WorldWideScience

Sample records for ameliorate disease pathogenesis

  1. Plumbagin, a vitamin K3 analogue ameliorate malaria pathogenesis by inhibiting oxidative stress and inflammation.

    Science.gov (United States)

    Gupta, Amit Chand; Mohanty, Shilpa; Saxena, Archana; Maurya, Anil Kumar; Bawankule, Dnyaneshwar U

    2018-03-22

    Plumbagin, a vitamin K3 analogue is the major active constituent in several plants including root of Plumbago indica Linn. This compound has been shown to exhibit a wide spectrum of pharmacological activities. The present investigation was to evaluate the ameliorative effects of plumbagin (PL) against severe malaria pathogenesis due to involvement of oxidative stress and inflammatory response in Plasmodium berghei infected malaria in mice. Malaria pathogenesis was induced by intra-peritoneal injection of P. berghei infected red blood cells into the Swiss albino mice. PL was administered orally at doses of 3, 10 and 30 mg/kg/day following Peter's 4 day suppression test. Oral administration of PL showed significant reduction of parasitaemia and increase in mean survival time. PL treatment is also attributed to significant increase in the blood glucose and haemoglobin level when compared with vehicle-treated infected mice. Significant inhibition in level of oxidative stress and pro-inflammation related markers were observed in PL treated group. The trend of inhibition in oxidative stress markers level after oral treatment of PL was MPO > LPO > ROS in organ injury in P. berghei infected mice. This study showed that plumbagin is able to ameliorate malaria pathogenesis by augmenting anti-oxidative and anti-inflammatory mechanism apart from its effect on reducing parasitaemia and increasing mean survival time of malaria-induced mice.

  2. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  3. STAT6 deficiency ameliorates Graves' disease severity by suppressing thyroid epithelial cell hyperplasia.

    Science.gov (United States)

    Jiang, Xuechao; Zha, Bingbing; Liu, Xiaoming; Liu, Ronghua; Liu, Jun; Huang, Enyu; Qian, Tingting; Liu, Jiajing; Wang, Zhiming; Zhang, Dan; Wang, Luman; Chu, Yiwei

    2016-12-01

    Signal transducer and activator of transcription 6 (STAT6) is involved in epithelial cell growth. However, little is known regarding the STAT6 phosphorylation status in Graves' disease (GD) and its role in thyroid epithelial cells (TECs). In this study, we found that STAT6 phosphorylation (p-STAT6) was significantly increased in TECs from both GD patients and experimental autoimmune Graves' disease mice and that STAT6 deficiency ameliorated GD symptoms. Autocrine IL-4 signalling in TECs activated the phosphorylation of STAT6 via IL-4 R engagement, and the downstream targets of STAT6 were Bcl-xL and cyclin D1. Thus, the IL-4-STAT6-Bcl-xL/cyclin D1 pathway is crucial for TEC hyperplasia, which aggravates GD. More importantly, in vitro and in vivo experiments demonstrated that STAT6 phosphorylation inhibited by AS1517499 decreased TEC hyperplasia, thereby reducing serum T3 and T4 and ameliorating GD. Thus, our study reveals that in addition to the traditional pathogenesis of GD, in which autoantibody TRAb stimulates thyroid-stimulating hormone receptors and consequently produces T3, T4, TRAb could also trigger TECs producing IL-4, and IL-4 then acts in an autocrine manner to activate p-STAT6 signalling and stimulate unrestricted cell growth, thus aggravating GD. These findings suggest that STAT6 inhibitors could be potent therapeutics for treating GD.

  4. Pathogenesis of Nervous and Mental Diseases in Children.

    Science.gov (United States)

    Harms, Ernest, Ed.

    Major pathogenic sources of mental diseases in children and a classification of these diseases are considered. Contributions include the following: pathogenesis of mental diseases in childhood by Ernest Harms, organ inferiority and psychiatric disorders by Bernard Shulman and Howard Klapman, pathogenesis of neurological disorders by George Gold,…

  5. Pathogenesis of Parkinson's disease

    OpenAIRE

    Riederer, Peter; Lange, Klaus W.

    1992-01-01

    The importance of genetic aspects, ageing, environmental factors, head trauma, defective mitochondrial respiration, altered iron metabolism, oxidative stress and glutamatergic overactivity of the basal ganglia in the pathogenesis of Parkinson's disease (PD) are considered in this review.

  6. Pathogenesis of diverticulosis and diverticular disease.

    Science.gov (United States)

    Walker, Marjorie M; Harris, Angela K

    2017-06-01

    Diverticulosis is defined by the presence of diverticula due to herniation of mucosa and muscularis mucosa through the muscularis propria at sites of vascular penetration in the colon and is asymptomatic in the vast majority affected. There are global differences of distribution, in Western industrialized societies, the most common site is in the left colon, but in Asia right sided diverticulosis predominates. Whilst present in 17.5% of a general population and 42% of all comers at endoscopy it is seen in 71% of those aged ≥80 years. Diverticular disease is defined as clinically significant and symptomatic diverticulosis, which may have an absence of macroscopically overt colitis and in true diverticulitis there is macroscopic inflammation of diverticula with related acute or chronic complications. Whilst overall, diverticulitis affects only 4% of those with diverticulosis, in younger patients (aged 40-49 years) this peaks at 11%. Diverticulosis is one of the most common chronic diseases, yet research in this field on pathogenesis has lagged behind other common conditions such as diabetes mellitus. However, in the last decade there have been major advances in taxonomy that can be used to relate to patients' outcome and treatment in both medicine and surgery. It has been shown there is an association with age, diet, drugs and smoking. Genetic studies have shown a familial association and a specific gene, TNFSF 15 may predict severity of disease. The role of the microbiome has been explored and microbial and metabolomic signatures are also important in predicting disease severity. That diverticulosis is a chronic disease is shown by mucosal pathology with subtle chronic inflammation present in those with asymptomatic diverticulosis and inflammation may lead to muscular hypertrophy, enteric nerve remodeling with disordered motility. The diverticulitis quality of life instrument shows that this condition impacts markedly on patients' well-being and prevention and

  7. [Anatomy and pathogenesis of diverticular disease].

    Science.gov (United States)

    Wedel, T; Böttner, M

    2014-04-01

    Although diverticular disease is one of the most frequent gastrointestinal disorders the pathogenesis is not yet sufficiently clarified. The aim is to define the anatomy and pathogenesis of diverticular disease considering the risk factors and description of structural and functional alterations of the bowel wall. This article gives an appraisal of the literature, presentation and evaluation of classical etiological factors, analysis and discussion of novel pathogenetic concepts. Colonic diverticulosis is defined as an acquired out-pouching of multiple and initially asymptomatic pseudodiverticula through muscular gaps in the colon wall. Diverticular disease is characterized by diverticular bleeding and/or inflammatory processes (diverticulitis) with corresponding complications (e.g. abscess formation, fistula, covered and open perforation, peritonitis and stenosis). Risk factors for diverticular disease include increasing age, genetic predisposition, congenital connective tissue diseases, low fiber diet, high meat consumption and pronounced overweight. Alterations of connective tissue cause a weakening of preformed exit sites of diverticula and rigidity of the bowel wall with reduced flexibility. It is assumed that intestinal innervation disorders and structural alterations of the musculature induce abnormal contractile patterns with increased intraluminal pressure, thereby promoting the development of diverticula. Moreover, an increased release of pain-mediating neurotransmitters is considered to be responsible for persistent pain in chronic diverticular disease. According to the present data the pathogenesis of diverticular disease cannot be attributed to a single factor but should be considered as a multifactorial event.

  8. Immunological pathogenesis of inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Seung Hoon Lee

    2018-01-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory state of the gastrointestinal tract and can be classified into 2 main clinical phenomena: Crohn's disease (CD and ulcerative colitis (UC. The pathogenesis of IBD, including CD and UC, involves the presence of pathogenic factors such as abnormal gut microbiota, immune response dysregulation, environmental changes, and gene variants. Although many investigations have tried to identify novel pathogenic factors associated with IBD that are related to environmental, genetic, microbial, and immune response factors, a full understanding of IBD pathogenesis is unclear. Thus, IBD treatment is far from optimal, and patient outcomes can be unsatisfactory. As result of massive studying on IBD, T helper 17 (Th17 cells and innate lymphoid cells (ILCs are investigated on their effects on IBD. A recent study of the plasticity of Th17 cells focused primarily on colitis. ILCs also emerging as novel cell family, which play a role in the pathogenesis of IBD. IBD immunopathogenesis is key to understanding the causes of IBD and can lead to the development of IBD therapies. The aim of this review is to explain the pathogenesis of IBD, with a focus on immunological factors and therapies.

  9. Is Spinal Muscular Atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications?

    Science.gov (United States)

    Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B.; Corti, Stefania

    2016-01-01

    Spinal Muscular Atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the Survival Motor Neuron 1 (SMN1) gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. These contribution of non-motor neuronal cells to disease pathogenesis has important therapeutic implications: in fact, even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It will be crucial to take this evidence into account before clinical translation of the novel therapeutic approaches that are currently under development. PMID:26681261

  10. Mitochondrial Contribution to Parkinson's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Anthony H. V. Schapira

    2011-01-01

    Full Text Available The identification of the etiologies and pathogenesis of Parkinson's disease (PD should play an important role in enabling the development of novel treatment strategies to prevent or slow the progression of the disease. The last few years have seen enormous progress in this respect. Abnormalities of mitochondrial function and increased free radical mediated damage were described in post mortem PD brain before the first gene mutations causing familial PD were published. Several genetic causes are now known to induce loss of dopaminergic cells and parkinsonism, and study of the mechanisms by which these mutations produce this effect has provided important insights into the pathogenesis of PD and confirmed mitochondrial dysfunction and oxidative stress pathways as central to PD pathogenesis. Abnormalities of protein metabolism including protein mis-folding and aggregation are also crucial to the pathology of PD. Genetic causes of PD have specifically highlighted the importance of mitochondrial dysfunction to PD: PINK1, parkin, DJ-1 and most recently alpha-synuclein proteins have been shown to localise to mitochondria and influence function. The turnover of mitochondria by autophagy (mitophagy has also become a focus of attention. This review summarises recent discoveries in the contribution of mitochondrial abnormalities to PD etiology and pathogenesis.

  11. Research advances in the pathogenesis of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    WANG Hu

    2017-04-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD has been developing rapidly in recent years and has become one of the most common liver diseases. However, its pathogenesis remains unclear, and there are no widely accepted therapeutic regimens. NAFLD has a complex pathogenesis with multiple factors involved, including insulin resistance, oxidative stress, bile acid metabolic disorders, and autophagy. This article reviews the pathogenesis of NAFLD in order to provide a reference for further research and clinical treatment in the future.

  12. Distinct Roles of Wnt/β-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Shi, Juan; Li, Feng; Luo, Meihui; Wei, Jun

    2017-01-01

    Wnt signaling pathways are tightly controlled under a physiological condition, under which they play key roles in many biological functions, including cell fate specification and tissue regeneration. Increasing lines of evidence recently demonstrated that a dysregulated activation of Wnt signaling, particularly the Wnt/β-catenin signaling, was involved in the pathogenesis of chronic pulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). In this respect, Wnt signaling interacts with other cellular signaling pathways to regulate the initiation and pathogenic procedures of airway inflammation and remodeling, pulmonary myofibroblast proliferation, epithelial-to-mesenchymal transition (EMT), and development of emphysema. Intriguingly, Wnt/β-catenin signaling is activated in IPF; an inhibition of this signaling leads to an alleviation of pulmonary inflammation and fibrosis in experimental models. Conversely, Wnt/β-catenin signaling is inactivated in COPD tissues, and its reactivation results in an amelioration of airspace enlargement with a restored alveolar epithelial structure and function in emphysema models. These studies thus imply distinct mechanisms of Wnt/β-catenin signaling in the pathogenesis of these two chronic pulmonary diseases, indicating potential targets for COPD and IPF treatments. This review article aims to summarize the involvement and pathogenic roles of Wnt signaling pathways in the COPD and IPF, with a focus on the implication of Wnt/β-catenin signaling as underlying mechanisms and therapeutic targets in these two incurable diseases. PMID:28588349

  13. Edaravone injection ameliorates cognitive deficits in rat model of Alzheimer's disease.

    Science.gov (United States)

    Yang, Rui; Wang, Qingjun; Li, Fang; Li, Jian; Liu, Xuewen

    2015-11-01

    Oxidative stress plays important role in the pathogenesis of Alzheimer's disease (AD). Edaravone is a potent free radical scavenger that exerts antioxidant effects. Therefore, in this study we aimed to investigate neuroprotective effects of edaravone for AD. Wistar rats were randomly divided into three groups (n = 15): control group, model group, and treatment group, which were injected with phosphate buffered saline, Aβ1-40, and Aβ1-40 together with 5 mg/kg edaravone, respectively, into the right hippocampal dentate gyrus. Spatial learning and memory of the rats were examined by Morris water maze test. 4-Hydroxynonenal (4-HNE) level in rat hippocampus was analyzed by immunohistochemistry. Acetylcholinesterase (AChE) and choline acetylase (ChAT) activities were assayed by commercial kits. We found that edaravone ameliorated spatial learning and memory deficits in the rats. 4-HNE level in the hippocampus as well as AChE and ChAT activities in the hippocampus was significantly lower in treatment group than in model group. In conclusion, edaravone may be developed as a novel agent for the treatment of AD for improving cholinergic system and protecting neurons from oxidative toxicity.

  14. Neuroprotective effect and mechanism of daucosterol palmitate in ameliorating learning and memory impairment in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Ji, Zhi-Hong; Xu, Zhong-Qi; Zhao, Hong; Yu, Xin-Yu

    2017-03-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory decline and cognitive impairment. Amyloid beta (Aβ) has been proposed as the causative role for the pathogenesis of AD. Accumulating evidence demonstrates that Aβ neurotoxicity is mediated by glutamate excitotoxicity. Daucosterol palmitate (DSP), a plant steroid with anti-glutamate excitotoxicity effect, was isolated from the anti-aging traditional Chinese medicinal herb Alpinia oxyphylla Miq. in our previous study. Based on the anti-glutamate excitotoxicity effect of DSP, in this study we investigated potential benefit and mechanism of DSP in ameliorating learning and memory impairment in AD model rats. Results from this study showed that DSP administration effectively ameliorated Aβ-induced learning and memory impairment in rats, markedly inhibited Aβ-induced hippocampal ROS production, effectively prevented Aβ-induced hippocampal neuronal damage and significantly restored hippocampal synaptophysin expression level. This study suggests that DSP may be a potential candidate for development as a therapeutic agent for AD cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Extrahepatic manifestations of cholestatic liver diseases: pathogenesis and therapy

    NARCIS (Netherlands)

    Pusl, Thomas; Beuers, Ulrich

    2005-01-01

    Pruritus, fatigue, and metabolic bone disease are frequent complications of cholestatic liver diseases, which can be quite distressing for the patient and can considerably reduce the quality of life. The molecular pathogenesis of these extrahepatic manifestations of cholestasis is poorly understood,

  16. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.

    Science.gov (United States)

    Jin, Sheng; Teng, Xu; Xiao, Lin; Xue, Hongmei; Guo, Qi; Duan, Xiaocui; Chen, Yuhong; Wu, Yuming

    2017-12-01

    Reductions in hydrogen sulfide (H 2 S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in N ω -nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dt max and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and

  17. Polycystic Kidney Disease: Pathogenesis and Potential Therapies

    Science.gov (United States)

    Takiar, Vinita; Caplan, Michael J.

    2011-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent, inherited condition for which there is currently no effective specific clinical therapy. The disease is characterized by the progressive development of fluid-filled cysts derived from renal tubular epithelial cells which gradually compress the parenchyma and compromise renal function. Current interests in the field focus on understanding and exploiting signaling mechanisms underlying disease pathogenesis as well as delineating the role of the primary cilium in cystogenesis. This review highlights the pathogenetic pathways underlying renal cyst formation as well as novel therapeutic targets for the treatment of PKD. PMID:21146605

  18. Physiology and pathogenesis of gastroesophageal reflux disease.

    Science.gov (United States)

    Mikami, Dean J; Murayama, Kenric M

    2015-06-01

    Gastroesophageal reflux disease (GERD) is one of the most common problems treated by primary care physicians. Almost 20% of the population in the United States experiences occasional regurgitation, heartburn, or retrosternal pain because of GERD. Reflux disease is complex, and the physiology and pathogenesis are still incompletely understood. However, abnormalities of any one or a combination of the three physiologic processes, namely, esophageal motility, lower esophageal sphincter function, and gastric motility or emptying, can lead to GERD. There are many diagnostic and therapeutic approaches to GERD today, but more studies are needed to better understand this complex disease process. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. MicroRNAs in the pathogenesis of cystic kidney disease.

    Science.gov (United States)

    Phua, Yu Leng; Ho, Jacqueline

    2015-04-01

    Cystic kidney diseases are common renal disorders characterized by the formation of fluid-filled epithelial cysts in the kidneys. The progressive growth and expansion of the renal cysts replace existing renal tissue within the renal parenchyma, leading to reduced renal function. While several genes have been identified in association with inherited causes of cystic kidney disease, the molecular mechanisms that regulate these genes in the context of post-transcriptional regulation are still poorly understood. There is increasing evidence that microRNA (miRNA) dysregulation is associated with the pathogenesis of cystic kidney disease. In this review, recent studies that implicate dysregulation of miRNA expression in cystogenesis will be discussed. The relationship of specific miRNAs, such as the miR-17∼92 cluster and cystic kidney disease, miR-92a and von Hippel-Lindau syndrome, and alterations in LIN28-LET7 expression in Wilms tumor will be explored. At present, there are no specific treatments available for patients with cystic kidney disease. Understanding and identifying specific miRNAs involved in the pathogenesis of these disorders may have the potential to lead to the development of novel therapies and biomarkers.

  20. Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.

    Science.gov (United States)

    Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D

    2011-11-01

    Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.

  1. [Neurosis and genetic theory of etiology and pathogenesis of ulcer disease].

    Science.gov (United States)

    Kolotilova, M L; Ivanov, L N

    2014-01-01

    Based on the analysis of literature data and our own research, we have developed the original concept of etiology and pathogenesis of peptic ulcer disease. An analysis of the literature shows that none of the theories of pathogenesis of peptic ulcer disease does not cover the full diversity of the involved functions and their shifts, which lead to the development of ulcers in the stomach and the duodenum. Our neurogenic-genetic theory of etiology and pathogenesis of gastric ulcer and duodenal ulcer very best explains the cause-and-effect relationships in the patient peptic ulcer, allowing options for predominance in one or the other case factors of neurosis or genetic factors. However, it is clear that the only other: combination of neurogenic factor with genetically modified reactivity of gastroduodenal system (the presence of the target organ) cause the chronicity of the sores. The theory of peptic ulcer disease related to psychosomatic pathologies allows us to develop effective schema therapy, including drugs with psychocorrective action. On the basis of our theory of the role of Helicobacter pylori infection is treated as a pathogenetic factor in the development of peptic ulcer disease.

  2. Specific immunotherapy ameliorates ulcerative colitis.

    Science.gov (United States)

    Cai, Min; Zeng, Lu; Li, Lin-Jing; Mo, Li-Hua; Xie, Rui-Di; Feng, Bai-Sui; Zheng, Peng-Yuan; Liu, Zhi-Gang; Liu, Zhan-Ju; Yang, Ping-Chang

    2016-01-01

    Hypersensitivity reaction to certain allergens plays a role in the pathogenesis of inflammatory bowel disease (IBD). This study aims to observe the effect of specific immunotherapy in a group of IBD patients. Patients with both ulcerative colitis (UC) and food allergy were recruited into this study. Food allergy was diagnosed by skin prick test and serum specific IgE. The patients were treated with specific immunotherapy (SIT) and Clostridium butyricum (CB) capsules. After treating with SIT and CB, the clinical symptoms of UC were markedly suppressed as shown by reduced truncated Mayo scores and medication scores. The serum levels of specific IgE, interleukin (IL)-4 and tumor necrosis factor (TNF)-α were also suppressed. Treating with SIT alone or CB alone did not show appreciable improvement of the clinical symptoms of UC. UC with food allergy can be ameliorated by administration with SIT and butyrate-production probiotics.

  3. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  4. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-01-01

    Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.

  5. HIV-1 Nef in Macrophage-Mediated Disease Pathogenesis

    Science.gov (United States)

    Lamers, Susanna L.; Fogel, Gary B.; Singer, Elyse J.; Salemi, Marco; Nolan, David J.; Huysentruyt, Leanne C.; McGrath, Michael S.

    2013-01-01

    Combined anti-retroviral therapy (cART) has significantly reduced the number of AIDS-associated illnesses and changed the course of HIV-1 disease in developed countries. Despite the ability of cART to maintain high CD4+ T-cell counts, a number of macrophage-mediated diseases can still occur in HIV-infected subjects. These diseases include lymphoma, metabolic diseases, and HIV-associated neurological disorders. Within macrophages, the HIV-1 regulatory protein “Nef” can modulate surface receptors, interact with signaling pathways, and promote specific environments that contribute to each of these pathologies. Moreover, genetic variation in Nef may also guide the macrophage response. Herein, we review findings relating to the Nef–macrophage interaction and how this relationship contributes to disease pathogenesis. PMID:23215766

  6. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms.

    Science.gov (United States)

    Ramos-Leví, Ana Maria; Marazuela, Mónica

    2016-10-01

    Hashimoto's thyroiditis (HT) and Graves' disease (GD) are two very common organ-specific autoimmune diseases which are characterized by circulating antibodies and lymphocyte infiltration. Although humoral and cellular mechanisms have been classically considered separately in the pathogenesis of autoimmune thyroid diseases (AITD), recent research suggests a close reciprocal relationship between these two immune pathways. Several B- and T-cell activation pathways through antigen-presenting cells (APCs) and cytokine production lead to specific differentiation of T helper (Th) and T regulatory (Treg) cells. This review will focus on the cellular mechanisms involved in the pathogenesis of AITD. Specifically, it will provide reasons for discarding the traditional simplistic dichotomous view of the T helper type 1 and 2 pathways (Th1/Th2) and will focus on the role of the recently characterized T cells, Treg and Th17 lymphocytes, as well as B lymphocytes and APCs, especially dendritic cells (DCs). Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. The role of clusterin in Alzheimer's disease: pathways, pathogenesis, and therapy.

    Science.gov (United States)

    Yu, Jin-Tai; Tan, Lan

    2012-04-01

    Genetic variation in clusterin gene, also known as apolipoprotein J, has been associated with Alzheimer's disease (AD) through replicated genome-wide studies, and plasma clusterin levels are associated with brain atrophy, baseline prevalence and severity, and rapid clinical progression in patients with AD, highlighting the importance of clusterin in AD pathogenesis. Emerging data suggest that clusterin contributes to AD through various pathways, including amyloid-β aggregation and clearance, lipid metabolism, neuroinflammation, and neuronal cell cycle control and apoptosis. Moreover, epigenetic regulation of the clusterin expression also seems to play an important role in the pathogenesis of AD. Emerging knowledge of the contribution of clusterin to the pathogenesis of AD presents new opportunities for AD therapy.

  8. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction.

    Science.gov (United States)

    Furumoto, Yasuko; Smith, Carolyne K; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L; Trier, Anna M; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T; O'Shea, John J; Kaplan, Mariana J; Gadina, Massimo

    2017-01-01

    Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. No drug to date targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a JAK inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and the associated vascular pathology remains to be characterized. MRL/lpr lupus-prone mice were administered tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum levels of autoantibodies and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular traps (NETs) release, endothelium-dependent vasorelaxation, and endothelial differentiation were compared in treated and untreated mice. Treatment with tofacitinib led to significant improvement in measures of disease activity, including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of proinflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated the formation of NETs and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective in both preventive and therapeutic strategies. Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus, and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. © 2016, American College of Rheumatology.

  9. Role of MHC-Linked Susceptibility Genes in the Pathogenesis of Human and Murine Lupus

    Directory of Open Access Journals (Sweden)

    Manfred Relle

    2012-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a chronic autoimmune disease characterized by the production of autoantibodies against nuclear antigens and a systemic inflammation that can damage a broad spectrum of organs. SLE patients suffer from a wide variety of symptoms, which can affect virtually almost any tissue. As lupus is difficult to diagnose, the worldwide prevalence of SLE can only be roughly estimated to range from 10 and 200 cases per 100,000 individuals with dramatic differences depending on gender, ethnicity, and location. Although the treatment of this disease has been significantly ameliorated by new therapies, improved conventional drug therapy options, and a trained expert eye, the underlying pathogenesis of lupus still remain widely unknown. The complex etiology reflects the complex genetic background of the disease, which is also not well understood yet. However, in the past few years advances in lupus genetics have been made, notably with the publication of genome-wide association studies (GWAS in humans and the identification of susceptibility genes and loci in mice. This paper reviews the role of MHC-linked susceptibility genes in the pathogenesis of systemic lupus erythematosus.

  10. Inhibition of miR-142-5P ameliorates disease in mouse models of experimental colitis.

    Directory of Open Access Journals (Sweden)

    Nicolette W Duijvis

    Full Text Available MicroRNAs (miRNAs are epigenetically involved in regulating gene expression. They may be of importance in the pathogenesis of inflammatory bowel disease (IBD. The aim of this study was to determine the role of miRNAs by their specific blocking in the CD4+CB45RBhi T-cell transfer model of chronic experimental colitis.Colitis caused by transfer of WT CD4+CD45RBhi T cells in severe combined immunodeficiency (SCID mice shares many features with human IBD. Colonic miRNA expression levels were measured at three time points in colitic mice, where a time-dependent upregulation of multiple miRNAs was seen. To inhibit these miRNAs, specific locked-nucleic-acid-modified (LNA oligonucleotides were administered in further experiments at the moment the mice demonstrated the first signs of colitis. As controls, PBS and a scrambled sequence of anti-miRNA were used. Genome-wide expression analyses were also performed in order to detect candidate target genes of miR-142-5p, of which inhibition resulted in most effective amelioration of colitis.Anti-miR-142-5p reduced colitis and related wasting disease when administered in the T-cell transfer model, reflected in reduced weight loss and a lower disease activity index (DAI. In further validation experiments we also observed a higher survival rate and less colonic histological inflammation in the antagomir-treated mice. Moreover, by genome-wide expression analyses, we found downstream activation of the anti-inflammatory IL10RA pathway, including three genes also found in the top-20 candidate target genes of miR-142-5p.In conclusion, CD4+CD45RBhi-transfer colitis induces miR-142-5p. Blocking miR-142-5p reduced colitis and prevented wasting disease, possibly by activation of the IL10RA pathway.

  11. Pathogenesis of Graves' disease and therapeutic implications

    International Nuclear Information System (INIS)

    Seif, F.J.

    1997-01-01

    Graves' disease presents itself clinically mainly as hyperthyroidism and infiltrative ophthalmopathy and to a minimal extent also as dermopathy and acropachy. Autoimmune processes are the basic pathogenesis. Stimulating antibodies against the TSH receptor cause hyperthyroidism. Autoantibodies and autoreactive T lymphocytes against primarily thyroidal antigens cross-react with similar antigens of the eye muscles and orbital connective tissue, thus spreading the disease from the thyroid to the eyes. The therapeutic goal comprises not only the treatment of hyperthyroidism, but also the induction of a steady immuntolerance in order to minimize the irreversible damage to the eye. The therapeutic armamentarium is formed by antithyroid drugs, glucocorticoids, retrobulbar radition and thyroid ablation, either by nearly total thyroidectomy or by radioiodine. The different indications for both ablative procedures are discussed. (orig.) [de

  12. Genes, autoimmunity and pathogenesis of rheumatic heart disease

    International Nuclear Information System (INIS)

    Guilherme, L; Köhler, K F; Postol, E; Kalil, J

    2011-01-01

    Pathogenesis of rheumatic heart disease (RHD) remains incompletely understood. Several genes associated with RHD have been described; most of these are involved with immune responses. Single nucleotide polymorphisms in a number of genes affect patients with RHD compared to controls. Molecular mimicry between streptococcal antigens and human proteins, including cardiac myosin epitopes, vimentin and other intracellular proteins is central to the pathogenesis of RHD. Autoreactive T cells migrate from the peripheral blood to the heart and proliferate in the valves in response to stimulation with specific cytokines. The types of cells involved in the inflammation as well as different cytokine profiles in these patients are being investigated. High TNF alpha, interferon gamma, and low IL4 are found in the rheumatic valve suggesting an imbalance between Th1 and Th2 cytokines and probably contributing to the progressive and permanent valve damage. Animal model of ARF in the Lewis rat may further contribute towards understanding the ARF

  13. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  14. A review of the role of oxidative stress in the pathogenesis of eye diseases

    Directory of Open Access Journals (Sweden)

    O. A. Oduntan

    2011-12-01

    Full Text Available Free radicals, referred to as oxidants are molecules in the body with unpaired electrons, hence are unstable and ready to bond with other molecules with unpaired electrons.  They include Reactive Oxygen Species (ROS such as superoxide anion radicals (·O¯, hydrogen peroxide (H202, and hydroxyl free radicals (·OH.  Endogenous sources of ROS include metabolic and other organic processes, while exogenous sources include ultraviolet radiation and environmental toxins such as smoke.  Antioxidants (oxidant scavengers such as ascorbate, alpha-tocopherol and glutathione as well as various enzymatic compounds such as superoxide dismutase (SOD, catalase and glutathione reductase are also present in the body and in manyfoods or food supplements.  An imbalance between oxidants and antioxidants in favour of oxidantsis termed oxidative stress and can lead to cell or tissue damage and aging. Oxidative stress has been implicated in the pathogenesis of many serious systemic diseases such as diabetes, cancer and neurological disorders.  Also, laboratory and epidemiological studies have implicated oxidative stress in the pathogenesis of the majority of common serious eye diseases such as cataract, primary open angle glaucoma and age-related macular degeneration. In this article, we reviewed the current information on the roles of oxidative stress in the pathogenesis of various eye diseases and the probable roles of antioxidants.  Eye care practitioners will find this article useful as it provides information on the pathogenesis of common eye diseases. (S Afr Optom 2011 70(4 182-190

  15. A potential role of Chlamydia pneumoniae in the pathogenesis of periodontal disease in adolescents and adults.

    Science.gov (United States)

    Ajonuma, Louis Chukwuemeka

    2010-01-01

    Periodontal diseases are among the most common human infections that not only impact oral health but also are associated with adverse systemic diseases such as cardiovascular diseases, stroke, diabetes, and respiratory diseases. Periodontal diseases is a chronic severe inflammatory process of the gingiva leading to the destruction of tooth-supporting structures, alveolar bone, and subsequently tooth loss due to bacteria infection. While it has been reported that several oral biofilm-forming bacteria might be involved, the role of C. pneumoniae infection in the pathogenesis of periodontal disease remains unknown. The present hypothesis proposes that C. pneumoniae is involved in the pathogenesis of periodontal diseases. This will lead to a better understanding of the etiopathogenesis of periodontal disease, better treatment strategy and savings on total health care costs.

  16. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases.

    Science.gov (United States)

    Dolan, Kyle T; Chang, Eugene B

    2017-01-01

    The rising incidence of inflammatory bowel diseases in recent decades has notably paralleled changing lifestyle habits in Western nations, which are now making their way into more traditional societies. Diet plays a key role in IBD pathogenesis, and there is a growing appreciation that the interaction between diet and microbes in a susceptible person contributes significantly to the onset of disease. In this review, we examine what is known about dietary and microbial factors that promote IBD. We summarize recent findings regarding the effects of diet in IBD epidemiology from prospective population cohort studies, as well as new insights into IBD-associated dysbiosis. Microbial metabolism of dietary components can influence the epithelial barrier and the mucosal immune system, and understanding how these interactions generate or suppress inflammation will be a significant focus of IBD research. Our knowledge of dietary and microbial risk factors for IBD provides important considerations for developing therapeutic approaches through dietary modification or re-shaping the microbiota. We conclude by calling for increased sophistication in designing studies on the role of diet and microbes in IBD pathogenesis and disease resolution in order to accelerate progress in response to the growing challenge posed by these complex disorders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Online testable concept maps: benefits for learning about the pathogenesis of disease.

    Science.gov (United States)

    Ho, Veronica; Kumar, Rakesh K; Velan, Gary

    2014-07-01

    Concept maps have been used to promote meaningful learning and critical thinking. Although these are crucially important in all disciplines, evidence for the benefits of concept mapping for learning in medicine is limited. We performed a randomised crossover study to assess the benefits of online testable concept maps for learning in pathology by volunteer junior medical students. Participants (n = 65) were randomly allocated to either of two groups with equivalent mean prior academic performance, in which they were given access to either online maps or existing online resources for a 2-week block on renal disease. Groups then crossed over for a 2-week block on hepatic disease. Outcomes were assessed using timed online quizzes, which included questions unrelated to topics in the pathogenesis maps as an internal control. Questionnaires were administered to evaluate students' acceptance of the maps. In both blocks, the group with access to pathogenesis maps achieved significantly higher average scores than the control group on quiz questions related to topics covered by the maps (Block 1: p online testable pathogenesis maps are well accepted and can improve learning of concepts in pathology by medical students. © 2014 John Wiley & Sons Ltd.

  18. Pathogenesis of Lafora Disease: Transition of Soluble Glycogen to Insoluble Polyglucosan.

    Science.gov (United States)

    Sullivan, Mitchell A; Nitschke, Silvia; Steup, Martin; Minassian, Berge A; Nitschke, Felix

    2017-08-11

    Lafora disease (LD, OMIM #254780) is a rare, recessively inherited neurodegenerative disease with adolescent onset, resulting in progressive myoclonus epilepsy which is fatal usually within ten years of symptom onset. The disease is caused by loss-of-function mutations in either of the two genes EPM2A (laforin) or EPM2B (malin). It characteristically involves the accumulation of insoluble glycogen-derived particles, named Lafora bodies (LBs), which are considered neurotoxic and causative of the disease. The pathogenesis of LD is therefore centred on the question of how insoluble LBs emerge from soluble glycogen. Recent data clearly show that an abnormal glycogen chain length distribution, but neither hyperphosphorylation nor impairment of general autophagy, strictly correlates with glycogen accumulation and the presence of LBs. This review summarizes results obtained with patients, mouse models, and cell lines and consolidates apparent paradoxes in the LD literature. Based on the growing body of evidence, it proposes that LD is predominantly caused by an impairment in chain-length regulation affecting only a small proportion of the cellular glycogen. A better grasp of LD pathogenesis will further develop our understanding of glycogen metabolism and structure. It will also facilitate the development of clinical interventions that appropriately target the underlying cause of LD.

  19. Selected Aspects in the Pathogenesis of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    György Nagy

    2015-01-01

    Full Text Available Autoimmune processes can be found in physiological circumstances. However, they are quenched with properly functioning regulatory mechanisms and do not evolve into full-blown autoimmune diseases. Once developed, autoimmune diseases are characterized by signature clinical features, accompanied by sustained cellular and/or humoral immunological abnormalities. Genetic, environmental, and hormonal defects, as well as a quantitative and qualitative impairment of immunoregulatory functions, have been shown in parallel to the relative dominance of proinflammatory Th17 cells in many of these diseases. In this review we focus on the derailed balance between regulatory and Th17 cells in the pathogenesis of autoimmune diseases. Additionally, we depict a cytokine imbalance, which gives rise to a biased T-cell homeostasis. The assessment of Th17/Treg-cell ratio and the simultaneous quantitation of cytokines, may give a useful diagnostic tool in autoimmune diseases. We also depict the multifaceted role of dendritic cells, serving as antigen presenting cells, contributing to the development of the pathognomonic cytokine signature and promote cellular and humoral autoimmune responses. Finally we describe the function and role of extracellular vesicles in particular autoimmune diseases. Targeting these key players of disease progression in patients with autoimmune diseases by immunomodulating therapy may be beneficial in future therapeutic strategies.

  20. Nasal Colivelin treatment ameliorates memory impairment related to Alzheimer's disease.

    Science.gov (United States)

    Yamada, Marina; Chiba, Tomohiro; Sasabe, Jumpei; Terashita, Kenzo; Aiso, Sadakazu; Matsuoka, Masaaki

    2008-07-01

    Humanin (HN) and its derivatives, such as Colivelin (CLN), suppress neuronal death induced by insults related to Alzheimer's disease (AD) by activating STAT3 in vitro. They also ameliorate functional memory impairment of mice induced by anticholinergic drugs or soluble toxic amyloid-beta (Abeta) in vivo when either is directly administered into the cerebral ventricle or intraperitoneally injected. However, the mechanism underlying the in vivo effect remains uncharacterized. In addition, from the standpoint of clinical application, drug delivery methods that are less invasive and specific to the central nervous system (CNS) should be developed. In this study, we show that intranasally (i.n.) administered CLN can be successfully transferred to CNS via the olfactory bulb. Using several behavioral tests, we have demonstrated that i.n. administered CLN ameliorates memory impairment of AD models in a dose-responsive manner. Attenuation of AD-related memory impairment by HN derivatives such as CLN appears to be correlated with an increase in STAT3 phosphorylation levels in the septohippocampal region, suggesting that anti-AD activities of HN derivatives may be mediated by activation of STAT3 in vivo as they are in vitro. We further demonstrate that CLN treatment inhibits an Abeta induced decrease in the number of choline acetyltransferase (ChAT)-positive neurons in the medial septum. Combined with the finding that HN derivatives upregulate mRNA expression of neuronal ChAT and vesicular acetylcholine transporter (VAChT) in vitro, it is assumed that CLN may ameliorate memory impairment of AD models by supporting cholinergic neurotransmission, which is at least partly mediated by STAT3-mediated transcriptional upregulation of ChAT and VAChT.

  1. Deregulation of protein translation control, a potential game-changing hypothesis for Parkinson's disease pathogenesis.

    Science.gov (United States)

    Taymans, Jean-Marc; Nkiliza, Aurore; Chartier-Harlin, Marie-Christine

    2015-08-01

    Protein translation is one of the most fundamental and exquisitely controlled processes in biology, and is energetically demanding. The deregulation of this process is deleterious to cells, as demonstrated by several diseases caused by mutations in protein translation machinery. Emerging evidence now points to a role for protein translation in the pathogenesis of Parkinson's disease (PD); a debilitating neurodegenerative movement disorder. In this paper, we propose a hypothesis that protein translation machinery, PD-associated proteins and PD pathology are connected in a functional network linking cell survival to protein translation control. This hypothesis is a potential game changer in the field of the molecular pathogenesis of PD, with implications for the development of PD diagnostics and disease-modifying therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice.

    Science.gov (United States)

    Qu, Wenhui; Johnson, Andrea; Kim, Joo Hyun; Lukowicz, Abigail; Svedberg, Daniel; Cvetanovic, Marija

    2017-05-25

    Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1. Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age. PLX treatment resulted in the elimination of 70-80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function. A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice.

  3. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Martin

    2011-01-01

    Full Text Available Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Parkinson's disease, supranuclear palsy, Huntington's disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This paper focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.

  4. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits.

    Science.gov (United States)

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-04-21

    Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.

  5. Current roles of specific bacteria in the pathogenesis of inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Lucy McMullen

    2015-12-01

    Full Text Available The relevance of alterations in gut microbiota in the pathogenesis of inflammatory bowel disease (IBD remains unclear. Currently there is conflicting evidence with regards to the roles of specific bacterial species. Escherichia coli (particularly the adherent invasive strain are more prevalent in those with IBD and are associated with higher risk of IBD. However, the organisms are also present in healthy individuals and colonisation does not correlate with the degree of inflammation in IBD. Campylobacter concisus is more prevalent in those with IBD and higher levels of C. concisus specific IgG antibodies are found in the serum of those with IBD compared to healthy controls. Further, C. concisus has immunogenic properties that stimulate an antibody response suggesting the bacteria might trigger or exacerbate disease. Conversely most mycobacteria are unlikely to be causative as they are not presentin microbial stool cultures early in disease. In various studies,Mycobacterium aviumparatuberculosishas been detected both more frequently and not at all in individuals with Crohn's disease. Similar conflict exists with respect to Yersinia enterocolitica,Bacteroidesvulgatus and Helicobacter hepaticus, which are also more prevalent in IBD. However, these organisms appear more likely to contribute to disease persistence than initial disease development. This review aims to summarise the current understanding of key bacterial species implicated in the pathogenesis of IBD.

  6. Inflammatory bowel diseases (IBD) - critical discussion of etiology, pathogenesis, diagnostics, and therapy

    International Nuclear Information System (INIS)

    Ochsenkuehn, T.; Sackmann, M.; Goeke, B.

    2003-01-01

    Aims Crohn's disease and ulcerative colitis are the most frequent inflammatory bowel diseases (IBD) with a prevalence of approximately one out of 500.Cytokine research opened new and potent treatment options and thus stimulated clinical and basic research.However, the IBD still remain a challenge for patients and physicians,demanding close cooperation between gastroenterologists,radiologists and surgeons.The basic understanding of IBD,which is necessary for efficient diagnostic and therapeutic concepts is reviewed. Based upon recent publications and our clinical experience we discuss aspects of etiology,pathogenesis,diagnostics,and therapy of Crohn's disease and ulcerative colitis. A genetically influenced, exaggerated and sustained immune response against the own gut flora seems to be one of the most important factors in the pathogenesis of IBD.Not less important are environmental influences.For instance, cigarette smoking had been judged to have some negative influence on the natural course of Crohn's disease.Now,however, recent studies show that smoking is even a significant independent risk factor in the pathogenesis of IBD. Since IBD and especially Crohn's disease can effect the whole body, detailed analysis of inflammatory organ involvement is necessary before therapy.For instance, the MRIenteroclysis technique adds a necessary diagnostic tool for the exploration of those parts of the small bowel that cannot been reached by routine endoscopy like the upper ileum and the lower jejunum. In terms of therapy, a change of paradigms can be observed: patients will no longer be treated only when symptoms arise, but will early be integrated into a therapeutic concept, which is determined by site and extent of the disease and adapted to the abilities and needs of the patient.Furthermore,immunosuppressive agents like azathioprine and 6-mercaptopurine will establish as central concept in the medical treatment of IBD.Discussion IBD-therapy should rather be adapted to the

  7. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.

    Science.gov (United States)

    Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood

    2018-01-15

    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.

  8. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease

    Science.gov (United States)

    Gagnon, Philippe; Guenette, Jordan A; Langer, Daniel; Laviolette, Louis; Mainguy, Vincent; Maltais, François; Ribeiro, Fernanda; Saey, Didier

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a preventable and treatable lung disease characterized by airflow limitation that is not fully reversible. In a significant proportion of patients with COPD, reduced lung elastic recoil combined with expiratory flow limitation leads to lung hyperinflation during the course of the disease. Development of hyperinflation during the course of COPD is insidious. Dynamic hyperinflation is highly prevalent in the advanced stages of COPD, and new evidence suggests that it also occurs in many patients with mild disease, independently of the presence of resting hyperinflation. Hyperinflation is clinically relevant for patients with COPD mainly because it contributes to dyspnea, exercise intolerance, skeletal muscle limitations, morbidity, and reduced physical activity levels associated with the disease. Various pharmacological and nonpharmacological interventions have been shown to reduce hyperinflation and delay the onset of ventilatory limitation in patients with COPD. The aim of this review is to address the more recent literature regarding the pathogenesis, assessment, and management of both static and dynamic lung hyperinflation in patients with COPD. We also address the influence of biological sex and obesity and new developments in our understanding of hyperinflation in patients with mild COPD and its evolution during progression of the disease. PMID:24600216

  9. Understanding rare disease pathogenesis: a grand challenge for model organisms.

    Science.gov (United States)

    Hieter, Philip; Boycott, Kym M

    2014-10-01

    In this commentary, Philip Hieter and Kym Boycott discuss the importance of model organisms for understanding pathogenesis of rare human genetic diseases, and highlight the work of Brooks et al., "Dysfunction of 60S ribosomal protein L10 (RPL10) disrupts neurodevelopment and causes X-linked microcephaly in humans," published in this issue of GENETICS. Copyright © 2014 by the Genetics Society of America.

  10. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits

    Science.gov (United States)

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-01-01

    Alzheimer’s disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis. PMID:25847999

  11. Micronutrient Antioxidants and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Guanliang Chen

    2016-08-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is one of the most important chronic liver diseases worldwide and has garnered increasing attention in recent decades. NAFLD is characterized by a wide range of liver changes, from simple steatosis to nonalcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. The blurred pathogenesis of NAFLD is very complicated and involves lipid accumulation, insulin resistance, inflammation, and fibrogenesis. NAFLD is closely associated with complications such as obesity, diabetes, steatohepatitis, and liver fibrosis. During the progression of NAFLD, reactive oxygen species (ROS are activated and induce oxidative stress. Recent attempts at establishing effective NAFLD therapy have identified potential micronutrient antioxidants that may reduce the accumulation of ROS and finally ameliorate the disease. In this review, we present the molecular mechanisms involved in the pathogenesis of NAFLD and introduce some dietary antioxidants that may be used to prevent or cure NAFLD, such as vitamin D, E, and astaxanthin.

  12. The pathogenesis of foot-and-mouth disease in pigs

    Directory of Open Access Journals (Sweden)

    Carolina eStenfeldt

    2016-05-01

    Full Text Available The greatest proportion of foot-and-mouth disease (FMD clinical research has been dedicated to elucidating pathogenesis and enhancing vaccine protection in cattle with less efforts invested in studies specific to pigs. However, accumulated evidence from FMD outbreaks and experimental investigations suggest that critical components of FMD pathogenesis, immunology, and vaccinology cannot be extrapolated from investigations performed in cattle to explain or predict outcomes of infection or vaccination in pigs. Furthermore, it has been shown that failure to account for these differences may have substantial consequences when FMD outbreaks occur in areas with dense pig populations. Recent experimental studies have confirmed some aspects of conventional wisdom by demonstrating that pigs are more susceptible to FMD virus (FMDV infection via exposure of the upper gastrointestinal tract (oropharynx than through inhalation of virus. The infection spreads rapidly within groups of pigs that are housed together, although efficiency of transmission may vary depending on virus strain and exposure intensity. Multiple investigations have demonstrated that physical separation of pigs is sufficient to prevent virus transmission under experimental conditions. Detailed pathogenesis studies have recently demonstrated that specialized epithelium within porcine oropharyngeal tonsils constitute the primary infection sites following simulated-natural virus exposure. Furthermore, epithelium of the tonsil of the soft palate supports substantial virus replication during the clinical phase of infection, thus providing large amounts of virus that can be shed into the environment. Due to massive amplification and shedding of virus, acutely infected pigs constitute a considerable source of contagion. FMDV infection results in modulation of several components of the host immune response. The infection is ultimately cleared in association with a strong humoral response and, in

  13. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.

    Science.gov (United States)

    Aflaki, Elma; Stubblefield, Barbara K; Maniwang, Emerson; Lopez, Grisel; Moaven, Nima; Goldin, Ehud; Marugan, Juan; Patnaik, Samarjit; Dutra, Amalia; Southall, Noel; Zheng, Wei; Tayebi, Nahid; Sidransky, Ellen

    2014-06-11

    Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes, particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore, we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition, we created induced pluripotent stem cell (iPSC)-derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages, reduced glycolipid storage, and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development. Copyright © 2014, American Association for the Advancement of Science.

  14. The Pathogenesis of Ebola Virus Disease.

    Science.gov (United States)

    Baseler, Laura; Chertow, Daniel S; Johnson, Karl M; Feldmann, Heinz; Morens, David M

    2017-01-24

    For almost 50 years, ebolaviruses and related filoviruses have been repeatedly reemerging across the vast equatorial belt of the African continent to cause epidemics of highly fatal hemorrhagic fever. The 2013-2015 West African epidemic, by far the most geographically extensive, most fatal, and longest lasting epidemic in Ebola's history, presented an enormous international public health challenge, but it also provided insights into Ebola's pathogenesis and natural history, clinical expression, treatment, prevention, and control. Growing understanding of ebolavirus pathogenetic mechanisms and important new clinical observations of the disease course provide fresh clues about prevention and treatment approaches. Although viral cytopathology and immune-mediated cell damage in ebolavirus disease often result in severe compromise of multiple organs, tissue repair and organ function recovery can be expected if patients receive supportive care with fluids and electrolytes; maintenance of oxygenation and tissue perfusion; and respiratory, renal, and cardiovascular support. Major challenges for managing future Ebola epidemics include establishment of early and aggressive epidemic control and earlier and better patient care and treatment in remote, resource-poor areas where Ebola typically reemerges. In addition, it will be important to further develop Ebola vaccines and to adopt policies for their use in epidemic and pre-epidemic situations.

  15. Clinical Relevance of Environmental Factors in the Pathogenesis of Autoimmune Thyroid Disease

    NARCIS (Netherlands)

    Wiersinga, Wilmar M.

    2016-01-01

    Genetic factors contribute for about 70% to 80% and environmental factors for about 20% to 30% to the pathogenesis of autoimmune thyroid disease (AITD). Relatives of AITD patients carry a risk to contract AITD themselves. The 5-year risk can be quantified by the so-called Thyroid Events

  16. MiR-150 deficiency ameliorated hepatosteatosis and insulin resistance in nonalcoholic fatty liver disease via targeting CASP8 and FADD-like apoptosis regulator.

    Science.gov (United States)

    Zhuge, Baozhong; Li, Guohong

    2017-12-16

    The prevalence of Non-alcoholic fatty liver diseases (NAFLD) increased rapidly in the world. However, the pathogenesis of is still unclear. Hepatic steatosis and insulin resistance are considered to be central to the pathophysiology of NAFLD. MicroRNAs are short non-coding RNAs and has been reported to be involved in pathogenesis of NAFLD and related metabolic diseases. Here, we investigated the mechanisms by which miR-150 regulate hepatic steatosis and insulin resistance in high fat diet (HFD) induced NAFLD model. The expression of miR-150 was up-regulated dramatically in both human NAFLD patients and HFD mice model, as well as in hepatocytes treated with oleic acid. miR-150 deficiency ameliorated the hepatic steatosis and insulin resistance significantly in NAFLD mice. miR-150 deficiency decreased the expression of genes related to fatty acid uptake, synthesis and gluconeogenesis, while increased the expression of genes related to fatty acid β-oxidation. Further, we identified that CFLAR is a direct downstream target of miR-150. Overexpression of miR-150 reduced both the mRNA and protein levels of CFLAR in vitro. And overexpression of miR-150 significantly inhibited the luciferase activity of CFLAR 3'-UTR, while the effect of miR-150 was blocked when the binding site of miR-150 within the CFLAR 3'-UTR was mutated. We also found that miR-150 deficiency decreased the expression of p-Jnk1 and p-Ask1, while the effect of miR-150 on steatosis and insulin signaling was blocked by CFLAR overexpression. In conclusion, our data indicated that miR-150 potentially contributes to the hepatic steatosis and insulin resistance in NAFLD. miR-150/CFLAR pathway may be a new therapeutic strategy against NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The role of gut microbiota in the pathogenesis of rheumatic diseases.

    Science.gov (United States)

    Zhong, Danli; Wu, Chanyuan; Zeng, Xiaofeng; Wang, Qian

    2018-01-01

    Rheumatic diseases refer to many diseases with a loss of immune self-tolerance, leading to a chronic inflammation, degeneration, or metabolic derangement in multiple organs or tissues. The cause of rheumatic diseases remains to be elucidated, though both environmental and genetic factors are required for the development of rheumatic diseases. Over the past decades, emerging studies suggested that alteration of intestinal microbiota, known as gut dysbiosis, contributed to the occurrence or development of a range of rheumatic diseases, including rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, systemic sclerosis, and Sjogren's syndrome, through profoundly affecting the balance between pro- and anti-inflammatory immune responses. In this article, we discussed the role of gut microbiota in the pathogenesis of rheumatic diseases based on a large number of experimental and clinical materials, thereby providing a new insight for microbiota-targeted therapies to prevent or cure rheumatic diseases.

  18. New Insights into the Pathogenesis of Celiac Disease

    Directory of Open Access Journals (Sweden)

    Valli De Re

    2017-08-01

    Full Text Available Celiac disease (CD is an autoimmune and multisystem gluten-related disorder that causes symptoms involving the gastrointestinal tract and other organs. Pathogenesis of CD is only partially known. It had been established that ingestion of gluten proteins present in wheat and other cereals are necessary for the disease and develops in individuals genetically predisposed carrying the DQ2 or DQ8 human leukocyte antigen haplotypes. In this review, we had pay specific attention on the last discoveries regarding the three cellular components mainly involved in the development and maintenance of CD: T-cells, B-cells, and microbioma. All of them had been showed critical for the interaction between inflammatory immune response and gluten peptides. Although the mechanisms of interaction among overall these components are not yet fully understood, recent proteomics and molecular studies had shed some lights in the pathogenic role of tissue transglutaminase 2 in CD and in the alteration of the intestinal barrier function induced by host microbiota.

  19. New Insights into the Pathogenesis of Celiac Disease.

    Science.gov (United States)

    De Re, Valli; Magris, Raffaella; Cannizzaro, Renato

    2017-01-01

    Celiac disease (CD) is an autoimmune and multisystem gluten-related disorder that causes symptoms involving the gastrointestinal tract and other organs. Pathogenesis of CD is only partially known. It had been established that ingestion of gluten proteins present in wheat and other cereals are necessary for the disease and develops in individuals genetically predisposed carrying the DQ2 or DQ8 human leukocyte antigen haplotypes. In this review, we had pay specific attention on the last discoveries regarding the three cellular components mainly involved in the development and maintenance of CD: T-cells, B-cells, and microbioma. All of them had been showed critical for the interaction between inflammatory immune response and gluten peptides. Although the mechanisms of interaction among overall these components are not yet fully understood, recent proteomics and molecular studies had shed some lights in the pathogenic role of tissue transglutaminase 2 in CD and in the alteration of the intestinal barrier function induced by host microbiota.

  20. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Wang, Lei; Hao, Ke; Yang, Ting; Wang, Chen

    2017-09-05

    The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.

  1. Pathogenesis of salivary gland disease and xerostomia. The conception of Mikulicz's disease based on new knowledge

    International Nuclear Information System (INIS)

    Himi, Tetsuo; Kanaizumi, Etsuko; Ogasawara, Noriko; Yamamoto, Motohisa; Takahashi, Hiroki

    2007-01-01

    This review focuses on two topics of salivary gland diseases regarding xerostomia. First, the pathogenesis and treatment of xerostomia after radiotherapy against head and neck cancer is discussed. It is well known that the extent of radiation-induced salivary dysfunction and mucositis depends on the radiation dose and field. Moreover, the balance in the defense system of oropharyngeal cavity alters after radiotherapy. This altered balance may impair the ability to maintain the stable immunological control mechanism. Second, the newly established concept about Mikulicz's disease is discussed. Recently, elevated IgG4 concentration in serum and prominent infiltrating by plasmacytes expressing IgG4 in the salivary glands in Mikulicz's disease were revealed. Mikulicz's disease is different from Sjoegren's syndrome, and may be a systemic IgG4-related plasmacytic disease. (author)

  2. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This

  3. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    2017-12-01

    Full Text Available Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases

  4. Contribution of pertussis toxin to the pathogenesis of pertussis disease

    Science.gov (United States)

    Carbonetti, Nicholas H.

    2015-01-01

    Pertussis toxin (PT) is a multisubunit protein toxin secreted by Bordetella pertussis, the bacterial agent of the disease pertussis or whooping cough. PT in detoxified form is a component of all licensed acellular pertussis vaccines, since it is considered to be an important virulence factor for this pathogen. PT inhibits G protein-coupled receptor signaling through Gi proteins in mammalian cells, an activity that has led to its widespread use as a cell biology tool. But how does this activity of PT contribute to pertussis, including the severe respiratory symptoms of this disease? In this minireview, the contribution of PT to the pathogenesis of pertussis disease will be considered based on evidence from both human infections and animal model studies. Although definitive proof of the role of PT in humans is lacking, substantial evidence supports the idea that PT is a major contributor to pertussis pathology, including the severe respiratory symptoms associated with this disease. PMID:26394801

  5. Current concepts of the pathogenesis of inflammatory bowel disease.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    Although the cause of inflammatory bowel disease is not known, the pathogenesis involves an immune-mediated tissue damage that is the result of an interaction among genetic predisposing factors, exogenous triggers and endogenous modifying influences. Multiple genes are involved and operate at the level of the immune response and at the target organ. Exogenous triggers include the enteric microflora which might stimulate the mucosal immune system in genetically predisposed individuals. Endogenous modifying factors such as the psychoneuroendocrine system have regulatory effects on the immune system and the inflammatory response, and may influence the course of the disease. While autoimmune phenomena do occur, particularly in ulcerative colitis, there is no evidence that they are directly responsible for the tissue damage. It appears more likely, particularly in Crohn\\'s disease, that tissue injury may occur as an indirect or "bystander" effect of mucosal T-cell hyperactivation, perhaps in response to a normal enteric microbial antigen. Most of the immunologic and histologic features of Crohn\\'s disease can be explained by the effects of T-cell derived and other cytokines on the epithelium, the local immune system, the microvasculature, and the recruitment of auxiliary effector cells such as neutrophils.

  6. Multi-platform ’Omics Analysis of Human Ebola Virus Disease Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Eisfeld, Amie J.; Halfmann, Peter J.; Wendler, Jason P.; Kyle, Jennifer E.; Burnum-Johnson, Kristin E.; Peralta, Zuleyma; Maemura, Tadashi; Walters, Kevin B.; Watanabe, Tokiko; Fukuyama, Satoshi; Yamashita, Makoto; Jacobs, Jon M.; Kim, Young-Mo; Casey, Cameron P.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gritsenko, Marina A.; Monroe, Matthew E.; Weitz, Karl K.; Shukla, Anil K.; Tian, Mingyuan; Neumann, Gabriele; Reed, Jennifer L.; van Bakel, Harm; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; N' jai, Alhaji; Sahr, Foday; Kawaoka, Yoshihiro

    2017-12-01

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform ’omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.

  7. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  8. Immunoproteasome overexpression underlies the pathogenesis of thyroid oncocytes and primary hypothyroidism: studies in humans and mice.

    Directory of Open Access Journals (Sweden)

    Hiroaki J Kimura

    2009-11-01

    Full Text Available Oncocytes of the thyroid gland (Hürthle cells are found in tumors and autoimmune diseases. They have a unique appearance characterized by abundant granular eosinophilic cytoplasm and hyperchromatic nucleus. Their pathogenesis has remained, thus far, unknown.Using transgenic mice chronically expressing IFNgamma in thyroid gland, we showed changes in the thyroid follicular epithelium reminiscent of the human oncocyte. Transcriptome analysis comparing transgenic to wild type thyrocytes revealed increased levels of immunoproteasome subunits like LMP2 in transgenics, suggesting an important role of the immunoproteasome in oncocyte pathogenesis. Pharmacologic blockade of the proteasome, in fact, ameliorated the oncocytic phenotype. Genetic deletion of LMP2 subunit prevented the development of the oncocytic phenotype and primary hypothyroidism. LMP2 was also found expressed in oncocytes from patients with Hashimoto thyroiditis and Hürthle cell tumors.In summary, we report that oncocytes are the result of an increased immunoproteasome expression secondary to a chronic inflammatory milieu, and suggest LMP2 as a novel therapeutic target for the treatment of oncocytic lesions and autoimmune hypothyroidism.

  9. Roles of T Cells in the Pathogenesis of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Dinglei Su

    2013-01-01

    Full Text Available γδ T cells are a minor population of T cells that express the TCR γδ chains, mainly distributed in the mucosal and epithelial tissue and accounting for less than 5% of the total T cells in the peripheral blood. By bridging innate and adaptive immunity, γδ T cells play important roles in the anti-infection, antitumor, and autoimmune responses. Previous research on γδ T cells was primarily concentrated on infectious diseases and tumors, whereas their functions in autoimmune diseases attracted much attention. In this paper, we summarized the various functions of γδ T cells in two prototypical autoimmune connective tissue diseases, that is, SLE and RA, elaborating on their antigen-presenting capacity, secretion of proinflammatory cytokines, immunomodulatory effects, and auxiliary function for B cells, which contribute to overproduction of proinflammatory cytokines and pathogenic autoantibodies, ultimately leading to the onset of these autoimmune diseases. Elucidation of the roles of γδ T cells in autoimmune diseases is not only conducive to in-depth understanding of the pathogenesis of these diseases, but also beneficial in providing theoretical support for the development of γδ T-cell-targeted therapy.

  10. The pathogenesis of amyloidosis in periodic disease: Some aspects

    Directory of Open Access Journals (Sweden)

    Z. T. Djndoyan

    2014-07-01

    Full Text Available Sufficient information indicating the implication of dysfunction of interleukins (IL-6 and IL-1 in particular in the pathogenesis of amyloidosis in a number of autoinflammatory, rheumatic, and autoimmune diseases, including those in periodic disease (PD, has been recently accumulated. Its genetic defect – pirin mutation – gives rise to an alternative innate immune response (phagocytic cell activation to secrete IL-1 by macrophages and to activate T-helper cells. This causes imbalance in the synthesis of proinflammatory (IL-6, IL-8, and TNF-α and anti-inflammatory (IL-4, IL-10, and IL-1 receptor antagonist cytokines. Moreover, the uncontrolled macrophage (monocyte secretion of a great deal of IL-6 that together with IL-1 is a mediator of the synthesis of the serum amyloid fibril protein precursor SAA by hepatocytes, neutrophils, and fibroblasts plays one of the key roles in the pathogenesis of PD through amyloidosis. With this, IL-6 stimulates the inflammatory process, by enhancing the release of lysosomal enzymes, reactive oxygen species, and eicosanoids (prostaglandins, leukotrienes, thromboxane from the polymorphic nuclear leukocytes, macrophages, endotheliocytes, and fibroblasts and by augmenting the chemotaxis of macrophages and neutrophils, and the degranulation of the latter, i.e. through its action on the effector cells of inflammation, and prepares the tissue basis for amyloid deposits in this fashion. Thus, the analysis of literary and own materials gives grounds to suggest that pirin mutation is a trigger of the synthesis of IL-1 and IL-6 in PD and their hypersecretion is an initial link of the synthesis of SAA.

  11. Cardiac Hemodynamics in the Pathogenesis of Congenital Heart Disease and Aortic Valve Calcification

    Science.gov (United States)

    Nigam, Vishal

    2011-11-01

    An improved understanding of the roles of hemodynamic forces play in cardiac development and the pathogenesis of cardiac disease will have significant scientific and clinical impact. I will focus on the role of fluid dynamics in congenital heart disease and aortic valve calcification. Congenital heart defects are the most common form of birth defect. Aortic valve calcification/stenosis is the third leading cause of adult heart disease and the most common form of acquired valvular disease in developed countries. Given the high incidence of these diseases and their associated morbidity and mortality, the potential translational impact of an improved understanding of cardiac hemodynamic forces is very large. Division of Pediatric Cardiology, Rady Children's Hospital, San Diego

  12. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.

    Science.gov (United States)

    Kim, Dong Eon; Lee, Yonghyun; Kim, MinGyo; Lee, Soyoung; Jon, Sangyong; Lee, Seung-Hyo

    2017-09-01

    Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4 + T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease.

    Science.gov (United States)

    Barage, Sagar H; Sonawane, Kailas D

    2015-08-01

    Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. [Advances in the pathogenesis of non alcoholic fatty liver disease].

    Science.gov (United States)

    Pár, Alajos; Pár, Gabriella

    2017-06-01

    Non alcoholic fatty liver disease is the hepatic manifestation of metabolic syndrome, and the most common liver disease. Its more aggressive form is the non alcoholic steatohepatitis. Multiple genetic and environmental factors lead to the accumulation of triglicerides and the inflammatory cascade. High fat diet, obesity, adipocyte dysfunction with cytokine production, insulin resistance and increased lipolysis with free fatty acid flux into the liver - all are the drivers of liver cell injury. Activation of inflammasome by damage- or pathogen-associated molecular patterns results in "steril inflammation" and immune response, while the hepatic stellate cells and progenitor cells lead to fibrogenesis. Small intestinal bacterial overgrowth and gut dysbiosis are also of pivotal importance in the inflammation. Among the susceptible genetic factors, mutations of patatin-like phospholipase domain containing 3 and the transmembrane 6 superfamily 2 genes play a role in the development and progression of the disease, similarly as do epigenetic regulators such as microRNAs and extracellular vesicles. Better understanding of the pathogenesis of non alcoholic fatty liver disease may identify novel therapeutic agents that improve the outcome of the disease. Orv Hetil. 2017; 158(23): 882-894.

  15. Pilonidal sinus disease - Etiological factors, pathogenesis and clinical features

    Directory of Open Access Journals (Sweden)

    Kazim Duman

    2016-12-01

    Full Text Available and lsquo;Pilonidal sinus' disease, which is most commonly seen in reproductive populations, such as young adults - mostly in males who are in their twenties - is actually a controversial disease in that there is no consensus on its many facets. It is sometimes seen as an infected abscess draining from an opening or a lesion extending to the perineum. It may also present as a draining fistula opening to skin. In terms of etiological factors, various theories (main theories being congenital and acquired have been established since it was first described, no universal understanding achieved. A long and significant post-operative care period with different lengths of recovery depending on the type of operation are quite prevalent with regards to recurrence and complication status. In order to prevent recurrence and improve the quality of life, etiological and predisposing factors as well as clinical features of sacrococcygeal pilonidal disease should be well known, a detailed differential diagnosis should be made, and a suitable and timely intervention should be performed. It was aimed here to explain the etiological factors, pathogenesis and clinical features of the disease that may present with various clinical symptoms. [Arch Clin Exp Surg 2016; 5(4.000: 228-232

  16. Microbial Endocrinology in the Pathogenesis of Infectious Disease.

    Science.gov (United States)

    Lyte, Mark

    2016-04-01

    Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology-based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.

  17. Clonally expanded cytotoxic CD4+ T cells and the pathogenesis of IgG4-related disease.

    Science.gov (United States)

    Mattoo, Hamid; Stone, John H; Pillai, Shiv

    2017-02-01

    IgG4-related disease (IgG4-RD) is a systemic condition of unknown cause characterized by highly fibrotic lesions, with dense lymphoplasmacytic infiltrates containing a preponderance of IgG4-expressing plasma cells. CD4 + T cells and B cells constitute the major inflammatory cell populations in IgG4-RD lesions. IgG4-RD patients with active, untreated disease show a marked expansion of plasmablasts in the circulation. Although the therapeutic depletion of B cells suggests a role for these cells in the disease, a direct role for B cells or IgG4 in the pathogenesis of IgG4-RD is yet to be demonstrated. Among the CD4 + T-cell subsets, Th2 cells were initially thought to contribute to IgG4-RD pathogenesis, but many previous studies were confounded by the concomitant history of allergic diseases in the patients studied and the failure to use multi-color staining to definitively identify T-cell subsets in tissue samples. More recently, using an unbiased approach to characterize CD4 + T-cell subsets in patients with IgG4-RD - based on their clonal expansion and ability to infiltrate affected tissue sites - CD4 + CTLs have been identified as the major CD4 + T-cell subset in disease lesions as well as in the circulation. CD4 + CTLs in affected tissues secrete pro-fibrotic cytokines including IL-1β, TGF-β1, and IFN-γ as well as cytolytic molecules such as perforin and granzymes A and B. In this review, we examine possible mechanisms by which activated B cells and plasmablasts may collaborate with the expanded CD4 + CTLs in driving the fibrotic pathology of the disease and describe the lacunae in the field and in our understanding of IgG4-RD pathogenesis.

  18. Achondroplasia: pathogenesis and implications for future treatment.

    Science.gov (United States)

    Laederich, Melanie B; Horton, William A

    2010-08-01

    Although the genetic defect underlying achondroplasia has been known for over a decade, no effective therapies to stimulate bone growth have emerged. Here we review the recent literature and summarize the molecular mechanisms underlying disease pathology and examine their potential as therapeutic targets. Currently used preclinical models are discussed in the context of recent advances with a special focus on C-type natriuretic peptide. Research on the mutation in Fibroblast Growth Factor Receptor 3 (FGFR3) that causes achondroplasia suggests that disease results from increased signal transduction from the mutant receptor. Thus, current therapeutic strategies have focused on reducing signals emanating from FGFR3. First-generation therapies directly targeting FGFR3, such as kinase inhibitors and neutralizing antibodies, designed for targeting FGFR3 in cancer, are still in the preclinical phase and have yet to translate into the management of achondroplasia. Counteracting signal transduction pathways downstream of FGFR3 holds promise with the discovery that administration of C-type natriuretic peptide to achondroplastic mice ameliorates their clinical phenotype. However, more research into long-term effectiveness and safety of this strategy is needed. Direct targeting of therapeutic agents to growth plate cartilage may enhance efficacy and minimize side effects of these and future therapies. Current research into the pathogenesis of achondroplasia has expanded our understanding of the mechanisms of FGFR3-induced disease and has increased the number of approaches that we may use to potentially correct it. Further research is needed to validate these approaches in preclinical models of achondroplasia.

  19. Using megestrol acetate to ameliorate protein-energy wasting in chronic kidney disease.

    Science.gov (United States)

    Smith, Christine Skouberdis; Logomarsino, John V

    2016-03-01

    Various populations are affected by chronic kidney disease (CKD), and a low dose appetite stimulant megestrol acetate (MA) is sometimes recommended in patients with CKD to ameliorate protein-energy wasting (PEW). Patients with CKD are at greater risk of developing PEW since the progression of their disease can cause decreased nutrient intake, catabolic effects, systemic inflammation and metabolic changes. Providers can detect PEW in CKD by identifying low serum levels ≤3.8 g/dl of albumin, protein and energy intake increases from 27% to 42%. There are potential adverse effects of using MA in CKD. After reviewing the available literature, the benefits of using MA should be evaluated against the potential side effects. For further examination of MA's potential benefits, long-term, prospective, large clinical trials should be carried out. © 2015 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  20. Sugary drinks in the pathogenesis of obesity and cardiovascular diseases.

    Science.gov (United States)

    Brown, C M; Dulloo, A G; Montani, J-P

    2008-12-01

    Soft drink overconsumption is now considered to be a major public health concern with implications for cardiovascular diseases. This follows a number of studies performed in animals suggesting that chronic consumption of refined sugars can contribute to metabolic and cardiovascular dysregulation. In particular, the monosaccharide fructose has been attracting increasing attention as the more harmful sugar component in terms of weight gain and metabolic disturbances. High-fructose corn syrup is gradually replacing sucrose as the main sweetener in soft drinks and has been blamed as a potential contributor to the current high prevalence of obesity. There is also considerable evidence that fructose, rather than glucose, is the more damaging sugar component in terms of cardiovascular risk. This review focuses on the potential role of sugar drinks, particularly the fructose component, in the pathogenesis of obesity and cardiovascular diseases.

  1. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Viren Kumar Govindaraju

    Full Text Available Age related macular degeneration (AMD is one of the leading causes of blindness. Genetics, environmental insult, and age-related factors all play a key role in altering proteostasis, the homeostatic process regulating protein synthesis, degradation and processing. These factors also play a role in the pathogenesis of AMD and it has been well established that cigarette smoking (CS initiates AMD pathogenic mechanisms. The primary goal of this study is to elucidate whether CS can induce proteostasis/autophagy-impairment in retinal pigment epithelial (RPE cells. In our preliminary analysis, it was found that cigarette smoke extract (CSE induces accumulation of ubiquitinated proteins in the insoluble protein fraction (p < 0.01, which was subsequently mitigated through cysteamine (p < 0.01 or fisetin (p < 0.05 treatment. Further, it was verified that these CSE induced ubiquitinated proteins accumulated in the peri-nuclear spaces (p<0.05 that were cleared- off with cysteamine (p < 0.05 or fisetin (p < 0.05. Moreover, CSE-induced aggresome-formation (LC3B-GFP and Ub-RFP co-localization and autophagy-flux impairment was significantly (p<0.01 mitigated by cysteamine (p<0.05 or fisetin (p<0.05 treatment, indicating the restoration of CSE-mediated autophagy-impairment. CSE treatment was also found to induce intracellular reactive oxygen species (ROS, p < 0.001 while impacting cell viability (p < 0.001, which was quantified using CMH2DCFDA-dye (ROS and MTS (proliferation or propodium iodide staining (cell viability assays, respectively. Moreover, cysteamine and fisetin treatment ameliorated CS-mediated ROS production (p < 0.05 and diminished cell viability (p < 0.05. Lastly, CSE was found to induce cellular senescence (p < 0.001, which was significantly ameliorated by cysteamine (p < 0.001 or fisetin (p < 0.001. In conclusion, our study indicates that CS induced proteostasis/autophagy-impairment regulates mechanisms associated with AMD pathogenesis. Moreover

  2. Circulating microbial products and acute phase proteins as markers of pathogenesis in lymphatic filarial disease.

    Directory of Open Access Journals (Sweden)

    R Anuradha

    Full Text Available Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+ or without (CP Ag- active infection; with clinically asymptomatic infections (INF; and in those without infection (endemic normal [EN]. Comparisons between the two actively infected groups (CP Ag+ compared to INF and those without active infection (CP Ag- compared to EN were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein, acute phase proteins (haptoglobin and serum amyloid protein-A, and inflammatory cytokines (IL-1β, IL-12, and TNF-α are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins.

  3. Amyloid-β and chronic cerebral hypoperfusion in the early pathogenesis of Alzheimer’s disease

    OpenAIRE

    Salvadores Bersezio, Natalia

    2016-01-01

    Alzheimer’s disease (AD) is a severe age-related neurodegenerative disorder and is the most common form of dementia. Although the pathogenesis of AD remains unknown, the deterioration of the cerebrovascular system constitutes a risk factor associated with the development of the disease. Notably, brain hypoperfusion, a feature of healthy ageing brain and AD, occurs prior to the onset of cognitive decline in AD and correlates with the severity of dementia. Although there is a cle...

  4. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson's disease model.

    Science.gov (United States)

    Sharma, Shrestha; Narang, Jasjeet K; Ali, Javed; Baboota, Sanjula

    2016-09-16

    Oxidative stress is the leading cause in the pathogenesis of Parkinson's disease. Rutin is a naturally occurring strong antioxidant molecule with wide therapeutic applications. It suffers from the problem of low oral bioavailability which is due to its poor aqueous solubility. In order to increase the solubility self-nanoemulsifying drug delivery systems (SNEDDS) of rutin were prepared. The oil, surfactant and co-surfactant were selected based on solubility/miscibility studies. Optimization was done by a three-factor, four-level (34) Box-Behnken design. The independent factors were oil, surfactant and co-surfactant concentration and the dependent variables were globule size, self-emulsification time, % transmittance and cumulative percentage of drug release. The optimized SNEDDS formulation (RSE6) was evaluated for various release studies. Antioxidant activity was assessed by various in vitro tests such as 2,2-diphenyl-1-picrylhydrazyl and reducing power assay. Oxidative stress models which had Parkinson's-type symptoms were used to determine the antioxidant potential of rutin SNEDDS in vivo. Permeation was assessed through confocal laser scanning microscopy. An optimized SNEDDS formulation consisting of Sefsol + vitamin E-Solutol HS 15-Transcutol P at proportions of 25:35:17.5 (w/w) was prepared and characterized. The globule size and polydispersity index of the optimized formulation was found to be 16.08 ± 0.02 nm and 0.124 ± 0.01, respectively. A significant (p < 0.05) increase in the percentage of drug release was achieved in the case of the optimized formulation as compared to rutin suspension. Pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability. The optimized formulation had significant in vitro and in vivo antioxidant activity. Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing the oral bioavailability and efficacy of rutin, thus helping in ameliorating oxidative stress in

  5. The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases.

    Science.gov (United States)

    Brodziak, Andrzej; Ziółko, Ewa; Muc-Wierzgoń, Małgorzata; Nowakowska-Zajdel, Ewa; Kokot, Teresa; Klakla, Katarzyna

    2012-06-01

    This paper presents a new, recently formulated theory, which concerns the etiopathological process of autoimmune diseases. This theory takes into account the existence in the human genome, since approximately 40 million years, of so-called human endogenous retroviruses (HERVs), which are transmitted to descendants "vertically" by the germ cells. It was recently established that these generally silent sequences perform some physiological roles, but occasionally become active and influence the development of some chronic diseases like diabetes, some neoplasms, chronic diseases of the nervous system (eg, sclerosis multiplex), schizophrenia and autoimmune diseases. We present a short synopsis of immunological processes involved in the pathogenesis of autoimmune diseases, such as molecular mimicry, epitope spreading and activation of the superantigen. We then focus on experimental findings related to systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and some diseases of hepar and otorhinal tissues. We conclude the outline of this new model of the development of chronic diseases and indicate the conclusions important for the teaching of the basis of pathology.

  6. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    OpenAIRE

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John W.; Metz, Thomas O.

    2009-01-01

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the ...

  7. Tabetri™ (Tabebuia avellanedae Ethanol Extract Ameliorates Osteoarthritis Symptoms Induced by Monoiodoacetate through Its Anti-Inflammatory and Chondroprotective Activities

    Directory of Open Access Journals (Sweden)

    Jae Gwang Park

    2017-01-01

    Full Text Available Although osteoarthritis (OA, a degenerative joint disease characterized by the degradation of joint articular cartilage and subchondral bones, is generally regarded as a degenerative rather than inflammatory disease, recent studies have indicated the involvement of inflammation in OA pathogenesis. Tabebuia avellanedae has long been used to treat various diseases; however, its role in inflammatory response and the underlying molecular mechanisms remain poorly understood. In this study, the pharmacological effects of Tabetri (Tabebuia avellanedae ethanol extract (Ta-EE on OA pathogenesis induced by monoiodoacetate (MIA and the underlying mechanisms were investigated using experiments with a rat model and in vitro cellular models. In the animal model, Ta-EE significantly ameliorated OA symptoms and reduced the serum levels of inflammatory mediators and proinflammatory cytokines without any toxicity. The anti-inflammatory activity of Ta-EE was further confirmed in a macrophage-like cell line (RAW264.7. Ta-EE dramatically suppressed the production and mRNA expressions of inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells without any cytotoxicity. Finally, the chondroprotective effect of Ta-EE was examined in a chondrosarcoma cell line (SW1353. Ta-EE markedly suppressed the mRNA expression of matrix metalloproteinase genes. The anti-inflammatory and chondroprotective activities of Ta-EE were attributed to the targeting of the nuclear factor-kappa B (NF-κB and activator protein-1 (AP-1 signaling pathways in macrophages and chondrocytes.

  8. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gagnon P

    2014-02-01

    Full Text Available Philippe Gagnon,1,2 Jordan A Guenette,3,4 Daniel Langer,5 Louis Laviolette,2 Vincent Mainguy,1 François Maltais,1,2 Fernanda Ribeiro,1,2 Didier Saey1,2 1Faculté de Médecine, Université Laval, 2Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, 3Centre for Heart Lung Innovation, University of British Columbia, St Paul's Hospital, 4Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada; 5Department of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium Abstract: Chronic obstructive pulmonary disease (COPD is a preventable and treatable lung disease characterized by airflow limitation that is not fully reversible. In a significant proportion of patients with COPD, reduced lung elastic recoil combined with expiratory flow limitation leads to lung hyperinflation during the course of the disease. Development of hyperinflation during the course of COPD is insidious. Dynamic hyperinflation is highly prevalent in the advanced stages of COPD, and new evidence suggests that it also occurs in many patients with mild disease, independently of the presence of resting hyperinflation. Hyperinflation is clinically relevant for patients with COPD mainly because it contributes to dyspnea, exercise intolerance, skeletal muscle limitations, morbidity, and reduced physical activity levels associated with the disease. Various pharmacological and nonpharmacological interventions have been shown to reduce hyperinflation and delay the onset of ventilatory limitation in patients with COPD. The aim of this review is to address the more recent literature regarding the pathogenesis, assessment, and management of both static and dynamic lung hyperinflation in patients with COPD. We also address the influence of biological sex and obesity and new developments in our understanding of hyperinflation in patients with mild COPD and its evolution during

  9. [Role of the endocrine system in the pathogenesis of non-alcoholic fatty liver disease].

    Science.gov (United States)

    Hagymási, Krisztina; Reismann, Péter; Rácz, Károly; Tulassay, Zsolt

    2009-11-29

    The most frequent liver disorder in metabolic syndrome is the nonalcoholic fatty liver disease. Its pathogenesis is a complex, multifactorial process, characterized by insulin resistance and involvement of the endocrine system. Hypothyroidism may lead to nonalcoholic steatohepatitis via hyperlipidemia and obesity. Adult patients with growth hormone deficiency have a metabolic syndrome-like phenotype with obesity and many characteristic metabolic alterations. The chronic activation of the hypothalamic-pituitary-adrenal axis results in metabolic syndrome as well. Cushing's syndrome has also features of metabolic syndrome. Mild elevation of transaminase activities is commonly seen in patients with adrenal failure. Non-alcoholic steatosis is twice as common in postmenopusal as in premenopausal women and hormonal replacement therapy decreases the risk of steatosis. Insulin resistance, diabetes mellitus type 2, sleeping apnoe syndrome, cardiovascular disorders and non-alcoholic fatty liver disease are more frequent in polycystic ovary syndrome. Hypoandrogenism in males and hyperandrogenism in females may lead to fatty liver via obesity and insulin resistance. Adipokines (leptin, acylation stimulating protein, adiponectin) have a potential role in the pathogenesis of nonalcoholic fatty liver. The alterations of endocrine system must be considered in the background of cryptogenic liver diseases. The endocrine perspective may help the therapeutic approaches in the future.

  10. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment

    Science.gov (United States)

    Gujral, Naiyana; Freeman, Hugh J; Thomson, Alan BR

    2012-01-01

    Celiac disease (CD) is one of the most common diseases, resulting from both environmental (gluten) and genetic factors [human leukocyte antigen (HLA) and non-HLA genes]. The prevalence of CD has been estimated to approximate 0.5%-1% in different parts of the world. However, the population with diabetes, autoimmune disorder or relatives of CD individuals have even higher risk for the development of CD, at least in part, because of shared HLA typing. Gliadin gains access to the basal surface of the epithelium, and interact directly with the immune system, via both trans- and para-cellular routes. From a diagnostic perspective, symptoms may be viewed as either “typical” or “atypical”. In both positive serological screening results suggestive of CD, should lead to small bowel biopsy followed by a favourable clinical and serological response to the gluten-free diet (GFD) to confirm the diagnosis. Positive anti-tissue transglutaminase antibody or anti-endomysial antibody during the clinical course helps to confirm the diagnosis of CD because of their over 99% specificities when small bowel villous atrophy is present on biopsy. Currently, the only treatment available for CD individuals is a strict life-long GFD. A greater understanding of the pathogenesis of CD allows alternative future CD treatments to hydrolyse toxic gliadin peptide, prevent toxic gliadin peptide absorption, blockage of selective deamidation of specific glutamine residues by tissue, restore immune tolerance towards gluten, modulation of immune response to dietary gliadin, and restoration of intestinal architecture. PMID:23155333

  11. Clinical Relevance of Environmental Factors in the Pathogenesis of Autoimmune Thyroid Disease

    OpenAIRE

    Wiersinga, Wilmar M.

    2016-01-01

    Genetic factors contribute for about 70% to 80% and environmental factors for about 20% to 30% to the pathogenesis of autoimmune thyroid disease (AITD). Relatives of AITD patients carry a risk to contract AITD themselves. The 5-year risk can be quantified by the so-called Thyroid Events Amsterdam-score, based on serum thyroid-stimulating hormone, thyroid peroxidase (TPO)-antibodies and family history. Subjects at risk may ask what they can do to prevent development of AITD. This review summar...

  12. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis

    Science.gov (United States)

    Donaldson, David S.; Else, Kathryn J.

    2015-01-01

    ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the

  13. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis.

    Science.gov (United States)

    Donaldson, David S; Else, Kathryn J; Mabbott, Neil A

    2015-09-01

    Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal

  14. Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I.

    Science.gov (United States)

    Heppner, Jonathan M; Zaucke, Frank; Clarke, Lorne A

    2015-02-01

    Progressive skeletal and connective tissue disease represents a significant clinical burden in all of the mucopolysaccharidoses. Despite the introduction of enzyme replacement strategies for many of the mucopolysaccharidoses, symptomatology related to bone and joint disease appears to be recalcitrant to current therapies. In order to address these unmet medical needs a clearer understanding of skeletal and connective tissue disease pathogenesis is required. Historically the pathogenesis of the mucopolysaccharidoses has been assumed to directly relate to progressive storage of glycosaminoglycans. It is now apparent for many lysosomal storage disorders that more complex pathogenic mechanisms underlie patients' clinical symptoms. We have used proteomic and genome wide expression studies in the murine mucopolysaccharidosis I model to identify early pathogenic events occurring in micro-dissected growth plate tissue. Studies were conducted using 3 and 5-week-old mice thus representing a time at which no obvious morphological changes of bone or joints have taken place. An unbiased iTRAQ differential proteomic approach was used to identify candidates followed by validation with multiple reaction monitoring mass spectrometry and immunohistochemistry. These studies reveal significant decreases in six key structural and signaling extracellular matrix proteins; biglycan, fibromodulin, PRELP, type I collagen, lactotransferrin, and SERPINF1. Genome-wide expression studies in embryonic day 13.5 limb cartilage and 5 week growth plate cartilage followed by specific gene candidate qPCR studies in the 5week growth plate identified fourteen significantly deregulated mRNAs (Adamts12, Aspn, Chad, Col2a1, Col9a1, Hapln4, Lum, Matn1, Mmp3, Ogn, Omd, P4ha2, Prelp, and Rab32). The involvement of biglycan, PRELP and fibromodulin; all members of the small leucine repeat proteoglycan family is intriguing, as this protein family is implicated in the pathogenesis of late onset osteoarthritis

  15. THE ROLE OF EPIDERMAL BARRIER IMPAIRMENTS IN ATOPIC DERMATITIS: MODERN CONCEPTS OF DISEASE PATHOGENESIS

    Directory of Open Access Journals (Sweden)

    Nikolay N. Murashkin

    2018-01-01

    Full Text Available Atopic dermatitis is a common chronic inflammatory skin disease characterized by a recurring course and progressive decrease in the quality of life. Recent studies in this area demonstrate the multifaceted pathogenesis of atopic dermatitis. Interaction of such factors as epidermal dysfunction, immune system disorders, and the consequences of genetic mutations contributes not only to the development of the disease but also to its progression and chronic course. The article presents various components of the etiopathogenesis of atopic dermatitis, describes the role of lipids, thereby the new therapeutic targets are revealed to specialists.

  16. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice.

    Science.gov (United States)

    Crosby, Jeff R; Zhao, Chenguang; Jiang, Chong; Bai, Dong; Katz, Melanie; Greenlee, Sarah; Kawabe, Hiroshi; McCaleb, Michael; Rotin, Daniela; Guo, Shuling; Monia, Brett P

    2017-11-01

    Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  17. The Role of the Immune Response in the Pathogenesis of Thyroid Eye Disease: A Reassessment.

    Directory of Open Access Journals (Sweden)

    James T Rosenbaum

    Full Text Available Although thyroid eye disease is a common complication of Graves' disease, the pathogenesis of the orbital disease is poorly understood. Most authorities implicate the immune response as an important causal factor. We sought to clarify pathogenesis by using gene expression microarray.An international consortium of ocular pathologists and orbital surgeons contributed formalin fixed orbital biopsies. RNA was extracted from orbital tissue from 20 healthy controls, 25 patients with thyroid eye disease (TED, 25 patients with nonspecific orbital inflammation (NSOI, 7 patients with sarcoidosis and 6 patients with granulomatosis with polyangiitis (GPA. Tissue was divided into a discovery set and a validation set. Gene expression was quantified using Affymetrix U133 Plus 2.0 microarrays which include 54,000 probe sets.Principal component analysis showed that gene expression from tissue from patients with TED more closely resembled gene expression from healthy control tissue in comparison to gene expression characteristic of sarcoidosis, NSOI, or granulomatosis with polyangiitis. Unsupervised cluster dendrograms further indicated the similarity between TED and healthy controls. Heat maps based on gene expression for cytokines, chemokines, or their receptors showed that these inflammatory markers were associated with NSOI, sarcoidosis, or GPA much more frequently than with TED.This is the first study to compare gene expression in TED to gene expression associated with other causes of exophthalmos. The juxtaposition shows that inflammatory markers are far less characteristic of TED relative to other orbital inflammatory diseases.

  18. Inhibition of Myeloperoxidase at the Peak of Experimental Autoimmune Encephalomyelitis Restores Blood-Brain-Barrier Integrity and Ameliorates Disease Severity.

    Science.gov (United States)

    Zhang, Hao; Ray, Avijit; Miller, Nichole M; Hartwig, Danielle; Pritchard, Kirkwood A; Dittel, Bonnie N

    2015-11-12

    Oxidative stress is thought to contribute to disease pathogenesis in the central nervous system (CNS) disease multiple sclerosis (MS). Myeloperoxidase (MPO), a potent peroxidase that generates toxic radicals and oxidants, is increased in the CNS during MS. However, the exact mechanism whereby MPO drives MS pathology is not known. We addressed this question by inhibiting MPO in mice with experimental autoimmune encephalomyelitis (EAE) using our non-toxic MPO inhibitor KYC. We found that therapeutic administration of KYC for five days starting at the peak of disease significantly attenuated EAE disease severity, reduced myeloid cell numbers and permeability of the blood-brain-barrier (BBB). These data indicate that inhibition of MPO by KYC restores BBB integrity thereby limiting migration of myeloid cells into the CNS that drive EAE pathogenesis. In addition, these observations indicate that KYC may be an effective therapeutic agent for the treatment of MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. RISC in PD: The Impact of MicroRNAs in Parkinson’s Disease Cellular and Molecular Pathogenesis

    Directory of Open Access Journals (Sweden)

    Sabrina Mahalia Heman-Ackah

    2013-11-01

    Full Text Available Parkinson’s disease (PD is a debilitating neurodegenerative disease characterized primarily by the selective death of dopaminergic (DA neurons in the substantia nigra pars compacta of the midbrain. Although several genetic forms of PD have been identified, the precise molecular mechanisms underlying DA neuron loss in PD remain elusive. In recent years, microRNAs (miRNAs have been recognized as potent post-transcriptional regulators of gene expression with fundamental roles in numerous biological processes. Although their role in PD pathogenesis is still a very active area of investigation, several seminal studies have contributed significantly to our understanding of the roles these small non-coding RNAs play in the disease process. Among these are studies which have demonstrated specific miRNAs that target and down-regulate the expression of PD-related genes as well as those demonstrating a reciprocal relationship in which PD-related genes act to regulate miRNA processing machinery. Concurrently, a wealth of knowledge has become available regarding the molecular mechanisms that unify the underlying etiology of genetic and sporadic PD pathogenesis, including dysregulated protein quality control by the ubiquitin-proteasome system and autophagy pathway, activation of programmed cell death, mitochondrial damage and aberrant DA neurodevelopment and maintenance. Following a discussion of the interactions between PD-related genes and miRNAs, this review highlights those studies which have elucidated the roles of these pathways in PD pathogenesis. We highlight the potential of miRNAs to serve a critical regulatory role in the implicated disease pathways, given their capacity to modulate the expression of entire families of related genes. Although few studies have directly linked miRNA regulation of these pathways to PD, a strong foundation for investigation has been laid and this area holds promise to reveal novel therapeutic targets for PD.

  20. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John; Metz, Thomas O.

    2008-12-18

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide on overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.

  1. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease.

    Science.gov (United States)

    Zhang, Qibin; Ames, Jennifer M; Smith, Richard D; Baynes, John W; Metz, Thomas O

    2009-02-01

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.

  2. Extracellular Zn2+ Influx into Nigral Dopaminergic Neurons Plays a Key Role for Pathogenesis of 6-Hydroxydopamine-Induced Parkinson's Disease in Rats.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Morioka, Hiroki; Takeda, Atsushi

    2018-04-29

    Parkinson's disease (PD) is a progressive neurological disease characterized by a selective loss of nigrostriatal dopaminergic neurons. The exact cause of the neuronal loss remains unclear. Here, we report a unique mechanism of nigrostriatal dopaminergic neurodegeneration, in which extracellular Zn 2+ influx plays a key role for PD pathogenesis induced with 6-hydroxydopamine (6-OHDA) in rats. 6-OHDA rapidly increased intracellular Zn 2+ only in the substantia nigra pars compacta (SNpc) of brain slices and this increase was blocked in the presence of CaEDTA, an extracellular Zn 2+ chelator, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, indicating that 6-OHDA rapidly increases extracellular Zn 2+ influx via AMPA receptor activation in the SNpc. Extracellular Zn 2+ concentration was decreased under in vivo SNpc perfusion with 6-OHDA and this decrease was blocked by co-perfusion with CNQX, supporting 6-OHDA-induced Zn 2+ influx via AMPA receptor activation in the SNpc. Interestingly, both 6-OHDA-induced loss of nigrostriatal dopaminergic neurons and turning behavior to apomorphine were ameliorated by co-injection of intracellular Zn 2+ chelators, i.e., ZnAF-2DA and N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Co-injection of TPEN into the SNpc blocked 6-OHDA-induced increase in intracellular Zn 2+ but not in intracellular Ca 2+ . These results suggest that the rapid influx of extracellular Zn 2+ into dopaminergic neurons via AMPA receptor activation in the SNpc induces nigrostriatal dopaminergic neurodegeneration, resulting in 6-OHDA-induced PD in rats.

  3. Liver mitochondrial dysfunction and oxidative stress in the pathogenesis of experimental nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Oliveira C.P.M.S.

    2006-01-01

    Full Text Available Oxidative stress and hepatic mitochondria play a role in the pathogenesis of nonalcoholic fatty liver disease. The aim of the present study was to evaluate the role of hepatic mitochondrial dysfunction and oxidative stress in the pathogenesis of the disease. Fatty liver was induced in Wistar rats with a choline-deficient diet (CD; N = 7 or a high-fat diet enriched with PUFAs-omega-3 (H; N = 7 for 4 weeks. The control group (N = 7 was fed a standard diet. Liver mitochondrial oxidation and phosphorylation were measured polarographically and oxidative stress was estimated on the basis of malondialdehyde and glutathione concentrations. Moderate macrovacuolar liver steatosis was observed in the CD group and mild liver steatosis was observed in the periportal area in the H group. There was an increase in the oxygen consumption rate by liver mitochondria in respiratory state 4 (S4 and a decrease in respiratory control rate (RCR in the CD group (S4: 32.70 ± 3.35; RCR: 2.55 ± 0.15 ng atoms of O2 min-1 mg protein-1 when compared to the H and control groups (S4: 23.09 ± 1.53, 17.04 ± 2.03, RCR: 3.15 ± 0.15, 3.68 ± 0.15 ng atoms of O2 min-1 mg protein-1, respectively, P < 0.05. Hepatic lipoperoxide concentrations were significantly increased and the concentration of reduced glutathione was significantly reduced in the CD group. A choline-deficient diet causes moderate steatosis with disruption of liver mitochondrial function and increased oxidative stress. These data suggest that lipid peroxidation products can impair the flow of electrons along the respiratory chain, causing overreduction of respiratory chain components and enhanced mitochondrial reactive oxygen species. These findings are important in the pathogenesis of nonalcoholic fatty liver disease.

  4. Dysregulated microRNAs in neural system: Implication in pathogenesis and biomarker development in Parkinson's disease.

    Science.gov (United States)

    Lu, Jiangkun; Xu, Yan; Quan, Zhenzhen; Chen, Zixuan; Sun, Zhenzhen; Qing, Hong

    2017-12-04

    Parkinson's disease is a debilitating neurodegenerative movement disorder, characterized by the progressive and selective loss of dopaminergic neurons located in the substantia nigra, leading to clinical motor symptoms. The factors involved in PD are rather multifaceted. There are many cellular pathways contributing to its neuro-pathogenesis, which include abnormal protein aggregation, impaired ubiquitin proteasome system, autophagy, and neuroinflammation. However, despite years of investigation, still little is known about early events in the molecular pathogenesis. MicroRNAs are small non-coding RNAs that can regulate post-transcriptional expression of mRNAs. Since they somewhat modulate many mRNA targets simultaneously, many cellular pathways may be affected by one individual miRNA. Moreover, miRNAs can stably circulate in cerebrospinal fluid and blood, and their expression pattern can reflect the molecular pathophysiology, thus making them promising biomarkers in PD diagnosis and prognosis. In this review, we will review the recent progress on miRNA's mechanism in PD pathogenesis and discuss the possibilities of miRNAs as PD molecular biomarkers. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. The pathogenesis of Newcastle disease: A comparison of selected Newcastle disease virus wild-type strains and their infectious clones

    International Nuclear Information System (INIS)

    Wakamatsu, Nobuko; King, Daniel J.; Seal, Bruce S.; Samal, Siba K.; Brown, Corrie C.

    2006-01-01

    The effect of mutations of Newcastle disease virus (NDV) fusion (F) gene, hemagglutinin-neuraminidase (HN) gene, and phosphoprotein (P) gene and HN chimeras between the virulent Beaudette C and low virulence LaSota strains on pathogenesis and pathogenicity was examined in fully susceptible chickens. A virulent F cleavage site motif within a LaSota backbone increased pathogenicity and severity of clinical disease. A LaSota HN within a Beaudette C backbone decreased pathogenicity indices and disease severity. A Beaudette C HN within a LaSota backbone did not change either pathogenicity indices or severity of disease in chickens. Loss of glycosylation at site 4 of the HN or modified P gene of Beaudette C decreased pathogenicity indices and caused no overt clinicopathologic disease in chickens. Both pathogenicity indices and clinicopathologic examination demonstrated that the F, HN, and P genes of NDV collectively or individually can contribute to viral virulence

  6. Modern concepts of pathogenesis of ichthyosis

    Directory of Open Access Journals (Sweden)

    Світлана Володимирівна Дмитренко

    2015-06-01

    Full Text Available The modern concepts of ichthyosis are rather ambiguous and need more precise definition. The modern conception of pathogenesis of ichthysosis is offered and considered in this article.Aim. An aim is to analyze received data of our researches about molecular disturbances of keratin on the background of ichthyosis and the current data on the pathogenesis of disease.Materials and methods. An analysis of the results of research in 70 patients with ichthyosis by the methods of the flow cytometry, immunohistochemistry and by immunologic methods is presented in an article.Results. Authors revealed molecular, immunologic and immunohistochemical changes that realizes the disturbance of keratinization on the background of this disease. The model of pathogenesis of the various manifestations of gene mutations that causes ichthyosis is proposed and it can be taken into account when elaborating the new directions of therapy.Conclusions. Gene mutations that cause ichthyosis realizes on the background of disturbance of the cell cycle causing cornification and disturb the local and general immune reactions that summarily lead to the clinical presentations of disease

  7. Inhibition of G0/G1 Switch 2 Ameliorates Renal Inflammation in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Naoya Matsunaga

    2016-11-01

    Full Text Available Chronic kidney disease (CKD is a global health problem, and novel therapies to treat CKD are urgently needed. Here, we show that inhibition of G0/G1 switch 2 (G0s2 ameliorates renal inflammation in a mouse model of CKD. Renal expression of chemokine (C-C motif ligand 2 (Ccl2 was increased in response to p65 activation in the kidneys of wild-type 5/6 nephrectomy (5/6Nx mice. Moreover, 5/6Nx Clk/Clk mice, which carry homozygous mutations in the gene encoding circadian locomotor output cycles kaput (CLOCK, did not exhibit aggravation of apoptosis or induction of F4/80-positive cells. The renal expression of G0s2 in wild-type 5/6Nx mice was important for the transactivation of Ccl2 by p65. These pathologies were ameliorated by G0s2 knockdown. Furthermore, a novel small-molecule inhibitor of G0s2 expression was identified by high-throughput chemical screening, and the inhibitor suppressed renal inflammation in 5/6Nx mice. These findings indicated that G0s2 inhibitors may have applications in the treatment of CKD.

  8. Parkinson's disease--the debate on the clinical phenomenology, aetiology, pathology and pathogenesis.

    Science.gov (United States)

    Jenner, Peter; Morris, Huw R; Robbins, Trevor W; Goedert, Michel; Hardy, John; Ben-Shlomo, Yoav; Bolam, Paul; Burn, David; Hindle, John V; Brooks, David

    2013-01-01

    The definition of Parkinson's disease (PD) is changing with the expansion of clinical phenomenology and improved understanding of environmental and genetic influences that impact on the pathogenesis of the disease at the cellular and molecular level. This had led to debate and discussion with as yet, no general acceptance of the direction that change should take either at the level of diagnosis or of what should and should not be sheltered under an umbrella of PD. This article is one contribution to this on-going discussion. There are two different themes running through the article--widening the definition of PD/LBD/synucleinopathies and the heterogeneity that exists within PD itself from a clinical, pathological and genetic perspective. The conclusion reached is that in the future, further diagnostic categories will need to be recognized. These are likely to include--Parkinson's syndrome, Parkinson's syndrome likely to be Lewy body PD, clinical PD (defined by QSBB criteria), Lewy body disease (PD, LBD, REM SBD) and synucleinopathies (including LBD, MSA).

  9. Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases

    Science.gov (United States)

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-01-01

    The last decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of the G protein-coupled receptors. Free Fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. PMID:21663979

  10. Mid-Atlantic Microbial Pathogenesis Meeting

    Science.gov (United States)

    2005-12-01

    rheumatic fever, yet little is understood about the regulation of streptococcal genes involved in disease processes and survival in the host. Genome...of brucellosis, a disease that is characterized by abortion and infertility in ruminant animals and undulant fever in humans. In the natural hosts...were presented at this session. 15. SUBJECT TERMS bacteria, pathogenesis, microbiology, virulence, disease 16. SECURITY CLASSIFICATION OF: 17

  11. Transgenic animal models for study of the pathogenesis of Huntington’s disease and therapy

    Directory of Open Access Journals (Sweden)

    Chang RB

    2015-04-01

    Full Text Available Renbao Chang,1 Xudong Liu,1 Shihua Li,2 Xiao-Jiang Li1,2 1State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China; 2Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA Abstract: Huntington’s disease (HD is caused by a genetic mutation that results in polyglutamine expansion in the N-terminal regions of huntingtin. As a result, this polyQ expansion leads to the misfolding and aggregation of mutant huntingtin as well as age-dependent neurodegeneration. The genetic mutation in HD allows for generating a variety of animal models that express different forms of mutant huntingtin and show differential pathology. Studies of these animal models have provided an important insight into the pathogenesis of HD. Mouse models of HD include transgenic mice, which express N-terminal or full-length mutant huntingtin ubiquitously or selectively in different cell types, and knock-in mice that express full-length mutant Htt at the endogenous level. Large animals, such as pig, sheep, and monkeys, have also been used to generate animal HD models. This review focuses on the different features of commonly used transgenic HD mouse models as well as transgenic large animal models of HD, and also discusses how to use them to identify potential therapeutics. Since HD shares many pathological features with other neurodegenerative diseases, identification of therapies for HD would also help to develop effective treatment for different neurodegenerative diseases that are also caused by protein misfolding and occur in an age-dependent manner. Keywords: transgenic animal models, Huntington’s disease, pathogenesis, therapy

  12. Extranodal Rosai-Dorfman disease of bone, subcutaneous tissue and paranasal sinus mucosa with a review of its pathogenesis

    International Nuclear Information System (INIS)

    Yoon, Angela J.; Parisien, May; Feldman, Frieda; Young-In Lee, Francis

    2005-01-01

    We report an unusual case of extranodal Rosai-Dorfman disease presenting in a 36-year-old man with lesions of bone, subcutaneous tissue of the arm and maxillary sinus mucosa unassociated with lymphadenopathy or systemic symptoms. These lesions appeared metachronously within a 6-month period. The diagnostic light microscopic and immunohistochemical findings and pathogenesis of this interesting disease are discussed. (orig.)

  13. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    Science.gov (United States)

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  14. Molecular Targets in Alzheimer’s Disease: From Pathogenesis to Therapeutics

    Directory of Open Access Journals (Sweden)

    Xuan Cheng

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD.

  15. Nutritional rickets: pathogenesis and prevention.

    Science.gov (United States)

    Pettifor, John M

    2013-06-01

    Nutritional rickets remains a public health concern in many areas of the world despite cheap and effective means of preventing the disease. The roles of vitamin D deficiency, low dietary calcium intakes and the interrelationships between the two in the pathogenesis of the disease are discussed. It is now recognized that vitamin D deficiency in the pregnant and lactating mother predisposes to the development of rickets in the breastfed infant, and that cultural and social factors are important in the pathogenesis of the disease during the adolescent growth spurt. Prevention of rickets is dependent on the awareness of the medical profession and the general public of the need to ensure adequate intakes of vitamin D in at-risk populations, and of the importance of increasing dietary intakes of calcium using locally available and inexpensive foods in communities in which dietary calcium deficiency rickets is prevalent.

  16. Helicobacter pylori virulence and cancer pathogenesis.

    Science.gov (United States)

    Yamaoka, Yoshio; Graham, David Y

    2014-06-01

    Helicobacter pylori is human gastric pathogen that causes chronic and progressive gastric mucosal inflammation and is responsible for the gastric inflammation-associated diseases, gastric cancer and peptic ulcer disease. Specific outcomes reflect the interplay between host-, environmental- and bacterial-specific factors. Progress in understanding putative virulence factors in disease pathogenesis has been limited and many false leads have consumed scarce resources. Few in vitro-in vivo correlations or translational applications have proved clinically relevant. Reported virulence factor-related outcomes reflect differences in relative risk of disease rather than specificity for any specific outcome. Studies of individual virulence factor associations have provided conflicting results. Since virulence factors are linked, studies of groups of putative virulence factors are needed to provide clinically useful information. Here, the authors discuss the progress made in understanding the role of H. pylori virulence factors CagA, vacuolating cytotoxin, OipA and DupA in disease pathogenesis and provide suggestions for future studies.

  17. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases

    Science.gov (United States)

    Shi, Juan; Chi, Shuhong; Xue, Jing; Yang, Jiali; Li, Feng; Liu, Xiaoming

    2016-01-01

    The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs), a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases. PMID:27110577

  18. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Juan Shi

    2016-01-01

    Full Text Available The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs, a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases.

  19. Research progress on the pathogenesis of rapid eye movement sleep behavior disorder and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Hai-yang JIANG

    2017-10-01

    Full Text Available Rapid eye movement sleep behavior disorder (RBD is a sleep disorder characterized by the disappearance of muscle relaxation and enacting one's dreams during rapid eye movement (REM, with most of the dreams being violent or aggressive. Prevalence of RBD, based on population, is 0.38%-2.01%, but it becomes much higher in patients with neurodegenerative diseases, especially α - synucleinopathies. RBD may herald the emergence of α-synucleinopathies by decades, thus it may be used as an effective early marker of neurodegenerative diseases. In this review, we summarized the progress on the pathogenesis of RBD and its relationship with neurodegenerative diseases. DOI: 10.3969/j.issn.1672-6731.2017.10.003

  20. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases.

    Science.gov (United States)

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-09-01

    The past decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of G-protein-coupled receptors (GPCRs). Free fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review paper, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 7 - Pathogenesis and Molecular Biology.

    Science.gov (United States)

    Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W

    2016-06-01

    We assessed research knowledge gaps in the fields of FMDV (foot-and-mouth disease virus) pathogenesis and molecular biology by performing a literature review (2011-15) and collecting research updates (2014) from 33 institutes from across the world. Findings were used to identify priority areas for future research. There have been important advances in FMDV pathogenesis; FMDV remains in lymph nodes of many recovered animals that otherwise do not appear persistently infected, even in species previously not associated with the carrier state. Whether virus retention helps maintain host immunity and/or virus survival is not known. Studies of FMDV pathogenesis in wildlife have provided insights into disease epidemiology, in endemic and epidemic settings. Many aspects of FMDV infection and virus entry remain unknown; however, at the cellular level, we know that expression level and availability of integrins (that permit viral entry), rate of clearance of infected cells and strength of anti-viral type I IFN (interferon) response are key determinants of tissue tropism. Extending findings to improved understanding of transmission requires a standardized approach and adoption of natural routes of infection during experimental study. There has been recognition of the importance of autophagosomes for FMDV entry into the cytoplasm following cell surface receptor binding, and that distinct internal cellular membranes are exploited for viral replication and immune evasion. New roles for viral proteins in blocking type I IFN production and downstream signalling have been identified facilitating research in anti-viral therapeutics. We know more about how infection affects cell protein expression, and research into molecular determinants of capsid stability has aided the development of stable vaccines. We have an expanding knowledge of viral and host molecular determinates of virulence and infectiousness, and of how phylogenetics may be used to estimate vaccine match and strain

  2. Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Eric R Kallwitz; Alan McLachlan; Scott J Cotler

    2008-01-01

    Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and can result in nonalcoholic steatohepatitis (NASH) and progressive liver disease including cirrhosis and hepatocellular carcinoma. A growing body of literature implicates the peroxisorne proliferators- activated receptors (PPARs) in the pathogenesis and treatment of NAFLD. These nuclear hormone receptors impact on hepatic triglyceride accumulation and insulin resistance. The aim of this review is to describe the data linking PPARα and PPARγ to NAFLD/NASH and to discuss the use of PPAR ligands for the treatment of NASH.

  3. The long noncoding RNA Tug1 connects metabolic changes with kidney disease in podocytes.

    Science.gov (United States)

    Li, Szu Yuan; Susztak, Katalin

    2016-11-01

    An increasing amount of evidence suggests that metabolic alterations play a key role in chronic kidney disease (CKD) pathogenesis. In this issue of the JCI, Long et al. report that the long noncoding RNA (lncRNA) taurine-upregulated 1 (Tug1) contributes to CKD development. The authors show that Tug1 regulates mitochondrial function in podocytes by epigenetic targeting of expression of the transcription factor PPARγ coactivator 1α (PGC-1α, encoded by Ppargc1a). Transgenic overexpression of Tug1 specifically in podocytes ameliorated diabetes-induced CKD in mice. Together, these results highlight an important connection between lncRNA-mediated metabolic alterations in podocytes and kidney disease development.

  4. Pathogenesis of Hepatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Irena Ciećko-Michalska

    2012-01-01

    Full Text Available Hepatic encephalopathy can be a serious complication of acute liver failure and chronic liver diseases, predominantly liver cirrhosis. Hyperammonemia plays the most important role in the pathogenesis of hepatic encephalopathy. The brain-blood barrier disturbances, changes in neurotransmission, neuroinflammation, oxidative stress, GABA-ergic or benzodiazepine pathway abnormalities, manganese neurotoxicity, brain energetic disturbances, and brain blood flow abnormalities are considered to be involved in the development of hepatic encephalopathy. The influence of small intestine bacterial overgrowth (SIBO on the induction of minimal hepatic encephalopathy is recently emphasized. The aim of this paper is to present the current views on the pathogenesis of hepatic encephalopathy.

  5. Pathogenesis of Hepatic Encephalopathy

    Science.gov (United States)

    Ciećko-Michalska, Irena; Szczepanek, Małgorzata; Słowik, Agnieszka; Mach, Tomasz

    2012-01-01

    Hepatic encephalopathy can be a serious complication of acute liver failure and chronic liver diseases, predominantly liver cirrhosis. Hyperammonemia plays the most important role in the pathogenesis of hepatic encephalopathy. The brain-blood barrier disturbances, changes in neurotransmission, neuroinflammation, oxidative stress, GABA-ergic or benzodiazepine pathway abnormalities, manganese neurotoxicity, brain energetic disturbances, and brain blood flow abnormalities are considered to be involved in the development of hepatic encephalopathy. The influence of small intestine bacterial overgrowth (SIBO) on the induction of minimal hepatic encephalopathy is recently emphasized. The aim of this paper is to present the current views on the pathogenesis of hepatic encephalopathy. PMID:23316223

  6. Genes contributing to prion pathogenesis

    DEFF Research Database (Denmark)

    Tamgüney, Gültekin; Giles, Kurt; Glidden, David V

    2008-01-01

    incubation times, indicating that the conversion reaction may be influenced by other gene products. To identify genes that contribute to prion pathogenesis, we analysed incubation times of prions in mice in which the gene product was inactivated, knocked out or overexpressed. We tested 20 candidate genes...... show that many genes previously implicated in prion replication have no discernible effect on the pathogenesis of prion disease. While most genes tested did not significantly affect survival times, ablation of the amyloid beta (A4) precursor protein (App) or interleukin-1 receptor, type I (Il1r1...

  7. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer's Disease.

    Science.gov (United States)

    Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai

    2018-01-01

    Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer's disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD.

  8. Clinical Relevance of Environmental Factors in the Pathogenesis of Autoimmune Thyroid Disease

    Directory of Open Access Journals (Sweden)

    Wilmar M. Wiersinga

    2016-06-01

    Full Text Available Genetic factors contribute for about 70% to 80% and environmental factors for about 20% to 30% to the pathogenesis of autoimmune thyroid disease (AITD. Relatives of AITD patients carry a risk to contract AITD themselves. The 5-year risk can be quantified by the so-called Thyroid Events Amsterdam-score, based on serum thyroid-stimulating hormone, thyroid peroxidase (TPO-antibodies and family history. Subjects at risk may ask what they can do to prevent development of AITD. This review summarizes what is known about modulation of exposure to environmental factors in terms of AITD prevention. To stop smoking decreases the risk on Graves disease but increases the risk on Hashimoto disease. Moderate alcohol intake provides some protection against both Graves and Hashimoto disease. Low selenium intake is associated with a higher prevalence of thyroid autoimmunity, but evidence that selenium supplementation may lower TPO antibodies and prevent subclinical hypothyroidism remains inconclusive. Low serum vitamin D levels are associated with a higher prevalence of TPO antibodies, but intervention studies with extra vitamin D have not been done yet. Stress may provoke Graves hyperthyroidism but not Hashimoto thyroiditis. Estrogen use have been linked to a lower prevalence of Graves disease. The postpartum period is associated with an increased risk of AITD. Taking together, preventive interventions to diminish the risk of AITD are few, not always feasible, and probably of limited efficacy.

  9. Demonstrating concepts of pathogenesis using effectors of Phytophthora infestans

    Science.gov (United States)

    Pathogenesis, or how pathogens cause disease, is an important concept in plant pathology. The study of pathogenesis in plant pathology has rapidly expanded and is now a significant portion of plant pathology research (especially research at the molecular level of host-pathogen interaction). With the...

  10. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression.

    Directory of Open Access Journals (Sweden)

    Cristin D Davidson

    2009-09-01

    Full Text Available Niemann-Pick type C (NPC disease is a fatal neurodegenerative disorder caused most commonly by a defect in the NPC1 protein and characterized by widespread intracellular accumulation of unesterified cholesterol and glycosphingolipids (GSLs. While current treatment therapies are limited, a few drugs tested in Npc1(-/- mice have shown partial benefit. During a combination treatment trial using two such compounds, N-butyldeoxynojirimycin (NB-DNJ and allopregnanolone, we noted increased lifespan for Npc1(-/- mice receiving only 2-hydroxypropyl-beta-cyclodextrin (CD, the vehicle for allopregnanolone. This finding suggested that administration of CD alone, but with greater frequency, might provide additional benefit.Administration of CD to Npc1(-/- mice beginning at either P7 or P21 and continuing every other day delayed clinical onset, reduced intraneuronal cholesterol and GSL storage as well as free sphingosine accumulation, reduced markers of neurodegeneration, and led to longer survival than any previous treatment regime. We reasoned that other lysosomal diseases characterized by cholesterol and GSL accumulation, including NPC disease due to NPC2 deficiency, GM1 gangliosidosis and mucopolysaccharidosis (MPS type IIIA, might likewise benefit from CD treatment. Treated Npc2(-/- mice showed benefits similar to NPC1 disease, however, mice with GM1 gangliosidosis or MPS IIIA failed to show reduction in storage.Treatment with CD delayed clinical disease onset, reduced intraneuronal storage and secondary markers of neurodegeneration, and significantly increased lifespan of both Npc1(-/- and Npc2(-/- mice. In contrast, CD failed to ameliorate cholesterol or glycosphingolipid storage in GM1 gangliosidosis and MPS IIIA disease. Understanding the mechanism(s by which CD leads to reduced neuronal storage may provide important new opportunities for treatment of NPC and related neurodegenerative diseases characterized by cholesterol dyshomeostasis.

  11. The cell cycle in Alzheimer disease: a unique target for neuropharmacology.

    Science.gov (United States)

    Webber, Kate M; Raina, Arun K; Marlatt, Michael W; Zhu, Xiongwei; Prat, María I; Morelli, Laura; Casadesus, Gemma; Perry, George; Smith, Mark A

    2005-10-01

    Several hypotheses have been proposed attempting to explain the pathogenesis of Alzheimer disease including, among others, theories involving amyloid deposition, tau phosphorylation, oxidative stress, metal ion dysregulation and inflammation. While there is strong evidence suggesting that each one of these proposed mechanisms contributes to disease pathogenesis, none of these mechanisms are able to account for all the physiological changes that occur during the course of the disease. For this reason, we and others have begun the search for a causative factor that predates known features found in Alzheimer disease, and that might therefore be a fundamental initiator of the pathophysiological cascade. We propose that the dysregulation of the cell cycle that occurs in neurons susceptible to degeneration in the hippocampus during Alzheimer disease is a potential causative factor that, together with oxidative stress, would initiate all known pathological events. Neuronal changes supporting alterations in cell cycle control in the etiology of Alzheimer disease include the ectopic expression of markers of the cell cycle, organelle kinesis and cytoskeletal alterations including tau phosphorylation. Such mitotic alterations are not only one of the earliest neuronal abnormalities in the disease, but as discussed herein, are also intimately linked to all of the other pathological hallmarks of Alzheimer disease including tau protein, amyloid beta protein precursor and oxidative stress, and even risk factors such as mutations in the presenilin genes. Therefore, therapeutic interventions targeted toward ameliorating mitotic changes would be predicted to have a profound and positive impact on Alzheimer disease progression.

  12. A unified pathogenesis for kidney diseases, including genetic diseases and cancers, by the protein-homeostasis-system hypothesis.

    Science.gov (United States)

    Lee, Kyung-Yil

    2017-06-01

    Every cell of an organism is separated and protected by a cell membrane. It is proposed that harmony between intercellular communication and the health of an organism is controlled by a system, designated the protein-homeostasis-system (PHS). Kidneys consist of a variety of types of renal cells, each with its own characteristic cell-receptor interactions and producing characteristic proteins. A functional union of these renal cells can be determined by various renal function tests, and harmonious intercellular communication is essential for the healthy state of the host. Injury to a kind of renal cells can impair renal function and induce an imbalance in total body health. Every acute or chronic renal disease has unknown etiologic substances that are responsible for renal cell injury at the molecular level. The immune/repair system of the host should control the etiologic substances acting against renal cells; if this system fails, the disease progresses to end stage renal disease. Each renal disease has its characteristic pathologic lesions where immune cells and immune proteins, such as immunoglobulins and complements, are infiltrated. These immune cells and immune proteins may control the etiologic substances involved in renal pathologic lesions. Also, genetic renal diseases and cancers may originate from a protein deficiency or malfunctioning protein under the PHS. A unified pathogenesis for renal diseases, including acute glomerulonephritis, idiopathic nephrotic syndrome, immunoglobulin A nephropathy, genetic renal diseases such as Alport syndrome, and malignancies such as Wilms tumor and renal cell carcinoma, is proposed using the PHS hypothesis.

  13. Total glucosides of paeony ameliorates TNBS‑induced colitis by modulating differentiation of Th17/Treg cells and the secretion of cytokines.

    Science.gov (United States)

    Lin, Haihua; Zhang, Wenyou; Jiang, Xuepei; Chen, Renpin; Huang, Xielin; Huang, Zhiming

    2017-12-01

    The imbalance between effector CD4+ T helper 17 (Th17) and regulatory CD4+ T cells (Treg) cells and their associated cytokines, have been associated with the pathogenesis of inflammatory bowel disease (IBD). Total glycosides of paeony (TGP) is an alternative immunomodulatory agent that is widely used for the treatment of autoimmune diseases. The present study aimed to evaluate the modulatory effect of TGP in a rat model of colitis induced by 2,4,6‑trinitrobenzene sulfonic acid (TNBS). TGP was administered intragastrically 24 h after the TNBS intrarectal instillation for 7 days. TGP treatment ameliorated the clinical status and reversed the histopathologic severity of acute TNBS colitis. Furthermore, TGP inhibited the levels of Th17‑associated cytokines interleukin (IL)‑17, IL‑6, tumor necrosis factor‑α, whereas the expression levels of Treg‑associated cytokines IL‑10, transforming growth factor‑β in the plasma, colon, spleen and mesenteric lymph nodes (MLN). Additionally, TGP reduced the percentage of Th17 cells; however, the proportion of Treg cells in the spleen and MLN was increased. The present study also observed a suppression of Th17‑associated transcription factor, termed retinoid‑related orphan receptor‑γt (ROR‑γt). However, expression of the Treg‑associated transcription factor forkhead boxp3 was increased in the TGP treatment group. Therefore, the present findings suggest that TGP has a regulatory role in modulating the balance of Th17 and Treg cells to ameliorate the TNBS‑induced colitis and support the strategy of using TGP to treat IBD.

  14. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer’s Disease

    Science.gov (United States)

    Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai

    2018-01-01

    Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer’s disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD. PMID:29636677

  15. When aging-onset diabetes is coming across with Alzheimer disease: comparable pathogenesis and therapy.

    Science.gov (United States)

    Tang, Jun; Pei, Yijin; Zhou, Guangji

    2013-08-01

    Diabetes mellitus is a metabolic disorder that is characterized by high blood glucose because of the insulin-resistance and insulin-deficiency in Type 2, while the insulin deficiency due to destruction of islet cells in the pancreas in Type 1. The development of Type 2 diabetes is caused by a combination of lifestyle and genetic factors. Aging patients with diabetes are at increased risk of developing cognitive and memory dysfunctions, which is one of the significant symptoms of Alzheimer disease (AD). Also, over 2/3 of AD patients were clinically indentified with impairment of glucose. Cognitive dysfunction would be associated with poor self-care ability in diabetes patients. This review will briefly summarize the current knowledge of the pathogenesis of these two diseases and highlight similarities in their pathophysiologies. Furthermore, we will shortly discuss recent progress in the insulin-targeted strategy, aiming to explore the inner linkage between these two diseases in aging populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The significance of the psychosocial factors influence in pathogenesis of cardiovascular disease.

    Science.gov (United States)

    Masic, Izet; Alajbegovic, Jasmin

    2013-11-01

    Cardiovascular diseases (CVD) are the leading cause of death in the world today. Risk factors are those factors that influence the development of CVD. Risk factors can be divided into materialistic (genetic predisposition, smoking, alcohol) and non-materialistic (psychosocial factors). Our goal is to note the role of the health system, to emphasize the importance of psychosocial factors in the pathogenesis of CVD, explain the relationship between psychosocial factors and other risk factors, stress the importance of prevention through the provision of management of the cardiovascular system (CVS) diseases. A DESCRIPTIVE ANALYSIS WAS PERFORMED ON SCIENTIFIC STUDIES IN SEVERAL PUBLISHED ARTICLES IN JOURNALS ON CVS: Public Health Reviews, CVD, European Heart Journal, Materia Socio Medica and other indexed journals that publish articles on CVS. THE IMPORTANCE AND ROLE OF THE HEALTH SYSTEM IN THE EARLY DETECTION, DIAGNOSIS, THERAPY AND CVS DISEASE PREVENTION IS PRESENTED THROUGH THREE THEMATIC AREAS: (a) The incidence and prevalence of CVS diseases; (b) treatment of CVS diseases and (c) promotion of health in patients with CVS disease and those the risk of their occurrence. Health promotion is the most important aspect of the health system monitoring. Health promotion is adequately implemented ifthe management ofCVD is proper. The main objectives of CVD management are: Preventing or delaying the occurrence of CVD, reducing the number and severity of worsening and complications of CVD. Management Includes: Individual and family, the health system and the community. Materialistic and non-materialistic risk factors together contribute to the development of CVD.

  17. Theories on the Pathogenesis of Endometriosis

    Directory of Open Access Journals (Sweden)

    Samer Sourial

    2014-01-01

    Full Text Available Endometriosis is a common, chronic inflammatory disease defined by the presence of extrauterine endometrial tissue. The aetiology of endometriosis is complex and multifactorial, where several not fully confirmed theories describe its pathogenesis. This review examines existing theories on the initiation and propagation of different types of endometriotic lesions, as well as critically appraises the myriad of biologically relevant evidence that support or oppose each of the proposed theories. The current literature suggests that stem cells, dysfunctional immune response, genetic predisposition, and aberrant peritoneal environment may all be involved in the establishment and propagation of endometriotic lesions. An orchestrated scientific and clinical effort is needed to consider all factors involved in the pathogenesis of this multifaceted disease and to propose novel therapeutic targets to reach effective treatments for this distressing condition.

  18. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kyrtsos, Christina Rose; Baras, John S

    2015-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.

  19. Novel lipid signaling pathways in Alzheimer's disease pathogenesis.

    Science.gov (United States)

    Giannopoulos, Phillip F; Joshi, Yash B; Praticò, Domenico

    2014-04-15

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. With an increasing longevity and the absence of a cure, AD has become not only a major health problem but also a heavy social and economic burden worldwide. In addition to the presence of abundant intra- and extra-cellular neurotoxic amyloid β (Aβ) peptides, which form the amyloid plaques, and intracellular hyperphosphorylated tau protein, the main component of neurofibrillary tangles, consistent evidence indicates that the AD brain is characterized by extensive neuroinflammatory processes. The 5-lipoxygenase (5LO) is a pro-inflammatory enzymatic pathway widely distributed within the central nervous system and is up-regulated in AD. In the last five years our group has been involved in unraveling the neurobiology of this protein and investigating its relationship with cellular and molecular events of functional importance in AD pathogenesis. By using a combination of in vitro and in vivo experimental tools and implementing genetic as well as pharmacological approaches today we know that 5LO is likely an endogenous regulator of Aβ formation via the modulation of the γ-secretase complex, and tau metabolism by modulating its phosphorylation state at specific epitopes via the cyclin-dependent kinase-5 (cdk-5). In addition, 5LO influences synaptic function and integrity and by doing so significantly affects learning and memory in the Tg2576 and 3xTg AD transgenic mouse models. Taken together our data establish this protein as a pleiotropic contributor to the development of the full spectrum of the AD-like phenotype in these mouse models of the disease, making it a viable therapeutic target for the treatment of AD in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Trichomonas vaginalis Pathogenesis: a Narrative Review

    Directory of Open Access Journals (Sweden)

    Zahra Arab-Mazar

    2015-07-01

    Full Text Available In the latest articles which were published during 2013-2014, Trichomonas vaginalis (T. vaginalis was mentioned as a neglected sexual transmission disease (STD, while the exact mechanism of its pathogenesis has not been cleared yet. Although trichomonasiasis is easy curable, there is concern that resistance to drug are increasing. This common infection as concerning the important public health implications needs more research to be done for understanding the diagnosis, treatment, immunology and pathogenesis. In this review we searched all valuable and relevant information considering the pathogenesis of T. vaginalis. We referred to the information databases of Medline, PubMed, Scopus and Google scholar. The used keywords were the combinations of T. vaginalis and words associated with pathogenicity. This review discusses the host-parasite interaction and pathogenicity of this parasite.

  1. Toward molecular pathogenesis of an autoimmune disease: Refined genetic mapping of autoimmune polyglandular disease type I (APECED)

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, J.; Bjoerses, P.; Peltonen, L. [National Public Health Institute, Helsinki (Finland)] [and others

    1994-09-01

    Autoimmune reactions encoupled to many human diseases are still only partially understood. Unravelling the molecular pathogenesis of inherited diseases with a strong autoimmune component in their clinical expression could help to dissect individual components in the molecular background of abnormal immune response. One such genetic disorder is autosomal recessive autoimmune polyglandular disease type I (PGD I), also known as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, MIM 240300). The disease is especially enriched in the genetically isolated population of Finland and we have assigned the APECED locus to human chromosome 21q22.3 in 14 Finnish families by linkage analyses. The best positional lod score of 6.49 was observed with marker D21S49. Based on the history of the Finns, the gene pool of this population clearly demonstrates the consequences of a founder effect and consequent isolation. In the Finnish population, we can take advantage of linkage disequilibrium and allelic association studies to more precisely define the critical DNA region for our disease gene of interest than would be possible by linkage analyses alone. We are now able to define the chromosomal region of interest between two flanking markers locating 1 cM apart. Linkage disequilibrium is observed with three of the markers used in the analyses and this suggests a distance of less than 500 kb to the disease locus, well approachable with molecular cloning techniques. Overlapping YAC and cosmid clones spanning our region of interest will facilitate the cloning of APECED gene in the near future.

  2. Pathogenesis of peptic ulcer disease and current trends in therapy.

    Science.gov (United States)

    Desai, J K; Goyal, R K; Parmar, N S

    1997-01-01

    Traditionally drugs used in peptic ulcer have been directed mainly against a single luminal damaging agent i.e. hydrochloric acid and a plethora of drugs like antacids, anticholinergics, histamine H2-antagonists etc. have flooded the market. An increase in 'aggressive' factors like acid and pepsin is found only in a minority of peptic ulcer patients. These factors do not alter during or after spontaneous healing. It is well-known that the gastric mucosa can resist auto-digestion though it is exposed to numerous 'insults' like high concentration of hydrochloric acid, pepsin, reflux of bile, spicy food, microorganisms and at times alcohol and irritant drugs. It is thus evident that the integrity of the gastric mucosa is maintained by defense mechanisms against these 'aggressive' damaging factors. Recently, attention has been focused more on gastroduodenal defense mechanisms leading to the concept of 'Cytoprotection'. The old dictum "no acid--no ulcer" now extends to "if acid--why ulcer"? as a fundamental question. During last decade more information has poured in about the prevalence and changing pattern of the disease, the influence of environmental factors and speculation on the role of a recently characterized bacterial organism, Helicobacter pylori which colonizes in the gastric mucosa, particularly the antral region. This review briefly describes current knowledge about the pathogenesis of peptic ulcer disease and discusses strategies for its treatment.

  3. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages.

    Science.gov (United States)

    Ueno, Manabu; Maeno, Toshitaka; Nishimura, Satoshi; Ogata, Fusa; Masubuchi, Hiroaki; Hara, Kenichiro; Yamaguchi, Kouichi; Aoki, Fumiaki; Suga, Tatsuo; Nagai, Ryozo; Kurabayashi, Masahiko

    2015-03-10

    Alveolar macrophages play a crucial role in the pathogenesis of emphysema, for which there is currently no effective treatment. Bisphosphonates are widely used to treat osteoclast-mediated bone diseases. Here we show that delivery of the nitrogen-containing bisphosphonate alendronate via aerosol inhalation ameliorates elastase-induced emphysema in mice. Inhaled, but not orally ingested, alendronate inhibits airspace enlargement after elastase instillation, and induces apoptosis of macrophages in bronchoalveolar fluid via caspase-3- and mevalonate-dependent pathways. Cytometric analysis indicates that the F4/80(+)CD11b(high)CD11c(mild) population characterizing inflammatory macrophages, and the F4/80(+)CD11b(mild)CD11c(high) population defining resident alveolar macrophages take up substantial amounts of the bisphosphonate imaging agent OsteoSense680 after aerosol inhalation. We further show that alendronate inhibits macrophage migratory and phagocytotic activities and blunts the inflammatory response of alveolar macrophages by inhibiting nuclear factor-κB signalling. Given that the alendronate inhalation effectively induces apoptosis in both recruited and resident alveolar macrophages, we suggest this strategy may have therapeutic potential for the treatment of emphysema.

  4. Tooth loss might not alter molecular pathogenesis in an aged transgenic Alzheimer's disease model mouse.

    Science.gov (United States)

    Oue, Hiroshi; Miyamoto, Yasunari; Koretake, Katsunori; Okada, Shinsuke; Doi, Kazuya; Jung, Cha-Gyun; Michikawa, Makoto; Akagawa, Yasumasa

    2016-09-01

    Previous studies have reported that tooth loss is a risk factor of Alzheimer's disease (AD). However, the association between tooth loss and cognition and the impact of tooth loss on the molecular pathogenesis of AD remain elusive. In this study, we tested the effect of tooth loss on learning and memory and on the molecular pathogenesis of AD in an aged AD model mice. We divided 14-month-old amyloid precursor protein (APP) transgenic mice, an AD model mouse line, into upper molar extracted group (experimental) and molar intact group (control). At 18 months old, we analysed not only the changes of amyloid-beta (Aβ), pyramidal cells in the brain but also the learning and memory ability with step-through passive avoidance test. The amount of Aβ and the number of pyramidal cells in the hippocampus were not significantly different between the experimental and control group. Similarly, the difference of learning and memory ability could not be distinguished between the groups. Neither molecular pathogenesis of AD nor associated learning and memory were aggravated by tooth loss in these mice. The limited results of this study which used the aged mice may help the dental profession to plan and explain treatments to patients with AD, which must be designed while taking into account the severity of the AD symptoms. © 2014 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  5. Foot-and-mouth disease virus infection in young lambs: pathogenesis and tissue tropism

    DEFF Research Database (Denmark)

    Ryan, Eoin; Horsington, Jacquelyn; Durand, Stephanie

    2008-01-01

    Foot-and-mouth disease (FMD) in adult sheep usually causes milder clinical signs than in cattle or pigs, and is often subtle enough to go undiagnosed. In contrast, FMD in lambs has been reported to cause high mortality during field outbreaks. In order to investigate the pathogenesis of FMD in lambs......, two groups, aged 10–14 days, were infected with foot-and-mouth disease virus (FMDV) type O UKG. One group of lambs (n = 8) was inoculated with FMDV in the coronary band, while the other (n = 4) was infected by direct contact with FMDV-inoculated ewes. Daily serum samples and temperature measurements...... were taken. Lambs were killed sequentially and tissue samples taken for analysis. Using real-time RT-PCR, viral RNA levels in tissue samples and serum were measured, and a novel strand-specific real-time RT-PCR assay was used to quantify viral replication levels in tissues. Tissue sections were...

  6. Antiresistin RNA Oligonucleotide Ameliorates Diet-Induced Nonalcoholic Fatty Liver Disease in Mice through Attenuating Proinflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Yi Tan

    2015-01-01

    Full Text Available The aim of this study was to determine whether inhibition of resistin by a synthetic antiresistin RNA (oligonucleotide oligo ameliorates metabolic and histological abnormalities in nonalcoholic fatty liver disease (NAFLD induced by high-fat diet (HFD in mice. The antiresistin RNA oligo and a scrambled control oligo (25 mg/kg of body weight were i.p. injected to HFD mice. Serum metabolic parameters and hepatic enzymes were measured after 4-week treatment. The treatment significantly reduced epididymal fat and attenuated the elevated serum resistin, cholesterol, triglycerides, glucose, and insulin with an improved glucose tolerance test. Antiresistin RNA oligo also normalized serum AST and ALT levels with improved pathohistology of NAFLD. Immunoblotting and qRT-PCR revealed that decreased protein and mRNA expression of resistin in fat and liver tissues of the treated mice were associated with reduction of adipose TNF-α and IL-6 expression and secretion into circulation. mRNA and protein expression of hepatic phosphoenolpyruvate carboxykinase (PEPCK and sterol regulatory element-binding protein-1c (SREBP-1c were also significantly decreased in the treated mice. Our results suggest that resistin may exacerbate NAFLD in metabolic syndrome through upregulating inflammatory cytokines and hepatic PEPCK and SREBP-1c. Antiresistin RNA oligo ameliorated metabolic abnormalities and histopathology of NAFLD through attenuating proinflammatory cytokines.

  7. Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; von Messling, Veronika

    2016-10-11

    Morbilliviruses share considerable structural and functional similarities. Even though disease severity varies among the respective host species, the underlying pathogenesis and the clinical signs are comparable. Thus, insights gained with one morbillivirus often apply to the other members of the genus. Since the Canine distemper virus (CDV) causes severe and often lethal disease in dogs and ferrets, it is an attractive model to characterize morbillivirus pathogenesis mechanisms and to evaluate the efficacy of new prophylactic and therapeutic approaches. This review compares the cellular tropism, pathogenesis, mechanisms of persistence and immunosuppression of the Measles virus (MeV) and CDV. It then summarizes the contributions made by studies on the CDV in dogs and ferrets to our understanding of MeV pathogenesis and to vaccine and drugs development.

  8. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Science.gov (United States)

    Nishiwaki, Satoshi; Nakayama, Takayuki; Murata, Makoto; Nishida, Tetsuya; Terakura, Seitaro; Saito, Shigeki; Kato, Tomonori; Mizuno, Hiroki; Imahashi, Nobuhiko; Seto, Aika; Ozawa, Yukiyasu; Miyamura, Koichi; Ito, Masafumi; Takeshita, Kyosuke; Kato, Hidefumi; Toyokuni, Shinya; Nagao, Keisuke; Ueda, Ryuzo; Naoe, Tomoki

    2014-01-01

    Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP), a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  9. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. New discoveries in the pathogenesis and classification of vitiligo.

    Science.gov (United States)

    Rodrigues, Michelle; Ezzedine, Khaled; Hamzavi, Iltefat; Pandya, Amit G; Harris, John E

    2017-07-01

    Vitiligo is a common autoimmune disease that progressively destroys melanocytes in the skin, resulting in the appearance of patchy depigmentation. This disfiguring condition frequently affects the face and other visible areas of the body, which can be psychologically devastating. The onset of vitiligo often occurs in younger individuals and progresses for life, resulting in a heavy burden of disease and decreased quality of life. Presentation patterns of vitiligo vary, and recognition of these patterns provides both diagnostic and prognostic clues. Recent insights into disease pathogenesis offer a better understanding of the natural history of the disease, its associations, and potential for future treatments. The first article in this continuing medical education series outlines typical and atypical presentations of vitiligo, how they reflect disease activity, prognosis, and response to treatment. Finally, we discuss disease associations, risk factors, and our current understanding of disease pathogenesis. Copyright © 2016 American Academy of Dermatology, Inc. All rights reserved.

  11. Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle.

    Science.gov (United States)

    Arzt, Jonathan; Pacheco, Juan M; Stenfeldt, Carolina; Rodriguez, Luis L

    2017-05-02

    Understanding the mechanisms of attenuation and virulence of foot-and-mouth disease virus (FMDV) in the natural host species is critical for development of next-generation countermeasures such as live-attenuated vaccines. Functional genomics analyses of FMDV have identified few virulence factors of which the leader proteinase (L pro ) is the most thoroughly investigated. Previous work from our laboratory has characterized host factors in cattle inoculated with virulent FMDV and attenuated mutant strains with transposon insertions within L pro . In the current study, the characteristics defining virulence of FMDV in cattle were further investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). The only difference between the two viruses was an insertion mutation in the inter-AUG region of the leader proteinase of FMDV-Mut. All cattle were infected by simulated-natural, aerosol inoculation. Both viruses were demonstrated to establish primary infection in the nasopharyngeal mucosa with subsequent dissemination to the lungs. Immunomicroscopic localization of FMDV antigens indicated that both viruses infected superficial epithelial cells of the nasopharynx and lungs. The critical differences between the two viruses were a more rapid establishment of infection by FMDV-WT and quantitatively greater virus loads in secretions and infected tissues compared to FMDV-Mut. The slower replicating FMDV-Mut established a subclinical infection that was limited to respiratory epithelial sites, whereas the faster replication of FMDV-WT facilitated establishment of viremia, systemic dissemination of infection, and clinical disease. The mutant FMDV was capable of achieving all the same early pathogenesis landmarks as FMDV-WT, but was unable to establish systemic infection. The precise mechanism of attenuation remains undetermined; but current data suggests that the impaired replication

  12. Aetiology and pathogenesis of alcoholic liver disease.

    Science.gov (United States)

    Lieber, C S

    1993-09-01

    carcinogens and even nutritional factors such as vitamin A. Ethanol causes not only vitamin A depletion but it also enhances its hepatotoxicity. Furthermore, induction of the microsomal pathway contributes to increased acetaldehyde generation, with formation of protein adducts, resulting in antibody production, enzyme inactivation and decreased DNA repair; it is also associated with a striking impairment of the capacity of the liver to utilize oxygen. Moreover, acetaldehyde promotes glutathione depletion, free-radical mediated toxicity and lipid peroxidation. In addition, acetaldehyde affects hepatic collagen synthesis: both in vivo and in vitro (in cultured myofibroblasts and lipocytes), ethanol and its metabolite acetaldehyde were found to increase collagen accumulation and mRNA levels for collagen. This new understanding of the pathogenesis of alcoholic liver disease may eventually improve therapy with drugs and nutrients.

  13. A point of view: quantitative and qualitative imbalance in disease pathogenesis; pulmonary surfactant protein A genetic variants as a model.

    Science.gov (United States)

    Floros, J; Wang, G

    2001-05-01

    The high degree of similarity at the molecular level, between humans and other species, has provided the rationale for the use of a variety of species as model systems in research, resulting in enormous advances in biological sciences and medicine. In contrast, the individual variability observed among humans, for example, in external physique, organ functionality and others, is accounted for, by only a fraction of 1% of differences at the DNA level. These small differences, which are essential for understanding disease pathogenesis, have posed enormous challenges in medicine, as we try to understand why patients may respond differently to drugs or why one patient has complications and another does not. Differences in outcome are most likely the result of interactions among genetic components themselves and/or the environment at the molecular, cellular, organ, or organismal level, or the macroenvironment. In this paper: (1) we consider some issues for multifactorial disease pathogenesis; (2) we provide a review of human SP-A and how the knowledge gained and the characteristics of the hSP-A system may serve as a model in the study of disease with multifactorial etiology; and (3) we describe examples where hSP-A has been used in the study of disease.

  14. Gypenosides ameliorate memory deficits in MPTP-lesioned mouse model of Parkinson's disease treated with L-DOPA.

    Science.gov (United States)

    Zhao, Ting Ting; Kim, Kyung Sook; Shin, Keon Sung; Park, Hyun Jin; Kim, Hyun Jeong; Lee, Kyung Eun; Lee, Myung Koo

    2017-09-06

    Previous studies have revealed that gypenosides (GPS) improve the symptoms of anxiety disorders in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rat model of Parkinson's disease (PD). The present study aimed to investigate the effects of GPS on memory deficits in an MPTP-lesioned mouse model of PD treated with L-3,4-dihydroxyphenylalanine (L-DOPA). MPTP (30 mg/kg/day, 5 days)-lesioned mice were treated with GPS (50 mg/kg) and/or L-DOPA (10 and 25 mg/kg) for 21 days. After the final treatments, behavioral changes were assessed in all mice using passive avoidance and elevated plus-maze tests. We then evaluated the biochemical influences of GPS treatment on levels of tyrosine hydroxylase (TH), dopamine, N-methyl-D-aspartate (NMDA) receptors, extracellular signal-regulated kinase (ERK1/2), and cyclic AMP-response element binding protein (CREB) phosphorylation. MPTP-lesioned mice exhibited deficits associated with habit learning and spatial memory, which were further aggravated by treatment with L-DOPA (25 mg/kg). However, treatment with GPS (50 mg/kg) ameliorated memory deficits. Treatment with GPS (50 mg/kg) also improved L-DOPA (25 mg/kg)-treated MPTP lesion-induced decreases in retention latency on the passive avoidance test, as well as levels of TH-immunopositive cells and dopamine in the substantia nigra and striatum. GPS treatment also attenuated increases in retention transfer latency on the elevated plus-maze test and in NMDA receptor expression, as well as decreases in the phosphorylation of ERK1/2 and CREB in the hippocampus. Treatment with L-DOPA (10 mg/kg) also ameliorated deficits in habit learning and spatial memory in MPTP-lesioned mice, and this effect was further enhanced by treatment with GPS (50 mg/kg). GPS ameliorate deficits in habit learning and spatial memory by modulating the dopaminergic neuronal and N-methyl-D-aspartate receptor-mediated signaling systems in MPTP-lesioned mice treated with L-DOPA. GPS may serve as an adjuvant

  15. Comprehensive genetic study of fatty acids helps explain the role of noncoding inflammatory bowel disease associated SNPs and fatty acid metabolism in disease pathogenesis.

    Science.gov (United States)

    Jezernik, Gregor; Potočnik, Uroš

    2018-03-01

    Fatty acids and their derivatives play an important role in inflammation. Diet and genetics influence fatty acid profiles. Abnormalities of fatty acid profiles have been observed in inflammatory bowel diseases (IBD), a group of complex diseases defined by chronic gastrointestinal inflammation. IBD associated fatty acid profile abnormalities were observed independently of nutritional status or disease activity, suggesting a common genetic background. However, no study so far has attempted to look for overlap between IBD loci and fatty acid associated loci or investigate the genetics of fatty acid profiles in IBD. To this end, we conducted a comprehensive genetic study of fatty acid profiles in IBD using iCHIP, a custom microarray platform designed for deep sequencing of immune-mediated disease associated loci. This study identifies 10 loci associated with fatty acid profiles in IBD. The most significant associations were a locus near CBS (p = 7.62 × 10 -8 ) and a locus in LRRK2 (p = 1.4 × 10 -7 ). Of note, this study replicates the FADS gene cluster locus, previously associated with both fatty acid profiles and IBD pathogenesis. Furthermore, we identify 18 carbon chain trans-fatty acids (p = 1.12 × 10 -3 ), total trans-fatty acids (p = 4.49 × 10 -3 ), palmitic acid (p = 5.85 × 10 -3 ) and arachidonic acid (p = 8.58 × 10 -3 ) as significantly associated with IBD pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Christina Rose Kyrtsos

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ deposition and the presence of neurofibrillary tangles (NFTs within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.

  17. Parkinson’s Disease – the Debate on the Clinical Phenomenology, Aetiology, Pathology and Pathogenesis

    Science.gov (United States)

    Jenner, Peter; Morris, Huw R.; Robbins, Trevor W.; Goedert, Michel; Hardy, John; Ben-Shlomo, Yoav; Bolam, Paul; Burn, David; Hindle, John V.; Brooks, David

    2014-01-01

    The definition of Parkinson’s disease (PD) is changing with the expansion of clinical phenomenology and improved understanding of environmental and genetic influences that impact on the pathogenesis of the disease at the cellular and molecular level. This had led to debate and discussion with as yet, no general acceptance of the direction that change should take either at the level of diagnosis or of what should and should not be sheltered under an umbrella of PD. This article is one contribution to this on-going discussion. There are two different themes running through the article - widening the definition of PD/LBD/synucleinopathies and the heterogeneity that exists within PD itself from a clinical, pathological and genetic per-spective. The conclusion reached is that in the future, further diagnostic categories will need to be recognized. These are likely to include - Parkinson’s syndrome, Parkinson’s syndrome likely to be Lewy body PD, clinical PD (defined by QSBB criteria), Lewy body disease (PD, LBD, REM SBD) and synucleinopathies (including LBD, MSA). PMID:23938306

  18. Extracorporeal Shock Wave Therapy for Coronary Artery Disease: Relationship of Symptom Amelioration and Ischemia Improvement

    Directory of Open Access Journals (Sweden)

    Youko Takakuwa

    2018-01-01

    Full Text Available Objective(s: The current management of coronary artery disease (CAD relies on three major therapeutic options, namely medication, percutaneous coronary intervention (PCI, and coronary artery bypass grafting (CABG. However, severe CAD that is not indicated for PCI or CABG still bears a poor prognosis due to the lack of effective treatments. In 2006, extracorporeal cardiac shock wave (SW therapy reported on human for the first time. This treatment resulted in better myocardial perfusion as evaluated by dipyridamole stress thallium scintigraphy, angina symptoms, and exercise tolerance. The aim of the present study was to investigate myocardial perfusion images and evaluate the relationship between the ischemia improvement and symptom amelioration by SW therapy. Methods: We treated ten patients (i.e., nine males and one female with cardiac SW therapy who had CAD but not indicated for PCI or CABG and aged 63–89 years old. After the SW therapy, all patients were followed up for three months to evaluate any amelioration of the myocardial ischemia based on symptoms, adenosine stress thallium scintigraphy, transthoracic echocardiography, and blood biochemical examinations. Results: The changes in various parameters were evaluated before and after cardiac SW therapy. The cardiac SW therapy resulted in a significant improvement in the symptoms as evaluated by the Canadian Cardiovascular Society [CCS] class score (P=0.016 and a tendency to improve in summed stress score (SSS (P=0.068. However, no significant improvement was observed in the summed rest score (SRS, summed difference score (SDS, left ventricular wall motion score index (LVWMSI, N-terminal pro-brain natriuretic, and troponin I. The difference of CCS class score (ΔCCS was significantly correlated with those of SSS (ΔSSS and SDS (ΔSDS (r=0.69, P=0.028 and r=0.70, P=0.025, respectively. There was no significant correlation between ΔCCS and other parameters. Furthermore, no significant

  19. Pathogenesis and treatment modalities of localized scleroderma.

    Science.gov (United States)

    Valančienė, Greta; Jasaitienė, Daiva; Valiukevičienė, Skaidra

    2010-01-01

    Localized scleroderma is a chronic inflammatory disease primarily of the dermis and subcutaneous fat that ultimately leads to a scar-like sclerosis of connective tissue. The disorder manifests as various plaques of different shape and size with signs of skin inflammation, sclerosis, and atrophy. This is a relatively rare inflammatory disease characterized by a chronic course, unknown etiology, and insufficiently clear pathogenesis. Many factors may influence its appearance: trauma, genetic factors, disorders of the immune system or hormone metabolism, viral infections, toxic substances or pharmaceutical agents, neurogenic factors, and Borrelia burgdorferi infection. Various therapeutic modalities are being used for the treatment of localized scleroderma. There is no precise treatment scheme for this disease. A majority of patients can be successfully treated with topical pharmaceutical agents and phototherapy, but some of them with progressive, disseminated, and causing disability localized scleroderma are in need of systemic treatment. The aim of this article is not only to dispute about the clinical and morphological characteristics of localized scleroderma, but also to present the newest generalized data about the possible origin, pathogenesis, and treatment modalities of this disease.

  20. Systematic approach to understanding the pathogenesis of systemic sclerosis.

    Science.gov (United States)

    Zuo, Xiaoxia; Zhang, Lihua; Luo, Hui; Li, Yisha; Zhu, Honglin

    2017-10-01

    Systemic sclerosis (SSc) is a complex heterogeneous autoimmune disease. Progressive organ fibrosis is a major contributor to SSc mortality. Despite extensive efforts, the underlying mechanism of SSc remains unclear. Efforts to understand the pathogenesis of SSc have included genomics, epigenetics, transcriptomic, proteomic and metabolomic studies in the last decade. This review focuses on recent studies in SSc research based on multi-omics. The combination of these technologies can help us understand the pathogenesis of SSc. This review aims to provide important information for disease identification, therapeutic targets and potential biomarkers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease.

    Science.gov (United States)

    Beck, Michael W; Derrick, Jeffrey S; Kerr, Richard A; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D; Kim, Kwang S; Lee, Joo-Yong; Ruotolo, Brandon T; Lim, Mi Hee

    2016-10-13

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  2. Hidradenitis suppurativa : From pathogenesis to emerging treatment options

    NARCIS (Netherlands)

    Dickinson-Blok, Janine Louise

    2015-01-01

    Hidradenitis suppurativa (HS) is a chronic skin disease that is characterized by inflammation of the hair follicles. The cause of HS is largely unknown and the disease remains difficult to treat. Mrs. Janine Dickinson-Blok studied the pathogenesis of HS and the efficacy of existing and emerging

  3. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  4. The Role of Carbohydrate Related Factors in Pathogenesis of Nonalcoholic Fatty Liver Disease: A Review

    Directory of Open Access Journals (Sweden)

    Saeed Sherafatmanesh

    2017-06-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is among the most common causes of chronic liver disease worldwide and its prevalence is increasing nowadays. This review article discusses the role of carbohydrate in NAFLD. We reviewed 57 papers out of which 48 randomized controlled trials and review articles with good quality were collected. The key words used for the search were: “Carbohydrate”, “Fructose”, “Weight”, “Low carbohydrate, ketogenic diet”, in combination with “NAFLD” for searching in “Pubmed”, ”Science direct” and “Google Scholar” databases. We limited our search to studies published in English. The available data provided adequate scientific evidence which pointed toward the considerable potential effects between high intake of carbohydrates, fructose, high glycemic index foods and low dietary fiber and incidence of the NAFLD. This review provided sufficient evidence that higher consumption of carbohydrates and fructose sources may exacerbate NAFLD which leads to more accumulation of fat in the liver; while higher intake of fiber and low GI carbohydrate tends to ameliorate NAFLD.

  5. Microglial Scavenger Receptors and Their Roles in the Pathogenesis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Kim Wilkinson

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is increasing in prevalence with the aging population. Deposition of amyloid-β (Aβ in the brain of AD patients is a hallmark of the disease and is associated with increased microglial numbers and activation state. The interaction of microglia with Aβ appears to play a dichotomous role in AD pathogenesis. On one hand, microglia can phagocytose and clear Aβ, but binding of microglia to Aβ also increases their ability to produce inflammatory cytokines, chemokines, and neurotoxic reactive oxygen species (ROS. Scavenger receptors, a group of evolutionally conserved proteins expressed on the surface of microglia act as receptors for Aβ. Of particular interest are SCARA-1 (scavenger receptor A-1, CD36, and RAGE (receptor for advanced glycation end products. SCARA-1 appears to be involved in the clearance of Aβ, while CD36 and RAGE are involved in activation of microglia by Aβ. In this review, we discuss the roles of various scavenger receptors in the interaction of microglia with Aβ and propose that these receptors play complementary, nonredundant functions in the development of AD pathology. We also discuss potential therapeutic applications for these receptors in AD.

  6. Understanding Anaplasmataceae pathogenesis using ‘Omics’ approaches

    Directory of Open Access Journals (Sweden)

    Ludovic ePruneau

    2014-07-01

    Full Text Available This paper examines how Omics approaches improve our understanding of Anaplasmataceae pathogenesis, through a global and integrative strategy to identify genes and proteins involved in biochemical pathways key for pathogen-host-vector interactions.The Anaplasmataceae family comprises obligate intracellular bacteria mainly transmitted by arthropods. These bacteria are responsible for major human and animal endemic and emerging infectious diseases with important economic and public health impacts. In order to improve disease control strategies, it is essential to better understand their pathogenesis. Our work focused on four Anaplasmataceae, which cause important animal, human and zoonotic diseases: Anaplasma marginale, A. phagocytophilum, Ehrlichia chaffeensis and E. ruminantium. Wolbachia spp. an endosymbiont of arthropods was also included in this review as a model of a non-pathogenic Anaplasmataceae.A gap analysis on Omics approaches on Anaplasmataceae was performed, which highlighted a lack of studies on the genes and proteins involved in the infection of hosts and vectors. Furthermore, most of the studies have been done on the pathogen itself, mainly on infectious free-living forms and rarely on intracellular forms. In order to perform a transcriptomic analysis of the intracellular stage of development, researchers developed methods to enrich bacterial transcripts from infected cells. These methods are described in this paper. Bacterial genes encoding outer membrane proteins, post-translational modifications, eukaryotic repeated motif proteins, proteins involved in osmotic and oxidative stress and hypothetical proteins have been identified to play a key role in Anaplasmataceae pathogenesis. Further investigations on the function of these outer membrane proteins and hypothetical proteins will be essential to confirm their role in the pathogenesis. Our work underlines the need for further studies in this domain and on host and vector responses

  7. The Green Tea Catechin Epigallocatechin Gallate Ameliorates Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Sabine Westphal

    Full Text Available Allogeneic hematopoetic stem cell transplantation (allo-HSCT is a standard treatment for leukemia and other hematologic malignancies. The major complication of allo-HSCT is graft-versus-host-disease (GVHD, a progressive inflammatory illness characterized by donor immune cells attacking the organs of the recipient. Current GVHD prevention and treatment strategies use immune suppressive drugs and/or anti-T cell reagents these can lead to increased risk of infections and tumor relapse. Recent research demonstrated that epigallocatechin gallate (EGCG, a component found in green tea leaves at a level of 25-35% at dry weight, may be useful in the inhibition of GVHD due to its immune modulatory, anti-oxidative and anti-angiogenic capacities. In murine allo-HSCT recipients treated with EGCG, we found significantly reduced GVHD scores, reduced target organ GVHD and improved survival. EGCG treated allo-HSCT recipients had significantly higher numbers of regulatory T cells in GVHD target organs and in the blood. Furthermore, EGCG treatment resulted in diminished oxidative stress indicated by significant changes of glutathione blood levels as well as glutathione peroxidase in the colon. In summary, our study provides novel evidence demonstrating that EGCG ameliorates lethal GVHD and reduces GVHD-related target organ damage. Possible mechanisms are increased regulatory T cell numbers and reduced oxidative stress.

  8. Bordetella pertussis pathogenesis: current and future challenges

    Science.gov (United States)

    Melvin, Jeffrey A.; Scheller, Erich V.; Miller, Jeff F.; Cotter, Peggy A.

    2014-01-01

    Pertussis, or whooping cough, has recently reemerged as a major public health threat despite high levels of vaccination against the etiological agent, Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into virulence factor function. We also discuss the changing epidemiology of pertussis and the challenges of vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies. PMID:24608338

  9. The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases.

    Science.gov (United States)

    Esparvarinha, Mojgan; Nickho, Hamid; Mohammadi, Hamed; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Majidi, Jafar

    2017-07-01

    Kappa (κ) or lambda (λ) free light chains (FLCs) are produced from B cells during immunoglobulin synthesis. FLCs have been shown to participate in several key processes of immune responses. They are necessary to adjust PMN functions and assist PMN pre-stimulation. Moreover, they cause mast cell degranulation which releases pro-inflammatory mediators and stimulates local inflammatory responses in some conditions such as inflammatory bowel disease (IBD). Having low molecular weights which may straightly be toxic to proximal tubule cells (PTCs), FLCs can also have an important role in renal diseases. In this review we have highlighted the involvement of light chains in the pathogenesis of some inflammatory diseases and discussed their potential to be the targets of therapeutic purposes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Peripheral Ulcerative Keratitis Associated with Autoimmune Disease: Pathogenesis and Treatment

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2017-01-01

    Full Text Available Peripheral ulcerative keratitis (PUK is type of crescent-shaped inflammatory damage that occurs in the limbal region of the cornea. PUK is always combined with an epithelial defect and the destruction of the peripheral corneal stroma. PUK may have a connection to systemic conditions, such as long-standing rheumatoid arthritis (RA, systemic lupus erythematosus (SLE, Wegener granulomatosis (WG, relapsing polychondritis, classic polyarteritis nodosa and its variants, microscopic polyangiitis, and Churg-Strauss syndrome. However, the most common connection is with RA, which is also the focus of this review. The pathogenesis of PUK is still unclear. It is thought that circulating immune complexes and cytokines exert an important influence on the progression of this syndrome. Treatment is applied to inhibit certain aspects of PUK pathogenesis.

  11. Eosinophils in vasculitis: characteristics and roles in pathogenesis

    Science.gov (United States)

    Khoury, Paneez; Grayson, Peter C.; Klion, Amy D.

    2016-01-01

    Eosinophils are multifunctional granular leukocytes that are implicated in the pathogenesis of a wide variety of disorders, including asthma, helminth infection, and rare hypereosinophilic syndromes. Although peripheral and tissue eosinophilia can be a feature of many types of small-vessel and medium-vessel vasculitis, the role of eosinophils has been best studied in eosinophilic granulomatosis with polyangiitis (EGPA), where eosinophils are a characteristic finding in all three clinical stages of the disorder. Whereas numerous studies have demonstrated an association between the presence of eosinophils and markers of eosinophil activation in the blood and tissues of patients with EGPA, the precise role of eosinophils in disease pathogenesis has been difficult to ascertain owing to the complexity of the disease process. In this regard, results of clinical trials using novel agents that specifically target eosinophils are providing the first direct evidence of a central role of eosinophils in EGPA. This Review focuses on the aspects of eosinophil biology most relevant to the pathogenesis of vasculitis and provides an update of current knowledge regarding the role of eosinophils in EGPA and other vasculitides. PMID:25003763

  12. A novel pathogenesis of inflammatory bowel disease from the perspective of glyco-immunology.

    Science.gov (United States)

    Shinzaki, Shinichiro; Iijima, Hideki; Fujii, Hironobu; Kamada, Yoshihiro; Naka, Tetsuji; Takehara, Tetsuo; Miyoshi, Eiji

    2017-05-01

    Oligosaccharide modifications play an essential role in various inflammatory diseases and cancers, but their pathophysiologic roles, especially in inflammation, are not clear. Inflammatory bowel disease (IBD) is an intractable chronic inflammatory disorder with an unknown aetiology, and the number of patients with IBD is increasing throughout the world. Certain types of immunosuppressant drugs, such as corticosteroids, are effective for IBD, suggesting that immune function is closely associated with the pathophysiology of IBD. Recent progress in the analysis of oligosaccharides revealed a role for oligosaccharides in intestinal inflammation based on both experimental models and human samples from IBD patients. Moreover, changes in the oligosaccharide structures on glycoproteins in the sera and tissue samples may serve as biomarkers of IBD. Here, we present current studies of IBD with regard to the immunologic aspects of glycobiology, suggesting a novel concept for IBD pathogenesis and the function of oligosaccharides on immune cells, termed "glyco-immunology". © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  13. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy.

    Science.gov (United States)

    Chang, Renbao; Liu, Xudong; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    Huntington's disease (HD) is caused by a genetic mutation that results in polyglutamine expansion in the N-terminal regions of huntingtin. As a result, this polyQ expansion leads to the misfolding and aggregation of mutant huntingtin as well as age-dependent neurodegeneration. The genetic mutation in HD allows for generating a variety of animal models that express different forms of mutant huntingtin and show differential pathology. Studies of these animal models have provided an important insight into the pathogenesis of HD. Mouse models of HD include transgenic mice, which express N-terminal or full-length mutant huntingtin ubiquitously or selectively in different cell types, and knock-in mice that express full-length mutant Htt at the endogenous level. Large animals, such as pig, sheep, and monkeys, have also been used to generate animal HD models. This review focuses on the different features of commonly used transgenic HD mouse models as well as transgenic large animal models of HD, and also discusses how to use them to identify potential therapeutics. Since HD shares many pathological features with other neurodegenerative diseases, identification of therapies for HD would also help to develop effective treatment for different neurodegenerative diseases that are also caused by protein misfolding and occur in an age-dependent manner.

  14. Pathogenesis and pharmacologic treatment of obesity: the role of energy regulatory mechanism.

    Science.gov (United States)

    Manulu, Mangatas S M; Sutanegara, I N Dwi

    2006-01-01

    Obesity has become a worldwide public health problem affecting millions of people. This is a chronic, stigmatized, and costly disease, rarely curable and is increasing in prevalence to a point today where we define obesity as an epidemic disease that not only in developed but also on developing countries. The pathogenesis of obesity is largely unknown, especially about energy regulatory mechanism that involved wide area of neuroendocrinology that is very interesting but very complex and makes internists "refuse" to learn. Obesity occurs through a longstanding imbalance between energy intake and energy expenditure, influenced by a complex biologic system that regulates appetite and adiposity. Obesity influences the pathogenesis of hypertension, type 2 diabetes, dyslipidemia, kidney, heart, and cerebrovascular disease. It is very wise for every internist to learn the pathogenesis and treatment of this worldwide diseases. Until now, the available treatments, including drugs, are palliative and are effective only while the treatment is being actively used; and besides so many side effects reported.

  15. Phytoceramide Shows Neuroprotection and Ameliorates Scopolamine-Induced Memory Impairment

    Directory of Open Access Journals (Sweden)

    Seikwan Oh

    2011-10-01

    Full Text Available The function and the role phytoceramide (PCER and phytosphingosine (PSO in the central nervous system has not been well studied. This study was aimed at investigating the possible roles of PCER and PSO in glutamate-induced neurotoxicity in cultured neuronal cells and memory function in mice. Phytoceramide showed neuro-protective activity in the glutamate-induced toxicity in cultured cortical neuronal cells. Neither phytosphingosine nor tetraacetylphytosphingosine (TAPS showed neuroproective effects in neuronal cells. PCER (50 mg/kg, p.o. recovered the scopolamine-induced reduction in step-through latency in the passive avoidance test; however, PSO did not modulate memory function on this task. The ameliorating effects of PCER on spatial memory were confirmed by the Morris water maze test. In conclusion, through behavioral and neurochemical experimental results, it was demonstrated that central administration of PCER produces amelioration of memory impairment. These results suggest that PCER plays an important role in neuroprotection and memory enhancement and PCER could be a potential new therapeutic agent for the treatment of neurodegenerative diseases such as Alzheimer’s disease.

  16. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    Science.gov (United States)

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2016-01-01

    T-cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathologic immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite that multiple pharmacologic properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4(+) T-cell subsets by regulating the expression and production of T-cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited TCR-mediated Akt and NF-κB signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as 2,4,6-trinitrochlorobenzene-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4(+) T cell differentiation and overall immune responses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites.

    Science.gov (United States)

    Breda, Carlo; Sathyasaikumar, Korrapati V; Sograte Idrissi, Shama; Notarangelo, Francesca M; Estranero, Jasper G; Moore, Gareth G L; Green, Edward W; Kyriacou, Charalambos P; Schwarcz, Robert; Giorgini, Flaviano

    2016-05-10

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.

  18. Chronic obstructive pulmonary disease with lung cancer: Prevalence, severity, and common pathogenesis

    Directory of Open Access Journals (Sweden)

    Griffin JP

    2016-01-01

    Full Text Available Objectives: To develop a clinical prediction model of contribution of chronic obstructive pulmonary disease (COPD to the pathogenesis of lung cancer, by reporting the estimated prevalence and severity by GOLD criteria in a single-institution cohort of patients with newly diagnosed lung cancer. Primary objective was investigating the effects of impaired lung function with various histological cell types on crude survival, while considering the initial staging of disease extent. Materials & methods: A total of 441 patients, in this historical cohort from electronic medical records, completed spirometry prior to invasive diagnostic procedures and initial treatment of their lung cancer. All statistical analyses, including ANOVA and survival analysis, were performed using SAS version 9.1 software. Results: Estimated prevalence of COPD was 79.1% (95% confidence interval: 71.3%-82.9%. Lung function as measured by spirometry was a significant predictor of survival time in months (p<0.0001 both with and without adjusting for tumor-cell-type, age, and stage of disease. Median survival was similar (p=0.32 and longer among those patients with normal pulmonary function, those with restrictive disease patterns, and those with COPD–GOLD-1 defects. Median survival was shortest among patients with COPD–GOLD-4 impairment (p=0.001. Those patients with COPD–GOLD-2 and COPD-GOLD-3 impairment levels had intermediate survival times (p=0.003. Conclusions: This investigation suggests that strategies for early detection and slowing the progression of COPD before the development of lung cancer might increase patient survival. As demonstrated in this study, the presence and severity of COPD in lung cancer patients is an independent predictor of survival time, different from the established staging of initial extent of disease.

  19. The pathogenesis of progressive multifocal leukoencephalopathy.

    Science.gov (United States)

    Berger, Joseph R; Khalili, Kamel

    2011-12-01

    Interest in pathogenesis of progressive multifocal leukoencephalopathy (PML) followed the observation of the high risk for the disease in HIV infection and the recent observation of an association with a variety of newer therapeutic modalities, e.g., natalizumab, an α4β1 integrin inhibitor, and efalizumab, an anti-CD11a monoclonal antibody. Any hypothesis of PML pathogenesis must account for a number of facts. Firstly, the causative agent JC virus is ubiquitously present, yet only a vanishingly small number of infected persons develop the disease. Secondly, disorders of cell-mediated immunity increase the risk of the disease, particularly HIV infection. Impaired innate immunity is not a risk for PML, and antibodies against JC virus are not protective. Thirdly, a latent period of several months appears necessary following the administration of natalizumab and efalizumab before PML develops. Fourthly, restoration of the immune system can arrest the PML. It is possible that infection with JC virus occurs with a form of the virus shed in the urine of as many as 40% of all adults and present in sewage worldwide. Once acquired, perhaps through an oropharyngeal route, it may replicate and disseminate. A neurotropic form of JC virus that replicates in glial tissues causes PML when immunosurveillance is impaired. There are many unanswered questions with respect to PML pathogenesis. How is virus acquired? What tissues are infected? What is the origin of the neurotropic form? When does virus enter brain? What is the role of central nervous system immunosurveillance? The lack of an animal model has made answering these questions challenging. © Discovery Medicine

  20. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer’s Disease Pathogenesis

    Science.gov (United States)

    Kyrtsos, Christina Rose; Baras, John S.

    2015-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain. PMID:26448331

  1. Understanding the impact of infection, inflammation and their persistence in the pathogenesis of bronchopulmonary dysplasia

    Directory of Open Access Journals (Sweden)

    Jherna eBalany

    2015-12-01

    Full Text Available The concerted interaction of genetic and environmental factors act on the preterm human immature lung with inflammation being the common denominator leading to the multifactorial origin of the most common chronic lung disease in infants – bronchopulmonary dysplasia or BPD. Adverse perinatal exposure to infection/inflammation with added insults like invasive mechanical ventilation, exposure to hyperoxia and sepsis causes persistent immune dysregulation. In this review article we have attempted to analyze and consolidate current knowledge about the role played by persistent prenatal and postnatal inflammation in the pathogenesis of BPD. While some parameters of the early inflammatory response (neutrophils, cytokines etc. may not be detectable after days to weeks of exposure to noxious stimuli, they have already initiated the signaling pathways of the inflammatory process / immune cascade and have affected permanent defects structurally and functionally in the BPD lungs. Hence translational research aimed at prevention / amelioration of BPD needs to focus on dampening the inflammatory response at an early stage to prevent the cascade of events leading to lung injury with impaired healing resulting in the pathologic pulmonary phenotype of alveolar simplification and dysregulated vascularization characteristic of BPD.

  2. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice.

    Science.gov (United States)

    Deguise, Marc-Olivier; De Repentigny, Yves; McFall, Emily; Auclair, Nicole; Sad, Subash; Kothary, Rashmi

    2017-02-15

    Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn depletion led to severe alterations in the thymus and spleen of two different mouse models of SMA. The spleen from Smn depleted mice was dramatically smaller at a very young age and its histological architecture was marked by mislocalization of immune cells in the Smn2B/- model mice. In comparison, the thymus was relatively spared in gross morphology but showed many histological alterations including cortex thinning in both mouse models at symptomatic ages. Thymocyte development was also impaired as evidenced by abnormal population frequencies in the Smn2B/- thymus. Cytokine profiling revealed major changes in different tissues of both mouse models. Consistent with our observations, we found that survival motor neuron (Smn) protein levels were relatively high in lymphoid organs compared to skeletal muscle and spinal cord during postnatal development in wild type mice. Genetic introduction of one copy of the human SMN2 transgene was enough to rescue splenic and thymic defects in Smn2B/- mice. Thus, Smn is required for the normal development of lymphoid organs, and altered immune function may contribute to SMA disease pathogenesis. © The Author 2017. Published by Oxford University Press.

  3. Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Rommy eVon Bernhardi

    2015-10-01

    Full Text Available Aging is the main risk factor for Alzheimer’s disease (AD; being associated with conspicuous changes on microglia activation. Aged microglia exhibit an increased expression of cytokines, exacerbated reactivity to various stimuli, oxidative stress, and reduced phagocytosis of Aβ. Whereas normal inflammation is protective, it becomes dysregulated in the presence of a persistent stimulus, or in the context of an inflammatory environment, as observed in aging. Thus, neuroinflammation can be a self-perpetuating deleterious response, becoming a source of additional injury to host cells in neurodegenerative diseases. In aged individuals, although TGFβ is upregulated, its canonical Smad3 signaling is greatly reduced and neuroinflammation persists. This age-related Smad3 impairment reduces protective activation while facilitating cytotoxic activation of microglia through several cellular mechanisms, potentiating microglia-mediated neurodegeneration. Here, we critically discuss the role of TGFβ-Smad signaling on the cytotoxic activation of microglia and its relevance in the pathogenesis of AD. Other protective functions, such as phagocytosis, although observed in aged animals, are not further induced by inflammatory stimuli and TGFβ1. Analysis in silico revealed that increased expression of receptor SR-A, involved in Aβ uptake and cell activation, by microglia exposed to TGFβ, through a Smad3-dependent mechanism could be mediated by transcriptional co-factors Smad2/3 over the MSR1 gene. We discuss that changes of TGFβ-mediated regulation could at least partially mediate age-associated microglia changes, and, together with other changes on inflammatory response, could result in the reduction of protective activation and the potentiation of cytotoxicity of microglia, resulting in the promotion of neurodegenerative diseases.

  4. The role of high mobility group box 1(HMGB1)in the pathogenesis of kidney diseases

    Institute of Scientific and Technical Information of China (English)

    Qingjie Chen; Xiaofeng Guan; Xiaocong Zuo; Jianglin Wang; Wenjun Yin

    2016-01-01

    High mobility group box 1(HMGB1) is a nuclear protein that can bind to DNA and act as a co-factor for gene transcription. When released into extracellular fluid, it plays a proinflammatory role by acting as a damage-associated molecular pattern molecule(DAMP)(also known as an alarmin) to initiate innate immune responses by activating multiple cell surface receptors such as the receptor for advanced glycation end-products(RAGE) and toll-like receptors(TLRs), TLR2, TLR4 or TLR9. This proinflammatory role is now considered to be important in the pathogenesis of a wide range of kidney diseases whether they result from hemodynamic changes, renal tubular epithelial cell apoptosis, kidney tissue fibrosis or inflammation. This review summarizes our current understanding of the role of HMGB1 in kidney diseases and how the HMGB1-mediated signaling pathway may constitute a new strategy for the treatment of kidney diseases.

  5. Molecular Pathogenesis of NASH

    Directory of Open Access Journals (Sweden)

    Alessandra Caligiuri

    2016-09-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is the main cause of chronic liver disease in the Western world and a major health problem, owing to its close association with obesity, diabetes, and the metabolic syndrome. NASH progression results from numerous events originating within the liver, as well as from signals derived from the adipose tissue and the gastrointestinal tract. In a fraction of NASH patients, disease may progress, eventually leading to advanced fibrosis, cirrhosis and hepatocellular carcinoma. Understanding the mechanisms leading to NASH and its evolution to cirrhosis is critical to identifying effective approaches for the treatment of this condition. In this review, we focus on some of the most recent data reported on the pathogenesis of NASH and its fibrogenic progression, highlighting potential targets for treatment or identification of biomarkers of disease progression.

  6. Genetic determinants of pathogenesis by feline infectious peritonitis virus.

    Science.gov (United States)

    Brown, Meredith A

    2011-10-15

    Feline infectious peritonitis (FIP) is a fatal, immune-augmented, and progressive viral disease of cats associated with feline coronavirus (FCoV). Viral genetic determinants specifically associated with FIPV pathogenesis have not yet been discovered. Viral gene signatures in the spike, non-structural protein 3c, and membrane of the coronavirus genome have been shown to often correlate with disease manifestation. An "in vivo mutation transition hypothesis" is widely accepted and postulates that de novo virus mutation occurs in vivo giving rise to virulence. The existence of "distinct circulating avirulent and virulent strains" is an alternative hypothesis of viral pathogenesis. It may be possible that viral dynamics from both hypotheses are at play in the occurrence of FIP. Epidemiologic data suggests that the genetic background of the cat contributes to the manifestation of FIP. Further studies exploring both viral and host genetic determinants of disease in FIP offer specific opportunities for the management of this disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Pathogenesis of varicelloviruses in primates.

    Science.gov (United States)

    Ouwendijk, Werner J D; Verjans, Georges M G M

    2015-01-01

    Varicelloviruses in primates comprise the prototypic human varicella-zoster virus (VZV) and its non-human primate homologue, simian varicella virus (SVV). Both viruses cause varicella as a primary infection, establish latency in ganglionic neurons and reactivate later in life to cause herpes zoster in their respective hosts. VZV is endemic worldwide and, although varicella is usually a benign disease in childhood, VZV reactivation is a significant cause of neurological disease in the elderly and in immunocompromised individuals. The pathogenesis of VZV infection remains ill-defined, mostly due to the species restriction of VZV that impedes studies in experimental animal models. SVV infection of non-human primates parallels virological, clinical, pathological and immunological features of human VZV infection, thereby providing an excellent model to study the pathogenesis of varicella and herpes zoster in its natural host. In this review, we discuss recent studies that provided novel insight in both the virus and host factors involved in the three elementary stages of Varicellovirus infection in primates: primary infection, latency and reactivation. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Update on mucormycosis pathogenesis.

    Science.gov (United States)

    Ibrahim, Ashraf S; Kontoyiannis, Dimitrios P

    2013-12-01

    Mucormycosis is an increasingly common fungal infection with unacceptably high mortality. The recent sequencing genome projects of Mucorales and the development of gene manipulation have enabled significant advances in understanding the pathogenesis of mucormycosis. Therefore, we review the pathogenesis of mucormycosis and highlight potential development of novel diagnostic and therapeutic modalities against this lethal disease. Much of the work has been focused on the role of iron uptake in the virulence of Mucorales. Additionally, host receptors and fungal ligands involved in the process of tissue invasion as well as sporangiospore size and sex loci and their contribution to virulence of Mucorales are discussed. Finally, the role of innate and adaptive immunity in protection against Mucorales and new evidence about drug-induced apoptosis in these fungi are discussed. Recent discoveries introduce several potentially novel diagnostic and therapeutic modalities, which are likely to improve management and outcome for mucormycosis. Future preclinical and clinical research is warranted to develop these diagnostic and therapeutic strategies.

  9. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis.

    Science.gov (United States)

    Viola, Kirsten L; Klein, William L

    2015-02-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they

  10. Molecular insights into the pathogenesis of Alzheimer's disease and its relationship to normal aging.

    Directory of Open Access Journals (Sweden)

    Alexei A Podtelezhnikov

    Full Text Available Alzheimer's disease (AD is a complex neurodegenerative disorder that diverges from the process of normal brain aging by unknown mechanisms. We analyzed the global structure of age- and disease-dependent gene expression patterns in three regions from more than 600 brains. Gene expression variation could be almost completely explained by four transcriptional biomarkers that we named BioAge (biological age, Alz (Alzheimer, Inflame (inflammation, and NdStress (neurodegenerative stress. BioAge captures the first principal component of variation and includes genes statistically associated with neuronal loss, glial activation, and lipid metabolism. Normally BioAge increases with chronological age, but in AD it is prematurely expressed as if some of the subjects were 140 years old. A component of BioAge, Lipa, contains the AD risk factor APOE and reflects an apparent early disturbance in lipid metabolism. The rate of biological aging in AD patients, which cannot be explained by BioAge, is associated instead with NdStress, which includes genes related to protein folding and metabolism. Inflame, comprised of inflammatory cytokines and microglial genes, is broadly activated and appears early in the disease process. In contrast, the disease-specific biomarker Alz was selectively present only in the affected areas of the AD brain, appears later in pathogenesis, and is enriched in genes associated with the signaling and cell adhesion changes during the epithelial to mesenchymal (EMT transition. Together these biomarkers provide detailed description of the aging process and its contribution to Alzheimer's disease progression.

  11. Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine.

    Science.gov (United States)

    Bhat, Roopa; Mahapatra, Sidharth; Axtell, Robert C; Steinman, Lawrence

    2017-12-15

    In patients with multiple sclerosis, the selective serotonin reuptake inhibitor, fluoxetine, resulted in less acute disease activity. We tested the immune modulating effects of fluoxetine in a mouse model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE). We show that fluoxetine delayed the onset of disease and reduced clinical paralysis in mice with established disease. Fluoxetine had abrogating effects on proliferation of immune cells and inflammatory cytokine production by both antigen-presenting cells and T cells. Specifically, in CD 4 T cells, fluoxetine increased Fas-induced apoptosis. We conclude that fluoxetine possesses immune-modulating effects resulting in the amelioration of symptoms in EAE. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Downregulation of RBO-PI4KIIIα Facilitates Aβ42 Secretion and Ameliorates Neural Deficits in Aβ42-Expressing Drosophila.

    Science.gov (United States)

    Zhang, Xiao; Wang, Wen-An; Jiang, Li-Xiang; Liu, Hai-Yan; Zhang, Bao-Zhu; Lim, Nastasia; Li, Qing-Yi; Huang, Fu-De

    2017-05-10

    Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI 4 P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ 42 -expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ 42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ 42 release and that PI4P facilitated the assembly or oligomerization of Aβ 42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ 42 release and consequently reduces neuronal Aβ 42 accumulation likely via decreasing Aβ 42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment. SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ 42 -expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI 4 P-against the defects caused by Aβ 42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ 42 accumulation, and interestingly increased neuronal Aβ 42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates. Copyright

  13. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Yao Hongwei; Rahman, Irfan

    2011-01-01

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.

  14. Host immune response and acute disease in a zebrafish model of francisella pathogenesis

    Science.gov (United States)

    Vojtech, L.N.; Sanders, G.E.; Conway, C.; Ostland, V.; Hansen, J.D.

    2009-01-01

    Members of the bacterial genus Francisella are highly virulent and infectious pathogens. New models to study Francisella pathogenesis in evolutionarily distinct species are needed to provide comparative insight, as the mechanisms of host resistance and pathogen virulence are not well understood. We took advantage of the recent discovery of a novel species of Francisella to establish a zebrafish/Francisella comparative model of pathogenesis and host immune response. Adult zebraflsh were susceptible to acute Francisella-induced disease and suffered mortality in a dose-dependent manner. Using immunohistochemical analysis, we localized bacterial antigens primarily to lymphoid tissues and livers of zebraflsh following infection by intraperitoneal injection, which corresponded to regions of local cellular necrosis. Francisella sp. bacteria replicated rapidly in these tissues beginning 12 h postinfection, and bacterial titers rose steadily, leveled off, and then decreased by 7 days postinfection. Zebraflsh mounted a significant tissue-specific proinflammatory response to infection as measured by the upregulation of interleukin-l?? (IL-1??), gamma interferon, and tumor necrosis factor alpha mRNA beginning by 6 h postinfection and persisting for up to 7 days postinfection. In addition, exposure of zebraflsh to heat-killed bacteria demonstrated that the significant induction of IL-?? was highly specific to live bacteria. Taken together, the pathology and immune response to acute Francisella infection in zebraflsh share many features with those in mammals, highlighting the usefulness of this new model system for addressing both general and specific questions about Francisella host-pathogen interactions via an evolutionary approach. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  15. Mesenchymal Stem Cells May Ameliorate Nephrotic Syndrome Post-Allogeneic Hematopoietic Stem Cell Transplantation-Case Report

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2017-08-01

    Full Text Available IntroductionBecause of their immunomodulatory and anti-inflammatory effects, mesenchymal stem cells (MSCs have been considered as potential therapeutic agents for treating immune-related or autoimmune diseases, such as graft-versus-host disease (GVHD. Nephrotic syndrome (NS after allogeneic hematopoietic stem cell transplantation (allo-HSCT is an uncommon complication with unclear etiology and pathogenesis. It may be an immune disorder involving immune complex deposition, B cells, regulatory T cells (Tregs, and Th1 cytokines and be a manifestation of chronic GVHD. Corticosteroids and calcium antagonists, alone or in combination, are the most common therapeutic agents in this setting. Rituximab is commonly administered as salvage treatment. However, treatment failure and progressive renal function deterioration has been reported to occur in approximately 20% of patients in a particular cohort.Case presentationWe present a patient who developed NS 10 months after allo-HSCT. After treatment failure with cyclosporine A, prednisone, and rituximab, she achieved a complete response with MSC treatment. The clinical improvement of this patient was accompanied by a decreased B cell population together with an increased frequency of regulatory B cells (Bregs and Tregs after MSC treatment.ConclusionMSCs could modulate NS after allo-HSCT by suppressing B cell proliferation, inducing Tregs and Bregs, and inhibiting inflammatory cytokine production by monocytes and NK cells. Among all these, Bregs might play an important role in ameliorating the NS of this patient.

  16. Fimasartan Ameliorates Nonalcoholic Fatty Liver Disease through PPARδ Regulation in Hyperlipidemic and Hypertensive Conditions

    Directory of Open Access Journals (Sweden)

    Yong-Jik Lee

    2017-01-01

    Full Text Available To investigate the effects of fimasartan on nonalcoholic fatty liver disease in hyperlipidemic and hypertensive conditions, the levels of biomarkers related to fatty acid metabolism were determined in HepG2 and differentiated 3T3-L1 cells treated by high fatty acid and liver and visceral fat tissue samples of spontaneously hypertensive rats (SHRs given high-fat diet. In HepG2 cells and liver tissues, fimasartan was shown to increase the protein levels of peroxisome proliferator-activated receptor delta (PPARδ, phosphorylated 5′ adenosine monophosphate-activated protein kinase (p-AMPK, phosphorylated acetyl-CoA carboxylase (p-ACC, malonyl-CoA decarboxylase (MCD, medium chain acyl-CoA dehydrogenase (MCAD, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α, and it led to a decrease in the protein levels of 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSDH1, fatty acid synthase (FAS, and tumor necrosis factor-alpha (TNF-α. Fimasartan decreased lipid contents in HepG2 and differentiated 3T3-L1 cells and liver tissues. In addition, fimasartan increased the adiponectin level in visceral fat tissues. The antiadipogenic effects of fimasartan were offset by PPARδ antagonist (GSK0660. Consequently, fimasartan ameliorates nonalcoholic fatty liver disease mainly through the activation of oxidative metabolism represented by PPARδ-AMPK-PGC-1α pathway.

  17. Modern views on the epidemiology, etiology and pathogenesis of gynecomastia

    Directory of Open Access Journals (Sweden)

    Yu. N. Yashina

    2014-01-01

    Full Text Available The review deals with one of the pressing andrological issues – gynecomastia, its etiology and pathogenesis. Based on the current epidemiological and experimental data, most common etiological factors of gynecomastia were investigated. A multiple-valued role of various causes of gynecomastia in several age-groups was revealed. Literature data show that gynecomastia may be a manifestation of various diseases: endocrine, genetic, systematic. As well as that, gynecomastia may occur in patients with oncological diseases. However, gynecomastia can be an iatrogenic complication. Currently, we continue to make insights to the problem of gynecomastia in order to be able to classify its etiological factors and determine its basic pathogenesis pathways.

  18. The Roles of Environmental Pollutants in the Pathogenesis and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Toxic chemicals in pollutants may destroy or cause mutation ... Keywords: Diabetes, Pathogenesis, Pancreas, Mutation, Insulin, Blood vessel. INTRODUCTION. Diabetes is a chronic disease that occurs either when .... alter insulin metabolism.

  19. Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction

    Directory of Open Access Journals (Sweden)

    Yu-Xia Dong

    2018-01-01

    Full Text Available The APPSwe/PSEN1dE9 (APP/PS1 transgenic mouse model is an Alzheimer’s disease mouse model exhibiting symptoms of dementia, and is commonly used to explore pathological changes in the development of Alzheimer’s disease. Previous clinical autopsy and imaging studies suggest that Alzheimer’s disease patients have white matter and oligodendrocyte damage, but the underlying mechanisms of these have not been revealed. Therefore, the present study used APP/PS1 mice to assess cognitive change, myelin loss, and corresponding changes in oligodendrocytes, and to explore the underlying mechanisms. Morris water maze tests were performed to evaluate cognitive change in APP/PS1 mice and normal C57BL/6 mice aged 3 and 6 months. Luxol fast blue staining of the corpus callosum and quantitative reverse transcription-polymerase chain reaction (qRT-PCR for myelin basic protein (MBP mRNA were carried out to quantify myelin damage. Immunohistochemistry staining for NG2 and qRT-PCR for monocarboxylic acid transporter 1 (MCT1 mRNA were conducted to assess corresponding changes in oligodendrocytes. Our results demonstrate that compared with C57BL/6 mice, there was a downregulation of MBP mRNA in APP/PS1 mice aged 3 months. This became more obvious in APP/PS1 mice aged 6 months accompanied by other abnormalities such as prolonged escape latency in the Morris water maze test, shrinkage of the corpus callosum, upregulation of NG2-immunoreactive cells, and downregulation of MCT1 mRNA. These findings indicate that the involvement of early demyelination at 3 months and the oligodendrocyte dysfunction at 6 months in APP/PS1 mice are in association with Alzheimer’s disease pathogenesis.

  20. [Current concepts in pathogenesis of age-related macular degeneration].

    Science.gov (United States)

    Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Romanowska-Dixon, Bożena

    2014-01-01

    Age-related macular degeneration is the leading cause of central blindness in elderly population of the western world. The pathogenesis of this disease, likely multifactorial, is not well known, although a number of theories have been put forward, including oxidative stress, genetic interactions, hemodynamic imbalance, immune and inflammatory processes. The understanding of age-related macular degeneration pathogenesis will give rise to new approaches in prevention and treatment of the early and late stages of both atrophic and neovascular age-related macular degeneration.

  1. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis.

    Science.gov (United States)

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-11-06

    To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα(-/-)) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα(-/-) mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. This is the first-ever study reporting

  2. The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity.

    Science.gov (United States)

    Thakkar, Vidhi D; Cox, Robert M; Sawatsky, Bevan; da Fontoura Budaszewski, Renata; Sourimant, Julien; Wabbel, Katrin; Makhsous, Negar; Greninger, Alexander L; von Messling, Veronika; Plemper, Richard K

    2018-04-15

    The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design. IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral

  3. Is Oxidative Stress Associated with Activation and Pathogenesis of Inflammatory Bowel Disease?

    Directory of Open Access Journals (Sweden)

    Yuksel Mahmut

    2017-08-01

    Full Text Available Background: We aimed to determine the levels of total antioxidant status (TAS, total oxidant status (TOS, oxidative stress index (OSI and paraoxonase1/arylesterase levels in inflammatory bowel disease (IBD, and the relation be - tween these molecules and the activity index of the disease. Methods: Eighty IBD patients (ulcerative colitis (UC/Crohn disease (CD 40/40 and 80 control group participants were included in the study. Oxidative stress parameters were measured using the colorimetric method. As disease activity indexes, the endoscopic activity index (EAI was used for UC and the CD activity index (CDAI was used for CD. Results: In IBD patients, mean TAS (1.3±0.2 vs 1.9±0.2, respectively; p<0.001 and arylesterase (963.9±232.2 vs 1252.9±275, respectively; p<0.001 levels were found to be lower and TOS level (5.6±1.6 vs 4.0±1.0, respectively; p<0.001 and OSI rate (4.5±1.6 vs 2.2±0.8, respectively; p<0.001 were found to be higher compared to the control group. A strong positive correlation was found between EAI and TOS levels (r=0.948, p<0.001 and OSI rate (r=0.894, p<0.001 for UC patients. A very strong positive correlation was found between EAI and TOS levels (r=0.964, p<0.001 and OSI rate (r=0.917, p<0.001 for CD patients. It was found in a stepwise regression model that C-reactive protein, OSI and arylesterase risk factors were predictors of IBD compared to the control group. Conclusion: Increased oxidative stress level in IBD patients and the detection of OSI rate as an independent predictor for disease activity indexes lead to the idea that oxidative stress might be related to the pathogenesis of IBD.

  4. Consensus strategy in genes prioritization and combined bioinformatics analysis for preeclampsia pathogenesis.

    Science.gov (United States)

    Tejera, Eduardo; Cruz-Monteagudo, Maykel; Burgos, Germán; Sánchez, María-Eugenia; Sánchez-Rodríguez, Aminael; Pérez-Castillo, Yunierkis; Borges, Fernanda; Cordeiro, Maria Natália Dias Soeiro; Paz-Y-Miño, César; Rebelo, Irene

    2017-08-08

    Preeclampsia is a multifactorial disease with unknown pathogenesis. Even when recent studies explored this disease using several bioinformatics tools, the main objective was not directed to pathogenesis. Additionally, consensus prioritization was proved to be highly efficient in the recognition of genes-disease association. However, not information is available about the consensus ability to early recognize genes directly involved in pathogenesis. Therefore our aim in this study is to apply several theoretical approaches to explore preeclampsia; specifically those genes directly involved in the pathogenesis. We firstly evaluated the consensus between 12 prioritization strategies to early recognize pathogenic genes related to preeclampsia. A communality analysis in the protein-protein interaction network of previously selected genes was done including further enrichment analysis. The enrichment analysis includes metabolic pathways as well as gene ontology. Microarray data was also collected and used in order to confirm our results or as a strategy to weight the previously enriched pathways. The consensus prioritized gene list was rationally filtered to 476 genes using several criteria. The communality analysis showed an enrichment of communities connected with VEGF-signaling pathway. This pathway is also enriched considering the microarray data. Our result point to VEGF, FLT1 and KDR as relevant pathogenic genes, as well as those connected with NO metabolism. Our results revealed that consensus strategy improve the detection and initial enrichment of pathogenic genes, at least in preeclampsia condition. Moreover the combination of the first percent of the prioritized genes with protein-protein interaction network followed by communality analysis reduces the gene space. This approach actually identifies well known genes related with pathogenesis. However, genes like HSP90, PAK2, CD247 and others included in the first 1% of the prioritized list need to be further

  5. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis

    Directory of Open Access Journals (Sweden)

    Cheng-Yen Kao

    2016-02-01

    Full Text Available Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1 Survival in the acidic stomach; (2 movement toward epithelium cells by flagella-mediated motility; (3 attachment to host cells by adhesins/receptors interaction; (4 causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.

  6. [The evolution of related names of Bi syndrome and the theory of etiology and pathogenesis].

    Science.gov (United States)

    Dai, Jian-hua; Shi, Ying-jie; Yin, Hai-bo; Du, Hui

    2009-07-01

    In the Traditional Chinese medical literature of ancient times, Bi referred to the pathogenesis, or the symptoms as well as the name of the disease. As the name of a disease, Bi has the different meanings of broad and narrow., joint-running, joint-running wind, white tiger joint-running, gout etc. referring to the narrow meaning of Bi disease. The theory of etiology and pathogenesis of the narrow meaning of Bi disease developed from damp-impediment, wind-cold-damp impediment to damp-hot impediment, stasis-hot impediment, which reflected the constant deepening of cognition.

  7. Molecular Pathogenesis of Neuromyelitis Optica

    Science.gov (United States)

    Bukhari, Wajih; Barnett, Michael H; Prain, Kerri; Broadley, Simon A

    2012-01-01

    Neuromyelitis optica (NMO) is a rare autoimmune disorder, distinct from multiple sclerosis, causing inflammatory lesions in the optic nerves and spinal cord. An autoantibody (NMO IgG) against aquaporin-4 (AQP4), a water channel expressed on astrocytes is thought to be causative. Peripheral production of the antibody is triggered by an unknown process in genetically susceptible individuals. Anti-AQP4 antibody enters the central nervous system (CNS) when the blood brain barrier is made permeable and has high affinity for orthogonal array particles of AQP4. Like other autoimmune diseases, Th17 cells and their effector cytokines (such as interleukin 6) have been implicated in pathogenesis. AQP4 expressing peripheral organs are not affected by NMO IgG, but the antibody causes extensive astrocytic loss in specific regions of the CNS through complement mediated cytotoxicity. Demyelination occurs during the inflammatory process and is probably secondary to oligodendrocyte apoptosis subsequent to loss of trophic support from astrocytes. Ultimately, extensive axonal injury leads to severe disability. Despite rapid advances in the understanding of NMO pathogenesis, unanswered questions remain, particularly with regards to disease mechanisms in NMO IgG seronegative cases. Increasing knowledge of the molecular pathology is leading to improved treatment strategies. PMID:23202933

  8. The Paradox of Feline Coronavirus Pathogenesis: A Review

    Directory of Open Access Journals (Sweden)

    Luciana Wanderley Myrrha

    2011-01-01

    Full Text Available Feline coronavirus (FCoV is an enveloped single-stranded RNA virus, of the family Coronaviridae and the order Nidovirales. FCoV is an important pathogen of wild and domestic cats and can cause a mild or apparently symptomless enteric infection, especially in kittens. FCoV is also associated with a lethal, systemic disease known as feline infectious peritonitis (FIP. Although the precise cause of FIP pathogenesis remains unclear, some hypotheses have been suggested. In this review we present results from different FCoV studies and attempt to elucidate existing theories on the pathogenesis of FCoV infection.

  9. Metabolomic Quantitative Trait Loci (mQTL Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.

    Directory of Open Access Journals (Sweden)

    William E Kraus

    2015-11-01

    Full Text Available Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA, long-chain dicarboxylacylcarnitine (LCDA and medium chain acylcarnitine (MCA metabolites are heritable and predict cardiovascular disease (CVD events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490, we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1 These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10. Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2. Expression quantitative trait loci (eQTL pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.

  10. Advances in understanding gray matter pathology in multiple sclerosis: Are we ready to redefine disease pathogenesis?

    Directory of Open Access Journals (Sweden)

    Zivadinov Robert

    2012-03-01

    Full Text Available Abstract The purpose of this special issue in BMC Neurology is to summarize advances in our understanding of the pathological, immunological, imaging and clinical concepts of gray matter (GM pathology in patients with multiple sclerosis (MS. Review articles by Lucchinetti and Popescu, Walker and colleagues, Hulst and colleagues and Horakova and colleagues summarize important recent advances in understanding GM damage and its implications to MS pathogenesis. They also raise a number of important new questions and outline comprehensive approaches to addressing those questions in years to come. In the last decade, the use of immunohistochemistry staining methods and more advanced imaging techniques to detect GM lesions, like double inversion recovery, contributed to a surge of studies related to cortical and subcortical GM pathology in MS. It is becoming more apparent from recent biopsy studies that subpial cortical lesions in early MS are highly inflammatory. The mechanisms responsible for triggering meningeal inflammation in MS patients are not yet elucidated, and they should be further investigated in relation to their role in initiating and perpetuating the disease process. Determining the role of antigens, environmental and genetic factors in the pathogenesis of GM involvement in MS is critical. The early involvement of cortical and subcortical GM damage in MS is very intriguing and needs to be further studied. As established in numerous cross-sectional and longitudinal studies, GM damage is a better predictor of physical disability and cognitive impairment than WM damage. Monitoring the evolution of GM damage is becoming an important marker in predicting future disease course and response to therapy in MS patients.

  11. The emerging role of interleukin (IL)-1 in the pathogenesis and treatment of inflammatory and degenerative eye diseases.

    Science.gov (United States)

    Fabiani, Claudia; Sota, Jurgen; Tosi, Gian Marco; Franceschini, Rossella; Frediani, Bruno; Galeazzi, Mauro; Rigante, Donato; Cantarini, Luca

    2017-10-01

    Interleukin (IL)-1 plays a key role in the pathogenesis and thereafter in the search for specific treatments of different inflammatory and degenerative eye diseases. Indeed, an overactivity of IL-1 might be an initiating factor for many immunopathologic sceneries in the eye, as proven by the efficacy of the specific IL-1 blockade in different ocular diseases. For instance, the uveitis in monogenic autoinflammatory disorders, such as Blau syndrome and cryopyrin-associated periodic syndrome, or in complex polygenic autoinflammatory disorders, such as Behçet's disease, has been successfully treated with IL-1 blockers. Similarly, therapy with the IL-1 receptor antagonist anakinra has proven successful also in scleritis and episcleritis in the context of different rheumatic conditions. Moreover, interesting findings deriving from animal models of ocular disease have set a rational basis from a therapeutic viewpoint to manage patients also with dry eye disease and a broadening number of ocular inflammatory and degenerative conditions, which start from an imbalance between IL-1 and its receptor antagonist.

  12. Pathogenesis of helicobacter pylori infection involves interaction ...

    African Journals Online (AJOL)

    It is now clear that both bacterial virulence factors and host susceptibility play key roles in disease pathogenesis. The nature and levels of these interactions between these major factors has been found to determine the spectrum of clinical outcomes of the infection with this important bacterium. Virulence factors include the ...

  13. Long Non-Coding RNA Profiling in a Non-Alcoholic Fatty Liver Disease Rodent Model: New Insight into Pathogenesis

    Directory of Open Access Journals (Sweden)

    Yi Chen

    2017-01-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent chronic liver diseases worldwide with an unclear mechanism. Long non-coding RNAs (lncRNAs have recently emerged as important regulatory molecules. To better understand NAFLD pathogenesis, lncRNA and messenger RNA (mRNA microarrays were conducted in an NAFLD rodent model. Potential target genes of significantly changed lncRNA were predicted using cis/trans-regulatory algorithms. Gene Ontology (GO analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analysis were then performed to explore their function. In the current analysis, 89 upregulated and 177 downregulated mRNAs were identified, together with 291 deregulated lncRNAs. Bioinformatic analysis of these RNAs has categorized these RNAs into pathways including arachidonic acid metabolism, circadian rhythm, linoleic acid metabolism, peroxisome proliferator-activated receptor (PPAR signaling pathway, sphingolipid metabolism, steroid biosynthesis, tryptophan metabolism and tyrosine metabolism were compromised. Quantitative polymerase chain reaction (qPCR of representative nine mRNAs and eight lncRNAs (named fatty liver-related lncRNA, FLRL was conducted and this verified previous microarray results. Several lncRNAs, such as FLRL1, FLRL6 and FLRL2 demonstrated to be involved in circadian rhythm targeting period circadian clock 3 (Per3, Per2 and aryl hydrocarbon receptor nuclear translocator-like (Arntl, respectively. While FLRL8, FLRL3 and FLRL7 showed a potential role in PPAR signaling pathway through interaction with fatty acid binding protein 5 (Fabp5, lipoprotein lipase (Lpl and fatty acid desaturase 2 (Fads2. Functional experiments showed that interfering of lncRNA FLRL2 expression affected the expression of predicted target, circadian rhythm gene Arntl. Moreover, both FLRL2 and Arntl were downregulated in the NAFLD cellular model. The current study identified lncRNA and corresponding mRNA in NAFLD

  14. Persistent perineal sinus. Incidence, pathogenesis, risk factors, and management

    International Nuclear Information System (INIS)

    Lohsiriwat, V.

    2009-01-01

    This review discusses the incidence, pathogenesis, risk factors, diagnosis, and therapeutic options for persistent perineal sinus (PPS), defined as a perineal wound that remains unhealed more than 6 months after surgery. The incidence of PPS after surgery for inflammatory bowel disease (IBD) ranges from 3% to 70% and after abdominoperineal resection (APR) for Low rectal cancer, it can be up to 30%. These unhealed wounds are frequently related to perioperative pelvic or perineal sepsis. Crohn's disease (CD) and neoadjuvant radiation therapy are also important risk factors. The management of PPS is based on an understanding of pathogenesis and clinical grounds. The advantages and disadvantages of the current therapeutic approaches, including the topical administration of various drugs, vacuum-assisted closure, and perineal reconstruction with a muscle flap or a myocutaneous flap are also discussed. (author)

  15. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis.

    Directory of Open Access Journals (Sweden)

    Duane Delimont

    Full Text Available It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.

  16. Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Bukhari, Hassan; Glotzbach, Annika; Kolbe, Katharina; Leonhardt, Gregor; Loosse, Christina; Müller, Thorsten

    2017-09-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease with tens of millions of people affected worldwide. The pathogenesis is still poorly understood and various therapeutical approaches targeting the amyloid β (Aβ) peptide, a product of the amyloidogenic cleavage of the amyloid precursor protein (APP), failed. Moreover, a couple of studies critically questioned the relevance of Aβ in the pathogenesis of AD. Thus, new ideas need to be studied and one highly interesting hypothesis is the APP mediated signal transduction to the nucleus. As a consequence nuclear -potentially toxic- structures emerge, which were recently found to a high extent in human AD tissue and thus, may contribute to neurodegeneration. Relevant for the signaling machinery are modifications at the very C-terminal end of the precursor protein, the APP intracellular domain (AICD). In this review we update the knowledge on mechanisms on AICD referring to our 2008 article: The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-Relevance for Alzheimer's disease (T. Muller, et al., 2008). We summarize how AICD is generated and degraded, we describe its intramolecular motifs, translational modifications, and how those as well as APP dimerization influence AICD generation and function. Moreover, we resume the AICD interactome and elucidate AICDs involvement in nuclear signaling, transcriptional regulation, cell death, DNA repair and cell cycle re-entry and we give insights in its physiological function. Results are summarized in the comprehensive poster "The world of AICD". Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease.

    Science.gov (United States)

    Woodhouse, C A; Patel, V C; Singanayagam, A; Shawcross, D L

    2018-01-01

    Mortality from chronic liver disease is rising exponentially. The liver is intimately linked to the gut via the portal vein, and exposure to gut microbiota and their metabolites translocating across the gut lumen may impact upon both the healthy and diseased liver. Modulation of gut microbiota could prove to be a potential therapeutic target. To characterise the changes in the gut microbiome that occur in chronic liver disease and to assess the impact of manipulation of the microbiome on the liver. We conducted a PubMed search using search terms including 'microbiome', 'liver' and 'cirrhosis' as well as 'non-alcoholic fatty liver disease', 'steatohepatitis', 'alcohol' and 'primary sclerosing cholangitis'. Relevant articles were also selected from references of articles and review of the ClinicalTrials.gov website. Reduced bacterial diversity, alcohol sensitivity and the development of gut dysbiosis are seen in several chronic liver diseases, including non-alcoholic fatty liver disease, alcohol-related liver disease and primary sclerosing cholangitis. Perturbations in gut commensals could lead to deficient priming of the immune system predisposing the development of immune-mediated diseases. Furthermore, transfer of stool from an animal with the metabolic syndrome may induce steatosis in a healthy counterpart. Patients with cirrhosis develop dysbiosis, small bowel bacterial overgrowth and increased gut wall permeability, allowing bacterial translocation and uptake of endotoxin inducing hepatic and systemic inflammation. Manipulation of the gut microbiota with diet, probiotics or faecal microbiota transplantation to promote the growth of "healthy" bacteria may ameliorate the dysbiosis and alter prognosis. © 2017 John Wiley & Sons Ltd.

  18. Penile cancer: epidemiology, pathogenesis and prevention.

    Science.gov (United States)

    Bleeker, M C G; Heideman, D A M; Snijders, P J F; Horenblas, S; Dillner, J; Meijer, C J L M

    2009-04-01

    Penile cancer is a disease with a high morbidity and mortality. Its prevalence is relatively rare, but the highest in some developing countries. Insight into its precursor lesions, pathogenesis and risk factors offers options to prevent this potentially mutilating disease. This review presents an overview of the different histologically and clinically identified precursor lesions of penile cancer and discusses the molecular pathogenesis, including the role of HPV in penile cancer development. A systematic review of the literature evaluating penile carcinogenesis, risk factors and molecular mechanisms involved. Careful monitoring of men with lichen sclerosis, genital Bowen's disease, erythroplasia of Queyrat and bowenoid papulosis seems useful, thereby offering early recognition of penile cancer and, subsequently, conservative therapeutic options. Special attention is given to flat penile lesions, which contain high numbers of HPV. Their role in HPV transmission to sexual partners is highlighted, but their potential to transform as a precursor lesion into penile cancer has been unsatisfactorily explored. Further research should not only focus on HPV mediated pathogenic pathways but also on the non-HPV related molecular and genetic factors that play a role in penile cancer development. Options for prevention of penile cancer include (neonatal) circumcision, limitation of penile HPV infections (either by prophylactic vaccination or condom use), prevention of phimosis, treatment of chronic inflammatory conditions, limiting PUVA treatment, smoking cessation and hygienic measures.

  19. Thiazolidinediones and Edema: Recent Advances in the Pathogenesis of Thiazolidinediones-Induced Renal Sodium Retention.

    Science.gov (United States)

    Horita, Shoko; Nakamura, Motonobu; Satoh, Nobuhiko; Suzuki, Masashi; Seki, George

    2015-01-01

    Thiazolidinediones (TZDs) are one of the major classes of antidiabetic drugs that are used widely. TZDs improve insulin resistance by activating peroxisome proliferator-activated receptor gamma (PPARγ) and ameliorate diabetic and other nephropathies, at least, in experimental animals. However, TZDs have side effects, such as edema, congestive heart failure, and bone fracture, and may increase bladder cancer risk. Edema and heart failure, which both probably originate from renal sodium retention, are of great importance because these side effects make it difficult to continue the use of TZDs. However, the pathogenesis of edema remains a matter of controversy. Initially, upregulation of the epithelial sodium channel (ENaC) in the collecting ducts by TZDs was thought to be the primary cause of edema. However, the results of other studies do not support this view. Recent data suggest the involvement of transporters in the proximal tubule, such as sodium-bicarbonate cotransporter and sodium-proton exchanger. Other studies have suggested that sodium-potassium-chloride cotransporter 2 in the thick ascending limb of Henle and aquaporins are also possible targets for TZDs. This paper will discuss the recent advances in the pathogenesis of TZD-induced sodium reabsorption in the renal tubules and edema.

  20. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases.

    Science.gov (United States)

    Byun, Kyunghee; Yoo, YongCheol; Son, Myeongjoo; Lee, Jaesuk; Jeong, Goo-Bo; Park, Young Mok; Salekdeh, Ghasem Hosseini; Lee, Bonghee

    2017-09-01

    Advanced glycation end products (AGEs) and their receptor have been implicated in the progressions of many intractable diseases, such as diabetes and atherosclerosis, and are also critical for pathologic changes in chronic degenerative diseases, such as Alzheimer's disease, Parkinson's disease, and alcoholic brain damage. Recently activated macrophages were found to be a source of AGEs, and the most abundant form of AGEs, AGE-albumin excreted by macrophages has been implicated in these diseases and to act through common pathways. AGEs inhibition has been shown to prevent the pathogenesis of AGEs-related diseases in human, and therapeutic advances have resulted in several agents that prevent their adverse effects. Recently, anti-inflammatory molecules that inhibit AGEs have been shown to be good candidates for ameliorating diabetic complications as well as degenerative diseases. This review was undertaken to present, discuss, and clarify current understanding regarding AGEs formation in association with macrophages, different diseases, therapeutic and diagnostic strategy and links with RAGE inhibition. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Epidemiology, Pathogenesis, and Control of a Tick-Borne Disease- Kyasanur Forest Disease: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Syed Z. Shah

    2018-05-01

    Full Text Available In South Asia, Haemaphysalis spinigera tick transmits Kyasanur Forest Disease Virus (KFDV, a flavivirus that causes severe hemorrhagic fever with neurological manifestations such as mental disturbances, severe headache, tremors, and vision deficits in infected human beings with a fatality rate of 3–10%. The disease was first reported in March 1957 from Kyasanur forest of Karnataka (India from sick and dying monkeys. Since then, between 400 and 500 humans cases per year have been recorded; monkeys and small mammals are common hosts of this virus. KFDV can cause epizootics with high fatality in primates and is a level-4 virus according to the international biosafety rules. The density of tick vectors in a given year correlates with the incidence of human disease. The virus is a positive strand RNA virus and its genome was discovered to code for one polyprotein that is cleaved post-translationally into 3 structural proteins (Capsid protein, Envelope Glycoprotein M and Envelope Glycoprotein E and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. KFDV has a high degree of sequence homology with most members of the TBEV serocomplex. Alkhurma virus is a KFDV variant sharing a sequence similarity of 97%. KFDV is classified as a NIAID Category C priority pathogen due to its extreme pathogenicity and lack of US FDA approved vaccines and therapeutics; also, the infectious dose is currently unknown for KFD. In India, formalin-inactivated KFDV vaccine produced in chick embryo fibroblast is being used. Nevertheless, further efforts are required to enhance its long-term efficacy. KFDV remains an understudied virus and there remains a lack of insight into its pathogenesis; moreover, specific treatment to the disease is not available to date. Environmental and climatic factors involved in disseminating Kyasanur Forest Disease are required to be fully explored. There should be a mapping of endemic areas and cross-border veterinary

  2. Hepatitis E: Molecular Virology and Pathogenesis

    Science.gov (United States)

    Panda, Subrat K.; Varma, Satya P.K.

    2013-01-01

    Hepatitis E virus is a single, positive-sense, capped and poly A tailed RNA virus classified under the family Hepeviridae. Enteric transmission, acute self-limiting hepatitis, frequent epidemic and sporadic occurrence, high mortality in affected pregnants are hallmarks of hepatitis E infection. Lack of an efficient culture system and resulting reductionist approaches for the study of replication and pathogenesis of HEV made it to be a less understood agent. Early studies on animal models, sub-genomic expression of open reading frames (ORF) and infectious cDNA clones have helped in elucidating the genome organization, important stages in HEV replication and pathogenesis. The genome contains three ORF's and three untranslated regions (UTR). The 5′ distal ORF, ORF1 is translated by host ribosomes in a cap dependent manner to form the non-structural polyprotein including the viral replicase. HEV replicates via a negative-sense RNA intermediate which helps in the formation of the positive-sense genomic RNA and a single bi-cistronic sub-genomic RNA. The 3′ distal ORF's including the major structural protein pORF2 and the multifunctional host interacting protein pORF3 are translated from the sub-genomic RNA. Pathogenesis in HEV infections is not well articulated, and remains a concern due to the many aspects like host dependent and genotype specific variations. Animal HEV, zoonosis, chronicity in immunosuppressed patients, and rapid decompensation in affected chronic liver diseased patients warrants detailed investigation of the underlying pathogenesis. Recent advances about structure, entry, egress and functional characterization of ORF1 domains has furthered our understanding about HEV. This article is an effort to review our present understanding about molecular biology and pathogenesis of HEV. PMID:25755485

  3. Amelioration of some biochemical parameters in irradiated male albino rats by garlic

    International Nuclear Information System (INIS)

    El-masry, F.S.H.; El-sayed, N.M.; Hussein, A.H.

    2005-01-01

    Garlic extract has various medical effects on the treatment of many diseases as hypertension, atherosclerosis, inflammation and diabetes. The alteration of the biochemical parameters in blood serum of irradiated rats may play an important role in determining the pathogenesis of radiation exposure. Many of the damaging effects of ionizing radiation are mediated by reactive free radicals. This study was designed to evaluate the protective role of garlic against gamma irradiation (5Gy) induced biochemical disorders in rats. Samples were collected at 1, 7 and 14 days post-irradiation. Lipid peroxide content (malondialdehyde), cholesterol, HDL-C, LDL-C, fatty acids, glucose, insulin, glycogen, haemoglobin, ferritin andiron were estimated.Garlic was orally administered to rats (100 mg/kg body weight) for 14 days before exposure to single dose of gamma irradiation at dose level 5 Gy. The data revealed significant increase in the levels of lipid peroxide, cholesterol, LDL-cholesterol, fatty acids, insulin, glucose and iron accompanied with significant decrease in the levels of HDL-cholesterol, glycogen, haemoglobin and ferritin due to radiation exposure. Administration of garlic alone to the rats caused nonsignificant changes in the estimated parameters indicating its safe use, but the treatment with garlic to rats before radiation exposure ameliorated the changes induced by gamma irradiation and tended to normalize their levels.It could be concluded that garlic administration may has a beneficial role in restoring the biochemical disorders induced by 5 Gy gamma irradiation

  4. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Science.gov (United States)

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  5. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Directory of Open Access Journals (Sweden)

    Songtao Li

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA, an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD-induced obese non-alcoholic fatty liver disease (NAFLD rat model. METHODOLOGY/PRINCIPAL FINDINGS: Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  6. The role of dendritic cell subsets and innate immunity in the pathogenesis of type 1 diabetes and other autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Price

    2015-06-01

    Full Text Available Dendritic cells (DCs are key antigen presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are 4 main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include: impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.

  7. Propionibacterium acnes in the pathogenesis and immunotherapy of acne vulgaris.

    Science.gov (United States)

    Liu, Pei-Feng; Hsieh, Yao-Dung; Lin, Ya-Ching; Two, Aimee; Shu, Chih-Wen; Huang, Chun-Ming

    2015-01-01

    Acne vulgaris, a multi-factorial disease, is one of the most common skin diseases, affecting an estimated 80% of Americans at some point during their lives. The gram-positive and anaerobic Propionibacterium acnes (P. acnes) bacterium has been implicated in acne inflammation and pathogenesis. Therapies for acne vulgaris using antibiotics generally lack bacterial specificity, promote the generation of antibiotic-resistant bacterial strains, and cause adverse effects. Immunotherapy against P. acnes or its antigens (sialidase and CAMP factor) has been demonstrated to be effective in mice, attenuating P. acnes-induced inflammation; thus, this method may be applied to develop a potential vaccine targeting P. acnes for acne vulgaris treatment. This review summarizes reports describing the role of P. acnes in the pathogenesis of acne and various immunotherapy-based approaches targeting P. acnes, suggesting the potential effectiveness of immunotherapy for acne vulgaris as well as P. acnes-associated diseases.

  8. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    2015-10-06

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirus pathogenesis.

  9. Role of T-lymphocytes and pro-inflammatory mediators in the pathogenesis of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Aneal Gadgil

    2008-11-01

    Full Text Available Aneal Gadgil, Steven R DuncanDivision of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USAAbstract: Chronic obstructive pulmonary disease (COPD is the fourth leading cause of death in the US and a major worldwide healthcare problem. The pathophysiologic mechanisms that drive development and progression of this disease are complex and only poorly understood. While tobacco smoking is the primary risk factor, other disease processes also appear to play a role. Components of the innate immune system (eg, macrophages and neutrophils have long been believed to be important in the development of COPD. More recent evidence also suggests involvement of the adaptive immune system in pathogenesis of this disease. Here we will review the literature supporting the participation of T-cells in the development of COPD, and comment on the potential antigenic stimuli that may account for these responses. We will further explore the prospective contributions of T-cell derived mediators that could contribute to the inflammation, alveolar wall destruction, and small airway fibrosis of advanced COPD. A better understanding of these complex immune processes will lead to new insights that could result in improved preventative and/or treatment strategies.Keywords: COPD, T-lymphocytes, adaptive immunity, cytokines

  10. Estrogen signalling in the pathogenesis of age-related macular degeneration.

    Science.gov (United States)

    Kaarniranta, Kai; Machalińska, Anna; Veréb, Zoltán; Salminen, Antero; Petrovski, Goran; Kauppinen, Anu

    2015-02-01

    Age-related macular degeneration (AMD) is a multifactorial eye disease that is associated with aging, family history, smoking, obesity, cataract surgery, arteriosclerosis, hypertension, hypercholesterolemia and unhealthy diet. Gender has commonly been classified as a weak or inconsistent risk factor for AMD. This disease is characterized by degeneration of retinal pigment epithelial (RPE) cells, Bruch's membrane, and choriocapillaris, which secondarily lead to damage and death of photoreceptor cells and central visual loss. Pathogenesis of AMD involves constant oxidative stress, chronic inflammation, and increased accumulation of lipofuscin and drusen. Estrogen has both anti-oxidative and anti-inflammatory capacity and it regulates signaling pathways that are involved in the pathogenesis of AMD. In this review, we discuss potential cellular signaling targets of estrogen in retinal cells and AMD pathology.

  11. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes.

    Science.gov (United States)

    Patel, Tushar P; Rawal, Komal; Bagchi, Ashim K; Akolkar, Gauri; Bernardes, Nathalia; Dias, Danielle da Silva; Gupta, Sarita; Singal, Pawan K

    2016-01-01

    Sedentary life style and high calorie dietary habits are prominent leading cause of metabolic syndrome in modern world. Obesity plays a central role in occurrence of various diseases like hyperinsulinemia, hyperglycemia and hyperlipidemia, which lead to insulin resistance and metabolic derangements like cardiovascular diseases (CVDs) mediated by oxidative stress. The mortality rate due to CVDs is on the rise in developing countries. Insulin resistance (IR) leads to micro or macro angiopathy, peripheral arterial dysfunction, hampered blood flow, hypertension, as well as the cardiomyocyte and the endothelial cell dysfunctions, thus increasing risk factors for coronary artery blockage, stroke and heart failure suggesting that there is a strong association between IR and CVDs. The plausible linkages between these two pathophysiological conditions are altered levels of insulin signaling proteins such as IR-β, IRS-1, PI3K, Akt, Glut4 and PGC-1α that hamper insulin-mediated glucose uptake as well as other functions of insulin in the cardiomyocytes and the endothelial cells of the heart. Reduced AMPK, PFK-2 and elevated levels of NADP(H)-dependent oxidases produced by activated M1 macrophages of the adipose tissue and elevated levels of circulating angiotensin are also cause of CVD in diabetes mellitus condition. Insulin sensitizers, angiotensin blockers, superoxide scavengers are used as therapeutics in the amelioration of CVD. It evidently becomes important to unravel the mechanisms of the association between IR and CVDs in order to formulate novel efficient drugs to treat patients suffering from insulin resistance-mediated cardiovascular diseases. The possible associations between insulin resistance and cardiovascular diseases are reviewed here.

  12. A new perspective on the pathogenesis of chronic renal disease in captive cheetahs (Acinonyx jubatus).

    Science.gov (United States)

    Mitchell, Emily P; Prozesky, Leon; Lawrence, John

    2018-01-01

    The sustainability of captive cheetah populations is limited by high mortality due to chronic renal disease. This necropsy study, conducted on 243 captive cheetahs from one institution, investigated the relationships between focal palatine erosions, gastritis, enterocolitis, glomerulosclerosis, chronic renal infarcts, renal cortical and medullary fibrosis, and renal medullary amyloidosis at death. Associations between the individual renal lesions and death due to chronic renal disease and comparisons of lesion prevalence between captive bred and wild born and between normal and king coated cheetahs were also assessed. All lesions were significantly positively correlated with age at death. Renal medullary fibrosis was the only lesion associated with the likelihood of death being due to chronic renal disease, and cheetahs with this lesion were younger, on average, than cheetahs with other renal lesions. Alimentary tract lesions were not associated with amyloidosis. All lesions, except for palatine erosions, were more common in wild born than in captive bred cheetahs; the former were older at death than the latter. Having a king coat had no clear effect on disease prevalence. These results suggest that age and renal medullary fibrosis are the primary factors influencing the pathogenesis of chronic renal disease in captive cheetahs. Apart from amyloidosis, these findings are analogous to those described in chronic renal disease in domestic cats, which is postulated to result primarily from repetitive hypoxic injury of renal tubules, mediated by age and stress. Cheetahs may be particularly susceptible to acute renal tubular injury due to their propensity for stress and their extended life span in captivity, as well as their adaptation for fecundity (rather than longevity) and adrenaline-mediated high speed prey chases. The presence of chronic renal disease in subadult cheetahs suggests that prevention, identification and mitigation of stress are critical to the

  13. Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis.

    Science.gov (United States)

    Lin, Yu-Mei; Chou, I-Chun; Wang, Jaw-Fen; Ho, Fang-I; Chu, Yu-Ju; Huang, Pei-Cheng; Lu, Der-Kang; Shen, Hwei-Ling; Elbaz, Mounira; Huang, Shu-Mei; Cheng, Chiu-Ping

    2008-09-01

    Ralstonia solanacearum causes a deadly wilting disease on a wide range of crops. To elucidate pathogenesis of this bacterium in different host plants, we set out to identify R. solanacearum genes involved in pathogenesis by screening random transposon insertion mutants of a highly virulent strain, Pss190, on tomato and Arabidopsis thaliana. Mutants exhibiting various decreased virulence levels on these two hosts were identified. Sequence analysis showed that most, but not all, of the identified pathogenesis genes are conserved among distinct R. solanacearum strains. A few of the disrupted loci were not reported previously as being involved in R. solanacearum pathogenesis. Notably, a group of mutants exhibited differential pathogenesis on tomato and Arabidopsis. These results were confirmed by characterizing allelic mutants in one other R. solanacearum strain of the same phylotype. The significantly decreased mutants' colonization in Arabidopsis was found to be correlated with differential pathogenesis on these two plants. Differential requirement of virulence genes suggests adaptation of this bacterium in different host environments. Together, this study reveals commonalities and differences of R. solanacearum pathogenesis on single solanaceous and nonsolanaceous hosts, and provides important new insights into interactions between R. solanacearum and different host plants.

  14. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease

    Science.gov (United States)

    Harris, Steven A.; Harris, Elizabeth A.

    2018-01-01

    This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical

  15. Honey Supplementation in Spontaneously Hypertensive Rats Elicits Antihypertensive Effect via Amelioration of Renal Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Omotayo O. Erejuwa

    2012-01-01

    Full Text Available Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP in spontaneously hypertensive rats (SHR. It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2 and glutathione S-transferase (GST were significantly downregulated while total antioxidant status (TAS and activities of GST and catalase (CAT were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.

  16. CD44 antibodies and immune thrombocytopenia in the amelioration of murine inflammatory arthritis.

    Directory of Open Access Journals (Sweden)

    Patrick J Mott

    Full Text Available Antibodies to CD44 have been used to successfully ameliorate murine models of autoimmune disease. The most often studied disease model has been murine inflammatory arthritis, where a clear mechanism for the efficacy of CD44 antibodies has not been established. We have recently shown in a murine passive-model of the autoimmune disease immune thrombocytopenia (ITP that some CD44 antibodies themselves can induce thrombocytopenia in mice, and the CD44 antibody causing the most severe thrombocytopenia (IM7, also is known to be highly effective in ameliorating murine models of arthritis. Recent work in the K/BxN serum-induced model of arthritis demonstrated that antibody-induced thrombocytopenia reduced arthritis, causing us to question whether CD44 antibodies might primarily ameliorate arthritis through their thrombocytopenic effect. We evaluated IM7, IRAWB14.4, 5035-41.1D, KM201, KM114, and KM81, and found that while all could induce thrombocytopenia, the degree of protection against serum-induced arthritis was not closely related to the length or severity of the thrombocytopenia. CD44 antibody treatment was also able to reverse established inflammation, while thrombocytopenia induced by an anti-platelet antibody targeting the GPIIbIIIa platelet antigen, could not mediate this effect. While CD44 antibody-induced thrombocytopenia may contribute to some of its therapeutic effect against the initiation of arthritis, for established disease there are likely other mechanisms contributing to its efficacy. Humans are not known to express CD44 on platelets, and are therefore unlikely to develop thrombocytopenia after CD44 antibody treatment. An understanding of the relationship between arthritis, thrombocytopenia, and CD44 antibody treatment remains critical for continued development of CD44 antibody therapeutics.

  17. BJ-1108, a 6-Amino-2,4,5-trimethylpyridin-3-ol analogue, regulates differentiation of Th1 and Th17 cells to ameliorate experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Kang, Youra; Timilshina, Maheshwor; Nam, Tae-Gyu; Jeong, Byeong-Seon; Chang, Jae-Hoon

    2017-02-28

    CD4 + T cells play an important role in the initiation of an immune response by providing help to other cells. Among the helper T subsets, interferon-γ (IFN-γ)-secreting T helper 1 (Th1) and IL-17-secreting T helper 17 (Th17) cells are indispensable for clearance of intracellular as well as extracellular pathogens. However, Th1 and Th17 cells are also associated with pathogenesis and contribute to the progression of multiple inflammatory conditions and autoimmune diseases. In the current study, we found that BJ-1108, a 6-aminopyridin-3-ol analogue, significantly inhibited Th1 and Th17 differentiation in vitro in a concentration-dependent manner, with no effect on proliferation or apoptosis of activated T cells. Moreover, BJ-1108 inhibited differentiation of Th1 and Th17 cells in ovalbumin (OVA)-specific OT II mice. A complete Freund's adjuvant (CFA)/OVA-induced inflammatory model revealed that BJ-1108 can reduce generation of proinflammatory Th1 and Th17 cells. Furthermore, in vivo studies showed that BJ-1108 delayed onset of disease and suppressed experimental autoimmune encephalomyelitis (EAE) disease progression by inhibiting differentiation of Th1 and Th17 cells. BJ-1108 treatment ameliorates inflammation and EAE by inhibiting Th1 and Th17 cells differentiation. Our findings suggest that BJ-1108 is a promising novel therapeutic agent for the treatment of inflammation and autoimmune disease.

  18. Pathogenic Leptospira: Advances in understanding the molecular pathogenesis and virulence

    Science.gov (United States)

    Ghazaei, Ciamak

    2018-01-01

    Leptospirosis is a common zoonotic disease has emerged as a major public health problem, with developing countries bearing disproportionate burdens. Although the diverse range of clinical manifestations of the leptospirosis in humans is widely documented, the mechanisms through which the pathogen causes disease remain undetermined. In addition, leptospirosis is a much-neglected life-threatening disease although it is one of the most important zoonoses occurring in a diverse range of epidemiological distribution. Recent advances in molecular profiling of pathogenic species of the genus Leptospira have improved our understanding of the evolutionary factors that determine virulence and mechanisms that the bacteria employ to survive. However, a major impediment to the formulation of intervention strategies has been the limited understanding of the disease determinants. Consequently, the association of the biological mechanisms to the pathogenesis of Leptospira, as well as the functions of numerous essential virulence factors still remain implicit. This review examines recent advances in genetic screening technologies, the underlying microbiological processes, the virulence factors and associated molecular mechanisms driving pathogenesis of Leptospira species. PMID:29445617

  19. Scleroderma: nomenclature, etiology, pathogenesis, prognosis, and treatments: facts and controversies.

    Science.gov (United States)

    Fett, Nicole

    2013-01-01

    Scleroderma refers to a heterogeneous group of autoimmune fibrosing disorders. The nomenclature of scleroderma has changed dramatically in recent years, with morphea (localized scleroderma), limited cutaneous systemic sclerosis, diffuse cutaneous systemic sclerosis, and systemic sclerosis sine scleroderma encompassing the currently accepted disease subtypes. Major advances have been made in the molecular studies of morphea and systemic sclerosis; however, their etiologies and pathogenesis remain incompletely understood. Although morphea and systemic sclerosis demonstrate activation of similar inflammatory and fibrotic pathways, important differences in signaling pathways and gene signatures indicate they are likely biologically distinct processes. Morphea can cause significant morbidity but does not affect mortality, whereas systemic sclerosis has the highest disease-specific mortality of all autoimmune connective tissue diseases. Treatment recommendations for morphea and systemic sclerosis are based on limited data and largely expert opinions. Current collaborative efforts in morphea and systemic sclerosis research will hopefully lead to better understanding of the etiology and pathogenesis of these rare and varied diseases and improved treatment options. Published by Elsevier Inc.

  20. Ameliorating effect of hawthorn ( Crataegus oxyacantha ) and ...

    African Journals Online (AJOL)

    Ameliorating effect of hawthorn ( Crataegus oxyacantha ) and physical exercise on ... Conclusion: Crataegus oxyacantha extract has shown positive affect to ameliorate on ... Key words: Crataegus oxyacantha, physical activity, epilepsy, gerbil, ...

  1. [AETIOLOGY AND PATHOGENESIS GASTRO-DUODENALES ULCERATIVE LESIONS IN ELDERLY].

    Science.gov (United States)

    Chernekhovskaya, N E; Povalayev, A V; Layshenko, G A

    2015-01-01

    In review today conceptions of view to aetiology and pathogenesis gastro-duodenales ulcerative lesions in elderly. Atherosclerosis, ischemic disease of the heart and hypertension are reasons of acute ulcers and erosions in elderly. The breaking of microcirculation are very importance.

  2. [EBOLA HEMORRHAGIC FEVER; ETIOLOGY, EPIDEMIOLOGY, PATHOGENESIS, AND CLINICAL SYMPTOMS].

    Science.gov (United States)

    Zhdanov, K W; Zakharenko, S M; Kovalenko, A N; Semenov, A V; Fusin, A Ya

    2015-01-01

    The data on the prevalence of disease caused by Ebola virus, biological features of its pathogen, character of the epidemiological process, pathogenesis and clinical symptoms are presented. The disease is characterized by suppression of protective immunological mechanisms and systemic inflammatory reaction accounting for the lesions of vascular endothelium, hemostatic and immune systems. It eventually leads to polyorgan insufficiency and severe shock. Lethality amounts to 50%.

  3. Underlying role of mitochondrial mutagenesis in the pathogenesis of a disease and current approaches for translational research.

    Science.gov (United States)

    Paraskevaidi, Maria; Martin-Hirsch, Pierre L; Kyrgiou, Maria; Martin, Francis L

    2017-05-01

    Mitochondrial diseases have been extensively investigated over the last three decades, but many questions regarding their underlying aetiologies remain unanswered. Mitochondrial dysfunction is not only responsible for a range of neurological and myopathy diseases but also considered pivotal in a broader spectrum of common diseases such as epilepsy, autism and bipolar disorder. These disorders are a challenge to diagnose and treat, as their aetiology might be multifactorial. In this review, the focus is placed on potential mechanisms capable of introducing defects in mitochondria resulting in disease. Special attention is given to the influence of xenobiotics on mitochondria; environmental factors inducing mutations or epigenetic changes in the mitochondrial genome can alter its expression and impair the whole cell's functionality. Specifically, we suggest that environmental agents can cause damage in mitochondrial DNA and consequently lead to mutagenesis. Moreover, we describe current approaches for handling mitochondrial diseases, as well as available prenatal diagnostic tests, towards eliminating these maternally inherited diseases. Undoubtedly, more research is required, as current therapeutic approaches mostly employ palliative therapies rather than targeting primary mechanisms or prophylactic approaches. Much effort is needed into further unravelling the relationship between xenobiotics and mitochondria, as the extent of influence in mitochondrial pathogenesis is increasingly recognised. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis.

    Directory of Open Access Journals (Sweden)

    S Rochelle Mikkelsen

    2011-02-01

    Full Text Available Feline immunodeficiency virus (FIV infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+CD25(hiFoxP3(+ immunosuppressive regulatory T (Treg cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+ T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.

  5. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis.

    Science.gov (United States)

    Mikkelsen, S Rochelle; Long, Julie M; Zhang, Lin; Galemore, Erin R; VandeWoude, Sue; Dean, Gregg A

    2011-02-25

    Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+)CD25(hi)FoxP3(+) immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+) T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.

  6. High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity.

    Directory of Open Access Journals (Sweden)

    Lisa Gruber

    Full Text Available BACKGROUND: Obesity has been associated with a more severe disease course in inflammatory bowel disease (IBD and epidemiological data identified dietary fats but not obesity as risk factors for the development of IBD. Crohn's disease is one of the two major IBD phenotypes and mostly affects the terminal ileum. Despite recent observations that high fat diets (HFD impair intestinal barrier functions and drive pathobiont selection relevant for chronic inflammation in the colon, mechanisms of high fat diets in the pathogenesis of Crohn's disease are not known. The aim of this study was to characterize the effect of HFD on the development of chronic ileal inflammation in a murine model of Crohn's disease-like ileitis. METHODS: TNF(ΔARE/WT mice and wildtype C57BL/6 littermates were fed a HFD compared to control diet for different durations. Intestinal pathology and metabolic parameters (glucose tolerance, mesenteric tissue characteristics were assessed. Intestinal barrier integrity was characterized at different levels including polyethylene glycol (PEG translocation, endotoxin in portal vein plasma and cellular markers of barrier function. Inflammatory activation of epithelial cells as well as immune cell infiltration into ileal tissue were determined and related to luminal factors. RESULTS: HFD aggravated ileal inflammation but did not induce significant overweight or typical metabolic disorders in TNF(ΔARE/WT. Expression of the tight junction protein Occludin was markedly reduced in the ileal epithelium of HFD mice independently of inflammation, and translocation of endotoxin was increased. Epithelial cells showed enhanced expression of inflammation-related activation markers, along with enhanced luminal factors-driven recruitment of dendritic cells and Th17-biased lymphocyte infiltration into the lamina propria. CONCLUSIONS: HFD feeding, independently of obesity, accelerated disease onset of small intestinal inflammation in Crohn's disease

  7. Urine metabolic profiling for the pathogenesis research of erosive oral lichen planus.

    Science.gov (United States)

    Li, Xu-Zhao; Yang, Xu-Yan; Wang, Yu; Zhang, Shuai-Nan; Zou, Wei; Wang, Yan; Li, Xiao-Nan; Wang, Ling-Shu; Zhang, Zhi-Gang; Xie, Liang-Zhen

    2017-01-01

    Oral lichen planus (OLP) is a relatively common chronic immune-pathological and inflammatory disease and potentially oral precancerous lesion. Erosive OLP patients show the higher rate of malignant transformation than patients with non-erosive OLP. Identifying the potential biomarkers related to erosive OLP may help to understand the pathogenesis of the diseases. Metabolic profiles were compared in control and patient subjects with erosive OLP by using ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods An integrative analysis was used to identify the perturbed metabolic pathways and pathological processes that may be associated with the disease. In total, 12 modulated metabolites were identified and considered as the potential biomarkers of erosive OLP. Multiple metabolic pathways and pathological processes were involved in erosive OLP. The dysregulations of these metabolites could be used to explain the pathogenesis of the disease, which could also be the potential therapeutic targets for the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Extremely low-frequency magnetic exposure appears to have no effect on pathogenesis of Alzheimer's disease in aluminum-overloaded rat.

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    Full Text Available OBJECTIVE: Extremely low-frequency magnetic field (ELF-MF has been reported to be of potential pathogenetic relevance to Alzheimer's disease (AD for years. However, evidence confirming this function remains inconclusive. Chronic Al treatment has been identified as a contributing factor to cognitive function impairment in AD. This study aims to examine whether or not ELF-MF and Al have synergistic effects toward AD pathogenesis by investigating the effects of ELF-MF with or without chronic Al treatment on SD rats. METHODS: Sprague-Dawley (SD rats were subjected one of the following treatments: sham (control group, oral Al (Al group, ELF-MF (100 µT at 50 Hz with oral Al (MF+Al group, or ELF-MF (100 µT at 50 Hz without oral Al (MF group. RESULTS: After 12 wk of treatment, oral Al treatment groups (Al and MF+Al groups showed learning and memory impairment as well as morphological hallmarks, including neuronal cell loss and high density of amyloid-β (Aβ in the hippocampus and cerebral cortex. ELF-MF without Al treatment showed no significant effect on AD pathogenesis. ELF-MF+Al treatment induced no more damage than Al treatment did. CONCLUSIONS: Our results showed no evidence of any association between ELF-MF exposure (100 µT at 50 Hz and AD, and ELF-MF exposure does not influence the pathogenesis of AD induced by Al overload.

  9. The role of bile acids in the pathogenesis of bowel diseases

    Directory of Open Access Journals (Sweden)

    Magdalena Panek-Jeziorna

    2017-08-01

    Full Text Available Bile acids not only play a cardinal role in the digestion and absorption of fat and fat-soluble vitamins, but also significantly affect gastrointestinal motor, sensory and secretory functions, intestinal barrier permeability and the regulation of the inflammatory response. The results of recent studies have revealed complex interactions between bile acids and the gut microbiota. In addition, bile acids also play a role of signaling molecules regulating the activity of lipid and glucose metabolic pathways, as well as a role of ligands for transcription factors. Genetic factors associated with the regulation of bile acid synthesis, transport and action may significantly influence gastrointestinal function and predispose to diarrhea resulting from bile acid malabsorption. Methods used in the diagnosis of bile acid malabsorption include 75selenium-homotaurocholic acid test, serum C4 and fibroblast growth factor 19 (FGF19, as well as fecal bile acid levels. The paper presents the latest data on the role of bile acid in the pathogenesis of irritable bowel syndrome, inflammatory bowel diseases and colorectal cancer. Advances in the treatment of disturbances in bile acids absorption and synthesis are also presented. A better understanding of molecular mechanisms regulating bile acid action may have implication for colorectal cancer prevention.

  10. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Salminen, Antero; Jouhten, Paula; Sarajärvi, Timo; Haapasalo, Annakaisa; Hiltunen, Mikko

    2016-01-01

    We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Why do motor neurons degenerate? Actualization in the pathogenesis of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Riancho, J; Gonzalo, I; Ruiz-Soto, M; Berciano, J

    2016-02-04

    Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons. Although a small proportion of ALS cases are familial in origin and linked to mutations in specific genes, most cases are sporadic and have a multifactorial aetiology. Some recent studies have increased our knowledge of ALS pathogenesis and raised the question of whether this disorder is a proteinopathy, a ribonucleopathy, an axonopathy, or a disease related to the neuronal microenvironment. This article presents a review of ALS pathogenesis. To this end, we have reviewed published articles describing either ALS patients or ALS animal models and we discuss how the main cellular pathways (gene processing, protein metabolism, oxidative stress, axonal transport, relationship with neuronal microenvironment) may be involved in motor neurons degeneration. ALS pathogenesis has not been fully elucidated. Recent studies suggest that although initial triggers may differ among patients, the final motor neurons degeneration mechanisms are similar in most patients once the disease is fully established. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Insights into mechanisms of transmission and pathogenesis from transgenic mouse models of prion diseases

    Science.gov (United States)

    Moreno, Julie A.; Telling, Glenn C.

    2018-01-01

    Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSE’s), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSE’s, is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer’s and Parkinson’s diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect inter-species prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review we will focus on advances in our understanding of prion biology that

  13. Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance.

    Science.gov (United States)

    Zhu, Zhiyuan; Yan, Jianming; Jiang, Wei; Yao, Xin-gang; Chen, Jing; Chen, Lili; Li, Chenjing; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2013-08-07

    Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.

  14. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis

    Science.gov (United States)

    Rao, P. S. S.; Kumar, Santosh

    2015-01-01

    High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767

  15. Modern views on the pathogenesis of hard dental tissues and periodontium lesions and means of their treatment in children with chronic diseases of the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Krupey V.Y.

    2014-09-01

    Full Text Available Changes in the mouth covity often reflect regularities of pathogenesis of a number of disease states, and primarily from the digestive tract. Therefore, the purpose of the study was to clarify pathogenesis of certain lesions of hard dental tissues and periodontal tissues in children with chronic diseases of the gastrointestinal tract and development of schemes for their treatment. The study observed 441 children aged from 7 to 15 years with dental caries and generalized chronic catarrhal gingivitis on the background of chronic gastritis and duodenitis, duodenal ulcer and malabsorption syndrome. All the children were divided into 2 groups - basic and comparison one. The study identified the most dan¬gerous and little-known way of pathogenesis, which passes through the general processes of reducing the production of various proteins (immune system and antiseptics, is a violation of the general and local resistance and, ultimately, mineral metabolism. Such disorders impair complete mineralization of tooth enamel, reduce optimal composition and properties of saliva stimulating glycolysis processes in oral cavity. Prevention of dental caries and generalized chronic catarrhal gingivitis in children with chronic pathology of the gastrointestinal tract is based on the use of developed therapeutic and prophylactic complex, which includes mucosal gel Kvertulin, probiotic Latsidofil and drug Calcium D.

  16. A tale of two maladies? Pathogenesis of depression with and without the Huntington’s disease gene mutation

    Directory of Open Access Journals (Sweden)

    Xin eDu

    2013-07-01

    Full Text Available Huntington’s disease (HD is an autosomal dominant disorder caused by a tandem repeat expansion encoding an expanded tract of glutamines in the huntingtin protein. HD is progressive and manifests as psychiatric symptoms (including depression, cognitive deficits (culminating in dementia and motor abnormalities (including chorea. Having reached the 20th anniversary of the discovery of the ‘genetic stutter’ which causes HD, we still lack sophisticated insight into why so many HD patients exhibit affective disorders such as depression at very early stages, prior to overt appearance of motor deficits. In this review, we will focus on depression as the major psychiatric manifestation of HD, discuss potential mechanisms of pathogenesis identified from animal models, and compare depression in HD patients with that of the wider gene-negative population. The discovery of depressive-like behaviours as well as cellular and molecular correlates of depression in transgenic HD mice has added strong support to the hypothesis that the HD mutation adds significantly to the genetic load for depression. A key question is whether HD-associated depression differs from that in the general population. Whilst preclinical studies, clinical data and treatment responses suggest striking similarities, there are also some apparent differences. We discuss various molecular and cellular mechanisms which may contribute to depression in HD, and whether they may generalise to other depressive disorders. The autosomal dominant nature of HD and the existence of models with excellent construct validity provide a unique opportunity to understand the pathogenesis of depression and associated gene-environment interactions. Thus, understanding the pathogenesis of depression in HD may not only facilitate tailored therapeutic approaches for HD sufferers, but may also translate to the clinical depression which devastates the lives of so many people.

  17. The pathogenesis of Ebola hemorrhagic fever.

    Science.gov (United States)

    Takada, A; Kawaoka, Y

    2001-10-01

    Ebola virus causes lethal hemorrhagic disease in humans, yet there are still no satisfactory biological explanations to account for its extreme virulence. This review focuses on recent findings relevant to understanding the pathogenesis of Ebola virus infection and developing vaccines and effective therapy. The available data suggest that the envelope glycoprotein and the interaction of some viral proteins with the immune system are likely to play important roles in the extraordinary pathogenicity of this virus. There are also indications that genetically engineered vaccines, including plasmid DNA and viral vectors expressing Ebola virus proteins, and passive transfer of neutralizing antibodies could be feasible options for the control of Ebola virus-associated disease.

  18. Pathogenesis of Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Wolters, Paul J.; Collard, Harold R.; Jones, Kirk D.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease associated with aging that is characterized by the histopathological pattern of usual interstitial pneumonia. Although an understanding of the pathogenesis of IPF is incomplete, recent advances delineating specific clinical and pathologic features of IPF have led to better definition of the molecular pathways that are pathologically activated in the disease. In this review we highlight several of these advances, with a focus on genetic predisposition to IPF and how genetic changes, which occur primarily in epithelial cells, lead to activation of profibrotic pathways in epithelial cells. We then discuss the pathologic changes within IPF fibroblasts and the extracellular matrix, and we conclude with a summary of how these profibrotic pathways may be interrelated. PMID:24050627

  19. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background

    Science.gov (United States)

    Marsh, Sharon; Hu, Junbo; Feng, Wenke

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and it comprises a spectrum of hepatic abnormalities from simple hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, and liver cancer. While the pathogenesis of NAFLD remains incompletely understood, a multihit model has been proposed that accommodates causal factors from a variety of sources, including intestinal and adipose proinflammatory stimuli acting on the liver simultaneously. Prior cellular and molecular studies of patient and animal models have characterized several common pathogenic mechanisms of NAFLD, including proinflammation cytokines, lipotoxicity, oxidative stress, and endoplasmic reticulum stress. In recent years, gut microbiota has gained much attention, and dysbiosis is recognized as a crucial factor in NAFLD. Moreover, several genetic variants have been identified through genome-wide association studies, particularly rs738409 (Ile748Met) in PNPLA3 and rs58542926 (Glu167Lys) in TM6SF2, which are critical risk alleles of the disease. Although a high-fat diet and inactive lifestyles are typical risk factors for NAFLD, the interplay between diet, gut microbiota, and genetic background is believed to be more important in the development and progression of NAFLD. This review summarizes the common pathogenic mechanisms, the gut microbiota relevant mechanisms, and the major genetic variants leading to NAFLD and its progression. PMID:27247565

  20. Studies on the pathogenesis and management of prostate carcinoma in dogs

    NARCIS (Netherlands)

    L'Eplattenier, H.F.

    2009-01-01

    The dog is one of the few species to develop spontaneous prostate carcinoma (PCA) and is thus an attractive model for the study of the disease in humans. Many of the features of the disease in the dog are similar to its human counterpart, however a number of aspects of the pathogenesis, diagnosis

  1. Thiazolidinediones and Edema: Recent Advances in the Pathogenesis of Thiazolidinediones-Induced Renal Sodium Retention

    Directory of Open Access Journals (Sweden)

    Shoko Horita

    2015-01-01

    Full Text Available Thiazolidinediones (TZDs are one of the major classes of antidiabetic drugs that are used widely. TZDs improve insulin resistance by activating peroxisome proliferator-activated receptor gamma (PPARγ and ameliorate diabetic and other nephropathies, at least, in experimental animals. However, TZDs have side effects, such as edema, congestive heart failure, and bone fracture, and may increase bladder cancer risk. Edema and heart failure, which both probably originate from renal sodium retention, are of great importance because these side effects make it difficult to continue the use of TZDs. However, the pathogenesis of edema remains a matter of controversy. Initially, upregulation of the epithelial sodium channel (ENaC in the collecting ducts by TZDs was thought to be the primary cause of edema. However, the results of other studies do not support this view. Recent data suggest the involvement of transporters in the proximal tubule, such as sodium-bicarbonate cotransporter and sodium-proton exchanger. Other studies have suggested that sodium-potassium-chloride cotransporter 2 in the thick ascending limb of Henle and aquaporins are also possible targets for TZDs. This paper will discuss the recent advances in the pathogenesis of TZD-induced sodium reabsorption in the renal tubules and edema.

  2. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  3. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer's disease.

    Science.gov (United States)

    Bagheri, Maryam; Joghataei, Mohammad-Taghi; Mohseni, Simin; Roghani, Mehrdad

    2011-03-01

    Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by increased β-amyloid (Aβ) deposition and neuronal dysfunction leading to impaired learning and recall. Ageing, heredity, and induced oxidative stress are among proposed risk factors. The increased frequency of the disease in women also suggests a role for estrogen in development of AD. In the present study, effects of the phytoestrogen genistein (10mg/kg) on learning and memory impairments was assessed in intrahippocampal Aβ(1-40)-injected rats. The estrogen receptor antagonist fulvestrant was injected intracerebroventricularly in a group of Aβ-lesioned rats. The Aβ-injected animals exhibited the following: lower spontaneous alternation score in Y-maze tasks, impaired retention and recall capability in the passive avoidance test, and fewer correct choices and more errors in the RAM task. Genistein, but not genistein and fulvestrant, significantly improved most of these parameters. Measurements of oxidative stress markers in hippocampal tissue of Aβ-injected rats showed an elevation of malondialdehyde (MDA) and nitrite content, and a reduction of superoxide dismutase (SOD) activity. Genistein significantly attenuated the increased MDA content but did not affect the nitrite content or SOD activity. These results indicate that genistein pretreatment ameliorates Aβ-induced impairment of short-term spatial memory in rats through an estrogenic pathway and by inducing attenuation of oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Study of the participation of MMP-7, EMMPRIN and cyclophilin A in the pathogenesis of periodontal disease.

    Science.gov (United States)

    de Oliveira Nóbrega, Fernando José; de Oliveira, Denise Hélen Imaculada Pereira; Vasconcelos, Rodrigo Gadelha; Nonaka, Cassiano Francisco Weege; Queiroz, Lélia Maria Guedes

    2016-12-01

    Periodontal disease is an infectious disease resulting from the immunoinflammatory response of the host to microorganisms present in the dental biofilm which causes tissue destruction. The objective of this study was to evaluate the immunohistochemical expression of matrix metalloproteinase 7 (MMP-7), extracellular matrix metalloproteinase inducer (EMMPRIN) and cyclophilin A (CypA) in periodontal disease. Gingival tissue samples were divided as follows: clinically healthy gingiva (n=32), biofilm-induced gingivitis (n=28), and chronic periodontitis (n=30). Histological sections of 3μm were submitted to immunoperoxidase method and undergone quantitative analysis. The results were analyzed statistically by the Mann-Whitney and Spearman correlation tests, with the level of significance set at 0.05 (α=0.05). Immunopositivity for MMP-7, EMMPRIN and CypA differed significantly between the three groups, with higher percentages of staining in chronic periodontitis specimens, followed by chronic gingivitis and healthy gingiva specimens (pEMMPRIN (r=0.289; p=0.006). In addition, there was a significant positive correlation between probing depth and expression of MMP-7 (r=0.726; pEMMPRIN (r=0.345; p=0.001), and CypA (r=0.803; pEMMPRIN and CypA are associated with the pathogenesis and progression of periodontal disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Systematic Review and Meta-analysis: Fecal Microbiota Transplantation for Treatment of Active Ulcerative Colitis

    NARCIS (Netherlands)

    Narula, Neeraj; Kassam, Zain; Yuan, Yuhong; Colombel, Jean-Frederic; Ponsioen, Cyriel; Reinisch, Walter; Moayyedi, Paul

    2017-01-01

    Background: Changes in the colonic microbiota may play a role in the pathogenesis of ulcerative colitis (UC) and restoration of healthy gut microbiota may ameliorate disease. A systematic review and meta-analysis was conducted to assess fecal microbiota transplantation (FMT) as a treatment for

  6. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease

    Science.gov (United States)

    Moreno-Fernandez, Maria E.; Giles, Daniel A.; Stankiewicz, Traci E.; Sheridan, Rachel; Karns, Rebekah; Cappelletti, Monica; Lampe, Kristin; Mukherjee, Rajib; Sina, Christian; Sallese, Anthony; Bridges, James P.; Hogan, Simon P.; Aronow, Bruce J.; Hoebe, Kasper

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD), a metabolic predisposition for development of hepatocellular carcinoma (HCC), represents a disease spectrum ranging from steatosis to steatohepatitis to cirrhosis. Acox1, a rate-limiting enzyme in peroxisomal fatty acid β-oxidation, regulates metabolism, spontaneous hepatic steatosis, and hepatocellular damage over time. However, it is unknown whether Acox1 modulates inflammation relevant to NAFLD pathogenesis or if Acox1-associated metabolic and inflammatory derangements uncover and accelerate potential for NAFLD progression. Here, we show that mice with a point mutation in Acox1 (Acox1Lampe1) exhibited altered cellular metabolism, modified T cell polarization, and exacerbated immune cell inflammatory potential. Further, in context of a brief obesogenic diet stress, NAFLD progression associated with Acox1 mutation resulted in significantly accelerated and exacerbated hepatocellular damage via induction of profound histological changes in hepatocytes, hepatic inflammation, and robust upregulation of gene expression associated with HCC development. Collectively, these data demonstrate that β-oxidation links metabolism and immune responsiveness and that a better understanding of peroxisomal β-oxidation may allow for discovery of mechanisms central for NAFLD progression. PMID:29563328

  7. Molecular pathogenesis of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Andersen, Jesper Bøje

    2014-01-01

    Cholangiocarcinoma (CCA) is an orphan cancer of the hepatobiliary tract, the incidence of which has increased in the past decade. The molecular pathogenesis of this treatment-refractory disease is poorly understood. Desmoplasia is a key causal feature of CCA; however, a majority of tumors develop...... and individualization for precision therapies. Many questions persevere as to the evolutionary process and cellular origin of the initial transforming event, the context of intratumoral plasticity and the causal driver action. Next-generation sequencing has begun to underline the persistent alterations, which may...

  8. Vascular toxicity of urea, a new "old player" in the pathogenesis of chronic renal failure induced cardiovascular diseases.

    Science.gov (United States)

    Giardino, Ida; D'Apolito, Maria; Brownlee, Michael; Maffione, Angela Bruna; Colia, Anna Laura; Sacco, Michele; Ferrara, Pietro; Pettoello-Mantovani, Massimo

    2017-12-01

    Chronic kidney disease in children is an irreversible process that may lead to end-stage renal disease. The mortality rate in children with end-stage renal disease who receive dialysis increased dramatically in the last decade, and it is significantly higher compared with the general pediatric population. Furthermore, dialysis and transplant patients, who have developed end-stage renal disease during childhood, live respectively far less as compared with age/race-matched populations. Different reports show that cardiovascular disease is the leading cause of death in children with end-stage renal disease and in adults with childhood-onset chronic kidney disease, and that children with chronic kidney disease are in the highest risk group for the development of cardiovascular disease. Urea, which is generated in the liver during catabolism of amino acids and other nitrogenous metabolites, is normally excreted into the urine by the kidneys as rapidly as it is produced. When renal function is impaired, increasing concentrations of blood urea will steadily accumulate. For a long time, urea has been considered to have negligible toxicity. However, the finding that plasma urea is the only significant predictor of aortic plaque area fraction in an animal model of chronic renal failure -accelerated atherosclerosis, suggests that the high levels of urea found in chronic dialysis patients might play an important role in accelerated atherosclerosis in this group of patients. The aim of this review was to provide novel insights into the role played by urea in the pathogenesis of accelerated cardiovascular disease in renal failure.

  9. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  10. Evaluation of circulating zonulin as a potential marker in the pathogenesis of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Hendy, Olfat M; Elsabaawy, Maha M; Aref, Mona M; Khalaf, Fatma M; Oda, Abdel Moaty A; El Shazly, Helmy M

    2017-07-01

    Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders ranging from simple hepatic steatosis up to nonalcoholic steatohepatitis (NASH) evolving to cirrhosis and hepatocellular carcinoma (HCC). Liver biopsy is still the gold standard modality for diagnosing and staging NAFLD. The linkage between intestinal microbiota and NAFLD, might suggest a potential role of serum zonulin in NAFLD diagnosis. To appraise the role of circulating zonulin in NAFLD pathogenesis, 56 subjects with proved NAFLD by ultrasonography and liver biopsy, as well as 20 healthy controls were tested. Liver function tests, serum glucose, fasting insulin, C peptide, lipid profile, homeostasis model assessment of insulin resistance (HOMA-IR), IL-6, and circulating zonulin were performed to all subjects. Aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (GGT), triglycerides, HDL-c, fasting insulin, C peptide, HOMA-IR, IL-6, and serum zonulin were higher in NAFLD group than in controls (p Zonulin was positively correlated with body mass index (BMI), ALT, triglycerides, fasting insulin, HOMA-IR, liver histopathology, and serum IL-6 (p zonulin was found to be of diagnostic value of NASH occurrence with 100% sensitivity and specificity (AUR = 1.000, p-value = zonulin levels in NAFLD patients with steep rise in NASH group denotes a possible role in pathogenesis of NAFLD occurrence and progression. This could open a new avenue of implicating zonulin antagonists as targeted therapies in NAFLD prevention. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  11. Pathogenesis of Mycobacterium bovis Infection: the Badger Model As a Paradigm for Understanding Tuberculosis in Animals

    Directory of Open Access Journals (Sweden)

    Eamonn Gormley

    2018-01-01

    Full Text Available Tuberculosis in animals is caused principally by infection with Mycobacterium bovis and the potential for transmission of infection to humans is often the fundamental driver for surveillance of disease in livestock and wild animals. However, with such a vast array of species susceptible to infection, it is often extremely difficult to gain a detailed understanding of the pathogenesis of infection––a key component of the epidemiology in all affected species. This is important because the development of disease control strategies in animals is determined chiefly by an understanding of the epidemiology of the disease. The most revealing data from which to formulate theories on pathogenesis are that observed in susceptible hosts infected by natural transmission. These data are gathered from detailed studies of the distribution of gross and histological lesions, and the presence and distribution of infection as determined by highly sensitive bacteriology procedures. The information can also be used to establish the baseline for evaluating experimental model systems. The European badger (Meles meles is one of a very small number of wild animal hosts where detailed knowledge of the pathogenesis of M. bovis infection has been generated from observations in natural-infected animals. By drawing parallels from other animal species, an experimental badger infection model has also been established where infection of the lower respiratory tract mimics infection and the disease observed in natural-infected badgers. This has facilitated the development of diagnostic tests and testing of vaccines that have the potential to control the disease in badgers. In this review, we highlight the fundamental principles of how detailed knowledge of pathogenesis can be used to evaluate specific intervention strategies, and how the badger model may be a paradigm for understanding pathogenesis of tuberculosis in any affected wild animal species.

  12. Epstein-Barr Virus-Encoded RNAs: Key Molecules in Viral Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Dai [Institute for Genetic Medicine, Hokkaido University, N15 W7 Kita-Ku, Sapporo 060-0815 (Japan)

    2014-08-06

    The Epstein-Barr virus (EBV) is known as an oncogenic herpesvirus that has been implicated in the pathogenesis of various malignancies. EBV-encoded RNAs (EBERs) are non-coding RNAs expressed abundantly in latently EBV-infected cells. Herein, I summarize the current understanding of the functions of EBERs, including the interactions with cellular factors through which EBERs contribute to EBV-mediated pathogenesis. Previous studies have demonstrated that EBERs are responsible for malignant phenotypes in lymphoid cells, and can induce several cytokines that can promote the growth of various EBV-infected cancer cells. EBERs were also found to bind retinoic acid-inducible gene I (RIG-I) and thus activate its downstream signaling. Furthermore, EBERs induce interleukin-10, an autocrine growth factor for Burkitt’s lymphoma cells, by activating RIG-I/interferon regulatory factor 3 pathway, suggesting that EBER-mediated innate immune signaling modulation contributes to EBV-mediated oncogenesis. Recently, EBV-infected cells were reported to secret EBERs, which were then recognized by toll-like receptor 3 (TLR3), leading to the induction of type I interferon and inflammatory cytokines, and subsequent immune activation. Furthermore, EBER1 was detected in the sera of patients with active EBV-infectious diseases, suggesting that EBER1-meidated TLR3 signaling activation could account for the pathogenesis of active EBV-infectious diseases.

  13. Epstein-Barr Virus-Encoded RNAs: Key Molecules in Viral Pathogenesis

    International Nuclear Information System (INIS)

    Iwakiri, Dai

    2014-01-01

    The Epstein-Barr virus (EBV) is known as an oncogenic herpesvirus that has been implicated in the pathogenesis of various malignancies. EBV-encoded RNAs (EBERs) are non-coding RNAs expressed abundantly in latently EBV-infected cells. Herein, I summarize the current understanding of the functions of EBERs, including the interactions with cellular factors through which EBERs contribute to EBV-mediated pathogenesis. Previous studies have demonstrated that EBERs are responsible for malignant phenotypes in lymphoid cells, and can induce several cytokines that can promote the growth of various EBV-infected cancer cells. EBERs were also found to bind retinoic acid-inducible gene I (RIG-I) and thus activate its downstream signaling. Furthermore, EBERs induce interleukin-10, an autocrine growth factor for Burkitt’s lymphoma cells, by activating RIG-I/interferon regulatory factor 3 pathway, suggesting that EBER-mediated innate immune signaling modulation contributes to EBV-mediated oncogenesis. Recently, EBV-infected cells were reported to secret EBERs, which were then recognized by toll-like receptor 3 (TLR3), leading to the induction of type I interferon and inflammatory cytokines, and subsequent immune activation. Furthermore, EBER1 was detected in the sera of patients with active EBV-infectious diseases, suggesting that EBER1-meidated TLR3 signaling activation could account for the pathogenesis of active EBV-infectious diseases

  14. Citalopram Ameliorates Impairments in Spatial Memory and Synaptic Plasticity in Female 3xTgAD Mice

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is the primary cause of dementia. There is no effective treatment. Amyloid-β peptide (Aβ plays an important role in the pathogenesis and thus strategies suppressing Aβ production and accumulation seem promising. Citalopram is an antidepressant drug and can decrease Aβ production and amyloid plaques in transgenic mice of AD and humans. Whether citalopram can ameliorate memory deficit was not known yet. We tested the effects of citalopram on behavioral performance and synaptic plasticity in female 3xTgAD mice, a well-characterized model of AD. Mice were treated with citalopram or water from 5 months of age for 3 months. Citalopram treatment at approximately 10 mg/kg/day significantly improved spatial memory in the Morris water maze (MWM test, while not affecting anxiety-like and depression-like behavior in 3xTgAD mice. Further, hippocampal long-term potentiation (LTP impairment in 3xTgAD mice was reversed by citalopram treatment. Citalopram treatment also significantly decreased the levels of insoluble Aβ40 in hippocampal and cortical tissues in 3xTgAD mice, accompanied with a reduced amyloid precursor protein (APP. Together, citalopram treatment may be a promising strategy for AD and further clinical trials should be conducted to verify the effect of citalopram on cognition in patients with AD or mild cognitive impairment.

  15. Elevated interleukin-1β in peripheral blood mononuclear cells contributes to the pathogenesis of autoimmune thyroid diseases, especially of Hashimoto thyroiditis.

    Science.gov (United States)

    Sun, Li; Zhang, Xiaoxu; Dai, Fang; Shen, Jijia; Ren, Cuiping; Zuo, Chunlin; Zhang, Qiu

    2016-08-01

    To explore the relationship between IL-1β expression and two common autoimmune thyroid diseases: Hashimoto thyroiditis (HT) and Graves' disease (GD). qRT-PCR, Quantiglo ELISA, and flow cytometry were used to evaluate the expression levels of IL-1β in serum, peripheral blood mononuclear cells (PBMCs), and thyroid tissue samples from patients with HT or GD. Local infiltration of monocytes was assessed by immunohistochemical study of patients' thyroid tissue samples. Although no significant differences in IL-1β levels were found between samples of serum from patients with HT or GD and normal controls, we found that IL-1β mRNA and protein levels in PBMCs of HT patients were significantly higher than those of patients with GD, which were in turn higher than the level in normal controls. In addition, IL-1β mRNA was also increased in thyroid gland tissue from patients with HT compared to those with GD, and this was accompanied by increased local infiltration of monocytes into thyroid tissues. Correlation analysis of the clinical samples validated the association of high IL-1β levels with the pathogenesis of HT. Our study suggests that IL-1β may be an active etiologic factor in the pathogenesis of HT and thus present a new target for novel diagnostics and treatment.

  16. The pathogenesis of Chagas' disease: when autoimmune and parasite-specific immune responses meet

    Directory of Open Access Journals (Sweden)

    MILENA B. P. SOARES

    2001-12-01

    Full Text Available Chagas' disease is a major health problem in Latin America, where it constitutes one of the leading causes of heart failure. About one fourth of Trypanosoma cruzi-infected individuals develop chronic chagasic cardiomyopathy (CChC, the most severe form of the disease. CChC is histologically characterized by the presence of multifocal inflammatory infiltrates in the heart, composed mainly by mononuclear cells, usually adhered to myocytes and leading to myocytolysis, and frequently by interstitial fibrosis. The pathogenesis of CChC is still unclear, despite intense investigations both in human beings and in animal models of the disease. Although tissue parasitism is rare in the chronic phase of infection, an immune response targeted to persistent parasites or parasite antigens is suggested, by some authors, as the pathogenic mechanism of CChC. Other researchers affirm that the lack of correlation between tissue parasitism and intensity of inflammation suggests, along with the presence of autoreactive immune responses, that CChC results from the action of an autoimmune response. Herein we review reports from the literature and our own data, which together indicate, on one hand, the participation of parasite-specific immune responses and, on the other hand, clearly demonstrate the participation of heart-specific immune responses in the pathogenesis of CChC. Moreover, multiple factors may determine whether an individual in the indeterminate form of the disease will develop CChC. The mechanisms by which T. cruzi breaks immunological tolerance to heart antigens are also discussed.A doença de Chagas constitui um grave problema de saúde pública na América Latina, onde é uma das principais causas de problemas cardíacos. A cardiopatia chagásica crônica (CChC, forma mais grave da doença, manifesta-se em cerca de 25% dos indivíduos infectados pelo Trypanosoma cruzi, e é caracterizada, a nível histopatológico, pela presença de infiltrados

  17. Psoriatic arthritis: from pathogenesis to therapy.

    LENUS (Irish Health Repository)

    Fitzgerald, Oliver

    2012-02-01

    Psoriatic arthritis is a multigenic autoimmune disease that involves synovial tissue, entheseal sites and skin, and that may result in significant joint damage. Although there are no diagnostic tests for psoriatic arthritis, research has identified consistent features that help to distinguish the condition from other common rheumatic diseases. Comparison of HLA-B and HLA-C regions in psoriatic arthritis with those in psoriasis without joint involvement demonstrates significant differences, such that psoriatic arthritis cannot be viewed simply as a subset of genetically homogeneous psoriasis. T-cell receptor phenotypic studies have failed to identify antigen-driven clones, and an alternative hypothesis for CD8 stimulation involving innate immune signals is proposed. Finally, imaging studies have highlighted entheseal involvement in psoriatic arthritis, and it is possible that entheseal-derived antigens may trigger an immune response that is critically involved in disease pathogenesis.

  18. An Overview on the Role of α -Synuclein in Experimental Models of Parkinson's Disease from Pathogenesis to Therapeutics.

    Science.gov (United States)

    Javed, Hayate; Kamal, Mohammad Amjad; Ojha, Shreesh

    2016-01-01

    Parkinson's disease (PD) is a devastating and progressive movement disorder characterized by symptoms of muscles rigidity, tremor, postural instability and slow physical movements. Biochemically, PD is characterized by lack of dopamine production and its action due to loss of dopaminergic neurons and neuropathologically by the presence of intracytoplasmic inclusions known as Lewy bodies, which mainly consist of presynaptic neuronal protein, α-synuclein (α-syn). It is believed that alteration in α-syn homeostasis leads to increased accumulation and aggregation of α-syn in Lewy body. Based on the important role of α-syn from pathogenesis to therapeutics, the recent researches are mainly focused on deciphering the critical role of α-syn at advanced level. Being a major protein in Lewy body that has a key role in pathogenesis of PD, several model systems including immortalized cell lines (SH-SY5Y), primary neuronal cultures, yeast (saccharomyces cerevisiae), drosophila (fruit flies), nematodes (Caenorhabditis elegans) and rodents are being employed to understand the PD pathogenesis and treatment. In order to study the etiopathogensis and develop novel therapeutic target for α -syn aggregation, majority of investigators rely on toxin (rotenone, 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine, 6-hydroxydopamine, paraquat)-induced animal models of PD as a tool for basic research. Whereas, cell and tissue based models are mostly utilized to elucidate the mechanistic and molecular pathways underlying the α -syn induced toxicity and therapeutic approaches in PD. Gene modified mouse models based on α-syn expression are fascinating for modeling familial PD and toxin induced models provide a suitable approach for sporadic PD. The purpose of this review is to provide a summary and a critical review of the involvement of α-syn in various in vitro and in vivo models of PD based on use of neurotoxins as well as genetic modifications.

  19. T cell-dependence of Lassa fever pathogenesis.

    Directory of Open Access Journals (Sweden)

    Lukas Flatz

    2010-03-01

    Full Text Available Lassa virus (LASV, the causative agent of Lassa fever (LF, is endemic in West Africa, accounting for substantial morbidity and mortality. In spite of ongoing research efforts, LF pathogenesis and mechanisms of LASV immune control remain poorly understood. While normal laboratory mice are resistant to LASV, we report that mice expressing humanized instead of murine MHC class I (MHC-I failed to control LASV infection and develop severe LF. Infection of MHC-I knockout mice confirmed a key role for MHC-I-restricted T cell responses in controlling LASV. Intriguingly we found that T cell depletion in LASV-infected HHD mice prevented disease, irrespective of high-level viremia. Widespread activation of monocyte/macrophage lineage cells, manifest through inducible NO synthase expression, and elevated IL-12p40 serum levels indicated a systemic inflammatory condition. The absence of extensive monocyte/macrophage activation in T cell-depleted mice suggested that T cell responses contribute to deleterious innate inflammatory reactions and LF pathogenesis. Our observations in mice indicate a dual role for T cells, not only protecting from LASV, but also enhancing LF pathogenesis. The possibility of T cell-driven enhancement and immunopathogenesis should be given consideration in future LF vaccine development.

  20. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice.

    Science.gov (United States)

    Holgersen, Kristine; Kvist, Peter Helding; Hansen, Axel Kornerup; Holm, Thomas Lindebo

    2014-07-01

    Piroxicam administration is a method for induction of enterocolitis in interleukin-10 knockout (IL-10 k.o.) mice. The piroxicam-accelerated colitis (PAC) IL-10 k.o. model combines a dysregulated immune response against the gut microbiota with a decreased mucosal integrity. The predictive validity and pathogenic mechanisms of the model have not been thoroughly investigated. In this study, IL-10 k.o. mice received piroxicam in the chow, and model qualification was performed by examining the efficacy of prophylactic anti-IL-12/23p40 monoclonal antibody (mAb), anti-TNFα mAb, cyclosporine A (CsA) and oral prednisolone treatment. To evaluate cell involvement in the disease pathogenesis, specific cell subsets were depleted by treatment with anti-CD4 mAb, anti-CD8 mAb or clodronate-encapsulated liposomes. T cell receptor co-stimulation was blocked by CTLA4-Ig. Cytokine profiling ELISAs and calprotectin immunohistochemistry were performed on colon tissue. Treatments with anti-IL-12/23p40 mAb and CsA prevented disease in PAC IL-10 k.o. mice and reduced IFNγ, IL-17A, MPO and calprotectin levels in colon. Anti-TNFα mAb treatment caused amelioration of selected clinical parameters. No effect of prednisolone was detected. Depletion of CD8(+) cells tended to increase mortality, whereas treatment with anti-CD4 mAb or CTLA4-Ig had no significant effect on disease development. Clodronate liposome treatment induced a loss of body weight; nevertheless macrophage depletion was associated with a significant reduction in colonic pathology. In conclusion, reference drugs with known efficacy in severe inflammatory bowel disease were efficacious in the PAC IL-10 k.o. model. Our data indicate that in this model macrophages are a main driver of colitis, whereas CD4(+) cells are not. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Report of the ECCO pathogenesis workshop on anti-TNF therapy failures in inflammatory bowel diseases: definitions, frequency and pharmacological aspects

    DEFF Research Database (Denmark)

    Allez, Matthieu; Karmiris, Konstantinos; Louis, Edouard

    2010-01-01

    The first ECCO pathogenesis workshop focused on anti-TNF therapy failures in inflammatory bowel diseases (IBDs). The overall objective was to better understand and explore primary non response and loss of response to anti-TNF agents in IBD. The outcome of this workshop is presented into two parts....... This first section addresses definitions, frequency and pharmacological aspects of anti-TNF therapy failure, including pharmacokinetics of anti-TNF monoclonal antibodies and immune and non-immune mediated clearance of anti-TNF mAbs. The second section concerns the biological roles of TNF and TNF antagonists...

  2. Astrovirus Pathogenesis

    Directory of Open Access Journals (Sweden)

    Cydney Johnson

    2017-01-01

    Full Text Available Astroviruses are a major cause of diarrhea in the young, elderly, and the immunocompromised. Since the discovery of human astrovirus type 1 (HAstV-1 in 1975, the family Astroviridae has expanded to include two more human clades and numerous mammalian and avian-specific genotypes. Despite this, there is still little known about pathogenesis. The following review highlights the current knowledge of astrovirus pathogenesis, and outlines the critical steps needed to further astrovirus research, including the development of animal models of cell culture systems.

  3. 1,2-Dilinoleoyl-sn-glycero-3-phosphoethanolamine ameliorates age-related spatial memory deterioration by preventing neuronal cell death

    Directory of Open Access Journals (Sweden)

    Yaguchi Takahiro

    2010-09-01

    Full Text Available Abstract Background Accumulating evidence has pointed that a variety of lipids could exert their beneficial actions against dementia including Alzheimer disease and age-related cognitive decline via diverse signaling pathways. Endoplasmic reticulum (ER stress-induced neuronal apoptosis, on the other hand, is a critical factor for pathogenesis of neurodegenerative diseases such as Alzheimer disease and Parkinson disease, senile dementia, and ischemic neuronal damage. The present study examined the effects of 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine (DLPhtEtn, a phospholipid, on ER stress-induced neuronal death and age-related cognitive disorders. Methods PC-12 cell viability was assayed before and after treatment with amyloid-β1-40 peptide or thapsigargin in the presence and absence of DLPhtEtn. A series of behavioral tests were performed for senescence-accelerated mouse-prone 8 (SAMP8 mice after 7-month oral administration with polyethylene glycol (PEG or DLPhtEtn and then, the number of hippocampal neurons was counted. Results Amyloid-β1-40 peptide or thapsigargin is capable of causing ER stress-induced apoptosis. DLPhtEtn (30 μM significantly inhibited PC-12 cell death induced by amyloid-β1-40 peptide or thapsigargin. In the water maze test, oral administration with DLPhtEtn (1 mg/kg for 7 months (three times a week significantly shortened the prolonged retention latency for SAMP8 mice. In contrast, DLPhtEtn had no effect on the acquisition and retention latencies in both the open field test and the passive avoidance test for SAMP8 mice. Oral administration with DLPhtEtn (1 mg/kg for 7 months prevented a decrease in the number of hippocampal neurons for SAMP8 mice. Conclusion The results of the present study show that DLPhtEtn ameliorates age-related spatial memory decline without affecting motor activities or fear memory, possibly by protecting hippocampal neuronal death. DLPhtEtn, thus, might exert its beneficial action against

  4. Improvement for Amelioration Inventory Model with Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Han-Wen Tuan

    2017-01-01

    Full Text Available Most inventory models dealt with deteriorated items. On the contrary, just a few papers considered inventory systems under amelioration environment. We study an amelioration inventory model with Weibull distribution. However, there are some questionable results in the amelioration paper. We will first point out those questionable results in the previous paper that did not derive the optimal solution and then provide some improvements. We will provide a rigorous analytical work for different cases dependent on the size of the shape parameter. We present a detailed numerical example for different ranges of the sharp parameter to illustrate that our solution method attains the optimal solution. We developed a new amelioration model and then provided a detailed analyzed procedure to find the optimal solution. Our findings will help researchers develop their new inventory models.

  5. IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Jin Kyeong Choi

    2017-10-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE, the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

  6. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Xu Wu

    2016-01-01

    Full Text Available Obstructive sleep apnea (OSA associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH triggered tissue damage. Receptor for advanced glycation end product (RAGE and its ligand high mobility group box 1 (HMGB1 are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE, the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1 normal air (NA, (2 CIH, (3 CIH+sRAGE, and (4 NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6, apoptotic (Bcl-2/Bax, and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.

  7. Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Md Shahaduzzaman

    Full Text Available The protein α-synuclein (α-Syn has a central role in the pathogenesis of Parkinson's disease (PD and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN, while control rats received an AAV vector expressing green fluorescent protein (GFP. Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1, or central region (AB2 of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2 significantly inhibited α-Syn-induced dopaminergic cell (DA and NeuN+ cell loss (one-way ANOVA (F (3, 30 = 5.8, p = 0.002 and (F (3, 29 = 7.92, p = 0.002 respectively, as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003. Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37 = 9.786; p = 0.0001 and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.

  8. Calprotectin in rheumatic diseases.

    Science.gov (United States)

    Ometto, Francesca; Friso, Lara; Astorri, Davide; Botsios, Costantino; Raffeiner, Bernd; Punzi, Leonardo; Doria, Andrea

    2017-04-01

    Calprotectin is a heterodimer formed by two proteins, S100A8 and S100A9, which are mainly produced by activated monocytes and neutrophils in the circulation and in inflamed tissues. The implication of calprotectin in the inflammatory process has already been demonstrated, but its role in the pathogenesis, diagnosis, and monitoring of rheumatic diseases has gained great attention in recent years. Calprotectin, being stable at room temperature, is a candidate biomarker for the follow-up of disease activity in many autoimmune disorders, where it can predict response to treatment or disease relapse. There is evidence that a number of immunomodulators, including TNF-α inhibitors, may reduce calprotectin expression. S100A8 and S100A9 have a potential role as a target of treatment in murine models of autoimmune disorders, since the direct or indirect blockade of these proteins results in amelioration of the disease process. In this review, we will go over the biologic functions of calprotectin which might be involved in the etiology of rheumatic disorders. We will also report evidence of its potential use as a disease biomarker. Impact statement Calprotectin is an acute-phase protein produced by monocytes and neutrophils in the circulation and inflamed tissues. Calprotectin seems to be more sensitive than CRP, being able to detect minimal residual inflammation and is a candidate biomarker in inflammatory diseases. High serum levels are associated with some severe manifestations of rheumatic diseases, such as glomerulonephritis and lung fibrosis. Calprotectin levels in other fluids, such as saliva and synovial fluid, might be helpful in the diagnosis of rheumatic diseases. Of interest is also the potential role of calprotectin as a target of treatment.

  9. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Caihong Zhu

    Full Text Available Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer's disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer's disease. In addition, impaired insulin signaling in the Alzheimer's disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.

  10. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease.

    Science.gov (United States)

    Kerr, Jonathan R

    2016-04-01

    Human parvovirus B19 is a single-stranded DNA virus which preferentially targets the erythroblasts in the bone marrow. B19 infection commonly causes erythema infectiosum, arthralgia, fetal death, transient aplastic crisis in patients with shortened red cell survival, and persistent infection in people who are immunocompromised. Less common clinical manifestations include atypical skin rashes, neurological syndromes, cardiac syndromes, and various cytopenias. B19 infection has also been associated with development of a variety of different autoimmune diseases, including rheumatological, neurological, neuromuscular, cardiovascular, haematological, nephrological and metabolic. Production of a variety of autoantibodies has been demonstrated to occur during B19 infection and these have been shown to be key to the pathogenesis of the particular disease process in a significant number of cases, for example, production of rheumatoid factor in cases of B19-associated rheumatoid arthritis and production of anti-glutamic acid decarboxylase (GAD) in patients with B19-associated type 1 diabetes mellitus. B19 infection has also been associated with the development of multiple autoimmune diseases in 12 individuals. Documented mechanisms in B19-associated autoimmunity include molecular mimicry (IgG antibody to B19 proteins has been shown to cross react with a variety of recognised human autoantigens, including collagen II, keratin, angiotensin II type 1 receptor, myelin basic protein, cardiolipin, and platelet membrane glycoprotein IIb/IIIa), B19-induced apoptosis with presentation of self-antigens to T lymphocytes, and the phospholipase activity of the B19 unique VP1 protein. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders

    Directory of Open Access Journals (Sweden)

    Zhimin Chen

    2017-08-01

    Conclusions: Nrg4 exerts pleiotropic beneficial effects on energy balance and glucose and lipid metabolism to ameliorate obesity-associated metabolic disorders. Biologic therapeutics based on Nrg4 may improve both type 2 diabetes and non-alcoholic fatty liver disease (NAFLD in patients.

  12. Immune regulation in T1D and T2D: prospective role of Foxp3+ Treg cells in disease pathogenesis and treatment

    Directory of Open Access Journals (Sweden)

    Mara eKornete

    2013-06-01

    Full Text Available There is increasing evidence that dysregulated immune responses play key roles in the pathogenesis and complications of type 1 but also type 2 diabetes. Indeed, chronic inflammation and autoimmunity, which are salient features of type 1 diabetes, are now believed to actively contribute to the pathogenesis of type 2 diabetes. The accumulation of activated innate and adaptive immune cells in various metabolic tissues results in the release of inflammatory mediators, which promote insulin resistance and β-cell damage. Moreover, these dysregulated immune responses can also mutually influence the prevalence of both type 1 and 2 diabetes. In this review article, we discuss the central role of immune responses in the patho-physiology and complications of type 1 and 2 diabetes, and provide evidence that regulation of these responses, particularly through the action of regulatory T cells, may be a possible therapeutic avenue for the treatment of these disease and their respective complications.

  13. β-glycosphingolipids ameliorated non-alcoholic steatohepatitis in the Psammomys obesus model

    Directory of Open Access Journals (Sweden)

    Zigmond E

    2014-10-01

    Full Text Available Ehud Zigmond,1,* Oshrat Tayer-Shifman,1,* Gadi Lalazar,1 Ami Ben Ya'acov,1 Sarah Weksler-Zangen,2 David Shasha,1 Miriam Sklair-Levy,3 Lidya Zolotarov,1 Zvi Shalev,1 Rony Kalman,2 Ehud Ziv,2 Itamar Raz,2 Yaron Ilan1 1Liver Unit, 2Diabetes Unit, 3Department of Radiology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel *These authors contributed equally to this workAbstract: Liver steatosis is a common characteristic of obesity and type 2 diabetes, and fatty liver disease is increasingly recognized as a major health burden. Accumulating evidence suggests that β-glycosphingolipids play an important role in insulin sensitivity and thus could affect hepatic steatosis. To determine the effect associated with β-glycosphingolipid-mediated amelioration of liver injury, seven groups of Psammomys obesus on a high-energy diet were studied. Animals were treated with daily injections of β-glucosylceramide, β-lactosylceramide, or a combination of both. β-glycosphingolipids ameliorated the hepatic injury manifested by decreased liver enzymes, liver weight, and hepatic fat, and improved liver histology. Administration of both β-glucosylceramide and β-lactosylceramide also decreased interferon (IFN-γ serum levels. These effects were associated with improved serum cholesterol and triglyceride levels. These data suggest that β-glycosphingolipids ameliorate liver injury in an animal model of nonalcoholic steatohepatitis.Keywords: NAFLD, glycolipids, STAT, NASH, insulin resistance, diabetes

  14. Pathogenesis of Nonalcoholic Steatohepatitis: Interactions between Liver Parenchymal and Nonparenchymal Cells

    Directory of Open Access Journals (Sweden)

    Nancy Magee

    2016-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common type of chronic liver disease in the Western countries, affecting up to 25% of the general population and becoming a major health concern in both adults and children. NAFLD encompasses the entire spectrum of fatty liver disease in individuals without significant alcohol consumption, ranging from nonalcoholic fatty liver (NAFL to nonalcoholic steatohepatitis (NASH and cirrhosis. NASH is a manifestation of the metabolic syndrome and hepatic disorders with the presence of steatosis, hepatocyte injury (ballooning, inflammation, and, in some patients, progressive fibrosis leading to cirrhosis. The pathogenesis of NASH is a complex process and implicates cell interactions between liver parenchymal and nonparenchymal cells as well as crosstalk between various immune cell populations in liver. Lipotoxicity appears to be the central driver of hepatic cellular injury via oxidative stress and endoplasmic reticulum (ER stress. This review focuses on the contributions of hepatocytes and nonparenchymal cells to NASH, assessing their potential applications to the development of novel therapeutic agents. Currently, there are limited pharmacological treatments for NASH; therefore, an increased understanding of NASH pathogenesis is pertinent to improve disease interventions in the future.

  15. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee

    NARCIS (Netherlands)

    Heijink, Andras; Gomoll, Andreas H.; Madry, Henning; Drobnič, Matej; Filardo, Giuseppe; Espregueira-Mendes, João; van Dijk, C. Niek

    2012-01-01

    Osteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an

  16. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  17. Vascular toxicity of urea, a new “old player” in the pathogenesis of chronic renal failure induced cardiovascular diseases

    Science.gov (United States)

    D’Apolito, Maria; Brownlee, Michael; Maffione, Angela Bruna; Colia, Anna Laura; Sacco, Michele; Ferrara, Pietro; Pettoello-Mantovani, Massimo

    2017-01-01

    Chronic kidney disease in children is an irreversible process that may lead to end-stage renal disease. The mortality rate in children with end-stage renal disease who receive dialysis increased dramatically in the last decade, and it is significantly higher compared with the general pediatric population. Furthermore, dialysis and transplant patients, who have developed end-stage renal disease during childhood, live respectively far less as compared with age/race-matched populations. Different reports show that cardiovascular disease is the leading cause of death in children with end-stage renal disease and in adults with childhood-onset chronic kidney disease, and that children with chronic kidney disease are in the highest risk group for the development of cardiovascular disease. Urea, which is generated in the liver during catabolism of amino acids and other nitrogenous metabolites, is normally excreted into the urine by the kidneys as rapidly as it is produced. When renal function is impaired, increasing concentrations of blood urea will steadily accumulate. For a long time, urea has been considered to have negligible toxicity. However, the finding that plasma urea is the only significant predictor of aortic plaque area fraction in an animal model of chronic renal failure -accelerated atherosclerosis, suggests that the high levels of urea found in chronic dialysis patients might play an important role in accelerated atherosclerosis in this group of patients. The aim of this review was to provide novel insights into the role played by urea in the pathogenesis of accelerated cardiovascular disease in renal failure. PMID:29483797

  18. Immunological Mechanisms Implicated in the Pathogenesis of Chronic Urticaria and Hashimoto Thyroiditis.

    Science.gov (United States)

    Berghi, Nicolae Ovidiu

    2017-08-01

    Autoimmunity represents the attack of the immune system of an organism against its own cells and tissues. Autoimmune diseases may affect one organ (Hashimoto thyroiditis) or can be systemic (chronic urticaria). Many factors are implicated in the pathogenesis of autoimmunity (white cells, cytokines, chemokines). Hashimoto thyroiditis has been associated with chronic urticaria in the last 3 decades in a number of clinical studies. Anti-thyroid antibodies have been documented in a proportion ranging from 10% to 30% in chronic urticaria patients in different countries from 3 continents. Two of the factors involved in the mechanism of autoimmunity are present both in the pathophysiology of Hashimoto thyroiditis and chronic urticaria. According to recent studies, IL6 is implicated in the pathogenesis of both diseases. TregsCD4+CD25+Foxp3+ cells have also been implicated in the pathological mechanisms of these 2 entities. This review offers an explanation of the clinical and statistical association between these two diseases from the pathophysiological point of view.

  19. Ameliorating Role Exerted by Al-Hijamah in Autoimmune Diseases: Effect on Serum Autoantibodies and Inflammatory Mediators

    Science.gov (United States)

    Baghdadi, Hussam; Abdel-Aziz, Nada; Ahmed, Nagwa Sayed; Mahmoud, Hany Salah; Barghash, Ayman; Nasrat, Abdullah; Nabo, Manal Mohamed Helmy; El Sayed, Salah Mohamed

    2015-01-01

    Autoimmune diseases have common properties characterized by abnormal blood chemistry with high serum autoimmune antibodies, and inflammatory mediators. Those causative pathological substances (CPS) cannot be excreted by physiological mechanisms. Current treatments for autoimmune diseases involve steroids, cytotoxic drugs, plasmapheresis and monoclonal antibodies. Wet cupping therapy (WCT) of prophetic medicine is called Al-hijamah that treats numerous diseases having different etiology and pathogenesis via a pressure-dependent and size-dependent non-specific filtration then excretion of CPS causing clearance of blood and interstitial fluids. Al-hijamah clears blood passing through the fenestrated skin capillaries. Medical bases of Al-hijamah were reported in the evidence-based Taibah mechanism (Taibah theory). Al-hijamah was reported to be an excellent treatment for rheumatoid arthritis that improved patients’ blood chemistry and induced significant clinical improvement and pharmacological potentiation. Al-hijamah improved the natural immunity and suppressed the pathological immunity through decreasing the serum level of autoantibodies, inflammatory mediators, and serum ferritin (a key player in autoimmunity). Al-hijamah reduced significantly pain severity, number of swollen joints and disease activity with no significant side effects. Main steps of Al-hijamah are skin suction (cupping), scarification (sharatmihjam in Arabic) and second suction (triple S technique) that is better therapeutically than the traditional WCT (double S technique). Whenever an excess noxious substance is to be removed from patients’ blood and interstitial fluids, Al-hijamah is indicated. Shartatmihjam is a curative treatment in prophetic teachings according to the prophetic hadeeth: “Cure is in three: in shartatmihjam, oral honey and cauterization. I do not recommend my nation to cauterize”. Al-hijamah may have better therapeutic benefits than plasmapheresis. Al-hijamah may be

  20. Role of Endogenous Peptides and Enzymes in the Pathogenesis of ...

    African Journals Online (AJOL)

    Acute pancreatitis is an inflammatory disease with the clinical manifestation of acute abdominal pain. Several factors are involved in the pathogenesis of acute pancreatitis. The exact mechanism(s) by which diverse etiological factors induce an attack are still unclear. However, one of the proposed mechanisms for induction ...

  1. Eosinophilic esophagitis-endoscopic distinguishing findings

    OpenAIRE

    Caetano, Ana Célia; Gonçalves, Raquel; Rolanda, Carla

    2012-01-01

    Eosinophilic esophagitis (EE) is the most frequent condition found in a group of gastrointestinal disorders called eosinophilic gastrointestinal diseases. The hypothetical pathophysiological mechanism is related to a hypersensitivity reaction. Gastroesophageal reflux disease- like complaints not ameliorated by acid blockade or occasional symptoms of dysphagia or food impaction are likely presentations of EE. Due to its unclear pathogenesis and unspecific symptoms, it is difficult to diagnose ...

  2. Preeclampsia: Pathogenesis, Prevention, and Long-Term Complications.

    Science.gov (United States)

    Jim, Belinda; Karumanchi, S Ananth

    2017-07-01

    Preeclampsia continues to afflict 5% to 8% of all pregnancies throughout the world and is associated with significant morbidity and mortality to the mother and the fetus. Although the pathogenesis of the disorder has not yet been fully elucidated, current evidence suggests that imbalance in angiogenic factors is responsible for the clinical manifestations of the disorder, and may explain why certain populations are risk. In this review, we begin by demonstrating the roles that angiogenic factors play in pathogenesis of preeclampsia and its complications in the mother and the fetus. We then continue to report on the use of angiogenic markers as biomarkers to predict and risk-stratify disease. Strategies to treat preeclampsia by correcting the angiogenic balance, either by promoting proangiogenic factors or by removing antiangiogenic factors in both animal and human studies, are discussed. We end the review by summarizing status of the current preventive strategies and the long-term cardiovascular outcomes of women afflicted with preeclampsia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Pathogenesis of Graves` disease and therapeutic implications; Pathogenese des Morbus Basedow und therapeutische Implikationen

    Energy Technology Data Exchange (ETDEWEB)

    Seif, F.J. [Tuebingen Univ. (Germany). Medizinische Klinik und Poliklinik

    1997-12-01

    Graves` disease presents itself clinically mainly as hyperthyroidism and infiltrative ophthalmopathy and to a minimal extent also as dermopathy and acropachy. Autoimmune processes are the basic pathogenesis. Stimulating antibodies against the TSH receptor cause hyperthyroidism. Autoantibodies and autoreactive T lymphocytes against primarily thyroidal antigens cross-react with similar antigens of the eye muscles and orbital connective tissue, thus spreading the disease from the thyroid to the eyes. The therapeutic goal comprises not only the treatment of hyperthyroidism, but also the induction of a steady immuntolerance in order to minimize the irreversible damage to the eye. The therapeutic armamentarium is formed by antithyroid drugs, glucocorticoids, retrobulbar radition and thyroid ablation, either by nearly total thyroidectomy or by radioiodine. The different indications for both ablative procedures are discussed. (orig.) [Deutsch] Der Morbus Basedow manifestiert sich klinisch hauptsaechlich als Hyperthyreose und infiltrative Orbitopathie, waehrend Demopathie und Akropathie selten sind. Der Krankheit liegt ein Autoimmunprozess zugrunde, wobei stimuliernde Autoantikoerper gegen den TSH-Rezeptor die Hyperthyreose hervorrufen. Autoantikoerper und T-Lymphozyten gegen primaer thyreoidale Antigene verursachen durch Kreuzreaktion mit aehnlichen Antigenen an den Augenmuskeln und orbitalem Bindegewebe die Orbitopathie. Das therapeutsiche Ziel besteht nicht nur in der Behandlung der Hyperthyreose, sondern vor allem in der Induktion einer immuntoleranten Remission, um die irreversiblen Schaeden am Auge zu minimieren. Die Therapie umfasst Thyreostatika, Glukokortikoide und Orbitaspitzenbestrahlung sowie eine Schilddruesenablation entweder durch fast totale Schilddruesenresektion oder durch Radiojodtherapie. Die Differentialindikationen fuer die beiden ablativen Massnahmen werden eroertert. (orig.)

  4. IgG4 plasma cell myeloma: new insights into the pathogenesis of IgG4-related disease.

    Science.gov (United States)

    Geyer, Julia T; Niesvizky, Ruben; Jayabalan, David S; Mathew, Susan; Subramaniyam, Shivakumar; Geyer, Alexander I; Orazi, Attilio; Ely, Scott A

    2014-03-01

    IgG4-related disease is a newly described systemic fibroinflammatory process, characterized by increase in IgG4-positive plasma cells. Its pathogenesis, including the role of IgG4, remains poorly understood. Plasma cell myeloma is typically associated with a large monoclonal serum spike, which is frequently of IgG isotype. We sought to identify and characterize a subset of IgG4-secreting myeloma, as it may provide a biological model of disease with high serum levels of IgG4. Six out of 158 bone marrow biopsies (4%) from patients with IgG myeloma expressed IgG4. Four patients were men and two were women, with a mean age of 64 (range 53-87) years. Imaging showed fullness of pancreatic head (1), small non-metabolic lymphadenopathy (1), and bone lytic lesions (6). Two patients developed necrotizing fasciitis. All had elevated serum M-protein (mean 2.4, range 0.5-4.2 g/dl), and none had definite signs or symptoms of IgG4-related disease. Four myelomas had plasmablastic morphology. Four had kappa and two had lambda light chain expression. Three cases expressed CD56. Two patients had a complex karyotype. In conclusion, the frequency of IgG4 myeloma correlates with the normal distribution of IgG4 isoform. The patients with IgG4 myeloma appear to have a high rate of plasmablastic morphology and could be predisposed to necrotizing fasciitis. Despite high serum levels of IgG4, none had evidence of IgG4-related disease. These findings suggest that the increased number of IgG4-positive plasma cells is not the primary etiologic agent in IgG4-related disease. Elevated serum levels of IgG4 is not sufficient to produce the typical disease presentation and should not be considered diagnostic of IgG4-related disease.

  5. Ameliorative percutaneous lumbar discectomy

    International Nuclear Information System (INIS)

    Xiao Chengjiang; Su Huanbin; He Xiaofeng; Li Yanhao

    2005-01-01

    Objective: To ameliorate the percutaneous lumbar discectomy (APLD) for improving the effectiveness and amplifying the indicative range of PLD. Methods: To ameliorate percutaneous punctured route based on classic PLD and discectomy of extracting pulp out of the herniated disc with special pulpforceps. The statistical analysis of the therapeutic results on 750 disc protrusions of 655 cases undergone APLD following up from 6 to 54 months retrospectively. Results: The effective ratios were excellent in 40.2%, good for 46.6% and bad of 13.3%. No occurrance of intervertebral inflammation and paradiscal hematoma, there were only 1 case complicated with injuried cauda equina, and 4 cases with broken appliance within disc. Conclusions: APLD is effective and safe, not only indicative for inclusion disc herniation, but also for noninclusion herniation. (authors)

  6. Pathogenesis of achalasia cardia.

    Science.gov (United States)

    Ghoshal, Uday C; Daschakraborty, Sunil B; Singh, Renu

    2012-06-28

    Achalasia cardia is one of the common causes of motor dysphagia. Though the disease was first described more than 300 years ago, exact pathogenesis of this condition still remains enigmatic. Pathophysiologically, achalasia cardia is caused by loss of inhibitory ganglion in the myenteric plexus of the esophagus. In the initial stage, degeneration of inhibitory nerves in the esophagus results in unopposed action of excitatory neurotransmitters such as acetylcholine, resulting in high amplitude non-peristaltic contractions (vigorous achalasia); progressive loss of cholinergic neurons over time results in dilation and low amplitude simultaneous contractions in the esophageal body (classic achalasia). Since the initial description, several studies have attempted to explore initiating agents that may cause the disease, such as viral infection, other environmental factors, autoimmunity, and genetic factors. Though Chagas disease, which mimics achalasia, is caused by an infective agent, available evidence suggests that infection may not be an independent cause of primary achalasia. A genetic basis for achalasia is supported by reports showing occurrence of disease in monozygotic twins, siblings and other first-degree relatives and occurrence in association with other genetic diseases such as Down's syndrome and Parkinson's disease. Polymorphisms in genes encoding for nitric oxide synthase, receptors for vasoactive intestinal peptide, interleukin 23 and the ALADIN gene have been reported. However, studies on larger numbers of patients and controls from different ethnic groups are needed before definite conclusions can be obtained. Currently, the disease is believed to be multi-factorial, with autoimmune mechanisms triggered by infection in a genetically predisposed individual leading to degeneration of inhibitory ganglia in the wall of the esophagus.

  7. Pathogenesis of achalasia cardia

    Science.gov (United States)

    Ghoshal, Uday C; Daschakraborty, Sunil B; Singh, Renu

    2012-01-01

    Achalasia cardia is one of the common causes of motor dysphagia. Though the disease was first described more than 300 years ago, exact pathogenesis of this condition still remains enigmatic. Pathophysiologically, achalasia cardia is caused by loss of inhibitory ganglion in the myenteric plexus of the esophagus. In the initial stage, degeneration of inhibitory nerves in the esophagus results in unopposed action of excitatory neurotransmitters such as acetylcholine, resulting in high amplitude non-peristaltic contractions (vigorous achalasia); progressive loss of cholinergic neurons over time results in dilation and low amplitude simultaneous contractions in the esophageal body (classic achalasia). Since the initial description, several studies have attempted to explore initiating agents that may cause the disease, such as viral infection, other environmental factors, autoimmunity, and genetic factors. Though Chagas disease, which mimics achalasia, is caused by an infective agent, available evidence suggests that infection may not be an independent cause of primary achalasia. A genetic basis for achalasia is supported by reports showing occurrence of disease in monozygotic twins, siblings and other first-degree relatives and occurrence in association with other genetic diseases such as Down’s syndrome and Parkinson’s disease. Polymorphisms in genes encoding for nitric oxide synthase, receptors for vasoactive intestinal peptide, interleukin 23 and the ALADIN gene have been reported. However, studies on larger numbers of patients and controls from different ethnic groups are needed before definite conclusions can be obtained. Currently, the disease is believed to be multi-factorial, with autoimmune mechanisms triggered by infection in a genetically predisposed individual leading to degeneration of inhibitory ganglia in the wall of the esophagus. PMID:22791940

  8. The role of EBV in MS pathogenesis

    DEFF Research Database (Denmark)

    Christensen, Tove

    2006-01-01

    Environmental factors operate on a background of genetic susceptibility in the pathogenesis of MS. Human herpesviruses, notably Epstein-Barr virus (EBV), and human endogenous retroviruses are factors associated with MS. EBV association is found in epidemiological surveys where late EBV infection...... confers a higher risk of MS, and EBV reactivation also appears to be linked to disease activity in early MS. MS patients have elevated anti-EBV antibody responses, both in serum and cerebrospinal fluid. Molecular mimicry is found between certain EBV and myelin epitopes in the cell-mediated immune response....... EBV cannot stand alone as a causal factor of MS, but is likely to play an indirect role as an activator of the underlying disease process....

  9. Pathogenesis and immunotherapy in cutaneous psoriasis: what can rheumatologists learn?

    Science.gov (United States)

    Alexander, Helen; Nestle, Frank O

    2017-01-01

    This review presents our current understanding of the pathogenesis and treatment of psoriasis with a particular focus on recent areas of research and emerging concepts. Psoriasis arises in genetically predisposed individuals who have an abnormal innate and adaptive immune response to environmental factors. Recent studies have identified novel genetic, epigenetic and immunological factors that play a role in the disease pathogenesis. There is emerging evidence for the role of the skin microbiome in psoriasis. Studies have shown reduced diversity and altered composition of the skin microbiota in psoriasis. Recent advances in our understanding of the complex immunopathogenesis of psoriasis have led to the identification of crucial cytokines and cell signalling pathways that are targeted by a range of immunotherapies.

  10. Invasive mold infections : virulence and pathogenesis of mucorales

    OpenAIRE

    Morace, G.; Borghi, E.

    2012-01-01

    Mucorales have been increasingly reported as cause of invasive fungal infections in immunocompromised subjects, particularly in patients with haematological malignancies or uncontrolled diabetes mellitus and in those under deferoxamine treatment or undergoing dialysis. The disease often leads to a fatal outcome, but the pathogenesis of the infection is still poorly understood as well as the role of specific virulence determinants and the interaction with the host immune system. Members of the...

  11. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model.

    Science.gov (United States)

    Tokunaga, Yuko; Osawa, Yosuke; Ohtsuki, Takahiro; Hayashi, Yukiko; Yamaji, Kenzaburo; Yamane, Daisuke; Hara, Mitsuko; Munekata, Keisuke; Tsukiyama-Kohara, Kyoko; Hishima, Tsunekazu; Kojima, Soichi; Kimura, Kiminori; Kohara, Michinori

    2017-03-23

    Chronic hepatitis C virus (HCV) infection is one of the major causes of serious liver diseases, including liver cirrhosis. There are no anti-fibrotic drugs with efficacy against liver cirrhosis. Wnt/β-catenin signaling has been implicated in the pathogenesis of a variety of tissue fibrosis. In the present study, we investigated the effects of a β-catenin/CBP (cyclic AMP response element binding protein) inhibitor on liver fibrosis. The anti-fibrotic activity of PRI-724, a selective inhibitor of β-catenin/CBP, was assessed in HCV GT1b transgenic mice at 18 months after HCV genome expression. PRI-724 was injected intraperitoneally or subcutaneously in these mice for 6 weeks. PRI-724 reduced liver fibrosis, which was indicated by silver stain, Sirius Red staining, and hepatic hydroxyproline levels, in HCV mice while attenuating αSMA induction. PRI-724 led to increased levels of matrix metalloproteinase (MMP)-8 mRNA in the liver, along with elevated levels of intrahepatic neutrophils and macrophages/monocytes. The induced intrahepatic neutrophils and macrophages/monocytes were identified as the source of MMP-8. In conclusion, PRI-724 ameliorated HCV-induced liver fibrosis in mice. We hypothesize that inhibition of hepatic stellate cells activation and induction of fibrolytic cells expressing MMP-8 contribute to the anti-fibrotic effects of PRI-724. PRI-724 is a drug candidate which possesses anti-fibrotic effect.

  12. Pathogenesis of Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Beom Jin Lim

    2016-11-01

    Full Text Available Focal segmental glomerulosclerosis (FSGS is characterized by focal and segmental obliteration of glomerular capillary tufts with increased matrix. FSGS is classified as collapsing, tip, cellular, perihilar and not otherwise specified variants according to the location and character of the sclerotic lesion. Primary or idiopathic FSGS is considered to be related to podocyte injury, and the pathogenesis of podocyte injury has been actively investigated. Several circulating factors affecting podocyte permeability barrier have been proposed, but not proven to cause FSGS. FSGS may also be caused by genetic alterations. These genes are mainly those regulating slit diaphragm structure, actin cytoskeleton of podocytes, and foot process structure. The mode of inheritance and age of onset are different according to the gene involved. Recently, the role of parietal epithelial cells (PECs has been highlighted. Podocytes and PECs have common mesenchymal progenitors, therefore, PECs could be a source of podocyte repopulation after podocyte injury. Activated PECs migrate along adhesion to the glomerular tuft and may also contribute to the progression of sclerosis. Markers of activated PECs, including CD44, could be used to distinguish FSGS from minimal change disease. The pathogenesis of FSGS is very complex; however, understanding basic mechanisms of podocyte injury is important not only for basic research, but also for daily diagnostic pathology practice.

  13. Pathogenesis of oral FIV infection.

    Directory of Open Access Journals (Sweden)

    Craig Miller

    Full Text Available Feline immunodeficiency virus (FIV is the feline analogue of human immunodeficiency virus (HIV and features many hallmarks of HIV infection and pathogenesis, including the development of concurrent oral lesions. While HIV is typically transmitted via parenteral transmucosal contact, recent studies prove that oral transmission can occur, and that saliva from infected individuals contains significant amounts of HIV RNA and DNA. While it is accepted that FIV is primarily transmitted by biting, few studies have evaluated FIV oral infection kinetics and transmission mechanisms over the last 20 years. Modern quantitative analyses applied to natural FIV oral infection could significantly further our understanding of lentiviral oral disease and transmission. We therefore characterized FIV salivary viral kinetics and antibody secretions to more fully document oral viral pathogenesis. Our results demonstrate that: (i saliva of FIV-infected cats contains infectious virus particles, FIV viral RNA at levels equivalent to circulation, and lower but significant amounts of FIV proviral DNA; (ii the ratio of FIV RNA to DNA is significantly higher in saliva than in circulation; (iii FIV viral load in oral lymphoid tissues (tonsil, lymph nodes is significantly higher than mucosal tissues (buccal mucosa, salivary gland, tongue; (iv salivary IgG antibodies increase significantly over time in FIV-infected cats, while salivary IgA levels remain static; and, (v saliva from naïve Specific Pathogen Free cats inhibits FIV growth in vitro. Collectively, these results suggest that oral lymphoid tissues serve as a site for enhanced FIV replication, resulting in accumulation of FIV particles and FIV-infected cells in saliva. Failure to induce a virus-specific oral mucosal antibody response, and/or viral capability to overcome inhibitory components in saliva may perpetuate chronic oral cavity infection. Based upon these findings, we propose a model of oral FIV pathogenesis

  14. Epigallocatechin gallate ameliorates chronic fatigue syndrome in mice: behavioral and biochemical evidence.

    Science.gov (United States)

    Sachdeva, Anand Kamal; Kuhad, Anurag; Tiwari, Vinod; Chopra, Kanwaljit

    2009-12-28

    Three decades after the coining of the term chronic fatigue syndrome, the diagnosis of this illness is still symptom based and the aetiology remains elusive. Chronic fatigue syndrome pathogenesis seems to be multifactorial and the possible involvement of immune system is supported. The present study was designed to evaluate the effects of the epigallocatechin gallate in a mouse model of immunologically induced chronic fatigue. On 19th day, after lipopolysaccharide/Brucella abortus administration, the mice showed significant increase in immobility period, post swim fatigue and thermal hyperalgesia. Behavioral deficits were coupled with enhanced oxidative-nitrosative stress as evident by increased lipid peroxidation, nitrite levels and decreased endogenous antioxidant enzymes (superoxide dismutase, reduced glutathione and catalase) and inflammation (increased levels of tumor necrosis factor-alpha and tissue growth factor-beta). Chronic treatment with epigallocatechin gallate restored these behavioral and biochemical alterations in mice. The present study points out towards the beneficial effect of epigallocatechin gallate in the amelioration of chronic fatigue syndrome and thus may provide a new, effective and powerful strategy to treat chronic fatigue syndrome.

  15. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms

    Science.gov (United States)

    Phillips, William D.; Vincent, Angela

    2016-01-01

    Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms. PMID:27408701

  16. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms.

    Science.gov (United States)

    Phillips, William D; Vincent, Angela

    2016-01-01

    Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms.

  17. Advances in the microbial etiology and pathogenesis of early childhood caries

    Science.gov (United States)

    Hajishengallis, Evlambia; Parsaei, Yassmin; Klein, Marlise I.; Koo, Hyun

    2016-01-01

    Early childhood caries (ECC) is one of the most prevalent infectious diseases affecting children worldwide. ECC is an aggressive form of dental caries, which left untreated, can result in rapid and extensive cavitation in teeth (rampant caries) that is painful and costly to treat. Furthermore, it affects mostly children from impoverished background, and thus constitutes a major challenge in public health. The disease is a prime example of the consequences arising from complex, dynamic interactions between microorganisms, host and diet, leading to the establishment of highly pathogenic (cariogenic) biofilms. To date, there are no effective methods to identify those at risk of developing ECC or control the disease in affected children. Recent advances in deep-sequencing technologies, novel imaging methods and (meta)proteomics-metabolomics approaches provide an unparalleled potential to reveal new insights to illuminate our current understanding about the etiology and pathogenesis of the disease. In this concise review, we provide a broader perspective about the etiology and pathogenesis of ECC based on previous and current knowledge on biofilm matrix, microbial diversity and host-microbe interactions which could have direct implications for developing new approaches for improved risk assessment and prevention of this devastating and costly childhood health condition. PMID:26714612

  18. A New Decision Tree to Solve the Puzzle of Alzheimer's Disease Pathogenesis Through Standard Diagnosis Scoring System.

    Science.gov (United States)

    Kumar, Ashwani; Singh, Tiratha Raj

    2017-03-01

    Alzheimer's disease (AD) is a progressive, incurable and terminal neurodegenerative disorder of the brain and is associated with mutations in amyloid precursor protein, presenilin 1, presenilin 2 or apolipoprotein E, but its underlying mechanisms are still not fully understood. Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis and treatment of disease from the clinical dataset are therefore increasingly becoming necessary. The current study deals with the construction of classifiers that can be human readable as well as robust in performance for gene dataset of AD using a decision tree. Models of classification for different AD genes were generated according to Mini-Mental State Examination scores and all other vital parameters to achieve the identification of the expression level of different proteins of disorder that may possibly determine the involvement of genes in various AD pathogenesis pathways. The effectiveness of decision tree in AD diagnosis is determined by information gain with confidence value (0.96), specificity (92 %), sensitivity (98 %) and accuracy (77 %). Besides this functional gene classification using different parameters and enrichment analysis, our finding indicates that the measures of all the gene assess in single cohorts are sufficient to diagnose AD and will help in the prediction of important parameters for other relevant assessments.

  19. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease.

    Science.gov (United States)

    Lee, Jong Kil; Jin, Hee Kyung; Park, Min Hee; Kim, Bo-ra; Lee, Phil Hyu; Nakauchi, Hiromitsu; Carter, Janet E; He, Xingxuan; Schuchman, Edward H; Bae, Jae-sung

    2014-07-28

    In Alzheimer's disease (AD), abnormal sphingolipid metabolism has been reported, although the pathogenic consequences of these changes have not been fully characterized. We show that acid sphingomyelinase (ASM) is increased in fibroblasts, brain, and/or plasma from patients with AD and in AD mice, leading to defective autophagic degradation due to lysosomal depletion. Partial genetic inhibition of ASM (ASM(+/-)) in a mouse model of familial AD (FAD; amyloid precursor protein [APP]/presenilin 1 [PS1]) ameliorated the autophagocytic defect by restoring lysosomal biogenesis, resulting in improved AD clinical and pathological findings, including reduction of amyloid-β (Aβ) deposition and improvement of memory impairment. Similar effects were noted after pharmacologic restoration of ASM to the normal range in APP/PS1 mice. Autophagic dysfunction in neurons derived from FAD patient induced pluripotent stem cells (iPSCs) was restored by partial ASM inhibition. Overall, these results reveal a novel mechanism of ASM pathogenesis in AD that leads to defective autophagy due to impaired lysosomal biogenesis and suggests that partial ASM inhibition is a potential new therapeutic intervention for the disease. © 2014 Lee et al.

  20. Invasive mold infections: virulence and pathogenesis of mucorales.

    Science.gov (United States)

    Morace, Giulia; Borghi, Elisa

    2012-01-01

    Mucorales have been increasingly reported as cause of invasive fungal infections in immunocompromised subjects, particularly in patients with haematological malignancies or uncontrolled diabetes mellitus and in those under deferoxamine treatment or undergoing dialysis. The disease often leads to a fatal outcome, but the pathogenesis of the infection is still poorly understood as well as the role of specific virulence determinants and the interaction with the host immune system. Members of the order Mucorales are responsible of almost all cases of invasive mucormycoses, the majority of the etiological agents belonging to the Mucoraceae family. Mucorales are able to produce various proteins and metabolic products toxic to animals and humans, but the pathogenic role of these potential virulence factors is unknown. The availability of free iron in plasma and tissues is believed to be crucial for the pathogenesis of these mycoses. Vascular invasion and neurotropism are considered common pathogenic features of invasive mucormycoses.

  1. All-Russian Scientific Research Amelioration Institute – the Leader of the Russian Agroforestry Science: the Modern Concept of Protective Afforestation

    Directory of Open Access Journals (Sweden)

    Kulik K.N.

    2015-10-01

    Full Text Available The paper considers the activities of the All-Russian scientific-research agroforest reclamation institute and shows the importance of agroforestry as a science in control of extensive degradation processes: desertification, ravines formation, decrease in soil fertility. The paper gives the detail characteristics of main research of the institute: technology of landscape planning of adaptive forest ameliorative arrangement of eroded soils, ecological economical effectiveness of agrarian complexes on soils subjected to deflation, problems of forest amelioration of degraded pastures, and afforestation of sands, thematter of agrarian nature use on sloping soils, woody plants assortment for forest ameliorative complexes on degraded landscapes, system of integrated pest and disease control in agroforest ecosystems, and shows the importance of its introduction for protective afforestation development at the current period.

  2. Salivary proteomics in lichen planus: A relationship with pathogenesis?

    Science.gov (United States)

    Souza, M M; Florezi, G P; Nico, Mms; de Paula, F; Paula, F M; Lourenço, S V

    2018-01-30

    Oral lichen planus is a chronic, T-cell-mediated, inflammatory disease that affects the oral cavity. The oral lichen planus pathogenesis is still unclear, however, the main evidence is that the mechanisms of activation of different T lymphocyte pathway induce apoptosis with an increase in Th1 and Th17 subtypes cells, triggered by the release of cytokines. This study analysed saliva proteomics to identify protein markers that might be involved in the pathogenesis and development of the disease. Proteins differentially expressed by oral lichen planus and healthy controls were screened using mass spectrometry; the proteins found in oral lichen planus were subjected to bioinformatics analysis, including gene ontology and string networks analysis. The multiplex analysis validation allowed the correlation between the proteins identified and the involved cytokines in Th17 response. One hundred and eight proteins were identified in oral lichen planus, of which 17 proteins showed a high interaction between them and indicated an association with the disease. Expression of these proteins was correlated with the triggering of cytokines, more specifically the Th17 cells. Proteins, such as S100A8, S100A9, haptoglobin, can trigger cytokines and might be associated with a pathological function and antioxidant activities in oral lichen planus. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Involvement of regulatory T cells and selected cytokines in the pathogenesis of bronchial asthma

    Directory of Open Access Journals (Sweden)

    Monika Zuśka-Prot

    2016-06-01

    Full Text Available Asthma pathogenesis is complex and involves the interplay of many factors and actions. Airway inflammation in allergic asthma is characterized by an exaggerated activation of T helper type 2 cells, IgE production and infiltration and activation of eosinophils. The results of studies conducted in recent years indicate that the deficit of naturally occurring Foxp3+CD25+CD4+ and Foxp3+CD25+CD8+ regulatory T cells and type 1 regulatory T cells plays a pivotal role in the development of this disease. Moreover, numerous studies have provided convincing evidence that a decrease in IL-10 production and an increase in IL-17 production have an important place in the pathophysiology of asthma. TGF-β is another important cytokine involved in this disease. TGF-β has a paradoxical status in relation to asthma pathogenesis because it seems to play a role in both suppressing and promoting asthma development. This review discusses briefly clinical and experimental data concerning the involvement of T regulatory cells and IL-10, IL-17 and TGF-β in the pathogenesis of asthma.

  4. IL-1 signal affects both protection and pathogenesis of virus-induced chronic CNS demyelinating disease

    Directory of Open Access Journals (Sweden)

    Kim Byung S

    2012-09-01

    Full Text Available Abstract Background Theiler’s virus infection induces chronic demyelinating disease in mice and has been investigated as an infectious model for multiple sclerosis (MS. IL-1 plays an important role in the pathogenesis of both the autoimmune disease model (EAE and this viral model for MS. However, IL-1 is known to play an important protective role against certain viral infections. Therefore, it is unclear whether IL-1-mediated signaling plays a protective or pathogenic role in the development of TMEV-induced demyelinating disease. Methods Female C57BL/6 mice and B6.129S7-Il1r1tm1Imx/J mice (IL-1R KO were infected with Theiler’s murine encephalomyelitis virus (1 x 106 PFU. Differences in the development of demyelinating disease and changes in the histopathology were compared. Viral persistence, cytokine production, and immune responses in the CNS of infected mice were analyzed using quantitative PCR, ELISA, and flow cytometry. Results Administration of IL-1β, thereby rending resistant B6 mice susceptible to TMEV-induced demyelinating disease, induced a high level of Th17 response. Interestingly, infection of TMEV into IL-1R-deficient resistant C57BL/6 (B6 mice also induced TMEV-induced demyelinating disease. High viral persistence was found in the late stage of viral infection in IL-1R-deficient mice, although there were few differences in the initial anti-viral immune responses and viral persistent levels between the WT B6 and IL-1R-deficiecent mice. The initial type I IFN responses and the expression of PDL-1 and Tim-3 were higher in the CNS of TMEV-infected IL-1R-deficient mice, leading to deficiencies in T cell function that permit viral persistence. Conclusions These results suggest that the presence of high IL-1 level exerts the pathogenic role by elevating pathogenic Th17 responses, whereas the lack of IL-1 signals promotes viral persistence in the spinal cord due to insufficient T cell activation by elevating the production of

  5. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Oyinkan Sofola

    2010-09-01

    Full Text Available Abeta peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer's disease (AD, with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3 is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Abeta42 specifically in adult neurons, to avoid developmental effects. Abeta42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Abeta42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment rescued Abeta42 toxicity. Abeta42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Abeta42. The GSK-3-mediated effects on Abeta42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Abeta42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Abeta42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Abeta42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD.

  6. Misbehaving macrophages in the pathogenesis of psoriasis.

    Science.gov (United States)

    Clark, Rachael A; Kupper, Thomas S

    2006-08-01

    Psoriasis is a chronic inflammatory skin disease unique to humans. In this issue of the JCI, 2 studies of very different mouse models of psoriasis both report that macrophages play a key role in inducing psoriasis-like skin disease. Psoriasis is clearly a polygenic, inherited disease of uncontrolled cutaneous inflammation. The debate that currently rages in the field is whether psoriasis is a disease of autoreactive T cells or whether it reflects an intrinsic defect within the skin--or both. However, these questions have proven difficult to dissect using molecular genetic tools. In the current studies, the authors have used 2 different animal models to address the role of macrophages in disease pathogenesis: Wang et al. use a mouse model in which inflammation is T cell dependent, whereas the model used by Stratis et al. is T cell independent (see the related articles beginning on pages 2105 and 2094, respectively). Strikingly, both groups report an important contribution by macrophages, implying that macrophages can contribute to both epithelial-based and T cell-mediated pathways of inflammation.

  7. Hand osteoarthritis: diagnosis, pathogenesis, treatment

    Directory of Open Access Journals (Sweden)

    R. M. Balabanova

    2018-01-01

    Full Text Available Due to the development of synovitis, early-stage hand osteoarthritis (HOA mimics hand joint injury in rheumatoid arthritis (RA. However, the topography of synovitis is diverse in these diseases:  distal interphalangeal and thumb joints are involved in the process in HOA. In the latter, tests are negative for immunological markers  (anti-cyclic citrullinated peptide antibodies, which is typical of RA.  The differences between HOA and RA are prominent, as evidenced  by hand X-rays and magnetic resonance imaging. Investigations  suggest that cytokine profile imbalance is implicated in the  pathogenesis of osteoarthritis, which brings it closer to RA. However, therapy for HOA has not been practically developed; there are only a few works on the use of disease-modifying antirheumatic drugs and  biological agents in these patients. It is necessary to work out Russian guidelines for the treatment of HOA.

  8. Disordered glycometabolism involved in pathogenesis of Kashin–Beck disease, an endemic osteoarthritis in China

    International Nuclear Information System (INIS)

    Wu, Cuiyan; Lei, Ronghui; Tiainen, Mika; Wu, Shixun; Zhang, Qiang; Pei, Fuxing; Guo, Xiong

    2014-01-01

    Kashin–Beck disease (KBD) is a chronic endemic osteoarthritis in China. Previous studies have suggested a role of metabolic dysfunction in causation of this disease. In this investigation, the metabolomics approach and cell experiments were used to discover the metabolic changes and their effects on KBD chondrocytes. Nuclear magnetic resonance ( 1 H NMR) spectroscopy was used to examine serum samples from both the KBD patients and normal controls. The pattern recognition multivariate analysis (OSC–PLS) and quantitative analysis (QMTLS iterator) revealed altered glycometabolism in KBD, with increased glucose and decreased lactate and citrate levels. IPA biological analysis showed the centric location of glucose in the metabolic network. Massive glycogen deposits in chondrocytes and increased uptake of glucose by chondrocytes further confirmed disordered glycometabolism in KBD. An in vitro study showed the effects of disordered glycometabolism in chondrocytes. When chondrocytes were treated with high glucose, expression of type II collagen and aggrecan were decreased, while TNF-α expression, the level of cellular reactive oxygen species and cell apoptosis rates all were increased. Therefore, our results demonstrated that disordered glycometabolism in patients with KBD was linked to the damage of chondrocytes. This may provide a new basis for understanding the pathogenesis of KBD. - Highlights: • Disordered glycometabolism in KBD was demonstrated by combining serum metabolomics and chondrocyte studies. • Glucose and TNF-α were key molecules linked to altered metabolism and inflammation in the pathophysiology of KBD. • The glycometabolism disorder was linked to expression of type II collagen and aggrecan, ROS and apoptosis of KBD chondrocytes

  9. Disordered glycometabolism involved in pathogenesis of Kashin–Beck disease, an endemic osteoarthritis in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cuiyan, E-mail: xj.cy.69@stu.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China); Lei, Ronghui, E-mail: leirh@mail.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China); Tiainen, Mika, E-mail: mika.tiainen@uef.fi [School of Pharmacy, University of Eastern Finland, Kuopio (Finland); Wu, Shixun, E-mail: wushixun313@stu.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China); Zhang, Qiang, E-mail: wdrr@163.com [Department of Kashin–Beck Disease, Qinghai Institute for Endemic Disease Control and Prevention, Xining, Qinghai 811602 (China); Pei, Fuxing, E-mail: peifuxing@vip.163.com [Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Guo, Xiong, E-mail: guox@mail.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China)

    2014-08-15

    Kashin–Beck disease (KBD) is a chronic endemic osteoarthritis in China. Previous studies have suggested a role of metabolic dysfunction in causation of this disease. In this investigation, the metabolomics approach and cell experiments were used to discover the metabolic changes and their effects on KBD chondrocytes. Nuclear magnetic resonance ({sup 1}H NMR) spectroscopy was used to examine serum samples from both the KBD patients and normal controls. The pattern recognition multivariate analysis (OSC–PLS) and quantitative analysis (QMTLS iterator) revealed altered glycometabolism in KBD, with increased glucose and decreased lactate and citrate levels. IPA biological analysis showed the centric location of glucose in the metabolic network. Massive glycogen deposits in chondrocytes and increased uptake of glucose by chondrocytes further confirmed disordered glycometabolism in KBD. An in vitro study showed the effects of disordered glycometabolism in chondrocytes. When chondrocytes were treated with high glucose, expression of type II collagen and aggrecan were decreased, while TNF-α expression, the level of cellular reactive oxygen species and cell apoptosis rates all were increased. Therefore, our results demonstrated that disordered glycometabolism in patients with KBD was linked to the damage of chondrocytes. This may provide a new basis for understanding the pathogenesis of KBD. - Highlights: • Disordered glycometabolism in KBD was demonstrated by combining serum metabolomics and chondrocyte studies. • Glucose and TNF-α were key molecules linked to altered metabolism and inflammation in the pathophysiology of KBD. • The glycometabolism disorder was linked to expression of type II collagen and aggrecan, ROS and apoptosis of KBD chondrocytes.

  10. Critical role of environmental factors in the pathogenesis of psoriasis.

    Science.gov (United States)

    Zeng, Jinrong; Luo, Shuaihantian; Huang, Yumeng; Lu, Qianjin

    2017-08-01

    Psoriasis is a common cutaneous disease with multifactorial etiology including genetic and non-genetic factors, such as drugs, smoking, drinking, diet, infection and mental stress. Now, the role of the interaction between environmental factors and genetics are considered to be a main factor in the pathogenesis of psoriasis. However, it is a challenge to explore the mechanisms how the environmental factors break the body balance to affect the onset and development of psoriasis. In this article, we review the pathogenesis of psoriasis and summarize numerous clinical data to reveal the association between environmental factors and psoriasis. In addition, we focus on the mechanisms of environmental risk factors impact on psoriasis and provide a series of potential treatments against environmental risk factors. © 2017 Japanese Dermatological Association.

  11. Hypomethylating agent 5-aza-2'-deoxycytidine (DAC) ameliorates multiple sclerosis in mouse models

    DEFF Research Database (Denmark)

    Mangano, Katia; Fagone, Paolo; Bendtzen, Klaus

    2014-01-01

    murine models of experimental allergic encephalomyelitis (EAE). DAC treatment was associated with a significant amelioration of the clinical and histological hallmarks of EAE in both models. These effects were observed both in prophylactic and therapeutic regimens. The milder course of the disease....... Finally, DAC treatment increased the percentage of circulating regulatory T cells by inducing Foxp3 expression via demethylation of a CpG island in Foxp3....

  12. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review

    Directory of Open Access Journals (Sweden)

    Xiaoshi Ma

    2017-10-01

    Full Text Available The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD. Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.

  13. The HBZ gene, a key player in HTLV-1 pathogenesis

    Directory of Open Access Journals (Sweden)

    Green Patrick L

    2009-08-01

    Full Text Available Abstract Human T-cell leukemia virus type 1 (HTLV-1 causes adult T-cell leukemia/lymphoma (ATL and is also associated with a variety of lymphocyte-mediated diseases. The HTLV-1 basic leucine zipper (HBZ gene, found to be consistently expressed in ATL, has recently been the subject of intensive research efforts. In this review, we summarize recent findings about HBZ and discuss its roles and functions not only in the virus life cycle, but also in HTLV-1 disease pathogenesis.

  14. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    Science.gov (United States)

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  15. Hot topics in autoimmune diseases: perspectives from the 2013 Asian Congress of Autoimmunity.

    Science.gov (United States)

    Selmi, Carlo

    2014-08-01

    Our understanding of the pathogenic mechanisms and possible treatments of autoimmune diseases has significantly increased over the past decade. Nonetheless, numerous major issues remain open and such issues span from epidemiology to clinimetrics and from the role of infectious agents to the search for accurate biomarkers in paradigmatic conditions such as systemic lupus erythematosus, rheumatoid arthritis, and spondyloarthropathies. In the case of cardiovascular comorbidities of autoimmune diseases or, more generally, the pathogenesis of atherosclerosis, fascinating evidence points to a central role of autoimmunity and metabolic dysfunctions and a possible role of therapies targeting inflammation to ameliorate both conditions. Basic science and translational medicine contribute to identify common mechanisms that underlie different autoimmune diseases, as in the case of tumor necrosis factor alpha, and more recently vitamin D, autoantibodies, T and B regulatory cells, and microRNA. Finally, new therapies are expected to significantly change our approach to autoimmune diseases, as represented by the recent FDA approval of the first oral JAK inhibitor. The present article moves from the major topics that were discussed at the 2013 Asian Congress of Autoimmunity in Hong Kong to illustrate the most recent data from leading journals in autoimmunity and immunology. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma.

    Science.gov (United States)

    Evans, Nicholas P; Misyak, Sarah A; Schmelz, Eva M; Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-03-01

    Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARgamma in immune and epithelial cells and PPARgamma-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARgamma in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARgamma-expressing floxed mice but not in the tissue-specific PPARgamma-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARgamma-expressing, but not in the tissue-specific, PPARgamma-null mice. Colonic tumor necrosis factor-alpha mRNA expression was significantly suppressed in CLA-fed, PPARgamma-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARgamma-dependent mechanism.

  17. Pathogenesis of pulmonary emphysema – cellular and molecular events

    Directory of Open Access Journals (Sweden)

    Antonio Di Petta

    2010-06-01

    Full Text Available Pulmonary emphysema is a chronic obstructive disease, resulting fromimportant alterations in the whole distal structure of terminal bronchioles, either by enlargement of air spaces or by destruction of the alveolar wall, leading to loss of respiratory surface, decreased elastic recoil and lung hyperinflation. For many years, the hypothesis of protease-antiprotease unbalance prevailed as the central theme in the pathogenesis of pulmonary emphysema. According to this hypothesis, the release of active proteolytic enzymes, produced mainly by neutrophils and macrophages, degrades the extracellular matrix, affecting the integrity of its components, especially collagen and elastic fibers. However, new concepts involving cellular and molecular events were proposed, including oxidative stress, cell apoptosis, cellular senescence and failed lung tissue repair. The aim of this review paper was to evaluate the cellular and molecular mechanisms seen in the pathogenesis of pulmonary emphysema.

  18. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    International Nuclear Information System (INIS)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  19. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Pillai, Ayyappan Harikrishna [Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Harikumar, Sankaran Kutty; Mishra, Santosh Kumar [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India)

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  20. Invasive Mold Infections: Virulence and Pathogenesis of Mucorales

    Directory of Open Access Journals (Sweden)

    Giulia Morace

    2012-01-01

    Full Text Available Mucorales have been increasingly reported as cause of invasive fungal infections in immunocompromised subjects, particularly in patients with haematological malignancies or uncontrolled diabetes mellitus and in those under deferoxamine treatment or undergoing dialysis. The disease often leads to a fatal outcome, but the pathogenesis of the infection is still poorly understood as well as the role of specific virulence determinants and the interaction with the host immune system. Members of the order Mucorales are responsible of almost all cases of invasive mucormycoses, the majority of the etiological agents belonging to the Mucoraceae family. Mucorales are able to produce various proteins and metabolic products toxic to animals and humans, but the pathogenic role of these potential virulence factors is unknown. The availability of free iron in plasma and tissues is believed to be crucial for the pathogenesis of these mycoses. Vascular invasion and neurotropism are considered common pathogenic features of invasive mucormycoses.

  1. Immunogenetics and genetic susceptibility in the pathogenesis of autoimmune hepatitis

    Directory of Open Access Journals (Sweden)

    Das Anup K

    2014-11-01

    Full Text Available vAutoimmune hepatitis is a progressive liver disease. Its pathogenesis is unclear, but needs a ‘trigger’ to initiate the disease in a genetically susceptible person. The susceptibility is partly related to MHCII class genes, and more so with human leukocyte antigen (HLA. Several mechanisms have been proposed which, however, cannot fully explain the immunologic findings in autoimmune hepatitis. The susceptibility to any autoimmune disease is determined by several factors where genetic and immunological alterations, along with, environmental factor are active. MHCII antigens as a marker for AIH, or a predictor of treatment response and prognosis has been investigated. Since MHCII antigens show significant ethnic heterogeneity, mutations in MHCII may merely act as only precursors of the surface markers of immune cells, which can be of significance, because the changes in HLA and MHC are missing in certain populations. One such marker is the CTLA-4 (CD152 gene mutation, reported in the phenotypes representing susceptibility to AIH. Other candidate genes of cytokines, TNF, TGF-beta1 etc, have also been investigated but with unvalidated results. Paediatric AIH show differences in genetic susceptibility. Genetic susceptibility or resistance to AIH may be associated with polypeptides in DRB1 with certain amino-acid sequences. Understanding which genes are implicated in genesis and/or disease progression will obviously help to identify key pathways in AIH and provide better insights into its pathogenesis. But studies to identify responsible genes are complex because of the complex trait of AIH.

  2. Hepatitis C Virus, Cholesterol and Lipoproteins — Impact for the Viral Life Cycle and Pathogenesis of Liver Disease

    Science.gov (United States)

    Felmlee, Daniel J.; Hafirassou, Mohamed Lamine; Lefevre, Mathieu; Baumert, Thomas F.; Schuster, Catherine

    2013-01-01

    Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects. PMID:23698400

  3. Protein structures in Alzheimer's disease: The basis for rationale therapeutic design.

    Science.gov (United States)

    Montoliu-Gaya, Laia; Villegas, Sandra

    2015-12-15

    Alzheimer's disease (AD) is a neurodegenerative disorder that affects memory, behavior, thinking and emotion. Current therapies to treat AD patients are only capable for temporarily slowing-down the cognitive decline, as they are focused on ameliorating symptoms instead of targeting its underlying causes. The aim of this review is to describe what is known about the protein structures implicated in AD pathogenesis, amyloid cascade members, as well as those structures involved in Aβ clearance. Thus, structural information available for APP, α- β- and γ-secretases, CTFβ and derived Aβ peptides, AICDs, apoE and apoJ, LRP-1 and RAGE, and neprilysin and insulin-degrading enzyme is provided. The recently solved structure for the γ-secretase complex opens the rational design of a new generation of inhibitors, whereas that for Aβ oligomers offers a putative mechanism explaining why monoclonal antibodies targeted to the N-terminus are effective. Then, an overview on therapies targeting some of these molecules presents their benefits and drawbacks. As a general conclusion our knowledge on the protein structures involved in AD has recently substantially advanced, allowing for the rational design of different therapeutic approaches. Hopefully, we are getting closer to finding a strong disease-modifying drug to cure this devastating disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The performance of maize crop during acid amelioration with ...

    African Journals Online (AJOL)

    Tanzania Journal of Science ... This study evaluated acid ameliorative potential and their effects on maize growth of four organic residues namely wild spikenard, cordia, cowpea and pigeon peas ... The finding suggests different acid ameliorating potential of residues, pigeon peas and cordia being the most effective.

  5. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10−/− mice by attenuating the activation of T cells and promoting their apoptosis

    International Nuclear Information System (INIS)

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Price, Robert L.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2012-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10 −/− mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10 −/− mice. After JWH-133 treatment, the percentage of CD4 + T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and toxicity to colon

  6. Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood-Brain Barrier Disruption, and Synaptic Disorder.

    Science.gov (United States)

    Kamat, Pradip K; Kyles, Philip; Kalani, Anuradha; Tyagi, Neetu

    2016-05-01

    Elevated plasma total homocysteine (Hcy) level is associated with an increased risk of Alzheimer's disease (AD). During transsulfuration pathways, Hcy is metabolized into hydrogen sulfide (H2S), which is a synaptic modulator, as well as a neuro-protective agent. However, the role of hydrogen sulfide, as well as N-methyl-D-aspartate receptor (NMDAR) activation, in hyperhomocysteinemia (HHcy) induced blood-brain barrier (BBB) disruption and synaptic dysfunction, leading to AD pathology is not clear. Therefore, we hypothesized that the inhibition of neuronal NMDA-R by H2S and MK801 mitigate the Hcy-induced BBB disruption and synapse dysfunction, in part by decreasing neuronal matrix degradation. Hcy intracerebral (IC) treatment significantly impaired cerebral blood flow (CBF), and cerebral circulation and memory function. Hcy treatment also decreases the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in the brain along with increased expression of NMDA-R (NR1) and synaptosomal Ca(2+) indicating excitotoxicity. Additionally, we found that Hcy treatment increased protein and mRNA expression of intracellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 and also increased MMP-2 and MMP-9 activity in the brain. The increased expression of ICAM-1, glial fibrillary acidic protein (GFAP), and the decreased expression of vascular endothelial (VE)-cadherin and claudin-5 indicates BBB disruption and vascular inflammation. Moreover, we also found decreased expression of microtubule-associated protein 2 (MAP-2), postsynaptic density protein 95 (PSD-95), synapse-associated protein 97 (SAP-97), synaptosomal-associated protein 25 (SNAP-25), synaptophysin, and brain-derived neurotrophic factor (BDNF) showing synapse dysfunction in the hippocampus. Furthermore, NaHS and MK801 treatment ameliorates BBB disruption, CBF, and synapse functions in the mice brain. These results demonstrate a neuro-protective effect of H2S over Hcy

  7. Osteoblast role in osteoarthritis pathogenesis.

    Science.gov (United States)

    Maruotti, Nicola; Corrado, Addolorata; Cantatore, Francesco P

    2017-11-01

    Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  8. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability. © The Author(s) 2016.

  9. Molecular Mechanisms of Disease Pathogenesis Differ in Krabbe Disease Variants

    DEFF Research Database (Denmark)

    Spratley, Samantha J; Hill, Chris H; Viuff, Agnete H

    2016-01-01

    different mutations have been identified in GALC that cause Krabbe disease but the mechanisms by which they cause disease remain unclear. We have generated monoclonal antibodies against full-length human GALC and used these to monitor the trafficking and processing of GALC variants in cell-based assays...

  10. The role of adenoidal obstruction in the pathogenesis of Otitis media ...

    African Journals Online (AJOL)

    Background: Although adenoidectomy is generally applied in the treatment of otitis media with effusion (OME), there is still much debate about the role of adenoid in the pathogenesis of OME. The purpose of this study is to determine the incidence of OME in children with obstructive adenoid disease in comparison with ...

  11. Alzheimer's Disease: Genes, pathogenesis and risk prediction

    NARCIS (Netherlands)

    K. Sleegers (Kristel); C.M. van Duijn (Cornelia)

    2001-01-01

    textabstractWith the aging of western society the contribution to morbidity of diseases of the elderly, such as dementia, will increase exponentially. Thorough preventative and curative strategies are needed to constrain the increasing prevalence of these disabling diseases. Better understanding of

  12. Gut microbiota in relation to pathogenesis of obesity and type 2 diabetes

    NARCIS (Netherlands)

    Udayappan, S.D.

    2018-01-01

    Alterations in the gut microbiota composition are strongly associated with the pathogenesis of obesity and Type 2 diabetes (T2DM). In this thesis, we investigated the putative role of the gut microbiota in human metabolic diseases. In this context, intestinal bacteria such as Eubacterium hallii and

  13. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    International Nuclear Information System (INIS)

    Qiao, Wang; Chaoshu, Tang; Hongfang, Jin; Junbao, Du

    2010-01-01

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H 2 S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H 2 S and inflammatory processes. The role of H 2 S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosis and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H 2 S in atherosclerosis.

  14. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  15. The Role of Insulin/IGF-1/PI3K/Akt/GSK3β Signaling in Parkinson's Disease Dementia

    Directory of Open Access Journals (Sweden)

    Liying Yang

    2018-02-01

    Full Text Available Dementia, a condition that frequently afflicts patients in advanced stages of Parkinson's disease (PD, results in decreased quality of life and survival time. Nevertheless, the pathological mechanisms underlying Parkinson's disease dementia (PDD are not completely understood. The symptoms characteristic of PDD may be the result of functional and structural deficiencies. The present study implicates the accumulation of Lewy bodies in the cortex and limbic system as a potent trigger in the development of PDD. In addition, significant Alzheimer-type pathologies, including amyloid-β (Aβ plaques and NFTs, are observed in almost half of PDD patients. Interestingly, links between PDD pathogenesis and the mechanisms underlying the development of insulin resistance have begun to emerge. Furthermore, previous studies have demonstrated that insulin treatment reduces amyloid plaques in Alzheimer's disease (AD, and normalizes the production and functionality of dopamine and ameliorates motor impairments in 6-OHDA-induced rat PD models. GSK3β, a downstream substrate of PI3K/Akt signaling following induction by insulin and IGF-1, exerts an influence on AD and PD physiopathology. The genetic overexpression of GSK3β in cortex and hippocampus results in signs of neurodegeneration and spatial learning deficits in in vivo models (Lucas et al., 2001, whereas its inhibition results in improvements in cognitive impairment in these rodents, including AD and PD. Accordingly, insulin- or IGF-1-activated PI3K/Akt/GSK3β signaling may be involved in PDD pathogenesis, at least in the pathology of PD-type + AD-type.

  16. Metformin-diet ameliorates coronary heart disease risk factors and facilitates resumption of regular menses in adolescents with polycystic ovary syndrome.

    Science.gov (United States)

    Glueck, Charles J; Goldenberg, Naila; Wang, Ping

    2009-09-01

    In 20 adolescents age PCOS), we assessed efficacy and safety of metformin-diet for 1 year in treatment of endocrinopathy and coronary heart disease (CHD) risk factors. Calories were targeted to 1,500-1,800/ day if body mass index (BMI) was or = 25, along with 2,550 mg metformin. Median weight fell from 85.5 to 78.4 kg (p = 0.004), waist circumference from 91 to 84 cm (p = 0.017), triglyceride from 108 to 71 mg/dl (p = 0.008), insulin from 20.5 to 15 microU/ml (p = 0.018), HOMA-IR from 2.0 to 1.5 (p = 0.026), and testosterone from 45.5 to 31.5 ng/dl (p = 0.03). The percentage of cycles with normal menses rose from a pre-treatment median of 8% to 100%, p PCOS, metformin-diet safely ameliorates CHD risk factors and endocrinopathy while facilitating resumption of regular menses.

  17. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice.

    Science.gov (United States)

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-09-10

    Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.

  18. Autophagy in Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Alexander J. S. Choi

    2011-01-01

    Full Text Available Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation.

  19. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai P.; Singh, Narendra P. [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Singh, Balwan [National Primate Research Center, Emory University, Atlanta GA 30329 (United States); Price, Robert L. [Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Mitzi [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Prakash S., E-mail: Prakash.Nagarkatti@uscmed.sc.edu [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)

    2012-01-15

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and

  20. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Yoneda Masato

    2012-02-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD is a hepatic manifestation of metabolic syndrome that is closely associated with multiple factors such as obesity, hyperlipidemia and type 2 diabetes mellitus. However, other risk factors for the development of NAFLD are unclear. With the association between periodontal disease and the development of systemic diseases receiving increasing attention recently, we conducted this study to investigate the relationship between NAFLD and infection with Porphyromonas gingivalis (P. gingivalis, a major causative agent of periodontitis. Methods The detection frequencies of periodontal bacteria in oral samples collected from 150 biopsy-proven NAFLD patients (102 with non-alcoholic steatohepatitis (NASH and 48 with non-alcoholic fatty liver (NAFL patients and 60 non-NAFLD control subjects were determined. Detection of P. gingivalis and other periodontopathic bacteria were detected by PCR assay. In addition, effect of P. gingivalis-infection on mouse NAFLD model was investigated. To clarify the exact contribution of P. gingivalis-induced periodontitis, non-surgical periodontal treatments were also undertaken for 3 months in 10 NAFLD patients with periodontitis. Results The detection frequency of P. gingivalis in NAFLD patients was significantly higher than that in the non-NAFLD control subjects (46.7% vs. 21.7%, odds ratio: 3.16. In addition, the detection frequency of P. gingivalis in NASH patients was markedly higher than that in the non-NAFLD subjects (52.0%, odds ratio: 3.91. Most of the P. gingivalis fimbria detected in the NAFLD patients was of invasive genotypes, especially type II (50.0%. Infection of type II P. gingivalis on NAFLD model of mice accelerated the NAFLD progression. The non-surgical periodontal treatments on NAFLD patients carried out for 3 months ameliorated the liver function parameters, such as the serum levels of AST and ALT. Conclusions Infection with high-virulence P

  1. A note on inventory model for ameliorating items with time dependent second order demand rate

    Directory of Open Access Journals (Sweden)

    Gobinda Chandra Panda

    2013-03-01

    Full Text Available Background: This paper is concerned with the development of ameliorating inventory models. The ameliorating inventory is the inventory of goods whose utility increases over the time by ameliorating activation. Material and Methods: This study is performed according to two areas: one is an economic order quantity (EOQ model for the items whose utility is ameliorating in accordance with Weibull distribution, and the other is a partial selling quantity (PSQ model developed for selling the surplus inventory accumulated by ameliorating activation with linear demand. The aim of this paper was to develop a mathematical model for inventory type concerned in the paper. Numerical examples were presented show the effect of ameliorating rate on inventory polices.  Results and Conclusions:  The inventory model for items with Weibull ameliorating is developed. For the case of small ameliorating rate (less than linear demand rate, EOQ model is developed, and for the case where ameliorating rate is greater than linear demand rate, PSQ model is developed.  .  

  2. Oral lichen planus: An update on pathogenesis and treatment

    Science.gov (United States)

    Lavanya, N; Jayanthi, P; Rao, Umadevi K; Ranganathan, K

    2011-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease that affects the mucus membrane of the oral cavity. It is a T-cell mediated autoimmune disease in which the cytotoxic CD8+ T cells trigger apoptosis of the basal cells of the oral epithelium. Several antigen-specific and nonspecific inflammatory mechanisms have been put forward to explain the accumulation and homing of CD8+ T cells subepithelially and the subsequent keratinocyte apoptosis. A wide spectrum of treatment modalities is available, from topical corticosteroids to laser ablation of the lesion. In this review, we discuss the various concepts in the pathogenesis and current treatment modalities of OLP. PMID:22529568

  3. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  4. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin.

    Science.gov (United States)

    Retta, Saverio Francesco; Glading, Angela J

    2016-12-01

    factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Age-Related Macular Degeneration: Pathogenesis, Genetic Background, and the Role of Nutritional Supplements

    Directory of Open Access Journals (Sweden)

    Marilita M. Moschos

    2014-01-01

    Full Text Available Age-related macular degeneration (ARMD is the leading cause of severe vision loss and blindness worldwide, mainly affecting people over 65 years old. Dry and wet ARDM are the main types of the disease, which seem to have a multifactorial background. The aim of this review is to summarize the mechanisms of ARMD pathogenesis and exhibit the role of diet and nutritional supplements in the onset and progression of the disease. Environmental factors, such as smoking, alcohol, and, diet appear to interact with mutations in nuclear and mitochondrial DNA, contributing to the pathogenesis of ARMD. Inflammatory mediators and oxidative stress, induced by the daily exposure of retina to high pressure of oxygen and light radiation, have been also associated with ARMD lesions. Other than medical and surgical therapies, nutritional supplements hold a significant role in the prevention and treatment of ARMD, eliminating the progression of macular degeneration.

  6. Amelioration and reforestation of sulfurous mine soils in Lusatia (eastern Germany)

    International Nuclear Information System (INIS)

    Katzur, J.; Haubold-Rosar, M.

    1996-01-01

    In Germany nearly 1.550 km 2 have been claimed by brown coal mining until now. Mine soils formed of carboniferous and sulfurous overburden are classified as sulfurous mine soils. They remain vegetation-free for decades and may be cultivated only after soil amelioration. The objective of amelioration is a sustained improvement of soil reaction. Lime requirement for the achievement of a certain pH-value is calculated from acid-base-balance (SBB). Lime fertilizers and base-rich brown coal ashes are used for amelioration. As ashes have several advantages, their application is recommended. The ameliorative application of lime fertilizer or brown coal ash should be incorporated intensively into the soil to a depth of 60 cm, better 100 cm. Amelioration includes a mineral fertilization with N, P and K. Afforestation with Pinus sylvestris, Pinus nigra, Larix decidua, Larix eurolepis. Tilia cordata, Quercus rubra and Quercus petraea on ameliorated mine soils show surprising good results. Multi-species stands have very positive effects on soil formation. Raw humus is formed under pine and larch, and under deciduous trees moder and mull with higher bioactivity and better development of water and nutrient balance in the topsoil are found. 55 refs., 6 figs., 4 tabs

  7. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis.

    Science.gov (United States)

    Tekes, G; Thiel, H-J

    2016-01-01

    Feline infectious peritonitis (FIP) belongs to the few animal virus diseases in which, in the course of a generally harmless persistent infection, a virus acquires a small number of mutations that fundamentally change its pathogenicity, invariably resulting in a fatal outcome. The causative agent of this deadly disease, feline infectious peritonitis virus (FIPV), arises from feline enteric coronavirus (FECV). The review summarizes our current knowledge of the genome and proteome of feline coronaviruses (FCoVs), focusing on the viral surface (spike) protein S and the five accessory proteins. We also review the current classification of FCoVs into distinct serotypes and biotypes, cellular receptors of FCoVs and their presumed role in viral virulence, and discuss other aspects of FIPV-induced pathogenesis. Our current knowledge of genetic differences between FECVs and FIPVs has been mainly based on comparative sequence analyses that revealed "discriminatory" mutations that are present in FIPVs but not in FECVs. Most of these mutations result in amino acid substitutions in the S protein and these may have a critical role in the switch from FECV to FIPV. In most cases, the precise roles of these mutations in the molecular pathogenesis of FIP have not been tested experimentally in the natural host, mainly due to the lack of suitable experimental tools including genetically engineered virus mutants. We discuss the recent progress in the development of FCoV reverse genetics systems suitable to generate recombinant field viruses containing appropriate mutations for in vivo studies. © 2016 Elsevier Inc. All rights reserved.

  8. Possible role of anti-SSA/Ro antibodies in the pathogenesis of pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Kelsey Guerreso

    2016-01-01

    Conclusion: It is known that pulmonary hypertension has association with autoimmune diseases, however no clear markers yet exist. Anti-SSA/Ro antibodies have been rarely described in cases of pulmonary disease, and less so in pulmonary hypertension. This case describes a unique association between isolated pulmonary hypertension and anti-SSA/Ro antibody, thereby illustrating the need to investigate this autoantibody and others in the pathogenesis of autoimmune pulmonary hypertension.

  9. Pathogenesis and host response in Syrian hamsters following intranasal infection with Andes virus.

    Directory of Open Access Journals (Sweden)

    David Safronetz

    2011-12-01

    Full Text Available Hantavirus pulmonary syndrome (HPS, also referred to as hantavirus cardiopulmonary syndrome (HCPS, is a rare but frequently fatal disease caused by New World hantaviruses. In humans HPS is associated with severe pulmonary edema and cardiogenic shock; however, the pathogenesis of this disease remains unclear largely due to a lack of suitable animal models for the study of disease progression. In this study we monitored clinical, virological, pathophysiological parameters and host immunological responses to decipher pathological factors and events in the lethal Syrian hamster model of HPS following intranasal inoculation of Andes virus. Transcriptional profiling of the host gene responses demonstrated a suppression of innate immune responses in most organs analyzed during the early stage of infection, except for in the lung which had low level activation of several pro-inflammatory genes. During this phase Andes virus established a systemic infection in hamsters, with viral antigen readily detectable in the endothelium of the majority of tissues analyzed by 7-8 days post-inoculation. Despite wide-spread infection, histological analysis confirmed pathological abnormalities were almost exclusively found in the lungs. Immediately preceding clinical signs of disease, intense activation of pro-inflammatory and Th1/Th2 responses were observed in the lungs as well as the heart, but not in peripheral organs, suggesting that localized immune-modulations by infection is paramount to pathogenesis. Throughout the course of infection a strong suppression of regulatory T-cell responses was noted and is hypothesized to be the basis of the aberrant immune activations. The unique and comprehensive monitoring of host immune responses to hantavirus infection increases our understanding of the immuno-pathogenesis of HPS and will facilitate the development of treatment strategies targeting deleterious host immunological responses.

  10. A single nucleotide polymorphism in primary-microRNA-146a reduces the expression of mature microRNA-146a in patients with Alzheimer's disease and is associated with the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Zhang, Bin; Wang, Aihong; Xia, Cuiping; Lin, Qunfeng; Chen, Chunfu

    2015-09-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia among the aging population. Although the incidence of the disease continues to increase, no cure has been developed. Effective treatment is restricted not only due to the lack of curative medicine, but also due to limited understanding of the underlying mechanisms and the difficulties in accurately diagnosing AD in its earliest stages prior to clinical symptoms. Micro (mi) RNAs (miR) have gained increasing attention in the investigation of neurodegenerative diseases. Previous reports have demonstrated that deregulation of miR‑146a‑5p is associated with the pathogenesis of human AD. In the present study, the coding region of primary (pri)‑miR‑146a in patients with AD was scanned and the rare C allele of rs2910164 was found to be associated with AD. Using reverse transcription quantitative polymerase chain reaction, it was demonstrated that site variation reduced the expression of mature miR‑146a‑5p. Notably, a reduction in the expression of miR‑146a‑5p led to less efficient inhibition of target genes, including Toll‑like receptor (TLR)2, which is important in the pathogenesis of AD. Biological function investigations in RAW264.7 cells indicated that, compared with the G allele, the rare C allele upregulated the expression of tumor necrosis factor‑α following stimulation with β‑amyloid. These findings suggested that one common polymorphism in pri‑miR‑146a may contribute to the genetic predisposition to AD by disrupting the production of miR‑146a‑5p and affecting the expression and function of TLR2.

  11. A new direction in the pathogenesis of idiopathic pulmonary fibrosis?

    Directory of Open Access Journals (Sweden)

    Kolb Martin

    2002-01-01

    Full Text Available Abstract A recent review article suggested that idiopathic pulmonary fibrosis (IPF is a disease that is associated more with abnormal wound healing than with inflammation. Data derived from transgenic and gene transfer rodent models suggest that lung inflammation may be a necessary but insufficient component of IPF, and that at some point in the natural history of the disease IPF becomes no longer dependent on the inflammatory response for propagation. Altered microenvironment and involvement of epithelial cell/mesenchymal cell interaction are the most likely contributors to the pathogenesis of this chronic progressive disorder.

  12. Over-expressing the soluble gp130-Fc does not ameliorate methionine and choline deficient diet-induced non alcoholic steatohepatitis in mice.

    Directory of Open Access Journals (Sweden)

    Helene L Kammoun

    Full Text Available Non-alcoholic steatohepatitis (NASH is a liver disease with the potential to lead to cirrhosis and hepatocellular carcinoma. Interleukin-6 (IL-6 has been implicated in the pathogenesis of NASH, with the so-called IL-6 'trans-signaling' cascade being responsible for the pro-inflammatory actions of this cytokine. We aimed to block IL-6 'trans-signaling', using a transgenic mouse that overexpresses human soluble glycoprotein130 (sgp130Fc Tg mice fed a commonly used dietary model of inducing NASH (methionine and choline deficient-diet; MCD diet and hypothesized that markers of NASH would be ameliorated in such mice. Sgp130Fc Tg and littermate control mice were fed a MCD or control diet for 4 weeks. The MCD diet induced many hallmarks of NASH including hepatomegaly, steatosis, and liver inflammation. However, in contrast with other mouse models and, indeed, human NASH, the MCD diet model did not increase the mRNA or protein expression of IL-6. Not surprisingly, therefore, markers of MCD diet-induced NASH were unaffected by sgp130Fc transgenic expression. While the MCD diet model induces many pathophysiological markers of NASH, it does not induce increased IL-6 expression in the liver, a key hallmark of human NASH. We, therefore, caution the use of the MCD diet as a viable mouse model of NASH.

  13. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  14. Type I Interferon in the Pathogenesis of Lupus

    Science.gov (United States)

    Crow, Mary K.

    2014-01-01

    Investigations of patients with systemic lupus erythematosus (SLE) have applied insights from studies of the innate immune response to define type I interferon (IFN-I), with IFN-α the dominant mediator, as central to the pathogenesis of this prototype systemic autoimmune disease. Genetic association data identify regulators of nucleic acid degradation and components of TLR-independent, endosomal TLR-dependent, and IFN-I signaling pathways as contributors to lupus disease susceptibility. Together with a gene expression signature characterized by IFNI-induced gene transcripts in lupus blood and tissue, those data support the conclusion that many of the immunologic and pathologic features of this disease are a consequence of a persistent self-directed immune reaction driven by IFN-I and mimicking a sustained anti-virus response. This expanding knowledge of the role of IFN-I and the innate immune response suggests candidate therapeutic targets that are being tested in lupus patients. PMID:24907379

  15. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune System

    Science.gov (United States)

    This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis and control. Worldwide PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic...

  16. Diabetic polyneuropathy: pathogenesis, classification, clinical presentation, and treatment

    Directory of Open Access Journals (Sweden)

    Marina Valentinovna Nesterova

    2013-01-01

    Full Text Available Diabetes mellitus (DM is a global epidemic followed by late complications as diabetic polyneuropathy (DPN and diabetic foot syndrome, leading to appreciable social and economic consequences. Virtually all patients with DM develop DPN in different periods. There is a clear correlation between the presence and magnitude of painful DPN and the duration of DM and the level of glycosylated hemoglobin and the severity of DPN. In spite of the abundance of theories of the development of DPN, its main identified pathogenetic factor is hyperglycemia. The literature gives no universal classification due to the variability of clinical symptoms. The main goals of treatment are to affect the pathogenesis of the disease and to prescribe symptomatic medications. The pathogenetic treatment of DPN includes compensation for carbohydrate metabolism and use of neurometabolic drugs. Pain from DPN may be controlled with antidepressants, anticonvulsants, local anesthetics and opioid analgesics. Although much evidence for the pathogenesis of peripheral nervous system injury has been recently accumulated, a universal standard for the effective therapy of DPN and the follow-up of these patients has not yet been developed.

  17. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  18. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice.

    Science.gov (United States)

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.

  19. THE MITOCHONDRIAL DERANGEMENTS IN NEURONAL DEGENER ATION AND NEURODEGENERATIVE DISEASES

    Institute of Scientific and Technical Information of China (English)

    Xue, Qi-ming; Gao, Feng; Chen, Qin-tang

    2000-01-01

    @@There are diverse concepts on the pathogenesis of neuronal degeneration and the neurodegenerative diseases. Among them there are different factors which might influence the initiation of neuronal degeneration as well as the pathogenesis of neurodegenerative diseases, such as Alzheimer′s disease, Parkinson′s disease, motor neuron disease, and so on.

  20. Alpha-chymotrypcin ameliorates neuroinflammation and apoptosis characterizing Alzheimer's disease-induced in ovarictomized rats.

    Science.gov (United States)

    El Dayem, Samiha M Abd; Ahmed, Hanaa H; Metwally, Fateheya; Foda, Fatma M Aly; Shalby, Aziza B; Zaazaa, Asmaa M A

    2013-07-01

    -chymotrypcin showed great improvement in the brain morphological structure with the disappearance of amyloid plaques. This study revealed that α-chymotrypcin significantly ameliorates the neuroinflammation characterizing Alzheimer's disease in ovariectomized rats due to it's proteolytic activity as well as it's anti-inflammatory effect. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. Microbiome, Metabolome and Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmed

    2016-06-01

    Full Text Available Inflammatory Bowel Disease (IBD is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD or Ulcerative Colitis (UC, two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

  2. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Lai, Yi-Syuan; Lee, Wan-Ching; Lin, Yu-En; Ho, Chi-Tang; Lu, Kuan-Hung; Lin, Shih-Hang; Panyod, Suraphan; Chu, Yung-Lin; Sheen, Lee-Yan

    2016-03-16

    The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management.

  3. Ameliorative effects of selenium and zinc

    African Journals Online (AJOL)

    Methidathion-induced hematological, biochemical and hepatohistological alterations in rat: Ameliorative effects of selenium and zinc. L Barkat, A Boumendjel, C Abdennour, MS Boulakoud, A El Feki, M Messarah ...

  4. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin

    Science.gov (United States)

    Marshall, Jamie L.; Oh, Jennifer; Chou, Eric; Lee, Joy A.; Holmberg, Johan; Burkin, Dean J.; Crosbie-Watson, Rachelle H.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin–glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan ‘rescue’ of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin. PMID:25504048

  5. Heregulin ameliorates the dystrophic phenotype in mdx mice

    DEFF Research Database (Denmark)

    Krag, Thomas O B; Bogdanovich, Sasha; Jensen, Claus J

    2004-01-01

    Duchenne's muscular dystrophy (DMD) is a fatal neuromuscular disease caused by absence of dystrophin. Utrophin is a chromosome 6-encoded dystrophin-related protein (DRP), sharing functional motifs with dystrophin. Utrophin's ability to compensate for dystrophin during development and when....... Therefore, this pathway offers a potential mechanism to modulate utrophin expression in muscle. We tested the ability of heregulin to improve the dystrophic phenotype in the mdx mouse model of DMD. Intraperitoneal injections of a small peptide encoding the epidermal growth factor-like region of heregulin...... ectodomain for 3 months in vivo resulted in up-regulation of utrophin, a marked improvement in the mechanical properties of muscle as evidenced by resistance to eccentric contraction mediated damage, and a reduction of muscle pathology. The amelioration of dystrophic phenotype by heregulin-mediated utrophin...

  6. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation.

    Science.gov (United States)

    Ikeda, Keigo; Hayakawa, Kunihiro; Fujishiro, Maki; Kawasaki, Mikiko; Hirai, Takuya; Tsushima, Hiroshi; Miyashita, Tomoko; Suzuki, Satoshi; Morimoto, Shinji; Tamura, Naoto; Takamori, Kenji; Ogawa, Hideoki; Sekigawa, Iwao

    2017-08-22

    We previously reported that JAK-STAT-pathway mediated regulation of IFN-regulatory factor genes could play an important role in SLE pathogenesis. Here, we evaluated the efficacy of the JAK inhibitor tofacitinib (TOFA) for controlling IFN signalling via the JAK-STAT pathway and as a therapeutic for SLE. We treated NZB/NZW F1 mice with TOFA and assessed alterations in their disease, pathological, and immunological conditions. Gene-expression results obtained from CD4 + T cells (SLE mice) and CD3 + T cells (human SLE patients) were measured by DNA microarray and qRT-PCR. TOFA treatment resulted in reduced levels of anti-dsDNA antibodies, decreased proteinuria, and amelioration of nephritis as compared with those observed in control animals. Moreover, we observed the rebalance in the populations of naïve CD4 + T cells and effector/memory cells in TOFA-treated mice; however, treatment with a combination of TOFA and dexamethasone (DEXA) elicited a stronger inhibitory effect toward the effector/memory cells than did TOFA or DEXA monotherapy. We also detected decreased expression of several IFN-signature genes Ifit3 and Isg15 in CD4 + from SLE-prone mice following TOFA and DEXA treatment, and IFIT3 in CD3 + T cells from human patients following immunosuppressant therapy including steroid, respectively. Modulation of type I IFN signalling via JAK-STAT inhibition may exert a beneficial effect in SLE patients, and our results suggest that TOFA could be utilised for the development of new SLE-specific therapeutic strategies.

  7. Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis.

    Directory of Open Access Journals (Sweden)

    Binh An Diep

    2008-09-01

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA strains typically carry genes encoding Panton-Valentine leukocidin (PVL. We used wild-type parental and isogenic PVL-deletion (Delta pvl strains of USA300 (LAC and SF8300 and USA400 (MW2 to test whether PVL alters global gene regulatory networks and contributes to pathogenesis of bacteremia, a hallmark feature of invasive staphylococcal disease. Microarray and proteomic analyses revealed that PVL does not alter gene or protein expression, thereby demonstrating that any contribution of PVL to CA-MRSA pathogenesis is not mediated through interference of global gene regulatory networks. Inasmuch as a direct role for PVL in CA-MRSA pathogenesis remains to be determined, we developed a rabbit bacteremia model of CA-MRSA infection to evaluate the effects of PVL. Following experimental infection of rabbits, an animal species whose granulocytes are more sensitive to the effects of PVL compared with the mouse, we found a contribution of PVL to pathogenesis over the time course of bacteremia. At 24 and 48 hours post infection, PVL appears to play a modest, but measurable role in pathogenesis during the early stages of bacteremic seeding of the kidney, the target organ from which bacteria were not cleared. However, the early survival advantage of this USA300 strain conferred by PVL was lost by 72 hours post infection. These data are consistent with the clinical presentation of rapid-onset, fulminant infection that has been associated with PVL-positive CA-MRSA strains. Taken together, our data indicate a modest and transient positive effect of PVL in the acute phase of bacteremia, thereby providing evidence that PVL contributes to CA-MRSA pathogenesis.

  8. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis.

    Science.gov (United States)

    Martin, Roland; Sospedra, Mireia; Rosito, Maria; Engelhardt, Britta

    2016-09-01

    Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults. When MS is not treated, it leads to irreversible and severe disability. The etiology of MS and its pathogenesis are not fully understood. The recent discovery that MS-associated genetic variants code for molecules related to the function of specific immune cell subsets is consistent with the concept of MS as a prototypic, T-cell-mediated autoimmune disease targeting the CNS. While the therapeutic efficacy of the currently available immunomodulatory therapies further strengthen this concept, differences observed in responses to MS treatment as well as additional clinical and imaging observations have also shown that the autoimmune pathogenesis underlying MS is much more complex than previously thought. There is therefore an unmet need for continued detailed phenotypic and functional analysis of disease-relevant adaptive immune cells and tissues directly derived from MS patients to unravel the immune etiology of MS in its entire complexity. In this review, we will discuss the currently available MS treatment options and approved drugs, including how they have contributed to the understanding of the immune pathology of this autoimmune disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ameliorating effect of anti-Alzheimer’s drugs on the bidirectional association between type 2 diabetes mellitus and Alzheimer’s disease

    Science.gov (United States)

    Elgharabawy, Rehab M; AL-Najjar, Amal H

    2017-01-01

    Mild to severe forms of nervous system damage were exhibited by approximately 60–70% of diabetics. It is important to understand the association between type 2 diabetes mellitus and Alzheimer’s disease. The aim of the present work is to understand the bidirectional association between type 2 diabetes and Alzheimer’s disease pathogenesis, that was monitored by glycaemic status, lipid profile, amyloid beta 40 and 42 (Aβ40 and Aβ42), C-reactive protein, total creatine kinase, total lactate dehydrogenase, D-dimer and magnesium measurements, to assess the association between theses biochemical markers and each other, to estimate the possibility of utilizing the amyloid beta as biochemical marker of T2D in Alzheimer's patients, and to evaluate the effect of piracetam and memantine drugs on diabetes mellitus. This study involved 120 subjects divided into 20 healthy control (group I), 20 diabetic patients (group II), 20 Alzheimer’s patients (group III), 20 diabetic Alzheimer's patients with symptomatic treatment (group IV), 20 diabetic Alzheimer's patients treated with memantine (group V), and 20 diabetic Alzheimer's patients treated with piracetam (group VI). The demographic characteristics, diabetic index, and lipid profile were monitored. Plasma amyloid beta 40 and amyloid beta 42, C-reactive protein, total creatine kinase, total lactate dehydrogenase, D-dimer, and magnesium were assayed. The levels of amyloid beta 40 and amyloid beta 42 were significantly elevated in diabetic Alzheimer's patients with symptomatic treatment (group IV) compared to group II (by 50.5 and 7.5 fold, respectively) and group III (by 25.4 and 2.8 fold, respectively). In groups II, III, IV, V and VI, significant and positive associations were monitored between insulin and amyloid beta 40, amyloid beta 42, C-reactive protein, total creatine kinase, and D-dimer. Diabetic markers were significantly decreased in diabetic Alzheimer’s patients treated with anti-Alzheimer’s drugs

  10. Hypothalamic pathogenesis of type 2 diabetes.

    Science.gov (United States)

    Koshiyama, Hiroyuki; Hamamoto, Yoshiyuki; Honjo, Sachiko; Wada, Yoshiharu; Lkeda, Hiroki

    2006-01-01

    There have recently been increasing experimental and clinical evidences suggesting that hypothalamic dysregulation may be one of the underlying mechanisms of abnormal glucose metabolism. First, increased hypothalamic-pituitary-adrenal axis activity induced by uncontrollable excess stress may cause diabetes mellitus as well as dyslipidemia, visceral obesity, and osteoporosis with some resemblance to Cushing's disease. Second, several molecules are known to be expressed both in pancreas and hypothalamus; adenosine triphosphate-sensitive potassium channels, malonyl-CoA, glucokinase, and AMP-activated protein kinase. Those molecules appear to form an integrated hypothalamic system, which may sense hypothalamic fuel status, especially glucose level, and inhibit action of insulin on hepatic gluconeogenesis, thereby forming a brain-liver circuit. Third, hypothalamic resistance to insulin as an adiposity signal may be involved in pathogenesis of peripheral insulin resistance. The results with mice with a neuron-specific disruption of the insulin receptor gene or those lacking insulin receptor substrate 2 in hypothalamus supported this possibility. Finally, it has very recently been suggested that dysregulation of clock genes in hypothalamus may cause abnormal glucose metabolism. Taken together, it is plausible that some hypothalamic abnormality may underlie at least some portion of type 2 diabetes or insulin resistance in humans, and this viewpoint of hypothalamic pathogenesis of type 2 diabetes may lead to the development of new drugs for type 2 diabetes.

  11. GPR84 and TREM-1 signaling contribute to the pathogenesis of reflux esophagitis.

    Science.gov (United States)

    Abdel-Aziz, Heba; Schneider, Mathias; Neuhuber, Winfried; Kassem, Abdel Meguid; Khailah, Saleem; Müller, Jürgen; Gamaleldeen, Hadeel; Khairy, Ahmed; Khayyal, Mohamed T; Shcherbakova, Anastasiia; Efferth, Thomas; Ulrich-Merzenich, Gudrun

    2015-11-24

    Gastro-esophageal reflux disease (GERD) is one of the most common disorders in gastroenterology. Patients present with or without increased acid exposure indicating a non-uniform etiology. Thus the common treatment with proton pump inhibitors (PPIs) fails to control symptoms in up to 40% of patients.To further elucidate the pathophysiology of the condition and explore new treatment targets, transcriptomics, proteomics and histological methods were applied to a surgically induced sub-chronic reflux esophagitis model in Wistar rats after treatment with either omeprazole (PPI) or STW5, a herbal preparation shown to ameliorate esophagitis without affecting refluxate pH. The normal human esophageal squamous cellline HET-1A and human endoscopic biopsies were used to confirm our findings to the G-protein coupled receptor (GPR) 84 in human tissue.Both treatments reduced reflux-induced macroscopic and microscopic lesions of the esophagi as well as known pro-inflammatory cytokines. Proteomic and transcriptomic analyses identified CINC1-3, MIP-1/3α, MIG, RANTES and IL-1β as prominent mediators in GERD. Most regulated cyto-/chemokines are linked to the TREM-1 signaling pathway. The fatty acid receptor GPR84 was up-regulated in esophagitis but significantly decreased in treated groups, a finding supported by Western blot and immunohistochemistry in both rat tissue and HET-1A cells. GPR84 was also found to be significantly up-regulated in patients with grade B reflux esophagitis.The expression of GPR84 in esophageal tissue and its potential involvement in GERD are reported for the first time. IL-8 (CINC1-3) and the TREM-1 signaling pathway are proposed, besides GPR84, to play an important role in the pathogenesis of GERD.

  12. Subclassification of fatty liver by its pathogenesis: cIEFing is believing.

    Science.gov (United States)

    Byrne, Frances L; Hoehn, Kyle L

    2016-05-01

    Fatty liver, also termed hepatic steatosis or fatty liver disease, is a condition characterized by excess fat accumulation in the liver. Common causes of fatty liver include obesity, ageing, medications, genetic disorders, viral hepatitis, excess alcohol or toxins. This diversity in pathogenesis is matched by an equally diverse spectrum of consequences, whereby some individuals remain asymptomatic yet others progress through a series of inflammatory, fibrotic and metabolic disorders that can lead to liver failure, cancer or diabetes. Current treatment approaches for fatty liver do not differ by disease aetiology and primarily involve weight loss strategies or management of co-morbidities. In a recent paper published in this journal, Urasaki et al used capillary isoelectric focusing (cIEF) to create profiles of protein post-translational modifications that distinguish four different models of fatty liver in mice. Importantly, this new cIEF approach has the potential to provide rapid individualized diagnosis of fatty liver pathogenesis that may enable more accurate and personalized treatment strategies. Further testing and optimization of cIEF as a diagnostic screening tool in humans is warranted. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Castleman disease (literature review

    Directory of Open Access Journals (Sweden)

    A. L. Melikyan

    2016-01-01

    Full Text Available Castleman disease (angiofollicular hyperplasia of lymph nodes – a rare benign lymphoproliferative disease with prolonged asymptomatic course, associated with a wide variety of autoimmune and oncological diseases and the risk of non-Hodgkin’s lymphoma. The rare occurrence of this disease and a variety of clinical course did not allow for a complete and consistent research on the etiology and pathogenesis and the standard therapies development. In recent years, the number of patients with Castleman disease in the Russian Federation has increased, which requires its recognition among non-neoplastic and neoplastic lymphadenopathy. The article provides an overview about clinical and histological variants of Castleman’s disease, its pathogenesis concepts, classification and treatment.

  14. Genomics, transcriptomics and proteomics to elucidate the pathogenesis of rheumatoid arthritis.

    Science.gov (United States)

    Song, Xinqiang; Lin, Qingsong

    2017-08-01

    Rheumatoid arthritis is an autoimmune disease that affects several organs and tissues, predominantly the synovial joints. The pathogenesis of this disease is not completely understood, which maybe involved in the genomic variations, gene expression, protein translation and post-translational modifications. These system variations in genomics, transcriptomics and proteomics are dynamic in nature and their crosstalk is overwhelmingly complex, thus analyzing them separately may not be very informative. However, various '-omics' techniques developed in recent years have opened up new possibilities for clarifying disease pathways and thereby facilitating early diagnosis and specific therapies. This review examines how recent advances in the fields of genomics, transcriptomics and proteomics have contributed to our understanding of rheumatoid arthritis.

  15. Autoantibodies against complement components in systemic lupus erythematosus - role in the pathogenesis and clinical manifestations.

    Science.gov (United States)

    Hristova, M H; Stoyanova, V S

    2017-12-01

    Many complement structures and a number of additional factors, i.e. autoantibodies, receptors, hormones and cytokines, are implicated in the complex pathogenesis of systemic lupus erythematosus. Genetic defects in the complement as well as functional deficiency due to antibodies against its components lead to different pathological conditions, usually clinically presented. Among them hypocomplementemic urticarial vasculitis, different types of glomerulonephritis as dense deposit disease, IgA nephropathy, atypical haemolytic uremic syndrome and lupus nephritis are very common. These antibodies cause conformational changes leading to pathological activation or inhibition of complement with organ damage and/or limited capacity of the immune system to clear immune complexes and apoptotic debris. Finally, we summarize the role of complement antibodies in the pathogenesis of systemic lupus erythematosus and discuss the mechanism of some related clinical conditions such as infections, thyroiditis, thrombosis, acquired von Willebrand disease, etc.

  16. Berberine ameliorates chronic kidney injury caused by atherosclerotic renovascular disease through the suppression of NFκB signaling pathway in rats.

    Directory of Open Access Journals (Sweden)

    Xin Wan

    Full Text Available BACKGROUND AND OBJECTIVES: Impaired renal function in atherosclerotic renovascular disease (ARD may be the result of crosstalk between atherosclerotic renovascular stenosis and amplified oxidative stress, inflammation and fibrosis. Berberine (BBR regulates cholesterol metabolism and exerts antioxidant effects. Accordingly, we hypothesized that BBR treatment may ameliorate ARD-induced kidney injury through its cholesterol-lowering effect and also suppression of the pathways involved in oxidative stress, inflammation and NFκB activation. METHODS: Male rats were subjected to unilateral renal artery stenosis with silver-irritant coil, and then fed with 12-week hypercholesterolemic diet. Rats with renal artery stenosis were randomly assigned to two groups (n = 6 each - ARD, or ARD+BBR - according to diet alone or in combination with BBR. Similarly, age-matched rats underwent sham operation and were also fed with hypercholesterolemic diet alone or in combination with BBR as two corresponding controls. Single-kidney hemodynamic metrics were measured in vivo with Doppler ultrasound to determine renal artery flow. The metrics reflecting hyperlipidemia, oxidative stress, renal structure and function, inflammation and NFκB activation were measured, respectively. RESULTS: Compared with control rats, ARD rats had a significant increase in urinary albumin, plasma cholesterol, LDL and thiobarbituric acid reactive substances (TBARS and a significant decrease in SOD activity. When exposed to 12-week BBR, ARD rats had significantly lower levels in blood pressure, LDL, urinary albumin, and TBARS. In addition, there were significantly lower expression levels of iNOS and TGF-β in the ARD+BBR group than in the ARD group, with attenuated NFκB-DNA binding activity and down-regulated protein levels of subunits p65 and p50 as well as IKKβ. CONCLUSIONS: We conclude that BBR can improve hypercholesterolemia and redox status in the kidney, eventually ameliorating

  17. A Review of the Strain Diversity and Pathogenesis of Chicken Astrovirus

    Directory of Open Access Journals (Sweden)

    Victoria J. Smyth

    2017-02-01

    Full Text Available Although a relatively recently emerged virus, identified only in 2004 as a separate species of avian astrovirus, chicken astrovirus (CAstV has been associated with poor growth of broiler flocks, enteritis and diarrhea and is a candidate pathogen in cases of runting stunting syndrome. More recently CAstV has been implicated in cases of two other diseases of broilers as the sole etiological agent, namely severe kidney disease of young broilers with visceral gout and the “White Chicks” hatchery disease. Examination of the strains of CAstV associated with the two latter diseases reveals they are closely related genetically. This review will discuss the pathogenesis of CAstV in relation to strain diversity and the effects of vertical versus horizontal transmission, virus load, co-infections and age of bird at infection, all factors that may impact upon disease severity.

  18. A Review of the Strain Diversity and Pathogenesis of Chicken Astrovirus.

    Science.gov (United States)

    Smyth, Victoria J

    2017-02-10

    Although a relatively recently emerged virus, identified only in 2004 as a separate species of avian astrovirus, chicken astrovirus (CAstV) has been associated with poor growth of broiler flocks, enteritis and diarrhea and is a candidate pathogen in cases of runting stunting syndrome. More recently CAstV has been implicated in cases of two other diseases of broilers as the sole etiological agent, namely severe kidney disease of young broilers with visceral gout and the "White Chicks" hatchery disease. Examination of the strains of CAstV associated with the two latter diseases reveals they are closely related genetically. This review will discuss the pathogenesis of CAstV in relation to strain diversity and the effects of vertical versus horizontal transmission, virus load, co-infections and age of bird at infection, all factors that may impact upon disease severity.

  19. DOSim: An R package for similarity between diseases based on Disease Ontology

    Science.gov (United States)

    2011-01-01

    Background The construction of the Disease Ontology (DO) has helped promote the investigation of diseases and disease risk factors. DO enables researchers to analyse disease similarity by adopting semantic similarity measures, and has expanded our understanding of the relationships between different diseases and to classify them. Simultaneously, similarities between genes can also be analysed by their associations with similar diseases. As a result, disease heterogeneity is better understood and insights into the molecular pathogenesis of similar diseases have been gained. However, bioinformatics tools that provide easy and straight forward ways to use DO to study disease and gene similarity simultaneously are required. Results We have developed an R-based software package (DOSim) to compute the similarity between diseases and to measure the similarity between human genes in terms of diseases. DOSim incorporates a DO-based enrichment analysis function that can be used to explore the disease feature of an independent gene set. A multilayered enrichment analysis (GO and KEGG annotation) annotation function that helps users explore the biological meaning implied in a newly detected gene module is also part of the DOSim package. We used the disease similarity application to demonstrate the relationship between 128 different DO cancer terms. The hierarchical clustering of these 128 different cancers showed modular characteristics. In another case study, we used the gene similarity application on 361 obesity-related genes. The results revealed the complex pathogenesis of obesity. In addition, the gene module detection and gene module multilayered annotation functions in DOSim when applied on these 361 obesity-related genes helped extend our understanding of the complex pathogenesis of obesity risk phenotypes and the heterogeneity of obesity-related diseases. Conclusions DOSim can be used to detect disease-driven gene modules, and to annotate the modules for functions and

  20. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis

    Science.gov (United States)

    Hernández, Hilda M.; Marcet, Ricardo; Sarracent, Jorge

    2014-01-01

    Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis. PMID:25348828

  1. Pathogenesis of Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2012-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is a common complication of many diseases. Its polyetiological pattern determines the specific features of lung morphological changes and the clinical course of ARDS. Objective: to analyze the pathogenesis of ARDS in the context of the general pathological processes underlying its development. Material and methods. More than 200 lungs from the people who had died from severe concomitant injury or ARDS-complicated pneumonia were investigated. More than 150 rat experiments simulated various types of lung injury: ventilator-induced lung injury with different ventilation parameters; reperfusion injuries (systemic circulation blockade due to 12-minute vascular fascicle ligation, followed by the recovery of cardiac performance and breathing; microcirculatory disorder (injection of a thromboplastin solution into the jugular vein; blood loss; betaine-pepsin aspiration; and closed chest injury. Different parts of the right and left lungs were histologically examined 1 and 3 hours and 1 and 3 days after initiation of the experiment. Lung pieces were fixed in 10% neutral formalin solution and embedded in paraffin. Histological sections were stained with hematoxylin and eosin and using the van Gieson and Weigert procedures; the Schiff test was used. Results. The influence of aggression factors (trauma, blood loss, aspiration, infection, etc. results in damage to the lung and particularly air-blood barrier structures (endothelium, alveolar epithelium, their basement membrane. In turn the alteration of cellular and extracellular structures is followed by the increased permeability of hemomicrocirculatory bed vessels, leading to the development of non-cardiogenic (interstitial, alveolar pulmonary edema that is a central component in the pathogenesis of ARDS. Conclusion. The diagnosis of the early manifestations of ARDS must account for the nature of an aggression factor, the signs confirming the alteration of the lung

  2. MicroRNA involvement in glioblastoma pathogenesis

    International Nuclear Information System (INIS)

    Novakova, Jana; Slaby, Ondrej; Vyzula, Rostislav; Michalek, Jaroslav

    2009-01-01

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  3. 27 CFR 24.304 - Chaptalization (Brix adjustment) and amelioration record.

    Science.gov (United States)

    2010-04-01

    ... ameliorates juice or wine, or both, shall maintain a record of the operation and the transaction date. Records...; however, if liquid sugar or invert sugar syrup is used, the quantity of water in such sugar is included as... to be held after that date for completion. When the amelioration of wine included in the record for...

  4. Advances in canine distemper virus pathogenesis research: a wildlife perspective.

    Science.gov (United States)

    Loots, Angelika K; Mitchell, Emily; Dalton, Desiré L; Kotzé, Antoinette; Venter, Estelle H

    2017-03-01

    Canine distemper virus (CDV) has emerged as a significant disease of wildlife, which is highly contagious and readily transmitted between susceptible hosts. Initially described as an infectious disease of domestic dogs, it is now recognized as a global multi-host pathogen, infecting and causing mass mortalities in a wide range of carnivore species. The last decade has seen the effect of numerous CDV outbreaks in various wildlife populations. Prevention of CDV requires a clear understanding of the potential hosts in danger of infection as well as the dynamic pathways CDV uses to gain entry to its host cells and its ability to initiate viral shedding and disease transmission. We review recent research conducted on CDV infections in wildlife, including the latest findings on the causes of host specificity and cellular receptors involved in distemper pathogenesis.

  5. Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling

    Directory of Open Access Journals (Sweden)

    Angela Wang

    2016-12-01

    Full Text Available Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark, orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling.

  6. Plants as models for the study of human pathogenesis.

    Science.gov (United States)

    Guttman, David S

    2004-05-01

    There are many common disease mechanisms used by bacterial pathogens of plants and humans. They use common means of attachment, secretion and genetic regulation. They share many virulence factors, such as extracellular polysaccharides and some type III secreted effectors. Plant and human innate immune systems also share many similarities. Many of these shared bacterial virulence mechanisms are homologous, but even more appear to have independently converged on a common function. This combination of homologous and analogous systems reveals conserved and critical steps in the disease process. Given these similarities, and the many experimental advantages of plant biology, including ease of replication, stringent genetic and reproductive control, and high throughput with low cost, it is proposed that plants would make excellent models for the study of human pathogenesis.

  7. Modeling the Pathogenesis of Charcot-Marie-Tooth Disease Type 1A Using Patient-Specific iPSCs

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2018-01-01

    Full Text Available Charcot-Marie-Tooth disease type 1A (CMT1A, one of the most frequent inherited peripheral neuropathies, is associated with PMP22 gene duplication. Previous studies of CMT1A mainly relied on rodent models, and it is not yet clear how PMP22 overexpression leads to the phenotype in patients. Here, we generated the human induced pluripotent stem cell (hiPSC lines from two CMT1A patients as an in vitro cell model. We found that, unlike the normal control cells, CMT1A hiPSCs rarely generated Schwann cells through neural crest stem cells (NCSCs. Instead, CMT1A NCSCs produced numerous endoneurial fibroblast-like cells in the Schwann cell differentiation system, and similar results were obtained in a PMP22-overexpressing iPSC model. Therefore, despite the demyelination-remyelination and/or dysmyelination theory for CMT1A pathogenesis, developmental disabilities of Schwann cells may be considered as an underlying cause of CMT1A. Our results may have important implications for the uncovering of the underlying mechanism and the development of a promising therapeutic strategy for CMT1A neuropathy.

  8. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Aliev, Gjumrakch; Gasimov, Eldar; Obrenovich, Mark E; Fischbach, Kathryn; Shenk, Justin C; Smith, Mark A; Perry, George

    2008-01-01

    The pathogenesis that is primarily responsible for Alzheimer's disease (AD) and cerebrovascular accidents (CVA) appears to involve chronic hypoperfusion. We studied the ultrastructural features of vascular lesions and mitochondria in brain vascular wall cells from human AD biopsy samples and two transgenic mouse models of AD, yeast artificial chromosome (YAC) and C57B6/SJL Tg (+), which overexpress human amyloid beta precursor protein (AbetaPP). In situ hybridization using probes for normal and 5 kb deleted human and mouse mitochondrial DNA (mtDNA) was performed along with immunocytochemistry using antibodies against the Abeta peptide processed from AbetaPP, 8-hydroxy-2'-guanosine (8OHG), and cytochrome c oxidase (COX). More amyloid deposition, oxidative stress markers as well as mitochondrial DNA deletions and structural abnormalities were present in the vascular walls of the human AD samples and the AbetaPP-YAC and C57B6/SJL Tg (+) transgenic mice compared to age-matched controls. Ultrastructural damage in perivascular cells highly correlated with endothelial lesions in all samples. Therefore, pharmacological interventions, directed at correcting the chronic hypoperfusion state, may change the natural course of the development of dementing neurodegeneration.

  9. Plaque hemorrhage in carotid artery disease: Pathogenesis, clinical and biomechanical considerations

    Science.gov (United States)

    Teng, Zhongzhao; Sadat, Umar; Brown, Adam J.; Gillard, Jonathan H.

    2014-01-01

    Stroke remains the most prevalent disabling illness today, with internal carotid artery luminal stenosis due to atheroma formation responsible for the majority of ischemic cerebrovascular events. Severity of luminal stenosis continues to dictate both patient risk stratification and the likelihood of surgical intervention. But there is growing evidence to suggest that plaque morphology may help improve pre-existing risk stratification criteria. Plaque components such a fibrous tissue, lipid rich necrotic core and calcium have been well investigated but plaque hemorrhage (PH) has been somewhat overlooked. In this review we discuss the pathogenesis of PH, its role in dictating plaque vulnerability, PH imaging techniques, marterial properties of atherosclerotic tissues, in particular, those obtained based on in vivo measurements and effect of PH in modulating local biomechanics. PMID:24485514

  10. [Non-alcoholic fatty liver disease--new view].

    Science.gov (United States)

    Raszeja-Wyszomirska, Joanna; Lawniczak, Małgorzata; Marlicz, Wojciech; Miezyńska-Kurtycz, Joanna; Milkiewicz, Piotr

    2008-06-01

    Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology--from steatosis alone, through the necroinflammatory disorder of non-alcoholic steatohepatitis (NASH) to cirrhosis and liver cancer. NAFLD/NASH is mostly related with visceral adiposity, obesity, type 2 diabetes melitus (DM t.2) and metabolic syndrome. Pathogenetic concepts of NAFLD include overnutrition and underactivity, insulin resistance (IR) and genetic factor. The prevalence of NAFLD has been estimated to be 17-33% in some countries, NASH may be present in about 1/3 of such cases, while 20-25% of NASH cases could progress to cirrhosis. NAFLD is now recognized as one of the most frequent reason of liver tests elevation without clinical symptoms. Insulin resistance is considering as having a central role in NAFLD pathogenesis. In hepatocytes, IR is related to hyperglycaemia and hyperinsulinaemia, formation of advanced glycation end-products, increased free fatty acids and their metabolites, oxidative stress and altered profiles of adipocytokines. Early stages of fatty liver are clinically silent and include elevation of ALT and GGTP, hyperechogenic liver in USG and/or hepatomegaly. Among clinical symptoms, abdominal discomfort is relatively common as well as chronic fatigue. NAFLD/NASH is not a benign disease, progressive liver biopsy have shown histological progression of fibrosis in 32%, the estimated rate of cirrhosis development is 20% and a liver--related death is 12% over 10 years. No treatment has scientifically proved to ameliorate NAFLD or to avoid its progression. The various therapeutic alternatives are aimed at interfering with the risk factors involved in the pathogenesis of the disorder in order to prevent the progression to end-stage liver disease. The most important therapeutic measure is increasing insulin sensitivity by an attempt to change a lifestyle mostly by dieting and physical activity in order to loose weight. The most used agent is metformin, the others

  11. Kaposi sarcoma herpesvirus pathogenesis

    Science.gov (United States)

    Koch, Sandra; Schulz, Thomas F.

    2017-01-01

    Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’. PMID:28893942

  12. Neutralizing Antibodies and Pathogenesis of Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Françoise Stoll-Keller

    2012-10-01

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease worldwide. The interplay between the virus and host innate and adaptive immune responses determines the outcome of infection. There is increasing evidence that host neutralizing responses play a relevant role in the resulting pathogenesis. Furthermore, viral evasion from host neutralizing antibodies has been revealed to be an important contributor in leading both to viral persistence in acute liver graft infection following liver transplantation, and to chronic viral infection. The development of novel model systems to study HCV entry and neutralization has allowed a detailed understanding of the molecular mechanisms of virus-host interactions during antibody-mediated neutralization. The understanding of these mechanisms will ultimately contribute to the development of novel antiviral preventive strategies for liver graft infection and an urgently needed vaccine. This review summarizes recent concepts of the role of neutralizing antibodies in viral clearance and protection, and highlights consequences of viral escape from neutralizing antibodies in the pathogenesis of HCV infection.

  13. Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species.

    Directory of Open Access Journals (Sweden)

    Smanla Tundup

    2017-03-01

    Full Text Available The cellular and molecular mechanisms underpinning the unusually high virulence of highly pathogenic avian influenza H5N1 viruses in mammalian species remains unknown. Here, we investigated if the cell tropism of H5N1 virus is a determinant of enhanced virulence in mammalian species. We engineered H5N1 viruses with restricted cell tropism through the exploitation of cell type-specific microRNA expression by incorporating microRNA target sites into the viral genome. Restriction of H5N1 replication in endothelial cells via miR-126 ameliorated disease symptoms, prevented systemic viral spread and limited mortality, despite showing similar levels of peak viral replication in the lungs as compared to control virus-infected mice. Similarly, restriction of H5N1 replication in endothelial cells resulted in ameliorated disease symptoms and decreased viral spread in ferrets. Our studies demonstrate that H5N1 infection of endothelial cells results in excessive production of cytokines and reduces endothelial barrier integrity in the lungs, which culminates in vascular leakage and viral pneumonia. Importantly, our studies suggest a need for a combinational therapy that targets viral components, suppresses host immune responses, and improves endothelial barrier integrity for the treatment of highly pathogenic H5N1 virus infections.

  14. The pathophysiology of Peyronie's disease.

    Science.gov (United States)

    El-Sakka, Ahmed I; Salabas, Emre; Dinçer, Murat; Kadioglu, Ates

    2013-09-01

    To review the contemporary knowledge of the pathophysiology of Peyronie's disease (PD). Medline was searched for papers published in English from 2000 to March 2013, using the keywords 'Peyronie's disease' and 'pathophysiology'. More than 300 relevant articles were identified for the purpose of this review. Unfortunately only a few studies had a high level of evidence, and the remaining studies were not controlled in their design. Many theories have been proposed to explain the cause of PD, but the true pathogenesis of PD remains an enigma. Identifying particular growth factors and the specific genes responsible for the induction of PD have been the ultimate goal of research over the past several decades. This would provide the means to devise a possible gene therapy for this devastating condition. We discuss present controversies and new discoveries related to the pathophysiology of this condition. PD is one of the most puzzling diseases in urology. The pathogenesis remains uncertain and there is still controversy about the best management. The pathogenesis of PD has been explored in animal models, cell cultures and clinical trials, but the results have led to further questions. New research on the aetiology and pathogenesis of PD is needed, and which will hopefully improve the understanding and management for patients with this frustrating disease.

  15. Ginsenoside Rg1 Ameliorates Behavioral Abnormalities and Modulates the Hippocampal Proteomic Change in Triple Transgenic Mice of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Lulin Nie

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is one of the most common neurodegenerative diseases, so far, there are no effective measures to prevent and cure this deadly condition. Ginsenoside Rg1 (Rg1 was shown to improve behavioral abnormalities in AD; however, the potential mechanisms remain unclear. In this study, we pretreated 7-month-old 3xTg-AD mice for 6 weeks with Rg1 and evaluated the effects of Rg1 on the behaviors and the protein expression of hippocampal tissues. The behavioral tests showed that Rg1 could improve the memory impairment and ameliorate the depression-like behaviors of 3xTg-AD mice. Proteomic results revealed a total of 28 differentially expressed hippocampal proteins between Rg1-treated and nontreated 3xTg-AD mice. Among these proteins, complexin-2 (CPLX2, synapsin-2 (SYN2, and synaptosomal-associated protein 25 (SNP25 were significantly downregulated in the hippocampus of 3xTg-AD mice compared with the WT mice, and the treatment of Rg1 modulated the expression of CPLX2 and SNP25 in the hippocampus of 3xTg-AD mice. The expression of CPLX2, SYN2, and SNP25 was further validated by Western blot analysis. Taken together, we concluded that Rg1 could be a potential candidate drug to improve the behavioral deficits in AD via modulating the expression of the proteins (i.e., CPLX2, SYN2, and SNP25.

  16. Basal Cell Carcinoma: Pathogenesis, Epidemiology, Clinical Features, Diagnosis, Histopathology, and Management

    Science.gov (United States)

    Marzuka, Alexander G.; Book, Samuel E.

    2015-01-01

    Basal cell carcinoma (BCC) is the most common malignancy. Exposure to sunlight is the most important risk factor. Most, if not all, cases of BCC demonstrate overactive Hedgehog signaling. A variety of treatment modalities exist and are selected based on recurrence risk, importance of tissue preservation, patient preference, and extent of disease. The pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management of BCC will be discussed in this review. PMID:26029015

  17. AAV-based shRNA silencing of NF-κB ameliorates muscle pathologies in mdx mice.

    Science.gov (United States)

    Yang, Q; Tang, Y; Imbrogno, K; Lu, A; Proto, J D; Chen, A; Guo, F; Fu, F H; Huard, J; Wang, B

    2012-12-01

    Chronic inflammation, promoted by an upregulated NF-kappa B (NF-κB) pathway, has a key role in Duchenne muscular dystrophy (DMD) patients' pathogenesis. Blocking the NF-κB pathway has been shown to be a viable approach to diminish chronic inflammation and necrosis in the dystrophin-defective mdx mouse, a murine DMD model. In this study, we used the recombinant adeno-associated virus serotype 9 (AAV9) carrying an short hairpin RNA (shRNA) specifically targeting the messenger RNA of NF-κB/p65 (p65-shRNA), the major subunit of NF-κB associated with chronic inflammation in mdx mice. We examined whether i.m. AAV9-mediated delivery of p65-shRNA could decrease NF-κB activation, allowing for amelioration of muscle pathologies in 1- and 4-month-old mdx mice. At 1 month after treatment, NF-κB/p65 levels were significantly decreased by AAV gene transfer of p65-shRNA in the two ages of treatment groups, with necrosis significantly decreased compared with controls. Quantitative analysis revealed that central nucleation (CN) of the myofibers of p65-shRNA-treated 1-month-old mdx muscles was reduced from 67 to 34%, but the level of CN was not significantly decreased in treated 4-month-old mdx mice. Moreover, delivery of the p65-shRNA enhanced the capacity of myofiber regeneration in old mdx mice treated at 4 months of age when the dystrophic myofibers were most exhausted; however, such p65 silencing diminished the myofiber regeneration in young mdx mice treated at 1 month of age. Taken together, these findings demonstrate that the AAV-mediated delivery of p65-shRNA has the capacity to ameliorate muscle pathologies in mdx mice by selectively reducing NF-κB/p65 activity.

  18. Genetic prion disease: no role for the immune system in disease pathogenesis?

    Science.gov (United States)

    Friedman-Levi, Yael; Binyamin, Orli; Frid, Kati; Ovadia, Haim; Gabizon, Ruth

    2014-08-01

    Prion diseases, which can manifest by transmissible, sporadic or genetic etiologies, share several common features, such as a fatal neurodegenerative outcome and the aberrant accumulation of proteinase K (PK)-resistant PrP forms in the CNS. In infectious prion diseases, such as scrapie in mice, prions first replicate in immune organs, then invade the CNS via ascending peripheral tracts, finally causing death. Accelerated neuroinvasion and death occurs when activated prion-infected immune cells infiltrate into the CNS, as is the case for scrapie-infected mice induced for experimental autoimmune encephalomyelitis (EAE), a CNS inflammatory insult. To establish whether the immune system plays such a central role also in genetic prion diseases, we induced EAE in TgMHu2ME199K mice, a line mimicking for late onset genetic Creutzfeldt Jacob disease (gCJD), a human prion disease. We show here that EAE induction of TgMHu2ME199K mice neither accelerated nor aggravated prion disease manifestation. Concomitantly, we present evidence that PK-resistant PrP forms were absent from CNS immune infiltrates, and most surprisingly also from lymph nodes and spleens of TgMHu2ME199K mice at all ages and stages of disease. These results imply that the mechanism of genetic prion disease differs widely from that of the infectious presentation, and that the conversion of mutant PrPs into PK resistant forms occurs mostly/only in the CNS. If the absence of pathogenic PrP forms form immune organs is also true for gCJD patients, it may suggest their blood is devoid of prion infectivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Evolving Concepts in the Pathogenesis of NASH: Beyond Steatosis and Inflammation

    Directory of Open Access Journals (Sweden)

    William Peverill

    2014-05-01

    Full Text Available Non-alcoholic steatohepatitis (NASH is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future.

  20. Green Tea Polyphenols, Mimicking the Effects of Dietary Restriction, Ameliorate High-Fat Diet-Induced Kidney Injury via Regulating Autophagy Flux

    Directory of Open Access Journals (Sweden)

    Xiao Xie

    2017-05-01

    Full Text Available Epidemiological and experimental studies reveal that Western dietary patterns contribute to chronic kidney disease, whereas dietary restriction (DR or dietary polyphenols such as green tea polyphenols (GTPs can ameliorate the progression of kidney injury. This study aimed to investigate the renal protective effects of GTPs and explore the underlying mechanisms. Sixty Wistar rats were randomly divided into 6 groups: standard diet (STD, DR, high-fat diet (HFD, and three diets plus 200 mg/kg(bw/day GTPs, respectively. After 18 weeks, HFD group exhibited renal injuries by increased serum cystatin C levels and urinary N-acetyl-β-d-glucosaminidase activity, which can be ameliorated by GTPs. Meanwhile, autophagy impairment as denoted by autophagy-lysosome related proteins, including LC3-II, Beclin-1, p62, cathepsin B, cathepsin D and LAMP-1, was observed in HFD group, whereas DR or GTPs promoted renal autophagy activities and GTPs ameliorated HFD-induced autophagy impairment. In vitro, autophagy flux suppression was detected in palmitic acid (PA-treated human proximal tubular epithelial cells (HK-2, which was ameliorated by epigallocatechin-3-gallate (EGCG. Furthermore, GTPs (or EGCG elevated phosphorylation of AMP-activated protein kinase in the kidneys of HFD-treated rats and in PA-treated HK-2 cells. These findings revealed that GTPs mimic the effects of DR to induce autophagy and exert a renal protective effect by alleviating HFD-induced autophagy suppression.

  1. Diet, nutrients and metabolism: cogs in the wheel driving Alzheimer's disease pathology?

    Science.gov (United States)

    Creegan, Rhona; Hunt, Wendy; McManus, Alexandra; Rainey-Smith, Stephanie R

    2015-05-28

    Alzheimer's disease (AD), the most common form of dementia, is a chronic, progressive neurodegenerative disease that manifests clinically as a slow global decline in cognitive function, including deterioration of memory, reasoning, abstraction, language and emotional stability, culminating in a patient with end-stage disease, totally dependent on custodial care. With a global ageing population, it is predicted that there will be a marked increase in the number of people diagnosed with AD in the coming decades, making this a significant challenge to socio-economic policy and aged care. Global estimates put a direct cost for treating and caring for people with dementia at $US604 billion, an estimate that is expected to increase markedly. According to recent global statistics, there are 35.6 million dementia sufferers, the number of which is predicted to double every 20 years, unless strategies are implemented to reduce this burden. Currently, there is no cure for AD; while current therapies may temporarily ameliorate symptoms, death usually occurs approximately 8 years after diagnosis. A greater understanding of AD pathophysiology is paramount, and attention is now being directed to the discovery of biomarkers that may not only facilitate pre-symptomatic diagnosis, but also provide an insight into aberrant biochemical pathways that may reveal potential therapeutic targets, including nutritional ones. AD pathogenesis develops over many years before clinical symptoms appear, providing the opportunity to develop therapy that could slow or stop disease progression well before any clinical manifestation develops.

  2. Nonalcoholic fatty liver disease: Update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine

    Science.gov (United States)

    Mato, José M; Lu, Shelly C

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide affecting over one-third of the population in the U.S. It has been associated with obesity, type 2 diabetes, hyperlipidemia, and insulin resistance and is initiated by the accumulation of triglycerides in hepatocytes. Isolated hepatic steatosis (IHS) remains a benign process, while a subset develops superimposed inflammatory activity and progression to nonalcoholic steatohepatitis (NASH) with or without fibrosis. However, the molecular mechanisms underlying NAFLD progression are not completely understood. Liver biopsy is still required to differentiate IHS from NASH as easily accessible noninvasive biomarkers are lacking. In terms of treatments for NASH, pioglitazone, vitamin E, and obeticholic acid have shown some benefit. All of these agents have potential complications associated with long-term use. Nowadays, a complex hypothesis suggests that multiple parallel hits are involved in NASH development. However, the ‘key switch’ between IHS and NASH remains to be discovered. We have recently shown that knocking out enzymes involved in S-adenosylmethionine (SAMe) metabolism, the main biological methyl donor in humans that is abundant in the liver, will lead to NASH development in mice. This could be due to the fact that a normal SAMe level is required to establish the proper ratio of phosphatidylethanolamine to phosphatidylcholine that has been found to be important in NAFLD progression. New data from humans have also suggested that these enzymes play a role in the pathogenesis of NAFLD and that some of SAMe cycle metabolites may serve as noninvasive biomarkers of NASH. In this review, we discuss the evidence of the role of SAMe in animal models and humans with NAFLD and how studying this area may lead to the discovery of new noninvasive biomarkers and possibly personalized treatment for NASH. PMID:25873078

  3. Crohn’s disease: Mucosal immunology and immune modulating therapy

    NARCIS (Netherlands)

    Peters, C.P.

    2014-01-01

    Crohn’s disease (CD) and ulcerative colitis (UC) are debilitating chronic diseases that affect millions of people worldwide, profoundly impacting patient quality of life and incurring large costs in terms of treatment and lost productivity. While current interventions ameliorate disease symptoms,

  4. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Ramón Cacabelos

    2017-03-01

    Full Text Available Parkinson’s disease (PD is the second most important age-related neurodegenerative disorder in developed societies, after Alzheimer’s disease, with a prevalence ranging from 41 per 100,000 in the fourth decade of life to over 1900 per 100,000 in people over 80 years of age. As a movement disorder, the PD phenotype is characterized by rigidity, resting tremor, and bradykinesia. Parkinson’s disease -related neurodegeneration is likely to occur several decades before the onset of the motor symptoms. Potential risk factors include environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular damage, and genomic defects. Parkinson’s disease neuropathology is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta, with widespread involvement of other central nervous system (CNS structures and peripheral tissues. Pathogenic mechanisms associated with genomic, epigenetic and environmental factors lead to conformational changes and deposits of key proteins due to abnormalities in the ubiquitin–proteasome system together with dysregulation of mitochondrial function and oxidative stress. Conventional pharmacological treatments for PD are dopamine precursors (levodopa, l-DOPA, l-3,4 dihidroxifenilalanina, and other symptomatic treatments including dopamine agonists (amantadine, apomorphine, bromocriptine, cabergoline, lisuride, pergolide, pramipexole, ropinirole, rotigotine, monoamine oxidase (MAO inhibitors (selegiline, rasagiline, and catechol-O-methyltransferase (COMT inhibitors (entacapone, tolcapone. The chronic administration of antiparkinsonian drugs currently induces the “wearing-off phenomenon”, with additional psychomotor and autonomic complications. In order to minimize these clinical complications, novel compounds have been developed. Novel drugs and bioproducts for the treatment of PD should address dopaminergic neuroprotection to reduce premature neurodegeneration in

  5. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, Jai; De Ruiter, Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent antifibrotics, interferon gamma (IFN gamma), a proinflammatory

  6. Alzheimer’s Pathogenesis and Its Link to the Mitochondrion

    Directory of Open Access Journals (Sweden)

    C. Simoncini

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia in the elderly. This neurodegenerative disorder is clinically characterized by impairment of cognitive functions and changes in behaviour and personality. The pathogenesis of AD is still unclear. Recent evidence supports some role of mitochondria dysfunction and oxidative stress in the development of the neurodegenerative process. In this review, we discuss the role of mitochondrial dysfunction in AD, focusing on the mechanisms that lead to mitochondrial impairment, oxidative stress, and neurodegeneration, a “vicious circle” that ends in dementia.

  7. Flemingia macrophylla Extract Ameliorates Experimental Osteoporosis in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ya Ho

    2011-01-01

    Full Text Available Flemingia macrophylla (Leguminosae, a native plant of Taiwan, is used as folk medicine. An in vitro study showed that a 75% ethanolic extract of F. macrophylla (FME inhibited osteoclast differentiation of cultured rat bone marrow cells, and the active component, lespedezaflavanone A (LDF-A, was isolated. It was found that oral administration of FME for 13 weeks suppressed bone loss in ovariectomized rats, an experimental model of osteoporosis. In addition, FME decreased urinary deoxypyridinoline concentrations but did not inhibit serum alkaline phosphatase activities, indicating that it ameliorated bone loss via inhibition of bone resorption. These results suggest that FME may represent a useful remedy for the treatment of bone resorption diseases, such as osteoporosis. In addition, LDF-A could be used as a marker compound to control the quality of FME.

  8. Actinic Keratosis Pathogenesis Update and New Patents.

    Science.gov (United States)

    Cantisani, Carmen; Paolino, Giovanni; Melis, Marcello; Faina, Valentina; Romaniello, Federico; Didona, Dario; Cardone, Michele; Calvieri, Stefano

    2016-01-01

    Actinic keratosis is a common premalignant skin lesion. Because of its increasing incidence, several efforts have been made to earlier detectection and to improve knowledge on photocarcinogenic pathways of keratinocytes. As a consequence, recently new discoveries have been done in this field. Starting from our previous review on actinic keratosis, we reviewed the literature focusing on pathogenesis and new patents in order to highlight the most recent progresses in diagnosis and therapeutic approach. Although several efforts have been done in the field of photodamaged skin, new upgrades in diagnosis and therapy are needed to detect superficial actinic keratosis earlier, to improve the disease free survival of patient and to better treat the field cancerization.

  9. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders.

    Science.gov (United States)

    Theoharides, T C; Tsilioni, I; Patel, A B; Doyle, R

    2016-06-28

    Autism spectrum disorders (ASDs) affect as many as 1 in 45 children and are characterized by deficits in sociability and communication, as well as stereotypic movements. Many children also show severe anxiety. The lack of distinct pathogenesis and reliable biomarkers hampers the development of effective treatments. As a result, most children with ASD are prescribed psychopharmacologic agents that do not address the core symptoms of ASD. Autoantibodies against brain epitopes in mothers of children with ASD and many such children strongly correlate with allergic symptoms and indicate an aberrant immune response, as well as disruption of the blood-brain barrier (BBB). Recent epidemiological studies have shown a strong statistical correlation between risk for ASD and either maternal or infantile atopic diseases, such as asthma, eczema, food allergies and food intolerance, all of which involve activation of mast cells (MCs). These unique tissue immune cells are located perivascularly in all tissues, including the thalamus and hypothalamus, which regulate emotions. MC-derived inflammatory and vasoactive mediators increase BBB permeability. Expression of the inflammatory molecules interleukin (IL-1β), IL-6, 1 L-17 and tumor necrosis factor (TNF) is increased in the brain, cerebrospinal fluid and serum of some patients with ASD, while NF-kB is activated in brain samples and stimulated peripheral blood immune cells of other patients; however, these molecules are not specific. Instead the peptide neurotensin is uniquely elevated in the serum of children with ASD, as is corticotropin-releasing hormone, secreted from the hypothalamus under stress. Both peptides trigger MC to release IL-6 and TNF, which in turn, stimulate microglia proliferation and activation, leading to disruption of neuronal connectivity. MC-derived IL-6 and TGFβ induce maturation of Th17 cells and MCs also secrete IL-17, which is increased in ASD. Serum IL-6 and TNF may define an ASD subgroup that

  10. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Nagib, Marwa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Tadros, Mariane G., E-mail: mirogeogo@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); ELSayed, Moushira I. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Khalifa, Amani E. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  11. The epidemiology and the pathogenesis of inflammatory bowel disease

    International Nuclear Information System (INIS)

    Karlinger, Kinga; Gyoerke, Tamas; Makoe, Erno; Mester, Adam; Tarjan, Zsolt

    2000-01-01

    The etiology of inflammatory bowel disease (IBD) is still unknown. However, a satisfactory solution cannot be far away. IBD actually encompasses two diseases, i.e. Crohn's disease (CD) and ulcerous colitis (UC). These diseases resemble each other so closely that they cannot be distinguished even pathologically, but differ from each other sufficiently to regard them as independent entities. Epidemiological observations may be helpful in identifying the true causative factors of this evasive disease. Geographically, the prevalence of the disease has a slope from North to South and, to a lesser degree, from West to East. The Western-Eastern discrepancy can be attributed to a difference in Western life styles. The incidence of the disease has been increasing world-wide of late, but its spread has been slowing down in highly affected countries. Racial and ethnic relations in different populations and immigration studies offer interesting data which can reflect genetic, inherited, environmental and behavioural factors. The disease seems to have a characteristic racial-ethnic distribution: the Jewish population is highly susceptible everywhere, but its prevalence in that population nears that of the domestic society in which they live. In Hungary, the Roma (Gypsies) have a considerably lower prevalence than the average population. This can be attributed to a genetic or environmental influence. According to age, the onset of the disease occurs more often in the second or the third decade of life, but there also is another peak in the 60s. Regarding sexual distribution, there is a slight preponderance of colitis ulcerosa in men and of Crohn's disease in women. It may correspond to the stronger auto-immune affection in the process of Crohn's disease. Environmental factors and behavioural influences also are investigated. Diet, the role of the early ages, smoking habits and the influence of hormonal status and drugs are viewed as useful contributing factors in the

  12. Smart Soup, a traditional Chinese medicine formula, ameliorates amyloid pathology and related cognitive deficits.

    Directory of Open Access Journals (Sweden)

    Yujun Hou

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease that causes substantial public health care burdens. Intensive efforts have been made to find effective and safe disease-modifying treatment and symptomatic intervention alternatives against AD. Smart Soup (SS, a Chinese medicine formula composed of Rhizoma Acori Tatarinowii (AT, Poria cum Radix Pini (PRP and Radix Polygalae (RP, is a typical prescription against memory deficits. Here, we assessed the efficacy of SS against AD. Oral administration of SS ameliorated the cognitive impairment of AD transgenic mice, with reduced Aβ levels, retarded Aβ amyloidosis and reduced Aβ-induced gliosis and neuronal loss in the brains of AD mice. Consistently, SS treatment reduced amyloid-related locomotor dysfunctions and premature death of AD transgenic Drosophila. Mechanistic studies showed that RP reduced Aβ generation, whereas AT and PRP exerted neuroprotective effects against Aβ. Taken together, our study indicates that SS could be effective against AD, providing a practical therapeutic strategy against the disease.

  13. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, Jai; de Ruiter, Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent anti-fibrotics, interferon gamma (IFNγ), a proinflammatory cytokine, is

  14. Efficacy of ALK5 inhibition in myelofibrosis

    OpenAIRE

    Yue, Lanzhu; Bartenstein, Matthias; Zhao, Wanke; Ho, Wanting Tina; Han, Ying; Murdun, Cem; Mailloux, Adam W.; Zhang, Ling; Wang, Xuefeng; Budhathoki, Anjali; Pradhan, Kith; Rapaport, Franck; Wang, Huaquan; Shao, Zonghong; Ren, Xiubao

    2017-01-01

    Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-? family members are profibrotic cytokines and we observed significant TGF-?1 isoform overexpression in a large co...

  15. [Primary biliary cirrhosis (PBC): concept, pathogenesis and classification].

    Science.gov (United States)

    Aizawa, Y; Toda, G

    1994-01-01

    Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease characterized by inflammatory destruction of median size intrahepatic bile ducts. The characteristic histological process is described as chronic nonsuppurative destractive cholangitis (CNSDC). Our knowledge for the pathogenesis of PBC remains incomplete. However, immunological mechanisms seems to play one of the most important role. The immunohistochemical examination represents accumulation of stimmulated T lymphocytes in the portal area. Attachment of CD8 positive T cells to bile duct epithelial cells is observed. The animal model of PBC indicates autoreactive CD4 positive T cells seems to be important at the early stage of PBC and CD8 positive cytotoxic T cells are essential for the progression of the disease. PBC is histologically classified into four overlapping stages by Scheuer. Clinically, PBC is classified into asymptomatic PBC (aPBC), PBC with itching alone (s1PBC) and with jaundice (s2PBC).

  16. Clinical implications of shared genetics and pathogenesis in autoimmune diseases

    NARCIS (Netherlands)

    Zhernakova, Alexandra; Withoff, Sebo; Wijmenga, Cisca

    2013-01-01

    Many endocrine diseases, including type 1 diabetes mellitus, Graves disease, Addison disease and Hashimoto disease, originate as an autoimmune reaction that affects disease-specific target organs. These autoimmune diseases are characterized by the development of specific autoantibodies and by the

  17. The epidemiology and the pathogenesis of inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Karlinger, Kinga E-mail: karlking@radi.sote.hu; Gyoerke, Tamas; Makoe, Erno; Mester, Adam; Tarjan, Zsolt

    2000-09-01

    The etiology of inflammatory bowel disease (IBD) is still unknown. However, a satisfactory solution cannot be far away. IBD actually encompasses two diseases, i.e. Crohn's disease (CD) and ulcerous colitis (UC). These diseases resemble each other so closely that they cannot be distinguished even pathologically, but differ from each other sufficiently to regard them as independent entities. Epidemiological observations may be helpful in identifying the true causative factors of this evasive disease. Geographically, the prevalence of the disease has a slope from North to South and, to a lesser degree, from West to East. The Western-Eastern discrepancy can be attributed to a difference in Western life styles. The incidence of the disease has been increasing world-wide of late, but its spread has been slowing down in highly affected countries. Racial and ethnic relations in different populations and immigration studies offer interesting data which can reflect genetic, inherited, environmental and behavioural factors. The disease seems to have a characteristic racial-ethnic distribution: the Jewish population is highly susceptible everywhere, but its prevalence in that population nears that of the domestic society in which they live. In Hungary, the Roma (Gypsies) have a considerably lower prevalence than the average population. This can be attributed to a genetic or environmental influence. According to age, the onset of the disease occurs more often in the second or the third decade of life, but there also is another peak in the 60s. Regarding sexual distribution, there is a slight preponderance of colitis ulcerosa in men and of Crohn's disease in women. It may correspond to the stronger auto-immune affection in the process of Crohn's disease. Environmental factors and behavioural influences also are investigated. Diet, the role of the early ages, smoking habits and the influence of hormonal status and drugs are viewed as useful contributing factors in

  18. Assessment of changes of some functions of Ukrainian acid soils after chemical amelioration

    Directory of Open Access Journals (Sweden)

    Zapko Yurij

    2014-09-01

    Full Text Available The objective of the article was to determine the effectiveness of lime of different origin for chemical amelioration of soils and examine its impact on soil functions such as productivity, habitat, regulation of water quality, and the protective buffer biogeocenotic screen. Limy ameliorants were applied in small local field experiment on Luvic Chernozem, and experiment with lysimeter columns was carried out on Albic Luvisol. The number of the main groups of microflora and enzymatic activity of soil was determined in soil samples taken for the analysis from the root zone. Research concerning the influence of natural and industrial origin ameliorants on soil as habitat showed the correlation of sugar beets productivity with soil biogenic. The increase of biomultiplicity of soil microbiota after addition of a cement dust and negative influence of red sludge on soil as habitat for living organisms was observed. Research involving the influence of ameliorants on soil by lime as the protective buffer biogeocenotic screen was carried out using lysimeter columns. It was stated that the addition of limy ameliorants reduces mobility of heavy metals.

  19. Biochar from commercially cultivated seaweed for soil amelioration

    Science.gov (United States)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-04-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum - brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma - red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity.

  20. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  1. Biochar from commercially cultivated seaweed for soil amelioration

    Science.gov (United States)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum – brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma – red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity. PMID:25856799

  2. Autoantibodies in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Lifang Wen

    2018-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD, the fourth leading cause of death worldwide, is characterized by irreversible airflow limitation based on obstructive bronchiolitis, emphysema, and chronic pulmonary inflammation. Inhaled toxic gases and particles, e.g., cigarette smoke, are major etiologic factors for COPD, while the pathogenesis of the disease is only partially understood. Over the past decade, an increasing body of evidence has been accumulated for a link between COPD and autoimmunity. Studies with clinical samples have demonstrated that autoantibodies are present in sera of COPD patients and some of these antibodies correlate with specific disease phenotypes. Furthermore, evidence from animal models of COPD has shown that autoimmunity against pulmonary antigens occur during disease development and is capable of mediating COPD-like symptoms. The idea that autoimmunity could contribute to the development of COPD provides a new angle to understand the pathogenesis of the disease. In this review article, we provide an advanced overview in this field and critically discuss the role of autoantibodies in the pathogenesis of COPD.

  3. [Age-related macular degeneration as a local manifestation of atherosclerosis - a novel insight into pathogenesis].

    Science.gov (United States)

    Machalińska, Anna

    2013-01-01

    Age-related macular degeneration is the leading cause of irreversible visual impairment and disability among the elderly in developed countries. There is compelling evidence that atherosclerosis and age-related macular degeneration share a similar pathogenic process. The association between atherosclerosis and age-related macular degeneration has been inferred from histological, biochemical and epidemiological studies. Many published data indicate that drusen are similar in molecular composition to plaques in atherosclerosis. Furthermore, a great body of evidence has emerged over the past decade that implicates the chronic inflammatory processes in the pathogenesis and progression of both disorders. We speculate that vascular atherosclerosis and age-related macular degeneration may represent different manifestations of the same disease induced by a pathologic tissue response to the damage caused by oxidative stress and local ischemia. In this review, we characterise in detail a strong association between age-related macular degeneration and atherosclerosis development, and we postulate the hypothesis that age-related macular degeneration is a local manifestation of a systemic disease. This provides a new approach for understanding the aspects of pathogenesis and might improve the prevention and treatment of both diseases which both result from ageing of the human body.

  4. Host Lipid Mediators in Leprosy: The Hypothesized Contributions to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Silva

    2018-02-01

    Full Text Available The spectrum of clinical forms observed in leprosy and its pathogenesis are dictated by the host’s immune response against Mycobacterium leprae, the etiological agent of leprosy. Previous results, based on metabolomics studies, demonstrated a strong relationship between clinical manifestations of leprosy and alterations in the metabolism of ω3 and ω6 polyunsaturated fatty acids (PUFAs, and the diverse set of lipid mediators derived from PUFAs. PUFA-derived lipid mediators provide multiple functions during acute inflammation, and some lipid mediators are able to induce both pro- and anti-inflammatory responses as determined by the cell surface receptors being expressed, as well as the cell type expressing the receptors. However, little is known about how these compounds influence cellular immune activities during chronic granulomatous infectious diseases, such as leprosy. Current evidence suggests that specialized pro-resolving lipid mediators (SPMs are involved in the down-modulation of the innate and adaptive immune response against M. leprae and that alteration in the homeostasis of pro-inflammatory lipid mediators versus SPMs is associated with dramatic shifts in the pathogenesis of leprosy. In this review, we discuss the possible consequences and present new hypotheses for the involvement of ω3 and ω6 PUFA metabolism in the pathogenesis of leprosy. A specific emphasis is placed on developing models of lipid mediator interactions with the innate and adaptive immune responses and the influence of these interactions on the outcome of leprosy.

  5. Portulaca oleracea Linn seed extract ameliorates hydrogen ...

    African Journals Online (AJOL)

    Portulaca oleracea Linn seed extract ameliorates hydrogen ... induced cell death by inhibiting oxidative stress and ROS generation. Keywords: ... culture medium; therefore the stock solutions of ... acetic acid (1 %) and ethanol (50 %) to extract.

  6. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    Science.gov (United States)

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  7. Functional modeling of the craniospinal system for in-vitro parameter studies on the pathogenesis of NPH

    Directory of Open Access Journals (Sweden)

    Benninghaus Anne

    2017-09-01

    Full Text Available Normal Pressure Hydrocephalus (NPH has become a common disease in the elderly coming along with typical symptoms of dementia, gait ataxia and urinary incontinence, which make the differential diagnosis with other forms of dementia difficult. Furthermore the pathogenesis of NPH is still not understood. About 10% of all demented patients might be suffering from NPH [1]. Many hypotheses suggest that modified biomechanical boundary conditions affect the craniospinal dynamics inducing the pathogenesis of NPH. We present a novel approach for an in-vitro model of the craniospinal system to investigate important hydrodynamic influences on the system such as (dynamic compliance of the vascular system and especially the spinal subarachnoid space (SAS as well as reabsorption and hydrostatics. The experimental set-up enables the individual adjustment of relevant parameters for sensitivity analyses regarding the impact of resulting CSF dynamics on the pathogenesis of NPH.

  8. AF-6 Protects Against Dopaminergic Dysfunction and Mitochondrial Abnormalities in Drosophila Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Adeline H. Basil

    2017-08-01

    Full Text Available Afadin 6 (AF-6 is an F-actin binding multidomain-containing scaffolding protein that is known for its function in cell-cell adhesion. Interestingly, besides this well documented role, we recently found that AF-6 is a Parkin-interacting protein that augments Parkin/PINK1-mediated mitophagy. Notably, mutations in Parkin and PINK1 are causative of recessively inherited forms of Parkinson’s disease (PD and aberrant mitochondrial homeostasis is thought to underlie PD pathogenesis. Given the novel role of AF-6 in mitochondrial quality control (QC, we hypothesized that AF-6 overexpression may be beneficial to PD. Using the Drosophila melanogaster as a model system, we demonstrate in this study that transgenic overexpression of human AF-6 in parkin and also pink1 null flies rescues their mitochondrial pathology and associated locomotion deficit, which results in their improved survival over time. Similarly, AF-6 overexpression also ameliorates the pathological phenotypes in flies expressing the Leucine Rich Repeat Kinase 2 (LRRK2 G2019S mutant, a mutation that is associated with dominantly-inherited PD cases in humans. Conversely, when endogenous AF-6 expression is silenced, it aggravates the disease phenotypes of LRRK2 mutant flies. Aside from these genetic models, we also found that AF-6 overexpression is protective against the loss of dopaminergic neurons in flies treated with rotenone, a mitochondrial complex I inhibitor commonly used to generate animal models of PD. Taken together, our results demonstrate that AF-6 protects against dopaminergic dysfunction and mitochondrial abnormalities in multiple Drosophila models of PD, and suggest the therapeutic value of AF-6-related pathways in mitigating PD pathogenesis.

  9. Genetic transformation of Fusarium oxysporum f.sp. gladioli with Agrobacterium to study pathogenesis in Gladiolus

    Science.gov (United States)

    Fusarium rot caused by Fusarium oxysporum f.sp. gladioli (Fog) is one of the most serious diseases of Gladiolus, both in the field and in stored bulbs. In order to study the pathogenesis of this fungus, we have transformed Fog with Agrobacterium tumefaciens binary vectors containing the hygromycin B...

  10. Coenzyme Q10 partially restores pathological alterations in a macrophage model of Gaucher disease.

    Science.gov (United States)

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Villanueva-Paz, Marina; de Lavera, Isabel; Álvarez-Córdoba, Mónica; Luzón-Hidalgo, Raquel; Suárez-Rivero, Juan M; Tiscornia, Gustavo; Sánchez-Alcázar, José A

    2017-02-06

    Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal β-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease. In addition, the beneficial effects of coenzyme Q 10 (CoQ) supplementation on cellular alterations were evaluated. Chemically-induced Gaucher macrophages were developed by differentiateing THP-1 monocytes to macrophages by treatment with phorbol 12-myristate 13-acetate (PMA) and then inhibiting intracellular GCase with conduritol B-epoxide (CBE), a specific irreversible inhibitor of GCase activity, and supplementing the medium with exogenous GlcCer. This cell model accumulated up to 16-fold more GlcCer compared with control THP-1 cells. Chemically-induced Gaucher macrophages showed impaired autophagy flux associated with mitochondrial dysfunction and increased oxidative stress, inflammasome activation and impaired efferocytosis. All abnormalities were partially restored by supplementation with CoQ. These data suggest that targeting mitochondria function and oxidative stress by CoQ can ameliorate the pathological phenotype of Gaucher cells. Chemically-induced Gaucher macrophages provide cellular models that can be used to investigate disease pathogenesis and explore new therapeutics for GD.

  11. Conjugated Linoleic Acid Ameliorates Inflammation-Induced Colorectal Cancer in Mice through Activation of PPARγ1–3

    Science.gov (United States)

    Evans, Nicholas P.; Misyak, Sarah A.; Schmelz, Eva M.; Guri, Amir J.; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-01-01

    Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARγ in immune and epithelial cells and PPARγ-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARγ in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARγ-expressing floxed mice but not in the tissue-specific PPARγ-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARγ-expressing, but not in the tissue-specific, PPARγ-null mice. Colonic tumor necrosis factor-α mRNA expression was significantly suppressed in CLA-fed, PPARγ-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARγ-dependent mechanism. PMID:20089779

  12. Contribution of inflammatory pathways to Fabry disease pathogenesis.

    Science.gov (United States)

    Rozenfeld, Paula; Feriozzi, Sandro

    2017-11-01

    Lysosomal storage diseases are usually considered to be pathologies in which the passive deposition of unwanted materials leads to functional changes in lysosomes. Lysosomal deposition of unmetabolized glycolipid substrates stimulates the activation of pathogenic cascades, including immunological processes, and particularly the activation of inflammation. In lysosomal storage diseases, the inflammatory response is continuously being activated because the stimulus cannot be eliminated. Consequently, inflammation becomes a chronic process. Lysosomes play a role in many steps of the immune response. Leukocyte perturbation and over-expression of immune molecules have been reported in Fabry disease. Innate immunity is activated by signals originating from dendritic cells via interactions between toll-like receptors and globotriaosylceramide (Gb3) and/or globotriaosylsphingosine (lyso-Gb3). Evidence indicates that these glycolipids can activate toll-like receptors, thus triggering inflammation and fibrosis cascades. In the kidney, Gb3 deposition is associated with the increased release of transforming growth factor beta and with epithelial-to-mesenchymal cell transition, leading to the over-expression of pro-fibrotic molecules and to renal fibrosis. Interstitial fibrosis is also a typical feature of heart involvement in Fabry disease. Endomyocardial biopsies show infiltration of lymphocytes and macrophages, suggesting a role for inflammation in causing tissue damage. Inflammation is present in all tissues and may be associated with other potentially pathologic processes such as apoptosis, impaired autophagy, and increases in pro-oxidative molecules, which could all contribute synergistically to tissue damage. In Fabry disease, the activation of chronic inflammation over time leads to organ damage. Therefore, enzyme replacement therapy must be started early, before this process becomes irreversible. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights

  13. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis.

    Directory of Open Access Journals (Sweden)

    Laurent Marsollier

    2007-05-01

    Full Text Available The role of biofilms in the pathogenesis of mycobacterial diseases remains largely unknown. Mycobacterium ulcerans, the etiological agent of Buruli ulcer, a disfiguring disease in humans, adopts a biofilm-like structure in vitro and in vivo, displaying an abundant extracellular matrix (ECM that harbors vesicles. The composition and structure of the ECM differs from that of the classical matrix found in other bacterial biofilms. More than 80 proteins are present within this extracellular compartment and appear to be involved in stress responses, respiration, and intermediary metabolism. In addition to a large amount of carbohydrates and lipids, ECM is the reservoir of the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, and purified vesicles extracted from ECM are highly cytotoxic. ECM confers to the mycobacterium increased resistance to antimicrobial agents, and enhances colonization of insect vectors and mammalian hosts. The results of this study support a model whereby biofilm changes confer selective advantages to M. ulcerans in colonizing various ecological niches successfully, with repercussions for Buruli ulcer pathogenesis.

  14. Pathogenesis of Rift Valley Fever in Rhesus Monkeys: Role of Interferon Response

    Science.gov (United States)

    1990-01-01

    hemorrhagic fever characterized by epistaxis, petechial to purpuric cutaneous lesions, anorexia, and vomiting prior to death. The 14 remaining monkeys survived...DMI, FILE Copy Arch Virol (1990) 110: 195-212 Amhivesirology ( by Springer-Verlag 1990 00 N Pathogenesis of Rift Valley fever in rhesus monkeys: (NI...inoculated intravenously with Rift Valley fever (RVF) virus presented clinical disease syndromes similar to human cases of RVF. All 17 infected monkeys

  15. Influence of dose-time relationship on the pathogenesis of peripheral neuropathy

    International Nuclear Information System (INIS)

    Kogelnik, H.D.; Vienna Univ.

    1977-01-01

    The development of peripheral neutopathies of cranial nerves and of the brachial plexus following curative doses of irradiation is closely related with the total dose applied, the number and size of the individual doses per fraction and the overall time. Additional important factors for the occurrence of these late complications are the volume of tissue irradiated and the stage of disease. In the pathogenesis of peripheral neuropathy a combined effect of different factors seems likely. (orig.) [de

  16. Mannose receptor may be involved in small ruminant lentivirus pathogenesis

    Directory of Open Access Journals (Sweden)

    Crespo Helena

    2012-05-01

    Full Text Available Abstract Thirty-one sheep naturally infected with small ruminant lentiviruses (SRLV of known genotype (A or B, and clinically affected with neurological disease, pneumonia or arthritis were used to analyse mannose receptor (MR expression (transcript levels and proviral load in virus target tissues (lung, mammary gland, CNS and carpal joints. Control sheep were SRLV-seropositive asymptomatic (n = 3, seronegative (n = 3 or with chronic listeriosis, pseudotuberculosis or parasitic cysts (n = 1 in each case. MR expression and proviral load increased with the severity of lesions in most analyzed organs of the SRLV infected sheep and was detected in the affected tissue involved in the corresponding clinical disease (CNS, lung and carpal joint in neurological disease, pneumonia and arthritis animal groups, respectively. The increased MR expression appeared to be SRLV specific and may have a role in lentiviral pathogenesis.

  17. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses.

    Science.gov (United States)

    Martines, Roosecelis Brasil; Ng, Dianna L; Greer, Patricia W; Rollin, Pierre E; Zaki, Sherif R

    2015-01-01

    Ebola viruses and Marburg viruses include some of the most virulent and fatal pathogens known to humans. These viruses cause severe haemorrhagic fevers, with case fatality rates in the range 25-90%. The diagnosis of filovirus using formalin-fixed tissues from fatal cases poses a significant challenge. The most characteristic histopathological findings are seen in the liver; however, the findings overlap with many other viral and non-viral haemorrhagic diseases. The need to distinguish filovirus infections from other haemorrhagic fevers, particularly in areas with multiple endemic viral haemorrhagic agents, is of paramount importance. In this review we discuss the current state of knowledge of filovirus infections and their pathogenesis, including histopathological findings, epidemiology, modes of transmission and filovirus entry and spread within host organisms. The pathogenesis of filovirus infections is complex and involves activation of the mononuclear phagocytic system, with release of pro-inflammatory cytokines, chemokines and growth factors, endothelial dysfunction, alterations of the innate and adaptive immune systems, direct organ and endothelial damage from unrestricted viral replication late in infection, and coagulopathy. Although our understanding of the pathogenesis of filovirus infections has rapidly increased in the past few years, many questions remain unanswered. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Black ginseng extract ameliorates hypercholesterolemia in rats

    Directory of Open Access Journals (Sweden)

    Evelyn Saba

    2016-04-01

    Conclusion: Administration of BG extracts to Sprague Dawley rats fed with high-cholesterol diet ameliorated hypercholesterolemia, which was mediated via modulation of cholesterol-metabolizing marker genes. This data throw a light on BG's cardioprotective effects.

  19. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model.

    Science.gov (United States)

    Li, Fengling; Wu, Xiqing; Li, Jing; Niu, Qingliang

    2016-06-01

    The complex etiopathogenesis of Alzheimer's disease (AD) has limited progression in the identification of effective therapeutic agents. Amyloid precursor protein (APP) and presenilin‑1 (PS1) are always overexpressed in AD, and are considered to be the initiators of the formation of β‑amyloid plaques and the symptoms of AD. In the present study, a transgenic AD model, constructed via the overexpression of APP and PS1, was used to verify the protective effects of ginsenoside Rg1 on memory performance and synaptic plasticity. AD mice (6‑month‑old) were treated via intraperitoneal injection of 0.1‑10 mg/kg ginsenoside Rg1. Long‑term memory, synaptic plasticity, and the levels of AD‑associated and synaptic plasticity‑associated proteins were measured following treatment. Memory was measured using a fear conditioning task and protein expression levels were investigated using western blotting. All the data was analyzed by one-way analysis of variance or t‑test. Following 30 days of consecutive treatment, memory in the AD mouse model was ameliorated in the 10 mg/kg ginsenoside Rg1 treatment group. As demonstrated by biochemical experiments, ginsenoside Rg1 treatment reduced the accumulations of β‑amyloid 1‑42 and phosphorylated (p)‑Tau in the AD model. Additionally, brain-derived neurotrophic factor (BDNF) and p‑TrkB synaptic plasticity‑associated proteins were upregulated following ginsenoside Rg1 application. Correspondingly, long‑term potentiation (LTP) was restored following ginsenoside Rg1 application in the AD mice model. Taken together, ginsenoside Rg1 repaired hippocampal LTP and memory, likely through facilitating the clearance of AD‑associated proteins and through activation of the BDNF‑TrkB pathway. Therefore, ginsenoside Rg1 may be a candidate drug for the treatment of AD.

  20. Inflammatory bowel diseases (IBD) - critical discussion of etiology, pathogenesis, diagnostics, and therapy; Chronisch entzuendliche Darmerkrankungen - Kritische Diskussion von Aetiologie, Pathogenese, Diagnostik und Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Ochsenkuehn, T.; Sackmann, M.; Goeke, B. [Medizinische Klinik II, Klinikum der Universitaet Muenchen-Grosshadern (Germany)

    2003-01-01

    Aims Crohn's disease and ulcerative colitis are the most frequent inflammatory bowel diseases (IBD) with a prevalence of approximately one out of 500.Cytokine research opened new and potent treatment options and thus stimulated clinical and basic research.However, the IBD still remain a challenge for patients and physicians,demanding close cooperation between gastroenterologists,radiologists and surgeons.The basic understanding of IBD,which is necessary for efficient diagnostic and therapeutic concepts is reviewed. Based upon recent publications and our clinical experience we discuss aspects of etiology,pathogenesis,diagnostics,and therapy of Crohn's disease and ulcerative colitis. A genetically influenced, exaggerated and sustained immune response against the own gut flora seems to be one of the most important factors in the pathogenesis of IBD.Not less important are environmental influences.For instance, cigarette smoking had been judged to have some negative influence on the natural course of Crohn's disease.Now,however, recent studies show that smoking is even a significant independent risk factor in the pathogenesis of IBD. Since IBD and especially Crohn's disease can effect the whole body, detailed analysis of inflammatory organ involvement is necessary before therapy.For instance, the MRIenteroclysis technique adds a necessary diagnostic tool for the exploration of those parts of the small bowel that cannot been reached by routine endoscopy like the upper ileum and the lower jejunum. In terms of therapy, a change of paradigms can be observed: patients will no longer be treated only when symptoms arise, but will early be integrated into a therapeutic concept, which is determined by site and extent of the disease and adapted to the abilities and needs of the patient.Furthermore,immunosuppressive agents like azathioprine and 6-mercaptopurine will establish as central concept in the medical treatment of IBD.Discussion IBD-therapy should

  1. Protein misfolding disorders: pathogenesis and intervention

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2006-01-01

    of the functional structure of cellular proteins. Aberrant proteins, the result of production errors, inherited or acquired amino acid substitutions or damage, especially oxidative modifications, can in many cases not fold correctly and will be trapped in misfolded conformations. To rid the cell of misfolded...... be accompanied by a gain-of-function pathogenesis, which in many cases determines the pathological and clinical features. Examples are Parkinson and Huntington diseases. Although a number of strategies have been tried to decrease the amounts of accumulated and aggregated proteins, a likely future strategy seems......Newly synthesized proteins in the living cell must go through a folding process to attain their functional structure. To achieve this in an efficient fashion, all organisms, including humans, have evolved a large set of molecular chaperones that assist the folding as well as the maintenance...

  2. Pathogenesis of ovarian cancer: current perspectives | Chesang ...

    African Journals Online (AJOL)

    Objective: To present a review of current knowledge of the pathogenesis of ovarian cancer and its clinical implications. Data Source: Extensive literature search was conducted to identify relevant studies. Study Selection: Studies in the English language about or related to pathogenesis of ovarian cancer were selected.

  3. Semiautomated confocal imaging of fungal pathogenesis on plants: Microscopic analysis of macroscopic specimens.

    Science.gov (United States)

    Minker, Katharine R; Biedrzycki, Meredith L; Kolagunda, Abhishek; Rhein, Stephen; Perina, Fabiano J; Jacobs, Samuel S; Moore, Michael; Jamann, Tiffany M; Yang, Qin; Nelson, Rebecca; Balint-Kurti, Peter; Kambhamettu, Chandra; Wisser, Randall J; Caplan, Jeffrey L

    2018-02-01

    The study of phenotypic variation in plant pathogenesis provides fundamental information about the nature of disease resistance. Cellular mechanisms that alter pathogenesis can be elucidated with confocal microscopy; however, systematic phenotyping platforms-from sample processing to image analysis-to investigate this do not exist. We have developed a platform for 3D phenotyping of cellular features underlying variation in disease development by fluorescence-specific resolution of host and pathogen interactions across time (4D). A confocal microscopy phenotyping platform compatible with different maize-fungal pathosystems (fungi: Setosphaeria turcica, Cochliobolus heterostrophus, and Cercospora zeae-maydis) was developed. Protocols and techniques were standardized for sample fixation, optical clearing, species-specific combinatorial fluorescence staining, multisample imaging, and image processing for investigation at the macroscale. The sample preparation methods presented here overcome challenges to fluorescence imaging such as specimen thickness and topography as well as physiological characteristics of the samples such as tissue autofluorescence and presence of cuticle. The resulting imaging techniques provide interesting qualitative and quantitative information not possible with conventional light or electron 2D imaging. Microsc. Res. Tech., 81:141-152, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Cutting Edge: A Critical Role of Lesional T Follicular Helper Cells in the Pathogenesis of IgG4-Related Disease.

    Science.gov (United States)

    Kamekura, Ryuta; Takano, Kenichi; Yamamoto, Motohisa; Kawata, Koji; Shigehara, Katsunori; Jitsukawa, Sumito; Nagaya, Tomonori; Ito, Fumie; Sato, Akinori; Ogasawara, Noriko; Tsubomatsu, Chieko; Takahashi, Hiroki; Nakase, Hiroshi; Himi, Tetsuo; Ichimiya, Shingo

    2017-10-15

    IgG4-related disease (IgG4-RD) is a newly recognized systemic chronic fibroinflammatory disease. However, the pathogenesis of IgG4-RD remains unknown. To determine the pathophysiologic features of IgG4-RD, we examined T follicular helper (Tfh) cells in lesions and blood from patients with IgG4-RD. Patients with IgG4-related dacryoadenitis and sialadenitis (IgG4-DS) showed increased infiltration of Tfh cells highly expressing programmed death 1 and ICOS in submandibular glands. Tfh cells from IgG4-DS submandibular glands had higher expression of B cell lymphoma 6 and a greater capacity to help B cells produce IgG4 than did tonsillar Tfh cells. We also found that the percentage of programmed death 1 hi circulating Tfh cells in IgG4-DS patients was higher than that in healthy volunteers and was well correlated with clinical parameters. Our findings indicate that anomalous Tfh cells in tissue lesions of IgG4-RD have features distinct from those in lymphoid counterparts or blood and potentially regulate local IgG4 production in IgG4-RD. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Metabonomic Analysis Reveals Efficient Ameliorating Effects of Acupoint Stimulations on the Menopause-caused Alterations in Mammalian Metabolism

    Science.gov (United States)

    Zhang, Limin; Wang, Yulan; Xu, Yunxiang; Lei, Hehua; Zhao, Ying; Li, Huihui; Lin, Xiaosheng; Chen, Guizhen; Tang, Huiru

    2014-01-01

    Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.

  6. Impact of Microbes on the Pathogenesis of Primary Biliary Cirrhosis (PBC and Primary Sclerosing Cholangitis (PSC

    Directory of Open Access Journals (Sweden)

    Jochen Mattner

    2016-11-01

    Full Text Available Primary biliary cirrhosis (PBC and primary sclerosing cholangitis (PSC represent the major clinical entities of chronic cholestatic liver diseases. Both disorders are characterized by portal inflammation and slowly progress to obliterative fibrosis and eventually liver cirrhosis. Although immune-pathogenic mechanisms have been implicated in the pathogenesis of PBC and PSC, neither disorder is considered to be a classical autoimmune disease, as PSC and PBC patients do not respond to immune-suppressants. Furthermore, the decreased bile flow resulting from the immune-mediated tissue assault and the subsequent accumulation of toxic bile products in PBC and PSC not only perpetuates biliary epithelial damage, but also alters the composition of the intestinal and biliary microbiota and its mutual interactions with the host. Consistent with the close association of PSC and inflammatory bowel disease (IBD, the polyclonal hyper IgM response in PBC and (auto-antibodies which cross-react to microbial antigens in both diseases, an expansion of individual microbes leads to shifts in the composition of the intestinal or biliary microbiota and a subsequent altered integrity of epithelial layers, promoting microbial translocation. These changes have been implicated in the pathogenesis of both devastating disorders. Thus, we will discuss here these recent findings in the context of novel and alternative therapeutic options.

  7. AUTOIMMUNE DISEASE DURING PREGNANCY AND THE MICROCHIMERISM LEGACY OF PREGNANCY

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Nelson, J. Lee

    2009-01-01

    Pregnancy has both short-term effects and long-term consequences. For women who have an autoimmune disease and subsequently become pregnant, pregnancy can induce amelioration of the mother’s disease, such as in rheumatoid arthritis, while exacerbating or having no effect on other autoimmune diseases like systemic lupus erythematosus. That pregnancy also leaves a long-term legacy has recently become apparent by the discovery that bi-directional cell trafficking results in persistence of fetal cells in the mother and of maternal cells in her offspring for decades after birth. The long-term persistence of a small number of cells (or DNA) from a genetically disparate individual is referred to as microchimerism. While microchimerism is common in healthy individuals and is likely to have health benefits, microchimerism has been implicated in some autoimmune diseases such as systemic sclerosis. In this paper, we will first discuss short-term effects of pregnancy on women with autoimmune disease. Pregnancy-associated changes will be reviewed for selected autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus and autoimmune thyroid disease. The pregnancy-induced amelioration of rheumatoid arthritis presents a window of opportunity for insights into both immunological mechanisms of fetal-maternal tolerance and pathogenic mechanisms in autoimmunity. A mechanistic hypothesis for the pregnancy-induced amelioration of rheumatoid arthritis will be described. We will then discuss the legacy of maternal-fetal cell transfer from the perspective of autoimmune diseases. Fetal and maternal microchimerism will be reviewed with a focus on systemic sclerosis (scleroderma), autoimmune thyroid disease, neonatal lupus and type I diabetes mellitus. PMID:18716941

  8. The role of astrocytes in multiple sclerosis pathogenesis.

    Science.gov (United States)

    Guerrero-García, J J

    2017-09-25

    Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Aetio-pathogenesis of breast cancer | Abdulkareem | Nigerian ...

    African Journals Online (AJOL)

    This is a literature review on the aetiology and pathogenesis of breast cancer, which is the most common cancer worldwide, and the second leading cause of cancer death, especially in Western countries. Several aetiological factors have been implicated in its pathogenesis, and include age, genetics, family history, diet, ...

  10. Fumaric acid esters can block pro-inflammatory actions of human CRP and ameliorate metabolic disturbances in transgenic spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Jan Šilhavý

    Full Text Available Inflammation and oxidative stress have been implicated in the pathogenesis of metabolic disturbances. Esters of fumaric acid, mainly dimethyl fumarate, exhibit immunomodulatory, anti-inflammatory, and anti-oxidative effects. In the current study, we tested the hypothesis that fumaric acid ester (FAE treatment of an animal model of inflammation and metabolic syndrome, the spontaneously hypertensive rat transgenically expressing human C-reactive protein (SHR-CRP, will ameliorate inflammation, oxidative stress, and metabolic disturbances. We studied the effects of FAE treatment by administering Fumaderm, 10 mg/kg body weight for 4 weeks, to male SHR-CRP. Untreated male SHR-CRP rats were used as controls. All rats were fed a high sucrose diet. Compared to untreated controls, rats treated with FAE showed significantly lower levels of endogenous CRP but not transgenic human CRP, and amelioration of inflammation (reduced levels of serum IL6 and TNFα and oxidative stress (reduced levels of lipoperoxidation products in liver, heart, kidney, and plasma. FAE treatment was also associated with lower visceral fat weight and less ectopic fat accumulation in liver and muscle, greater levels of lipolysis, and greater incorporation of glucose into adipose tissue lipids. Analysis of gene expression profiles in the liver with Affymetrix arrays revealed that FAE treatment was associated with differential expression of genes in pathways that involve the regulation of inflammation and oxidative stress. These findings suggest potentially important anti-inflammatory, anti-oxidative, and metabolic effects of FAE in a model of inflammation and metabolic disturbances induced by human CRP.

  11. Ameliorative Effect of Different Concentration of Mushroom ...

    African Journals Online (AJOL)

    Prof. Ogunji

    ameliorative effect of mushroom in the post-experimental stage. Samples of liver and ... except in the liver which showed mild periportal chronic inflammatory cell. However, the .... alcohol for 12 hours and through absolute alcohol to remove ...

  12. Viral pathogenesis in diagrams

    National Research Council Canada - National Science Library

    Tremblay, Michel; Berthiaume, Laurent; Ackermann, Hans-Wolfgang

    2001-01-01

    .... The 268 diagrams in Viral Pathogenesis in Diagrams were selected from over 800 diagrams of English and French virological literature, including one derived from a famous drawing by Leonardo da Vinci...

  13. Enterobacterial involvement in the pathogenesis of secondary ankylosing spondylitis.

    Science.gov (United States)

    van Bohemen, C G; Weterings, E; Goei The, H S; Grumet, F C; Zanen, H C

    1988-01-01

    Ankylosing spondylitis (AS) is closely associated with the histocompatibility antigen HLA-B27. Pathogenesis of AS is thought to involve interactions between B27 and certain enterobacterial antigens. However, this is uncertain and contested by some. The present paper argues that the presence of statistically raised specific serum IgA to a common enterobacterial heat modifiable major outer membrane protein (h-momp; Mr 35,000) in active AS (N = 25; IgA = 1485 +/- 20) in comparison to controls, most notably hospital patients without known arthropathies or gastrointestinal disease (N = 12; IgA = 548 +/- 59), supports an inductive contribution of enterobacterial antigens to the pathogenesis of secondary AS. Serum IgG and IgM did not statistically differ. Raised specific serum IgA to h-momp might indicate enterobacterial antigenic stimulation from the gastrointestinal tract. It does not necessarily imply direct involvement in the pathogenesis of primary AS. H-momp appears to be a convenient tool for serological studies of AS and at present is likely to be more suitable than other bacterial antigens, notably those with B27-like epitopes. Namely, the confirmed presence in AS of enterobacteria with freely accessible B27-like antigenic epitopes on their cell surface might induce unusual tolerance to these organisms in B27 positive hosts, thus causing chronic inflammation, initially sacroiliitis (and spondylitis) due to the proximity of presacral and para-aortic colon draining lymph nodes, later becoming more generalized (for reasons unclear) to include other lesions (e.g. peripheral arthritis, uveitis, enthesopathies). Thus, antibodies to B27-like antigenic epitopes need not be detectable or may be absent. Also, cellular immune responsiveness to these antigens might be involved.

  14. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development

    Science.gov (United States)

    Blakely, Pennelope K.; Delekta, Phillip C.; Miller, David J.; Irani, David N.

    2014-01-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular that age, gender and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697

  15. Pathogenesis of the dry eye syndrome observed by optical coherence tomography in vitro

    Science.gov (United States)

    Kray, Oya; Lenz, Markus; Spöler, Felix; Kray, Stefan; Kurz, Heinrich

    2011-06-01

    Three dimensional optical coherence tomography (OCT) is introduced as a valuable tool to analyze the pathogenesis of corneal diseases. Here, OCT in combination with a novel in vitro model for the dry eye syndrome enables an improved understanding of the underlying damaging process of the ocular surface. En-face OCT projections indicate a deep structural damage of the epithelium and anterior stroma by osmotic forces.

  16. ETIOLOGY, PATHOGENESIS AND CLINICAL DIAGNOSIS OF PEYRONIE’S DISEASE

    Directory of Open Access Journals (Sweden)

    Тарас Валерьевич Шатылко

    2017-03-01

    Full Text Available Peyronie’s disease remains an understudied progressing disease being  one of the relevant problems of modern urology and andrology. This condition may cause erectile dysfunction in men of fertile age and its negative impact on sexual function adversely affects patients’ quality of life. This article reviews epidemiology, pathophysiology and specifics of recording history and clinical diagnosis of Peyronie’s disease, that includes questionnaires, physical examination, evaluation of erectile function and penile deformity.

  17. Role of Fat-Soluble Vitamins A and D in the Pathogenesis of Influenza: A New Perspective

    OpenAIRE

    Mawson, Anthony R.

    2013-01-01

    Reduced exposure to solar radiation, leading to a deficiency of vitamin D and hence impaired innate immunity, has been suggested as a trigger for influenza viral replication and as an explanation of seasonal influenza. Although this hypothesis accounts for many unexplained facts about the epidemiology of influenza, gaps remain in understanding the pathogenesis and manifestations of the disease. Several observations suggest a role for vitamin A compounds (retinoids) in the disease. This paper ...

  18. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.

    Science.gov (United States)

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-09-01

    Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

  19. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance.

    Science.gov (United States)

    Rasmussen, Angela L; Okumura, Atsushi; Ferris, Martin T; Green, Richard; Feldmann, Friederike; Kelly, Sara M; Scott, Dana P; Safronetz, David; Haddock, Elaine; LaCasse, Rachel; Thomas, Matthew J; Sova, Pavel; Carter, Victoria S; Weiss, Jeffrey M; Miller, Darla R; Shaw, Ginger D; Korth, Marcus J; Heise, Mark T; Baric, Ralph S; de Villena, Fernando Pardo-Manuel; Feldmann, Heinz; Katze, Michael G

    2014-11-21

    Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Copyright © 2014, American Association for the Advancement of Science.

  20. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Bo Wang; Xiaoqing Zhang; Xue-Jun Li

    2013-01-01

    Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease.Here,we developed a closely representative cell model of SMA by knocking down the disease-determining gene,survival motor neuron (SMN),in human embryonic stem cells (hESCs).Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons.Notably,the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated.Furthermore,these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-A7 (lacking exon 7)knockdown,and were specific to spinal motor neurons.Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes,including specific axonal defects and motor neuron loss.Finally,knockdown of SMNFL led to excessive mitochondrial oxidative stress in human motor neuron progenitors.The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine,a potent antioxidant,which prevented disease-related apoptosis and subsequent motor neuron death.Thus,we report here the successful establishment of an hESC-based SMA model,which exhibits disease gene isoform specificity,cell type specificity,and phenotype reversibility.Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.

  1. Understanding the Pathogenesis of Angelman Syndrome through Animal Models

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan Jana

    2012-01-01

    Full Text Available Angelman syndrome (AS is a neurodevelopmental disorder characterized by severe mental retardation, lack of speech, ataxia, susceptibility to seizures, and unique behavioral features such as easily provoked smiling and laughter and autistic features. The disease is primarily caused by deletion or loss-of-function mutations of the maternally inherited UBE3A gene located within chromosome 15q11-q13. The UBE3A gene encodes a 100 kDa protein that functions as ubiquitin ligase and transcriptional coactivator. Emerging evidence now indicates that UBE3A plays a very important role in synaptic function and in regulation of activity-dependent synaptic plasticity. A number of animal models for AS have been generated to understand the disease pathogenesis. The most widely used model is the UBE3A-maternal-deficient mouse that recapitulates most of the essential features of AS including cognitive and motor abnormalities. This paper mainly discusses various animal models of AS and how these models provide fundamental insight into understanding the disease biology for potential therapeutic intervention.

  2. Chondrocytes damage induced by T-2 toxin via Wnt/β-catenin signaling pathway is involved in the pathogenesis of an endemic osteochondropathy, Kashin-Beck disease.

    Science.gov (United States)

    Wang, Xi; Ning, Yujie; Zhang, Pan; Yang, Lei; Wang, Yingting; Guo, Xiong

    2017-12-01

    Kashin-Beck disease (KBD), an endemic osteochondropathy, is characterized by cartilage degeneration which is caused by abnormal catabolism in the extracellular matrix (ECM). In this study, we investigated the expression of the Wnt/β-catenin signaling pathway in KBD pathogenesis. Among the proteins involved in the Wnt/β-catenin signaling pathway, WNT-3A, FZD1, SOX9, and β-catenin were up-regulated, while FRZB was down-regulated in KBD cartilage. C28/I2 cells were evaluated for cell viability using the MTT assay after exposure to T-2 toxin, a suspicious environmental pathogenic factors of KBD. C28/I2 cells were treated with different intervening concentrations (0.001μg/mL,0.005μg/mL and 0.01μg/mL) of T-2 toxin for 24h. The expression of FZD1 and CTNNB1 (i.e.,β-catenin) was significantly reduced and SOX9 expression was significantly increased in chondrocytes after treatment with different intervening concentrations of T-2 toxin. Our results indicate that alterations in the Wnt/β-catenin signaling pathway in articular cartilage play an important role in the onset and pathogenesis of KBD. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Primary sclerosing cholangitis and disease distribution in inflammatory bowel disease.

    LENUS (Irish Health Repository)

    O'Toole, Aoibhlinn

    2012-04-01

    The relationship between site of intestinal inflammation and primary sclerosing cholangitis (PSC) development in inflammatory bowel disease (IBD) has not been studied extensively, but may be important in understanding the pathogenesis of PSC. We aimed to determine patterns of disease distribution in IBD patients with and without PSC.

  4. Endothelin type B (ETB) receptors: friend or foe in the pathogenesis of pre-eclampsia and future cardiovascular disease (CVD) risk?

    Science.gov (United States)

    Mirabito Colafella, Katrina M

    2018-01-16

    In a recent issue of Clinical Science, Stanhewicz et al. investigated persistent microvascular dysfunction in women up to 16 months postpartum. The authors found sensitivity to the pressor effects of endothelin-1 (ET-1) was enhanced when compared with women who had a normotensive pregnancy. Importantly, the authors demonstrated that this effect was mediated via the endothelin type B (ET B ) receptors. Therefore, the present study highlights the possibility that alterations in the localization of the ET B receptor contributes to the pathogenesis of pre-eclampsia and future cardiovascular disease (CVD) risk. Currently, there is great interest in the role of the endothelin system in pre-eclampsia. Targetting the endothelin system, potentially by modulating upstream pathways to prevent ET B receptor dysfunction, may improve health outcomes for women and their offspring during pre-eclampsia and later life. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Pathogenesis Concept Of Extracranial Dissections In Iran

    Directory of Open Access Journals (Sweden)

    Kavian Ghandehari

    2017-02-01

    Full Text Available Background: Dissection of Extracranial Internal Carotid Artery (EICA and Extracranial Vertebral Artery (EVA is an amportant cause of brain infarction with miscellaneous etiologies around the world. Methods: A prospective observational clinical study was conducted in Ghaem Hospital, Mashhad, Iran between 2008-2016. Diagnosis of brain infarction and TIA was made by stroke neurologist. Detection of EICA and EVA dissections were made by performing CT angiography  and MR angiography  or DSA in the suspected patients. Demographic features, clinical manifestations, territorial involvement, pathophysiology and pathogenesis of dissections were assessed in all of the patients. Pathogenesis of dissections was classified as Idiopathic, Trumatic, Postural and Genetic categories. Results: Twenty eight patients (21 males, 7 females were admitted with extracranial arterial dissection. Mean age of males and females with dissection was 39.81± 4.2 and 35.71±6.1 years respectively. Influence of gender on age of the patients was not significant, p>0.05. Among patients with extracranial dissection only 3.6% had atherosclerosis risk factors and 96.4% had no other cause for brain infarction. 100% of extracranial dissections in males occured in carotid territory, while 28.6% of females had dissection in the EVA. The influence of gender in territory of dissection was significant, p<0.05. Idiopathic dissections and genetic susceptibility was found in 10.7% and 3.6% of extracranial dissections respectively. 53.5% of the patienrs had trumatic pathogenesis for extracranial dissections and 32.1% developed dissection due to special neck  postures. Important details in pathophysiology and pathogenesis of extracranial dissections will be presented in the lecture. Conclusion: Stroke patients with extracranial dissections have characteristic demographic and  territorial involvement. Trumatic pathogenesis is the most frequent cause of dissection in Iran followed by neck

  6. Pathogenesis of trypanosome infections in cattle

    International Nuclear Information System (INIS)

    Murray, M.; Morrison, W.I.; Emery, D.L.; Akol, G.W.O.; Masake, R.A.; Moloo, S.K.

    1980-01-01

    The potential application of radioisotopes are not discussed in this review of trypanosome pathogenesis in cattle. Initially, structural changes in the lymphoid system are characterized by marked proliferation and germinal centre formation, whereas in long-standing infections the lymphoid organs become depleted. These changes appear associated with immunodepression. Anaemia dominates the clinical disease syndrome in bovine trypanosomiasis. It develops with the onset of parasitaemia and is largely haemolytic, resulting from increased red blood cell destruction by phagocytosis. Several factors may be involved in this process including haemolysins produced by the trypanosome, immunological mechanisms, fever, disseminated intravascular coagulation and an expanded and active mononuclear phagocytic system. During this phase of the disease, cattle respond well to chemotherapy. However, in later phases of the disease, when trypanosomes cannot be detected, the anaemia sometimes persists and animals do not respond to treatment. Concerning the underlying mechanisms responsible for the anaemia, continued red cell destruction combined with some dyshaemopoiesis, associated with a defect in iron metabolism, appears responsible. Widespread tissue degeneration occurs. Organs particularly severely affected include the heart. Death in bovine trypanosomiasis is presumably due to a combination of anaemia, microcirculatory disturbances and myocardial damage. The factors incriminated in tissue damage probably vary with the species of trypanosome involved, although under natural field conditions it is common to find T. congolense, T. vivax and T. brucei in one animal. Likely pathogenic mechanisms in bovine include anoxia as a result of anaemia, microcirculatory disorders and hypersensitivity reactions

  7. Recent Insights into the Pathogenesis of Type AA Amyloidosis

    Directory of Open Access Journals (Sweden)

    J. C. H. van der Hilst

    2011-01-01

    Full Text Available The amyloidoses are a group of life-threatening diseases in which fibrils made of misfolded proteins are deposited in organs and tissues. The fibrils are stable, insoluble aggregates of precursor proteins that have adopted an antiparallel β-sheet structure. In type AA, or reactive, amyloidosis, the precursor protein of the fibrils is serum amyloid A (SAA. SAA is a 104-amino-acid protein that is produced in the liver in response to proinflammatory cytokines. Although the protein that is produced by the liver contains 104 amino acids, only the N-terminal 66–76 amino acids are found in amyloid fibrils. Furthermore, SAA has been shown to have an α-helical structure primarily. Thus, for SAA to be incorporated into an amyloid fibril, two processes have to occur: C-terminal cleavage and conversion into a β-sheet. Only a minority of patients with elevated SAA levels develop amyloidosis. Factors that contribute to the risk of amyloidosis include the duration and degree of SAA elevation, polymorphisms in SAA, and the type of autoinflammatory syndrome. In the Hyper-IgD syndrome, amyloidosis is less prevalent than in the other autoinflammatory diseases. In vitro work has shown that the isoprenoid pathway influences amyloidogenesis by farnesylated proteins. Although many proteins contain domains that have a potential for self-aggregation, amyloidosis is only a very rare event. Heat shock proteins (HSPs are chaperones that assist other proteins to attain, maintain, and regain a functional conformation. In this review, recent insights into the pathogenesis of amyloidosis are discussed, in addition to a new hypothesis for a role of HSPs in the pathogenesis of type AA.

  8. Foodborne Campylobacter: Infections, Metabolism, Pathogenesis and Reservoirs

    Directory of Open Access Journals (Sweden)

    Sharon V. R. Epps

    2013-11-01

    Full Text Available Campylobacter species are a leading cause of bacterial-derived foodborne illnesses worldwide. The emergence of this bacterial group as a significant causative agent of human disease and their propensity to carry antibiotic resistance elements that allows them to resist antibacterial therapy make them a serious public health threat. Campylobacter jejuni and Campylobacter coli are considered to be the most important enteropathogens of this genus and their ability to colonize and survive in a wide variety of animal species and habitats make them extremely difficult to control. This article reviews the historical and emerging importance of this bacterial group and addresses aspects of the human infections they cause, their metabolism and pathogenesis, and their natural reservoirs in order to address the need for appropriate food safety regulations and interventions.

  9. Close pathological correlations between chronic kidney disease and reproductive organ-associated abnormalities in female cotton rats.

    Science.gov (United States)

    Ichii, Osamu; Nakamura, Teppei; Irie, Takao; Kouguchi, Hirokazu; Sotozaki, Kozue; Horino, Taro; Sunden, Yuji; Elewa, Yaser Hosny Ali; Kon, Yasuhiro

    2018-03-01

    Cotton rat ( Sigmodon hispidus) is a useful experimental rodent for the study of human infectious diseases. We previously clarified that cotton rats, particularly females, developed chronic kidney disease characterized by cystic lesions, inflammation, and fibrosis. The present study investigated female-associated factors for chronic kidney disease development in cotton rats. Notably, female cotton rats developed separation of the pelvic symphysis and hypertrophy in the vaginal parts of the cervix with age, which strongly associated with pyometra. The development of pyometra closely associated with the deterioration of renal dysfunction or immunological abnormalities was indicated by blood urea nitrogen and serum creatinine or spleen weight and serum albumin/globulin ratio, respectively. These parameters for renal dysfunction and immunological abnormalities were statistically correlated. These phenotypes found in the female reproductive organs were completely inhibited by ovariectomy. Further, the female cotton rats with pyometra tended to show more severe chronic kidney disease phenotypes and immunological abnormalities than those without pyometra; these changes were inhibited in ovariectomized cotton rats. With regard to renal histopathology, cystic lesions, inflammation, and fibrosis were ameliorated by ovariectomy. Notably, the immunostaining intensity of estrogen receptor α and estrogen receptor β were weak in the healthy kidneys, but both estrogen receptors were strongly induced in the renal tubules showing cystic changes. In conclusion, the close correlations among female reproductive organ-associated abnormalities, immunological abnormalities, and renal dysfunction characterize the chronic kidney disease features of female cotton rats. Thus, the cotton rat is a unique rodent model to elucidate the pathological crosstalk between chronic kidney disease and sex-related factors. Impact statement The increasing number of elderly individuals in the overall

  10. Dietary α-eleostearic acid ameliorates experimental inflammatory bowel disease in mice by activating peroxisome proliferator-activated receptor-γ.

    Science.gov (United States)

    Lewis, Stephanie N; Brannan, Lera; Guri, Amir J; Lu, Pinyi; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R

    2011-01-01

    Treatments for inflammatory bowel disease (IBD) are modestly effective and associated with side effects from prolonged use. As there is no known cure for IBD, alternative therapeutic options are needed. Peroxisome proliferator-activated receptor-gamma (PPARγ) has been identified as a potential target for novel therapeutics against IBD. For this project, compounds were screened to identify naturally occurring PPARγ agonists as a means to identify novel anti-inflammatory therapeutics for experimental assessment of efficacy. Here we provide complementary computational and experimental methods to efficiently screen for PPARγ agonists and demonstrate amelioration of experimental IBD in mice, respectively. Computational docking as part of virtual screening (VS) was used to test binding between a total of eighty-one compounds and PPARγ. The test compounds included known agonists, known inactive compounds, derivatives and stereoisomers of known agonists with unknown activity, and conjugated trienes. The compound identified through VS as possessing the most favorable docked pose was used as the test compound for experimental work. With our combined methods, we have identified α-eleostearic acid (ESA) as a natural PPARγ agonist. Results of ligand-binding assays complemented the screening prediction. In addition, ESA decreased macrophage infiltration and significantly impeded the progression of IBD-related phenotypes through both PPARγ-dependent and -independent mechanisms in mice with experimental IBD. This study serves as the first significant step toward a large-scale VS protocol for natural PPARγ agonist screening that includes a massively diverse ligand library and structures that represent multiple known target pharmacophores.

  11. SU9516 Increases α7β1 Integrin and Ameliorates Disease Progression in the mdx Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Sarathy, Apurva; Wuebbles, Ryan D; Fontelonga, Tatiana M; Tarchione, Ashley R; Mathews Griner, Lesley A; Heredia, Dante J; Nunes, Andreia M; Duan, Suzann; Brewer, Paul D; Van Ry, Tyler; Hennig, Grant W; Gould, Thomas W; Dulcey, Andrés E; Wang, Amy; Xu, Xin; Chen, Catherine Z; Hu, Xin; Zheng, Wei; Southall, Noel; Ferrer, Marc; Marugan, Juan; Burkin, Dean J

    2017-06-07

    Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7β1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7β1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7β1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.

  12. A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Lianjun Yang

    2016-12-01

    Full Text Available Ankylosing spondylitis (AS is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one’s susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry. In this review, the existing evidence for the involvement of the microbiome in AS pathogenesis was discussed and the potential of intestinal microbiome-targeting strategies in the prevention and treatment of AS was evaluated.

  13. Epigenetics and colorectal cancer pathogenesis.

    Science.gov (United States)

    Bardhan, Kankana; Liu, Kebin

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  14. Epigenetics and Colorectal Cancer Pathogenesis

    International Nuclear Information System (INIS)

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy

  15. Epigenetics and Colorectal Cancer Pathogenesis

    Directory of Open Access Journals (Sweden)

    Kebin Liu

    2013-06-01

    Full Text Available Colorectal cancer (CRC develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  16. Epigenetics and Colorectal Cancer Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Kankana; Liu, Kebin, E-mail: Kliu@gru.edu [Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912 (United States)

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  17. The role of inflammation in the pathogenesis of glaucoma

    DEFF Research Database (Denmark)

    Vohra, Rupali; Tsai, James C; Kolko, Miriam

    2013-01-01

    Glaucoma is an ocular disorder characterized by the progressive loss of retinal ganglion cells (RGC) and their axons. There are various hypotheses concerning the cause of RGC death. Previously, glaucoma was defined by high intraocular pressure (IOP); during the past decade, however, glaucoma...... specialists have acknowledged that elevated IOP is the most important risk factor for glaucoma, but does not define the disease. Other factors such as genetics, blood flow, and excitotoxicity are suggested as potential causal factors for progressive RGC death observed in glaucoma. We review recent studies...... elucidating a possible role of low-grade inflammation as a causal factor in the pathogenesis of glaucoma....

  18. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease

    DEFF Research Database (Denmark)

    Benraiss, Abdellatif; Wang, Su; Herrlinger, Stephanie

    2016-01-01

    The causal contribution of glial pathology to Huntington disease (HD) has not been heavily explored. To define the contribution of glia to HD, we established human HD glial chimeras by neonatally engrafting immunodeficient mice with mutant huntingtin (mHTT)-expressing human glial progenitor cells...... chimeras are hyperexcitable. Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal transplantation of normal glia rescues aspects of electrophysiological and behavioural phenotype, restores interstitial potassium homeostasis, slows disease progression and extends...

  19. The role of O-GlcNAc signaling in the pathogenesis of diabetic retinopathy.

    Science.gov (United States)

    Semba, Richard D; Huang, Hu; Lutty, Gerard A; Van Eyk, Jennifer E; Hart, Gerald W

    2014-04-01

    Diabetic retinopathy is a leading cause of blindness worldwide. Despite laser and surgical treatments, antiangiogenic and other therapies, and strict metabolic control, many patients progress to visual impairment and blindness. New insights are needed into the pathophysiology of diabetic retinopathy in order to develop new methods to improve the detection and treatment of disease and the prevention of blindness. Hyperglycemia and diabetes result in increased flux through the hexosamine biosynthetic pathway, which, in turn, results in increased PTM of Ser/Thr residues of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is involved in regulation of many nuclear and cytoplasmic proteins in a manner similar to protein phosphorylation. Altered O-GlcNAc signaling has been implicated in the pathogenesis of diabetes and may play an important role in the pathogenesis of diabetic retinopathy. The goal of this review is to summarize the biology of the hexosamine biosynthesis pathway and O-GlcNAc signaling, to present the current evidence for the role of O-GlcNAc signaling in diabetes and diabetic retinopathy, and to discuss future directions for research on O-GlcNAc in the pathogenesis of diabetic retinopathy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Caspase-1 Deficiency Alleviates Dopaminergic Neuronal Death via Inhibiting Caspase-7/AIF Pathway in MPTP/p Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Qiao, Chen; Zhang, Lin-Xia; Sun, Xi-Yang; Ding, Jian-Hua; Lu, Ming; Hu, Gang

    2017-08-01

    Caspase family has been recognized to be involved in dopaminergic (DA) neuronal death and to exert an unfavorable role in Parkinson's disease (PD) pathology. Our previous study has revealed that caspase-1, as an important component of NLRP3 inflammasome, induces microglia-mediated neuroinflammation in the pathogenesis of PD. However, the role of caspase-1 in DA neuronal degeneration in the onset of PD remains unclear. Here, we showed that caspase-1 knockout ameliorated DA neuronal loss and dyskinesia in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model mice. We further found that caspase-1 knockout decreased MPTP/p-induced caspase-7 cleavage, subsequently inhibited nuclear translocation of poly (ADP-ribose) polymerase 1 (PARP1), and reduced the release of apoptosis-inducing factor (AIF). Consistently, we demonstrated that caspase-1 inhibitor suppressed caspase-7/PARP1/AIF-mediated apoptosis pathway by 1-methyl-4-phenylpyridinium ion (MPP + ) stimulation in SH-SY5Y cells. Caspase-7 overexpression reduced the protective effects of caspase-1 inhibitor on SH-SY5Y cell apoptosis. Collectively, our results have revealed that caspase-1 regulates DA neuronal death in the pathogenesis of PD in mice via caspase-7/PARP1/AIF pathway. These findings will shed new insight into the potential of caspase-1 as a target for PD therapy.