of Parkinson's disease (PD). An estimation of the level of thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and catalase (CAT) along with superoxide anion generation (SAG) in different brain regions (cortex, midbrain and cerebellum) was carried out to assess biochemical changes. Behavioral evaluation tests (catalepsy, rearing behavior and posture instability) and neurochemical estimations (norepinephrine, dopamine and serotonin level) along with histopathological evaluations of different brain regions were also performed. The varying doses (50, 100, 250mg/kg; p.o.) of different test treatments (AESC, HFSC, CFSC and AFSC) were co-administered along with rotenone (2mg/kg; s.c.), for a period of 35 days to rats of various groups and compared with rotenone per se (negative control) and l-deprenyl (positive control; 10mg/kg; p.o.) treated groups for the above mentioned parameters. The increase in catalepsy and posture instability along with decrease in rearing behavior observed due to rotenone treatment was significantly attenuated by co-treatment with varying doses of AESC and AFSC. Results of the histopathological studies of different brain regions of rats showed eosinophilic lesions in the mid brain region due to rotenone treatment. The eosinophilic lesions were significantly attenuated in co-treated groups of AESC-100mg/kg and AFSC-100mg/kg. Rotenone induced oxidative damage, revealed by increased level of TBARS, SAG and decreased level of GSH and CAT in mid brain region of rats, was attenuated by the co-treatment of AESC and AFSC. The rotenone induced decrease of dopamine level in the midbrain region of rats was also attenuated by co-treatment of AESC-100mg/kg and AFSC

  20. Ameliorative Effect and Its Mechanism of Forsythiaside on Learning and Memory of Composite Alzheimer’s Disease Model Mice

    Institute of Scientific and Technical Information of China (English)

    XIONG Yu-ping; TIAN Ya-jie

    2016-01-01

    Objective: To explore the ameliorative effect of forsythiaside and its mechanism on learning and memory of composite Alzheimer’s disease (AD) model mice. Methods: Fifty SAMP8 mice of 8 months old were randomly divided into negative control group (gavage of distilled water), positive control group (gavage of donepezil), low-, middle-, and high-dose groups (gavage of forsythiaside 60, 120, and 240 mg/kg, respectively), 10 cases for each group. Another 10 SAMR1 male mice of 8-month old were designed as blank control group (gavage of distilled water). After gavage for 30 consecutive days, Morris water maze test was used to conduct behavioral test 1 h after gavage everyday. 24 h after completing behavior test, the vitality of superoxide dismutase (SOD), acetylcholine esterase (AchE), choline acetyl transferase (ChAT), monoamine oxidase (MAO), and glutathion peroxidase (GSH-PX) as well as the content of malondialdehyde (MDA) and nitric oxide (NO) in brain tissue of mice in each group were tested. Results:In water maze test, forsythiaside could improve the learning and memory ability of composite AD model mice. After being given different doses of forsythiaside for a long term, the activity of SOD, ChAT, and GSH-PX increased inordinately and the content of MDA and NO reduced in varying degrees in a dose-dependent manner. Of all, the high-dose forsythiaside group was the best in therapeutic effect. Conclusion: Forsythiaside has a therapeutic effect on the learning and memory impairment of composite AD model mice probably by regulating the mechanism of the cholinergic system and antioxygenation.

  1. Pathogenesis of Bone Alterations in Gaucher Disease: The Role of Immune System

    Directory of Open Access Journals (Sweden)

    Juan Marcos Mucci

    2015-01-01

    Full Text Available Gaucher, the most prevalent lysosomal disorder, is an autosomal recessive inherited disorder due to a deficiency of glucocerebrosidase. Glucocerebrosidase deficiency leads to the accumulation of glucosylceramide primarily in cells of mononuclear-macrophage lineage. Clinical alterations are visceral, hematological, and skeletal. Bone disorder in Gaucher disease produces defects on bone metabolism and structure and patients suffer from bone pain and crisis. Skeletal problems include osteopenia, osteoporosis, osteolytic lesions, and osteonecrosis. On the other hand a chronic stimulation of the immune system is a well-accepted hallmark in this disease. In this review we summarize the latest findings in the mechanisms leading to the bone pathology in Gaucher disease in relationship with the proinflammatory state.

  2. Phosphorylated α-Synuclein-Copper Complex Formation in the Pathogenesis of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Juan Antonio Castillo-Gonzalez

    2017-01-01

    Full Text Available Parkinson’s disease is the second most important neurodegenerative disorder worldwide. It is characterized by the presence of Lewy bodies, which are mainly composed of α-synuclein and ubiquitin-bound proteins. Both the ubiquitin proteasome system (UPS and autophagy-lysosomal pathway (ALS are altered in Parkinson’s disease, leading to aggregation of proteins, particularly α-synuclein. Interestingly, it has been observed that copper promotes the protein aggregation process. Additionally, phosphorylation of α-synuclein along with copper also affects the protein aggregation process. The interrelation among α-synuclein phosphorylation and its capability to interact with copper, with the subsequent disruption of the protein degradation systems in the neurodegenerative process of Parkinson’s disease, will be analyzed in detail in this review.

  3. THE ROLE OF MICROBIAL COMMUNITIES OF AIRWAYS IN PATHOGENESIS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

    Directory of Open Access Journals (Sweden)

    S. V. Fedosenko

    2014-01-01

    Full Text Available This review summarizes the results of studies on the composition of microbial communities in the airways of healthy subjects and in patients with chronic obstructive pulmonary disease. Modern technologies of molecular-genetic identification methods of microorganisms allow to perform a deep analysis  of  the  respiratory  microbiom.  It  is  of  considerable  interest  to  determine  the  role  of  the microbiome in the development of human diseases of the bronchopulmonary system, and to understand the impact of the microbes communities as a course of disease and the important factor for the efficacy of current therapy.

  4. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis.

    Science.gov (United States)

    Roederer, Mario; Quaye, Lydia; Mangino, Massimo; Beddall, Margaret H; Mahnke, Yolanda; Chattopadhyay, Pratip; Tosi, Isabella; Napolitano, Luca; Terranova Barberio, Manuela; Menni, Cristina; Villanova, Federica; Di Meglio, Paola; Spector, Tim D; Nestle, Frank O

    2015-04-09

    Despite recent discoveries of genetic variants associated with autoimmunity and infection, genetic control of the human immune system during homeostasis is poorly understood. We undertook a comprehensive immunophenotyping approach, analyzing 78,000 immune traits in 669 female twins. From the top 151 heritable traits (up to 96% heritable), we used replicated GWAS to obtain 297 SNP associations at 11 genetic loci, explaining up to 36% of the variation of 19 traits. We found multiple associations with canonical traits of all major immune cell subsets and uncovered insights into genetic control for regulatory T cells. This data set also revealed traits associated with loci known to confer autoimmune susceptibility, providing mechanistic hypotheses linking immune traits with the etiology of disease. Our data establish a bioresource that links genetic control elements associated with normal immune traits to common autoimmune and infectious diseases, providing a shortcut to identifying potential mechanisms of immune-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood-Brain Barrier Disruption, and Synaptic Disorder.

    Science.gov (United States)

    Kamat, Pradip K; Kyles, Philip; Kalani, Anuradha; Tyagi, Neetu

    2016-05-01

    Elevated plasma total homocysteine (Hcy) level is associated with an increased risk of Alzheimer's disease (AD). During transsulfuration pathways, Hcy is metabolized into hydrogen sulfide (H2S), which is a synaptic modulator, as well as a neuro-protective agent. However, the role of hydrogen sulfide, as well as N-methyl-D-aspartate receptor (NMDAR) activation, in hyperhomocysteinemia (HHcy) induced blood-brain barrier (BBB) disruption and synaptic dysfunction, leading to AD pathology is not clear. Therefore, we hypothesized that the inhibition of neuronal NMDA-R by H2S and MK801 mitigate the Hcy-induced BBB disruption and synapse dysfunction, in part by decreasing neuronal matrix degradation. Hcy intracerebral (IC) treatment significantly impaired cerebral blood flow (CBF), and cerebral circulation and memory function. Hcy treatment also decreases the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in the brain along with increased expression of NMDA-R (NR1) and synaptosomal Ca(2+) indicating excitotoxicity. Additionally, we found that Hcy treatment increased protein and mRNA expression of intracellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 and also increased MMP-2 and MMP-9 activity in the brain. The increased expression of ICAM-1, glial fibrillary acidic protein (GFAP), and the decreased expression of vascular endothelial (VE)-cadherin and claudin-5 indicates BBB disruption and vascular inflammation. Moreover, we also found decreased expression of microtubule-associated protein 2 (MAP-2), postsynaptic density protein 95 (PSD-95), synapse-associated protein 97 (SAP-97), synaptosomal-associated protein 25 (SNAP-25), synaptophysin, and brain-derived neurotrophic factor (BDNF) showing synapse dysfunction in the hippocampus. Furthermore, NaHS and MK801 treatment ameliorates BBB disruption, CBF, and synapse functions in the mice brain. These results demonstrate a neuro-protective effect of H2S over Hcy

  6. A New Decision Tree to Solve the Puzzle of Alzheimer's Disease Pathogenesis Through Standard Diagnosis Scoring System.

    Science.gov (United States)

    Kumar, Ashwani; Singh, Tiratha Raj

    2017-03-01

    Alzheimer's disease (AD) is a progressive, incurable and terminal neurodegenerative disorder of the brain and is associated with mutations in amyloid precursor protein, presenilin 1, presenilin 2 or apolipoprotein E, but its underlying mechanisms are still not fully understood. Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis and treatment of disease from the clinical dataset are therefore increasingly becoming necessary. The current study deals with the construction of classifiers that can be human readable as well as robust in performance for gene dataset of AD using a decision tree. Models of classification for different AD genes were generated according to Mini-Mental State Examination scores and all other vital parameters to achieve the identification of the expression level of different proteins of disorder that may possibly determine the involvement of genes in various AD pathogenesis pathways. The effectiveness of decision tree in AD diagnosis is determined by information gain with confidence value (0.96), specificity (92 %), sensitivity (98 %) and accuracy (77 %). Besides this functional gene classification using different parameters and enrichment analysis, our finding indicates that the measures of all the gene assess in single cohorts are sufficient to diagnose AD and will help in the prediction of important parameters for other relevant assessments.

  7. Unexpected relevance of the hallmarks of cancer to the pathogenesis of polycystic kidney disease

    Science.gov (United States)

    Seeger-Nukpezah, Tamina; Geynisman, Daniel M.; Nikonova, Anna S.; Benzing, Thomas; Golemis, Erica A.

    2018-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extrarenal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest an entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases. PMID:25870008

  8. New insights in the pathogenesis of non-alcoholic fatty liver disease

    NARCIS (Netherlands)

    Gaemers, Ingrid C.; Groen, Albert K.

    2006-01-01

    PURPOSE OF REVIEW: The hallmark of non-alcoholic fatty liver disease is hepatic steatosis. This is mostly a benign condition, but for largely unknown reasons it progresses to liver fibrosis, cirrhosis, and ultimately hepatocellular carcinoma in about 10% of patients. In this review we discuss recent

  9. Pathogenesis of new strains of Newcastle disease virus from Israel and Pakistan

    Science.gov (United States)

    In the past few years, Newcastle disease virus (NDV) strains with epizootic characteristics belonging to subgenotypes VIIi and XIIIb emerged in the Middle East and Asia. In this study, 2 NDV strains—1 representative of subgenotype VIIi isolated in Israel (Kvuzat/13) and 1 representative of subgenoty...

  10. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Enrica Serretiello

    2015-09-01

    Full Text Available Transglutaminases (TG, E.C. 2.3.2.13 are related and ubiquitous enzymes that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other post-translational reactions important for cell life. The distribution and the physiological roles of human TGs have been widely studied in numerous cell types and tissues and recently their roles in several diseases have begun to be identified. It has been hypothesized that transglutaminase activity is directly involved in the pathogenetic mechanisms responsible for several human diseases. In particular, tissue TG (tTG, TG2, a member of the TG enzyme family, has been recently shown to be involved in the molecular mechanisms responsible for a very widespread human pathology, Celiac Disease (CD, one of the most common food intolerances described in the western population. The main food agent that provokes the strong and diffuse clinical symptoms has been known for several years to be gliadin, a protein present in a very large number of human foods derived from vegetables. Recently, some biochemical and immunological aspects of this very common disease have been clarified, and “tissue” transglutaminase, a multifunctional and ubiquitous enzyme, has been identified as one of the major factors. The aim of this review is to summarize the most recent findings concerning the relationships between the biochemical properties of the transglutaminase activity and the basic molecular mechanisms responsible for some human diseases, with particular reference to neuropsychiatric disorders. Possible molecular links between CD and neuropsychiatric disorders, and the use of transglutaminase inhibitors are also discussed.

  11. The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases.

    Science.gov (United States)

    Gonçalves, Samuel M; Lagrou, Katrien; Duarte-Oliveira, Cláudio; Maertens, Johan A; Cunha, Cristina; Carvalho, Agostinho

    2017-08-18

    Filamentous fungi of the genus Aspergillus are responsible for several superficial and invasive infections and allergic syndromes. The risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and pathogen exposure. There is increasing evidence that the individual microbiome supervises the outcome of the host-fungus interaction by influencing mechanisms of immune regulation, inflammation, metabolism, and other physiological processes. Microbiome-mediated mechanisms of resistance allow therefore the control of fungal colonization, preventing the onset of overt disease, particularly in patients with underlying immune dysfunction. Here, we review this emerging area of research and discuss the contribution of the microbiota (and its dysbiosis), including its immunoregulatory properties and relationship with the metabolic activity of commensals, to respiratory fungal diseases. Finally, we highlight possible strategies aimed at decoding the microbiome-metabolome dialog and at its exploitation toward personalized medical interventions in patients at high risk of infection.

  12. Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Kanatsu, Kunihiko; Tomita, Taisuke

    2017-01-01

    Alzheimer disease (AD) is a neurodegenerative disease characterized by the extensive deposition of senile plaques and neurofibrillary tangles. Until recently, only the APOE gene had been known as a genetic risk factor for late-onset AD (LOAD), which accounts for more than 95% of all AD cases. However, in addition to this well-established genetic risk factor, genome-wide association studies have identified several single nucleotide polymorphisms as genetic risk factors of LOAD, such as PICALM and BIN1 . In addition, whole genome sequencing and exome sequencing have identified rare variants associated with LOAD, including TREM2 . We review the recent findings related to the molecular mechanisms by which these genetic risk factors contribute to AD, and our perspectives regarding the etiology of AD for the development of therapeutic agents.

  13. Bronchoalveolar lavage: role in the pathogenesis, diagnosis, and management of interstitial lung disease

    International Nuclear Information System (INIS)

    Daniele, R.P.; Elias, J.A.; Epstein, P.E.; Rossman, M.D.

    1985-01-01

    Bronchoalveolar lavage has emerged as a useful technique for the study of pulmonary interstitial disorders. Several types of information are provided by the evaluation of lavage fluid. First, the identification of cellular constituents helps to separate inflammatory processes in which lymphocytes predominate (for example, sarcoidosis, hypersensitivity pneumonitis, and berylliosis) from those in which neutrophils or macrophages predominate (for example, idiopathic pulmonary fibrosis and histiocytosis X). Second, the cells removed during lavage can be studied for their immune properties and function; tested with specific antigens, in diseases such as berylliosis and hypersensitivity pneumonitis; and examined for the presence of unique surface antigens with monoclonal antibodies (for example, histiocytosis X). Third, in conjunction with scanning electron microscopy and electron probe analysis, lavage makes possible the identification of inorganic particles in alveolar macrophages of patients with pneumoconiotic lung disease. Finally, although lavage is still an investigative procedure for most pulmonary disorders, it has an established role in the diagnosis of opportunistic infections in the immunocompromised patient

  14. The Role of Inflammatory Mediators in the Pathogenesis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Gholamreza Azizi

    2015-08-01

    Full Text Available Alzheimer’s disease (AD, a neurodegenerative disorder associated with advanced age, is the most common cause of dementia globally. AD is characterised by cognitive dysfunction, deposition of amyloid plaques, neurofibrillary tangles and neuro-inflammation. Inflammation of the brain is a key pathological hallmark of AD. Thus, clinical and immunopathological evidence of AD could be potentially supported by inflammatory mediators, including cytokines, chemokines, the complement system, acute phase proteins and oxidative mediators. In particular, oxidative mediators may actively contribute to the progression of AD and on-going inflammation in the brain. This review provides an overview of the functions and activities of inflammatory mediators in AD. An improved understanding of inflammatory processes and their role in AD is needed to improve therapeutic research aims in the field of AD and similar diseases.

  15. A Dysregulated Endocannabinoid-Eicosanoid Network Supports Pathogenesis in a Mouse Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Justin R. Piro

    2012-06-01

    Full Text Available Although inflammation in the brain is meant as a defense mechanism against neurotoxic stimuli, increasing evidence suggests that uncontrolled, chronic, and persistent inflammation contributes to neurodegeneration. Most neurodegenerative diseases have now been associated with chronic inflammation, including Alzheimer's disease (AD. Whether anti-inflammatory approaches can be used to treat AD, however, is a major unanswered question. We recently demonstrated that monoacylglycerol lipase (MAGL hydrolyzes endocannabinoids to generate the primary arachidonic acid pool for neuroinflammatory prostaglandins. In this study, we show that genetic inactivation of MAGL attenuates neuroinflammation and lowers amyloid β levels and plaques in an AD mouse model. We also find that pharmacological blockade of MAGL recapitulates the cytokine-lowering effects through reduced prostaglandin production, rather than enhanced endocannabinoid signaling. Our findings thus reveal a role of MAGL in modulating neuroinflammation and amyloidosis in AD etiology and put forth MAGL inhibitors as a potential next-generation strategy for combating AD.

  16. Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters

    Science.gov (United States)

    2016-05-20

    ANDV strain Chile -9717869 (27) was propagated in Vero E6 cells 122 (Vero C1008, ATCC CRL 1586). Preparation of twice-plaque-purified ANDV stock has...Research and Material Command, Military 537 Infectious Disease Research Program , Program Area T. Research reported in this publication 538 was also...prior to kidney, involvement, and diagnosed by viral 684 inclusions in lung macrophages. European journal of clinical microbiology & infectious

  17. Radical Roles for RAGE in the Pathogenesis of Oxidative Stress in Cardiovascular Diseases and Beyond

    Directory of Open Access Journals (Sweden)

    Radha Ananthakrishnan

    2013-10-01

    Full Text Available Oxidative stress is a central mechanism by which the receptor for advanced glycation endproducts (RAGE mediates its pathological effects. Multiple experimental inquiries in RAGE-expressing cultured cells have demonstrated that ligand-RAGE interaction mediates generation of reactive oxygen species (ROS and consequent downstream signal transduction and regulation of gene expression. The primary mechanism by which RAGE generates oxidative stress is via activation of NADPH oxidase; amplification mechanisms in the mitochondria may further drive ROS production. Recent studies indicating that the cytoplasmic domain of RAGE binds to the formin mDia1 provide further support for the critical roles of this pathway in oxidative stress; mDia1 was required for activation of rac1 and NADPH oxidase in primary murine aortic smooth muscle cells treated with RAGE ligand S100B. In vivo, in multiple distinct disease models in animals, RAGE action generates oxidative stress and modulates cellular/tissue fate in range of disorders, such as in myocardial ischemia, atherosclerosis, and aneurysm formation. Blockade or genetic deletion of RAGE was shown to be protective in these settings. Indeed, beyond cardiovascular disease, evidence is accruing in human subjects linking levels of RAGE ligands and soluble RAGE to oxidative stress in disorders such as doxorubicin toxicity, acetaminophen toxicity, neurodegeneration, hyperlipidemia, diabetes, preeclampsia, rheumatoid arthritis and pulmonary fibrosis. Blockade of RAGE signal transduction may be a key strategy for the prevention of the deleterious consequences of oxidative stress, particularly in chronic disease.

  18. Pathogenesis, diagnosis and treatment of non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Verónica Martín-Domínguez

    2013-08-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD includes a broad spectrum of alterations that go from simple steatosis to steatohepatitis and cirrhosis. Type 2 diabetes mellitus (DM-2 and obesity are the principle factors associated to NAFLD. A 20-30 % prevalence in general population has been described. The survival of this type of patient is lower than the general population's, showing a higher incidence of hepatic and cardiovascular complications. The aetiopathogenesis is still unclear, but we know the intervention of different factors that produce fatty-acid accumulation in hepatic parenchyma, causing oxidative stress, oxygen-free radicals and the synthesis of an inflammatory cascade, that determine the progression of this disease from steatosis up to advanced fibrosis. The diagnostic gold-standard is still the liver biopsy, even though the development of newer non-invasive techniques, like serological and imaging (radiology, have opened a new field for research that allows bloodless testing of these patients and better study of the natural history of this disease. Nowadays, there is still no specific treatment for NAFLD. The development of healthy life habits and moderate exercise continue to be the pillars of treatment. Different pharmacological approaches have been studied and applied, such as the control of insulin resistance, lowering cholesterol levels, antioxidants, and other alternatives in experimental trials.

  19. Pathogenesis of hepatic steatosis: the link between hypercortisolism and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Tarantino, Giovanni; Finelli, Carmine

    2013-10-28

    Based on the available literature, non alcoholic fatty liver disease or generally speaking, hepatic steatosis, is more frequent among people with diabetes and obesity, and is almost universally present amongst morbidly obese diabetic patients. Non alcoholic fatty liver disease is being increasingly recognized as a common liver condition in the developed world, with non alcoholic steatohepatitis projected to be the leading cause of liver transplantation. Previous data report that only 20% of patients with Cushing's syndrome have hepatic steatosis. Aiming at clarifying the reasons whereby patients suffering from Cushing's syndrome - a condition characterized by profound metabolic changes - present low prevalence of hepatic steatosis, the Authors reviewed the current concepts on the link between hypercortisolism and obesity/metabolic syndrome. They hypothesize that this low prevalence of fat accumulation in the liver of patients with Cushing's syndrome could result from the inhibition of the so-called low-grade chronic-inflammation, mainly mediated by Interleukin 6, due to an excess of cortisol, a hormone characterized by an anti-inflammatory effect. The Cushing's syndrome, speculatively considered as an in vivo model of the hepatic steatosis, could also help clarify the mechanisms of non alcoholic fatty liver disease.

  20. Calcium Nutrition and Extracellular Calcium Sensing: Relevance for the Pathogenesis of Osteoporosis, Cancer and Cardiovascular Diseases

    Science.gov (United States)

    Peterlik, Meinrad; Kállay, Enikoe; Cross, Heide S.

    2013-01-01

    Through a systematic search in Pubmed for literature, on links between calcium malnutrition and risk of chronic diseases, we found the highest degree of evidence for osteoporosis, colorectal and breast cancer, as well as for hypertension, as the only major cardiovascular risk factor. Low calcium intake apparently has some impact also on cardiovascular events and disease outcome. Calcium malnutrition can causally be related to low activity of the extracellular calcium-sensing receptor (CaSR). This member of the family of 7-TM G-protein coupled receptors allows extracellular Ca2+ to function as a “first messenger” for various intracellular signaling cascades. Evidence demonstrates that Ca2+/CaSR signaling in functional linkage with vitamin D receptor (VDR)-activated pathways (i) promotes osteoblast differentiation and formation of mineralized bone; (ii) targets downstream effectors of the canonical and non-canonical Wnt pathway to inhibit proliferation and induce differentiation of colorectal cancer cells; (iii) evokes Ca2+ influx into breast cancer cells, thereby activating pro-apoptotic intracellular signaling. Furthermore, Ca2+/CaSR signaling opens Ca2+-sensitive K+ conductance channels in vascular endothelial cells, and also participates in IP3-dependent regulation of cytoplasmic Ca2+, the key intermediate of cardiomyocyte functions. Consequently, impairment of Ca2+/CaSR signaling may contribute to inadequate bone formation, tumor progression, hypertension, vascular calcification and, probably, cardiovascular disease. PMID:23340319

  1. Intrastriatal injections of KN-93 ameliorates levodopa-induced dyskinesia in a rat model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Yang X

    2013-08-01

    Full Text Available Xinxin Yang, Na Wu, Lu Song, Zhenguo Liu Department of Neurology, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China Background: Levodopa remains the most effective drug for the treatment of Parkinson’s disease (PD. However, long-term levodopa treatment is associated with the emergence of levodopa-induced dyskinesia (LID, which has hampered its use for PD treatment. The mechanisms of LID are only partially understood. A previous study showed that KN-93, a Ca2+/calmodulin-dependent protein kinase II (CaMKII inhibitor, could be used to ameliorate LID in rats. However, the precise mechanisms by which KN-93 acts as an antidyskinetic are not fully understood. Methods: In the present study, a rat model of PD was induced by 6-hydroxydopamine (OHDA injections. Then, the successfully lesioned rats were intrastriatally administered with a different dose of KN-93 (1 µg, 2 µg, or 5 µg prior to levodopa treatment. Abnormal involuntary movements (AIMs scores and apomorphine-induced rotations were measured in PD rats. Phosphorylated levels of GluR1 at Serine-845 (pGluR1S845 levels were determined by western blot. Arc and Penk levels were measured by real-time polymerase chain reaction (PCR. Results: We found that both 2 µg and 5 µg KN-93 treatment lowered AIMs scores in levodopa priming PD rats without affecting the antiparkinsonian effect of levodopa. In agreement with behavioral analysis, KN-93 treatment (2 µg reduced pGluR1S845 levels in PD rats. Moreover, KN-93 treatment (2 µg reduced the expression of Gad1 and Nur77 in PD rats. Conclusion: These data indicated that intrastriatal injections of KN-93 were beneficial in reducing the expression of LID by lowering the expression of pGluR1S845 via suppressing the activation of CaMKII in PD rats. Decreased expression of pGluR1S845 further reduced the expression of Gad1 and Nur77 in PD rats. Keywords: Parkinson’s disease, levodopa

  2. Oxidative Stress and Hypoxia Contribute to Alzheimer's Disease Pathogenesis: Two Sides of the Same Coin

    Science.gov (United States)

    Guglielmotto, Michela; Tamagno, Elena; Danni, Oliviero

    2009-01-01

    While it is well established that stroke and cerebral hypoperfusion are risk factors for Alzheimer's disease (AD), the molecular link between ischemia/hypoxia and amyloid precursor protein (APP) processing has only been recently established. Here we review the role of the release of reactive oxygen species (ROS) by the mitochondrial electron chain in response to hypoxia, providing evidence that hypoxia fosters the amyloidogenic APP processing through a biphasic mechanism that up-regulates β-secretase activity, which involves an early release of ROS and an activation of HIF-1α. PMID:19705038

  3. Pathogenesis of Helicobacter pylori-Related Gastroduodenal Diseases from Molecular Epidemiological Studies.

    Science.gov (United States)

    Yamaoka, Yoshio

    2012-01-01

    Helicobacter pylori is a major human pathogen that infects the stomach and produces inflammation that is responsible for various gastroduodenal diseases. Despite the high prevalence of H. pylori infections in Africa and South Asia, the incidence of gastric cancer in these areas is much lower than in other countries. The incidence of gastric cancer also tends to decrease from north to south in East Asia. Data from molecular epidemiological studies show that this variation in different geographic areas could be explained in part by different types of H. pylori virulence factors, especially CagA, VacA, and OipA. H. pylori infection is thought to be involved in both gastric cancer and duodenal ulcer, which are at opposite ends of the disease spectrum. This discrepancy can also be explained in part by another H. pylori factor, DupA, as well as by CagA typing (East Asian type versus Western type). H. pylori has a genome of approximately 1,600 genes; therefore, there might be other novel virulence factors. Because genome wide analyses using whole-genome sequencing technology give a broad view of the genome of H. pylori, we hope that next-generation sequencers will enable us to efficiently investigate novel virulence factors.

  4. Pathogenesis of Helicobacter pylori-Related Gastroduodenal Diseases from Molecular Epidemiological Studies

    Directory of Open Access Journals (Sweden)

    Yoshio Yamaoka

    2012-01-01

    Full Text Available Helicobacter pylori is a major human pathogen that infects the stomach and produces inflammation that is responsible for various gastroduodenal diseases. Despite the high prevalence of H. pylori infections in Africa and South Asia, the incidence of gastric cancer in these areas is much lower than in other countries. The incidence of gastric cancer also tends to decrease from north to south in East Asia. Data from molecular epidemiological studies show that this variation in different geographic areas could be explained in part by different types of H. pylori virulence factors, especially CagA, VacA, and OipA. H. pylori infection is thought to be involved in both gastric cancer and duodenal ulcer, which are at opposite ends of the disease spectrum. This discrepancy can also be explained in part by another H. pylori factor, DupA, as well as by CagA typing (East Asian type versus Western type. H. pylori has a genome of approximately 1,600 genes; therefore, there might be other novel virulence factors. Because genome wide analyses using whole-genome sequencing technology give a broad view of the genome of H. pylori, we hope that next-generation sequencers will enable us to efficiently investigate novel virulence factors.

  5. Diet, ageing and genetic factors in the pathogenesis of diverticular disease

    Science.gov (United States)

    Commane, Daniel Martin; Arasaradnam, Ramesh Pulendran; Mills, Sarah; Mathers, John Cummings; Bradburn, Mike

    2009-01-01

    Diverticular disease (DD) is an age-related disorder of the large bowel which may affect half of the population over the age of 65 in the UK. This high prevalence ranks it as one of the most common bowel disorders in western nations. The majority of patients remain asymptomatic but there are associated life-threatening co-morbidities, which, given the large numbers of people with DD, translates into a considerable number of deaths per annum. Despite this public health burden, relatively little seems to be known about either the mechanisms of development or causality. In the 1970s, a model of DD formulated the concept that diverticula occur as a consequence of pressure-induced damage to the colon wall amongst those with a low intake of dietary fiber. In this review, we have examined the evidence regarding the influence of ageing, diet, inflammation and genetics on DD development. We argue that the evidence supporting the barotrauma hypothesis is largely anecdotal. We have also identified several gaps in the knowledge base which need to be filled before we can complete a model for the etiology of diverticular disease. PMID:19468998

  6. Interstitial lung disease in an adult with Fanconi anemia: Clues to the pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, W.S.; Wenger, S.L.; Hoffman, R.M. [Univ. of Pittsburgh, PA (United States)] [and others

    1997-03-31

    We have studied a 38-year-old man with a prior diagnosis of Holt-Oram syndrome, who presented with diabetes mellitus. He had recently taken prednisone for idiopathic interstitial lung disease and trimethoprim-sulfamethoxazole for sinusitis. Thrombocytopenia progressed to pancytopenia. The patient had skeletal, cardiac, renal, cutaneous, endocrine, hepatic, neurologic, and hematologic manifestations of Fanconi anemia (FA). Chest radiographs showed increased interstitial markings at age 25, dyspnea began in his late 20s, and he stopped smoking at age 32. At age 38, computerized tomography showed bilateral upper lobe fibrosis, lower lobe honeycombing, and bronchiectasis. Pulmonary function tests, compromised at age 29, showed a moderately severe obstructive and restrictive pattern by age 38. Serum alpha-1 antitrypsin level was 224 (normal 85-213) mg/dL and PI phenotype was M1. Karyotype was 46,X-Y with a marked increase in chromosome aberrations induced in vitro by diepoxybutane. The early onset and degree of pulmonary disease in this patient cannot be fully explained by environmental or known genetic causes. The International Fanconi Anemia Registry (IFAR) contains no example of a similar pulmonary presentation. Gene-environment (ecogenetic) interactions in FA seem evident in the final phenotype. The pathogenic mechanism of lung involvement in FA may relate to oxidative injury and cytokine anomalies. 49 refs., 2 figs., 1 tab.

  7. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease

    Science.gov (United States)

    Moreno-Fernandez, Maria E.; Giles, Daniel A.; Stankiewicz, Traci E.; Sheridan, Rachel; Karns, Rebekah; Cappelletti, Monica; Lampe, Kristin; Mukherjee, Rajib; Sina, Christian; Sallese, Anthony; Bridges, James P.; Hogan, Simon P.; Aronow, Bruce J.; Hoebe, Kasper

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD), a metabolic predisposition for development of hepatocellular carcinoma (HCC), represents a disease spectrum ranging from steatosis to steatohepatitis to cirrhosis. Acox1, a rate-limiting enzyme in peroxisomal fatty acid β-oxidation, regulates metabolism, spontaneous hepatic steatosis, and hepatocellular damage over time. However, it is unknown whether Acox1 modulates inflammation relevant to NAFLD pathogenesis or if Acox1-associated metabolic and inflammatory derangements uncover and accelerate potential for NAFLD progression. Here, we show that mice with a point mutation in Acox1 (Acox1Lampe1) exhibited altered cellular metabolism, modified T cell polarization, and exacerbated immune cell inflammatory potential. Further, in context of a brief obesogenic diet stress, NAFLD progression associated with Acox1 mutation resulted in significantly accelerated and exacerbated hepatocellular damage via induction of profound histological changes in hepatocytes, hepatic inflammation, and robust upregulation of gene expression associated with HCC development. Collectively, these data demonstrate that β-oxidation links metabolism and immune responsiveness and that a better understanding of peroxisomal β-oxidation may allow for discovery of mechanisms central for NAFLD progression. PMID:29563328

  8. Research advances in susceptibility genes and their role in the pathogenesis of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    XUAN Shiying

    2016-03-01

    Full Text Available Currently the incidence of nonalcoholic fatty liver disease (NAFLD is increasing, and the age of onset is getting younger worldwide, resulting in a heavy economic burden for both individuals and the society. Since NAFLD is closely related to heredity, metabolism, and the environment, genetic factors play an important role in the development and progression of NAFLD. With the development and wide application of the techniques from the genome-wide association studies, new research advances have been achieved in the susceptibility genes of NAFLD. This review summarizes the related research findings at home and abroad, and investigates the pathogenic factors for NAFLD and related mechanisms with a focus on the polymorphisms of susceptibility genes.

  9. Mitochondria and α-Synuclein: Friends or Foes in the Pathogenesis of Parkinson's Disease?

    Science.gov (United States)

    Faustini, Gaia; Bono, Federica; Valerio, Alessandra; Pizzi, Marina; Spano, PierFranco; Bellucci, Arianna

    2017-12-08

    Parkinson's disease (PD) is a movement disorder characterized by dopaminergic nigrostriatal neuron degeneration and the formation of Lewy bodies (LB), pathological inclusions containing fibrils that are mainly composed of α-synuclein. Dopaminergic neurons, for their intrinsic characteristics, have a high energy demand that relies on the efficiency of the mitochondria respiratory chain. Dysregulations of mitochondria, deriving from alterations of complex I protein or oxidative DNA damage, change the trafficking, size and morphology of these organelles. Of note, these mitochondrial bioenergetics defects have been related to PD. A series of experimental evidence supports that α-synuclein physiological action is relevant for mitochondrial homeostasis, while its pathological aggregation can negatively impinge on mitochondrial function. It thus appears that imbalances in the equilibrium between the reciprocal modulatory action of mitochondria and α-synuclein can contribute to PD onset by inducing neuronal impairment. This review will try to highlight the role of physiological and pathological α-synuclein in the modulation of mitochondrial functions.

  10. Seronegative Neuromyelitis Optica Spectrum - The challenges on disease definition and pathogenesis

    Directory of Open Access Journals (Sweden)

    Douglas Kazutoshi Sato

    2014-06-01

    Full Text Available Neuromyelitis optica spectrum disorders (NMOSD are characterized by severe optic neuritis and/or longitudinally extensive transverse myelitis, and some brain lesions are also unique to NMOSD. Serum autoantibodies against aquaporin-4 (AQP4 are detected in most cases of NMOSD. However, some patients with NMOSD remain seronegative despite repetitive testing during attacks with highly sensitive cell-based assays. The differential diagnosis of NMOSD is not restricted to multiple sclerosis and it includes many diseases that can produce longitudinally extensive myelitis and/or optic neuritis. We review the clinical features, imaging, and laboratory findings that can be helpful on the diagnostic work-up, discuss the differences between AQP4 antibody positive and negative patients with NMOSD, including features of NMOSD with antibodies against myelin oligodendrocyte glycoprotein.

  11. MicroRNAs in inflammatory bowel disease--pathogenesis, diagnostics and therapeutics

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict

    2012-01-01

    insights have been generated from studies describing an association between an altered expression of a specific class of non-coding RNAs, called microRNAs (miRs or miRNAs) and IBD. The short (approximately 22 nucleotides), endogenous, single-stranded RNAs are evolutionary conserved in animals and plants......-third of the genes in the human genome. Thus, miRNA deregulation often results in an impaired cellular function, and a disturbance of downstream gene regulation and signaling cascades, suggesting their implication in disease etiology. Despite the identification of more than 1900 mature human miRNAs, very little...... is known about their biological functions and functional targets. Recent studies have identified dysregulated miRNAs in tissue samples of IBD patients and have demonstrated similar differences in circulating miRNAs in the serum of IBD patients. Thus, there is great promise that miRNAs will aid in the early...

  12. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Aliev, G; Priyadarshini, M; Reddy, V P; Grieg, N H; Kaminsky, Y; Cacabelos, R; Ashraf, G Md; Jabir, N R; Kamal, M A; Nikolenko, V N; Zamyatnin, A A; Benberin, V V; Bachurin, S O

    2014-01-01

    Mitochondrial dysfunction plausibly underlies the aging-associated brain degeneration. Mitochondria play a pivotal role in cellular bioenergetics and cell-survival. Oxidative stress consequent to chronic hypoperfusion induces mitochondrial damage, which is implicated as the primary cause of cerebrovascular accidents (CVA) mediated Alzheimer's disease (AD). The mitochondrial function deteriorates with aging, and the mitochondrial damage correlates with increased intracellular production of oxidants and pro-oxidants. The prolonged oxidative stress and the resultant hypoperfusion in the brain tissues stimulate the expression of nitric oxide synthase (NOS) enzymes, which further drives the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ROS and RNS collectively contributes to the dysfunction of the blood-brain barrier (BBB) and damage to the brain parenchymal cells. Delineating the molecular mechanisms of these processes may provide clues for the novel therapeutic targets for CVA and AD patients.

  13. Comprehensive genetic study of fatty acids helps explain the role of noncoding inflammatory bowel disease associated SNPs and fatty acid metabolism in disease pathogenesis.

    Science.gov (United States)

    Jezernik, Gregor; Potočnik, Uroš

    2018-03-01

    Fatty acids and their derivatives play an important role in inflammation. Diet and genetics influence fatty acid profiles. Abnormalities of fatty acid profiles have been observed in inflammatory bowel diseases (IBD), a group of complex diseases defined by chronic gastrointestinal inflammation. IBD associated fatty acid profile abnormalities were observed independently of nutritional status or disease activity, suggesting a common genetic background. However, no study so far has attempted to look for overlap between IBD loci and fatty acid associated loci or investigate the genetics of fatty acid profiles in IBD. To this end, we conducted a comprehensive genetic study of fatty acid profiles in IBD using iCHIP, a custom microarray platform designed for deep sequencing of immune-mediated disease associated loci. This study identifies 10 loci associated with fatty acid profiles in IBD. The most significant associations were a locus near CBS (p = 7.62 × 10 -8 ) and a locus in LRRK2 (p = 1.4 × 10 -7 ). Of note, this study replicates the FADS gene cluster locus, previously associated with both fatty acid profiles and IBD pathogenesis. Furthermore, we identify 18 carbon chain trans-fatty acids (p = 1.12 × 10 -3 ), total trans-fatty acids (p = 4.49 × 10 -3 ), palmitic acid (p = 5.85 × 10 -3 ) and arachidonic acid (p = 8.58 × 10 -3 ) as significantly associated with IBD pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. IgG4 plasma cell myeloma: new insights into the pathogenesis of IgG4-related disease.

    Science.gov (United States)

    Geyer, Julia T; Niesvizky, Ruben; Jayabalan, David S; Mathew, Susan; Subramaniyam, Shivakumar; Geyer, Alexander I; Orazi, Attilio; Ely, Scott A

    2014-03-01

    IgG4-related disease is a newly described systemic fibroinflammatory process, characterized by increase in IgG4-positive plasma cells. Its pathogenesis, including the role of IgG4, remains poorly understood. Plasma cell myeloma is typically associated with a large monoclonal serum spike, which is frequently of IgG isotype. We sought to identify and characterize a subset of IgG4-secreting myeloma, as it may provide a biological model of disease with high serum levels of IgG4. Six out of 158 bone marrow biopsies (4%) from patients with IgG myeloma expressed IgG4. Four patients were men and two were women, with a mean age of 64 (range 53-87) years. Imaging showed fullness of pancreatic head (1), small non-metabolic lymphadenopathy (1), and bone lytic lesions (6). Two patients developed necrotizing fasciitis. All had elevated serum M-protein (mean 2.4, range 0.5-4.2 g/dl), and none had definite signs or symptoms of IgG4-related disease. Four myelomas had plasmablastic morphology. Four had kappa and two had lambda light chain expression. Three cases expressed CD56. Two patients had a complex karyotype. In conclusion, the frequency of IgG4 myeloma correlates with the normal distribution of IgG4 isoform. The patients with IgG4 myeloma appear to have a high rate of plasmablastic morphology and could be predisposed to necrotizing fasciitis. Despite high serum levels of IgG4, none had evidence of IgG4-related disease. These findings suggest that the increased number of IgG4-positive plasma cells is not the primary etiologic agent in IgG4-related disease. Elevated serum levels of IgG4 is not sufficient to produce the typical disease presentation and should not be considered diagnostic of IgG4-related disease.

  15. The Fourth Element Targeting hypothesis of Alzheimer’s disease pathogenesis and pathophysiology

    Directory of Open Access Journals (Sweden)

    Rodrigo O Kuljiš

    2010-11-01

    Full Text Available Despite well over a century of research on all forms of the disorder known as Alzheimer’s disease (AD, it is still not known whether the condition targets initially neurons, glial cells, other cellular elements in the brain, or components of cells, such as synapses, or molecules independently of their cellular compartmentalization, or otherwise (e.g. specific neuronal circuits. Multiple lines of highly suggestive but as yet insufficient experimental evidence are discussed here to formulate the hypothesis that AD results from primary (i.e. direct and initial or secondary targeting of what we designate as the Fourth Element Cell (4EC: a relatively recently identified type of brain cell that exhibits features in common with neurons (e.g. synapses, participation in glutamatergic and GABAergic neurotransmission, astrocytes, oligodendrocytes and their precursors, but is in other respects clearly distinct from all of them. The 4EC is proposed to be the main target of both: (1 converging insults (i.e. not true causes that over time cause sporadic forms of AD as postulated by the Danger Signal Hypothesis — which was not formulated with 4EC in mind — as well as (2 the causes of inherited (i.e. familial forms of neurodegeneration that resemble certain aspects of the clinical manifestations of sporadic AD.

  16. Pathogenesis of Molluscum Contagiosum: A new concept for the spontaneous involution of the disease

    Directory of Open Access Journals (Sweden)

    Khalifa E. Sharquie

    2015-07-01

    Full Text Available Background: Molluscum contagiosum is a common viral skin disease that usually has a self-clearing course. Objectives: to study the process of involution of molluscum contagiosum through utilizing histological examination. Patients and Methods: Different sizes and stages of evolution of lesions from 50 patients with molluscum contagiosum were included. Deep shave biopsies were taken from each patient for histopathological examination. Results: All lesions showed a single punctum and this was confirmed by histopathological examination. Each individual lesion showed an epidermal hyperplasia consisting of many lobes which subdivided into lobules that contain the molluscum bodies. The intra-cytoplasmic molluscum inclusion bodies increase in the number and size as the cells differentiate toward the surface of the epidermis to accumulate at a central meeting point equivalent to the clinical sign of umblication at which the infected cells undergo cytocidal disintegration releasing its viral contents into the skin surface. The general histological architecture resemble that of keratoacanthoma. Conclusion: The central umblication represent the site of the future involution that contains the final growth phase of the infected epidermal cells where it ends by a process of cellular death and disintegration releasing its viral contents into the surface of the skin at the craterform opening which is called punctum. This process of self-involution may resemble that of keratoacanthoma where there are many similar pathological features in both conditions.

  17. Pathogenesis of New Strains of Newcastle Disease Virus From Israel and Pakistan.

    Science.gov (United States)

    Pandarangga, P; Brown, C C; Miller, P J; Haddas, R; Rehmani, S F; Afonso, C L; Susta, L

    2016-07-01

    In the past few years, Newcastle disease virus (NDV) strains with epizootic characteristics belonging to subgenotypes VIIi and XIIIb emerged in the Middle East and Asia. In this study, 2 NDV strains-1 representative of subgenotype VIIi isolated in Israel (Kvuzat/13) and 1 representative of subgenotype XIIIb isolated in Pakistan (Karachi/07)-were characterized by intracerebral pathogenicity index and detailed clinicopathologic assessment. The intracerebral pathogenicity index values for Kvuzat/13 and Karachi/07 were 1.89 and 1.85, respectively, classifying these strains as virulent by international standards. In 4-week-old White Leghorn chickens, both strains caused 100% mortality within 4 (Kvuzat/13) and 5 (Karachi/07) days postinfection. Histopathology and immunohistochemistry for NDV nucleoprotein showed that both strains had wide systemic distribution, especially targeting lymphoid organs and mucosa-associated lymphoid tissues in the respiratory and intestinal tracts. Results of the animal experiment confirm that both Kvuzat/13 and Karachi/07 are highly virulent and behaved as velogenic viscerotropic NDV strains. © The Author(s) 2016.

  18. The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease.

    Science.gov (United States)

    Bosco, Munyemana Jean; Wei, Ming; Hou, Hongyan; Yu, Jing; Lin, Qun; Luo, Ying; Sun, Ziyong; Wang, Feng

    2018-06-21

    The CD4 + CXCR5 + T cells have been previously established. However, their decreased frequency during tuberculosis (TB) disease is partially understood. The aim of this study was to explore the depletion of CD4 + CXCR5 + T cells in human TB. The frequency and function of CD4 + CXCR5 + T cells were evaluated in active TB (ATB) patients and healthy control (HC) individuals. The function of CD4 + CXCR5 + T cells was determined after blockade of inhibitory receptors. The frequency of CD4 + CXCR5 + T cells was decreased in ATB patients. The expression of activation markers (HLA-DR and ICOS) and inhibitory receptors (Tim-3 and PD-1) on CD4 + CXCR5 + T cells was increased in ATB group. TB-specific antigen stimulation induced higher expression of inhibitory receptors than phytohemagglutinin stimulation in ATB group. In contrast, TB antigen stimulation did not induce a significantly increased expression of IL-21 and Ki-67 on CD4 + CXCR5 + T cells. However, blockade of inhibitory receptors Tim-3 and PD-1 not only increased the frequency of CD4 + CXCR5 + T cells, but also restored their proliferation and cytokine secretion potential. An increased expression of inhibitory receptors involves the depletion of CD4 + CXCR5 + T cells, and blockade of inhibitory receptors can restore the function of CD4 + CXCR5 + T cells in ATB patients. Copyright © 2018. Published by Elsevier Ltd.

  19. Crohn´s disease: a role of gut microbiota and Nod2 gene polymorphisms in disease pathogenesis

    Czech Academy of Sciences Publication Activity Database

    Hrnčířová, Lucia; Krejsek, J.; Šplíchal, Igor; Hrnčíř, Tomáš

    2014-01-01

    Roč. 57, č. 3 (2014), s. 89-96 ISSN 1211-4286 Grant - others:Universita Karlova(CZ) 37/10/906613 Institutional support: RVO:61388971 Keywords : gut * microbiota * Crohn disease Subject RIV: EC - Immunology

  20. The GDNF System Is Altered in Diverticular Disease – Implications for Pathogenesis

    Science.gov (United States)

    Böttner, Martina; Barrenschee, Martina; Hellwig, Ines; Harde, Jonas; Egberts, Jan-Hendrik; Becker, Thomas; Zorenkov, Dimitri; Schäfer, Karl-Herbert; Wedel, Thilo

    2013-01-01

    Background & Aims Absence of glial cell line-derived neurotrophic factor (GDNF) leads to intestinal aganglionosis. We recently demonstrated that patients with diverticular disease (DD) exhibit hypoganglionosis suggesting neurotrophic factor deprivation. Thus, we screened mRNA expression pattern of the GDNF system in DD and examined the effects of GDNF on cultured enteric neurons. Methods Colonic specimens obtained from patients with DD (n = 21) and controls (n = 20) were assessed for mRNA expression levels of the GDNF system (GDNF, GDNF receptors GFRα1 and RET). To identify the tissue source of GDNF and its receptors, laser-microdissected (LMD) samples of human myenteric ganglia and intestinal muscle layers were analyzed separately by qPCR. Furthermore, the effects of GDNF treatment on cultured enteric neurons (receptor expression, neuronal differentiation and plasticity) were monitored. Results mRNA expression of GDNF and its receptors was significantly down-regulated in the muscularis propria of patients with DD. LMD samples revealed high expression of GDNF in circular and longitudinal muscle layers, whereas GDNF receptors were also expressed in myenteric ganglia. GDNF treatment of cultured enteric neurons increased mRNA expression of its receptors and promoted neuronal differentiation and plasticity revealed by synaptophysin mRNA and protein expression. Conclusions Our results suggest that the GDNF system is compromised in DD. In vitro studies demonstrate that GDNF enhances expression of its receptors and promotes enteric neuronal differentiation and plasticity. Since patients with DD exhibit hypoganglionosis, we propose that the observed enteric neuronal loss in DD may be due to lacking neurotrophic support mediated by the GDNF system. PMID:23805210

  1. Role of iodine in pathogenesis of thyroid disease - is induction of apoptosis consequence of iodine cytotoxicity?

    Directory of Open Access Journals (Sweden)

    Marković Ljiljana

    2017-01-01

    Full Text Available Iodine is one of the best-characterized environmental factors associated with autoimmune thyroid disease (ATD. Epidemiological studies have shown that ATD incidence has increased following the introduction of salt iodination in the 1920s; in addition, ATD patients can improve upon iodine restriction. In animal models such as BioBreeding/Worcester and Buffalo rats, obese chicken strain, and non-obese diabetic H-2h4 mice, excess iodine is associated with autoimmunity. Analyses of Hashimoto thyroiditis (HT have shown enlarged number of apoptotic follicular cells, and the destruction is an effect of death receptormediated apoptosis. Excess of iodine induces rapid apoptosis of goitrogen Wistar pretreated rats, possibly connected with inhibition of polyamine synthesis, inhibitors of DNA fragmentation. Percentage of apoptotic cells was statistically higher in patients with HT than in those with euthyroid goiter, with significant increase of caspase 32. Genes for Bcl-2 and Bax proteins are under the transcriptional control of p53. In TAD-2 cell cultures, apoptosis is p53-independed, suggesting that DNA damage is not primarily evoked by potassium iodide (KI. High concentrations of NaI increase the proportion of apoptotic cells in FTRL5 thyroid cell line. Iodide cytotoxicity is inhibited by a TPO inhibitor and is relieved with an anti-oxidant agent. Chronic iodine excess induces apoptosis and necrosis of thyroid follicular and endothelial cells, leading to thyroglobulin accumulation in connective tissue. Iodide excess requires peroxidase enzymatic activity to induce apoptosis. Ionic iodide is not directly toxic, whereas its molecular form I2 mediates the apoptotic effect of KI. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI-175059

  2. Astrovirus Pathogenesis

    Directory of Open Access Journals (Sweden)

    Cydney Johnson

    2017-01-01

    Full Text Available Astroviruses are a major cause of diarrhea in the young, elderly, and the immunocompromised. Since the discovery of human astrovirus type 1 (HAstV-1 in 1975, the family Astroviridae has expanded to include two more human clades and numerous mammalian and avian-specific genotypes. Despite this, there is still little known about pathogenesis. The following review highlights the current knowledge of astrovirus pathogenesis, and outlines the critical steps needed to further astrovirus research, including the development of animal models of cell culture systems.

  3. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis

    Science.gov (United States)

    Donaldson, David S.; Else, Kathryn J.

    2015-01-01

    ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the

  4. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis.

    Science.gov (United States)

    Donaldson, David S; Else, Kathryn J; Mabbott, Neil A

    2015-09-01

    Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal

  5. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Yoneda Masato

    2012-02-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD is a hepatic manifestation of metabolic syndrome that is closely associated with multiple factors such as obesity, hyperlipidemia and type 2 diabetes mellitus. However, other risk factors for the development of NAFLD are unclear. With the association between periodontal disease and the development of systemic diseases receiving increasing attention recently, we conducted this study to investigate the relationship between NAFLD and infection with Porphyromonas gingivalis (P. gingivalis, a major causative agent of periodontitis. Methods The detection frequencies of periodontal bacteria in oral samples collected from 150 biopsy-proven NAFLD patients (102 with non-alcoholic steatohepatitis (NASH and 48 with non-alcoholic fatty liver (NAFL patients and 60 non-NAFLD control subjects were determined. Detection of P. gingivalis and other periodontopathic bacteria were detected by PCR assay. In addition, effect of P. gingivalis-infection on mouse NAFLD model was investigated. To clarify the exact contribution of P. gingivalis-induced periodontitis, non-surgical periodontal treatments were also undertaken for 3 months in 10 NAFLD patients with periodontitis. Results The detection frequency of P. gingivalis in NAFLD patients was significantly higher than that in the non-NAFLD control subjects (46.7% vs. 21.7%, odds ratio: 3.16. In addition, the detection frequency of P. gingivalis in NASH patients was markedly higher than that in the non-NAFLD subjects (52.0%, odds ratio: 3.91. Most of the P. gingivalis fimbria detected in the NAFLD patients was of invasive genotypes, especially type II (50.0%. Infection of type II P. gingivalis on NAFLD model of mice accelerated the NAFLD progression. The non-surgical periodontal treatments on NAFLD patients carried out for 3 months ameliorated the liver function parameters, such as the serum levels of AST and ALT. Conclusions Infection with high-virulence P

  6. Non-alcoholic fatty pancreas disease pathogenesis: a role for developmental programming and altered circadian rhythms.

    Directory of Open Access Journals (Sweden)

    Rebeca Carter

    Full Text Available OBJECTIVES: Emerging evidence suggests that maternal obesity (MO predisposes offspring to obesity and the recently described non-alcoholic fatty pancreas disease (NAFPD but involved mechanisms remain unclear. Using a pathophysiologically relevant murine model, we here investigated a role for the biological clock--molecular core circadian genes (CCG in the generation of NAFPD. DESIGN: Female C57BL6 mice were fed an obesogenic diet (OD or standard chow (SC for 6 weeks, prior to pregnancy and throughout gestation and lactation: resulting offspring were subsequently weaned onto either OD (Ob_Ob and Con_Ob or standard chow (Ob_Con and Con_Con for 6 months. Biochemical, pro-inflammatory and pro-fibrogenic markers associated with NAFPD were then evaluated and CCG mRNA expression in the pancreas determined. RESULTS: Offspring of obese dams weaned on to OD (Ob_Ob had significantly increased (p≤0.05: bodyweight, pancreatic triglycerides, macrovesicular pancreatic fatty-infiltration, and pancreatic mRNA expression of TNF-α, IL-6, α-SMA, TGF-β and increased collagen compared to offspring of control dams weaned on to control chow (Con_Con. Analyses of CCG expression demonstrated a phase shift in CLOCK (-4.818, p<0.01, REV-ERB-α (-1.4,p<0.05 and Per2 (3.27,p<0.05 in association with decreased amplitude in BMAL-1 (-0.914,p<0.05 and PER2 (1.18,p<0.005 in Ob_Ob compared to Con_Con. 2-way ANOVA revealed significant interaction between MO and post-weaning OD in expression of CLOCK (p<0.005, PER1 (p<0.005 and PER2 (p<0.05 whilst MO alone influenced the observed rhythmic variance in expression of all 5 measured CCG. CONCLUSIONS: Fetal and neonatal exposure to a maternal obesogenic environment interacts with a post-natal hyper-calorific environment to induce offspring NAFPD through mechanisms involving perturbations in CCG expression.

  7. The copper dependent-lysyl oxidases contribute to the pathogenesis of pulmonary emphysema in chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Besiktepe, Neziha; Kayalar, Ozgecan; Ersen, Ezel; Oztay, Fusun

    2017-12-01

    Abnormalities in the elastic fiber biology are seen in pulmonary emphysema (PE). The copper-dependent lysyl oxidases regulate the production and accumulation of elastic fibers in the connective tissue. This study focused on the relationship between lysyl oxidase (LOX), LOX-like protein 1 (LOXL1), and LOXL2 and PE pathogenesis. Lung samples with or without PE from patients with chronic obstructive lung disease (n=35) were used. Protein levels of elastin, LOX, LOXL1, LOXL2, hypoxia inducible factor 1-alpha (HIF-1α), copper metabolism domain containing-1 (COMMD1), and phosphatase and tensin homolog (PTEN) were assayed using microscopic and biochemical methods The emphysematous areas were characterized by enlargement of the alveoli, destruction of the alveolar structure, accumulation of macrophages in the alveolar lumens, and showed increased HIF-1α immunoreactivity. Additionally, the emphysematous areas had significantly lower elastin, LOX, LOXL1, LOXL2, HIF-1α, COMMD1, and PTEN protein levels than the non-emphysematous areas. We suppose that the reductions in the HIF-1α levels led to decreases in the protein levels of active LOX, LOXL1, and LOXL2. These decreases might cause abnormalities in the elastic fiber biology. HIF-1α activation induced by decreased COMMD1 and protease activation induced by decreased PTEN might contribute to the development of PE. Finally, methods aimed at increasing the protein levels of LOXs, COMMD1 and PTEN might be effective for treating PE. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Modeling the Pathogenesis of Charcot-Marie-Tooth Disease Type 1A Using Patient-Specific iPSCs

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2018-01-01

    Full Text Available Charcot-Marie-Tooth disease type 1A (CMT1A, one of the most frequent inherited peripheral neuropathies, is associated with PMP22 gene duplication. Previous studies of CMT1A mainly relied on rodent models, and it is not yet clear how PMP22 overexpression leads to the phenotype in patients. Here, we generated the human induced pluripotent stem cell (hiPSC lines from two CMT1A patients as an in vitro cell model. We found that, unlike the normal control cells, CMT1A hiPSCs rarely generated Schwann cells through neural crest stem cells (NCSCs. Instead, CMT1A NCSCs produced numerous endoneurial fibroblast-like cells in the Schwann cell differentiation system, and similar results were obtained in a PMP22-overexpressing iPSC model. Therefore, despite the demyelination-remyelination and/or dysmyelination theory for CMT1A pathogenesis, developmental disabilities of Schwann cells may be considered as an underlying cause of CMT1A. Our results may have important implications for the uncovering of the underlying mechanism and the development of a promising therapeutic strategy for CMT1A neuropathy.

  9. Altered Mitochondria, Protein Synthesis Machinery, and Purine Metabolism Are Molecular Contributors to the Pathogenesis of Creutzfeldt-Jakob Disease.

    Science.gov (United States)

    Ansoleaga, Belén; Garcia-Esparcia, Paula; Llorens, Franc; Hernández-Ortega, Karina; Carmona Tech, Margarita; Antonio Del Rio, José; Zerr, Inga; Ferrer, Isidro

    2016-06-12

    Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt-Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  10. The COMPASS Family of Histone H3K4 Methylases: Mechanisms of Regulation in Development and Disease Pathogenesis

    Science.gov (United States)

    Shilatifard, Ali

    2014-01-01

    The Saccharomyces cerevisiae Set1/COMPASS was the first histone H3 lysine 4 (H3K4) methylase identified over ten years ago. Since then, it has been demonstrated that Set1/COMPASS and its enzymatic product, H3K4 methylation, is highly conserved across the evolutionary tree. Although there is only one COMPASS in yeast, human cells bear at least six COMPASS family members each capable of methylating H3K4 with non-redundant functions. In yeast, the monoubiquitination of histone H2B by Rad6/Bre1 is required for proper H3K4 and H3K79 trimethylations. This histone crosstalk and its machinery are also highly conserved from yeast to human. In this review, the process of histone H2B monoubiquitination-dependent and independent histone H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes will be discussed. The misregulation of histone H2B monoubiquitination and H3K4 methylation results in the pathogenesis of human diseases including cancer. Recent findings in this regard will also be examined. PMID:22663077

  11. Epidemiology, Virology, and Pathogenesis of the Zika Virus: From Neglected Tropical Disease to a Focal Point of International Attention.

    Science.gov (United States)

    Schirmer, David A; Kawwass, Jennifer Fay

    2016-09-01

    Over the past year, the Zika virus, an arthropod-borne Flavivirus , has transitioned from a relatively unknown tropical disease to the cause of a public health emergency. The Zika virus is transmitted by the Aedes species of mosquito as well as by sexual intercourse. Although the symptoms of acute Zika virus infection are usually mild and self-limited, it causes fetal microcephaly in pregnant women, and is associated with an increased risk of Guillain-Barré syndrome. The risk of microcephaly from Zika virus infection is estimated to be highest in women who are infected during the first trimester of pregnancy. The Zika virus has been shown to have significant neurotrophism in vivo and in vitro , although further study is needed to characterize its mechanisms of pathogenesis. Zika virus has previously caused two known outbreaks in the Pacific region prior to the current epidemic in South and Central America, and the current epidemic has affected at least 440,000 to 1,300,000 people. The population of the vector for the current epidemic, Aedes aegypti , varies seasonally in the United States, however there have been few documented cases of local spread of the Zika infection in the United States and it is unclear whether epidemic spread of Zika will occur within the United States. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Pathogenesis of Hepatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Irena Ciećko-Michalska

    2012-01-01

    Full Text Available Hepatic encephalopathy can be a serious complication of acute liver failure and chronic liver diseases, predominantly liver cirrhosis. Hyperammonemia plays the most important role in the pathogenesis of hepatic encephalopathy. The brain-blood barrier disturbances, changes in neurotransmission, neuroinflammation, oxidative stress, GABA-ergic or benzodiazepine pathway abnormalities, manganese neurotoxicity, brain energetic disturbances, and brain blood flow abnormalities are considered to be involved in the development of hepatic encephalopathy. The influence of small intestine bacterial overgrowth (SIBO on the induction of minimal hepatic encephalopathy is recently emphasized. The aim of this paper is to present the current views on the pathogenesis of hepatic encephalopathy.

  13. Pathogenesis of Hepatic Encephalopathy

    Science.gov (United States)

    Ciećko-Michalska, Irena; Szczepanek, Małgorzata; Słowik, Agnieszka; Mach, Tomasz

    2012-01-01

    Hepatic encephalopathy can be a serious complication of acute liver failure and chronic liver diseases, predominantly liver cirrhosis. Hyperammonemia plays the most important role in the pathogenesis of hepatic encephalopathy. The brain-blood barrier disturbances, changes in neurotransmission, neuroinflammation, oxidative stress, GABA-ergic or benzodiazepine pathway abnormalities, manganese neurotoxicity, brain energetic disturbances, and brain blood flow abnormalities are considered to be involved in the development of hepatic encephalopathy. The influence of small intestine bacterial overgrowth (SIBO) on the induction of minimal hepatic encephalopathy is recently emphasized. The aim of this paper is to present the current views on the pathogenesis of hepatic encephalopathy. PMID:23316223

  14. Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Md Shahaduzzaman

    Full Text Available The protein α-synuclein (α-Syn has a central role in the pathogenesis of Parkinson's disease (PD and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN, while control rats received an AAV vector expressing green fluorescent protein (GFP. Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1, or central region (AB2 of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2 significantly inhibited α-Syn-induced dopaminergic cell (DA and NeuN+ cell loss (one-way ANOVA (F (3, 30 = 5.8, p = 0.002 and (F (3, 29 = 7.92, p = 0.002 respectively, as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003. Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37 = 9.786; p = 0.0001 and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.

  15. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Science.gov (United States)

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  16. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Directory of Open Access Journals (Sweden)

    Songtao Li

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA, an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD-induced obese non-alcoholic fatty liver disease (NAFLD rat model. METHODOLOGY/PRINCIPAL FINDINGS: Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  17. Pathogenesis of growth failure and partial reversal with gene therapy in murine and canine Glycogen Storage Disease type Ia.

    Science.gov (United States)

    Brooks, Elizabeth Drake; Little, Dianne; Arumugam, Ramamani; Sun, Baodong; Curtis, Sarah; Demaster, Amanda; Maranzano, Michael; Jackson, Mark W; Kishnani, Priya; Freemark, Michael S; Koeberl, Dwight D

    2013-06-01

    Glycogen Storage Disease type Ia (GSD-Ia) in humans frequently causes delayed bone maturation, decrease in final adult height, and decreased growth velocity. This study evaluates the pathogenesis of growth failure and the effect of gene therapy on growth in GSD-Ia affected dogs and mice. Here we found that homozygous G6pase (-/-) mice with GSD-Ia have normal growth hormone (GH) levels in response to hypoglycemia, decreased insulin-like growth factor (IGF) 1 levels, and attenuated weight gain following administration of GH. Expression of hepatic GH receptor and IGF 1 mRNAs and hepatic STAT5 (phospho Y694) protein levels are reduced prior to and after GH administration, indicating GH resistance. However, restoration of G6Pase expression in the liver by treatment with adeno-associated virus 8 pseudotyped vector expressing G6Pase (AAV2/8-G6Pase) corrected body weight, but failed to normalize plasma IGF 1 in G6pase (-/-) mice. Untreated G6pase (-/-) mice also demonstrated severe delay of growth plate ossification at 12 days of age; those treated with AAV2/8-G6Pase at 14 days of age demonstrated skeletal dysplasia and limb shortening when analyzed radiographically at 6 months of age, in spite of apparent metabolic correction. Moreover, gene therapy with AAV2/9-G6Pase only partially corrected growth in GSD-Ia affected dogs as detected by weight and bone measurements and serum IGF 1 concentrations were persistently low in treated dogs. We also found that heterozygous GSD-Ia carrier dogs had decreased serum IGF 1, adult body weights and bone dimensions compared to wild-type littermates. In sum, these findings suggest that growth failure in GSD-Ia results, at least in part, from hepatic GH resistance. In addition, gene therapy improved growth in addition to promoting long-term survival in dogs and mice with GSD-Ia. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Achondroplasia: pathogenesis and implications for future treatment.

    Science.gov (United States)

    Laederich, Melanie B; Horton, William A

    2010-08-01

    Although the genetic defect underlying achondroplasia has been known for over a decade, no effective therapies to stimulate bone growth have emerged. Here we review the recent literature and summarize the molecular mechanisms underlying disease pathology and examine their potential as therapeutic targets. Currently used preclinical models are discussed in the context of recent advances with a special focus on C-type natriuretic peptide. Research on the mutation in Fibroblast Growth Factor Receptor 3 (FGFR3) that causes achondroplasia suggests that disease results from increased signal transduction from the mutant receptor. Thus, current therapeutic strategies have focused on reducing signals emanating from FGFR3. First-generation therapies directly targeting FGFR3, such as kinase inhibitors and neutralizing antibodies, designed for targeting FGFR3 in cancer, are still in the preclinical phase and have yet to translate into the management of achondroplasia. Counteracting signal transduction pathways downstream of FGFR3 holds promise with the discovery that administration of C-type natriuretic peptide to achondroplastic mice ameliorates their clinical phenotype. However, more research into long-term effectiveness and safety of this strategy is needed. Direct targeting of therapeutic agents to growth plate cartilage may enhance efficacy and minimize side effects of these and future therapies. Current research into the pathogenesis of achondroplasia has expanded our understanding of the mechanisms of FGFR3-induced disease and has increased the number of approaches that we may use to potentially correct it. Further research is needed to validate these approaches in preclinical models of achondroplasia.

  19. Modern views on the pathogenesis of hard dental tissues and periodontium lesions and means of their treatment in children with chronic diseases of the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Krupey V.Y.

    2014-09-01

    Full Text Available Changes in the mouth covity often reflect regularities of pathogenesis of a number of disease states, and primarily from the digestive tract. Therefore, the purpose of the study was to clarify pathogenesis of certain lesions of hard dental tissues and periodontal tissues in children with chronic diseases of the gastrointestinal tract and development of schemes for their treatment. The study observed 441 children aged from 7 to 15 years with dental caries and generalized chronic catarrhal gingivitis on the background of chronic gastritis and duodenitis, duodenal ulcer and malabsorption syndrome. All the children were divided into 2 groups - basic and comparison one. The study identified the most dan¬gerous and little-known way of pathogenesis, which passes through the general processes of reducing the production of various proteins (immune system and antiseptics, is a violation of the general and local resistance and, ultimately, mineral metabolism. Such disorders impair complete mineralization of tooth enamel, reduce optimal composition and properties of saliva stimulating glycolysis processes in oral cavity. Prevention of dental caries and generalized chronic catarrhal gingivitis in children with chronic pathology of the gastrointestinal tract is based on the use of developed therapeutic and prophylactic complex, which includes mucosal gel Kvertulin, probiotic Latsidofil and drug Calcium D.

  20. Immune regulation in T1D and T2D: prospective role of Foxp3+ Treg cells in disease pathogenesis and treatment

    Directory of Open Access Journals (Sweden)

    Mara eKornete

    2013-06-01

    Full Text Available There is increasing evidence that dysregulated immune responses play key roles in the pathogenesis and complications of type 1 but also type 2 diabetes. Indeed, chronic inflammation and autoimmunity, which are salient features of type 1 diabetes, are now believed to actively contribute to the pathogenesis of type 2 diabetes. The accumulation of activated innate and adaptive immune cells in various metabolic tissues results in the release of inflammatory mediators, which promote insulin resistance and β-cell damage. Moreover, these dysregulated immune responses can also mutually influence the prevalence of both type 1 and 2 diabetes. In this review article, we discuss the central role of immune responses in the patho-physiology and complications of type 1 and 2 diabetes, and provide evidence that regulation of these responses, particularly through the action of regulatory T cells, may be a possible therapeutic avenue for the treatment of these disease and their respective complications.

  1. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction.

    Science.gov (United States)

    Furumoto, Yasuko; Smith, Carolyne K; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L; Trier, Anna M; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T; O'Shea, John J; Kaplan, Mariana J; Gadina, Massimo

    2017-01-01

    Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. No drug to date targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a JAK inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and the associated vascular pathology remains to be characterized. MRL/lpr lupus-prone mice were administered tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum levels of autoantibodies and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular traps (NETs) release, endothelium-dependent vasorelaxation, and endothelial differentiation were compared in treated and untreated mice. Treatment with tofacitinib led to significant improvement in measures of disease activity, including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of proinflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated the formation of NETs and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective in both preventive and therapeutic strategies. Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus, and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. © 2016, American College of Rheumatology.

  2. Extremely low-frequency magnetic exposure appears to have no effect on pathogenesis of Alzheimer's disease in aluminum-overloaded rat.

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    Full Text Available OBJECTIVE: Extremely low-frequency magnetic field (ELF-MF has been reported to be of potential pathogenetic relevance to Alzheimer's disease (AD for years. However, evidence confirming this function remains inconclusive. Chronic Al treatment has been identified as a contributing factor to cognitive function impairment in AD. This study aims to examine whether or not ELF-MF and Al have synergistic effects toward AD pathogenesis by investigating the effects of ELF-MF with or without chronic Al treatment on SD rats. METHODS: Sprague-Dawley (SD rats were subjected one of the following treatments: sham (control group, oral Al (Al group, ELF-MF (100 µT at 50 Hz with oral Al (MF+Al group, or ELF-MF (100 µT at 50 Hz without oral Al (MF group. RESULTS: After 12 wk of treatment, oral Al treatment groups (Al and MF+Al groups showed learning and memory impairment as well as morphological hallmarks, including neuronal cell loss and high density of amyloid-β (Aβ in the hippocampus and cerebral cortex. ELF-MF without Al treatment showed no significant effect on AD pathogenesis. ELF-MF+Al treatment induced no more damage than Al treatment did. CONCLUSIONS: Our results showed no evidence of any association between ELF-MF exposure (100 µT at 50 Hz and AD, and ELF-MF exposure does not influence the pathogenesis of AD induced by Al overload.

  3. Berberine ameliorates chronic kidney injury caused by atherosclerotic renovascular disease through the suppression of NFκB signaling pathway in rats.

    Directory of Open Access Journals (Sweden)

    Xin Wan

    Full Text Available BACKGROUND AND OBJECTIVES: Impaired renal function in atherosclerotic renovascular disease (ARD may be the result of crosstalk between atherosclerotic renovascular stenosis and amplified oxidative stress, inflammation and fibrosis. Berberine (BBR regulates cholesterol metabolism and exerts antioxidant effects. Accordingly, we hypothesized that BBR treatment may ameliorate ARD-induced kidney injury through its cholesterol-lowering effect and also suppression of the pathways involved in oxidative stress, inflammation and NFκB activation. METHODS: Male rats were subjected to unilateral renal artery stenosis with silver-irritant coil, and then fed with 12-week hypercholesterolemic diet. Rats with renal artery stenosis were randomly assigned to two groups (n = 6 each - ARD, or ARD+BBR - according to diet alone or in combination with BBR. Similarly, age-matched rats underwent sham operation and were also fed with hypercholesterolemic diet alone or in combination with BBR as two corresponding controls. Single-kidney hemodynamic metrics were measured in vivo with Doppler ultrasound to determine renal artery flow. The metrics reflecting hyperlipidemia, oxidative stress, renal structure and function, inflammation and NFκB activation were measured, respectively. RESULTS: Compared with control rats, ARD rats had a significant increase in urinary albumin, plasma cholesterol, LDL and thiobarbituric acid reactive substances (TBARS and a significant decrease in SOD activity. When exposed to 12-week BBR, ARD rats had significantly lower levels in blood pressure, LDL, urinary albumin, and TBARS. In addition, there were significantly lower expression levels of iNOS and TGF-β in the ARD+BBR group than in the ARD group, with attenuated NFκB-DNA binding activity and down-regulated protein levels of subunits p65 and p50 as well as IKKβ. CONCLUSIONS: We conclude that BBR can improve hypercholesterolemia and redox status in the kidney, eventually ameliorating

  4. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice.

    Science.gov (United States)

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.

  5. Report of the ECCO pathogenesis workshop on anti-TNF therapy failures in inflammatory bowel diseases: definitions, frequency and pharmacological aspects

    DEFF Research Database (Denmark)

    Allez, Matthieu; Karmiris, Konstantinos; Louis, Edouard

    2010-01-01

    The first ECCO pathogenesis workshop focused on anti-TNF therapy failures in inflammatory bowel diseases (IBDs). The overall objective was to better understand and explore primary non response and loss of response to anti-TNF agents in IBD. The outcome of this workshop is presented into two parts....... This first section addresses definitions, frequency and pharmacological aspects of anti-TNF therapy failure, including pharmacokinetics of anti-TNF monoclonal antibodies and immune and non-immune mediated clearance of anti-TNF mAbs. The second section concerns the biological roles of TNF and TNF antagonists...

  6. Update on mucormycosis pathogenesis.

    Science.gov (United States)

    Ibrahim, Ashraf S; Kontoyiannis, Dimitrios P

    2013-12-01

    Mucormycosis is an increasingly common fungal infection with unacceptably high mortality. The recent sequencing genome projects of Mucorales and the development of gene manipulation have enabled significant advances in understanding the pathogenesis of mucormycosis. Therefore, we review the pathogenesis of mucormycosis and highlight potential development of novel diagnostic and therapeutic modalities against this lethal disease. Much of the work has been focused on the role of iron uptake in the virulence of Mucorales. Additionally, host receptors and fungal ligands involved in the process of tissue invasion as well as sporangiospore size and sex loci and their contribution to virulence of Mucorales are discussed. Finally, the role of innate and adaptive immunity in protection against Mucorales and new evidence about drug-induced apoptosis in these fungi are discussed. Recent discoveries introduce several potentially novel diagnostic and therapeutic modalities, which are likely to improve management and outcome for mucormycosis. Future preclinical and clinical research is warranted to develop these diagnostic and therapeutic strategies.

  7. The Current Status of the Disease Caused by Enterovirus 71 Infections: Epidemiology, Pathogenesis, Molecular Epidemiology, and Vaccine Development.

    Science.gov (United States)

    Chang, Ping-Chin; Chen, Shou-Chien; Chen, Kow-Tong

    2016-09-09

    Enterovirus 71 (EV71) infections have a major public health impact in the Asia-Pacific region. We reviewed the epidemiology, pathogenesis, and molecular epidemiology of EV71 infection as well as EV71 vaccine development. Previous studies were found using the search terms "enterovirus 71" and "epidemiology" or "pathogenesis" or "molecular epidemiology" or "vaccine" in Medline and PubMed. Articles that were not published in the English language, manuscripts without an abstract, and opinion articles were excluded from the review. The reported epidemiology of cases caused by EV71 infection varied from country to country; seasonal variations in incidence were observed. Most cases of EV71 infection that resulted in hospitalization for complications occurred in children less than five years old. The brainstem was the most likely major target of EV71 infection. The emergence of the EV71 epidemic in the Asia-Pacific region has been associated with the circulation of different genetic lineages (genotypes B3, B4, C1, C2, and C4) that appear to be undergoing rapid evolutionary changes. The relationship between the gene structure of the EV71 virus and the factors that ensure its survival, circulation, and evasion of immunity is still unknown. EV71 infection has emerged as an important global public health problem. Vaccine development, including the development of inactivated whole-virus live attenuated, subviral particles, and DNA vaccines, has been progressing.

  8. Ginsenoside Rg1 Ameliorates Behavioral Abnormalities and Modulates the Hippocampal Proteomic Change in Triple Transgenic Mice of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Lulin Nie

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is one of the most common neurodegenerative diseases, so far, there are no effective measures to prevent and cure this deadly condition. Ginsenoside Rg1 (Rg1 was shown to improve behavioral abnormalities in AD; however, the potential mechanisms remain unclear. In this study, we pretreated 7-month-old 3xTg-AD mice for 6 weeks with Rg1 and evaluated the effects of Rg1 on the behaviors and the protein expression of hippocampal tissues. The behavioral tests showed that Rg1 could improve the memory impairment and ameliorate the depression-like behaviors of 3xTg-AD mice. Proteomic results revealed a total of 28 differentially expressed hippocampal proteins between Rg1-treated and nontreated 3xTg-AD mice. Among these proteins, complexin-2 (CPLX2, synapsin-2 (SYN2, and synaptosomal-associated protein 25 (SNP25 were significantly downregulated in the hippocampus of 3xTg-AD mice compared with the WT mice, and the treatment of Rg1 modulated the expression of CPLX2 and SNP25 in the hippocampus of 3xTg-AD mice. The expression of CPLX2, SYN2, and SNP25 was further validated by Western blot analysis. Taken together, we concluded that Rg1 could be a potential candidate drug to improve the behavioral deficits in AD via modulating the expression of the proteins (i.e., CPLX2, SYN2, and SNP25.

  9. Elevated interleukin-1β in peripheral blood mononuclear cells contributes to the pathogenesis of autoimmune thyroid diseases, especially of Hashimoto thyroiditis.

    Science.gov (United States)

    Sun, Li; Zhang, Xiaoxu; Dai, Fang; Shen, Jijia; Ren, Cuiping; Zuo, Chunlin; Zhang, Qiu

    2016-08-01

    To explore the relationship between IL-1β expression and two common autoimmune thyroid diseases: Hashimoto thyroiditis (HT) and Graves' disease (GD). qRT-PCR, Quantiglo ELISA, and flow cytometry were used to evaluate the expression levels of IL-1β in serum, peripheral blood mononuclear cells (PBMCs), and thyroid tissue samples from patients with HT or GD. Local infiltration of monocytes was assessed by immunohistochemical study of patients' thyroid tissue samples. Although no significant differences in IL-1β levels were found between samples of serum from patients with HT or GD and normal controls, we found that IL-1β mRNA and protein levels in PBMCs of HT patients were significantly higher than those of patients with GD, which were in turn higher than the level in normal controls. In addition, IL-1β mRNA was also increased in thyroid gland tissue from patients with HT compared to those with GD, and this was accompanied by increased local infiltration of monocytes into thyroid tissues. Correlation analysis of the clinical samples validated the association of high IL-1β levels with the pathogenesis of HT. Our study suggests that IL-1β may be an active etiologic factor in the pathogenesis of HT and thus present a new target for novel diagnostics and treatment.

  10. Adzuki bean ameliorates hepatic lipogenesis and proinflammatory mediator expression in mice fed a high-cholesterol and high-fat diet to induce nonalcoholic fatty liver disease.

    Science.gov (United States)

    Kim, Sera; Hong, Jihye; Jeon, Raok; Kim, Hyun-Sook

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a simple steatosis, in which fat accumulates more than 5% in the liver, and regarded as most common liver diseases worldwide. Because NAFLD can be developed to severe liver disease and correlated with metabolic disease, its importance is currently emphasized. Occurrence of NAFLD is strongly related to dietary patterns and lifestyles; therefore, the suggestion of physiologically beneficial food is essential. Based on these, adzuki beans containing anthocyanin, catechin, and adzukisaponin are suggested as a health-beneficial food. Moreover, the effects of adzuki beans on metabolic improvement are not well established through the in vivo studies. Therefore, this study hypothesized that adzuki beans can alleviate lipid accumulation and oxidative stress-mediated inflammation in high-cholesterol and high-fat diet-induced NALFD mice. To demonstrate its effects, 6-week-old C57BL/6 male mice were allocated into 4 groups and fed a normal diet (ND), a high-cholesterol and high-fat diet (HCD), and HCD with 10% and 20% adzuki bean for 10 weeks. The result shows that fasting blood glucose, serum and hepatic triglyceride and cholesterol levels, and antioxidative enzyme activity ameliorated in the adzuki bean groups (P hepatic lipogenesis, such as adiponectin, AMP-activated protein kinase α, sterol regulatory element-binding protein 1c, fatty acid synthase, carnitine palmitoyltransferase 1, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and apolipoprotein B, as well as proinflammatory mediators, such as tumor necrosis factor α, nuclear factor κB, and caspase-3, improved in both experimental groups (P hepatic messenger RNA expression of lipogenic and inflammatory mediators in NAFLD. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Gut-homing CD4+ T cell receptor alpha beta+ T cells in the pathogenesis of murine inflammatory bowel disease

    DEFF Research Database (Denmark)

    Rudolphi, A; Boll, G; Poulsen, S S

    1994-01-01

    reconstituted a CD3+ T cell receptor alpha beta+ CD4+ T cell subset. CD4+ cells of this subset expressed the surface phenotype of mucosa-seeking, memory T cells. In the immunodeficient scid host, this gut-derived CD4+ T cell subset was found in spleen, peritoneal cavity, mesenteric lymph nodes (LN), epithelial...... compartments with CD4+ T cells from normal GALT plays an essential role in the pathogenesis of IBD in an immunodeficient host.......We studied which T cell subsets from the gut-associated lymphoid tissue (GALT) can migrate out of the gut mucosa and repopulate GALT compartments of an immunodeficient (semi)syngeneic host. Many distinct lymphocyte subsets were found in GALT of immunocompetent H-2d (BALB/c, BALB/cdm2, C.B-17...

  12. Transgenic Fatal Familial Insomnia Mice Indicate Prion Infectivity-Independent Mechanisms of Pathogenesis and Phenotypic Expression of Disease

    OpenAIRE

    Bouybayoune, I.; Mantovani, S.; Del Gallo, F.; Bertani, I.; Restelli, E.; Comerio, L.; Tapella, L.; Baracchi, F.; Fernández-Borges, N.; Mangieri, M.; Bisighini, C.; Beznoussenko, G..V.; Paladini, A.; Balducci, C.; Micotti, E.

    2015-01-01

    Author Summary Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD) and fatal familial insomnia (FFI). The reason for this variability is not known, but assembly of the mutant PrPs into distinct aggregates that spread in the brain by promoting PrP aggregation may contribute to the disease phenotype. We previously generated transgenic ...

  13. Resistant starch alters gut microbiome and metabolomics profiles concurrent with amelioration of chronic kidney disease in rats

    Science.gov (United States)

    Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xeno-metabolites). The fermentable dietary fiber—high amylose maize...

  14. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease.

    Science.gov (United States)

    Singh, Preeti; Hanson, Peter S; Morris, Christopher M

    2017-06-02

    Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.

  15. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  16. Dietary α-eleostearic acid ameliorates experimental inflammatory bowel disease in mice by activating peroxisome proliferator-activated receptor-γ.

    Science.gov (United States)

    Lewis, Stephanie N; Brannan, Lera; Guri, Amir J; Lu, Pinyi; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R

    2011-01-01

    Treatments for inflammatory bowel disease (IBD) are modestly effective and associated with side effects from prolonged use. As there is no known cure for IBD, alternative therapeutic options are needed. Peroxisome proliferator-activated receptor-gamma (PPARγ) has been identified as a potential target for novel therapeutics against IBD. For this project, compounds were screened to identify naturally occurring PPARγ agonists as a means to identify novel anti-inflammatory therapeutics for experimental assessment of efficacy. Here we provide complementary computational and experimental methods to efficiently screen for PPARγ agonists and demonstrate amelioration of experimental IBD in mice, respectively. Computational docking as part of virtual screening (VS) was used to test binding between a total of eighty-one compounds and PPARγ. The test compounds included known agonists, known inactive compounds, derivatives and stereoisomers of known agonists with unknown activity, and conjugated trienes. The compound identified through VS as possessing the most favorable docked pose was used as the test compound for experimental work. With our combined methods, we have identified α-eleostearic acid (ESA) as a natural PPARγ agonist. Results of ligand-binding assays complemented the screening prediction. In addition, ESA decreased macrophage infiltration and significantly impeded the progression of IBD-related phenotypes through both PPARγ-dependent and -independent mechanisms in mice with experimental IBD. This study serves as the first significant step toward a large-scale VS protocol for natural PPARγ agonist screening that includes a massively diverse ligand library and structures that represent multiple known target pharmacophores.

  17. Metformin-diet ameliorates coronary heart disease risk factors and facilitates resumption of regular menses in adolescents with polycystic ovary syndrome.

    Science.gov (United States)

    Glueck, Charles J; Goldenberg, Naila; Wang, Ping

    2009-09-01

    In 20 adolescents age PCOS), we assessed efficacy and safety of metformin-diet for 1 year in treatment of endocrinopathy and coronary heart disease (CHD) risk factors. Calories were targeted to 1,500-1,800/ day if body mass index (BMI) was or = 25, along with 2,550 mg metformin. Median weight fell from 85.5 to 78.4 kg (p = 0.004), waist circumference from 91 to 84 cm (p = 0.017), triglyceride from 108 to 71 mg/dl (p = 0.008), insulin from 20.5 to 15 microU/ml (p = 0.018), HOMA-IR from 2.0 to 1.5 (p = 0.026), and testosterone from 45.5 to 31.5 ng/dl (p = 0.03). The percentage of cycles with normal menses rose from a pre-treatment median of 8% to 100%, p PCOS, metformin-diet safely ameliorates CHD risk factors and endocrinopathy while facilitating resumption of regular menses.

  18. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease.

    Science.gov (United States)

    Jafarzadeh, A; Mohammadi-Kordkhayli, M; Ahangar-Parvin, R; Azizi, V; Khoramdel-Azad, H; Shamsizadeh, A; Ayoobi, A; Nemati, M; Hassan, Z M; Moazeni, S M; Khaksari, M

    2014-11-15

    The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Garlic-Derived S-Allylmercaptocysteine Ameliorates Nonalcoholic Fatty Liver Disease in a Rat Model through Inhibition of Apoptosis and Enhancing Autophagy

    Science.gov (United States)

    Fung, Man-Lung; Liong, Emily C.; Chang, Raymond Chuen Chung; Ching, Yick-Pang; Tipoe, George L.

    2013-01-01

    Our previous study demonstrated that administration of garlic-derived antioxidant S-allylmercaptocysteine (SAMC) ameliorated hepatic injury in a nonalcoholic fatty liver disease (NAFLD) rat model. Our present study aimed to investigate the mechanism of SAMC on NAFLD-induced hepatic apoptosis and autophagy. Adult female rats were fed with a high-fat diet for 8 weeks to develop NAFLD with or without intraperitoneal injection of 200 mg/kg SAMC for three times per week. During NAFLD development, increased apoptotic cells and caspase-3 activation were observed in the liver. Increased apoptosis was modulated through both intrinsic and extrinsic apoptotic pathways. NAFLD treatment also enhanced the expression of key autophagic markers in the liver with reduced activity of LKB1/AMPK and PI3K/Akt pathways. Increased expression of proapoptotic regulator p53 and decreased activity of antiautophagic regulator mTOR were also observed. Administration of SAMC reduced the number of apoptotic cells through downregulation of both intrinsic and extrinsic apoptotic mechanisms. SAMC also counteracted the effects of NAFLD on LKB1/AMPK and PI3K/Akt pathways. Treatment with SAMC further enhanced hepatic autophagy by regulating autophagic markers and mTOR activity. In conclusion, administration of SAMC during NAFLD development in rats protects the liver from chronic injury by reducing apoptosis and enhancing autophagy. PMID:23861709

  20. Selegiline Ameliorates Depression-Like Behavior in Mice Lacking the CD157/BST1 Gene, a Risk Factor for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Satoka Kasai

    2017-05-01

    Full Text Available Parkinson’s disease (PD, a neurodegenerative disorder, is accompanied by various non-motor symptoms including depression and anxiety, which may precede the onset of motor symptoms. Selegiline is an irreversible monoamine oxidase-B (MAO-B inhibitor, and is widely used in the treatment of PD and major depression. However, there are few reports about the effects of selegiline on non-motor symptoms in PD. The aim of this study was to explore the antidepressant and anxiolytic effects of selegiline, using CD157/BST1 knockout (CD157 KO mouse, a PD-related genetic model displaying depression and anxiety, compared with other antiparkinsonian drugs and an antidepressant, and was to investigate the effects of selegiline on biochemical parameters in emotion-related brain regions. A single administration of selegiline (1–10 mg/kg dose-dependently reduced immobility time in the forced swimming test (FST in CD157 KO mice, but not C57BL/6N wild-type (WT mice. At 10 mg/kg, but not 3 mg/kg, selegiline significantly increased climbing time in CD157 KO mice. A single administration of the antiparkinsonian drugs pramipexole (a dopamine (DA D2/D3 receptor agonist or rasagiline (another MAO-B inhibitor, and repeated injections of a noradrenergic and specific serotonergic antidepressant (NaSSA, mirtazapine, also decreased immobility time, but did not increase climbing time, in CD157 KO mice. The antidepressant-like effects of 10 mg/kg selegiline were comparable to those of 10 mg/kg rasagiline, and tended to be stronger than those of 1 mg/kg rasagiline. After the FST, CD157 KO mice showed decreases in striatal and hippocampal serotonin (5-HT content, cortical norepinephrine (NE content, and plasma corticosterone concentration. A single administration of selegiline at 10 mg/kg returned striatal 5-HT, cortical NE, and plasma corticosterone levels to those observed in WT mice. In the open field test (OFT, repeated administration of mirtazapine had anxiolytic effects

  1. IL-6 amplifies TLR mediated cytokine and chemokine production: implications for the pathogenesis of rheumatic inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Ivan Caiello

    Full Text Available The role of Interleukin(IL-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA and systemic juvenile idiopathic arthritis (s-JIA has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs, synovial fluid mononuclear cells from JIA patients (SFMCs and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R. SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ. Cells were stimulated with LPS, S100A8-9, poly(I-C, CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C, CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic

  2. Molecular Pathogenesis of NASH

    Directory of Open Access Journals (Sweden)

    Alessandra Caligiuri

    2016-09-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is the main cause of chronic liver disease in the Western world and a major health problem, owing to its close association with obesity, diabetes, and the metabolic syndrome. NASH progression results from numerous events originating within the liver, as well as from signals derived from the adipose tissue and the gastrointestinal tract. In a fraction of NASH patients, disease may progress, eventually leading to advanced fibrosis, cirrhosis and hepatocellular carcinoma. Understanding the mechanisms leading to NASH and its evolution to cirrhosis is critical to identifying effective approaches for the treatment of this condition. In this review, we focus on some of the most recent data reported on the pathogenesis of NASH and its fibrogenic progression, highlighting potential targets for treatment or identification of biomarkers of disease progression.

  3. Chondrocytes damage induced by T-2 toxin via Wnt/β-catenin signaling pathway is involved in the pathogenesis of an endemic osteochondropathy, Kashin-Beck disease.

    Science.gov (United States)

    Wang, Xi; Ning, Yujie; Zhang, Pan; Yang, Lei; Wang, Yingting; Guo, Xiong

    2017-12-01

    Kashin-Beck disease (KBD), an endemic osteochondropathy, is characterized by cartilage degeneration which is caused by abnormal catabolism in the extracellular matrix (ECM). In this study, we investigated the expression of the Wnt/β-catenin signaling pathway in KBD pathogenesis. Among the proteins involved in the Wnt/β-catenin signaling pathway, WNT-3A, FZD1, SOX9, and β-catenin were up-regulated, while FRZB was down-regulated in KBD cartilage. C28/I2 cells were evaluated for cell viability using the MTT assay after exposure to T-2 toxin, a suspicious environmental pathogenic factors of KBD. C28/I2 cells were treated with different intervening concentrations (0.001μg/mL,0.005μg/mL and 0.01μg/mL) of T-2 toxin for 24h. The expression of FZD1 and CTNNB1 (i.e.,β-catenin) was significantly reduced and SOX9 expression was significantly increased in chondrocytes after treatment with different intervening concentrations of T-2 toxin. Our results indicate that alterations in the Wnt/β-catenin signaling pathway in articular cartilage play an important role in the onset and pathogenesis of KBD. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The Current Status of the Disease Caused by Enterovirus 71 Infections: Epidemiology, Pathogenesis, Molecular Epidemiology, and Vaccine Development

    Science.gov (United States)

    Chang, Ping-Chin; Chen, Shou-Chien; Chen, Kow-Tong

    2016-01-01

    Enterovirus 71 (EV71) infections have a major public health impact in the Asia-Pacific region. We reviewed the epidemiology, pathogenesis, and molecular epidemiology of EV71 infection as well as EV71 vaccine development. Previous studies were found using the search terms “enterovirus 71” and “epidemiology” or “pathogenesis” or “molecular epidemiology” or “vaccine” in Medline and PubMed. Articles that were not published in the English language, manuscripts without an abstract, and opinion articles were excluded from the review. The reported epidemiology of cases caused by EV71 infection varied from country to country; seasonal variations in incidence were observed. Most cases of EV71 infection that resulted in hospitalization for complications occurred in children less than five years old. The brainstem was the most likely major target of EV71 infection. The emergence of the EV71 epidemic in the Asia-Pacific region has been associated with the circulation of different genetic lineages (genotypes B3, B4, C1, C2, and C4) that appear to be undergoing rapid evolutionary changes. The relationship between the gene structure of the EV71 virus and the factors that ensure its survival, circulation, and evasion of immunity is still unknown. EV71 infection has emerged as an important global public health problem. Vaccine development, including the development of inactivated whole-virus live attenuated, subviral particles, and DNA vaccines, has been progressing. PMID:27618078

  5. Pathogenesis of type 2 diabetes and cardiovascular disease in South Asians : effects of dietary interventions on metabolism and cardiovascular function

    NARCIS (Netherlands)

    Bakker, Leontine Erica Henriëtte

    2015-01-01

    People of South Asian origin have an increased risk of developing type 2 diabetes (T2D) and cardiovascular disease (CVD) compared to people of Western European descent. Not only is the prevalence of these diseases higher in South Asians, they also occur at a younger age and lower BMI, and have a

  6. Biochanin-A ameliorates behavioural and neurochemical derangements in cognitive-deficit mice for the betterment of Alzheimer's disease.

    Science.gov (United States)

    Biradar, S M; Joshi, H; Chheda, T K

    2014-04-01

    Biochanin-A (BCA), a potent phytoconstituent, has been previously used as an antitumour, a dopaminergic neuron protective agent, an antioxidant, an anticholinergic and on other pharmacological activities including neuroprotection. The present study was aimed to evaluate the behavioural and neurochemical evidence of BCA in cognitive-deficit mice in scopolamine challenged and natural aged-induced amnesia models in young and aged mice, respectively. BCA has exhibited decrease in the transfer latency and increase in step through latency significantly (p 0.05), BCA 10 mg kg(-1) (p betterment of Alzheimer's disease.

  7. PAMs ameliorates the imiquimod-induced psoriasis-like skin disease in mice by inhibition of translocation of NF-κB and production of inflammatory cytokines.

    Directory of Open Access Journals (Sweden)

    Rongkun Dou

    Full Text Available Psoriasis is a chronic and persistent inflammatory skin disease seriously affecting the quality of human life. In this study, we reported an ancient formula of Chinese folk medicine, the natural plant antimicrobial solution (PAMs for its anti-inflammatory effects and proposed the primary mechanisms on inhibiting the inflammatory response in TNF-α/IFN-γ-induced HaCaT cells and imiquimod-induced psoriasis-like skin disease mouse model. Two main functional components of hydroxysafflor Yellow A and allantoin in PAMs were quantified by HPLC to be 94.2±2.2 and 262.9±12.5 μg/mL respectively. PAMs could significantly reduce the gene expression and inflammatory cytokines production of Macrophage-Derived Chemokine (MDC, IL-8 and IL-6 in TNF-α/IFN-γ-induced HaCaT cells. PAMs also significantly ameliorates the psoriatic-like symptoms in a mouse model with the evaluation scores for both the single (scales, thickness, erythema and cumulative features were in the order of blank control < Dexamethasone < PAMs < 50% ethanol < model groups. The results were further confirmed by hematoxylin-eosin staining, RT-qPCR and immunohistochemistry. The down-regulated gene expression of IL-8, TNF-α, ICAM-1 and IL-23 in mouse tissues was consistent with the results from those of the HaCaT cells. The inhibition of psoriasis-like skin inflammation by PAMs was correlated with the inactivation of the translocation of P65 protein into cellular nucleus, indicating the inhibition of the inflammatory NF-κB signaling pathway. Taken together, these findings suggest that PAMs may be a promising drug candidate for the treatment of inflammatory skin disorders, such as psoriasis.

  8. SU9516 Increases α7β1 Integrin and Ameliorates Disease Progression in the mdx Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Sarathy, Apurva; Wuebbles, Ryan D; Fontelonga, Tatiana M; Tarchione, Ashley R; Mathews Griner, Lesley A; Heredia, Dante J; Nunes, Andreia M; Duan, Suzann; Brewer, Paul D; Van Ry, Tyler; Hennig, Grant W; Gould, Thomas W; Dulcey, Andrés E; Wang, Amy; Xu, Xin; Chen, Catherine Z; Hu, Xin; Zheng, Wei; Southall, Noel; Ferrer, Marc; Marugan, Juan; Burkin, Dean J

    2017-06-07

    Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7β1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7β1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7β1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.

  9. Maraviroc, a CCR5 antagonist, ameliorates the development of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Pérez-Martínez, Laura; Pérez-Matute, Patricia; Aguilera-Lizarraga, Javier; Rubio-Mediavilla, Susana; Narro, Judit; Recio, Emma; Ochoa-Callejero, Laura; Oteo, José-Antonio; Blanco, José-Ramón

    2014-07-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the general population. The NAFLD spectrum ranges from simple steatosis to cirrhosis. The chemokine CCL5/RANTES plays an important role in the progression of hepatic inflammation and fibrosis. The objective of this study was to examine the effects of maraviroc, a CCR5 antagonist, on liver pathology in a NAFLD mouse model. A total of 32 male C57BL/6 mice were randomly assigned to one of four groups: (i) control group (chow diet plus tap water); (ii) maraviroc group (chow diet plus maraviroc in drinking water); (iii) high-fat diet (HFD) group (HFD plus tap water); and (iv) maraviroc/HFD group (HFD plus maraviroc). All mice were sacrificed 16 weeks after the beginning of the experiment. Biochemical analyses and liver examinations were performed. Mice in the HFD group showed a tendency towards increased body mass gain and liver damage compared with the maraviroc/HFD group. Moreover, liver weight in the HFD group was significantly higher than in the maraviroc/HFD group. Hepatic triglyceride concentration in the maraviroc/HFD group was significantly lower than in the HFD group. Interestingly, the maraviroc/HFD group exhibited a lower degree of steatosis. Furthermore, hepatic CCL5/RANTES expression was significantly lower in the maraviroc/HFD group than in the HFD group. Overall, no differences were observed between the control group and the maraviroc group. Maraviroc ameliorates hepatic steatosis in an experimental model of NAFLD. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Low-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Function and Synaptic Plasticity in APP23/PS45 Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Zhilin Huang

    2017-09-01

    Full Text Available Alzheimer’s disease (AD is a chronic neurodegenerative disease leading to dementia, which is characterized by progressive memory loss and other cognitive dysfunctions. Recent studies have attested that noninvasive repetitive transcranial magnetic stimulation (rTMS may help improve cognitive function in patients with AD. However, the majority of these studies have focused on the effects of high-frequency rTMS on cognitive function, and little is known about low-frequency rTMS in AD treatment. Furthermore, the potential mechanisms of rTMS on the improvement of learning and memory also remain poorly understood. In the present study, we reported that severe deficits in spatial learning and memory were observed in APP23/PS45 double transgenic mice, a well known mouse model of AD. Furthermore, these behavioral changes were accompanied by the impairment of long-term potentiation (LTP in the CA1 region of hippocampus, a brain region vital to spatial learning and memory. More importantly, 2-week low-frequency rTMS treatment markedly reversed the impairment of spatial learning and memory as well as hippocampal CA1 LTP. In addition, low-frequency rTMS dramatically reduced amyloid-β precursor protein (APP and its C-terminal fragments (CTFs including C99 and C89, as well as β-site APP-cleaving enzyme 1 (BACE1 in the hippocampus. These results indicate that low-frequency rTMS noninvasively and effectively ameliorates cognitive and synaptic functions in a mouse model of AD, and the potential mechanisms may be attributed to rTMS-induced reduction in Aβ neuropathology.

  11. Smart watch-based coaching with tiotropium and olodaterol ameliorates physical activity in patients with chronic obstructive pulmonary disease

    Science.gov (United States)

    Hataji, Osamu; Nishii, Yoichi; Ito, Kentaro; Sakaguchi, Tadashi; Saiki, Haruko; Suzuki, Yuta; D'Alessandro-Gabazza, Corina; Fujimoto, Hajime; Kobayashi, Tetsu; Gabazza, Esteban C.; Taguchi, Osamu

    2017-01-01

    Combined therapy with tiotropium and olodaterol notably improves parameters of lung function and quality of life in patients with chronic obstructive pulmonary disease (COPD) compared to mono-components; however, its effect on physical activity is unknown. The present study evaluated whether combination therapy affects daily physical performance in patients with COPD under a smart watch-based encouragement program. This was a non-blinded clinical trial with no randomization or placebo control. A total of 20 patients with COPD were enrolled in the present study. The patients carried an accelerometer for 4 weeks; they received no therapy during the first 2 weeks but they were treated with combined tiotropium and olodaterol under a smart watch-based encouragement program for the last 2 weeks. The pulmonary function test, COPD assessment test, 6-min walk distance and parameters of physical activity were significantly improved (Pcoaching compared with values prior to treatment. To the best of our knowledge, the present study for the first time provides evidence that smart watch-based coaching in combination with tiotropium and olodaterol may improve daily physical activity in chronic obstructive pulmonary disease. PMID:29104624

  12. Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson's disease.

    Science.gov (United States)

    Lelos, M J; Morgan, R J; Kelly, C M; Torres, E M; Rosser, A E; Dunnett, S B

    2016-04-01

    Patients suffering from Parkinson's disease (PD) display cognitive and neuropsychiatric dysfunctions, especially with disease progression. Although these impairments have been reported to impact more heavily upon a patient's quality of life than any motor dysfunctions, there are currently no interventions capable of adequately targeting these non-motor deficits. Utilizing a rodent model of PD, we investigated whether cell replacement therapy, using intrastriatal transplants of human-derived ventral mesencephalic (hVM) grafts, could alleviate cognitive and neuropsychiatric, as well as motor, dysfunctions. Rats with unilateral 6-hydroxydopamine lesions to the medial forebrain bundle were tested on a complex operant task that dissociates motivational, visuospatial and motor impairments sensitive to the loss of dopamine. A subset of lesioned rats received intrastriatal hVM grafts of ~9 weeks gestation. Post-graft, rats underwent repeated drug-induced rotation tests and were tested on two versions of the complex operant task, before post-mortem analysis of the hVM tissue grafts. Post-graft behavioural testing revealed that hVM grafts improved non-motor aspects of task performance, specifically visuospatial function and motivational processing, as well as alleviating motor dysfunctions. We report the first evidence of human VM cell grafts alleviating both non-motor and motor dysfunctions in an animal model of PD. This intervention, therefore, is the first to improve cognitive and neuropsychiatric symptoms long-term in a model of PD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Varenicline Ameliorates Learning and Memory Deficits in Amyloid β(25–35 Rat Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Tourandokht Baluchnejadmojarad

    2011-10-01

    Full Text Available Introduction: Alzheimer’s disease (AD is a enfeeble neurodegenerative disorder characterized by increased β-amyloid (Aβ deposition and neuronal dysfunction leading to impaired learning and recall. Among proposed risk factors, impaired cholinergic transmission is a main cause for incidence of disease. Methods: In the present study, effects of the intracerebroventricularly administration of an agonist of nicotinic cholinergic receptors, varenicline(0.5 and 2 μg/μl, on learning and memory impairments induced by intrahippocampal Aβ(25–35 injection was assessed in rats. Results: The results showed that the intrahippocampal Aβ(25–35 injected rats exhibit lower spontaneous alternation score inY-maze tasks (p<0.05, impaired retention and recall capability in the passive avoidance test (p<0.05, and fewer correct choices (p<0.001 and more errors(p<0.001 in the RAM task. Varenicline, almost in both doses, significantly improved alternation score in Y-maze task (p<0.001, impaired retention and recall capability in the passive avoidance test (p<0.05, and correct choices in the RAM task (p<0.001. Discussion: This study indicates that varenicline pretreatment attenuates Aβ- induced impairment of short-term spatial memory in rats probably due to its agonist activity at nicotinic receptors.

  14. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Carmela Giampà

    2010-10-01

    Full Text Available Huntington's disease is a devastating neurodegenerative condition for which there is no therapy to slow disease progression. The particular vulnerability of striatal medium spiny neurons to Huntington's pathology is hypothesized to result from transcriptional dysregulation within the cAMP and CREB signaling cascades in these neurons. To test this hypothesis, and a potential therapeutic approach, we investigated whether inhibition of the striatal-specific cyclic nucleotide phosphodiesterase PDE10A would alleviate neurological deficits and brain pathology in a highly utilized model system, the R6/2 mouse.R6/2 mice were treated with the highly selective PDE10A inhibitor TP-10 from 4 weeks of age until euthanasia. TP-10 treatment significantly reduced and delayed the development of the hind paw clasping response during tail suspension, deficits in rotarod performance, and decrease in locomotor activity in an open field. Treatment prolonged time to loss of righting reflex. These effects of PDE10A inhibition on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal and cortical cell loss, the formation of striatal neuronal intranuclear inclusions, and the degree of microglial activation that occurs in response to the mutant huntingtin-induced brain damage. Striatal and cortical levels of phosphorylated CREB and BDNF were significantly elevated.Our findings provide experimental support for targeting the cAMP and CREB signaling pathways and more broadly transcriptional dysregulation as a therapeutic approach to Huntington's disease. It is noteworthy that PDE10A inhibition in the R6/2 mice reduces striatal pathology, consistent with the localization of the enzyme in medium spiny neurons, and also cortical pathology and the formation of neuronal nuclear inclusions. These latter findings suggest that striatal pathology may be a primary driver of these secondary pathological events. More

  15. POST-TRANSPLANT LYMPHOPROLIFERATIVE DISORDERS: ROLE OF VIRAL INFECTION, GENETIC LESIONS AND ANTIGEN STIMULATION IN THE PATHOGENESIS OF THE DISEASE

    Directory of Open Access Journals (Sweden)

    Daniela Capello

    2009-11-01

    Full Text Available Post-transplant lymphoproliferative disorders (PTLD are a life-threatening complication of solid organ transplantation or, more rarely, hematopoietic stem cell transplantation. The majority of PTLD is of B-cell origin and associated with Epstein–Barr virus (EBV infection. PTLD generally display involvement of extranodal sites, aggressive histology and aggressive clinical behavior. The molecular pathogenesis of PTLD involves infection by oncogenic viruses, namely Epstein-Barr virus, as well as genetic or epigenetic alterations of several cellular genes. At variance with lymphoma arising in immunocompetent hosts, whose genome is relatively stable, a fraction of PTLD are characterized by microsatellite instability as a consequence of defects in the DNA mismatch repair mechanism. Apart from microsatellite instability, molecular alterations of cellular genes recognized in PTLD include alterations of cMYC, BCL6, TP53, DNA hypermethylation, and aberrant somatic hypermutation of protooncogenes. The occurrence of IGV mutations in the overwhelming majority of PTLD documents that malignant transformation targets germinal centre (GC B-cells and their descendants both in EBV–positive and EBV–negative cases. Analysis of phenotypic markers of B-cell histogenesis, namely BCL6, MUM1 and CD138, allows further distinction of PTLD histogenetic categories. PTLD expressing the BCL6+/MUM1+/-/CD138- profile reflect B-cells actively experiencing the GC reaction, and comprise diffuse large B-cell lymphoma (DLBCL centroblastic and Burkitt lymphoma. PTLD expressing the BCL6-/MUM1+/CD138- phenotype putatively derive from B-cells that have concluded the GC reaction, and comprise the majority of polymorphic PTLD and a fraction of DLBCL immunoblastic. A third group of PTLD is reminiscent of post-GC and preterminally differentiated B-cells that show the BCL6-/MUM1+/CD138+ phenotype, and are morphologically represented by either polymorphic PTLD or DLBCL immunoblastic.

  16. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer's disease mice.

    Science.gov (United States)

    Xie, Yongli; Tan, Yibin; Zheng, Youbiao; Du, Xiubo; Liu, Qiong

    2017-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease which is clinically characterized by memory loss and cognitive decline caused by protein misfolding and aggregation. Imbalance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of AD. Selenium (Se), a vital trace element with excellent antioxidant potential, is preferentially retained in the brain in Se-limited conditions and has been reported to provide neuroprotection through resisting oxidative damage. In this paper, we studied for the first time the potential of Ebselen, a lipid-soluble selenium compound with GPx-like activity, in the treatment of cognitive dysfunction and neuropathology of triple-transgenic AD (3 × Tg-AD) mice, AD model cell, and primary culture. We demonstrated that Ebselen inhibited oxidative stress in both AD model cells and mouse brains with increasing GPx and SOD activities and meanwhile reduced p38 mitogen-activated protein kinases activities. By decreasing the expression of amyloid precursor protein and β-secretase, Ebselen reduced the levels of Aβ in AD neurons and mouse brains, especially the most toxic oligomeric form. Besides, mislocation of phosphorylated tau in neurons and phosphorylation levels of tau protein at Thr231, Ser396, and Ser404 residues were also inhibited by Ebselen, probably by its regulatory roles in glycogen synthase kinase 3β and protein phosphatase 2A activity. In addition, Ebselen mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in AD model cells and neurons. Consequently, the spatial learning and memory of 3 × Tg-AD mice were significantly improved upon Ebselen treatment. This study provides a potential novel therapeutic approach for the prevention of AD.

  17. Endothelin type B (ETB) receptors: friend or foe in the pathogenesis of pre-eclampsia and future cardiovascular disease (CVD) risk?

    Science.gov (United States)

    Mirabito Colafella, Katrina M

    2018-01-16

    In a recent issue of Clinical Science, Stanhewicz et al. investigated persistent microvascular dysfunction in women up to 16 months postpartum. The authors found sensitivity to the pressor effects of endothelin-1 (ET-1) was enhanced when compared with women who had a normotensive pregnancy. Importantly, the authors demonstrated that this effect was mediated via the endothelin type B (ET B ) receptors. Therefore, the present study highlights the possibility that alterations in the localization of the ET B receptor contributes to the pathogenesis of pre-eclampsia and future cardiovascular disease (CVD) risk. Currently, there is great interest in the role of the endothelin system in pre-eclampsia. Targetting the endothelin system, potentially by modulating upstream pathways to prevent ET B receptor dysfunction, may improve health outcomes for women and their offspring during pre-eclampsia and later life. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Genetic association between Interleukin-17A gene polymorphisms and the pathogenesis of Graves' disease in the Han Chinese population.

    Science.gov (United States)

    Qi, Yicheng; Zheng, Huan; Liu, Nan; Guo, Ting; Zhu, Wei; Wang, Shu; Cui, Bin; Ning, Guang

    2015-01-19

    Graves' disease, one of the commonest autoimmune disorders, has a complex genetic basis. Interleukin-17A (IL-17A) is an important cytokine involved in innate and adaptive immune responses. This case-control study sought to investigate genetic association between the IL-17A gene and the process of Graves' disease (GD). Our pilot study was performed on a cohort from Shanghai, which included 713 patients with GD and 756 healthy controls. A replicate cohort was from Xiamen, recruiting 444 patients with GD and 427 healthy subjects. Six single nucleotide polymorphisms (SNPs) (rs4711998, rs3819024, rs2275913, rs8193037, rs3819025 and rs3748067) within the IL-17A gene were genotyped by the SNPstream Genotyping Systems and Taqman PCR method. In Shanghai cohorts, the frequencies of rs8193037 alleles were strongly different between patients with Graves' disease (G, 87·6% and A, 12·4%) and healthy controls (G, 91·4% and A, 8·6%) (P = 0·00067). The A carriers were associated with increased Graves' disease risks when compared with the G carriers (OR = 1·51, 95%CI = 1·19-1·92). In replicate cohorts, the proportion of individuals carrying the A allele of rs8193037 was significantly higher in patients with Graves' disease than in controls [Graves' disease vs control, 14·3% vs 9·1%, OR = 1·66 (95% CI: 1·23-2·24), P allele  = 0·0082]. In addition, rs8193037 and rs3748067 were found to be different in both genotype and allele distributions in Graves' disease-associated ophthalmopathy patients and controls in Shanghai cohorts. Haplotype association analysis also identified five main haplotypes of those six SNPs. These results suggested that the polymorphism of IL-17A rs8193037 was strongly associated with Graves' disease susceptibility in the Chinese Han population.z. © 2015 John Wiley & Sons Ltd.

  19. An Overview of History, Pathogenesis and Treatment of Perforated Peptic Ulcer Disease with Evaluation of Prognostic Scoring in Adults

    OpenAIRE

    Prabhu, V; Shivani, A

    2014-01-01

    Peptic ulcer disease including both gastric and duodenal ulcer form a substantial part of patients seeking surgical opinion world-wide. The concept of acid in peptic ulcer disease, which was the basis of treatment of peptic ulcer was revolutionized by the discovery of H2-receptor antagonists, that led to the principle of acid suppression therapy for duodenal ulcer which followed decades of preference for surgical interventions in the form of gastric resections, vagotomy etc., After the discov...

  20. Ameliorating effect of anti-Alzheimer’s drugs on the bidirectional association between type 2 diabetes mellitus and Alzheimer’s disease

    Science.gov (United States)

    Elgharabawy, Rehab M; AL-Najjar, Amal H

    2017-01-01

    Mild to severe forms of nervous system damage were exhibited by approximately 60–70% of diabetics. It is important to understand the association between type 2 diabetes mellitus and Alzheimer’s disease. The aim of the present work is to understand the bidirectional association between type 2 diabetes and Alzheimer’s disease pathogenesis, that was monitored by glycaemic status, lipid profile, amyloid beta 40 and 42 (Aβ40 and Aβ42), C-reactive protein, total creatine kinase, total lactate dehydrogenase, D-dimer and magnesium measurements, to assess the association between theses biochemical markers and each other, to estimate the possibility of utilizing the amyloid beta as biochemical marker of T2D in Alzheimer's patients, and to evaluate the effect of piracetam and memantine drugs on diabetes mellitus. This study involved 120 subjects divided into 20 healthy control (group I), 20 diabetic patients (group II), 20 Alzheimer’s patients (group III), 20 diabetic Alzheimer's patients with symptomatic treatment (group IV), 20 diabetic Alzheimer's patients treated with memantine (group V), and 20 diabetic Alzheimer's patients treated with piracetam (group VI). The demographic characteristics, diabetic index, and lipid profile were monitored. Plasma amyloid beta 40 and amyloid beta 42, C-reactive protein, total creatine kinase, total lactate dehydrogenase, D-dimer, and magnesium were assayed. The levels of amyloid beta 40 and amyloid beta 42 were significantly elevated in diabetic Alzheimer's patients with symptomatic treatment (group IV) compared to group II (by 50.5 and 7.5 fold, respectively) and group III (by 25.4 and 2.8 fold, respectively). In groups II, III, IV, V and VI, significant and positive associations were monitored between insulin and amyloid beta 40, amyloid beta 42, C-reactive protein, total creatine kinase, and D-dimer. Diabetic markers were significantly decreased in diabetic Alzheimer’s patients treated with anti-Alzheimer’s drugs

  1. Hepatocyte growth factor treatment ameliorates diarrhea and bowel inflammation in a rat model of inflammatory bowel disease.

    Science.gov (United States)

    Arthur, L Grier; Schwartz, Marshall Z; Kuenzler, Keith A; Birbe, Ruth

    2004-02-01

    Transfection of the HLA-B27 gene into normal Fischer rats induces phenotypic changes similar to inflammatory bowel disease (IBD). This study investigated the benefits of 2 doses of hepatocyte growth factor (HGF) on the manifestations of IBD in this rat model. Fischer rats and HLA-B27 rats were divided into 4 groups: Fischer rats treated with saline, HLA-B27 rats treated with saline, HGF at 150 microg/kg/d, and HGF at 300 microg/kg/d. HGF or saline was infused for 14 days via an osmotic pump attached to a catheter in the internal jugular vein. After treatment, rats were evaluated for diarrhea and reduction in gross and microscopic bowel inflammation. Statistics were determined using analysis of variance (ANOVA). A P value diarrhea by 40%, gross inflammation by 41%, and microscopic inflammation by 72% (P diarrhea by 46%, gross inflammation by 45%, and microscopic inflammation by 54% (P < or =.05). HGF administration reduces the clinical manifestations of IBD in this rat model. Similar effects were seen at both doses of HGF administration, implying that there is a plateau above which further increases in HGF levels provides no added benefit. HGF administration may be clinically useful in the management of IBD.

  2. Selenomethionine Ameliorates Neuropathology in the Olfactory Bulb of a Triple Transgenic Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Zhong-Hao Zhang

    2016-09-01

    Full Text Available Olfactory dysfunction is an early and common symptom in Alzheimer′s disease (AD and is reported to be related to several pathologic changes, including the deposition of Aβ and hyperphosphorylated tau protein as well as synaptic impairment. Selenomethionine (Se-Met, the major form of selenium in animals and humans, may be a promising therapeutic option for AD as it decreases the deposition of Aβ and tau hyperphosphorylation in a triple transgenic mouse model of AD (3× Tg-AD. In this study, 4-month-old AD mice were treated with 6 µg/mL Se-Met in drinking water for 12 weeks and the effect of Se-Met on neuropathological deficits in olfactory bulb (OB of 3× Tg-AD mice was investigated. The administration of Se-Met effectively decreased the production and deposition of Aβ by inhibiting β-site amyloid precursor protein cleaving enzyme 1 (BACE1-regulated amyloid precursor protein (APP processing and reduced the level of total tau and phosphorylated tau, which depended on depressing the activity and expression of glycogen synthase kinase-3β (GSK-3β and cyclin-dependent kinase 5 (CDK5. Meanwhile, Se-Met reduced glial activation, relieved neuroinflammation and attenuated neuronal cell death in the OB of AD mice. So Se-Met could improve pathologic changes of AD in the OB, which further demonstrated the potential therapeutic effect of Se-Met in AD.

  3. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-11-01

    Full Text Available Degeneration of basal forebrain cholinergic neurons (BFCNs is associated with cognitive impairments of Alzheimer’s disease (AD, implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD.

  4. Dipotassium N-stearoyltyrosinate ameliorated pathological injuries in triple-transgenic mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Sha Liu

    2016-09-01

    Full Text Available Recently, anandamide (AEA analogues have been well recognized for its potent neuroprotective effects in counteracting the deterioration of Alzheimer's disease (AD brains through multiple pathological processes. In our previous studies, dipotassium N-stearoyltyrosinate (NSTK, an AEA analogue synthesized by our laboratory was reported to exert significant efficacy through multiple interventions. Within this study, the amyloid precursor protein (APPSWE/presenilin-1 (PS1M146V/TauP301L mouse (3×Tg-AD model was used to explore further the neuroprotective effects of NSTK and its underlying mechanisms. NSTK could increase spontaneous locomotor activity in the open field and low anxiety-like behavior in the elevated plus maze, and improve the spatial memory deficits in the Morris water maze. The biochemical analysis suggested that NSTK could decrease Aβ42 deposition, abnormal tau aggregation, and the expressions of p-APP Thr668, PS1 and p-tau Ser202/Thr205 in the hippocampus of 3×Tg-AD mice. Consistently, NSTK could reduce the level of malondialdehyde, increase the activity of superoxide dismutase and catalase. Up-regulation of Bcl-2, and down-regulation of BAX, caspase-3 and inflammatory cytokines also occurred in the hippocampus of 3×Tg-AD mice after treatment with NSTK. Thus, NSTK could intervene in multiple pathological processes of AD and would be a drug candidate against AD.

  5. AMELIORATION OF QUALITY OF LIFE AND LUNG FUNCTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE BY PRANIC HEALING AS ADJUVANT THERAPY

    Directory of Open Access Journals (Sweden)

    Padukudru Anand Mahesh

    2017-08-01

    Full Text Available Aims To study the effects of Pranic Healing (PH, as a complementary therapy to improve lung function, physiological condition and quality of life of Chronic Obstructive Pulmonary Disease (COPD patients. Methods Randomised, double-blind, placebo-controlled, pilot study. 21 males with a mean age of 61.6 years and COPD stage II were randomly allocated to PH and control groups. The PH group received PH sessions thrice weekly during the study. The control group received Sham PH. Data was collected during baseline and four scheduled visits of the participants during six months. The primary outcome of the study was to access the reduction in COPD symptoms and to increase participation in physical and social activities by evaluating Spirometry, St George’s Respiratory Questionnaire (SGRQ, 6 Minute Walk Test (6MWT and Hamilton Rating Scale for Depression (HRSD. Results Significant improvement for PH group in Forced Expiratory Volume in the first second (p=0.02, SGRQ domains of Activity (p=0.006, Impact (p=0.002, Total (p=0.000, and non-significant change in Symptom domain (p=0.44. PH group showed a positive tendency in 6 MWT and HRSD scores with insignificant difference between the groups. No serious adverse events occurred during the study. Conclusion PH as an adjunct to conventional treatment can improve lung function and quality of life of COPD subjects.

  6. Transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease.

    Directory of Open Access Journals (Sweden)

    Ihssane Bouybayoune

    2015-04-01

    Full Text Available Fatal familial insomnia (FFI and a genetic form of Creutzfeldt-Jakob disease (CJD178 are clinically different prion disorders linked to the D178N prion protein (PrP mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD mice modeling CJD178. No prion infectivity was detectable in Tg(FFI and Tg(CJD brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI and Tg(CJD neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype.

  7. POST-TRANSPLANT LYMPHOPROLIFERATIVE DISORDERS: ROLE OF VIRAL INFECTION, GENETIC LESIONS AND ANTIGEN STIMULATION IN THE PATHOGENESIS OF THE DISEASE

    Directory of Open Access Journals (Sweden)

    Gianluca Gaidano

    2009-11-01

    Full Text Available

    Post-transplant lymphoproliferative disorders (PTLD are a life-threatening complication of solid organ transplantation or, more rarely, hematopoietic stem cell transplantation. The majority of PTLD is of B-cell origin and associated with Epstein–Barr virus (EBV infection. PTLD generally display involvement of extranodal sites, aggressive histology and aggressive clinical behavior. The molecular pathogenesis of PTLD involves infection by oncogenic viruses, namely Epstein-Barr virus, as well as genetic or epigenetic alterations of several cellular genes. At variance with lymphoma arising in immunocompetent hosts, whose genome is relatively stable, a fraction of PTLD are characterized by microsatellite instability as a consequence of defects in the DNA mismatch repair mechanism. Apart from microsatellite instability, molecular alterations of cellular genes recognized in PTLD include alterations of cMYC, BCL6, TP53, DNA hypermethylation, and aberrant somatic hypermutation of protooncogenes. The occurrence of IGV mutations in the overwhelming majority of PTLD documents that malignant transformation targets germinal centre (GC B-cells and their descendants both in EBV–positive and EBV–negative cases. Analysis of phenotypic markers of B-cell histogenesis, namely BCL6, MUM1 and CD138, allows further distinction of PTLD histogenetic categories. PTLD expressing the BCL6+/MUM1+/-/CD138- profile reflect B-cells actively experiencing the GC reaction, and comprise diffuse large B-cell lymphoma (DLBCL centroblastic and Burkitt lymphoma. PTLD expressing the BCL6-/MUM1+/CD138- phenotype putatively derive from B-cells that have concluded the GC reaction, and comprise the majority of polymorphic PTLD and a fraction of

  8. Ellagic acid ameliorates learning and memory deficits in a rat model of Alzheimer's disease: an exploration of underlying mechanisms.

    Science.gov (United States)

    Kiasalari, Zahra; Heydarifard, Rana; Khalili, Mohsen; Afshin-Majd, Siamak; Baluchnejadmojarad, Tourandokht; Zahedi, Elham; Sanaierad, Ashkan; Roghani, Mehrdad

    2017-06-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with irreversible loss of intellectual abilities. Current therapies for AD are still insufficient. In this study, the effect of ellagic acid on learning and memory deficits was evaluated in intrahippocampal amyloid beta (Aβ 25-35 )-microinjected rats and its modes of action were also explored. AD rat model was induced by bilateral intrahippocampal microinjection of Aβ 25-35 and ellagic acid was daily administered (10, 50, and 100 mg/kg), and learning, recognition memory, and spatial memory were evaluated in addition to histochemical assessment, oxidative stress, cholinesterases activity, and level of nuclear factor-kappaB (NF-κB), Toll-like receptor 4 (TLR4), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The amyloid beta-microinjected rats showed a lower discrimination ratio in novel object and alternation score in Y maze tasks and exhibited an impairment of retention and recall capability in passive avoidance paradigm and higher working and reference memory errors in radial arm maze (RAM). In addition, amyloid beta group showed a lower number of Nissl-stained neurons in CA1 area in addition to enhanced oxidative stress, higher activity of cholinesterases, greater level of NF-κB and TLR4, and lower level of nuclear/cytoplasmic ratio for Nrf2 and ellagic acid at a dose of 100 mg/kg significantly prevented most of these abnormal alterations. Ellagic acid pretreatment of intrahippocampal amyloid beta-microinjected rats could dose-dependently improve learning and memory deficits via neuronal protection and at molecular level through mitigation of oxidative stress and acetylcholinesterase (AChE) activity and modulation of NF-κB/Nrf2/TLR4 signaling pathway.

  9. Microarray analysis to identify the similarities and differences of pathogenesis between aortic occlusive disease and abdominal aortic aneurysm.

    Science.gov (United States)

    Wang, Guofu; Bi, Lechang; Wang, Gaofeng; Huang, Feilai; Lu, Mingjing; Zhu, Kai

    2018-06-01

    Objectives Expression profile of GSE57691 was analyzed to identify the similarities and differences between aortic occlusive disease and abdominal aortic aneurysm. Methods The expression profile of GSE57691 was downloaded from Gene Expression Omnibus database, including 20 small abdominal aortic aneurysm samples, 29 large abdominal aortic aneurysm samples, 9 aortic occlusive disease samples, and 10 control samples. Using the limma package in R, the differentially expressed genes were screened. Followed by enrichment analysis was performed for the differentially expressed genes using database for annotation, visualization, and integrated discovery online tool. Based on string online tool and Cytoscape software, protein-protein interaction network and module analyses were carried out. Moreover, integrated TF platform database and Cytoscape software were used for constructing transcriptional regulatory networks. Results As a result, 1757, 354, and 396 differentially expressed genes separately were identified in aortic occlusive disease, large abdominal aortic aneurysm, and small abdominal aortic aneurysm samples. UBB was significantly enriched in proteolysis related pathways with a high degree in three groups. SPARCL1 was another gene shared by these groups and regulated by NFIA, which had a high degree in transcriptional regulatory network. ACTB, a significant upregulated gene in abdominal aortic aneurysm samples, could be regulated by CLIC4, which was significantly enriched in cell motions. ACLY and NFIB were separately identified in aortic occlusive disease and small abdominal aortic aneurysm samples, and separately enriched in lipid metabolism and negative regulation of cell proliferation. Conclusions The downregulated UBB, NFIA, and SPARCL1 might play key roles in both aortic occlusive disease and abdominal aortic aneurysm, while the upregulated ACTB might only involve in abdominal aortic aneurysm. ACLY and NFIB were specifically involved in aortic occlusive

  10. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis].

    Science.gov (United States)

    Fischer, Tamás

    2015-03-01

    The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.

  11. Exercise Ameliorates Renal Cell Apoptosis in Chronic Kidney Disease by Intervening in the Intrinsic and the Extrinsic Apoptotic Pathways in a Rat Model

    Directory of Open Access Journals (Sweden)

    Kuan-Chou Chen

    2013-01-01

    Full Text Available We hypothesized that doxorubicin (DR induced chronic kidney disease (CKD could trigger the intrinsic and the extrinsic renal cell apoptotic pathways, while treadmill exercise could help prevent adverse effects. Male Sprague-Dawley rats were subjected to treadmill running exercise at a speed of 30 m/min, 30 or 60 min/day, 3 times per week, for a total period of 11 weeks. The physiological and biochemical parameters were seen substantially improved (DR-CKD control, 30 min, 60 min exercise: the ratio of kidney weight/body weight (0.89, 0.74, and 0.72; the WBC (1.35, 1.08, and 1.42 × 104 cells/μL; RBC (5.30, 6.38, and 6.26 × 106 cells/μL; the platelet count (15.1, 12.8, and 11.3 × 105/μL; serum cholesterol (659, 360, and 75 mg/dL; serum triglyceride (542, 263, and 211 mg/dL; BUN (37, 25, and 22 mg/dL. Bcl-2 and intramitochondrial cytochrome c were upregulated, while the levels of Bax, SOD, MDA, cleaved caspases 9, 3, 8, 12, and calpain were all downregulated in DRCKD groups with exercise. CHOP (GADD153 and GRP78 were totally unaffected. FAS (CD95 was only slightly suppressed in the 60 min exercise DRCKD group. Conclusively, exercise can ameliorate CKD through the regulation of the intrinsic and extrinsic apoptosis pathways. The 60 min exercise yields more beneficial effect than the 30 min counterpart.

  12. Active form of vitamin D ameliorates non-alcoholic fatty liver disease by alleviating oxidative stress in a high-fat diet rat model.

    Science.gov (United States)

    Zhu, Chong-Gui; Liu, Ya-Xin; Wang, Hao; Wang, Bao-Ping; Qu, Hui-Qi; Wang, Bao-Li; Zhu, Mei

    2017-07-28

    The purpose of this study was to determine whether treatment using the active form of vitamin D (1,25(OH) 2 D 3 ) could protect against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats and ameliorate oxidative stress. Male Sprague-Dawley rats were divided into three groups and treated with standard chow, HFD, or HFD plus intraperitoneal injection of 1,25(OH) 2 D 3 (5 μg/kg body weight, twice per week), respectively, for 16 weeks. Serum lipid profiles, hepatic function, intrahepatic lipid, and calcium levels were determined. Hepatic histology was examined using hematoxylin/eosin, Masson's trichrome, and Oil Red O staining. Oxidative stress was assessed by measuring hepatic malondialdehyde (MDA) and F2α-isoprostane content. Expression of nuclear factor-erythroid-2-related factor 2 (Nrf2) and downstream target genes was analyzed using quantitative RT-PCR. 1,25(OH) 2 D 3 treatment improved the serum lipid profile, reduced intrahepatic lipid levels, and attenuated hepatic steatosis and inflammation in HFD rats. Furthermore, MDA and F2α-isoprostane levels in liver tissue were reduced by 1,25(OH) 2 D 3 administration. Although 1,25(OH) 2 D 3 did not regulate the expression of Nrf2 mRNA, it did induce Nrf2 nuclear translocation. The expression of Nrf2 target genes, including Gclc, Nqo1, Sod2, and Cat, was up-regulated by 1,25(OH) 2 D 3 . We conclude that 1,25(OH) 2 D 3 protects against HFD-induced NAFLD by attenuating oxidative stress, inducing NRF2 nuclear translocation, and up-regulating the expression of genes encoding antioxidant enzymes.

  13. Anti-CD3 Antibody Ameliorates Transfusion-Associated Graft-Versus-Host Disease in a Chemotherapy-Based Mouse Model With Busulfan and Fludarabine

    Directory of Open Access Journals (Sweden)

    Xiaofan Li

    2017-05-01

    Full Text Available ABSTRACT To establish a transfusion-associated graft-versus-host disease (TA-GVHD mouse model with busulfan and fludarabine for effective treatment evaluation. BALB/c (H-2d mice were injected with busulfan (15 mg/kg and fludarabine (30 mg/kg twice a day for 4 days. The mice were transfused with 106 T cell-depleted bone marrow (TCD-BM and cells in different groups 3 days after chemotherapy: syngeneic BALB/c, MHC minor mismatch DBA/2 (H-2d, or MHC major mismatch C57BL/6(H2-b. Recipient BALB/c mice were injected with either blood only or blood+splenocyte. TA-GVHD was monitored in terms of body weight loss, clinical scores, and survival. Dexamethasone (50 mg/kg, cyclophosphamide (50 mg/kg, cyclosporine A (30 mg/kg, and anti-CD3 (1 mg/kg were injected to each group to examine the treatments. Blood transfusion alone is insufficient to induce TA-GVHD in a chemotherapy-based mouse model. A MHC-mismatched TA-GVHD model can be induced by splenocyte and blood transfusion. This MHC-mismatched TA-GVHD model was resistant to dexamethasone treatment. Treatment based on anti-CD3 monoclonal antibody slightly ameliorated TA-GVHD. Treatment effectiveness was associated with T-cell depletion following activation by anti-CD3. Busulfan and fludarabine chemotherapy regimen can be used to establish a TA-GVHD mouse model. Anti-CD3 monoclonal antibody is a potential alternative to treat TA-GVHD.

  14. Royal Jelly Reduces Cholesterol Levels, Ameliorates Aβ Pathology and Enhances Neuronal Metabolic Activities in a Rabbit Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Yongming Pan

    2018-03-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia characterized by aggregation of amyloid β (Aβ and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ, a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC and low density lipoprotein-cholesterol (LDL-C, and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1 and receptor for advanced glycation end products (RAGE, and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1 and insulin degrading enzyme (IDE. In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD.

  15. The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s Disease-Related Pathologies in APP/PS1 Transgenic Mice

    Science.gov (United States)

    Tzeng, Tsai-Teng; Chen, Chien-Chih; Chen, Chin-Chu; Tsay, Huey-Jen; Lee, Li-Ya; Chen, Wan-Ping

    2018-01-01

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use. PMID:29463001

  16. The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer's Disease-Related Pathologies in APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Tzeng, Tsai-Teng; Chen, Chien-Chih; Chen, Chin-Chu; Tsay, Huey-Jen; Lee, Li-Ya; Chen, Wan-Ping; Shen, Chien-Chang; Shiao, Young-Ji

    2018-02-17

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer's disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use.

  17. The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s Disease-Related Pathologies in APP/PS1 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Tsai-Teng Tzeng

    2018-02-01

    Full Text Available Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1 attenuating cerebral plaque loading by inhibiting plaque growth; (2 diminishing the activation of glial cells; (3 raising the level of insulin degrading enzyme; and (4 promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use.

  18. An overview of history, pathogenesis and treatment of perforated peptic ulcer disease with evaluation of prognostic scoring in adults.

    Science.gov (United States)

    Prabhu, V; Shivani, A

    2014-01-01

    Peptic ulcer disease including both gastric and duodenal ulcer form a substantial part of patients seeking surgical opinion world-wide. The concept of acid in peptic ulcer disease, which was the basis of treatment of peptic ulcer was revolutionized by the discovery of H2-receptor antagonists, that led to the principle of acid suppression therapy for duodenal ulcer which followed decades of preference for surgical interventions in the form of gastric resections, vagotomy etc., After the discovery of Helicobacter pylori organism as the causative factor a triple drug regime was identified to treat peptic disease which was further modified to sequential therapy to avoid antibiotic resistance. This recognition has not concluded the chapter on peptic ulcers. The management of ulcer disease and its complications remain a surgical challenge. All the materials for this review have been accessed from various internet search engines. The references have been narrowed down to 34 by excluding cross references, duplicated citations, pediatric studies, case reports, iatrogenic and malignant perforations and including microbiological, immunohistochemistry references and studies with more than a sample size of ten. Case control, cohort studies, prospective/retrospective, metaanalytical studies were preferred in that order. This article attempts to take an overview of all aspects of the management of peptic ulcer.

  19. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches.

    Science.gov (United States)

    Morales, Inelia; Guzmán-Martínez, Leonardo; Cerda-Troncoso, Cristóbal; Farías, Gonzalo A; Maccioni, Ricardo B

    2014-01-01

    Alzheimer disease (AD) is the most common cause of dementia in people over 60 years old. The molecular and cellular alterations that trigger this disease are still diffuse, one of the reasons for the delay in finding an effective treatment. In the search for new targets to search for novel therapeutic avenues, clinical studies in patients who used anti-inflammatory drugs indicating a lower incidence of AD have been of value to support the neuroinflammatory hypothesis of the neurodegenerative processes and the role of innate immunity in this disease. Neuroinflammation appears to occur as a consequence of a series of damage signals, including trauma, infection, oxidative agents, redox iron, oligomers of τ and β-amyloid, etc. In this context, our theory of Neuroimmunomodulation focus on the link between neuronal damage and brain inflammatory process, mediated by the progressive activation of astrocytes and microglial cells with the consequent overproduction of proinflammatory agents. Here, we discuss about the role of microglial and astrocytic cells, the principal agents in neuroinflammation process, in the development of neurodegenerative diseases such as AD. In this context, we also evaluated the potential relevance of natural anti-inflammatory components, which include curcumin and the novel Andean Compound, as agents for AD prevention and as a coadjuvant for AD treatments.

  20. Neuroinflammation in the pathogenesis of Alzheimer´s disease. A rational framework for the search of novel therapeutic approaches

    Directory of Open Access Journals (Sweden)

    Ricardo Benjamin Maccioni

    2014-04-01

    Full Text Available Alzheimer disease (AD is the most common cause of dementia in people over 60 years old. The molecular and cellular alterations that trigger this disease are still diffuse, one of the reasons for the delay in finding an effective treatment. In the search for new targets to search for novel therapeutic avenues, clinical studies in patients who used anti-inflammatory drugs indicating a lower incidence of AD have been of value to support the neuroinflammatory hypothesis of the neurodegenerative processes and the role of innate immunity in this disease. Neuroinflammation appears to occur as a consequence of a series of damage signals, including trauma, infection, oxidative agents, redox iron, oligomers of tau and beta amyloid, etc. In this context, our theory of Neuroimmunomodulation focus on the link between neuronal damage and brain inflammatory process, mediated by the progressive activation of astrocytes and microglial cells with the consequent overproduction of proinflammatory agents. Here, we discuss about the role of microglial and astrocytic cells, the principal agents in neuroinflammation process, in the development of neurodegenerative diseases such as AD. In this context, we also evaluated the potential relevance of natural anti-inflammatory components, which include curcumin and the novel Andean Compound, as agents for AD prevention and as a coadjuvant for AD treatments.

  1. Interleukin 17A is an immune marker for chlamydial disease severity and pathogenesis in the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Mathew, Marina; Waugh, Courtney; Beagley, Kenneth W; Timms, Peter; Polkinghorne, Adam

    2014-10-01

    The koala (Phascolarctos cinereus) is an iconic Australian marsupial species that is facing many threats to its survival. Chlamydia pecorum infections are a significant contributor to this ongoing decline. A major limiting factor in our ability to manage and control chlamydial disease in koalas is a limited understanding of the koala's cell-mediated immune response to infections by this bacterial pathogen. To identify immunological markers associated with chlamydial infection and disease in koalas, we used koala-specific Quantitative Real Time PCR (qrtPCR) assays to profile the cytokine responses of Peripheral Blood Mononuclear Cells (PBMCs) collected from 41 koalas with different stages of chlamydial disease. Target cytokines included the principal Th1 (Interferon gamma; IFNγ), Th2 (Interleukin 10; IL10), and pro-inflammatory cytokines (Tumor Necrosis Factor alpha; TNFα). A novel koala-specific IL17A qrtPCR assay was also developed as part of this study to quantitate the gene expression of this Th17 cytokine in koalas. A statistically significant higher IL17A gene expression was observed in animals with current chlamydial disease compared to animals with asymptomatic chlamydial infection. A modest up-regulation of pro-inflammatory cytokines, such as TNFα and IFNγ, was also observed in these animals with signs of current chlamydial disease. IL10 gene expression was not evident in the majority of animals from both groups. Future longitudinal studies are now required to confirm the role played by cytokines in pathology and/or protection against C. pecorum infection in the koala. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies.

    Science.gov (United States)

    Nowacka, Marta; Obuchowicz, Ewa

    2013-01-01

    Stress is known to play an important role in etiology, development and progression of affective diseases. Especially, chronic stress, by initiating changes in the hypothalamic-pituitary-adrenal axis (HPA), neurotransmission and the immune system, acts as a trigger for affective diseases. It has been reported that the rise in the concentration of pro-inflammatory cytokines and persistent up-regulation of glucocorticoid expression in the brain and periphery increases the excitotoxic effect on CA3 pyramidal neurons in the hippocampus resulting in dendritic atrophy, apoptosis of neurons and possibly inhibition of neurogenesis in adult brain. Stress was observed to disrupt neuroplasticity in the brain, and growing evidence demonstrates its role in the pathomechanism of affective disorders. Experimental studies indicate that a well-known brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) which have recently focused increasing attention of neuroscientists, promote cell survival, positively modulate neuroplasticity and hippocampal neurogenesis. In this paper, we review the alterations in BDNF and VEGF pathways induced by chronic and acute stress, and their relationships with HPA axis activity. Moreover, behavioral effects evoked in rodents by both above-mentioned factors and the effects consequent to their deficit are presented. Biochemical as well as behavioral findings suggest that BDNF and VEGF play an important role as components of cascade of changes in the pathomechanism of stress-induced affective diseases. Further studies on the mechanisms regulating their expression in stress conditions are needed to better understand the significance of trophic hypothesis of stress-induced affective diseases.

  3. Major histocompatibility complex: its role in the pathogenesis of autoimmune rheumatic diseases - doi:10.5020/18061230.2006.p155

    Directory of Open Access Journals (Sweden)

    Crésio Alves

    2012-01-01

    Full Text Available In order to allow early diagnosis and more efficient treatments, many studies have been trying to define genetic markers of rheumatic diseases. Amongst them, antigens and alleles of the HLA (Human Leukocyte Antigens system are distinguished. Located in the short arm of chromosome 6, the HLA system exerts genetic influence on the susceptibility and severity of these diseases. The discovery of new molecular methods to typify HLA alleles and the recent nomenclature updates have been contributing to a better understanding of this system. Unfortunately, this information has not been adequately published in the clinical literature. The present work aimed at presenting the function, nomenclature and methods of detection of the HLA polymorphism; and to review its associations with rheumatic fever, systemic erythematosus lupus, rheumatoid arthritis, juvenile idiopathic arthritis and spondyloarthropathies. Articles that were published between 1980 and 2005 were searched in the MEDLINE and LILACS data basis. This review demonstrated that although the HLA association is well established for some rheumatic diseases (e.g., HLA-B27 and spondyloarthropathies, HLA DR-3 and HLA-DR4 with rheumatoid arthritis, HLA-DR4 and lupus others vary in different ethnic-racial group and illnesses, due to its polymorphism. It is necessary to study populations from different ethnic backgrounds to identify new associations or to strengthen associations with the ones already identified. This knowledge will contribute to future prophylactic or therapeutic interventions in patients with rheumatic disorders or at risk to develop them.

  4. Genes contributing to prion pathogenesis

    DEFF Research Database (Denmark)

    Tamgüney, Gültekin; Giles, Kurt; Glidden, David V

    2008-01-01

    incubation times, indicating that the conversion reaction may be influenced by other gene products. To identify genes that contribute to prion pathogenesis, we analysed incubation times of prions in mice in which the gene product was inactivated, knocked out or overexpressed. We tested 20 candidate genes...... show that many genes previously implicated in prion replication have no discernible effect on the pathogenesis of prion disease. While most genes tested did not significantly affect survival times, ablation of the amyloid beta (A4) precursor protein (App) or interleukin-1 receptor, type I (Il1r1...

  5. DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease.

    Science.gov (United States)

    Chen, Hanqing; Shen, Feng; Sherban, Alex; Nocon, Allison; Li, Yu; Wang, Hua; Xu, Ming-Jiang; Rui, Xianliang; Han, Jinyan; Jiang, Bingbing; Lee, Donghwan; Li, Na; Keyhani-Nejad, Farnaz; Fan, Jian-Gao; Liu, Feng; Kamat, Amrita; Musi, Nicolas; Guarente, Leonard; Pacher, Pal; Gao, Bin; Zang, Mengwei

    2018-02-19

    Alcoholic liver disease (ALD) is characterized by lipid accumulation and liver injury. However, how chronic alcohol consumption causes hepatic lipid accumulation remains elusive. The present study demonstrates that activation of the mechanistic target of rapamycin complex 1 (mTORC1) plays a causal role in alcoholic steatosis, inflammation, and liver injury. Chronic-plus-binge ethanol feeding led to hyperactivation of mTORC1, as evidenced by increased phosphorylation of mTOR and its downstream kinase S6 kinase 1 (S6K1) in hepatocytes. Aberrant activation of mTORC1 was likely attributed to the defects of the DEP domain-containing mTOR-interacting protein (DEPTOR) and the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1) in the liver of chronic-plus-binge ethanol-fed mice and in the liver of patients with ALD. Conversely, adenoviral overexpression of hepatic DEPTOR suppressed mTORC1 signaling and ameliorated alcoholic hepatosteatosis, inflammation, and acute-on-chronic liver injury. Mechanistically, the lipid-lowering effect of hepatic DEPTOR was attributable to decreased proteolytic processing, nuclear translocation, and transcriptional activity of the lipogenic transcription factor sterol regulatory element-binding protein-1 (SREBP-1). DEPTOR-dependent inhibition of mTORC1 also attenuated alcohol-induced cytoplasmic accumulation of the lipogenic regulator lipin 1 and prevented alcohol-mediated inhibition of fatty acid oxidation. Pharmacological intervention with rapamycin alleviated the ability of alcohol to up-regulate lipogenesis, to down-regulate fatty acid oxidation, and to induce steatogenic phenotypes. Chronic-plus-binge ethanol feeding led to activation of SREBP-1 and lipin 1 through S6K1-dependent and independent mechanisms. Furthermore, hepatocyte-specific deletion of SIRT1 disrupted DEPTOR function, enhanced mTORC1 activity, and exacerbated alcoholic fatty liver, inflammation, and liver injury in mice. The dysregulation of SIRT1

  6. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease

    Science.gov (United States)

    Jia, Haiqun; Pallos, Judit; Jacques, Vincent; Lau, Alice; Tang, Bin; Cooper, Andrew; Syed, Adeela; Purcell, Judith; Chen, Yi; Sharma, Shefali; Sangrey, Gavin R.; Darnell, Shayna B.; Plasterer, Heather; Sadri-Vakili, Ghazaleh; Gottesfeld, Joel M.; Thompson, Leslie M.; Rusche, James R.; Marsh, J. Lawrence; Thomas, Elizabeth A.

    2012-01-01

    We have previously demonstrated amelioration of Huntington's disease (HD)-related phenotypes in R6/2 transgenic mice in response to treatment with the novel histone deacetylase (HDAC) inhibitor 4b. Here we have measured the selectivity profiles of 4b and related compounds against class I and class II HDACs and have tested their ability to restore altered expression of genes related to HD pathology in mice and to rescue disease effects in cell culture and Drosophila models of HD. R6/2 transgenic and wild-type (wt) mice received daily injections of HDAC inhibitors for 3 days followed by real-time PCR analysis to detect expression differences for 13 HD-related genes. We find that HDACi 4b and 136, two compounds showing high potency for inhibiting HDAC3 were most effective in reversing the expression of genes relevant to HD, including Ppp1r1b, which encodes DARPP-32, a marker for medium spiny striatal neurons. In contrast, compounds targeting HDAC1 were less effective at correcting gene expression abnormalities in R6/2 transgenic mice, but did cause significant increases in the expression of selected genes. An additional panel of 4b-related compounds was tested in a Drosophila model of HD and in STHdhQ111 striatal cells to further distinguish HDAC selectivity. Significant improvement in huntingtin-elicited Drosophila eye neurodegeneration in the fly was observed in response to treatment with compounds targeting human HDAC1 and/or HDAC3. In STHdhQ111 striatal cells, the ability of HDAC inhibitors to improve Htt-elicited metabolic deficits correlated with the potency at inhibiting HDAC1 and HDAC3, although the IC50 values for HDAC1 inhibition were typically 10-fold higher than for inhibition of HDAC3. Assessment of HDAC protein localization in brain tissue by Western blot analysis revealed accumulation of HDAC1 and HDAC3 in the nucleus of HD transgenic mice compared to wt mice, with a concurrent decrease in cytoplasmic localization, suggesting that these HDACs contribute

  7. The cytolethal distending toxin contributes to microbial virulence and disease pathogenesis by acting as a tri-perditious toxin

    Directory of Open Access Journals (Sweden)

    Monika D Scuron

    2016-12-01

    Full Text Available This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: 1 disrupting epithelial barriers; 2 suppressing acquired immunity; 3 promoting pro-inflammatory responses. Thus Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.

  8. Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer's disease pathogenesis.

    Science.gov (United States)

    Zhou, Xiaopu; Chen, Yu; Mok, Kin Y; Zhao, Qianhua; Chen, Keliang; Chen, Yuewen; Hardy, John; Li, Yun; Fu, Amy K Y; Guo, Qihao; Ip, Nancy Y

    2018-02-20

    Alzheimer's disease (AD) is a leading cause of mortality among the elderly. We performed a whole-genome sequencing study of AD in the Chinese population. In addition to the variants identified in or around the APOE locus (sentinel variant rs73052335, P = 1.44 × 10 -14 ), two common variants, GCH1 (rs72713460, P = 4.36 × 10 -5 ) and KCNJ15 (rs928771, P = 3.60 × 10 -6 ), were identified and further verified for their possible risk effects for AD in three small non-Asian AD cohorts. Genotype-phenotype analysis showed that KCNJ15 variant rs928771 affects the onset age of AD, with earlier disease onset in minor allele carriers. In addition, altered expression level of the KCNJ15 transcript can be observed in the blood of AD subjects. Moreover, the risk variants of GCH1 and KCNJ15 are associated with changes in their transcript levels in specific tissues, as well as changes of plasma biomarkers levels in AD subjects. Importantly, network analysis of hippocampus and blood transcriptome datasets suggests that the risk variants in the APOE , GCH1 , and KCNJ15 loci might exert their functions through their regulatory effects on immune-related pathways. Taking these data together, we identified common variants of GCH1 and KCNJ15 in the Chinese population that contribute to AD risk. These variants may exert their functional effects through the immune system. Copyright © 2018 the Author(s). Published by PNAS.

  9. Aberrant Free Radical Biology Is a Unifying Theme in the Etiology and Pathogenesis of Major Human Diseases

    Directory of Open Access Journals (Sweden)

    Frederick E. Domann

    2013-04-01

    Full Text Available The seemingly disparate areas of oxygen toxicity, radiation exposure, and aging are now recognized to share a common feature—the aberrant production and/or removal of biologically derived free radicals and other reactive oxygen and nitrogen species (ROS/RNS. Advances in our understanding of the effects of free radicals in biology and medicine have been, and continue to be, actively translated into clinically tractable diagnostic and therapeutic applications. This issue is dedicated to recent advances, both basic discoveries and clinical applications, in the field of free radicals in biology and medicine. As more is understood about the proximal biological targets of aberrantly produced or removed reactive species, their sensors, and effectors of compensatory response, a great deal more will be learned about the commonalities in mechanisms underlying seemingly disparate disease states. Together with this deeper understanding, opportunities will arise to devise rational therapeutic interventions to decrease the incidence and severity of these diseases and positively impact the human healthspan.

  10. Evidence and role of phlebitis and lipid infiltration in the onset and pathogenesis of Wooden Breast Disease in modern broiler chickens.

    Science.gov (United States)

    Papah, Michael B; Brannick, Erin M; Schmidt, Carl J; Abasht, Behnam

    2017-12-01

    Wooden Breast Disease (WBD), a myopathy that frequently affects modern broiler chickens, is a disorder that has been associated with significant economic losses in the poultry industry. To examine tissue changes associated with the onset and early pathogenesis of this disorder, a time-series experiment was conducted using chickens from a high-breast-muscle-yield, purebred commercial broiler line. Birds were raised for up to seven weeks, with a subset of birds sampled weekly. Breast muscle tissues were extracted at necropsy and processed for analysis by light microscopy and transmission electron microscopy. Histologic presentation indicated localized phlebitis with lipogranulomas in Week 1, focal single-myofibril degeneration in Week 2 preceding an inflammatory response that started in Week 3. Lesions in Week 4 were characterized by multifocal to diffuse muscle fibre degeneration, necrosis, interstitial oedema accompanied by increased lipid and inflammatory cell infiltration. Lesions in Weeks 5-7 revealed diffuse muscle degeneration, necrosis, fibrosis and fatty infiltration with lipogranulomas. Ultrastructural examination showed myofibrillar splitting and degeneration, irregular, displaced and degenerated Z-lines, mitochondrial degeneration and interstitial fibrosis with dense regular collagen fibres. This study, therefore, demonstrates that WBD exhibits an earlier onset in modern broilers than when detectable by clinical examination. Further, this study shows that the disease assumes a progressive course with acute vasculitis, lipid deposition and myodegeneration occurring in the earlier stages, followed by a chronic fibrotic phase.

  11. Cutting Edge: A Critical Role of Lesional T Follicular Helper Cells in the Pathogenesis of IgG4-Related Disease.

    Science.gov (United States)

    Kamekura, Ryuta; Takano, Kenichi; Yamamoto, Motohisa; Kawata, Koji; Shigehara, Katsunori; Jitsukawa, Sumito; Nagaya, Tomonori; Ito, Fumie; Sato, Akinori; Ogasawara, Noriko; Tsubomatsu, Chieko; Takahashi, Hiroki; Nakase, Hiroshi; Himi, Tetsuo; Ichimiya, Shingo

    2017-10-15

    IgG4-related disease (IgG4-RD) is a newly recognized systemic chronic fibroinflammatory disease. However, the pathogenesis of IgG4-RD remains unknown. To determine the pathophysiologic features of IgG4-RD, we examined T follicular helper (Tfh) cells in lesions and blood from patients with IgG4-RD. Patients with IgG4-related dacryoadenitis and sialadenitis (IgG4-DS) showed increased infiltration of Tfh cells highly expressing programmed death 1 and ICOS in submandibular glands. Tfh cells from IgG4-DS submandibular glands had higher expression of B cell lymphoma 6 and a greater capacity to help B cells produce IgG4 than did tonsillar Tfh cells. We also found that the percentage of programmed death 1 hi circulating Tfh cells in IgG4-DS patients was higher than that in healthy volunteers and was well correlated with clinical parameters. Our findings indicate that anomalous Tfh cells in tissue lesions of IgG4-RD have features distinct from those in lymphoid counterparts or blood and potentially regulate local IgG4 production in IgG4-RD. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Idiopathic pulmonary fibrosis may be a disease of recurrent, tractional injury to the periphery of the aging lung: a unifying hypothesis regarding etiology and pathogenesis.

    Science.gov (United States)

    Leslie, Kevin O

    2012-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal lung disease occurring in older individuals. Despite 50 years of accrued data about the disease, little progress has been made in slowing functional loss or in decreasing patient mortality. To present a novel hypothesis on the etiology and pathogenesis of idiopathic pulmonary fibrosis. Published data are reviewed regarding the epidemiology, clinical presentation, natural history, radiologic findings, and pathologic findings in patients with idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis may be predisposed genetically to tractional injury to the peripheral lung. The result is recurrent damage to the epithelial-mesenchymal interface, preferentially at the outer edges of the basilar lung lobules where tractional stress is high during inspiration, compliance is relatively low, and there is a greater tendency for alveolar collapse at end-expiration. A distinctive "reticular network of injury" (the fibroblast focus) forms, attended by a prolonged phase of wound repair (tear and slow repair). Discrete areas of alveolar collapse are observed in scar at the periphery of the lung lobules. The cycle repeats over many years resulting in progressive fibrous remodeling and replacement of the alveoli in a lobule by bronchiolar cysts surrounded by scar (honeycomb lung). Abnormalities in surfactant function are proposed as a potential mechanism of initial lung damage. Age of onset may be a function of a required threshold of environmental exposures (eg, cigarette smoking) or other comorbid injury to the aging lung. Evidence supporting this hypothesis is presented and potential mechanisms are discussed. A potential role for contributing cofactors is presented.

  13. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice.

    Science.gov (United States)

    Eigenbrod, Sabina; Frick, Petra; Bertsch, Uwe; Mitteregger-Kretzschmar, Gerda; Mielke, Janina; Maringer, Marko; Piening, Niklas; Hepp, Alexander; Daude, Nathalie; Windl, Otto; Levin, Johannes; Giese, Armin; Sakthivelu, Vignesh; Tatzelt, Jörg; Kretzschmar, Hans; Westaway, David

    2017-01-01

    Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1-4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain.

  14. Abnormal genetic and epigenetic changes in signal transducer and activator of transcription 4 in the pathogenesis of inflammatory bowel diseases.

    Science.gov (United States)

    Kim, Seung Won; Kim, Eun Soo; Moon, Chang Mo; Kim, Tae Il; Kim, Won Ho; Cheon, Jae Hee

    2012-10-01

    Changes in the expression of signal transducer and activator of transcription 4 (STAT4) contribute to the development of a variety of autoimmune diseases including inflammatory bowel diseases (IBDs). Moreover, epigenetic modifications, including DNA methylation, are considered a basis for differentiation of T helper cells and regulation of cytokines. In this study, we investigated the methylation status of STAT4 gene in IBD patients and the associations between its genetic and epigenetic alterations in IBD patients. Blood and colonic mucosa samples were obtained from Korean patients with IBD and healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated, and total RNA and genomic DNA were isolated from the PBMCs and colon mucosa tissues. The mRNA level and DNA methylation status of the promoter were determined by real-time RT-PCR and pyrosequencing, respectively. The chosen SNPs (rs11889341, rs7574865, rs8179673, rs6752770, rs925847, rs10168266, rs10181656, and rs11685878) were genotyped using the TaqMan nuclease assay. Elevated expression of STAT4 was observed in the colonic mucosa and PBMCs of IBD patients. IBD patients showed a lower degree of methylation of the STAT4 promoter than did the healthy controls. Moreover, a significant correlation between risk alleles and methylation status at -172 of the STAT4 promoter was observed, and mRNA levels of STAT4 in IBD patients were correlated inversely with the T-risk allele (rs7574865). Our data demonstrated that the DNA methylation status of STAT4 is associated with genetic polymorphisms, providing insights into the interactions between genetic and epigenetic aberrances in STAT4 that contribute to the development of IBD.

  15. Pathogenesis of achalasia cardia.

    Science.gov (United States)

    Ghoshal, Uday C; Daschakraborty, Sunil B; Singh, Renu

    2012-06-28

    Achalasia cardia is one of the common causes of motor dysphagia. Though the disease was first described more than 300 years ago, exact pathogenesis of this condition still remains enigmatic. Pathophysiologically, achalasia cardia is caused by loss of inhibitory ganglion in the myenteric plexus of the esophagus. In the initial stage, degeneration of inhibitory nerves in the esophagus results in unopposed action of excitatory neurotransmitters such as acetylcholine, resulting in high amplitude non-peristaltic contractions (vigorous achalasia); progressive loss of cholinergic neurons over time results in dilation and low amplitude simultaneous contractions in the esophageal body (classic achalasia). Since the initial description, several studies have attempted to explore initiating agents that may cause the disease, such as viral infection, other environmental factors, autoimmunity, and genetic factors. Though Chagas disease, which mimics achalasia, is caused by an infective agent, available evidence suggests that infection may not be an independent cause of primary achalasia. A genetic basis for achalasia is supported by reports showing occurrence of disease in monozygotic twins, siblings and other first-degree relatives and occurrence in association with other genetic diseases such as Down's syndrome and Parkinson's disease. Polymorphisms in genes encoding for nitric oxide synthase, receptors for vasoactive intestinal peptide, interleukin 23 and the ALADIN gene have been reported. However, studies on larger numbers of patients and controls from different ethnic groups are needed before definite conclusions can be obtained. Currently, the disease is believed to be multi-factorial, with autoimmune mechanisms triggered by infection in a genetically predisposed individual leading to degeneration of inhibitory ganglia in the wall of the esophagus.

  16. Pathogenesis of achalasia cardia

    Science.gov (United States)

    Ghoshal, Uday C; Daschakraborty, Sunil B; Singh, Renu

    2012-01-01

    Achalasia cardia is one of the common causes of motor dysphagia. Though the disease was first described more than 300 years ago, exact pathogenesis of this condition still remains enigmatic. Pathophysiologically, achalasia cardia is caused by loss of inhibitory ganglion in the myenteric plexus of the esophagus. In the initial stage, degeneration of inhibitory nerves in the esophagus results in unopposed action of excitatory neurotransmitters such as acetylcholine, resulting in high amplitude non-peristaltic contractions (vigorous achalasia); progressive loss of cholinergic neurons over time results in dilation and low amplitude simultaneous contractions in the esophageal body (classic achalasia). Since the initial description, several studies have attempted to explore initiating agents that may cause the disease, such as viral infection, other environmental factors, autoimmunity, and genetic factors. Though Chagas disease, which mimics achalasia, is caused by an infective agent, available evidence suggests that infection may not be an independent cause of primary achalasia. A genetic basis for achalasia is supported by reports showing occurrence of disease in monozygotic twins, siblings and other first-degree relatives and occurrence in association with other genetic diseases such as Down’s syndrome and Parkinson’s disease. Polymorphisms in genes encoding for nitric oxide synthase, receptors for vasoactive intestinal peptide, interleukin 23 and the ALADIN gene have been reported. However, studies on larger numbers of patients and controls from different ethnic groups are needed before definite conclusions can be obtained. Currently, the disease is believed to be multi-factorial, with autoimmune mechanisms triggered by infection in a genetically predisposed individual leading to degeneration of inhibitory ganglia in the wall of the esophagus. PMID:22791940

  17. A new hypothesis of pathogenesis based on the divorce between mitochondria and their host cells: possible relevance for Alzheimer's disease.

    Science.gov (United States)

    Agnati, L F; Guidolin, D; Baluska, F; Leo, G; Barlow, P W; Carone, C; Genedani, S

    2010-06-01

    On the basis of not only the endosymbiotic theory of eukaryotic cell organization and evolution but also of observations of transcellular communication via Tunneling NanoTubes (TNTs), the hypothesis is put forward that when mitochondria, which were once independently living prokaryote-like organisms, are subjected to detrimental genetic, toxic, or environmental conditions, including age-related endogenous factors, they can regress towards their original independent state. At that point, they can become potentially pathogenic intruders within their eukaryotic host cell. Because of the protoplasmic disequilibrium caused by an altered, or mutated, mitochondral population, certain host cells with a minimal capacity for self-renewal, such as dopaminergic neurons, risk a loss of function and degenerate. It is also proposed that altered mitochondria, as well as their mutated mtDNA, can migrate, via TNTs, into adjacent cells. In this way, neurodegenerative states are propagated between cells (glia and/or neurons) of the Central Nervous System (CNS) and that this leads to conditions such as Alzheimer's and Parkinson's disease. This proposal finds indirect support from observations on rotenone-poisoned glioblastoma cells which have been co-cultured with non-poisoned cells. Immunocytochemical techniques revealed that mitochondria, moving along the TNTs, migrated from the poisoned cells towards the healthy cells. It has also been demonstrated by means of immunocytochemistry that, in glioblastoma cell cultures, Amyloid Precursor Protein (APP) is present in TNTs, hence it may migrate from one cell to neighbouring cells. This datum may be of high relevance for a better understanding of Alzheimer's Disease (AD) since molecular, cellular, and animal model studies have revealed that the formation of amyloid beta (Abeta) and other derivatives of the APP are key pathogenic factors in AD, causing mitochondrial dysfunction, free radical generation, oxidative damage, and inflammation

  18. Anatomical variants of tympanic compartments and their aeration pathways involved in the pathogenesis of middle ear inflammatory disease

    Science.gov (United States)

    MANIU, ALMA; CATANA, IULIU V.; HARABAGIU, OANA; PETRI, MARIA; COSGAREA, MARCEL

    2013-01-01

    Aim The aim of this article is to review the anatomy of middle ear compartments and folds and to demonstrate through anatomical evidence their presence at birth. Additionally, their role in the obstructions of middle ear ventilatory pathway is highlighted. Methods Ninety-eight adult temporal bones, with no history of auricular disease and fifteen newborn temporal bones were studied by micro dissection. Documentation was done by color photography using the operation microscope Results Our micro-dissections have showed that mucosal folds from the middle ear are steadily present since birth, given that they were found in all newborn temporal bones. The mucosal folds in our normal adult material, showed some variations including membrane defects but they were constantly present. Our micro dissections showed that the epitympanic diaphragm consisted, in addition to malleal ligamental folds and ossicles, of only two constantly present folds: the tensor tympani fold and the incudomalleal fold. When the tensor fold is complete the only ventilation pathway to the anterior epitympanic space is through the isthmus, whereas its absence creates an efficient additional aeration route from the Eustachian tube to the epitympanum. Conclusions The goal of surgery in the chronic pathology of the middle ear should be restoration of normal ventilation of the attical-mastoid area. This is possible by removing the tensor fold and restoring the functionality of the isthmus tympani. PMID:26527977

  19. The role of systemic inflammation in the pathogenesis and progression of nonalcoholic fatty liver disease in children

    Directory of Open Access Journals (Sweden)

    N.Yu. Zavhorodnia

    2017-03-01

    p < 0.05 and VLDL (r = 0.8; p = 0.04 positively correlated with the level of insulin, and showed a negative correlation with HDL level (r = –0.7; p < 0.05. Maximum levels of TNF-α were observed in group S3 (1.8 ± 0.8 pg/ml, which differed significantly from S0 group and other groups with steatosis. The level of IL-6 increased progressively with growth of steatosis grade: S0 — 1.2 ± 0.2 pg/ml, S1 — 1.55 ± 0.30 pg/ml, S2 — 4.8 ± 0.5 pg/ml, S3 — 6.1 ± 0.5 pg/ml. Level of anti-inflammatory cytokine IL-10 changed ambiguous: the minimum level of this index was in S1 group, that was significantly lower comparing to S0 group. The concentration of IL-10 reached maximum value in S2 group (9.5 ± 1.1 pg/ml and critically decreased in patients from S3 group. Conclusions. Nonalcoholic fatty liver disease in children manifested by imbalance of pro- and anti-inflammatory cytokines with increase of IL-6, TNF-α and decrease in IL-10 level was associated with the grade of hepatic steatosis on the background of dyslipidemia and insulin resistance.

  20. Minimal hepatic encephalopathy in children with chronic liver disease: Prevalence, pathogenesis and magnetic resonance-based diagnosis.

    Science.gov (United States)

    Srivastava, Anshu; Chaturvedi, Saurabh; Gupta, Rakesh Kumar; Malik, Rohan; Mathias, Amrita; Jagannathan, Naranamangalam R; Jain, Sunil; Pandey, Chandra Mani; Yachha, Surender Kumar; Rathore, Ram Kishor Singh

    2017-03-01

    Data on minimal hepatic encephalopathy (MHE) in children is scarce. We aimed to study MHE in children with chronic liver disease (CLD) and to validate non-invasive objective tests which can assist in its diagnosis. We evaluated 67 children with CLD (38 boys; age 13 [7-18] years) and 37 healthy children to determine the prevalence of MHE. We also assessed the correlation of MHE with changes in brain metabolites by magnetic resonance spectroscopy ( 1 HMRS), diffusion tensor imaging (DTI) derived metrics, blood ammonia and inflammatory cytokines (interleukin-6 [IL6], tumor necrosis factor alpha [TNF-α]). In addition, the accuracy of MR-based investigations for diagnosis of MHE in comparison to neuropsychological tests was analysed. Thirty-four (50.7%) children with CLD had MHE on neuropsychological tests. MHE patients had higher BA (30.5 [6-74] vs. 14 [6-66]μmol/L; p=0.02), IL-6 (8.3 [4.7-28.7] vs. 7.6 [4.7-20.7]pg/ml; p=0.4) and TNF-α (17.8 [7.8-65.5] vs. 12.8 [7.5-35]pg/ml; p=0.06) than No-MHE. 1 HMRS showed higher glutamine (2.6 [2.1-3.3] vs. 2.4 [2.0-3.1]; p=0.02), and lower choline (0.20 [0.14-0.25] vs. 0.22 [0.17-0.28]; p=0.1) and myo-inositol (0.25 [0.14-0.41] vs. 0.29 [0.21-0.66]; p=0.2) in MHE patients than those without MHE. Mean diffusivity (MD) on DTI was significantly higher in 6/11 brain areas in patients with MHE vs. no MHE. Brain glutamine had a significant positive correlation with blood ammonia, IL-6, TNF-α and MD of various brain regions. Neuropsychological tests showed a negative correlation with blood ammonia, IL6, TNF-α, glutamine and MD. Frontal white matter MD had a sensitivity and specificity of 73.5% and 100% for diagnosing MHE. In children with CLD, 50% have MHE. There is a significant positive correlation between markers of hyperammonemia, inflammation and brain edema and these correlate negatively with neuropsychological tests. MD on DTI is a reliable tool for diagnosing MHE. Fifty percent of children with chronic liver disease

  1. Ebola virus disease and pregnancy - A review of the current knowledge of Ebola virus pathogenesis, maternal and neonatal outcomes

    Science.gov (United States)

    Bebell, Lisa M.; Oduyebo, Titilope; Riley, Laura E.

    2016-01-01

    The 2014-2016 Ebola virus disease (EVD) outbreak in West Africa devastated local health systems and caused thousands of deaths. Historical reports from Zaire ebolavirus outbreaks suggested pregnancy was associated with an increased risk of severe illness and death, with mortality rates from 74-100%. In total, 111 cases of pregnant patients with EVD are reported in the literature, with an aggregate maternal mortality of 86%. Pregnancy-specific data published from the recent outbreak include four small descriptive cohort studies and five case reports. Despite limitations including reporting bias and small sample size, these studies suggest mortality in pregnant women may be lower than previously reported, with five of 13(39%) infected women dying. Optimal treatments for pregnant women, and differences in EVD course between pregnant women and non-pregnant individuals are major scientific gaps that have not yet been systematically addressed. Ebola virus may be transmitted from mother to baby in utero, during delivery, or through contact with maternal body fluids after birth including breast milk. EVD is almost universally fatal to the developing fetus, and limited fetal autopsy data prevent inferences on risk of birth defects. Decisions about delivery mode and other obstetric interventions should be individualized. WHO recommends close monitoring of survivors who later become pregnant, but does not recommend enhanced precautions at subsequent delivery. Though sexual transmission of Ebola virus has been documented, birth outcomes among survivors have not been published and will be important to appropriately counsel women on pregnancy outcomes and inform delivery precautions for healthcare providers. PMID:28398679

  2. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Liliana Maria Sanmarco

    2018-01-01

    Full Text Available Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and

  3. Pathogenesis and immune response in Atlantic salmon (Salmo salar L.) parr experimentally infected with salmon pancreas disease virus (SPDV).

    Science.gov (United States)

    Desvignes, L; Quentel, C; Lamour, F; le, Ven A

    2002-01-01

    Atlantic salmon parr were injected intraperitoneally with salmon pancreas disease virus (SPDV) grown on CHSE-214 cells. The viraemia, the histopathological changes in target organs and some immune parameters were taken at intervals up to 30 days post-infection (dpi). The earliest kind of lesion was necrosis of exocrine pancreas, appearing as soon as 2 dpi. It progressed towards complete tissue breakdown at 9 dpi before resolving gradually. Concurrent to this necrosis, a strong inflammatory response was in evidence from 9 dpi in the pancreatic area for a majority of fish. A necrosis of the myocardial cells of the ventricle occurred in infected fish mainly at 16 dpi and it faded thereafter. The monitoring of the plasma viral load showed a rapid haematogenous spreading of SPDV, peaking at 4 dpi, but also the absence of a secondary viraemia. No interferon (IFN) was detected following the infection of parr with SPDV, probably owing to an IFN activity in Atlantic salmon below the detection level of the technique. Neutralising antibodies against SPDV were in evidence from 16 dpi and they showed a time-related increasing titre and prevalence. The phagocytic activity in head-kidney leucocytes was always significantly higher in the infected fish than in the control fish, being particularly high by 9 dpi. Lysozyme and complement levels were both increased and they peaked significantly in the infected fish at 9 and 16 dpi respectively. These results demonstrated that an experimental infection of Atlantic salmon parr with SPDV provoked a stimulation of both specific and non-specific immunity with regards to the viraemia and the histopathology.

  4. FTY720 ameliorates murine sclerodermatous chronic graft-versus-host disease by promoting expansion of splenic regulatory cells and inhibiting immune cell infiltration into skin.

    Science.gov (United States)

    Huu, Doanh Le; Matsushita, Takashi; Jin, Guihua; Hamaguchi, Yasuhito; Hasegawa, Minoru; Takehara, Kazuhiko; Fujimoto, Manabu

    2013-06-01

    Sphingosine 1-phosphate (S1P) exerts a variety of activities in immune, inflammatory, and vascular systems. S1P plays an important role in systemic sclerosis (SSc) pathogenesis. Regulation of S1P in fibrotic diseases as well as in SSc was recently reported. FTY720, an oral S1P receptor modulator, has been shown to be a useful agent for the prevention of transplant rejection and autoimmune diseases. Murine sclerodermatous chronic graft-versus-host disease (GVHD) is a model for human sclerodermatous chronic GVHD and SSc. We undertook this study to investigate the effects of FTY720 in murine sclerodermatous chronic GVHD. FTY720 was orally administered to allogeneic recipient mice from day 0 to day 20 (short-term, early-treatment group), from day 0 to day 42 (full-term, early-treatment group), or from day 22 to day 42 (delayed-treatment group) after bone marrow transplantation. Delayed administration of FTY720 attenuated, and early administration of FTY720 inhibited, the severity and fibrosis in murine sclerodermatous chronic GVHD. With early treatment, FTY720 induced expansion of splenic myeloid-derived suppressor cells, Treg cells, and Breg cells. Vascular damage in chronic GVHD was inhibited by FTY720 through down-regulating serum levels of S1P and soluble E-selectin. FTY720 inhibited infiltration of immune cells into skin. Moreover, FTY720 diminished the expression of messenger RNA for monocyte chemotactic protein 1, macrophage inflammatory protein 1α, RANTES, tumor necrosis factor α, interferon-γ, interleukin-6 (IL-6), IL-10, IL-17A, and transforming growth factor β1 in the skin. FTY720 suppressed the immune response by promoting the expansion of regulatory cells and reducing vascular damage and infiltration of immune cells into the skin. Taken together, these results have important implications for the potential use of FTY720 in the treatment of sclerodermatous chronic GVHD and SSc in humans. Copyright © 2013 by the American College of Rheumatology.

  5. Nutritional rickets: pathogenesis and prevention.

    Science.gov (United States)

    Pettifor, John M

    2013-06-01

    Nutritional rickets remains a public health concern in many areas of the world despite cheap and effective means of preventing the disease. The roles of vitamin D deficiency, low dietary calcium intakes and the interrelationships between the two in the pathogenesis of the disease are discussed. It is now recognized that vitamin D deficiency in the pregnant and lactating mother predisposes to the development of rickets in the breastfed infant, and that cultural and social factors are important in the pathogenesis of the disease during the adolescent growth spurt. Prevention of rickets is dependent on the awareness of the medical profession and the general public of the need to ensure adequate intakes of vitamin D in at-risk populations, and of the importance of increasing dietary intakes of calcium using locally available and inexpensive foods in communities in which dietary calcium deficiency rickets is prevalent.

  6. A systems biology approach to the pathogenesis of obesity-related nonalcoholic fatty liver disease using reverse phase protein microarrays for multiplexed cell signaling analysis.

    Science.gov (United States)

    Calvert, Valerie S; Collantes, Rochelle; Elariny, Hazem; Afendy, Arian; Baranova, Ancha; Mendoza, Michael; Goodman, Zachary; Liotta, Lance A; Petricoin, Emanuel F; Younossi, Zobair M

    2007-07-01

    Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. Omental adipose tissue, a biologically active organ secreting adipokines and cytokines, may play a role in the development of NAFLD. We tested this hypothesis with reverse-phase protein microarrays (RPA) for multiplexed cell signaling analysis of adipose tissue from patients with NAFLD. Omental adipose tissue was obtained from 99 obese patients. Liver biopsies obtained at the time of surgery were all read by the same hepatopathologist. Adipose tissue was exposed to rapid pressure cycles to extract protein lysates. RPA was used to investigate intracellular signaling. Analysis of 54 different kinase substrates and cell signaling endpoints showed that an insulin signaling pathway is deranged in different locations in NAFLD patients. Furthermore, components of insulin receptor-mediated signaling differentiate most of the conditions on the NAFLD spectrum. For example, PKA (protein kinase A) and AKT/mTOR (protein kinase B/mammalian target of rapamycin) pathway derangement accurately discriminates patients with NASH from those with the non-progressive forms of NAFLD. PKC (protein kinase C) delta, AKT, and SHC phosphorylation changes occur in patients with simple steatosis. Amounts of the FKHR (forkhead factor Foxo1)phosphorylated at S256 residue were significantly correlated with AST/ALT ratio in all morbidly obese patients. Furthermore, amounts of cleaved caspase 9 and pp90RSK S380 were positively correlated in patients with NASH. Specific insulin pathway signaling events are altered in the adipose tissue of patients with NASH compared with patients with nonprogressive forms of NAFLD. These findings provide evidence for the role of omental fat in the pathogenesis, and potentially, the progression of NAFLD.

  7. Antibodies against human cytomegalovirus late protein UL94 in the pathogenesis of scleroderma-like skin lesions in chronic graft-versus-host disease.

    Science.gov (United States)

    Pastano, Rocco; Dell'Agnola, Chiara; Bason, Caterina; Gigli, Federica; Rabascio, Cristina; Puccetti, Antonio; Tinazzi, Elisa; Cetto, Gianluigi; Peccatori, Fedro; Martinelli, Giovanni; Lunardi, Claudio

    2012-09-01

    Human cytomegalovirus (hCMV) infection and its reactivation correlate both with the increased risk and with the worsening of graft-versus-host disease (GVHD). Because scleroderma-like skin lesions can occur in chronic GVHD (cGVHD) in allogeneic stem-cell transplant (HCT) patients and hCMV is relevant in the pathogenesis of systemic sclerosis (SSc), we evaluated the possible pathogenetic link between hCMV and skin cGVHD. Plasma from 18 HCT patients was tested for anti-UL94 and/or anti-NAG-2 antibodies, identified in SSc patients, by direct ELISA assays. Both donors and recipients were anti-hCMV IgG positive, without autoimmune diseases. Patients' purified anti-UL94 and anti-NAG-2 IgG binding to human umbilical endothelial cells (HUVECs) and fibroblasts was performed by FACS analysis and ELISA test. HUVECs apoptosis and fibroblasts proliferation induced by patients' anti-NAG-2 antibodies were measured by DNA fragmentation and cell viability, respectively. About 11/18 patients developed cGVHD and all of them showed skin involvement, ranging from diffuse SSc-like lesions to limited erythema. Eight of eleven cGVHD patients were positive for anti-UL94 and/or anti-NAG-2 antibodies. Remarkably, 4/5 patients who developed diffuse or limited SSc-like lesions had antibodies directed against both UL94 and NAG-2; their anti-NAG-2 IgG-bound HUVECs and fibroblasts induce both endothelial cell apoptosis and fibroblasts proliferation, similar to that induced by purified anti-UL94 and anti-NAG-2 antibodies obtained from SSc patients. In conclusion, our data suggest a pathogenetic link between hCMV infection and scleroderma-like skin cGVHD in HCT patients through a mechanism of molecular mimicry between UL94 viral protein and NAG-2 molecule, as observed in patients with SSc.

  8. The positive correlation of the CCL2-CCR2 axis with the disease activity may indicate the fundamental role in the pathogenesis of oral lichen planus.

    Science.gov (United States)

    Yin, Jingfang; Yang, Xi; Zeng, Qi; Yang, Linglan; Cheng, Bin; Tao, Xiaoan

    2016-01-01

    The important roles of CCL2 and its receptor CCR2 had been reported in a series of inflammatory disorders. However, few studies investigated the potential role of CCL2/CCR2 axis in oral lichen planus (OLP). Therefore, this study aimed to detect the expression of CCL2 and CCR2 in OLP lesions and compare their changes before and after treatment. CCL2 and CCR2 expression was investigated using immunohistochemical staining and real-time RT-PCR in 32 patients with OLP and eight controls. Moreover, changes in their expression after treatment with triamcinolone acetonide were assessed in lesions from three patients. CCL2+ and CCR2+ cells were few in the controls and remarkably increased in the epithelial and subepithelial layers of lesions (n = 32, all P < 0.001). However, the densities of CCL2+ and CCR2+ cells were not significantly different between reticular (n = 12) and erythematous/erosive lesions (n = 20), although they significantly decreased after treatment (627.7 ± 108.2 vs. 258.3 ± 148.3, P = 0.017; 1034.7 ± 74.6 vs. 648 ± 77.6, P = 0.003, respectively). CCL2+/CCR2+ cell numbers were positively correlated with disease activity (correlation coefficient, 0.588; P < 0.001; correlation coefficient, 0.409; P = 0.02, respectively). The results of this study indicated that the CCL2-CCR2 axis was involved in the pathogenesis of OLP and was positively correlated with disease activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Inflammatory bowel diseases (IBD) - critical discussion of etiology, pathogenesis, diagnostics, and therapy; Chronisch entzuendliche Darmerkrankungen - Kritische Diskussion von Aetiologie, Pathogenese, Diagnostik und Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Ochsenkuehn, T.; Sackmann, M.; Goeke, B. [Medizinische Klinik II, Klinikum der Universitaet Muenchen-Grosshadern (Germany)

    2003-01-01

    Aims Crohn's disease and ulcerative colitis are the most frequent inflammatory bowel diseases (IBD) with a prevalence of approximately one out of 500.Cytokine research opened new and potent treatment options and thus stimulated clinical and basic research.However, the IBD still remain a challenge for patients and physicians,demanding close cooperation between gastroenterologists,radiologists and surgeons.The basic understanding of IBD,which is necessary for efficient diagnostic and therapeutic concepts is reviewed. Based upon recent publications and our clinical experience we discuss aspects of etiology,pathogenesis,diagnostics,and therapy of Crohn's disease and ulcerative colitis. A genetically influenced, exaggerated and sustained immune response against the own gut flora seems to be one of the most important factors in the pathogenesis of IBD.Not less important are environmental influences.For instance, cigarette smoking had been judged to have some negative influence on the natural course of Crohn's disease.Now,however, recent studies show that smoking is even a significant independent risk factor in the pathogenesis of IBD. Since IBD and especially Crohn's disease can effect the whole body, detailed analysis of inflammatory organ involvement is necessary before therapy.For instance, the MRIenteroclysis technique adds a necessary diagnostic tool for the exploration of those parts of the small bowel that cannot been reached by routine endoscopy like the upper ileum and the lower jejunum. In terms of therapy, a change of paradigms can be observed: patients will no longer be treated only when symptoms arise, but will early be integrated into a therapeutic concept, which is determined by site and extent of the disease and adapted to the abilities and needs of the patient.Furthermore,immunosuppressive agents like azathioprine and 6-mercaptopurine will establish as central concept in the medical treatment of IBD.Discussion IBD-therapy should

  10. Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome.

    Science.gov (United States)

    Tanaka, Mari; Asada, Misako; Higashi, Atsuko Y; Nakamura, Jin; Oguchi, Akiko; Tomita, Mayumi; Yamada, Sachiko; Asada, Nariaki; Takase, Masayuki; Okuda, Tomohiko; Kawachi, Hiroshi; Economides, Aris N; Robertson, Elizabeth; Takahashi, Satoru; Sakurai, Takeshi; Goldschmeding, Roel; Muso, Eri; Fukatsu, Atsushi; Kita, Toru; Yanagita, Motoko

    2010-03-01

    The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-associated gene-1 (USAG-1) negatively regulates the renoprotective action of BMP-7 in a mouse model of tubular injury during acute renal failure. Here, we investigated the role of USAG-1 in renal function in Col4a3-/- mice, which model Alport syndrome. Ablation of Usag1 in Col4a3-/- mice led to substantial attenuation of disease progression, normalization of GBM ultrastructure, preservation of renal function, and extension of life span. Immunohistochemical analysis revealed that USAG-1 and BMP-7 colocalized in the macula densa in the distal tubules, lying in direct contact with glomerular mesangial cells. Furthermore, in cultured mesangial cells, BMP-7 attenuated and USAG-1 enhanced the expression of MMP-12, a protease that may contribute to GBM degradation. These data suggest that the pathogenetic role of USAG-1 in Col4a3-/- mice might involve crosstalk between kidney tubules and the glomerulus and that inhibition of USAG-1 may be a promising therapeutic approach for the treatment of Alport syndrome.

  11. Vitamin D, Phosphate and Fibroblast Growth Factor 23: A role in the pathogenesis and management of Chronic Kidney Disease and Chronic Kidney Disease Mineral and Bone Disorder

    OpenAIRE

    Damasiewicz, Matthew John

    2017-01-01

    Chronic kidney disease (CKD) is defined by the presence of proteinuria or decreased kidney function, with a prevalence of 10-15% in the adult population. CKD can progress to end-stage kidney disease (ESKD) and is associated with progressive abnormalities of bone and mineral metabolism, defined as CKD mineral and bone disorder (CKD-MBD). The use of vitamin D in CKD, the optimal level for initiating treatment and the use of current and novel biomarkers in the management of ...

  12. Kaposi sarcoma herpesvirus pathogenesis

    Science.gov (United States)

    Koch, Sandra; Schulz, Thomas F.

    2017-01-01

    Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’. PMID:28893942

  13. A single nucleotide polymorphism in primary-microRNA-146a reduces the expression of mature microRNA-146a in patients with Alzheimer's disease and is associated with the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Zhang, Bin; Wang, Aihong; Xia, Cuiping; Lin, Qunfeng; Chen, Chunfu

    2015-09-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia among the aging population. Although the incidence of the disease continues to increase, no cure has been developed. Effective treatment is restricted not only due to the lack of curative medicine, but also due to limited understanding of the underlying mechanisms and the difficulties in accurately diagnosing AD in its earliest stages prior to clinical symptoms. Micro (mi) RNAs (miR) have gained increasing attention in the investigation of neurodegenerative diseases. Previous reports have demonstrated that deregulation of miR‑146a‑5p is associated with the pathogenesis of human AD. In the present study, the coding region of primary (pri)‑miR‑146a in patients with AD was scanned and the rare C allele of rs2910164 was found to be associated with AD. Using reverse transcription quantitative polymerase chain reaction, it was demonstrated that site variation reduced the expression of mature miR‑146a‑5p. Notably, a reduction in the expression of miR‑146a‑5p led to less efficient inhibition of target genes, including Toll‑like receptor (TLR)2, which is important in the pathogenesis of AD. Biological function investigations in RAW264.7 cells indicated that, compared with the G allele, the rare C allele upregulated the expression of tumor necrosis factor‑α following stimulation with β‑amyloid. These findings suggested that one common polymorphism in pri‑miR‑146a may contribute to the genetic predisposition to AD by disrupting the production of miR‑146a‑5p and affecting the expression and function of TLR2.

  14. Effects of Endobacterium (Stenotrophomonas maltophilia on Pathogenesis-Related Gene Expression of Pine Wood Nematode (Bursaphelenchus xylophilus and Pine Wilt Disease

    Directory of Open Access Journals (Sweden)

    Long-Xi He

    2016-05-01

    Full Text Available Pine wilt disease (PWD caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus, is responsible for devastating epidemics in pine trees in Asia and Europe. Recent studies showed that bacteria carried by the PWN might be involved in PWD. However, the molecular mechanism of the interaction between bacteria and the PWN remained unclear. Now that the whole genome of B. xylophilus (Bursaphelenchus xylophilus is published, transcriptome analysis is a unique method to study the role played by bacteria in PWN. In this study, the transcriptome of aseptic B. xylophilus, B. xylophilus treated with endobacterium (Stenotrophomonas maltophilia NSPmBx03 and fungus B. xylophilus were sequenced. We found that 61 genes were up-regulated and 830 were down-regulated in B. xylophilus after treatment with the endobacterium; 178 genes were up-regulated and 1122 were down-regulated in fungus B. xylophilus compared with aseptic B. xylophilus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to study the significantly changed biological functions and pathways for these differentially expressed genes. Many pathogenesis-related genes, including glutathinone S-transferase, pectate lyase, ATP-binding cassette transporter and cytochrome P450, were up-regulated after B. xylophilus were treated with the endobacterium. In addition, we found that bacteria enhanced the virulence of PWN. These findings indicate that endobacteria might play an important role in the development and virulence of PWN and will improve our understanding of the regulatory mechanisms involved in the interaction between bacteria and the PWN.

  15. Effects of Endobacterium (Stenotrophomonas maltophilia) on Pathogenesis-Related Gene Expression of Pine Wood Nematode (Bursaphelenchus xylophilus) and Pine Wilt Disease

    Science.gov (United States)

    He, Long-Xi; Wu, Xiao-Qin; Xue, Qi; Qiu, Xiu-Wen

    2016-01-01

    Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is responsible for devastating epidemics in pine trees in Asia and Europe. Recent studies showed that bacteria carried by the PWN might be involved in PWD. However, the molecular mechanism of the interaction between bacteria and the PWN remained unclear. Now that the whole genome of B. xylophilus (Bursaphelenchus xylophilus) is published, transcriptome analysis is a unique method to study the role played by bacteria in PWN. In this study, the transcriptome of aseptic B. xylophilus, B. xylophilus treated with endobacterium (Stenotrophomonas maltophilia NSPmBx03) and fungus B. xylophilus were sequenced. We found that 61 genes were up-regulated and 830 were down-regulated in B. xylophilus after treatment with the endobacterium; 178 genes were up-regulated and 1122 were down-regulated in fungus B. xylophilus compared with aseptic B. xylophilus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to study the significantly changed biological functions and pathways for these differentially expressed genes. Many pathogenesis-related genes, including glutathinone S-transferase, pectate lyase, ATP-binding cassette transporter and cytochrome P450, were up-regulated after B. xylophilus were treated with the endobacterium. In addition, we found that bacteria enhanced the virulence of PWN. These findings indicate that endobacteria might play an important role in the development and virulence of PWN and will improve our understanding of the regulatory mechanisms involved in the interaction between bacteria and the PWN. PMID:27231904

  16. Mechanisms that synergistically regulate η-secretase processing of APP and Aη-α protein levels: relevance to pathogenesis and treatment of Alzheimer's disease.

    Science.gov (United States)

    Ward, Joseph; Wang, Haizhi; Saunders, Aleister J; Tanzi, Rudolph E; Zhang, Can

    2017-02-01

    The pathophysiology of Alzheimer's disease (AD) is characterized by the formation of cerebral β-amyloid plaque from a small peptide amyloid-β (Aβ). Aβ is generated from the canonical amyloid-β precursor protein (APP) proteolysis pathway through β- and γ-secretases. Decreasing Aβ levels through targeting APP processing is a very promising direction in clinical trials for AD. A novel APP processing pathway was recently identified, in which η-secretase processing of APP occurs and results in the generation of the carboxy-terminal fragment-η (CTF-η or η-CTF) (Wang et al., 2015) and Aη-α peptide (Willem et al., 2015). η-Secretase processing of APP may be up-regulated by at least two mechanisms: either through inhibition of lysosomal-cathepsin degradation pathway (Wang et al., 2015) or through inhibition of BACE1 that competes with η-secretase cleavage of APP (Willem et al., 2015). A thorough characterization of η-processing of APP is critical for a better understanding of AD pathogenesis and insights into results of clinical trials of AD. Here we further investigated η-secretase processing of APP using well-characterized cell models of AD. We found that these two mechanisms act synergistically toward increasing η-secretase processing of APP and Aη-α levels. Furthermore, we evaluated the effects of several other known secretase modulators on η-processing of APP. The results of our study should advance the understanding of pathophysiology of AD, as well as enhance the knowledge in developing effective AD treatments or interventions related to η-secretase processing of APP.

  17. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice.

    Science.gov (United States)

    Cohen, Jessica I; Roychowdhury, Sanjoy; McMullen, Megan R; Stavitsky, Abram B; Nagy, Laura E

    2010-08-01

    Complement is involved in the development of alcoholic liver disease in mice; however, the mechanisms for complement activation during ethanol exposure have not been identified. C1q, the recognition subunit of the first complement component, binds to apoptotic cells, thereby activating the classical complement pathway. Because ethanol exposure increases hepatocellular apoptosis, we hypothesized that ethanol-induced apoptosis would lead to activation of complement via the classical pathway. Wild-type and C1qa-/- mice were allowed free access to ethanol-containing diets or pair-fed control diets for 4 or 25 days. Ethanol feeding for 4 days increased apoptosis of Kupffer cells in both wild-type and C1qa-/- mice. Ethanol-induced deposition of C1q and C3b/iC3b/C3c was colocalized with apoptotic Kupffer cells in wild-type, but not C1qa-/-, mice. Furthermore, ethanol-induced increases in tumor necrosis factor-alpha and interleukin-6 expression at this early time point were suppressed in C1q-deficient mice. Chronic ethanol feeding (25 days) increased steatosis, hepatocyte apoptosis, and activity of serum alanine and aspartate aminotransferases in wild-type mice. These markers of hepatocyte injury were attenuated in C1qa-/- mice. In contrast, chronic ethanol (25 days)-induced increases in cytochrome P450 2E1 expression and oxidative stress did not differ between wild-type and C1qa-/- mice. For the first time, these data indicate that ethanol activates the classical complement pathway via C1q binding to apoptotic cells in the liver and that C1q contributes to the pathogenesis of ethanol-induced liver injury. Copyright (c) 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. [The perfection of biology and discrepancies of humoral regulation non-surmounted in phylogenesis. The unified algorithm of pathogenesis of metabolic "pandemics" as diseases of civilization].

    Science.gov (United States)

    Titov, V N

    2014-08-01

    The striving to biological perfection became apparent under becoming of each out of seven biological functions at the consequent stages of phylogenesis: at cellular autocrine level; in paracrin regulated functional cenosis of cells, organs; at the organism level. However, regulative interaction simultaneously on all levels in vivo results in functional incoordination. There are no reasons to name them contradictions. They are targeted to development of organism; they are formed on different levels of regulation and sometimes are not comparable in full measure; incoordinations of regulation are never outdone. The striving of biology to perfection resulted in incoordinations becoming less apparent in conditions of physiological level of physical chemical parameters and concentrations of biochemical analytes staying within strict standard limits. The physiological values "are backed up" from below by realization of biological function of homeostasis. The upper level "is limited" by biological function of endoecology--leanliness of intercellular medium. The incoordinations of humoral and nervous regulation are manifested under impact of unfavorable factors of environment on organism. At that, regulatory incoordinations developed at distantly spaced degrees of phylogenesis came out as pathogenic factors of "metabolic pandemics"--civilization diseases. Ifdisease ofn oninfectious etiology is propagated in population with rate of 5 - 7% its pathogenesis is based on disorder ofb iologicalf unctions and biological reactions, meaning those impacts of environment that Homo sapiens didn't learn to match in phylogenesis. The strict normalization of biological functions and biological reactions can be the only pathogenetically and effective prevention and treatment of this pathology. The application ofp harmaceuticals is the foundation ofs ymptomatic therapy only.

  19. Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for Alzheimer disease pathogenesis.

    Science.gov (United States)

    Kyriazis, George A; Wei, Zelan; Vandermey, Miriam; Jo, Dong-Gyu; Xin, Ouyang; Mattson, Mark P; Chan, Sic L

    2008-09-12

    Central to the pathogenesis of Alzheimer disease is the aberrant processing of the amyloid precursor protein (APP) to generate amyloid beta-peptide (Abeta), the principle component of amyloid plaques. The cell fate determinant Numb is a phosphotyrosine binding domain (PTB)-containing endocytic adapter protein that interacts with the carboxyl-terminal domain of APP. The physiological relevance of this interaction is unknown. Mammals produce four alternatively spliced variants of Numb that differ in the length of their PTB and proline-rich region. In the current study, we determined the influence of the four human Numb isoforms on the intracellular trafficking and processing of APP. Stable expression of Numb isoforms that differ in the PTB but not in the proline-rich region results in marked differences in the sorting of APP to the recycling and degradative pathways. Neural cells expressing Numb isoforms that lack the insert in the PTB (short PTB (SPTB)) exhibited marked accumulation of APP in Rab5A-labeled early endosomal and recycling compartments, whereas those expressing isoforms with the insertion in the PTB (long PTB (LPTB)) exhibited reduced amounts of cellular APP and its proteolytic derivatives relative to parental control cells. Neither the activities of the beta- and gamma-secretases nor the expression of APP mRNA were significantly different in the stably transfected cells, suggesting that the differential effects of the Numb proteins on APP metabolism is likely to be secondary to altered APP trafficking. In addition, the expression of SPTB-Numb increases at the expense of LPTB-Numb in neuronal cultures subjected to stress, suggesting a role for Numb in stress-induced Abeta production. Taken together, these results suggest distinct roles for the human Numb isoforms in APP metabolism and may provide a novel potential link between altered Numb isoform expression and increased Abeta generation.

  20. Viral induced oxidative and inflammatory response in Alzheimer's disease pathogenesis with identification of potential drug candidates: A systematic review using systems biology approach.

    Science.gov (United States)

    Talwar, Puneet; Gupta, Renu; Kushwaha, Suman; Agarwal, Rachna; Saso, Luciano; Kukreti, Shrikant; Kukreti, Ritushree

    2018-04-19

    Alzheimer's disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug-Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein-Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Ameliorative percutaneous lumbar discectomy

    International Nuclear Information System (INIS)

    Xiao Chengjiang; Su Huanbin; He Xiaofeng; Li Yanhao

    2005-01-01

    Objective: To ameliorate the percutaneous lumbar discectomy (APLD) for improving the effectiveness and amplifying the indicative range of PLD. Methods: To ameliorate percutaneous punctured route based on classic PLD and discectomy of extracting pulp out of the herniated disc with special pulpforceps. The statistical analysis of the therapeutic results on 750 disc protrusions of 655 cases undergone APLD following up from 6 to 54 months retrospectively. Results: The effective ratios were excellent in 40.2%, good for 46.6% and bad of 13.3%. No occurrance of intervertebral inflammation and paradiscal hematoma, there were only 1 case complicated with injuried cauda equina, and 4 cases with broken appliance within disc. Conclusions: APLD is effective and safe, not only indicative for inclusion disc herniation, but also for noninclusion herniation. (authors)

  2. The role of the apelinergic and vasopressinergic systems in the regulation of the cardiovascular system and the pathogenesis of cardiovascular disease.

    Science.gov (United States)

    Czarzasta, Katarzyna; Cudnoch-Jedrzejewska, Agnieszka

    2014-01-01

    Research studies indicate a role of the apelinergic and vasopressinergic systems both in the regulation of the cardiovascular system and the pathogenesis of CVD, including in such settings as obesity and stress. Based on these data, it may be suggested that interactions between these systems underlie numerous physiological and pathophysiological processes, some of them related to the cardiovascular system. Better understanding of the role of these systems and their interactions, both physiological and related to the pathogenesis of CVD, will allow further advances in prevention and drug therapy.

  3. Role of MHC-Linked Susceptibility Genes in the Pathogenesis of Human and Murine Lupus

    Directory of Open Access Journals (Sweden)

    Manfred Relle

    2012-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a chronic autoimmune disease characterized by the production of autoantibodies against nuclear antigens and a systemic inflammation that can damage a broad spectrum of organs. SLE patients suffer from a wide variety of symptoms, which can affect virtually almost any tissue. As lupus is difficult to diagnose, the worldwide prevalence of SLE can only be roughly estimated to range from 10 and 200 cases per 100,000 individuals with dramatic differences depending on gender, ethnicity, and location. Although the treatment of this disease has been significantly ameliorated by new therapies, improved conventional drug therapy options, and a trained expert eye, the underlying pathogenesis of lupus still remain widely unknown. The complex etiology reflects the complex genetic background of the disease, which is also not well understood yet. However, in the past few years advances in lupus genetics have been made, notably with the publication of genome-wide association studies (GWAS in humans and the identification of susceptibility genes and loci in mice. This paper reviews the role of MHC-linked susceptibility genes in the pathogenesis of systemic lupus erythematosus.

  4. Viral pathogenesis in diagrams

    National Research Council Canada - National Science Library

    Tremblay, Michel; Berthiaume, Laurent; Ackermann, Hans-Wolfgang

    2001-01-01

    .... The 268 diagrams in Viral Pathogenesis in Diagrams were selected from over 800 diagrams of English and French virological literature, including one derived from a famous drawing by Leonardo da Vinci...

  5. A case of insulinoma with non-alcoholic fatty liver disease: Roles of hyperphagia and hyperinsulinemia in pathogenesis of the disease.

    Science.gov (United States)

    Rokutan, Mariyo; Yabe, Daisuke; Komoto, Izumi; Kurose, Takeshi; Kawai, Jun; Nakamura, Takefumi; Imamura, Masayuki; Seino, Yutaka

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a serious health-related condition all over the world; the number of patients is increasing in Asian countries including Japan. Better understanding of its pathophysiology is required to develop effective therapeutics, as patients may go on to develop non-alcoholic steatohepatitis and hepatocellular carcinomas. While NAFLD is believed to be associated with metabolic risk factors such as obesity, diabetes, and dyslipidemia, its etiology remains largely unknown and the development or co-existence of NAFLD in patients with insulinoma has not been investigated. A 33-year-old male with an insulinoma, who had been hypoglycemic during the previous four years, developed abnormally elevated levels of liver enzymes and histological fatty liver characteristic of NAFLD by the time of admission to our hospital for resection of an insulinoma. His medical records for the previous eight years revealed that his bodyweight had increased gradually from 60 kg to 71 kg for seven years and then acutely increased to 79 kg in the latest one-year period. This sudden increase was thought to be due to the patient's self-described overeating of fruits to forestall hypoglycemia. Fresh fruits are rich in fructose, and the patient's triglycerides, alanine and aspartate transaminases showed an acute increase in the previous one-year period. After resection of the insulinoma, the levels of these parameters all were mostly restored, which suggests that hyperinsulinemia and subsequent hyperphagia played a role in the development of NAFLD in this case. This is the first report of patient with NAFLD and an insulinoma.

  6. Ultra-pure soft water ameliorates atopic skin disease by preventing metallic soap deposition in NC/Tnd mice and reduces skin dryness in humans.

    Science.gov (United States)

    Tanaka, Akane; Matsuda, Akira; Jung, Kyungsook; Jang, Hyosun; Ahn, Ginnae; Ishizaka, Saori; Amagai, Yosuke; Oida, Kumiko; Arkwright, Peter D; Matsuda, Hiroshi

    2015-09-01

    Mineral ions in tap water react with fatty acids in soap, leading to the formation of insoluble precipitate (metallic soap) on skin during washing. We hypothesised that metallic soap might negatively alter skin conditions. Application of metallic soap onto the skin of NC/Tnd mice with allergic dermatitis further induced inflammation with elevation of plasma immunoglobulin E and proinflammatory cytokine expression. Pruritus and dryness were ameliorated when the back of mice was washed with soap in Ca2+- and Mg2+-free ultra-pure soft water (UPSW). Washing in UPSW, but not tap water, also protected the skin of healthy volunteers from the soap deposition. Furthermore, 4 weeks of showering with UPSW reduced dryness and pruritus of human subjects with dry skin. Washing with UPSW may be therapeutically beneficial in patients with skin troubles.

  7. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation

    Science.gov (United States)

    Wu, Xue; Simpson, Jeremy; Hong, Jenny H.; Kim, Kyoung-Han; Thavarajah, Nirusha K.; Backx, Peter H.; Neel, Benjamin G.; Araki, Toshiyuki

    2011-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden death in children and young adults. Abnormalities in several signaling pathways are implicated in the pathogenesis of HCM, but the role of the RAS-RAF-MEK-ERK MAPK pathway has been controversial. Noonan syndrome (NS) is one of several autosomal-dominant conditions known as RASopathies, which are caused by mutations in different components of this pathway. Germline mutations in RAF1 (which encodes the serine-threonine kinase RAF1) account for approximately 3%–5% of cases of NS. Unlike other NS alleles, RAF1 mutations that confer increased kinase activity are highly associated with HCM. To explore the pathogenesis of such mutations, we generated knockin mice expressing the NS-associated Raf1L613V mutation. Like NS patients, mice heterozygous for this mutation (referred to herein as L613V/+ mice) had short stature, craniofacial dysmorphia, and hematologic abnormalities. Valvuloseptal development was normal, but L613V/+ mice exhibited eccentric cardiac hypertrophy and aberrant cardiac fetal gene expression, and decompensated following pressure overload. Agonist-evoked MEK-ERK activation was enhanced in multiple cell types, and postnatal MEK inhibition normalized the growth, facial, and cardiac defects in L613V/+ mice. These data show that different NS genes have intrinsically distinct pathological effects, demonstrate that enhanced MEK-ERK activity is critical for causing HCM and other RAF1-mutant NS phenotypes, and suggest a mutation-specific approach to the treatment of RASopathies. PMID:21339642

  8. Molecular pathogenesis of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Andersen, Jesper Bøje

    2014-01-01

    Cholangiocarcinoma (CCA) is an orphan cancer of the hepatobiliary tract, the incidence of which has increased in the past decade. The molecular pathogenesis of this treatment-refractory disease is poorly understood. Desmoplasia is a key causal feature of CCA; however, a majority of tumors develop...... and individualization for precision therapies. Many questions persevere as to the evolutionary process and cellular origin of the initial transforming event, the context of intratumoral plasticity and the causal driver action. Next-generation sequencing has begun to underline the persistent alterations, which may...

  9. Molecular Pathogenesis of Spondyloarthritis

    DEFF Research Database (Denmark)

    Carlsen, Thomas Gelsing

    This dissertation includes a presentation of knowledge on the molecular pathogenesis of spondyloarthritis achieved through a PhD programme at Aalborg University from 1.12.2011 - 1.12.2014. Work was carried out in the Laboratory of Medical Mass Spectrometry, headed by: Professor Svend Birkelund...

  10. Molecular Pathogenesis of Neuromyelitis Optica

    Science.gov (United States)

    Bukhari, Wajih; Barnett, Michael H; Prain, Kerri; Broadley, Simon A

    2012-01-01

    Neuromyelitis optica (NMO) is a rare autoimmune disorder, distinct from multiple sclerosis, causing inflammatory lesions in the optic nerves and spinal cord. An autoantibody (NMO IgG) against aquaporin-4 (AQP4), a water channel expressed on astrocytes is thought to be causative. Peripheral production of the antibody is triggered by an unknown process in genetically susceptible individuals. Anti-AQP4 antibody enters the central nervous system (CNS) when the blood brain barrier is made permeable and has high affinity for orthogonal array particles of AQP4. Like other autoimmune diseases, Th17 cells and their effector cytokines (such as interleukin 6) have been implicated in pathogenesis. AQP4 expressing peripheral organs are not affected by NMO IgG, but the antibody causes extensive astrocytic loss in specific regions of the CNS through complement mediated cytotoxicity. Demyelination occurs during the inflammatory process and is probably secondary to oligodendrocyte apoptosis subsequent to loss of trophic support from astrocytes. Ultimately, extensive axonal injury leads to severe disability. Despite rapid advances in the understanding of NMO pathogenesis, unanswered questions remain, particularly with regards to disease mechanisms in NMO IgG seronegative cases. Increasing knowledge of the molecular pathology is leading to improved treatment strategies. PMID:23202933

  11. Pathogenesis of varicelloviruses in primates.

    Science.gov (United States)

    Ouwendijk, Werner J D; Verjans, Georges M G M

    2015-01-01

    Varicelloviruses in primates comprise the prototypic human varicella-zoster virus (VZV) and its non-human primate homologue, simian varicella virus (SVV). Both viruses cause varicella as a primary infection, establish latency in ganglionic neurons and reactivate later in life to cause herpes zoster in their respective hosts. VZV is endemic worldwide and, although varicella is usually a benign disease in childhood, VZV reactivation is a significant cause of neurological disease in the elderly and in immunocompromised individuals. The pathogenesis of VZV infection remains ill-defined, mostly due to the species restriction of VZV that impedes studies in experimental animal models. SVV infection of non-human primates parallels virological, clinical, pathological and immunological features of human VZV infection, thereby providing an excellent model to study the pathogenesis of varicella and herpes zoster in its natural host. In this review, we discuss recent studies that provided novel insight in both the virus and host factors involved in the three elementary stages of Varicellovirus infection in primates: primary infection, latency and reactivation. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. Mid-Atlantic Microbial Pathogenesis Meeting

    Science.gov (United States)

    2005-12-01

    rheumatic fever, yet little is understood about the regulation of streptococcal genes involved in disease processes and survival in the host. Genome...of brucellosis, a disease that is characterized by abortion and infertility in ruminant animals and undulant fever in humans. In the natural hosts...were presented at this session. 15. SUBJECT TERMS bacteria, pathogenesis, microbiology, virulence, disease 16. SECURITY CLASSIFICATION OF: 17

  13. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    Science.gov (United States)

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  14. Pathogenesis of Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Wolters, Paul J.; Collard, Harold R.; Jones, Kirk D.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease associated with aging that is characterized by the histopathological pattern of usual interstitial pneumonia. Although an understanding of the pathogenesis of IPF is incomplete, recent advances delineating specific clinical and pathologic features of IPF have led to better definition of the molecular pathways that are pathologically activated in the disease. In this review we highlight several of these advances, with a focus on genetic predisposition to IPF and how genetic changes, which occur primarily in epithelial cells, lead to activation of profibrotic pathways in epithelial cells. We then discuss the pathologic changes within IPF fibroblasts and the extracellular matrix, and we conclude with a summary of how these profibrotic pathways may be interrelated. PMID:24050627

  15. Tabetri™ (Tabebuia avellanedae Ethanol Extract Ameliorates Osteoarthritis Symptoms Induced by Monoiodoacetate through Its Anti-Inflammatory and Chondroprotective Activities

    Directory of Open Access Journals (Sweden)

    Jae Gwang Park

    2017-01-01

    Full Text Available Although osteoarthritis (OA, a degenerative joint disease characterized by the degradation of joint articular cartilage and subchondral bones, is generally regarded as a degenerative rather than inflammatory disease, recent studies have indicated the involvement of inflammation in OA pathogenesis. Tabebuia avellanedae has long been used to treat various diseases; however, its role in inflammatory response and the underlying molecular mechanisms remain poorly understood. In this study, the pharmacological effects of Tabetri (Tabebuia avellanedae ethanol extract (Ta-EE on OA pathogenesis induced by monoiodoacetate (MIA and the underlying mechanisms were investigated using experiments with a rat model and in vitro cellular models. In the animal model, Ta-EE significantly ameliorated OA symptoms and reduced the serum levels of inflammatory mediators and proinflammatory cytokines without any toxicity. The anti-inflammatory activity of Ta-EE was further confirmed in a macrophage-like cell line (RAW264.7. Ta-EE dramatically suppressed the production and mRNA expressions of inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells without any cytotoxicity. Finally, the chondroprotective effect of Ta-EE was examined in a chondrosarcoma cell line (SW1353. Ta-EE markedly suppressed the mRNA expression of matrix metalloproteinase genes. The anti-inflammatory and chondroprotective activities of Ta-EE were attributed to the targeting of the nuclear factor-kappa B (NF-κB and activator protein-1 (AP-1 signaling pathways in macrophages and chondrocytes.

  16. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.

    Science.gov (United States)

    Kim, Dong Eon; Lee, Yonghyun; Kim, MinGyo; Lee, Soyoung; Jon, Sangyong; Lee, Seung-Hyo

    2017-09-01

    Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4 + T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Helicobacter pylori virulence and cancer pathogenesis.

    Science.gov (United States)

    Yamaoka, Yoshio; Graham, David Y

    2014-06-01

    Helicobacter pylori is human gastric pathogen that causes chronic and progressive gastric mucosal inflammation and is responsible for the gastric inflammation-associated diseases, gastric cancer and peptic ulcer disease. Specific outcomes reflect the interplay between host-, environmental- and bacterial-specific factors. Progress in understanding putative virulence factors in disease pathogenesis has been limited and many false leads have consumed scarce resources. Few in vitro-in vivo correlations or translational applications have proved clinically relevant. Reported virulence factor-related outcomes reflect differences in relative risk of disease rather than specificity for any specific outcome. Studies of individual virulence factor associations have provided conflicting results. Since virulence factors are linked, studies of groups of putative virulence factors are needed to provide clinically useful information. Here, the authors discuss the progress made in understanding the role of H. pylori virulence factors CagA, vacuolating cytotoxin, OipA and DupA in disease pathogenesis and provide suggestions for future studies.

  18. Micronutrient Antioxidants and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Guanliang Chen

    2016-08-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is one of the most important chronic liver diseases worldwide and has garnered increasing attention in recent decades. NAFLD is characterized by a wide range of liver changes, from simple steatosis to nonalcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. The blurred pathogenesis of NAFLD is very complicated and involves lipid accumulation, insulin resistance, inflammation, and fibrogenesis. NAFLD is closely associated with complications such as obesity, diabetes, steatohepatitis, and liver fibrosis. During the progression of NAFLD, reactive oxygen species (ROS are activated and induce oxidative stress. Recent attempts at establishing effective NAFLD therapy have identified potential micronutrient antioxidants that may reduce the accumulation of ROS and finally ameliorate the disease. In this review, we present the molecular mechanisms involved in the pathogenesis of NAFLD and introduce some dietary antioxidants that may be used to prevent or cure NAFLD, such as vitamin D, E, and astaxanthin.

  19. Pathogenesis of oral FIV infection.

    Directory of Open Access Journals (Sweden)

    Craig Miller

    Full Text Available Feline immunodeficiency virus (FIV is the feline analogue of human immunodeficiency virus (HIV and features many hallmarks of HIV infection and pathogenesis, including the development of concurrent oral lesions. While HIV is typically transmitted via parenteral transmucosal contact, recent studies prove that oral transmission can occur, and that saliva from infected individuals contains significant amounts of HIV RNA and DNA. While it is accepted that FIV is primarily transmitted by biting, few studies have evaluated FIV oral infection kinetics and transmission mechanisms over the last 20 years. Modern quantitative analyses applied to natural FIV oral infection could significantly further our understanding of lentiviral oral disease and transmission. We therefore characterized FIV salivary viral kinetics and antibody secretions to more fully document oral viral pathogenesis. Our results demonstrate that: (i saliva of FIV-infected cats contains infectious virus particles, FIV viral RNA at levels equivalent to circulation, and lower but significant amounts of FIV proviral DNA; (ii the ratio of FIV RNA to DNA is significantly higher in saliva than in circulation; (iii FIV viral load in oral lymphoid tissues (tonsil, lymph nodes is significantly higher than mucosal tissues (buccal mucosa, salivary gland, tongue; (iv salivary IgG antibodies increase significantly over time in FIV-infected cats, while salivary IgA levels remain static; and, (v saliva from naïve Specific Pathogen Free cats inhibits FIV growth in vitro. Collectively, these results suggest that oral lymphoid tissues serve as a site for enhanced FIV replication, resulting in accumulation of FIV particles and FIV-infected cells in saliva. Failure to induce a virus-specific oral mucosal antibody response, and/or viral capability to overcome inhibitory components in saliva may perpetuate chronic oral cavity infection. Based upon these findings, we propose a model of oral FIV pathogenesis

  20. Immunoproteasome overexpression underlies the pathogenesis of thyroid oncocytes and primary hypothyroidism: studies in humans and mice.

    Directory of Open Access Journals (Sweden)

    Hiroaki J Kimura

    2009-11-01

    Full Text Available Oncocytes of the thyroid gland (Hürthle cells are found in tumors and autoimmune diseases. They have a unique appearance characterized by abundant granular eosinophilic cytoplasm and hyperchromatic nucleus. Their pathogenesis has remained, thus far, unknown.Using transgenic mice chronically expressing IFNgamma in thyroid gland, we showed changes in the thyroid follicular epithelium reminiscent of the human oncocyte. Transcriptome analysis comparing transgenic to wild type thyrocytes revealed increased levels of immunoproteasome subunits like LMP2 in transgenics, suggesting an important role of the immunoproteasome in oncocyte pathogenesis. Pharmacologic blockade of the proteasome, in fact, ameliorated the oncocytic phenotype. Genetic deletion of LMP2 subunit prevented the development of the oncocytic phenotype and primary hypothyroidism. LMP2 was also found expressed in oncocytes from patients with Hashimoto thyroiditis and Hürthle cell tumors.In summary, we report that oncocytes are the result of an increased immunoproteasome expression secondary to a chronic inflammatory milieu, and suggest LMP2 as a novel therapeutic target for the treatment of oncocytic lesions and autoimmune hypothyroidism.

  1. Pathogenesis of helicobacter pylori infection involves interaction ...

    African Journals Online (AJOL)

    It is now clear that both bacterial virulence factors and host susceptibility play key roles in disease pathogenesis. The nature and levels of these interactions between these major factors has been found to determine the spectrum of clinical outcomes of the infection with this important bacterium. Virulence factors include the ...

  2. Pathogenesis of Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Beom Jin Lim

    2016-11-01

    Full Text Available Focal segmental glomerulosclerosis (FSGS is characterized by focal and segmental obliteration of glomerular capillary tufts with increased matrix. FSGS is classified as collapsing, tip, cellular, perihilar and not otherwise specified variants according to the location and character of the sclerotic lesion. Primary or idiopathic FSGS is considered to be related to podocyte injury, and the pathogenesis of podocyte injury has been actively investigated. Several circulating factors affecting podocyte permeability barrier have been proposed, but not proven to cause FSGS. FSGS may also be caused by genetic alterations. These genes are mainly those regulating slit diaphragm structure, actin cytoskeleton of podocytes, and foot process structure. The mode of inheritance and age of onset are different according to the gene involved. Recently, the role of parietal epithelial cells (PECs has been highlighted. Podocytes and PECs have common mesenchymal progenitors, therefore, PECs could be a source of podocyte repopulation after podocyte injury. Activated PECs migrate along adhesion to the glomerular tuft and may also contribute to the progression of sclerosis. Markers of activated PECs, including CD44, could be used to distinguish FSGS from minimal change disease. The pathogenesis of FSGS is very complex; however, understanding basic mechanisms of podocyte injury is important not only for basic research, but also for daily diagnostic pathology practice.

  3. Bordetella pertussis pathogenesis: current and future challenges

    Science.gov (United States)

    Melvin, Jeffrey A.; Scheller, Erich V.; Miller, Jeff F.; Cotter, Peggy A.

    2014-01-01

    Pertussis, or whooping cough, has recently reemerged as a major public health threat despite high levels of vaccination against the etiological agent, Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into virulence factor function. We also discuss the changing epidemiology of pertussis and the challenges of vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies. PMID:24608338

  4. Demonstrating concepts of pathogenesis using effectors of Phytophthora infestans

    Science.gov (United States)

    Pathogenesis, or how pathogens cause disease, is an important concept in plant pathology. The study of pathogenesis in plant pathology has rapidly expanded and is now a significant portion of plant pathology research (especially research at the molecular level of host-pathogen interaction). With the...

  5. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    Science.gov (United States)

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  6. Trichomonas vaginalis Pathogenesis: a Narrative Review

    Directory of Open Access Journals (Sweden)

    Zahra Arab-Mazar

    2015-07-01

    Full Text Available In the latest articles which were published during 2013-2014, Trichomonas vaginalis (T. vaginalis was mentioned as a neglected sexual transmission disease (STD, while the exact mechanism of its pathogenesis has not been cleared yet. Although trichomonasiasis is easy curable, there is concern that resistance to drug are increasing. This common infection as concerning the important public health implications needs more research to be done for understanding the diagnosis, treatment, immunology and pathogenesis. In this review we searched all valuable and relevant information considering the pathogenesis of T. vaginalis. We referred to the information databases of Medline, PubMed, Scopus and Google scholar. The used keywords were the combinations of T. vaginalis and words associated with pathogenicity. This review discusses the host-parasite interaction and pathogenicity of this parasite.

  7. No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: studies in mouse models of uromodulin-associated kidney disease.

    Science.gov (United States)

    Kemter, Elisabeth; Sklenak, Stefanie; Rathkolb, Birgit; Hrabě de Angelis, Martin; Wolf, Eckhard; Aigner, Bernhard; Wanke, Ruediger

    2014-04-11

    Uromodulin (UMOD)-associated kidney disease (UAKD) belongs to the hereditary progressive ER storage diseases caused by maturation defects of mutant UMOD protein. Current treatments of UAKD patients are symptomatic and cannot prevent disease progression. Two in vitro studies reported a positive effect of the chemical chaperone sodium 4-phenylbutyrate (4-PBA) on mutant UMOD maturation. Thus, 4-PBA was suggested as a potential treatment for UAKD. This study evaluated the effects of 4-PBA in two mouse models of UAKD. In contrast to previous in vitro studies, treatment with 4-PBA did not increase HSP70 expression or improve maturation and trafficking of mutant UMOD in vivo. Kidney function of UAKD mice was actually deteriorated by 4-PBA treatment. In transfected tubular epithelial cells, 4-PBA did not improve maturation but increased the expression level of both mutant and wild-type UMOD protein. Activation of NF-κB pathway in thick ascending limb of Henle's loop cells of UAKD mice was detected by increased abundance of RelB and phospho-IκB kinase α/β, an indirect activator of NF-κB. Furthermore, the abundance of NF-κB1 p105/p50, NF-κB2 p100/p52, and TRAF2 was increased in UAKD. NF-κB activation was identified as a novel disease mechanism of UAKD and might be a target for therapeutic intervention.

  8. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer's disease-related pathologies in APPswe/PS1dE9 transgenic mice.

    Science.gov (United States)

    Tsai-Teng, Tzeng; Chin-Chu, Chen; Li-Ya, Lee; Wan-Ping, Chen; Chung-Kuang, Lu; Chien-Chang, Shen; Chi-Ying, Huang F; Chien-Chih, Chen; Shiao, Young-Ji

    2016-06-27

    The fruiting body of Hericium erinaceus has been demonstrated to possess anti-dementia activity in mouse model of Alzheimer's disease and people with mild cognitive impairment. However, the therapeutic potential of Hericium erinaceus mycelia on Alzheimer's disease remains unclear. In this study, the effects of erinacine A-enriched Hericium erinaceus mycelia (HE-My) on the pathological changes in APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease are studied. After a 30 day oral administration to 5 month-old female APPswe/PS1dE9 transgenic mice, we found that HE-My and its ethanol extracts (HE-Et) attenuated cerebral Aβ plaque burden. It's worth noting that the attenuated portion of a plaque is the non-compact structure. The level of insulin-degrading enzyme was elevated by both HE-My and HE-Et in cerebral cortex. On the other hand, the number of plaque-activated microglia and astrocytes in cerebral cortex and hippocampus were diminished, the ratio of nerve growth factor (NGF) to NGF precursor (proNGF) was increased and hippocampal neurogenesis was promoted after these administrations. All the mentioned benefits of these administrations may therefore improve the declined activity of daily living skill in APPswe/PS1dE9 transgenic mice. These results highlight the therapeutic potential of HE-My and HE-Et on Alzheimer's disease. Therefore, the effective components of HE-My and HE-Et are worth to be developed to become a therapeutic drug for Alzheimer's disease.

  9. Marked in Vivo Donor Regulatory T Cell Expansion via Interleukin-2 and TL1A-Ig Stimulation Ameliorates Graft-versus-Host Disease but Preserves Graft-versus-Leukemia in Recipients after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Wolf, Dietlinde; Barreras, Henry; Bader, Cameron S; Copsel, Sabrina; Lightbourn, Casey O; Pfeiffer, Brent J; Altman, Norman H; Podack, Eckhard R; Komanduri, Krishna V; Levy, Robert B

    2017-05-01

    Regulatory T cells (Tregs) are critical for self-tolerance. Although adoptive transfer of expanded Tregs limits graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation (HSCT), ex vivo generation of large numbers of functional Tregs remains difficult. Here, we demonstrate that in vivo targeting of the TNF superfamily receptor TNFRSF25 using the TL1A-Ig fusion protein, along with IL-2, resulted in transient but massive Treg expansion in donor mice, which peaked within days and was nontoxic. Tregs increased in multiple compartments, including blood, lymph nodes, spleen, and colon (GVHD target tissue). Tregs did not expand in bone marrow, a critical site for graft-versus-malignancy responses. Adoptive transfer of in vivo-expanded Tregs in the setting of MHC-mismatched or MHC-matched allogeneic HSCT significantly ameliorated GVHD. Critically, transplantation of Treg-expanded donor cells facilitated transplant tolerance without GVHD, with complete sparing of graft-versus-malignancy. This approach may prove valuable as a therapeutic strategy promoting transplantation tolerance. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  10. H+, Water and Urea Transport in the Inner Medullary Collecting Duct and Their Role in the Prevention and Pathogenesis of Renal Stone Disease

    Science.gov (United States)

    Wall, Susan M.; Klein, Janet D.

    2008-09-01

    The inner medullary collecting duct (IMCD) is the final site within the kidney for the reabsorption of urea, water and electrolytes and for the secretion of H+ before the luminal fluid becomes the final urine. Transporters expressed in the IMCD contribute to the generation of the large ion gradients that exist between the interstitium and the collecting duct lumen. Thus, the luminal fluid within the human IMCD can reach an osmolality of 1200 mOsm/kg H2O and a pH of 4. This ability of the human nephron to concentrate and acidify the urine might predispose to stone formation. However, under treatment conditions that predispose to stone formation, such as during hypercalciuria, the kidney mitigates stone formation by reducing solute concentration by reducing H2O reabsorption. Moreover, the kidney attenuates stone formation by tightly controlling acid-base balance, which prevents the bone loss, hypocitraturia and hypercalciuria observed during metabolic acidosis by augmenting net H+ excretion by tightly regulating H+ transporter function and through luminal buffering, particularly with NH3. This article will review the ion transporters present in the mammalian IMCD and their role in the prevention and in the pathogenesis of renal stone formation.

  11. AAV8-mediated expression of glucocerebrosidase ameliorates the storage pathology in the visceral organs of a mouse model of Gaucher disease.

    Science.gov (United States)

    McEachern, Kerry Anne; Nietupski, Jennifer B; Chuang, Wei-Lien; Armentano, Donna; Johnson, Jennifer; Hutto, Elizabeth; Grabowski, Gregory A; Cheng, Seng H; Marshall, John

    2006-06-01

    Gaucher disease is the most common of the lysosomal storage disorders. The primary manifestation is the accumulation of glucosylceramide (GL-1) in the macrophages of liver and spleen (Gaucher cells), due to a deficiency in the lysosomal hydrolase glucocerebrosidase (GC). A Gaucher mouse model (D409V/null) exhibiting reduced GC activity and accumulation of GL-1 was used to evaluate adeno-associated viral (AAV)-mediated gene therapy. A recombinant AAV8 serotype vector bearing human GC (hGC) was administered intravenously to the mice. The levels of hGC in blood and tissues were determined, as were the effects of gene transfer on the levels of GL-1. Histopathological evaluation was performed on liver, spleen and lungs. Vector administration to pre-symptomatic Gaucher mice resulted in sustained hepatic secretion of hGC at levels that prevented GL-1 accumulation and the appearance of Gaucher cells in the liver, spleen and lungs. AAV administration to older mice with established disease resulted in normalization of GL-1 levels in the spleen and liver and partially reduced that in the lung. Analysis of the bronchoalveolar lavage fluid (BALF) from treated mice showed significant correction of the abnormal cellularity and cell differentials. No antibodies to the expressed hGC were detected following a challenge with recombinant enzyme suggesting the animals were tolerized to human enzyme. These data demonstrate the effectiveness of AAV-mediated gene therapy at preventing and correcting the biochemical and pathological abnormalities in a Gaucher mouse model, and thus support the continued consideration of this vector as an alternative approach to treating Gaucher disease. Copyright 2006 John Wiley & Sons, Ltd.

  12. Salicornia Extract Ameliorates Salt-Induced Aggravation of Nonalcoholic Fatty Liver Disease in Obese Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Kim, Jae Hwan; Suk, Sujin; Jang, Woo Jung; Lee, Chang Hyung; Kim, Jong-Eun; Park, Jin-Kyu; Kweon, Mee-Hyang; Kim, Jong Hun; Lee, Ki Won

    2017-07-01

    High-fat and high-salt intakes are among the major risks of chronic diseases including obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Salicornia is a halophytic plant known to exert antioxidant, antidiabetic, and hypolipidemic effects, and Salicornia-extracted salt (SS) has been used as a salt substitute. In this study, the effects of SS and purified salt (PS) on the aggravation of NAFLD/NASH were compared. C57BL/6J male mice (8-wk-old) were fed a high-fat diet (HFD) for 6 mo and divided into 3 dietary groups, which were additionally fed HFD, HFD + SS, and HFD + PS for 13 wk. PS induced aggravation of NAFLD/NASH in HFD-fed mice. Although the actual salt intake was same between the PS and SS groups as 1% of the diet (extrapolated from the World Health Organization [WHO] guideline), SS induced less liver injury and hepatic steatosis compared to PS. The hepatic mRNA expressions of inflammatory cytokines and fibrosis marker were significantly lower in the SS group than the PS group. Oxidative stress is one of the major causes of inflammation in NAFLD/NASH. Results of the component analysis showed that the major polyphenols that exhibited antioxidant activity in the Salicornia water extract were ferulic acid, caffeic acid, and isorhamnetin. These results suggest that even the level of salt intake recommended by WHO can accelerate the progression of liver disease in obese individuals consuming HFD. It is proposed that SS can be a salt substitute for obese individuals who consume HFD. © 2017 Institute of Food Technologists®.

  13. Effects of MicroRNA on Regulatory T Cells and Implications for Adoptive Cellular Therapy to Ameliorate Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Keli L. Hippen

    2018-01-01

    Full Text Available Regulatory T cells (Tregs are key mediators of the immune system. MicroRNAs (miRNAs are a family of ~22 nucleotide non-coding RNAs that are processed from longer precursors by the RNases Drosha and Dicer. miRNA regulates protein expression posttranscriptionally through mRNA destabilization or translational silencing. A critical role for miRNA in Treg function was initially discovered when both Dicer and Drosha knockout (KO mice were found to develop a fatal autoimmune disease phenotypically similar to Foxp3 KO mice.

  14. The Roles of Environmental Pollutants in the Pathogenesis and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Toxic chemicals in pollutants may destroy or cause mutation ... Keywords: Diabetes, Pathogenesis, Pancreas, Mutation, Insulin, Blood vessel. INTRODUCTION. Diabetes is a chronic disease that occurs either when .... alter insulin metabolism.

  15. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of β-secretase in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Ping He

    Full Text Available Thalidomide is a tumor necrosis factor alpha (TNFα inhibitor which has been found to have abilities against tumor growth, angiogenesis and inflammation. Recently, it has been applied in clinic for the treatment of multiple myeloma as well as some inflammatory diseases. However, whether thalidomide has any therapeutic effects on neurodegenerative disorders, i.e. Alzheimer's disease (AD is not clear. AD is characterized by excessive amount of amyloid β peptides (Aβ, which results in a significant release of inflammatory factors, including TNFα in the brain. Studies have shown that inhibition of TNFα reduces amyloid-associated pathology, prevents neuron loss and improves cognition. Our recent report showed that genetic inhibition of TNFα/TNF receptor signal transduction down-regulates β amyloid cleavage enzyme 1 (BACE1 activity, reduces Aβ generation and improves learning and memory deficits. However, the mechanism of thalidomide involving in the mitigation of AD neuropathological features remains unclear. Here, we chronically administrated thalidomide on human APPswedish mutation transgenic (APP23 mice from 9 months old (an onset of Aβ deposits and early stage of AD-like changes to 12 months old. We found that, in addition of dramatic decrease in the activation of both astrocytes and microglia, thalidomide significantly reduces Aβ load and plaque formation. Furthermore, we found a significant decrease in BACE1 level and activity with long-term thalidomide application. Interestingly, these findings cannot be observed in the brains of 12-month-old APP23 mice with short-term treatment of thalidomide (3 days. These results suggest that chronic thalidomide administration is an alternative approach for AD prevention and therapeutics.

  16. PrPST, a Soluble, Protease Resistant and Truncated PrP Form Features in the Pathogenesis of a Genetic Prion Disease

    Science.gov (United States)

    Frid, Kati; Binyamin, Orli; Gabizon, Ruth

    2013-01-01

    While the conversion of PrPC into PrPSc in the transmissible form of prion disease requires a preexisting PrPSc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrPST), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrPST as in TgMHu2ME199K mice, and “classical” PrPSc as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition. PMID:23922744

  17. PrP(ST), a soluble, protease resistant and truncated PrP form features in the pathogenesis of a genetic prion disease.

    Science.gov (United States)

    Friedman-Levi, Yael; Mizrahi, Michal; Frid, Kati; Binyamin, Orli; Gabizon, Ruth

    2013-01-01

    While the conversion of PrP(C) into PrP(Sc) in the transmissible form of prion disease requires a preexisting PrP(Sc) seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrP(ST)), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrP(ST) as in TgMHu2ME199K mice, and "classical" PrP(Sc) as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.

  18. PrP(ST, a soluble, protease resistant and truncated PrP form features in the pathogenesis of a genetic prion disease.

    Directory of Open Access Journals (Sweden)

    Yael Friedman-Levi

    Full Text Available While the conversion of PrP(C into PrP(Sc in the transmissible form of prion disease requires a preexisting PrP(Sc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrP(ST, a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrP(ST as in TgMHu2ME199K mice, and "classical" PrP(Sc as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.

  19. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders.

    Science.gov (United States)

    Di Domenico, Fabio; Tramutola, Antonella; Butterfield, D Allan

    2017-10-01

    Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites.

    Science.gov (United States)

    Breda, Carlo; Sathyasaikumar, Korrapati V; Sograte Idrissi, Shama; Notarangelo, Francesca M; Estranero, Jasper G; Moore, Gareth G L; Green, Edward W; Kyriacou, Charalambos P; Schwarcz, Robert; Giorgini, Flaviano

    2016-05-10

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.