WorldWideScience

Sample records for ambulatory human motion

  1. Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor

    Directory of Open Access Journals (Sweden)

    Malchau Henrik

    2006-09-01

    Full Text Available Abstract Background There is currently a paucity of devices available for continuous, long-term monitoring of human joint motion. Non-invasive, inexpensive devices capable of recording human activity and joint motion have many applications for medical research. Such a device could be used to quantify range of motion outside the gait laboratory. The purpose of this study was to test the accuracy of the modified Intelligent Device for Energy Expenditure and Activity (IDEEA in measuring knee flexion angles, to detect different physical activities, and to quantify how often healthy subjects use deep knee flexion in the ambulatory setting. Methods We compared Biomotion Laboratory (BML "gold standard" data to simultaneous IDEEA measures of knee motion and gait, step up/down, and stair descent in 5 healthy subjects. In addition, we used a series of choreographed physical activities outside the BML to confirm the IDEEA's ability to accurately measure 7 commonly-performed physical activities. Subjects then continued data collection during ordinary activities outside the gait laboratory. Results Pooled correlations between the BML and IDEEA knee flexion angles were .97 +/- .03 for step up/down, .98 +/- .02 for stair descent, and .98 +/- .01 for gait. In the BML protocol, the IDEEA accurately identified gait, but was less accurate in identifying step up/down and stair descent. During sampling outside the BML, the IDEEA accurately detected walking, running, stair ascent, stair descent, standing, lying, and sitting. On average, subjects flexed their knees >120° for 0.17% of their data collection periods outside the BML. Conclusion The modified IDEEA system is a useful clinical tool for evaluating knee motion and multiple physical activities in the ambulatory setting. These five healthy subjects rarely flexed their knees >120°.

  2. Wearable sensor system for human localization and motion capture

    OpenAIRE

    Zihajehzadeh, Shaghayegh

    2017-01-01

    Recent advances in MEMS wearable inertial/magnetic sensors and mobile computing have fostered a dramatic growth of interest for ambulatory human motion capture (MoCap). Compared to traditional optical MoCap systems such as the optical systems, inertial (i.e. accelerometer and gyroscope) and magnetic sensors do not require external fixtures such as cameras. Hence, they do not have in-the-lab measurement limitations and thus are ideal for ambulatory applications. However, due to the manufacturi...

  3. Human motion simulation predictive dynamics

    CERN Document Server

    Abdel-Malek, Karim

    2013-01-01

    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  4. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  5. Example-based human motion denoising.

    Science.gov (United States)

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  6. The eigenmode analysis of human motion

    International Nuclear Information System (INIS)

    Park, Juyong; Lee, Deok-Sun; González, Marta C

    2010-01-01

    Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of the spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data has great potential in applications such as urban planning in addition to being a subject of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion

  7. Ambulatory Antibiotic Stewardship through a Human Factors Engineering Approach: A Systematic Review.

    Science.gov (United States)

    Keller, Sara C; Tamma, Pranita D; Cosgrove, Sara E; Miller, Melissa A; Sateia, Heather; Szymczak, Julie; Gurses, Ayse P; Linder, Jeffrey A

    2018-01-01

    In the United States, most antibiotics are prescribed in ambulatory settings. Human factors engineering, which explores interactions between people and the place where they work, has successfully improved quality of care. However, human factors engineering models have not been explored to frame what is known about ambulatory antibiotic stewardship (AS) interventions and barriers and facilitators to their implementation. We conducted a systematic review and searched OVID MEDLINE, Embase, Scopus, Web of Science, and CINAHL to identify controlled interventions and qualitative studies of ambulatory AS and determine whether and how they incorporated principles from a human factors engineering model, the Systems Engineering Initiative for Patient Safety 2.0 model. This model describes how a work system (ambulatory clinic) contributes to a process (antibiotic prescribing) that leads to outcomes. The work system consists of 5 components, tools and technology, organization, person, tasks, and environment, within an external environment. Of 1,288 abstracts initially identified, 42 quantitative studies and 17 qualitative studies met inclusion criteria. Effective interventions focused on tools and technology (eg, clinical decision support and point-of-care testing), the person (eg, clinician education), organization (eg, audit and feedback and academic detailing), tasks (eg, delayed antibiotic prescribing), the environment (eg, commitment posters), and the external environment (media campaigns). Studies have not focused on clinic-wide approaches to AS. A human factors engineering approach suggests that investigating the role of the clinic's processes or physical layout or external pressures' role in antibiotic prescribing may be a promising way to improve ambulatory AS. © Copyright 2018 by the American Board of Family Medicine.

  8. Ambulatory assessment of human body kinematics and kinetics

    NARCIS (Netherlands)

    Schepers, H. Martin

    2009-01-01

    Traditional human movement analysis systems consist of an optical position measurement system with one or more 6D force plates mounted in a laboratory. Although clinically accepted as `the golden standard' for the assessment of human movement, the restriction to a laboratory environment with its

  9. Centralized Networks to Generate Human Body Motions.

    Science.gov (United States)

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  10. Interactive inverse kinematics for human motion estimation

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome

    2009-01-01

    We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation....

  11. Optimizing the design of preprinted orders for ambulatory chemotherapy: combining oncology, human factors, and graphic design.

    Science.gov (United States)

    Jeon, Jennifer; White, Rachel E; Hunt, Richard G; Cassano-Piché, Andrea L; Easty, Anthony C

    2012-03-01

    To establish a set of guidelines for developing ambulatory chemotherapy preprinted orders. Multiple methods were used to develop the preprinted order guidelines. These included (A) a comprehensive literature review and an environmental scan; (B) analyses of field study observations and incident reports; (C) critical review of evidence from the literature and the field study observation analyses; (D) review of the draft guidelines by a clinical advisory group; and (E) collaboration with graphic designers to develop sample preprinted orders, refine the design guidelines, and format the resulting content. The Guidelines for Developing Ambulatory Chemotherapy Preprinted Orders, which consist of guidance on the design process, content, and graphic design elements of ambulatory chemotherapy preprinted orders, have been established. Health care is a safety critical, dynamic, and complex sociotechnical system. Identifying safety risks in such a system and effectively addressing them often require the expertise of multiple disciplines. This study illustrates how human factors professionals, clinicians, and designers can leverage each other's expertise to uncover commonly overlooked patient safety hazards and to provide health care professionals with innovative, practical, and user-centered tools to minimize those hazards.

  12. Human Perception of Ambiguous Inertial Motion Cues

    Science.gov (United States)

    Zhang, Guan-Lu

    2010-01-01

    Human daily activities on Earth involve motions that elicit both tilt and translation components of the head (i.e. gazing and locomotion). With otolith cues alone, tilt and translation can be ambiguous since both motions can potentially displace the otolithic membrane by the same magnitude and direction. Transitions between gravity environments (i.e. Earth, microgravity and lunar) have demonstrated to alter the functions of the vestibular system and exacerbate the ambiguity between tilt and translational motion cues. Symptoms of motion sickness and spatial disorientation can impair human performances during critical mission phases. Specifically, Space Shuttle landing records show that particular cases of tilt-translation illusions have impaired the performance of seasoned commanders. This sensorimotor condition is one of many operational risks that may have dire implications on future human space exploration missions. The neural strategy with which the human central nervous system distinguishes ambiguous inertial motion cues remains the subject of intense research. A prevailing theory in the neuroscience field proposes that the human brain is able to formulate a neural internal model of ambiguous motion cues such that tilt and translation components can be perceptually decomposed in order to elicit the appropriate bodily response. The present work uses this theory, known as the GIF resolution hypothesis, as the framework for experimental hypothesis. Specifically, two novel motion paradigms are employed to validate the neural capacity of ambiguous inertial motion decomposition in ground-based human subjects. The experimental setup involves the Tilt-Translation Sled at Neuroscience Laboratory of NASA JSC. This two degree-of-freedom motion system is able to tilt subjects in the pitch plane and translate the subject along the fore-aft axis. Perception data will be gathered through subject verbal reports. Preliminary analysis of perceptual data does not indicate that

  13. Robotics-based synthesis of human motion

    KAUST Repository

    Khatib, O.; Demircan, E.; De Sapio, V.; Sentis, L.; Besier, T.; Delp, S.

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  14. Robotics-based synthesis of human motion

    KAUST Repository

    Khatib, O.

    2009-05-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  15. Generating Concise Rules for Human Motion Retrieval

    Science.gov (United States)

    Mukai, Tomohiko; Wakisaka, Ken-Ichi; Kuriyama, Shigeru

    This paper proposes a method for retrieving human motion data with concise retrieval rules based on the spatio-temporal features of motion appearance. Our method first converts motion clip into a form of clausal language that represents geometrical relations between body parts and their temporal relationship. A retrieval rule is then learned from the set of manually classified examples using inductive logic programming (ILP). ILP automatically discovers the essential rule in the same clausal form with a user-defined hypothesis-testing procedure. All motions are indexed using this clausal language, and the desired clips are retrieved by subsequence matching using the rule. Such rule-based retrieval offers reasonable performance and the rule can be intuitively edited in the same language form. Consequently, our method enables efficient and flexible search from a large dataset with simple query language.

  16. Ambulatory Phlebectomy

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Ambulatory Phlebectomy What is ambulatory phlebectomy? Ambulatory phlebectomy ...

  17. Circadian phase assessment by ambulatory monitoring in humans: correlation with dim light melatonin onset.

    Science.gov (United States)

    Bonmati-Carrion, M A; Middleton, B; Revell, V; Skene, D J; Rol, M A; Madrid, J A

    2014-02-01

    The increased prevalence of circadian disruptions due to abnormal coupling between internal and external time makes the detection of circadian phase in humans by ambulatory recordings a compelling need. Here, we propose an accurate practical procedure to estimate circadian phase with the least possible burden for the subject, that is, without the restraints of a constant routine protocol or laboratory techniques such as melatonin quantification, both of which are standard procedures. In this validation study, subjects (N = 13) wore ambulatory monitoring devices, kept daily sleep diaries and went about their daily routine for 10 days. The devices measured skin temperature at wrist level (WT), motor activity and body position on the arm, and light exposure by means of a sensor placed on the chest. Dim light melatonin onset (DLMO) was used to compare and evaluate the accuracy of the ambulatory variables in assessing circadian phase. An evening increase in WT: WTOnset (WTOn) and "WT increase onset" (WTiO) was found to anticipate the evening increase in melatonin, while decreases in motor activity (Activity Offset or AcOff), body position (Position Offset (POff)), integrative TAP (a combination of WT, activity and body position) (TAPOffset or TAPOff) and an increase in declared sleep propensity were phase delayed with respect to DLMO. The phase markers obtained from subjective sleep (R = 0.811), WT (R = 0.756) and the composite variable TAP (R = 0.720) were highly and significantly correlated with DLMO. The findings strongly support a new method to calculate circadian phase based on WT (WTiO) that accurately predicts and shows a temporal association with DLMO. WTiO is especially recommended due to its simplicity and applicability to clinical use under conditions where knowing endogenous circadian phase is important, such as in cancer chronotherapy and light therapy.

  18. Human sensitivity to vertical self-motion.

    Science.gov (United States)

    Nesti, Alessandro; Barnett-Cowan, Michael; Macneilage, Paul R; Bülthoff, Heinrich H

    2014-01-01

    Perceiving vertical self-motion is crucial for maintaining balance as well as for controlling an aircraft. Whereas heave absolute thresholds have been exhaustively studied, little work has been done in investigating how vertical sensitivity depends on motion intensity (i.e., differential thresholds). Here we measure human sensitivity for 1-Hz sinusoidal accelerations for 10 participants in darkness. Absolute and differential thresholds are measured for upward and downward translations independently at 5 different peak amplitudes ranging from 0 to 2 m/s(2). Overall vertical differential thresholds are higher than horizontal differential thresholds found in the literature. Psychometric functions are fit in linear and logarithmic space, with goodness of fit being similar in both cases. Differential thresholds are higher for upward as compared to downward motion and increase with stimulus intensity following a trend best described by two power laws. The power laws' exponents of 0.60 and 0.42 for upward and downward motion, respectively, deviate from Weber's Law in that thresholds increase less than expected at high stimulus intensity. We speculate that increased sensitivity at high accelerations and greater sensitivity to downward than upward self-motion may reflect adaptations to avoid falling.

  19. Stretch sensors for human body motion

    Science.gov (United States)

    O'Brien, Ben; Gisby, Todd; Anderson, Iain A.

    2014-03-01

    Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.

  20. Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.

  1. Dielectric polymer: scavenging energy from human motion

    Science.gov (United States)

    Jean-Mistral, Claire; Basrour, Skandar; Chaillout, Jean-Jacques

    2008-03-01

    More and more sensors are embedded in human body for medical applications, for sport. The short lifetime of the batteries, available on the market, reveals a real problem of autonomy of these systems. A promising alternative is to scavenge the ambient energy such as the mechanical one. Up to now, few scavenging structures have operating frequencies compatible with ambient one. And, most of the developed structures are rigid and use vibration as mechanical source. For these reasons, we developed a scavenger that operates in a large frequency spectrum from quasi-static to dynamic range. This generator is fully flexible, light and does not hamper the human motion. Thus, we report in this paper an analytical model for dielectric generator with news electrical and mechanical characterization, and the development of an innovating application: scavenging energy from human motion. The generator is located on the knee and design to scavenge 0.1mJ per scavenging cycle at a frequency of 1Hz, enough to supply a low consumption system and with a poling voltage as low as possible to facilitate the power management. Our first prototype is a membrane with an area of 5*3cm and 31µm in thickness which scavenge 0.1mJ under 170V at constant charge Q.

  2. Ambulatory Surgical Measures - Facility

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Ambulatory Surgical Center Quality Reporting (ASCQR) Program seeks to make care safer and more efficient through quality reporting. ASCs eligible for this...

  3. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  4. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  5. Human motion sensing and recognition a fuzzy qualitative approach

    CERN Document Server

    Liu, Honghai; Ji, Xiaofei; Chan, Chee Seng; Khoury, Mehdi

    2017-01-01

    This book introduces readers to the latest exciting advances in human motion sensing and recognition, from the theoretical development of fuzzy approaches to their applications. The topics covered include human motion recognition in 2D and 3D, hand motion analysis with contact sensors, and vision-based view-invariant motion recognition, especially from the perspective of Fuzzy Qualitative techniques. With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, analyzed or understood, such as smart surveillance, intelligent human-computer interaction, robot motion learning, and interactive gaming. Current challenges mainly stem from the dynamic environment, data multi-modality, uncertain sensory information, and real-time issues. These techniques are shown to effectively address the ...

  6. Measurement and Quantification of Gross Human Shoulder Motion

    Directory of Open Access Journals (Sweden)

    Jeremy T. Newkirk

    2013-01-01

    Full Text Available The shoulder girdle plays an important role in the large pointing workspace that humans enjoy. The goal of this work was to characterize the human shoulder girdle motion in relation to the arm. The overall motion of the human shoulder girdle was characterized based on motion studies completed on test subjects during voluntary (natural/unforced motion. The collected data from the experiments were used to develop surface fit equations that represent the position and orientation of the glenohumeral joint for a given humeral pointing direction. These equations completely quantify gross human shoulder girdle motion relative to the humerus. The equations are presented along with goodness-of-fit results that indicate the equations well approximate the motion of the human glenohumeral joint. This is the first time the motion has been quantified for the entire workspace, and the equations provide a reference against which to compare future work.

  7. Discriminative Vision-Based Recovery and Recognition of Human Motion

    NARCIS (Netherlands)

    Poppe, Ronald Walter

    2009-01-01

    The automatic analysis of human motion from images opens up the way for applications in the domains of security and surveillance, human-computer interaction, animation, retrieval and sports motion analysis. In this dissertation, the focus is on robust and fast human pose recovery and action

  8. Coupled motions in human and porcine thoracic and lumbar spines

    NARCIS (Netherlands)

    Kingma, Idsart; Busscher, Iris; van der Veen, Albert J.; Verkerke, Gijsbertus J.; Veldhuizen, Albert G.; Homminga, Jasper; van Dieën, Jaap H.

    2018-01-01

    Coupled motions, i.e., motions along axes other than the loaded axis, have been reported to occur in the human spine, and are likely to be influenced by inclined local axes due to the sagittal plane spine curvature. Furthermore, the role of facet joints in such motions is as yet unclear. Therefore,

  9. Coupled motions in human and porcine thoracic and lumbar spines

    NARCIS (Netherlands)

    Kingma, Idsart; Busscher, Iris; van der Veen, Albert J.; Verkerke, Gijsbertus J.; Veldhuizen, Albert G.; Homminga, Jasper; van Dieën, Jaap H.

    2017-01-01

    Coupled motions, i.e., motions along axes other than the loaded axis, have been reported to occur in the human spine, and are likely to be influenced by inclined local axes due to the sagittal plane spine curvature. Furthermore, the role of facet joints in such motions is as yet unclear. Therefore,

  10. Predicting articulated human motion from spatial processes

    DEFF Research Database (Denmark)

    Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    recent work where prior models are derived in terms of joint angles. This approach has several advantages. First of all, it allows us to construct motion models in low dimensional spaces, which makes motion estimation more robust. Secondly, as many types of motion are easily expressed in spatial...

  11. Human Motion Capture Data Tailored Transform Coding.

    Science.gov (United States)

    Junhui Hou; Lap-Pui Chau; Magnenat-Thalmann, Nadia; Ying He

    2015-07-01

    Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed.

  12. Automatic Video-based Analysis of Human Motion

    DEFF Research Database (Denmark)

    Fihl, Preben

    The human motion contains valuable information in many situations and people frequently perform an unconscious analysis of the motion of other people to understand their actions, intentions, and state of mind. An automatic analysis of human motion will facilitate many applications and thus has...... received great interest from both industry and research communities. The focus of this thesis is on video-based analysis of human motion and the thesis presents work within three overall topics, namely foreground segmentation, action recognition, and human pose estimation. Foreground segmentation is often...... the first important step in the analysis of human motion. By separating foreground from background the subsequent analysis can be focused and efficient. This thesis presents a robust background subtraction method that can be initialized with foreground objects in the scene and is capable of handling...

  13. National Hospital Ambulatory Medical Care Survey

    Data.gov (United States)

    U.S. Department of Health & Human Services — The National Hospital Ambulatory Medical Care Survey (NHAMCS) is designed to collect data on the utilization and provision of ambulatory care services in hospital...

  14. Sybar, a human motion analysis system for rehabilition medicine

    NARCIS (Netherlands)

    Hautus, E.H.

    1997-01-01

    The Sybar project is a designer's Ph.D project that deals with the development of a motion-analysis system for rehabilitation medicine, at the VU Hospital in Amsterdam. Human motion can be analyzed by biomechanical measurement systems. There are a number of different methods to generate several

  15. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  16. Sensing human hand motions for controlling dexterous robots

    Science.gov (United States)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  17. Multi-level human motion analysis for surveillance applications

    NARCIS (Netherlands)

    Lao, W.; Han, Jungong; With, de P.H.N.; Rabbani, M.; Stevenson, R.L.

    2009-01-01

    In this paper, we study a flexible framework for semantic analysis of human motion from a monocular surveillance video. Successful trajectory estimation and human-body modeling facilitate the semantic analysis of human activities in video sequences. As a first contribution, we propose a flexible

  18. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    Directory of Open Access Journals (Sweden)

    Stefano Salati

    2010-09-01

    Full Text Available Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field.

  19. Biodynamics of deformable human body motion

    Science.gov (United States)

    Strauss, A. M.; Huston, R. L.

    1976-01-01

    The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.

  20. Vision-based human motion analysis: An overview

    NARCIS (Netherlands)

    Poppe, Ronald Walter

    2007-01-01

    Markerless vision-based human motion analysis has the potential to provide an inexpensive, non-obtrusive solution for the estimation of body poses. The significant research effort in this domain has been motivated by the fact that many application areas, including surveillance, Human-Computer

  1. Human motion estimation with multiple frequency modulated continuous wave radars

    NARCIS (Netherlands)

    van Dorp, P.; Groen, F.C.A.

    2010-01-01

    Human motion estimation is an important issue in automotive, security or home automation applications. Radar systems are well suited for this because they are robust, are independent of day or night conditions and have accurate range and speed domain. The human response in a radar range-speed-time

  2. An adaptive approach to human motion tracking from video

    Science.gov (United States)

    Wu, Lifang; Chen, Chang Wen

    2010-07-01

    Vision based human motion tracking has drawn considerable interests recently because of its extensive applications. In this paper, we propose an approach to tracking the body motion of human balancing on each foot. The ability to balance properly is an important indication of neurological condition. Comparing with many other human motion tracking, there is much less occlusion in human balancing tracking. This less constrained problem allows us to combine a 2D model of human body with image analysis techniques to develop an efficient motion tracking algorithm. First we define a hierarchical 2D model consisting of six components including head, body and four limbs. Each of the four limbs involves primary component (upper arms and legs) and secondary component (lower arms and legs) respectively. In this model, we assume each of the components can be represented by quadrangles and every component is connected to one of others by a joint. By making use of inherent correlation between different components, we design a top-down updating framework and an adaptive algorithm with constraints of foreground regions for robust and efficient tracking. The approach has been tested using the balancing movement in HumanEva-I/II dataset. The average tracking time is under one second, which is much shorter than most of current schemes.

  3. Visual gravitational motion and the vestibular system in humans

    Directory of Open Access Journals (Sweden)

    Francesco eLacquaniti

    2013-12-01

    Full Text Available The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  4. Visual gravitational motion and the vestibular system in humans.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  5. A Self-Powered Insole for Human Motion Recognition

    Directory of Open Access Journals (Sweden)

    Yingzhou Han

    2016-09-01

    Full Text Available Biomechanical energy harvesting is a feasible solution for powering wearable sensors by directly driving electronics or acting as wearable self-powered sensors. A wearable insole that not only can harvest energy from foot pressure during walking but also can serve as a self-powered human motion recognition sensor is reported. The insole is designed as a sandwich structure consisting of two wavy silica gel film separated by a flexible piezoelectric foil stave, which has higher performance compared with conventional piezoelectric harvesters with cantilever structure. The energy harvesting insole is capable of driving some common electronics by scavenging energy from human walking. Moreover, it can be used to recognize human motion as the waveforms it generates change when people are in different locomotion modes. It is demonstrated that different types of human motion such as walking and running are clearly classified by the insole without any external power source. This work not only expands the applications of piezoelectric energy harvesters for wearable power supplies and self-powered sensors, but also provides possible approaches for wearable self-powered human motion monitoring that is of great importance in many fields such as rehabilitation and sports science.

  6. Using Human Motion Intensity as Input for Urban Design

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Gade, Rikke

    2012-01-01

    of a town square, human occupancy and motion intensities are used to generate situated or topologies presenting new adaptive methods for urban design. These methods incorporate local or as design drivers for canopy, pavement and furniture layout. The urban design solution may be congured due to various...

  7. Coupled motions direct electrons along human microsomal P450 Chains.

    Directory of Open Access Journals (Sweden)

    Christopher R Pudney

    2011-12-01

    Full Text Available Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR to all microsomal cytochrome P450s (CYPs. Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron

  8. Human motion behavior while interacting with an industrial robot.

    Science.gov (United States)

    Bortot, Dino; Ding, Hao; Antonopolous, Alexandros; Bengler, Klaus

    2012-01-01

    Human workers and industrial robots both have specific strengths within industrial production. Advantageously they complement each other perfectly, which leads to the development of human-robot interaction (HRI) applications. Bringing humans and robots together in the same workspace may lead to potential collisions. The avoidance of such is a central safety requirement. It can be realized with sundry sensor systems, all of them decelerating the robot when the distance to the human decreases alarmingly and applying the emergency stop, when the distance becomes too small. As a consequence, the efficiency of the overall systems suffers, because the robot has high idle times. Optimized path planning algorithms have to be developed to avoid that. The following study investigates human motion behavior in the proximity of an industrial robot. Three different kinds of encounters between the two entities under three robot speed levels are prompted. A motion tracking system is used to capture the motions. Results show, that humans keep an average distance of about 0,5m to the robot, when the encounter occurs. Approximation of the workbenches is influenced by the robot in ten of 15 cases. Furthermore, an increase of participants' walking velocity with higher robot velocities is observed.

  9. Time-frequency analysis of human motion during rhythmic exercises.

    Science.gov (United States)

    Omkar, S N; Vyas, Khushi; Vikranth, H N

    2011-01-01

    Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

  10. An Exoskeleton Robot for Human Forearm and Wrist Motion Assist

    Science.gov (United States)

    Ranathunga Arachchilage Ruwan Chandra Gopura; Kiguchi, Kazuo

    The exoskeleton robot is worn by the human operator as an orthotic device. Its joints and links correspond to those of the human body. The same system operated in different modes can be used for different fundamental applications; a human-amplifier, haptic interface, rehabilitation device and assistive device sharing a portion of the external load with the operator. We have been developing exoskeleton robots for assisting the motion of physically weak individuals such as elderly or slightly disabled in daily life. In this paper, we propose a three degree of freedom (3DOF) exoskeleton robot (W-EXOS) for the forearm pronation/ supination motion, wrist flexion/extension motion and ulnar/radial deviation. The paper describes the wrist anatomy toward the development of the exoskeleton robot, the hardware design of the exoskeleton robot and EMG-based control method. The skin surface electromyographic (EMG) signals of muscles in forearm of the exoskeletons' user and the hand force/forearm torque are used as input information for the controller. By applying the skin surface EMG signals as main input signals to the controller, automatic control of the robot can be realized without manipulating any other equipment. Fuzzy control method has been applied to realize the natural and flexible motion assist. Experiments have been performed to evaluate the proposed exoskeleton robot and its control method.

  11. Representation of visual gravitational motion in the human vestibular cortex.

    Science.gov (United States)

    Indovina, Iole; Maffei, Vincenzo; Bosco, Gianfranco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco

    2005-04-15

    How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain.

  12. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    Science.gov (United States)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input

  13. Technical and clinical view on ambulatory assessment in Parkinson's disease.

    Science.gov (United States)

    Hobert, M A; Maetzler, W; Aminian, K; Chiari, L

    2014-09-01

    With the progress of technologies of recent years, methods have become available that use wearable sensors and ambulatory systems to measure aspects of--particular axial--motor function. As Parkinson's disease (PD) can be considered a model disorder for motor impairment, a significant number of studies have already been performed with these patients using such techniques. In general, motion sensors such as accelerometers and gyroscopes are used, in combination with lightweight electronics that do not interfere with normal human motion. A fundamental advantage in comparison with usual clinical assessment is that these sensors allow a more quantitative, objective, and reliable evaluation of symptoms; they have also significant advantages compared to in-lab technologies (e.g., optoelectronic motion capture) as they allow long-term monitoring under real-life conditions. In addition, based on recent findings particularly from studies using functional imaging, we learned that non-motor symptoms, specifically cognitive aspects, may be at least indirectly assessable. It is hypothesized that ambulatory quantitative assessment strategies will allow users, clinicians, and scientists in the future to gain more quantitative, unobtrusive, and everyday relevant data out of their clinical evaluation and can also be designed as pervasive (everywhere) and intensive (anytime) tools for ambulatory assessment and even rehabilitation of motor and (partly) non-motor symptoms in PD. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Human detection and motion analysis at security points

    Science.gov (United States)

    Ozer, I. Burak; Lv, Tiehan; Wolf, Wayne H.

    2003-08-01

    This paper presents a real-time video surveillance system for the recognition of specific human activities. Specifically, the proposed automatic motion analysis is used as an on-line alarm system to detect abnormal situations in a campus environment. A smart multi-camera system developed at Princeton University is extended for use in smart environments in which the camera detects the presence of multiple persons as well as their gestures and their interaction in real-time.

  15. HCUP State Ambulatory Surgery Databases (SASD) - Restricted Access Files

    Data.gov (United States)

    U.S. Department of Health & Human Services — The State Ambulatory Surgery Databases (SASD) contain the universe of hospital-based ambulatory surgery encounters in participating States. Some States include...

  16. Outpatient and Ambulatory Surgery Consumer Assessment of Healthcare Providers and Systems (OAS CAHPS) survey for ambulatory surgical centers - Facility

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of ambulatory surgical center ratings for the Outpatient and Ambulatory Surgery Consumer Assessment of Healthcare Providers and Systems (OAS CAHPS) survey....

  17. Energy Optimal Trajectories in Human Arm Motion Aiming for Assistive Robots

    Directory of Open Access Journals (Sweden)

    Lelai Zhou

    2017-01-01

    Full Text Available The energy expenditure in human arm has been of great interests for seeking optimal human arm trajectories. This paper presents a new way for calculating metabolic energy consumption of human arm motions. The purpose is to reveal the relationship between the energy consumption and the trajectory of arm motion, and further, the acceleration and arm orientation contributions. Human arm motion in horizontal plane is investigated by virtue of Qualisys motion capture system. The motion data is post-processed by a biomechanical model to obtain the metabolic expenditure. Results on the arm motion kinematics, dynamics and metabolic energy consumption, are included.

  18. Human circadian phase estimation from signals collected in ambulatory conditions using an autoregressive model

    NARCIS (Netherlands)

    Gil, Enrique A; Aubert, Xavier L; Møst, Els I S; Beersma, Domien G M

    Phase estimation of the human circadian rhythm is a topic that has been explored using various modeling approaches. The current models range from physiological to mathematical, all attempting to estimate the circadian phase from different physiological or behavioral signals. Here, we have focused on

  19. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  20. Ambulatory Assessment.

    Science.gov (United States)

    Carpenter, Ryan W; Wycoff, Andrea M; Trull, Timothy J

    2016-08-01

    In recent years, significant technological advances have changed our understanding of dynamic processes in clinical psychology. A particularly important agent of change has been ambulatory assessment (AA). AA is the assessment of individuals in their daily lives, combining the twin benefits of increased ecological validity and minimized retrospective biases. These benefits make AA particularly well-suited to the assessment of dynamic processes, and recent advancements in technology are providing exciting new opportunities to understand these processes in new ways. In the current article, we briefly detail the capabilities currently offered by smartphones and mobile physiological devices, as well as some of the practical and ethical challenges of incorporating these new technologies into AA research. We then provide several examples of recent innovative applications of AA methodology in clinical research, assessment, and intervention and provide a case example of AA data generated from a study utilizing multiple mobile devices. In this way, we aim to provide a sense of direction for researchers planning AA studies of their own.

  1. Clinical Features of Human Metapneumovirus Infection in Ambulatory Children Aged 5-13 Years.

    Science.gov (United States)

    Howard, Leigh M; Edwards, Kathryn M; Zhu, Yuwei; Griffin, Marie R; Weinberg, Geoffrey A; Szilagyi, Peter G; Staat, Mary A; Payne, Daniel C; Williams, John V

    2018-05-15

    We detected human metapneumovirus (HMPV) in 54 (5%) of 1055 children aged 5 to 13 years with acute respiratory illness (ARI) identified by outpatient and emergency department surveillance between November and May 2003-2009. Its clinical features were similar to those of HMPV-negative ARI, except a diagnosis of pneumonia was more likely (13% vs 4%, respectively; P = .005) and a diagnosis of pharyngitis (7% vs 24%, respectively; P = .005) was less likely in patients with HMPV- positive ARI than those with HMPV-negative ARI.

  2. Simultaneous estimation of human and exoskeleton motion: A simplified protocol.

    Science.gov (United States)

    Alvarez, M T; Torricelli, D; Del-Ama, A J; Pinto, D; Gonzalez-Vargas, J; Moreno, J C; Gil-Agudo, A; Pons, J L

    2017-07-01

    Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot. This work answers the question of how to reliably assess the subject's body motion by placing markers over the exoskeleton. Focusing on the ankle joint, the proposed methodology showed that it is possible to reconstruct the trajectory of the subject's joint by placing markers on the exoskeleton, although foot flexibility during walking can impact the reconstruction accuracy. More experiments are needed to confirm this hypothesis, and more subjects and walking conditions are needed to better characterize the errors of the proposed methodology, although our results are promising, indicating small errors.

  3. Adaptive Human aware Navigation based on Motion Pattern Analysis

    DEFF Research Database (Denmark)

    Tranberg, Søren; Svenstrup, Mikael; Andersen, Hans Jørgen

    2009-01-01

    Respecting people’s social spaces is an important prerequisite for acceptable and natural robot navigation in human environments. In this paper, we describe an adaptive system for mobile robot navigation based on estimates of whether a person seeks to interact with the robot or not. The estimates...... are based on run-time motion pattern analysis compared to stored experience in a database. Using a potential field centered around the person, the robot positions itself at the most appropriate place relative to the person and the interaction status. The system is validated through qualitative tests...

  4. Computer simulation of human motion in sports biomechanics.

    Science.gov (United States)

    Vaughan, C L

    1984-01-01

    This chapter has covered some important aspects of the computer simulation of human motion in sports biomechanics. First the definition and the advantages and limitations of computer simulation were discussed; second, research on various sporting activities were reviewed. These activities included basic movements, aquatic sports, track and field athletics, winter sports, gymnastics, and striking sports. This list was not exhaustive and certain material has, of necessity, been omitted. However, it was felt that a sufficiently broad and interesting range of activities was chosen to illustrate both the advantages and the pitfalls of simulation. It is almost a decade since Miller [53] wrote a review chapter similar to this one. One might be tempted to say that things have changed radically since then--that computer simulation is now a widely accepted and readily applied research tool in sports biomechanics. This is simply not true, however. Biomechanics researchers still tend to emphasize the descriptive type of study, often unfortunately, when a little theoretical explanation would have been more helpful [29]. What will the next decade bring? Of one thing we can be certain: The power of computers, particularly the readily accessible and portable microcomputer, will expand beyond all recognition. The memory and storage capacities will increase dramatically on the hardware side, and on the software side the trend will be toward "user-friendliness." It is likely that a number of software simulation packages designed specifically for studying human motion [31, 96] will be extensively tested and could gain wide acceptance in the biomechanics research community. Nevertheless, a familiarity with Newtonian and Lagrangian mechanics, optimization theory, and computers in general, as well as practical biomechanical insight, will still be a prerequisite for successful simulation models of human motion. Above all, the biomechanics researcher will still have to bear in mind that

  5. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  6. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    Science.gov (United States)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  7. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Nicholas Corso

    2013-12-01

    Full Text Available Indoor localization and mapping is an important problem with many applications such as emergency response, architectural modeling, and historical preservation. In this paper, we develop an automatic, off-line pipeline for metrically accurate, GPS-denied, indoor 3D mobile mapping using a human-mounted backpack system consisting of a variety of sensors. There are three novel contributions in our proposed mapping approach. First, we present an algorithm which automatically detects loop closure constraints from an occupancy grid map. In doing so, we ensure that constraints are detected only in locations that are well conditioned for scan matching. Secondly, we address the problem of scan matching with poor initial condition by presenting an outlier-resistant, genetic scan matching algorithm that accurately matches scans despite a poor initial condition. Third, we present two metrics based on the amount and complexity of overlapping geometry in order to vet the estimated loop closure constraints. By doing so, we automatically prevent erroneous loop closures from degrading the accuracy of the reconstructed trajectory. The proposed algorithms are experimentally verified using both controlled and real-world data. The end-to-end system performance is evaluated using 100 surveyed control points in an office environment and obtains a mean accuracy of 10 cm. Experimental results are also shown on three additional datasets from real world environments including a 1500 meter trajectory in a warehouse sized retail shopping center.

  8. Adding Image Constraints to Inverse Kinematics for Human Motion Capture

    Science.gov (United States)

    Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Perales, Francisco J.

    2009-12-01

    In order to study human motion in biomechanical applications, a critical component is to accurately obtain the 3D joint positions of the user's body. Computer vision and inverse kinematics are used to achieve this objective without markers or special devices attached to the body. The problem of these systems is that the inverse kinematics is "blinded" with respect to the projection of body segments into the images used by the computer vision algorithms. In this paper, we present how to add image constraints to inverse kinematics in order to estimate human motion. Specifically, we explain how to define a criterion to use images in order to guide the posture reconstruction of the articulated chain. Tests with synthetic images show how the scheme performs well in an ideal situation. In order to test its potential in real situations, more experiments with task specific image sequences are also presented. By means of a quantitative study of different sequences, the results obtained show how this approach improves the performance of inverse kinematics in this application.

  9. Society for Ambulatory Anesthesia

    Science.gov (United States)

    ... SAMBA Link Digital Newsletter Educational Bibliography Research IARS/Anesthesia & Analgesia SCOR About SCOR Sponsor SAMBA Meetings Affinity Sponsor Program We Represent Ambulatory and Office-Based Anesthesia The Society for Ambulatory Anesthesia provides educational opportunities, ...

  10. Electrical Properties of PPy-Coated Conductive Fabrics for Human Joint Motion Monitoring

    Directory of Open Access Journals (Sweden)

    Jiyong Hu

    2016-03-01

    Full Text Available Body motion signals indicate several pathological features of the human body, and a wearable human motion monitoring system can respond to human joint motion signal in real time, thereby enabling the prevention and treatment of some diseases. Because conductive fabrics can be well integrated with the garment, they are ideal as a sensing element of wearable human motion monitoring systems. This study prepared polypyrrole conductive fabric by in situ polymerization, and the anisotropic property of the conductive fabric resistance, resistance–strain relationship, and the relationship between resistance and the human knee and elbow movements are discussed preliminarily.

  11. Energy harvesting from human motion: exploiting swing and shock excitations

    International Nuclear Information System (INIS)

    Ylli, K; Hoffmann, D; Willmann, A; Becker, P; Folkmer, B; Manoli, Y

    2015-01-01

    Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm 3 a power density of 40 μW cm −3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 μW cm −3 for the total device volume of 48 cm 3 . Difficulties and potential improvements are discussed briefly. (paper)

  12. Human Action Recognition Using Ordinal Measure of Accumulated Motion

    Directory of Open Access Journals (Sweden)

    Kim Wonjun

    2010-01-01

    Full Text Available This paper presents a method for recognizing human actions from a single query action video. We propose an action recognition scheme based on the ordinal measure of accumulated motion, which is robust to variations of appearances. To this end, we first define the accumulated motion image (AMI using image differences. Then the AMI of the query action video is resized to a subimage by intensity averaging and a rank matrix is generated by ordering the sample values in the sub-image. By computing the distances from the rank matrix of the query action video to the rank matrices of all local windows in the target video, local windows close to the query action are detected as candidates. To find the best match among the candidates, their energy histograms, which are obtained by projecting AMI values in horizontal and vertical directions, respectively, are compared with those of the query action video. The proposed method does not require any preprocessing task such as learning and segmentation. To justify the efficiency and robustness of our approach, the experiments are conducted on various datasets.

  13. Multi-model approach to characterize human handwriting motion.

    Science.gov (United States)

    Chihi, I; Abdelkrim, A; Benrejeb, M

    2016-02-01

    This paper deals with characterization and modelling of human handwriting motion from two forearm muscle activity signals, called electromyography signals (EMG). In this work, an experimental approach was used to record the coordinates of a pen tip moving on the (x, y) plane and EMG signals during the handwriting act. The main purpose is to design a new mathematical model which characterizes this biological process. Based on a multi-model approach, this system was originally developed to generate letters and geometric forms written by different writers. A Recursive Least Squares algorithm is used to estimate the parameters of each sub-model of the multi-model basis. Simulations show good agreement between predicted results and the recorded data.

  14. Scavenging energy from human motion with tubular dielectric polymer

    Science.gov (United States)

    Jean-Mistral, Claire; Basrour, Skandar

    2010-04-01

    Scavenging energy from human motion is a challenge to supply low consumption systems for sport or medical applications. A promising solution is to use electroactive polymers and especially dielectric polymers to scavenge mechanical energy during walk. In this paper, we present a tubular dielectric generator which is the first step toward an integration of these structures into textiles. For a 10cm length and under a strain of 100%, the structure is able to scavenge 1.5μJ for a poling voltage of 200V and up to 40μJ for a poling voltage of 1000V. A 30cm length structure is finally compared to our previous planar structure, and the power management module for those structures is discussed.

  15. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  16. National Ambulatory Medical Care Survey (NAMCS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The National Ambulatory Medical Care Survey (NAMCS) is a national survey designed to meet the need for objective, reliable information about the provision and use of...

  17. Motion Segments Decomposition of RGB-D Sequences for Human Behavior Understanding

    OpenAIRE

    Devanne , Maxime; Berretti , Stefano; Pala , Pietro; Wannous , Hazem; Daoudi , Mohamed; Bimbo , Alberto ,

    2017-01-01

    International audience; In this paper, we propose a framework for analyzing and understanding human behavior from depth videos. The proposed solution first employs shape analysis of the human pose across time to decompose the full motion into short temporal segments representing elementary motions. Then, each segment is characterized by human motion and depth appearance around hand joints to describe the change in pose of the body and the interaction with objects. Finally , the sequence of te...

  18. Learning Silhouette Features for Control of Human Motion

    National Research Council Canada - National Science Library

    Ren, Liu; Shakhnarovich, Gregory; Hodgins, Jessica K; Pfister, Hanspeter; Viola, Paul A

    2004-01-01

    .... The system combines information about the user's motion contained in silhouettes from several viewpoints with domain knowledge contained in a motion capture database to interactively produce a high quality animation...

  19. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    Science.gov (United States)

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  20. Human motion retrieval from hand-drawn sketch.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-Hung; Assa, Jackie; Lee, Tong-Yee

    2012-05-01

    The rapid growth of motion capture data increases the importance of motion retrieval. The majority of the existing motion retrieval approaches are based on a labor-intensive step in which the user browses and selects a desired query motion clip from the large motion clip database. In this work, a novel sketching interface for defining the query is presented. This simple approach allows users to define the required motion by sketching several motion strokes over a drawn character, which requires less effort and extends the users’ expressiveness. To support the real-time interface, a specialized encoding of the motions and the hand-drawn query is required. Here, we introduce a novel hierarchical encoding scheme based on a set of orthonormal spherical harmonic (SH) basis functions, which provides a compact representation, and avoids the CPU/processing intensive stage of temporal alignment used by previous solutions. Experimental results show that the proposed approach can well retrieve the motions, and is capable of retrieve logically and numerically similar motions, which is superior to previous approaches. The user study shows that the proposed system can be a useful tool to input motion query if the users are familiar with it. Finally, an application of generating a 3D animation from a hand-drawn comics strip is demonstrated.

  1. Numerical and experimental investigations of human swimming motions.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Sato, Yohei; Matsuuchi, Kazuo; Sanders, Ross H

    2016-08-01

    This paper reviews unsteady flow conditions in human swimming and identifies the limitations and future potential of the current methods of analysing unsteady flow. The capability of computational fluid dynamics (CFD) has been extended from approaches assuming steady-state conditions to consideration of unsteady/transient conditions associated with the body motion of a swimmer. However, to predict hydrodynamic forces and the swimmer's potential speeds accurately, more robust and efficient numerical methods are necessary, coupled with validation procedures, requiring detailed experimental data reflecting local flow. Experimental data obtained by particle image velocimetry (PIV) in this area are limited, because at present observations are restricted to a two-dimensional 1.0 m(2) area, though this could be improved if the output range of the associated laser sheet increased. Simulations of human swimming are expected to improve competitive swimming, and our review has identified two important advances relating to understanding the flow conditions affecting performance in front crawl swimming: one is a mechanism for generating unsteady fluid forces, and the other is a theory relating to increased speed and efficiency.

  2. Interactions between motion and form processing in the human visual system.

    Science.gov (United States)

    Mather, George; Pavan, Andrea; Bellacosa Marotti, Rosilari; Campana, Gianluca; Casco, Clara

    2013-01-01

    The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However, recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by "motion-streaks" influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus, form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS.

  3. Interactions between motion and form processing in the human visual system

    Directory of Open Access Journals (Sweden)

    George eMather

    2013-05-01

    Full Text Available The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by ‘motion-streaks’ influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS.

  4. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    Science.gov (United States)

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  5. A Survey of Advances in Vision-Based Human Motion Capture and Analysis

    DEFF Research Database (Denmark)

    Moeslund, Thomas B.; Hilton, Adrian; Krüger, Volker

    2006-01-01

    This survey reviews advances in human motion capture and analysis from 2000 to 2006, following a previous survey of papers up to 2000 Human motion capture continues to be an increasingly active research area in computer vision with over 350 publications over this period. A number of significant...... actions and behavior. This survey reviews recent trends in video based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement....

  6. The 3D Human Motion Control Through Refined Video Gesture Annotation

    Science.gov (United States)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  7. Tuning for temporal interval in human apparent motion detection.

    Science.gov (United States)

    Bours, Roger J E; Stuur, Sanne; Lankheet, Martin J M

    2007-01-08

    Detection of apparent motion in random dot patterns requires correlation across time and space. It has been difficult to study the temporal requirements for the correlation step because motion detection also depends on temporal filtering preceding correlation and on integration at the next levels. To specifically study tuning for temporal interval in the correlation step, we performed an experiment in which prefiltering and postintegration were held constant and in which we used a motion stimulus containing coherent motion for a single interval value only. The stimulus consisted of a sparse random dot pattern in which each dot was presented in two frames only, separated by a specified interval. On each frame, half of the dots were refreshed and the other half was a displaced reincarnation of the pattern generated one or several frames earlier. Motion energy statistics in such a stimulus do not vary from frame to frame, and the directional bias in spatiotemporal correlations is similar for different interval settings. We measured coherence thresholds for left-right direction discrimination by varying motion coherence levels in a Quest staircase procedure, as a function of both step size and interval. Results show that highest sensitivity was found for an interval of 17-42 ms, irrespective of viewing distance. The falloff at longer intervals was much sharper than previously described. Tuning for temporal interval was largely, but not completely, independent of step size. The optimal temporal interval slightly decreased with increasing step size. Similarly, the optimal step size decreased with increasing temporal interval.

  8. Real-time stylistic prediction for whole-body human motions.

    Science.gov (United States)

    Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun

    2012-01-01

    The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Interactions between motion and form processing in the human visual system

    OpenAIRE

    Mather, G.; Pavan, A.; Bellacosa Marotti, R.; Campana, G.; Casco, C.

    2013-01-01

    The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form proce...

  10. S3-3: Misbinding of Color and Motion in Human V2 Revealed by Color-Contingent Motion Adaptation

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-10-01

    Full Text Available Wu, Kanai, & Shimojo (2004 Nature 429 262 described a compelling illusion demonstrating a steady-state misbinding of color and motion. Here, we took advantage of the illusion and performed psychophysical and fMRI adaptation experiments to explore the neural mechanism of color-motion misbinding. The stimulus subtended 20 deg by 14 deg of visual angle and contained two sheets of random dots, one sheet moving up and the other moving down. On the upward-moving sheet, dots in the right-end area (4 deg by 14 deg were red, and the rest of the dots were green. On the downward-moving sheet, dots in the right-end area were green, and the rest of the dots were red. When subjects fixated at the center of the stimulus, they bound the color and motion of the dots in the right-end area erroneously–the red dots appeared to move downwards and the green dots appeared to move upwards. In the psychophysical experiment, we measured the color-contingent motion aftereffect in the right-end area after adaptation to the illusory stimulus. A significant aftereffect was observed as if subjects had adapted to the perceived binding of color and motion, rather than the physical binding. For example, after adaptation, stationary red dots appeared to move upwards, and stationary green dots appeared to move downwards. In the fMRI experiment, we measured direction-selective motion adaptation effects in V1, V2, V3, V4, V3A/B, and V5. Relative to other cortical areas, V2 showed a much stronger adaptation effect to the perceived motion direction (rather than the physical direction for both the red and green dots. Significantly, the fMRI adaptation effect in V2 correlated with the color-contingent motion aftereffect across twelve subjects. This study provides the first human evidence that color and motion could be misbound at a very early stage of visual processing.

  11. Data Fusion Research of Triaxial Human Body Motion Gesture based on Decision Tree

    Directory of Open Access Journals (Sweden)

    Feihong Zhou

    2014-05-01

    Full Text Available The development status of human body motion gesture data fusion domestic and overseas has been analyzed. A triaxial accelerometer is adopted to develop a wearable human body motion gesture monitoring system aimed at old people healthcare. On the basis of a brief introduction of decision tree algorithm, the WEKA workbench is adopted to generate a human body motion gesture decision tree. At last, the classification quality of the decision tree has been validated through experiments. The experimental results show that the decision tree algorithm could reach an average predicting accuracy of 97.5 % with lower time cost.

  12. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait.

    Science.gov (United States)

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E; Del-Ama, Antonio J; Dimbwadyo, Iris; Moreno, Juan C; Florez, Julian; Pons, Jose L

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton.

  13. Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences

    Directory of Open Access Journals (Sweden)

    Mozerov M

    2010-01-01

    Full Text Available A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.

  14. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection

    Directory of Open Access Journals (Sweden)

    Liangyi Gong

    2015-12-01

    Full Text Available With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR and long-term averaged variance ratio (LVR. We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  15. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.

    Science.gov (United States)

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-12-21

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  16. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †

    Science.gov (United States)

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-01-01

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612

  17. Three dimensional monocular human motion analysis in end-effector space

    DEFF Research Database (Denmark)

    Hauberg, Søren; Lapuyade, Jerome; Engell-Nørregård, Morten Pol

    2009-01-01

    In this paper, we present a novel approach to three dimensional human motion estimation from monocular video data. We employ a particle filter to perform the motion estimation. The novelty of the method lies in the choice of state space for the particle filter. Using a non-linear inverse kinemati...

  18. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    Science.gov (United States)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  19. 75 FR 73088 - Medicare Program; Application by the American Association for Accreditation of Ambulatory Surgery...

    Science.gov (United States)

    2010-11-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Medicare and Medicaid Services [CMS-2332-PN] Medicare Program; Application by the American Association for Accreditation of Ambulatory Surgery... Association for Accreditation of Ambulatory Surgery Facilities (AAAASF) for recognition as a national...

  20. Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks.

    Science.gov (United States)

    Vakanski, A; Ferguson, J M; Lee, S

    2016-12-01

    The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement. The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of

  1. A human motion model based on maps for navigation systems

    Directory of Open Access Journals (Sweden)

    Kaiser Susanna

    2011-01-01

    Full Text Available Abstract Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floor-plans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs, long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians' motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floor-plans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest. We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios.

  2. Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.

    Science.gov (United States)

    Lasota, Przemyslaw A; Shah, Julie A

    2015-02-01

    The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human-robot interaction. We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human-robot team fluency and human worker satisfaction. Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human-robot collaboration.

  3. Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.

    Science.gov (United States)

    Seymour, Kiley J; Clifford, Colin W G

    2012-05-01

    Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.

  4. A triboelectric motion sensor in wearable body sensor network for human activity recognition.

    Science.gov (United States)

    Hui Huang; Xian Li; Ye Sun

    2016-08-01

    The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.

  5. Scavenging energy from the motion of human lower limbs via a piezoelectric energy harvester

    Science.gov (United States)

    Fan, Kangqi; Yu, Bo; Zhu, Yingmin; Liu, Zhaohui; Wang, Liansong

    2017-03-01

    Scavenging energy from human motion through piezoelectric transduction has been considered as a feasible alternative to batteries for powering portable devices and realizing self-sustained devices. To date, most piezoelectric energy harvesters (PEHs) developed can only collect energy from the uni-directional mechanical vibration. This deficiency severely limits their applicability to human motion energy harvesting because the human motion involves diverse mechanical motions. In this paper, a novel PEH is proposed to harvest energy from the motion of human lower limbs. This PEH is composed of two piezoelectric cantilever beams, a sleeve and a ferromagnetic ball. The two beams are designed to sense the vibration along the tibial axis and conduct piezoelectric conversion. The ball senses the leg swing and actuates the two beams to vibrate via magnetic coupling. Theoretical and experimental studies indicate that the proposed PEH can scavenge energy from both the vibration and the swing. During each stride, the PEH can produce multiple peaks in voltage output, which is attributed to the superposition of different excitations. Moreover, the root-mean-square (RMS) voltage output of the PEH increases when the walking speed ranges from 2 to 8 km/h. In addition, the ultra-low frequencies of human motion are also up-converted by the proposed design.

  6. Human error identification for laparoscopic surgery: Development of a motion economy perspective.

    Science.gov (United States)

    Al-Hakim, Latif; Sevdalis, Nick; Maiping, Tanaphon; Watanachote, Damrongpan; Sengupta, Shomik; Dissaranan, Charuspong

    2015-09-01

    This study postulates that traditional human error identification techniques fail to consider motion economy principles and, accordingly, their applicability in operating theatres may be limited. This study addresses this gap in the literature with a dual aim. First, it identifies the principles of motion economy that suit the operative environment and second, it develops a new error mode taxonomy for human error identification techniques which recognises motion economy deficiencies affecting the performance of surgeons and predisposing them to errors. A total of 30 principles of motion economy were developed and categorised into five areas. A hierarchical task analysis was used to break down main tasks of a urological laparoscopic surgery (hand-assisted laparoscopic nephrectomy) to their elements and the new taxonomy was used to identify errors and their root causes resulting from violation of motion economy principles. The approach was prospectively tested in 12 observed laparoscopic surgeries performed by 5 experienced surgeons. A total of 86 errors were identified and linked to the motion economy deficiencies. Results indicate the developed methodology is promising. Our methodology allows error prevention in surgery and the developed set of motion economy principles could be useful for training surgeons on motion economy principles. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. Center of mass movement estimation using an ambulatory measurement sytem

    NARCIS (Netherlands)

    Schepers, H. Martin; Veltink, Petrus H.

    2007-01-01

    Center of Mass (CoM) displacement, an important variable to characterize human walking, was estimated in this study using an ambulatory measurement system. The ambulatory system was compared to an optical reference system. Root-mean-square differences between the magnitudes of the CoM appeared to be

  8. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  9. Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring.

    Science.gov (United States)

    Khan, Hassan; Razmjou, Amir; Ebrahimi Warkiani, Majid; Kottapalli, Ajay; Asadnia, Mohsen

    2018-02-01

    Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand.

  10. Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring

    Directory of Open Access Journals (Sweden)

    Hassan Khan

    2018-02-01

    Full Text Available Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand.

  11. Motion in Human and Machine: A Virtual Fatigue Approach

    NARCIS (Netherlands)

    Potkonjak, V.; Kostic, D.; Rasic, M.; Djordjevic, G.

    2002-01-01

    Achieving human-like behavior of a robot is a key issue of the paper. Redundancy in the inverse kinematics problem is resolved using a biological analogue. It is shown that by means of "virtual fatigue" functions, it is possible to generate robot movements similar to movements of a human arm subject

  12. High prevalence of human papillomavirus (HPV in oral mucosal lesions of patients at the Ambulatory of Oral Diagnosis of the Federal University of Sergipe, Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Goveia Melo RIBEIRO

    Full Text Available Abstract The role of human papillomavirus (HPV in oral carcinogenesis is still controversial as detection rates of the virus in oral cavity reported in the literature varies greatly. Objective The aim of this study was to evaluate the frequency of HPV infection and its genotypes in patients with oral lesions at the Ambulatory of Oral Diagnosis of the Federal University of Sergipe, Brazil. Material and Methods We conducted a molecular study with 21 patients (15 females aged from two to 83 years with clinically detectable oral lesions. Samples were collected through exfoliation of lesions and HPV-DNA was identified using MY09/11 and GP5+/6+ primers. Genotyping was performed by multiplex PCR. Results Benign, premalignant and malignant lesions were diagnosed by histopathology. HPV was detected in 17 samples. Of these, HPV-6 was detected in 10 samples, HPV-18 in four and HPV-16 in one sample. When samples were categorized by lesion types, HPV was detected in two papilloma cases (2/3, five carcinomas (5/6, one hyperplasia (1/1 and nine dysplasia cases (9/11. Conclusion Unlike other studies in the literature, we reported high occurrence of HPV in oral lesions. Further studies are required to enhance the comprehension of natural history of oral lesions.

  13. The development of human factors experimental evaluation technology - 3-dimensional measurement system for motion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Soo; Pan, Young Hwan; Lee, Ahn Jae; Lee, Kyung Tae; Lim, Chi Hwan; Chang, Pil Sik; Lee, Seok Woo; Han, Sung Wook; Park, Chul Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    Measurement of human motion is important in the application of ergonomics. We developed a system which can measure body movement, especially= hand movement using advanced direct video measurement technology. This system has as dynamic accuracy with 1% error and the sampling rate to 6 - 10 Hz, and can analyse the trajectory and speed of the marker. The use of passive marker obviates the need for a marker telemetry system and minimize motion disruption. 18 refs., 4 tabs., 6 figs. (author)

  14. Human-motion energy harvester for autonomous body area sensors

    Science.gov (United States)

    Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S.

    2017-03-01

    This paper reports on a method to optimize an electromagnetic energy harvester converting the low-frequency body motion and aimed at powering wireless body area sensors. This method is based on recorded accelerations, and mechanical and transduction models that enable an efficient joint optimization of the structural parameters. An optimized prototype of 14.8 mmØ × 52 mm, weighting 20 g, has generated up to 4.95 mW in a resistive load when worn at the arm during a run, and 6.57 mW when hand-shaken. Among the inertial electromagnetic energy harvesters reported so far, this one exhibits one of the highest power densities (up to 730 μW cm-3). The energy harvester was finally used to power a bluetooth low energy wireless sensor node with accelerations measurements at 25 Hz.

  15. Music recommendation according to human motion based on kernel CCA-based relationship

    Science.gov (United States)

    Ohkushi, Hiroyuki; Ogawa, Takahiro; Haseyama, Miki

    2011-12-01

    In this article, a method for recommendation of music pieces according to human motions based on their kernel canonical correlation analysis (CCA)-based relationship is proposed. In order to perform the recommendation between different types of multimedia data, i.e., recommendation of music pieces from human motions, the proposed method tries to estimate their relationship. Specifically, the correlation based on kernel CCA is calculated as the relationship in our method. Since human motions and music pieces have various time lengths, it is necessary to calculate the correlation between time series having different lengths. Therefore, new kernel functions for human motions and music pieces, which can provide similarities between data that have different time lengths, are introduced into the calculation of the kernel CCA-based correlation. This approach effectively provides a solution to the conventional problem of not being able to calculate the correlation from multimedia data that have various time lengths. Therefore, the proposed method can perform accurate recommendation of best matched music pieces according to a target human motion from the obtained correlation. Experimental results are shown to verify the performance of the proposed method.

  16. Ambulatory assessment of ankle and foot dynamics

    NARCIS (Netherlands)

    Schepers, H. Martin; Koopman, Hubertus F.J.M.; Veltink, Petrus H.

    Ground reaction force (GRF) measurement is important in the analysis of human body movements. The main drawback of the existing measurement systems is the restriction to a laboratory environment. This paper proposes an ambulatory system for assessing the dynamics of ankle and foot, which integrates

  17. Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches

    Science.gov (United States)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.

    2005-01-01

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.

  18. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait

    Science.gov (United States)

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E.; del-Ama, Antonio J.; Dimbwadyo, Iris; Moreno, Juan C.; Florez, Julian; Pons, Jose L.

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton. PMID:29755336

  19. Accuracy of human motion capture systems for sport applications; state-of-the-art review.

    Science.gov (United States)

    van der Kruk, Eline; Reijne, Marco M

    2018-05-09

    Sport research often requires human motion capture of an athlete. It can, however, be labour-intensive and difficult to select the right system, while manufacturers report on specifications which are determined in set-ups that largely differ from sport research in terms of volume, environment and motion. The aim of this review is to assist researchers in the selection of a suitable motion capture system for their experimental set-up for sport applications. An open online platform is initiated, to support (sport)researchers in the selection of a system and to enable them to contribute and update the overview. systematic review; Method: Electronic searches in Scopus, Web of Science and Google Scholar were performed, and the reference lists of the screened articles were scrutinised to determine human motion capture systems used in academically published studies on sport analysis. An overview of 17 human motion capture systems is provided, reporting the general specifications given by the manufacturer (weight and size of the sensors, maximum capture volume, environmental feasibilities), and calibration specifications as determined in peer-reviewed studies. The accuracy of each system is plotted against the measurement range. The overview and chart can assist researchers in the selection of a suitable measurement system. To increase the robustness of the database and to keep up with technological developments, we encourage researchers to perform an accuracy test prior to their experiment and to add to the chart and the system overview (online, open access).

  20. The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Yue-Yan Chan

    2010-12-01

    Full Text Available Wearable motion sensors consisting of accelerometers, gyroscopes and magnetic sensors are readily available nowadays. The small size and low production costs of motion sensors make them a very good tool for human motions analysis. However, data processing and accuracy of the collected data are important issues for research purposes. In this paper, we aim to review the literature related to usage of inertial sensors in human lower limb biomechanics studies. A systematic search was done in the following search engines: ISI Web of Knowledge, Medline, SportDiscus and IEEE Xplore. Thirty nine full papers and conference abstracts with related topics were included in this review. The type of sensor involved, data collection methods, study design, validation methods and its applications were reviewed.

  1. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review.

    Science.gov (United States)

    Fong, Daniel Tik-Pui; Chan, Yue-Yan

    2010-01-01

    Wearable motion sensors consisting of accelerometers, gyroscopes and magnetic sensors are readily available nowadays. The small size and low production costs of motion sensors make them a very good tool for human motions analysis. However, data processing and accuracy of the collected data are important issues for research purposes. In this paper, we aim to review the literature related to usage of inertial sensors in human lower limb biomechanics studies. A systematic search was done in the following search engines: ISI Web of Knowledge, Medline, SportDiscus and IEEE Xplore. Thirty nine full papers and conference abstracts with related topics were included in this review. The type of sensor involved, data collection methods, study design, validation methods and its applications were reviewed.

  2. Human upper limb manipulator mass center motion and mass moments of inertia variation

    Directory of Open Access Journals (Sweden)

    Nikolova Gergana

    2018-01-01

    Full Text Available Motion control is complicated for people having traumas or neurological diseases. An underlying assumption in our work is that the motion of healthy people is optimal with respect to positioning accuracy, movement response, and energy expenditure. In this paper, a new approach for determination of the human upper limb mass-inertial characteristics is presented by using the 3D geometrical mathematical modeling analysis approach. Two examples will be given to illustrate the main features and advantages of the proposed design concepts. The objective of the work presented in this paper is a determination of the mass properties of a two joints human upper limb manipulator. Results are aimed to have application in an exoskeleton design, the design of manipulation system and external manipulation system, serving people with some motion difficulties, as well as in sport and rehabilitation.

  3. Efficient Human Action and Gait Analysis Using Multiresolution Motion Energy Histogram

    Directory of Open Access Journals (Sweden)

    Kuo-Chin Fan

    2010-01-01

    Full Text Available Average Motion Energy (AME image is a good way to describe human motions. However, it has to face the computation efficiency problem with the increasing number of database templates. In this paper, we propose a histogram-based approach to improve the computation efficiency. We convert the human action/gait recognition problem to a histogram matching problem. In order to speed up the recognition process, we adopt a multiresolution structure on the Motion Energy Histogram (MEH. To utilize the multiresolution structure more efficiently, we propose an automated uneven partitioning method which is achieved by utilizing the quadtree decomposition results of MEH. In that case, the computation time is only relevant to the number of partitioned histogram bins, which is much less than the AME method. Two applications, action recognition and gait classification, are conducted in the experiments to demonstrate the feasibility and validity of the proposed approach.

  4. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    Science.gov (United States)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  5. Human-like motion planning model for driving in signalized intersections

    Directory of Open Access Journals (Sweden)

    Yanlei Gu

    2017-10-01

    Full Text Available Highly automated and fully autonomous vehicles are much more likely to be accepted if they react in the same way as human drivers do, especially in a hybrid traffic situation, which allows autonomous vehicles and human-driven vehicles to share the same road. This paper proposes a human-like motion planning model to represent how human drivers assess environments and operate vehicles in signalized intersections. The developed model consists of a pedestrian intention detection model, gap detection model, and vehicle control model. These three submodels are individually responsible for situation assessment, decision making, and action, and also depend on each other in the process of motion planning. In addition, these submodels are constructed and learned on the basis of human drivers' data collected from real traffic environments. To verify the effectiveness of the proposed motion planning model, we compared the proposed model with actual human driver and pedestrian data. The experimental results showed that our proposed model and actual human driver behaviors are highly similar with respect to gap acceptance in intersections.

  6. Kinematics design and human motion transfer for a humanoid service robot arm

    CSIR Research Space (South Africa)

    Dube, C

    2009-11-01

    Full Text Available . Philadelphia: Saunders Col- lege Publishing, 1982. [2] Hamill, J. and Knutzen, K. M., Biomechanical Basis of Human Motion, Baltimore: Williams and Wilkins, 1995. [3] Lenarcˇicˇ, J. and Klopcˇar, N.,“Positional kinematics of hu- manoid arms,” Robotica, vol...

  7. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors

    NARCIS (Netherlands)

    Shoaib, M.; Bosch, S.; Durmaz, O.; Scholten, Johan; Havinga, Paul J.M.

    2016-01-01

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such

  8. Human Kinematics of Cochlear Implant Surgery: An Investigation of Insertion Micro-Motions and Speed Limitations.

    Science.gov (United States)

    Kesler, Kyle; Dillon, Neal P; Fichera, Loris; Labadie, Robert F

    2017-09-01

    Objectives Document human motions associated with cochlear implant electrode insertion at different speeds and determine the lower limit of continuous insertion speed by a human. Study Design Observational. Setting Academic medical center. Subjects and Methods Cochlear implant forceps were coupled to a frame containing reflective fiducials, which enabled optical tracking of the forceps' tip position in real time. Otolaryngologists (n = 14) performed mock electrode insertions at different speeds based on recommendations from the literature: "fast" (96 mm/min), "stable" (as slow as possible without stopping), and "slow" (15 mm/min). For each insertion, the following metrics were calculated from the tracked position data: percentage of time at prescribed speed, percentage of time the surgeon stopped moving forward, and number of direction reversals (ie, going from forward to backward motion). Results Fast insertion trials resulted in better adherence to the prescribed speed (45.4% of the overall time), no motion interruptions, and no reversals, as compared with slow insertions (18.6% of time at prescribed speed, 15.7% stopped time, and an average of 18.6 reversals per trial). These differences were statistically significant for all metrics ( P implant electrode at 15 mm/min is not feasible for human operators. The lower limit of continuous forward insertion is 52 mm/min on average. Guidelines on manual insertion kinematics should consider this practical limit of human motion.

  9. One-degree-of-freedom spherical model for the passive motion of the human ankle joint.

    Science.gov (United States)

    Sancisi, Nicola; Baldisserri, Benedetta; Parenti-Castelli, Vincenzo; Belvedere, Claudio; Leardini, Alberto

    2014-04-01

    Mathematical modelling of mobility at the human ankle joint is essential for prosthetics and orthotic design. The scope of this study is to show that the ankle joint passive motion can be represented by a one-degree-of-freedom spherical motion. Moreover, this motion is modelled by a one-degree-of-freedom spherical parallel mechanism model, and the optimal pivot-point position is determined. Passive motion and anatomical data were taken from in vitro experiments in nine lower limb specimens. For each of these, a spherical mechanism, including the tibiofibular and talocalcaneal segments connected by a spherical pair and by the calcaneofibular and tibiocalcaneal ligament links, was defined from the corresponding experimental kinematics and geometry. An iterative procedure was used to optimize the geometry of the model, able to predict original experimental motion. The results of the simulations showed a good replication of the original natural motion, despite the numerous model assumptions and simplifications, with mean differences between experiments and predictions smaller than 1.3 mm (average 0.33 mm) for the three joint position components and smaller than 0.7° (average 0.32°) for the two out-of-sagittal plane rotations, once plotted versus the full flexion arc. The relevant pivot-point position after model optimization was found within the tibial mortise, but not exactly in a central location. The present combined experimental and modelling analysis of passive motion at the human ankle joint shows that a one degree-of-freedom spherical mechanism predicts well what is observed in real joints, although its computational complexity is comparable to the standard hinge joint model.

  10. An examination of the degrees of freedom of human jaw motion in speech and mastication.

    Science.gov (United States)

    Ostry, D J; Vatikiotis-Bateson, E; Gribble, P L

    1997-12-01

    The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw's independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.

  11. Application Of Three-Dimensional Videography To Human Motion Studies: Constraints, Assumptions, And Mathematics

    Science.gov (United States)

    Rab, George T.

    1988-02-01

    Three-dimensional human motion analysis has been used for complex kinematic description of abnormal gait in children with neuromuscular disease. Multiple skin markers estimate skeletal segment position, and a sorting and smoothing routine provides marker trajectories. The position and orientation of the moving skeleton in space are derived mathematically from the marker positions, and joint motions are calculated from the Eulerian transformation matrix between linked proximal and distal skeletal segments. Reproduceability has been excellent, and the technique has proven to be a useful adjunct to surgical planning.

  12. Testing human sperm chemotaxis: how to detect biased motion in population assays.

    Directory of Open Access Journals (Sweden)

    Leah Armon

    Full Text Available Biased motion of motile cells in a concentration gradient of a chemoattractant is frequently studied on the population level. This approach has been particularly employed in human sperm chemotactic assays, where the fraction of responsive cells is low and detection of biased motion depends on subtle differences. In these assays, statistical measures such as population odds ratios of swimming directions can be employed to infer chemotactic performance. Here, we report on an improved method to assess statistical significance of experimentally determined odds ratios and discuss the strong impact of data correlations that arise from the directional persistence of sperm swimming.

  13. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach.

    Science.gov (United States)

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-12-30

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  14. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach

    Directory of Open Access Journals (Sweden)

    Zhaoyuan Yu

    2015-12-01

    Full Text Available Passive infrared (PIR motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  15. Ambulatory Feedback System

    Science.gov (United States)

    Finger, Herbert; Weeks, Bill

    1985-01-01

    This presentation discusses instrumentation that will be used for a specific event, which we hope will carry on to future events within the Space Shuttle program. The experiment is the Autogenic Feedback Training Experiment (AFTE) scheduled for Spacelab 3, currently scheduled to be launched in November, 1984. The objectives of the AFTE are to determine the effectiveness of autogenic feedback in preventing or reducing space adaptation syndrome (SAS), to monitor and record in-flight data from the crew, to determine if prediction criteria for SAS can be established, and, finally, to develop an ambulatory instrument package to mount the crew throughout the mission. The purpose of the Ambulatory Feedback System (AFS) is to record the responses of the subject during a provocative event in space and provide a real-time feedback display to reinforce the training.

  16. Dynamics Of Human Motion The Case Study of an Examination Hall

    Science.gov (United States)

    Ogunjo, Samuel; Ajayi, Oluwaseyi; Fuwape, Ibiyinka; Dansu, Emmanuel

    Human behaviour is difficult to characterize and generalize due to ITS complex nature. Advances in mathematical models have enabled human systems such as love interaction, alcohol abuse, admission problem to be described using models. This study investigates one of such problems, the dynamics of human motion in an examination hall with limited computer systems such that students write their examination in batches. The examination is characterized by time (t) allocated to each students and difficulty level (dl) associated with the examination. A stochastic model based on the difficulty level of the examination was developed for the prediction of student's motion around the examination hall. A good agreement was obtained between theoretical predictions and numerical simulation. The result obtained will help in better planning of examination session to maximize available resources. Furthermore, results obtained in the research can be extended to other areas such as banking hall, customer service points where available resources will be shared amongst many users.

  17. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    Science.gov (United States)

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-07-03

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  18. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators

    Directory of Open Access Journals (Sweden)

    Jeongjin Yeo

    2015-07-01

    Full Text Available The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  19. Observation and analysis of high-speed human motion with frequent occlusion in a large area

    International Nuclear Information System (INIS)

    Wang, Yuru; Liu, Jiafeng; Liu, Guojun; Tang, Xianglong; Liu, Peng

    2009-01-01

    The use of computer vision technology in collecting and analyzing statistics during sports matches or training sessions is expected to provide valuable information for tactics improvement. However, the measurements published in the literature so far are either unreliably documented to be used in training planning due to their limitations or unsuitable for studying high-speed motion in large area with frequent occlusions. A sports annotation system is introduced in this paper for tracking high-speed non-rigid human motion over a large playing area with the aid of motion camera, taking short track speed skating competitions as an example. The proposed system is composed of two sub-systems: precise camera motion compensation and accurate motion acquisition. In the video registration step, a distinctive invariant point feature detector (probability density grads detector) and a global parallax based matching points filter are used, to provide reliable and robust matching across a large range of affine distortion and illumination change. In the motion acquisition step, a two regions' relationship constrained joint color model and Markov chain Monte Carlo based joint particle filter are emphasized, by dividing the human body into two relative key regions. Several field tests are performed to assess measurement errors, including comparison to popular algorithms. With the help of the system presented, the system obtains position data on a 30 m × 60 m large rink with root-mean-square error better than 0.3975 m, velocity and acceleration data with absolute error better than 1.2579 m s −1 and 0.1494 m s −2 , respectively

  20. Observation and analysis of high-speed human motion with frequent occlusion in a large area

    Science.gov (United States)

    Wang, Yuru; Liu, Jiafeng; Liu, Guojun; Tang, Xianglong; Liu, Peng

    2009-12-01

    The use of computer vision technology in collecting and analyzing statistics during sports matches or training sessions is expected to provide valuable information for tactics improvement. However, the measurements published in the literature so far are either unreliably documented to be used in training planning due to their limitations or unsuitable for studying high-speed motion in large area with frequent occlusions. A sports annotation system is introduced in this paper for tracking high-speed non-rigid human motion over a large playing area with the aid of motion camera, taking short track speed skating competitions as an example. The proposed system is composed of two sub-systems: precise camera motion compensation and accurate motion acquisition. In the video registration step, a distinctive invariant point feature detector (probability density grads detector) and a global parallax based matching points filter are used, to provide reliable and robust matching across a large range of affine distortion and illumination change. In the motion acquisition step, a two regions' relationship constrained joint color model and Markov chain Monte Carlo based joint particle filter are emphasized, by dividing the human body into two relative key regions. Several field tests are performed to assess measurement errors, including comparison to popular algorithms. With the help of the system presented, the system obtains position data on a 30 m × 60 m large rink with root-mean-square error better than 0.3975 m, velocity and acceleration data with absolute error better than 1.2579 m s-1 and 0.1494 m s-2, respectively.

  1. Human Classification Based on Gestural Motions by Using Components of PCA

    International Nuclear Information System (INIS)

    Aziz, Azri A; Wan, Khairunizam; Za'aba, S K; Shahriman A B; Asyekin H; Zuradzman M R; Adnan, Nazrul H

    2013-01-01

    Lately, a study of human capabilities with the aim to be integrated into machine is the famous topic to be discussed. Moreover, human are bless with special abilities that they can hear, see, sense, speak, think and understand each other. Giving such abilities to machine for improvement of human life is researcher's aim for better quality of life in the future. This research was concentrating on human gesture, specifically arm motions for differencing the individuality which lead to the development of the hand gesture database. We try to differentiate the human physical characteristic based on hand gesture represented by arm trajectories. Subjects are selected from different type of the body sizes, and then acquired data undergo resampling process. The results discuss the classification of human based on arm trajectories by using Principle Component Analysis (PCA)

  2. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.

    Science.gov (United States)

    Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling

    2017-06-22

    Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.

  3. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.

    Science.gov (United States)

    Riemer, Raziel; Shapiro, Amir

    2011-04-26

    Biomechanical energy harvesting from human motion presents a promising clean alternative to electrical power supplied by batteries for portable electronic devices and for computerized and motorized prosthetics. We present the theory of energy harvesting from the human body and describe the amount of energy that can be harvested from body heat and from motions of various parts of the body during walking, such as heel strike; ankle, knee, hip, shoulder, and elbow joint motion; and center of mass vertical motion. We evaluated major motions performed during walking and identified the amount of work the body expends and the portion of recoverable energy. During walking, there are phases of the motion at the joints where muscles act as brakes and energy is lost to the surroundings. During those phases of motion, the required braking force or torque can be replaced by an electrical generator, allowing energy to be harvested at the cost of only minimal additional effort. The amount of energy that can be harvested was estimated experimentally and from literature data. Recommendations for future directions are made on the basis of our results in combination with a review of state-of-the-art biomechanical energy harvesting devices and energy conversion methods. For a device that uses center of mass motion, the maximum amount of energy that can be harvested is approximately 1 W per kilogram of device weight. For a person weighing 80 kg and walking at approximately 4 km/h, the power generation from the heel strike is approximately 2 W. For a joint-mounted device based on generative braking, the joints generating the most power are the knees (34 W) and the ankles (20 W). Our theoretical calculations align well with current device performance data. Our results suggest that the most energy can be harvested from the lower limb joints, but to do so efficiently, an innovative and light-weight mechanical design is needed. We also compared the option of carrying batteries to the

  4. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    Science.gov (United States)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  5. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    Science.gov (United States)

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor

    Science.gov (United States)

    Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg

    2018-03-01

    A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.

  7. Frequency of gamma oscillations in humans is modulated by velocity of visual motion

    Science.gov (United States)

    Butorina, Anna V.; Sysoeva, Olga V.; Prokofyev, Andrey O.; Nikolaeva, Anastasia Yu.; Stroganova, Tatiana A.

    2015-01-01

    Gamma oscillations are generated in networks of inhibitory fast-spiking (FS) parvalbumin-positive (PV) interneurons and pyramidal cells. In animals, gamma frequency is modulated by the velocity of visual motion; the effect of velocity has not been evaluated in humans. In this work, we have studied velocity-related modulations of gamma frequency in children using MEG/EEG. We also investigated whether such modulations predict the prominence of the “spatial suppression” effect (Tadin D, Lappin JS, Gilroy LA, Blake R. Nature 424: 312-315, 2003) that is thought to depend on cortical center-surround inhibitory mechanisms. MEG/EEG was recorded in 27 normal boys aged 8–15 yr while they watched high-contrast black-and-white annular gratings drifting with velocities of 1.2, 3.6, and 6.0°/s and performed a simple detection task. The spatial suppression effect was assessed in a separate psychophysical experiment. MEG gamma oscillation frequency increased while power decreased with increasing velocity of visual motion. In EEG, the effects were less reliable. The frequencies of the velocity-specific gamma peaks were 64.9, 74.8, and 87.1 Hz for the slow, medium, and fast motions, respectively. The frequency of the gamma response elicited during slow and medium velocity of visual motion decreased with subject age, whereas the range of gamma frequency modulation by velocity increased with age. The frequency modulation range predicted spatial suppression even after controlling for the effect of age. We suggest that the modulation of the MEG gamma frequency by velocity of visual motion reflects excitability of cortical inhibitory circuits and can be used to investigate their normal and pathological development in the human brain. PMID:25925324

  8. Pediatric ambulatory anesthesia.

    Science.gov (United States)

    August, David A; Everett, Lucinda L

    2014-06-01

    Pediatric patients often undergo anesthesia for ambulatory procedures. This article discusses several common preoperative dilemmas, including whether to postpone anesthesia when a child has an upper respiratory infection, whether to test young women for pregnancy, which children require overnight admission for apnea monitoring, and the effectiveness of nonpharmacological techniques for reducing anxiety. Medication issues covered include the risks of anesthetic agents in children with undiagnosed weakness, the use of remifentanil for tracheal intubation, and perioperative dosing of rectal acetaminophen. The relative merits of caudal and dorsal penile nerve block for pain after circumcision are also discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Combination of Accumulated Motion and Color Segmentation for Human Activity Analysis

    Directory of Open Access Journals (Sweden)

    Briassouli Alexia

    2008-01-01

    Full Text Available Abstract The automated analysis of activity in digital multimedia, and especially video, is gaining more and more importance due to the evolution of higher-level video processing systems and the development of relevant applications such as surveillance and sports. This paper presents a novel algorithm for the recognition and classification of human activities, which employs motion and color characteristics in a complementary manner, so as to extract the most information from both sources, and overcome their individual limitations. The proposed method accumulates the flow estimates in a video, and extracts "regions of activity" by processing their higher-order statistics. The shape of these activity areas can be used for the classification of the human activities and events taking place in a video and the subsequent extraction of higher-level semantics. Color segmentation of the active and static areas of each video frame is performed to complement this information. The color layers in the activity and background areas are compared using the earth mover's distance, in order to achieve accurate object segmentation. Thus, unlike much existing work on human activity analysis, the proposed approach is based on general color and motion processing methods, and not on specific models of the human body and its kinematics. The combined use of color and motion information increases the method robustness to illumination variations and measurement noise. Consequently, the proposed approach can lead to higher-level information about human activities, but its applicability is not limited to specific human actions. We present experiments with various real video sequences, from sports and surveillance domains, to demonstrate the effectiveness of our approach.

  10. Combination of Accumulated Motion and Color Segmentation for Human Activity Analysis

    Directory of Open Access Journals (Sweden)

    Ioannis Kompatsiaris

    2008-03-01

    Full Text Available The automated analysis of activity in digital multimedia, and especially video, is gaining more and more importance due to the evolution of higher-level video processing systems and the development of relevant applications such as surveillance and sports. This paper presents a novel algorithm for the recognition and classification of human activities, which employs motion and color characteristics in a complementary manner, so as to extract the most information from both sources, and overcome their individual limitations. The proposed method accumulates the flow estimates in a video, and extracts “regions of activity” by processing their higher-order statistics. The shape of these activity areas can be used for the classification of the human activities and events taking place in a video and the subsequent extraction of higher-level semantics. Color segmentation of the active and static areas of each video frame is performed to complement this information. The color layers in the activity and background areas are compared using the earth mover's distance, in order to achieve accurate object segmentation. Thus, unlike much existing work on human activity analysis, the proposed approach is based on general color and motion processing methods, and not on specific models of the human body and its kinematics. The combined use of color and motion information increases the method robustness to illumination variations and measurement noise. Consequently, the proposed approach can lead to higher-level information about human activities, but its applicability is not limited to specific human actions. We present experiments with various real video sequences, from sports and surveillance domains, to demonstrate the effectiveness of our approach.

  11. Compression of Human Motion Animation Using the Reduction of Interjoint Correlation

    Directory of Open Access Journals (Sweden)

    Shiyu Li

    2008-01-01

    Full Text Available We propose two compression methods for the human motion in 3D space, based on the forward and inverse kinematics. In a motion chain, a movement of each joint is represented by a series of vector signals in 3D space. In general, specific types of joints such as end effectors often require higher precision than other general types of joints in, for example, CG animation and robot manipulation. The first method, which combines wavelet transform and forward kinematics, enables users to reconstruct the end effectors more precisely. Moreover, progressive decoding can be realized. The distortion of parent joint coming from quantization affects its child joint in turn and is accumulated to the end effector. To address this problem and to control the movement of the whole body, we propose a prediction method further based on the inverse kinematics. This method achieves efficient compression with a higher compression ratio and higher quality of the motion data. By comparing with some conventional methods, we demonstrate the advantage of ours with typical motions.

  12. Compression of Human Motion Animation Using the Reduction of Interjoint Correlation

    Directory of Open Access Journals (Sweden)

    Li Shiyu

    2008-01-01

    Full Text Available Abstract We propose two compression methods for the human motion in 3D space, based on the forward and inverse kinematics. In a motion chain, a movement of each joint is represented by a series of vector signals in 3D space. In general, specific types of joints such as end effectors often require higher precision than other general types of joints in, for example, CG animation and robot manipulation. The first method, which combines wavelet transform and forward kinematics, enables users to reconstruct the end effectors more precisely. Moreover, progressive decoding can be realized. The distortion of parent joint coming from quantization affects its child joint in turn and is accumulated to the end effector. To address this problem and to control the movement of the whole body, we propose a prediction method further based on the inverse kinematics. This method achieves efficient compression with a higher compression ratio and higher quality of the motion data. By comparing with some conventional methods, we demonstrate the advantage of ours with typical motions.

  13. Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth

    Science.gov (United States)

    Jackson, Stuart; Blake, Randolph

    2010-01-01

    Recent computational models of biological motion perception operate on ambiguous two-dimensional representations of the body (e.g., snapshots, posture templates) and contain no explicit means for disambiguating the three-dimensional orientation of a perceived human figure. Are there neural mechanisms in the visual system that represent a moving human figure’s orientation in three dimensions? To isolate and characterize the neural mechanisms mediating perception of biological motion, we used an adaptation paradigm together with bistable point-light (PL) animations whose perceived direction of heading fluctuates over time. After exposure to a PL walker with a particular stereoscopically defined heading direction, observers experienced a consistent aftereffect: a bistable PL walker, which could be perceived in the adapted orientation or reversed in depth, was perceived predominantly reversed in depth. A phase-scrambled adaptor produced no aftereffect, yet when adapting and test walkers differed in size or appeared on opposite sides of fixation aftereffects did occur. Thus, this heading direction aftereffect cannot be explained by local, disparity-specific motion adaptation, and the properties of scale and position invariance imply higher-level origins of neural adaptation. Nor is disparity essential for producing adaptation: when suspended on top of a stereoscopically defined, rotating globe, a context-disambiguated “globetrotter” was sufficient to bias the bistable walker’s direction, as were full-body adaptors. In sum, these results imply that the neural signals supporting biomotion perception integrate information on the form, motion, and three-dimensional depth orientation of the moving human figure. Models of biomotion perception should incorporate mechanisms to disambiguate depth ambiguities in two-dimensional body representations. PMID:20089892

  14. Robotic Assistance of Human Motion Using Active-Backdrivability on a Geared Electromagnetic Motor

    Directory of Open Access Journals (Sweden)

    Mario Jorge Claros

    2016-03-01

    Full Text Available In this research, we describe an actuation and control system designed for geared electromagnetic motors, which is characterized by its simple implementation, fast response to external input loads, reliable human-machine interaction features, no need for previous set-up or calibration from user to user and high portability due to the reduction of weight and space used. By the implementation of the proposed system, an electromagnetic motor can become a multitasking, wearable actuation system capable of: detecting the user's intentions regarding motion, tracking the limbs with minimal force interaction within a wide bandwidth and also providing controllable assistance and resistance forces to the user's movements, without the use of any biological signal. Validation of the proposed approach is shown by the construction of a powered orthosis for the knee, used to test the system's performance under real human motion conditions. The proposed system was tested on one healthy subject by measuring electromyographic levels both with and without the orthosis, under controlled flexion and extension cycles. Experimental results demonstrate the effectiveness of the proposed approach in detecting the user's intentions regarding motion, reducing and increasing muscular activity when configured for assistance and resistance, respectively, and also increasing the transparency of the actuation system when perfect tracking of the limbs is needed.

  15. Shared sensory estimates for human motion perception and pursuit eye movements.

    Science.gov (United States)

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C

    2015-06-03

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.

  16. Controlling Urban Lighting by Human Motion Patterns results from a full Scale Experiment

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    This paper presents a full-scale experiment investigating the use of human motion intensities as input for interactive illumination of a town square in the city of Aalborg in Denmark. As illuminators sixteen 3.5 meter high RGB LED lamps were used. The activity on the square was monitored by three...... thermal cameras and analysed by computer vision software from which motion intensity maps and peoples trajectories were estimated and used as input to control the interactive illumination. The paper introduces a 2-layered interactive light strategy addressing ambient and effect illumination criteria...... totally four light scenarios were designed and tested. The result shows that in general people immersed in the street lighting did not notice that the light changed according to their presence or actions, but people watching from the edge of the square noticed the interaction between the illumination...

  17. Self-Organizing Neural Integration of Pose-Motion Features for Human Action Recognition

    Directory of Open Access Journals (Sweden)

    German Ignacio Parisi

    2015-06-01

    Full Text Available The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented towards human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust recognition of actions, also under noisy conditions caused by, for instance, systematic sensor errors and temporarily occluded persons. Studies of the mammalian visual system and its outperforming ability to process biological motion information suggest separate neural pathways for the distinct processing of pose and motion features at multiple levels and the subsequent integration of these visual cues for action perception. We present a neurobiologically-motivated approach to achieve noise-tolerant action recognition in real time. Our model consists of self-organizing Growing When Required (GWR networks that obtain progressively generalized representations of sensory inputs and learn inherent spatiotemporal dependencies. During the training, the GWR networks dynamically change their topological structure to better match the input space. We first extract pose and motion features from video sequences and then cluster actions in terms of prototypical pose-motion trajectories. Multi-cue trajectories from matching action frames are subsequently combined to provide action dynamics in the joint feature space. Reported experiments show that our approach outperforms previous results on a dataset of full-body actions captured with a depth sensor, and ranks among the best 21 results for a public benchmark of domestic daily actions.

  18. Application of inertial sensors and flux-gate magnetometer to real-time human body motion capture

    OpenAIRE

    Frey, William.

    1996-01-01

    Human body tracking for synthetic environment interface has become a significant human- computer interface challenge. There are several different types of motion capture systems currently available. Inherent problems, most resulting from the use of artificially-generated source signals, plague these systems. A proposed motion capture system is being developed at the Naval Postgraduate School which utilizes a combination of inertial sensors to overcome these difficulties. However, the current ...

  19. Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels

    Science.gov (United States)

    Jeon, S. M.; Jang, G. H.; Choi, H. C.; Park, S. H.; Park, J. O.

    2012-04-01

    Different magnetic navigation systems (MNSs) have been investigated for the wireless manipulation of microrobots in human blood vessels. Here we propose a MNS and methodology for generation of both the precise helical and translational motions of a microrobot to improve its maneuverability in complex human blood vessel. We then present experiments demonstrating the helical and translational motions of a spiral-type microrobot to verify the proposed MNS.

  20. A syphilis co-infection study in human papilloma virus patients attended in the sexually transmitted infection ambulatory clinic, Santa Casa de Misericórdia Hospital, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Lúcia Maria de Sena Souza

    Full Text Available Despite the prevalence of syphilis worldwide, little is known about its manifestations when associated with other Sexually Transmitted Infections (STI, specifically the Human Papilloma Virus (HPV. Current epidemiological studies show that there is a high incidence of both diseases in ambulatory clinics all over Brazil. This study aims to estimate the incidence of syphilis - HPV co-infections, among patients from the STI ambulatory clinic at the Santa Casa da Misericórdia Hospital, Rio de Janeiro, Brazil. Two-hundred and seven patients were seen in the clinic between March and December 2005, of which 113 (54.6% sought care for an HPV infection. Blood samples were taken from all patients to check syphilis serology using the flocculation and the non-treponemic test or VDRL (Venereal Disease Research Laboratory and the TPHA (Treponema Pallidum Hemagglutination Assay treponemic and confirmatory method. Of the 207 patients, 113 (54.6% consulted referring to HPV as their primary complaint, and of these, 18 (15.9% also presented with positive syphilis serology, demonstrating a high incidence of coinfection. The average age of the patients varied between 20 and 25 years, 203 (98.1% were male and 4 (1.9% were female. The predominance of the male sex in this sample confirms the profile usually treated in STI clinics across the country, and the age range is that of typically high sexually activity. Conclusion: The results demonstrated the need for a differentiated examination of all STD patients.

  1. An Approach to Sensorless Detection of Human Input Torque and Its Application to Power Assist Motion in Electric Wheelchair

    Science.gov (United States)

    Kaida, Yukiko; Murakami, Toshiyuki

    A wheelchair is an important apparatus of mobility for people with disability. Power-assist motion in an electric wheelchair is to expand the operator's field of activities. This paper describes force sensorless detection of human input torque. Reaction torque estimation observer calculates the total disturbance torque first. Then, the human input torque is extracted from the estimated disturbance. In power-assist motion, assist torque is synthesized according to the product of assist gain and the average torque of the right and left input torque. Finally, the proposed method is verified through the experiments of power-assist motion.

  2. [Ambulatory pediatrics: a challenge].

    Science.gov (United States)

    Ransy, V; Gevers, B; Landsberg, M

    2006-01-01

    Ambulatory paediatrics in University hospitals has remarkably evolved during the past decade, along with technological progress and the current need for undelayed information and attention; demand for hospital medical advice increases consequently, either directly in outpatients wards or indirectly by phone or e-mails. Specific medico-social aspects linked essentially to populations' migration, poverty, chronic stress and family splitting are regularly encountered. Hospital architecture and adequacy of medical and nursing staff must both be adjusted to these changing medical demands including medical teaching. We now face the ever-growing challenge of providing an adequate management of actual medico-psycho-social aspects and integrating up-to-date paediatrics in our daily practices.

  3. Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas.

    Science.gov (United States)

    Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J J; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine

    2017-01-01

    The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer's motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.

  4. Human Hand Motion Analysis and Synthesis of Optimal Power Grasps for a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Francesca Cordella

    2014-03-01

    Full Text Available Biologically inspired robotic systems can find important applications in biomedical robotics, since studying and replicating human behaviour can provide new insights into motor recovery, functional substitution and human-robot interaction. The analysis of human hand motion is essential for collecting information about human hand movements useful for generalizing reaching and grasping actions on a robotic system. This paper focuses on the definition and extraction of quantitative indicators for describing optimal hand grasping postures and replicating them on an anthropomorphic robotic hand. A motion analysis has been carried out on six healthy human subjects performing a transverse volar grasp. The extracted indicators point to invariant grasping behaviours between the involved subjects, thus providing some constraints for identifying the optimal grasping configuration. Hence, an optimization algorithm based on the Nelder-Mead simplex method has been developed for determining the optimal grasp configuration of a robotic hand, grounded on the aforementioned constraints. It is characterized by a reduced computational cost. The grasp stability has been tested by introducing a quality index that satisfies the form-closure property. The grasping strategy has been validated by means of simulation tests and experimental trials on an arm-hand robotic system. The obtained results have shown the effectiveness of the extracted indicators to reduce the non-linear optimization problem complexity and lead to the synthesis of a grasping posture able to replicate the human behaviour while ensuring grasp stability. The experimental results have also highlighted the limitations of the adopted robotic platform (mainly due to the mechanical structure to achieve the optimal grasp configuration.

  5. Extract the Relational Information of Static Features and Motion Features for Human Activities Recognition in Videos

    Directory of Open Access Journals (Sweden)

    Li Yao

    2016-01-01

    Full Text Available Both static features and motion features have shown promising performance in human activities recognition task. However, the information included in these features is insufficient for complex human activities. In this paper, we propose extracting relational information of static features and motion features for human activities recognition. The videos are represented by a classical Bag-of-Word (BoW model which is useful in many works. To get a compact and discriminative codebook with small dimension, we employ the divisive algorithm based on KL-divergence to reconstruct the codebook. After that, to further capture strong relational information, we construct a bipartite graph to model the relationship between words of different feature set. Then we use a k-way partition to create a new codebook in which similar words are getting together. With this new codebook, videos can be represented by a new BoW vector with strong relational information. Moreover, we propose a method to compute new clusters from the divisive algorithm’s projective function. We test our work on the several datasets and obtain very promising results.

  6. Analyzing the Effects of Human-Aware Motion Planning on Close-Proximity Human–Robot Collaboration

    Science.gov (United States)

    Shah, Julie A.

    2015-01-01

    Objective: The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. Background: The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human–robot interaction. Method: We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. Results: When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. Conclusion: People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human–robot team fluency and human worker satisfaction. Application: Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human–robot collaboration. PMID:25790568

  7. Design of a compact low-power human-computer interaction equipment for hand motion

    Science.gov (United States)

    Wu, Xianwei; Jin, Wenguang

    2017-01-01

    Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.

  8. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.

    Science.gov (United States)

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2016-03-24

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2-30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available.

  9. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.

    Science.gov (United States)

    Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li

    2016-03-15

    Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jiaying Du

    2018-04-01

    Full Text Available Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  11. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    Science.gov (United States)

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  12. Motion of the surface of the human tympanic membrane measured with stroboscopic holography

    Science.gov (United States)

    Cheng, Jeffrey Tao; Aarnisalo, Antti A.; Harrington, Ellery; Hernandez-Montes, Maria del Socorro; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.

    2010-01-01

    Sound-induced motion of the surface of the human tympanic membrane (TM) was studied by stroboscopic holographic interferometery, which measures the amplitude and phase of the displacement at each of about 40000 points on the surface of the TM. Measurements were made with tonal stimuli of 0.5, 1, 4 and 8 kHz. The magnitude and phase of the sinusoidal displacement of the TM at each driven frequency were derived from the fundamental Fourier component of the raw displacement data computed from stroboscopic holograms of the TM recorded at eight stimulus phases. The correlation between the Fourier estimates and measured motion data was generally above 0.9 over the entire TM surface. We used three data presentations: (i) Plots of the phasic displacements along a single chord across the surface of the TM, (ii) Phasic surface maps of the displacement of the entire TM surface, and (iii) Plots of the Fourier derived amplitude and phase-angle of the surface displacement along four diameter lines that define and bisect each of the four quadrants of the TM. These displays led to some common conclusions: At 0.5 and 1 kHz, the entire TM moved roughly in-phase with some small phase delay apparent between local areas of maximal displacement in the posterior half of the TM. At 4 and 8 kHz, the motion of the TM became more complicated with multiple local displacement maxima arranged in rings around the manubrium. The displacements at most of these maxima were roughly in-phase, while some moved out-of-phase. Superposed on this in- and out-of-phase behavior were significant cyclic variations in phase with location of less than 0.2 cycles or occasionally rapid half-cycle step-like changes in phase. The high frequency displacement amplitude and phase maps discovered in this study can not be explained by any single wave motion, but are consistent with a combination of low and higher order modal motions plus some small traveling-wave-like components. The observations of the dynamics of TM

  13. Cross-sensory facilitation reveals neural interactions between visual and tactile motion in humans

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2011-04-01

    Full Text Available Many recent studies show that the human brain integrates information across the different senses and that stimuli of one sensory modality can enhance the perception of other modalities. Here we study the processes that mediate cross-modal facilitation and summation between visual and tactile motion. We find that while summation produced a generic, non-specific improvement of thresholds, probably reflecting higher-order interaction of decision signals, facilitation reveals a strong, direction-specific interaction, which we believe reflects sensory interactions. We measured visual and tactile velocity discrimination thresholds over a wide range of base velocities and conditions. Thresholds for both visual and tactile stimuli showed the characteristic dipper function, with the minimum thresholds occurring at a given pedestal speed. When visual and tactile coherent stimuli were combined (summation condition the thresholds for these multi-sensory stimuli also showed a dipper function with the minimum thresholds occurring in a similar range to that for unisensory signals. However, the improvement of multisensory thresholds was weak and not directionally specific, well predicted by the maximum likelihood estimation model (agreeing with previous research. A different technique (facilitation did, however, reveal direction-specific enhancement. Adding a non-informative pedestal motion stimulus in one sensory modality (vision or touch selectively lowered thresholds in the other, by the same amount as pedestals in the same modality. Facilitation did not occur for neutral stimuli like sounds (that would also have reduced temporal uncertainty, nor for motion in opposite direction, even in blocked trials where the subjects knew that the motion was in the opposite direction showing that the facilitation was not under subject control. Cross-sensory facilitation is strong evidence for functionally relevant cross-sensory integration at early levels of sensory

  14. Human-directed local autonomy for motion guidance and coordination in an intelligent manufacturing system

    Science.gov (United States)

    Alford, W. A.; Kawamura, Kazuhiko; Wilkes, Don M.

    1997-12-01

    This paper discusses the problem of integrating human intelligence and skills into an intelligent manufacturing system. Our center has jointed the Holonic Manufacturing Systems (HMS) Project, an international consortium dedicated to developing holonic systems technologies. One of our contributions to this effort is in Work Package 6: flexible human integration. This paper focuses on one activity, namely, human integration into motion guidance and coordination. Much research on intelligent systems focuses on creating totally autonomous agents. At the Center for Intelligent Systems (CIS), we design robots that interact directly with a human user. We focus on using the natural intelligence of the user to simplify the design of a robotic system. The problem is finding ways for the user to interact with the robot that are efficient and comfortable for the user. Manufacturing applications impose the additional constraint that the manufacturing process should not be disturbed; that is, frequent interacting with the user could degrade real-time performance. Our research in human-robot interaction is based on a concept called human directed local autonomy (HuDL). Under this paradigm, the intelligent agent selects and executes a behavior or skill, based upon directions from a human user. The user interacts with the robot via speech, gestures, or other media. Our control software is based on the intelligent machine architecture (IMA), an object-oriented architecture which facilitates cooperation and communication among intelligent agents. In this paper we describe our research testbed, a dual-arm humanoid robot and human user, and the use of this testbed for a human directed sorting task. We also discuss some proposed experiments for evaluating the integration of the human into the robot system. At the time of this writing, the experiments have not been completed.

  15. Ambulatory anaesthesia and cognitive dysfunction

    DEFF Research Database (Denmark)

    Rasmussen, Lars S; Steinmetz, Jacob

    2015-01-01

    serious adverse outcomes, hence difficult to obtain sound scientific evidence for avoiding complications. RECENT FINDINGS: Few studies have assessed recovery of cognitive function after ambulatory surgery, but it seems that both propofol and modern volatile anaesthetics are rational choices for general...... anaesthesia in the outpatient setting. Cognitive complications such as delirium and postoperative cognitive dysfunction are less frequent in ambulatory surgery than with hospitalization. SUMMARY: The elderly are especially susceptible to adverse effects of the hospital environment such as immobilisation...

  16. Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion

    International Nuclear Information System (INIS)

    Wei, Sheng; Hu, Hong; He, Siyuan

    2013-01-01

    An impact-driven piezoelectric energy harvester from human motion is proposed in this paper. A high-frequency PZT-5A bimorph cantilever beam with attached proof mass at the free end was selected. A frequency up-conversion strategy was realized using impulse force generated by human motion. An aluminum prototype was attached to the leg of a person on a treadmill and measurements taken of the dissipated electric energy across multiple resistances over a range of walking speeds. The outer dimensions of this prototype are 90 mm × 40 mm × 24 mm. It has been shown that the average output voltage generated by the piezoelectric bimorph increases sequentially with a faster walking speed, the power varies with the external resistances and maximum levels occur at the optimal resistance, which is consistent with the simulation result. An open circuit voltage of 2.47 V and maximum average power of 51 μW can be achieved across a 20 kΩ external load resistance and 5 km h −1 walking speed. Experimental results reveal that the impact-driven piezoelectric energy harvesting system mounted on a person’s leg has the potential for driving wearable devices. (paper)

  17. Significant Change Spotting for Periodic Human Motion Segmentation of Cleaning Tasks Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Kai-Chun Liu

    2017-01-01

    Full Text Available The proportion of the aging population is rapidly increasing around the world, which will cause stress on society and healthcare systems. In recent years, advances in technology have created new opportunities for automatic activities of daily living (ADL monitoring to improve the quality of life and provide adequate medical service for the elderly. Such automatic ADL monitoring requires reliable ADL information on a fine-grained level, especially for the status of interaction between body gestures and the environment in the real-world. In this work, we propose a significant change spotting mechanism for periodic human motion segmentation during cleaning task performance. A novel approach is proposed based on the search for a significant change of gestures, which can manage critical technical issues in activity recognition, such as continuous data segmentation, individual variance, and category ambiguity. Three typical machine learning classification algorithms are utilized for the identification of the significant change candidate, including a Support Vector Machine (SVM, k-Nearest Neighbors (kNN, and Naive Bayesian (NB algorithm. Overall, the proposed approach achieves 96.41% in the F1-score by using the SVM classifier. The results show that the proposed approach can fulfill the requirement of fine-grained human motion segmentation for automatic ADL monitoring.

  18. Real World Testing Of A Piezoelectric Rotational Energy Harvester For Human Motion

    International Nuclear Information System (INIS)

    Pillatsch, P; Yeatman, E M; Holmes, A S

    2013-01-01

    Harvesting energy from human motion is challenging because the frequencies are generally low and random compared to industrial machinery that vibrates at much higher frequencies. One of the most promising and popular strategies to overcome this is frequency up-conversion. The transducing element is actuated at its optimal frequency of operation, higher than the source excitation frequency, through some kind of catch and release mechanism. This is beneficial for efficient power generation. Such devices have now been investigated for a few years and this paper takes a previously introduced piezoelectric rotational harvester, relying on beam plucking for the energy conversion, to the next step by testing the device during a half marathon race. The prototype and data acquisition system are described in detail and the experimental results presented. A comparison of the input excitation, based on an accelerometer readout, and the output voltage of the piezoelectric beam, recorded at the same time, confirm the successful implementation of the system. For a device functional volume of 1.85 cm 3 , a maximum power output of 7 μW was achieved when the system was worn on the upper arm. However, degradation of the piezoelectric material meant that the performance dropped rapidly from this initial level; this requires further research. Furthermore, the need for intermediate energy storage solutions is discussed, as human motion harvesters only generate power as long as the wearer is actually moving

  19. Spherical, rolling magnet generators for passive energy harvesting from human motion

    Science.gov (United States)

    Bowers, Benjamin J.; Arnold, David P.

    2009-09-01

    In this work, non-resonant, vibrational energy harvester architectures intended for human-motion energy scavenging are researched. The basic design employs a spherical, unidirectionally magnetized permanent magnet (NdFeB) ball that is allowed to move arbitrarily in a spherical cavity wrapped with copper coil windings. As the ball rotates and translates within the cage, the time-varying magnetic flux induces a voltage in the coil according to Faraday's Law. Devices ranging from 1.5 cm3 to 4 cm3 in size were tested under human activity scenarios—held in the user's hand or placed in the user's pocket while walking (4 km h-1) and running (14.5 km h-1). These harvesters have demonstrated rms voltages ranging from ~80 mV to 700 mV and time-averaged power densities up to 0.5 mW cm-3.

  20. Evaluating Effectiveness of Modeling Motion System Feedback in the Enhanced Hess Structural Model of the Human Operator

    Science.gov (United States)

    Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.

    2009-01-01

    In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.

  1. Automatic Human Movement Assessment With Switching Linear Dynamic System: Motion Segmentation and Motor Performance.

    Science.gov (United States)

    de Souza Baptista, Roberto; Bo, Antonio P L; Hayashibe, Mitsuhiro

    2017-06-01

    Performance assessment of human movement is critical in diagnosis and motor-control rehabilitation. Recent developments in portable sensor technology enable clinicians to measure spatiotemporal aspects to aid in the neurological assessment. However, the extraction of quantitative information from such measurements is usually done manually through visual inspection. This paper presents a novel framework for automatic human movement assessment that executes segmentation and motor performance parameter extraction in time-series of measurements from a sequence of human movements. We use the elements of a Switching Linear Dynamic System model as building blocks to translate formal definitions and procedures from human movement analysis. Our approach provides a method for users with no expertise in signal processing to create models for movements using labeled dataset and later use it for automatic assessment. We validated our framework on preliminary tests involving six healthy adult subjects that executed common movements in functional tests and rehabilitation exercise sessions, such as sit-to-stand and lateral elevation of the arms and five elderly subjects, two of which with limited mobility, that executed the sit-to-stand movement. The proposed method worked on random motion sequences for the dual purpose of movement segmentation (accuracy of 72%-100%) and motor performance assessment (mean error of 0%-12%).

  2. Structure and motion of phospholipids in human plasma lipoproteins. A 31P NMR study

    International Nuclear Information System (INIS)

    Fenske, D.B.; Chana, R.S.; Parmar, Y.I.; Treleaven, W.D.; Cushley, R.J.

    1990-01-01

    The structure and motion of phospholipids in human plasma lipoproteins have been studied by using 31 P NMR. Lateral diffusion coefficients, D T , obtained from the viscosity dependence of the 31 P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL 2 , HDL 3 ), and egg PC/TO microemulsions at 25 degree C, for VLDL at 40 degree C, and for LDL at 45 degree C. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, Δσ, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence for the 31 P NMR line widths. These results suggest differences in the orientation and/or ordering of the head-group in the HDLs. The dynamic behavior of the phosphate moiety in LDL and HDL 3 has been obtained from the temperature dependence of the 31 P spin-lattice relaxation rates. Values of the correlation time for phosphate group reorientation and the activation energy for the motion are nearly identical in LDL and HDL 3 and are similar to values obtained for phospholipid bilayers. This argues against long-lived protein-lipid interactions being the source of either the slow diffusion in LDL or the altered head-group orientation in the HDLs

  3. Providing value in ambulatory anesthesia.

    Science.gov (United States)

    Fosnot, Caroline D; Fleisher, Lee A; Keogh, John

    2015-12-01

    The purpose of this review is to discuss current practices and changes in the field of ambulatory anesthesia, in both hospital and ambulatory surgery center settings. New trends in ambulatory settings are discussed and a review of the most current and comprehensive guidelines for the care of ambulatory patients with comorbid conditions such as postoperative nausea and vomiting (PONV), obstructive sleep apnea and diabetes mellitus are reviewed. Future direction and challenges to the field are highlighted. Ambulatory anesthesia continues to be in high demand for many reasons; patients and surgeons want their surgical procedures to be swift, involve minimal postoperative pain, have a transient recovery time, and avoid an admission to the hospital. Factors that have made this possible for patients are improved surgical equipment, volatile anesthetic improvement, ultrasound-guided regional techniques, non-narcotic adjuncts for pain control, and the minimization of PONV. The decrease in time spent in a hospital also decreases the risk of wound infection, minimizes missed days from work, and is a socioeconomically favorable model, when possible. Recently proposed strategies which will allow surgeons and anesthesiologists to continue to meet the growing demand for a majority of surgical cases being same-day include pharmacotherapies with less undesirable side-effects, integration of ultrasound-guided regional techniques, and preoperative evaluations in appropriate candidates via a telephone call the night prior to surgery. Multidisciplinary communication amongst caregivers continues to make ambulatory settings efficient, safe, and socioeconomically favorable.It is also important to note the future impact that healthcare reform will have specifically on ambulatory anesthesia. The enactment of the Patient Protection and Affordable Care Act of 2010 will allow 32 million more people to gain access to preventive services that will require anesthesia such as screening

  4. A Single Camera Motion Capture System for Human-Computer Interaction

    Science.gov (United States)

    Okada, Ryuzo; Stenger, Björn

    This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.

  5. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing.

    Science.gov (United States)

    Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E; Chacron, Maurice J

    2017-01-01

    There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.

  6. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  7. Side effects after ambulatory lumbar iohexol myelography

    International Nuclear Information System (INIS)

    Sand, T.; Myhr, G.; Stovner, L.J.; Dale, L.G.; Tangerud, A.

    1989-01-01

    Side effect incidences after ambulatory (22G needle and two h bed rest) and after non-ambulatory (22 and 20G needles and 20 h bed rest) lumbar iohexol myelography have been estimated and compared. Headache incidence was significantly greater in ambulatory (50%, n=107) as compared to nonambulatory myelography (26%, n=58). Headaches in the ambulatory group tended to be of shorter duration and the difference between severe headaches in ambulatory and non-ambulatory groups was not significant. Serious adverse reactions did not occur and none of the ambulatory patients required readmission because of side effects. The headache was predominantly postural and occurred significantly earlier in the ambulatory group. Headache incidence was significantly greater after 20G needle myelography (44%, n=97) as compared to 22G needle iohexol myelography (26%, n=58). The results support the hypothesis that CSF leakage is a major cause of headache after lumbar iohexol myelography. (orig.)

  8. Ambulatory Estimation of Relative Foot Positions using Ultrasound

    NARCIS (Netherlands)

    Weenk, D.; van der Coelen, Michiel; Geessink, Arno A.G.; van der Hoek, Frank J.; Verstoep, Bart; Kortier, H.G.; van Meulen, Fokke; van Beijnum, Bernhard J.F.; Veltink, Petrus H.

    2013-01-01

    The recording of human movement is used for biomedical applications like physical therapy and sports training. Over the last few years inertial sensors have been proven to be a useful ambulatory alternative to traditional optical systems. An example of a successful application is the instrumented

  9. Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2018-05-15

    Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Online sparse Gaussian process based human motion intent learning for an electrically actuated lower extremity exoskeleton.

    Science.gov (United States)

    Long, Yi; Du, Zhi-Jiang; Chen, Chao-Feng; Dong, Wei; Wang, Wei-Dong

    2017-07-01

    The most important step for lower extremity exoskeleton is to infer human motion intent (HMI), which contributes to achieve human exoskeleton collaboration. Since the user is in the control loop, the relationship between human robot interaction (HRI) information and HMI is nonlinear and complicated, which is difficult to be modeled by using mathematical approaches. The nonlinear approximation can be learned by using machine learning approaches. Gaussian Process (GP) regression is suitable for high-dimensional and small-sample nonlinear regression problems. GP regression is restrictive for large data sets due to its computation complexity. In this paper, an online sparse GP algorithm is constructed to learn the HMI. The original training dataset is collected when the user wears the exoskeleton system with friction compensation to perform unconstrained movement as far as possible. The dataset has two kinds of data, i.e., (1) physical HRI, which is collected by torque sensors placed at the interaction cuffs for the active joints, i.e., knee joints; (2) joint angular position, which is measured by optical position sensors. To reduce the computation complexity of GP, grey relational analysis (GRA) is utilized to specify the original dataset and provide the final training dataset. Those hyper-parameters are optimized offline by maximizing marginal likelihood and will be applied into online GP regression algorithm. The HMI, i.e., angular position of human joints, will be regarded as the reference trajectory for the mechanical legs. To verify the effectiveness of the proposed algorithm, experiments are performed on a subject at a natural speed. The experimental results show the HMI can be obtained in real time, which can be extended and employed in the similar exoskeleton systems.

  11. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  12. Anaesthesia for Ambulatory Paediatric Surgery: Common ...

    African Journals Online (AJOL)

    BACKGROUND: Ambulatory surgical care accounts for over 70% of elective procedures in Northern America. Ambulatory paediatric surgical practice is not widespread in Nigeria. This report examined clinical indicators for quality care in paediatric ambulatory surgery using common outcomes after day case procedures as ...

  13. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Science.gov (United States)

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  14. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems.

    Science.gov (United States)

    Simon, Sheldon R

    2004-12-01

    The technology supporting the analysis of human motion has advanced dramatically. Past decades of locomotion research have provided us with significant knowledge about the accuracy of tests performed, the understanding of the process of human locomotion, and how clinical testing can be used to evaluate medical disorders and affect their treatment. Gait analysis is now recognized as clinically useful and financially reimbursable for some medical conditions. Yet, the routine clinical use of gait analysis has seen very limited growth. The issue of its clinical value is related to many factors, including the applicability of existing technology to addressing clinical problems; the limited use of such tests to address a wide variety of medical disorders; the manner in which gait laboratories are organized, tests are performed, and reports generated; and the clinical understanding and expectations of laboratory results. Clinical use is most hampered by the length of time and costs required for performing a study and interpreting it. A "gait" report is lengthy, its data are not well understood, and it includes a clinical interpretation, all of which do not occur with other clinical tests. Current biotechnology research is seeking to address these problems by creating techniques to capture data rapidly, accurately, and efficiently, and to interpret such data by an assortment of modeling, statistical, wave interpretation, and artificial intelligence methodologies. The success of such efforts rests on both our technical abilities and communication between engineers and clinicians.

  15. Measurement of Myocardial T1ρ with a Motion Corrected, Parametric Mapping Sequence in Humans.

    Directory of Open Access Journals (Sweden)

    Sebastian Berisha

    Full Text Available To develop a robust T1ρ magnetic resonance imaging (MRI sequence for assessment of myocardial disease in humans.We developed a breath-held T1ρ mapping method using a single-shot, T1ρ-prepared balanced steady-state free-precession (bSSFP sequence. The magnetization trajectory was simulated to identify sources of T1ρ error. To limit motion artifacts, an optical flow-based image registration method was used to align T1ρ images. The reproducibility and accuracy of these methods was assessed in phantoms and 10 healthy subjects. Results are shown in 1 patient with pre-ventricular contractions (PVCs, 1 patient with chronic myocardial infarction (MI and 2 patients with hypertrophic cardiomyopathy (HCM.In phantoms, the mean bias was 1.0 ± 2.7 msec (100 msec phantom and 0.9 ± 0.9 msec (60 msec phantom at 60 bpm and 2.2 ± 3.2 msec (100 msec and 1.4 ± 0.9 msec (60 msec at 80 bpm. The coefficient of variation (COV was 2.2 (100 msec and 1.3 (60 msec at 60 bpm and 2.6 (100 msec and 1.4 (60 msec at 80 bpm. Motion correction improved the alignment of T1ρ images in subjects, as determined by the increase in Dice Score Coefficient (DSC from 0.76 to 0.88. T1ρ reproducibility was high (COV < 0.05, intra-class correlation coefficient (ICC = 0.85-0.97. Mean myocardial T1ρ value in healthy subjects was 63.5 ± 4.6 msec. There was good correspondence between late-gadolinium enhanced (LGE MRI and increased T1ρ relaxation times in patients.Single-shot, motion corrected, spin echo, spin lock MRI permits 2D T1ρ mapping in a breath-hold with good accuracy and precision.

  16. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.

    Science.gov (United States)

    Ligorio, Gabriele; Sabatini, Angelo M

    2015-08-01

    Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.

  17. Predicting Missing Marker Trajectories in Human Motion Data Using Marker Intercorrelations.

    Science.gov (United States)

    Gløersen, Øyvind; Federolf, Peter

    2016-01-01

    Missing information in motion capture data caused by occlusion or detachment of markers is a common problem that is difficult to avoid entirely. The aim of this study was to develop and test an algorithm for reconstruction of corrupted marker trajectories in datasets representing human gait. The reconstruction was facilitated using information of marker inter-correlations obtained from a principal component analysis, combined with a novel weighting procedure. The method was completely data-driven, and did not require any training data. We tested the algorithm on datasets with movement patterns that can be considered both well suited (healthy subject walking on a treadmill) and less suited (transitioning from walking to running and the gait of a subject with cerebral palsy) to reconstruct. Specifically, we created 50 copies of each dataset, and corrupted them with gaps in multiple markers at random temporal and spatial positions. Reconstruction errors, quantified by the average Euclidian distance between predicted and measured marker positions, was ≤ 3 mm for the well suited dataset, even when there were gaps in up to 70% of all time frames. For the less suited datasets, median reconstruction errors were in the range 5-6 mm. However, a few reconstructions had substantially larger errors (up to 29 mm). Our results suggest that the proposed algorithm is a viable alternative both to conventional gap-filling algorithms and state-of-the-art reconstruction algorithms developed for motion capture systems. The strengths of the proposed algorithm are that it can fill gaps anywhere in the dataset, and that the gaps can be considerably longer than when using conventional interpolation techniques. Limitations are that it does not enforce musculoskeletal constraints, and that the reconstruction accuracy declines if applied to datasets with less predictable movement patterns.

  18. Anesthesia for ambulatory anorectal surgery.

    Science.gov (United States)

    Gudaityte, Jūrate; Marchertiene, Irena; Pavalkis, Dainius

    2004-01-01

    The prevalence of minor anorectal diseases is 4-5% of adult Western population. Operations are performed on ambulatory or 24-hour stay basis. Requirements for ambulatory anesthesia are: rapid onset and recovery, ability to provide quick adjustments during maintenance, lack of intraoperative and postoperative side effects, and cost-effectiveness. Anorectal surgery requires deep levels of anesthesia. The aim is achieved with 1) regional blocks alone or in combination with monitored anesthesia care or 2) deep general anesthesia, usually with muscle relaxants and tracheal intubation. Modern general anesthetics provide smooth, quickly adjustable anesthesia and are a good choice for ambulatory surgery. Popular regional methods are: spinal anesthesia, caudal blockade, posterior perineal blockade and local anesthesia. The trend in regional anesthesia is lowering the dose of local anesthetic, providing selective segmental block. Adjuvants potentiating analgesia are recommended. Postoperative period may be complicated by: 1) severe pain, 2) urinary retention due to common nerve supply, and 3) surgical bleeding. Complications may lead to hospital admission. In conclusion, novel general anesthetics are recommended for ambulatory anorectal surgery. Further studies to determine an optimal dose and method are needed in the group of regional anesthesia.

  19. [Face-lift surgery in ambulatory].

    Science.gov (United States)

    Soulhiard, F

    2017-10-01

    The proposal is to demonstrate that facelift surgery is particularly suitable for the care in ambulatory. Between 2010 and 2016, 246 patients were operated for a facelift in ambulatory. No major complication arose in this series (241). Among the patients, 98% expressed their satisfaction and would accept again this intervention in ambulatory. The facelift can be realized in ambulatory with complete safety. The rate of satisfaction shows a very strong support of the patients for the ambulatory care. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Ambulatory percutaneous nephrolithotomy: initial series.

    Science.gov (United States)

    Shahrour, Walid; Andonian, Sero

    2010-12-01

    To assess the safety and feasibility of ambulatory percutaneous nephrolithotomy (PCNL). PCNL is the gold standard for the management of large renal stones. Although tubeless PCNL has been previously described, no case series have been published of ambulatory PCNL. The criteria for ambulatory PCNL were: single tract, stone-free status documented by flexible nephroscopy, adequate pain control, and satisfactory postoperative hematocrit level and chest radiographic findings. Patient information, including operating room and fluoroscopy times, stone size and Hounsfield units, and number of needle punctures, were collected prospectively. The time spent in the recovery room, in addition to the amount of narcotics used in the recovery room and at home, was documented. Of 10 patients, 8 had nephrostomy tracts established intraoperatively by the urologist and 2 had preoperative nephrostomy tubes placed. The median operating and fluoroscopy time was 83.5 and 4.45 minutes, respectively. The median stone diameter was 20 mm (800 Hounsfield units) in addition to a patient with a staghorn calculus. The patients spent a median of 240 minutes in the recovery room and had received a median of 19.25 mg of morphine equivalents. Only 3 patients (30%) used narcotics at home. No intraoperative complications occurred, and none of the patients required transfusions. Two postoperative complications developed: a deep vein thrombosis requiring outpatient anticoagulation and multiresistant Escherichia coli infection requiring intravenous antibiotics. In highly selected patients, ambulatory PCNL is safe and feasible. More patients are needed to verify the criteria for patients undergoing the ambulatory approach. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    Energy Technology Data Exchange (ETDEWEB)

    Love, LJL

    2003-09-24

    The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive

  2. Electrophysiological correlates of learning-induced modulation of visual motion processing in humans

    Directory of Open Access Journals (Sweden)

    Viktor Gál

    2010-01-01

    Full Text Available Training on a visual task leads to increased perceptual and neural responses to visual features that were attended during training as well as decreased responses to neglected distractor features. However, the time course of these attention-based modulations of neural sensitivity for visual features has not been investigated before. Here we measured event related potentials (ERP in response to motion stimuli with different coherence levels before and after training on a speed discrimination task requiring object-based attentional selection of one of the two competing motion stimuli. We found that two peaks on the ERP waveform were modulated by the strength of the coherent motion signal; the response amplitude associated with motion directions that were neglected during training was smaller than the response amplitude associated with motion directions that were attended during training. The first peak of motion coherence-dependent modulation of the ERP responses was at 300 ms after stimulus onset and it was most pronounced over the occipitotemporal cortex. The second peak was around 500 ms and was focused over the parietal cortex. A control experiment suggests that the earlier motion coherence-related response modulation reflects the extraction of the coherent motion signal whereas the later peak might index accumulation and readout of motion signals by parietal decision mechanisms. These findings suggest that attention-based learning affects neural responses both at the sensory and decision processing stages.

  3. Man-systems evaluation of moving base vehicle simulation motion cues. [human acceleration perception involving visual feedback

    Science.gov (United States)

    Kirkpatrick, M.; Brye, R. G.

    1974-01-01

    A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.

  4. A comparative cepstral based analysis of simulated and measured S-band and X-band radar Doppler spectra of human motion

    CSIR Research Space (South Africa)

    Van Eeden, WD

    2015-10-01

    Full Text Available targets. It is also shown that, whereas the motion of most body parts of a human target can be observed in the X-band data, only the main torso sway can be observed at S-band. This implies that X-band data is well suited to cepstrum based human motion...

  5. Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring

    Science.gov (United States)

    Cho, Ji Hwan; Ha, Sung-Hun; Kim, Jong-Man

    2018-04-01

    Optical transparency is increasingly considered as one of the most important characteristics required in advanced stretchable strain sensors for application in body-attachable systems. In this paper, we present an entirely solution-processed fabrication route to highly transparent and stretchable resistive strain sensors based on silver nanowire microgrids (AgNW-MGs). The AgNW-MG strain sensors are readily prepared by patterning the AgNWs on a stretchable substrate into a MG geometry via a mesh-template-assisted contact-transfer printing. The MG has a unique architecture comprising the AgNWs and can be stretched to ɛ = 35%, with high gauge factors of ˜6.9 for ɛ = 0%-30% and ˜41.1 for ɛ = 30%-35%. The sensor also shows a high optical transmittance of 77.1% ± 1.5% (at 550 nm) and stably maintains the remarkable optical performance even at high strains. In addition, the sensor responses are found to be highly reversible with negligible hysteresis and are reliable even under repetitive stretching-releasing cycles (1000 cycles at ɛ = 10%). The practicality of the AgNW-MG strain sensor is confirmed by successfully monitoring a wide range of human motions in real time after firmly laminating the device onto various body parts.

  6. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.

    Science.gov (United States)

    Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai

    2015-12-16

    We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.

  7. Dealing with Magnetic Disturbances in Human Motion Capture: A Survey of Techniques

    Directory of Open Access Journals (Sweden)

    Gabriele Ligorio

    2016-03-01

    Full Text Available Magnetic-Inertial Measurement Units (MIMUs based on microelectromechanical (MEMS technologies are widespread in contexts such as human motion tracking. Although they present several advantages (lightweight, size, cost, their orientation estimation accuracy might be poor. Indoor magnetic disturbances represent one of the limiting factors for their accuracy, and, therefore, a variety of work was done to characterize and compensate them. In this paper, the main compensation strategies included within Kalman-based orientation estimators are surveyed and classified according to which degrees of freedom are affected by the magnetic data and to the magnetic disturbance rejection methods implemented. By selecting a representative method from each category, four algorithms were obtained and compared in two different magnetic environments: (1 small workspace with an active magnetic source; (2 large workspace without active magnetic sources. A wrist-worn MIMU was used to acquire data from a healthy subject, whereas a stereophotogrammetric system was adopted to obtain ground-truth data. The results suggested that the model-based approaches represent the best compromise between the two testbeds. This is particularly true when the magnetic data are prevented to affect the estimation of the angles with respect to the vertical direction.

  8. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    Science.gov (United States)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  9. Gesture Recognition from Data Streams of Human Motion Sensor Using Accelerated PSO Swarm Search Feature Selection Algorithm

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2015-01-01

    Full Text Available Human motion sensing technology gains tremendous popularity nowadays with practical applications such as video surveillance for security, hand signing, and smart-home and gaming. These applications capture human motions in real-time from video sensors, the data patterns are nonstationary and ever changing. While the hardware technology of such motion sensing devices as well as their data collection process become relatively mature, the computational challenge lies in the real-time analysis of these live feeds. In this paper we argue that traditional data mining methods run short of accurately analyzing the human activity patterns from the sensor data stream. The shortcoming is due to the algorithmic design which is not adaptive to the dynamic changes in the dynamic gesture motions. The successor of these algorithms which is known as data stream mining is evaluated versus traditional data mining, through a case of gesture recognition over motion data by using Microsoft Kinect sensors. Three different subjects were asked to read three comic strips and to tell the stories in front of the sensor. The data stream contains coordinates of articulation points and various positions of the parts of the human body corresponding to the actions that the user performs. In particular, a novel technique of feature selection using swarm search and accelerated PSO is proposed for enabling fast preprocessing for inducing an improved classification model in real-time. Superior result is shown in the experiment that runs on this empirical data stream. The contribution of this paper is on a comparative study between using traditional and data stream mining algorithms and incorporation of the novel improved feature selection technique with a scenario where different gesture patterns are to be recognized from streaming sensor data.

  10. System analysis of sagittal plane human motion wearing an exoskeleton using marker technology

    Directory of Open Access Journals (Sweden)

    Jatsun Sergey

    2016-01-01

    Full Text Available This paper discusses various methods of obtaining time functions for joint angle that describe a exoskeleton’s motion during sit-to-stand motion. This article demonstrates that functions obtained by solving the inverse kinematics problem can be effectively used as inputs to the control system of the robot. Comparison with experimentally data obtained using marker technology is done.

  11. Biological Motion Preference in Humans at Birth: Role of Dynamic and Configural Properties

    Science.gov (United States)

    Bardi, Lara; Regolin, Lucia; Simion, Francesca

    2011-01-01

    The present study addresses the hypothesis that detection of biological motion is an intrinsic capacity of the visual system guided by a non-species-specific predisposition for the pattern of vertebrate movement and investigates the role of global vs. local information in biological motion detection. Two-day-old babies exposed to a biological…

  12. 3D pose estimation and motion analysis of the articulated human hand-forearm limb in an industrial production environment

    Science.gov (United States)

    Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz

    2010-09-01

    This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.

  13. Human-Like Behavior of Robot Arms: General Considerations and the Handwriting Task-Part I: Mathematical Description of Human-Like Motion: Distributed Positioning and Virtual Fatigue

    NARCIS (Netherlands)

    Potkonjak, V.; Tzafestas, S.; Kostic, D.; Djordjevic, G.

    2001-01-01

    This two-part paper is concerned with the analysis and achievement of human-like behavior by robot arms (manipulators). The analysis involves three issues: (i) the resolution of the inverse kinematics problem of redundant robots, (ii) the separation of the end-effector's motion into two components,

  14. Infection management following ambulatory surgery

    Directory of Open Access Journals (Sweden)

    Chin AB

    2015-10-01

    Full Text Available Anne B Chin, Elizabeth C Wick Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Abstract: Surgical site infections (SSIs are frequent postoperative complications that are linked to measures of surgical quality and payment determinations. As surgical procedures are increasingly performed in the ambulatory setting, management of SSIs must transition with this trend. Prevention of SSIs should include optimization of patient comorbidities, aggressive infection control policies including appropriate skin decontamination, maintenance of normothermia, and appropriate antibiotic prophylaxis. Systems must also be set in place to provide adequate surveillance for identification of SSIs when they do occur as well as provide direct feedback to surgeons regarding SSI rates. This may require utilization of claims-based surveillance. Patient education and close follow-up with the clinical team are essential for early identification and management of SSIs. Therapy should remain focused on source control and appropriate antibiotic therapy. Keywords: ambulatory surgery, SSI, infection

  15. Model-Based Description of Human Body Motions for Ergonomics Evaluation

    Science.gov (United States)

    Imai, Sayaka

    This paper presents modeling of Working Process and Working Simulation factory works. I focus on an example work (motion), its actual work(motion) and reference between them. An example work and its actual work can be analyzed and described as a sequence of atomic action. In order to describe workers' motion, some concepts of Atomic Unit, Model Events and Mediator are introduced. By using these concepts, we can analyze a workers' action and evaluate their works. Also, we consider it as a possible way for unifying all the data used in various applications (CAD/CAM, etc) during the design process and evaluating all subsystems in a virtual Factory.

  16. Human motion characteristics in relation to feeling familiar or frightened during an announced short interaction with a proactive humanoid.

    Science.gov (United States)

    Baddoura, Ritta; Venture, Gentiane

    2014-01-01

    During an unannounced encounter between two humans and a proactive humanoid (NAO, Aldebaran Robotics), we study the dependencies between the human partners' affective experience (measured via the answers to a questionnaire) particularly regarding feeling familiar and feeling frightened, and their arm and head motion [frequency and smoothness using Inertial Measurement Units (IMU)]. NAO starts and ends its interaction with its partners by non-verbally greeting them hello (bowing) and goodbye (moving its arm). The robot is invested with a real and useful task to perform: handing each participant an envelope containing a questionnaire they need to answer. NAO's behavior varies from one partner to the other (Smooth with X vs. Resisting with Y). The results show high positive correlations between feeling familiar while interacting with the robot and: the frequency and smoothness of the human arm movement when waving back goodbye, as well as the smoothness of the head during the whole encounter. Results also show a negative dependency between feeling frightened and the frequency of the human arm movement when waving back goodbye. The principal component analysis (PCA) suggests that, in regards to the various motion measures examined in this paper, the head smoothness and the goodbye gesture frequency are the most reliable measures when it comes to considering the familiar experienced by the participants. The PCA also points out the irrelevance of the goodbye motion frequency when investigating the participants' experience of fear in its relation to their motion characteristics. The results are discussed in light of the major findings of studies on body movements and postures accompanying specific emotions.

  17. Optimization of voltage output of energy harvesters with continuous mechanical rotation extracted from human motion (Conference Presentation)

    Science.gov (United States)

    Rashid, Evan; Hamidi, Armita; Tadesse, Yonas

    2017-04-01

    With increasing popularity of portable devices for outdoor activities, portable energy harvesting devices are coming into spot light. The next generation energy harvester which is called hybrid energy harvester can employ more than one mechanism in a single device to optimize portion of the energy that can be harvested from any source of waste energy namely motion, vibration, heat and etc. In spite of few recent attempts for creating hybrid portable devices, the level of output energy still needs to be improved with the intention of employing them in commercial electronic systems or further applications. Moreover, implementing a practical hybrid energy harvester in different application for further investigation is still challenging. This proposal is projected to incorporate a novel approach to maximize and optimize the voltage output of hybrid energy harvesters to achieve a greater conversion efficiency normalized by the total mass of the hybrid device than the simple arithmetic sum of the individual harvesting mechanisms. The energy harvester model previously proposed by Larkin and Tadesse [1] is used as a baseline and a continuous unidirectional rotation is incorporated to maximize and optimize the output. The device harvest mechanical energy from oscillatory motion and convert it to electrical energy through electromagnetic and piezoelectric systems. The new designed mechanism upgrades the device in a way that can harvest energy from both rotational and linear motions by using magnets. Likewise, the piezoelectric section optimized to harvest at least 10% more energy. To the end, the device scaled down for tested with different sources of vibrations in the immediate environment, including machinery operation, bicycle, door motion while opening and closing and finally, human motions. Comparing the results from literature proved that current device has capability to be employed in commercial small electronic devices for enhancement of battery usage or as a backup

  18. Pilot study on real-time motion detection in UAS video data by human observer and image exploitation algorithm

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Voit, Michael; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2017-05-01

    Real-time motion video analysis is a challenging and exhausting task for the human observer, particularly in safety and security critical domains. Hence, customized video analysis systems providing functions for the analysis of subtasks like motion detection or target tracking are welcome. While such automated algorithms relieve the human operators from performing basic subtasks, they impose additional interaction duties on them. Prior work shows that, e.g., for interaction with target tracking algorithms, a gaze-enhanced user interface is beneficial. In this contribution, we present an investigation on interaction with an independent motion detection (IDM) algorithm. Besides identifying an appropriate interaction technique for the user interface - again, we compare gaze-based and traditional mouse-based interaction - we focus on the benefit an IDM algorithm might provide for an UAS video analyst. In a pilot study, we exposed ten subjects to the task of moving target detection in UAS video data twice, once performing with automatic support, once performing without it. We compare the two conditions considering performance in terms of effectiveness (correct target selections). Additionally, we report perceived workload (measured using the NASA-TLX questionnaire) and user satisfaction (measured using the ISO 9241-411 questionnaire). The results show that a combination of gaze input and automated IDM algorithm provides valuable support for the human observer, increasing the number of correct target selections up to 62% and reducing workload at the same time.

  19. Prescribing Safety in Ambulatory Care: Physician Perspectives

    National Research Council Canada - National Science Library

    Rundall, Thomas G; Hsu, John; Lafata, Jennifer E; Fung, Vicki; Paez, Kathryn A; Simpkins, Jan; Simon, Steven R; Robinson, Scott B; Uratsu, Connie; Gunter, Margaret J; Soumerai, Stephen B; Selby, Joseph V

    2005-01-01

    .... We asked about current safety practices, perceptions of ambulatory prescribing safety. Using a content analysis approach, three investigators independently coded responses into thematic categories...

  20. [Basic laws of blood screw motion in human common carotid arteries].

    Science.gov (United States)

    Kulikov, V P; Kirsanov, R I

    2008-08-01

    The basic laws of blood screw motion in common carotid arteries in people were determined by means of modern ultrasound techniques for the first time. 92 healthy adults, aged 18-30, were examined. The blood flow in the middle one-third of common carotid arteries was registered by means of Color Doppler Imaging and impulse Doppler with the help of ultrasound Medison 8000EX scanner by linear transducer of 5-9 MHz. The steady registration of blood screw motion in both common carotid arteries in Color Doppler Imaging regimen was observed in 54.3 % of cases. The direction of screw stream rotation in most cases (54%) was multi-directed: in the right common carotid artery it was right, in the left common carotid artery--left (48%), and in 6% of cases it was reverse. For 46% of cases blood rotation in both common carotid arteries was one-directed (26%--right, 20%--left). The velocity parameters of rotation component of blood motion were determined, maximum velocity being 19.68 +/- 5.84 cm/sec, minimum--4.57 +/- 2.89 cm/sec, average--7.48 +/- 2.49 cm/sec, angular--10.7 +/- 2.49 sec(-1). The rated velocity of blood cells motion in screw motion with regard of screw current lines to the vessel vertical axis makes up from 158.67 +/- 32.79 to 224.39 +/- 46.37 cm/sec.

  1. Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Gaojing Wang

    2018-06-01

    Full Text Available Human activity recognition (HAR is essential for understanding people’s habits and behaviors, providing an important data source for precise marketing and research in psychology and sociology. Different approaches have been proposed and applied to HAR. Data segmentation using a sliding window is a basic step during the HAR procedure, wherein the window length directly affects recognition performance. However, the window length is generally randomly selected without systematic study. In this study, we examined the impact of window length on smartphone sensor-based human motion and pose pattern recognition. With data collected from smartphone sensors, we tested a range of window lengths on five popular machine-learning methods: decision tree, support vector machine, K-nearest neighbor, Gaussian naïve Bayesian, and adaptive boosting. From the results, we provide recommendations for choosing the appropriate window length. Results corroborate that the influence of window length on the recognition of motion modes is significant but largely limited to pose pattern recognition. For motion mode recognition, a window length between 2.5–3.5 s can provide an optimal tradeoff between recognition performance and speed. Adaptive boosting outperformed the other methods. For pose pattern recognition, 0.5 s was enough to obtain a satisfactory result. In addition, all of the tested methods performed well.

  2. Biomechanical analysis of range of motion and failure characteristics of osteoporotic spinal compression fractures in human cadaver

    Directory of Open Access Journals (Sweden)

    Robert F Heary

    2017-01-01

    Full Text Available Background: Vertebroplasty is a treatment for osteoporotic vertebral compression fractures. The optimal location of needle placement for cement injection remains a topic of debate. As such, the authors assessed the effects of location of two types of cement instillations. In addition, the motion and failure modes at the index and adjacent segments were measured. Materials and Methods: Seven human osteoporotic cadaver spines (T1-L4, cut into four consecutive vertebral segments, were utilized. Of these, following the exclusion of four specimens not suitable to utilize for analysis, a total of 24 specimens were evaluable. Segments were randomly assigned into four treatment groups: unipedicular and bipedicular injections into the superior quartile or the anatomic center of the vertebra using confidence (Confidence Spinal Cement System®, DePuy Spine, Raynham, MA, USA or polymethyl methacrylate. The specimens were subjected to nondestructive pure moments of 5 Nm, in 2.5 Nm increments, using pulleys and weights to simulate six degrees of physiological motion. A follower preload of 200 N was applied in flexion extension. Testing sequence: range of motion (ROM of intact specimen, fracture creation, cement injection, ROM after cement, and compression testing until failure. Nonconstrained motion was measured at the index and adjacent levels. Results: At the index level, no significant differences were observed in ROM in all treatment groups (P > 0.05. There was a significant increase in adjacent level motion only for the treatment group that received a unipedicular cement injection at the anatomic center. Conclusion: The location of the needle (superior or central and treatment type (unipedicular or bipedicular had no significant effect on the ROM at the index site. At the adjacent levels, a significant increase occurred with therapy through a unipedicular approach into the centrum of the vertebra at the treated segment.

  3. Ambulatory ST segment monitoring after myocardial infarction

    DEFF Research Database (Denmark)

    Mickley, H

    1994-01-01

    as important reasons for the inconsistent findings. The precise role of ambulatory ST segment monitoring in clinical practice has yet to be established. Direct comparisons with exercise stress testing may not be appropriate for two reasons. Firstly, the main advantage of ambulatory monitoring may...

  4. Optimizing anesthesia techniques in the ambulatory setting

    NARCIS (Netherlands)

    E. Galvin (Eilish)

    2007-01-01

    textabstractAmbulatory surgery refers to the process of admitting patients, administering anesthesia and surgical care, and discharging patients home following an appropriate level of recovery on the same day. The word ambulatory is derived from the latin word ambulare, which means ''to walk''. This

  5. The Influences of Arm Resist Motion on a CAR Crash Test Using Hybrid III Dummy with Human-Like Arm

    Science.gov (United States)

    Kim, Yongchul; Youm, Youngil; Bae, Hanil; Choi, Hyeonki

    Safety of the occupant during the crash is very essential design element. Many researches have been investigated in reducing the fatal injury of occupant. They are focusing on the development of a dummy in order to obtain the real human-like motion. However, they have not considered the arm resist motion during the car accident. In this study, we would like to suggest the importance of the reactive force of the arm in a car crash. The influences of reactive force acting on the human upper extremity were investigated using the impedance experimental method with lumped mass model of hand system and a Hybrid III dummy with human-like arm. Impedance parameters (e.g. inertia, spring constant and damping coefficient) of the elbow joint in maximum activation level were measured by free oscillation test using single axis robot. The results showed that without seat belt, the reactive force of human arm reduced the head, chest, and femur injury, and the flexion moment of the neck is higher than that of the conventional dummy.

  6. Mapping the organization of axis of motion selective features in human area MT using high-field fMRI.

    Directory of Open Access Journals (Sweden)

    Jan Zimmermann

    Full Text Available Functional magnetic resonance imaging (fMRI at high magnetic fields has made it possible to investigate the columnar organization of the human brain in vivo with high degrees of accuracy and sensitivity. Until now, these results have been limited to the organization principles of early visual cortex (V1. While the middle temporal area (MT has been the first identified extra-striate visual area shown to exhibit a columnar organization in monkeys, evidence of MT's columnar response properties and topographic layout in humans has remained elusive. Research using various approaches suggests similar response properties as in monkeys but failed to provide direct evidence for direction or axis of motion selectivity in human area MT. By combining state of the art pulse sequence design, high spatial resolution in all three dimensions (0.8 mm isotropic, optimized coil design, ultrahigh field magnets (7 Tesla and novel high resolution cortical grid sampling analysis tools, we provide the first direct evidence for large-scale axis of motion selective feature organization in human area MT closely matching predictions from topographic columnar-level simulations.

  7. A single theoretical framework for circular features processing in humans: orientation and direction of motion compared

    Directory of Open Access Journals (Sweden)

    Tzvetomir eTzvetanov

    2012-05-01

    Full Text Available Common computational principles underly processing of various visual features in the cortex. They are considered to create similar patterns of contextual modulations in behavioral studies for different features as orientation and direction of motion. Here, I studied the possibility that a single theoretical framework, implemented in different visual areas, of circular feature coding and processing could explain these similarities in observations. Stimuli were created that allowed direct comparison of the contextual effects on orientation and motion direction with two different psychophysical probes: changes in weak and strong signal perception. One unique simplified theoretical model of circular feature coding including only inhibitory interactions, and decoding through standard vector average, successfully predicted the similarities in the two domains, while different feature population characteristics explained well the differences in modulation on both experimental probes. These results demonstrate how a single computational principle underlies processing of various features across the cortices.

  8. RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions

    Science.gov (United States)

    Mi, Qing; Wang, Qi; Zang, Siyao; Mao, Guoming; Zhang, Jinnan; Ren, Xiaomin

    2018-01-01

    In this study, we chose highly-elastic fabric fibres as the functional carrier and then simply coated the fibres with reduced graphene oxide (rGO) using plasma treatment, dip coating and hydrothermal reduction steps, finally making a wearable strain sensor. As a result, the full-scale detection of human motions, ranging from bending joints to the pulse beat, has been achieved by these sensors. Moreover, high sensitivity, good stability and excellent repeatability were realized. The good sensing performances and economical fabrication process of this wearable strain sensor have strengthened our confidence in practical applications in smart clothing, smart fabrics, healthcare, and entertainment fields.

  9. Human body motion tracking based on quantum-inspired immune cloning algorithm

    Science.gov (United States)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  10. Outpatient and Ambulatory Surgery Consumer Assessment of Healthcare Providers and Systems (OAS CAHPS) survey for hospital outpatient departments - Facility

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of hospital outpatient department ratings for the Outpatient and Ambulatory Surgery Consumer Assessment of Healthcare Providers and Systems (OAS CAHPS)...

  11. Improving pulse oximetry accuracy by removing motion artifacts from photoplethysmograms using relative sensor motion: a preliminary study

    NARCIS (Netherlands)

    Wijshoff, R.W.C.G.R.; Mischi, M.; Woerlee, P.H.; Aarts, R.M.; Van Huffel, S.; Naelaers, G.; Caicedo, A.; Bruley, D.F.; Harrison, D.K.

    2013-01-01

    To expand applicability of pulse oximetry in low-acuity ambulatory settings, the impact of motion on extracted parameters as saturation (SpO2) and pulse rate (PR) needs to be reduced. We hypothesized that sensor motion relative to the skin can be used as an artifact reference in a correlation

  12. Velocity storage contribution to vestibular self-motion perception in healthy human subjects.

    Science.gov (United States)

    Bertolini, G; Ramat, S; Laurens, J; Bockisch, C J; Marti, S; Straumann, D; Palla, A

    2011-01-01

    Self-motion perception after a sudden stop from a sustained rotation in darkness lasts approximately as long as reflexive eye movements. We hypothesized that, after an angular velocity step, self-motion perception and reflexive eye movements are driven by the same vestibular pathways. In 16 healthy subjects (25-71 years of age), perceived rotational velocity (PRV) and the vestibulo-ocular reflex (rVOR) after sudden decelerations (90°/s(2)) from constant-velocity (90°/s) earth-vertical axis rotations were simultaneously measured (PRV reported by hand-lever turning; rVOR recorded by search coils). Subjects were upright (yaw) or 90° left-ear-down (pitch). After both yaw and pitch decelerations, PRV rose rapidly and showed a plateau before decaying. In contrast, slow-phase eye velocity (SPV) decayed immediately after the initial increase. SPV and PRV were fitted with the sum of two exponentials: one time constant accounting for the semicircular canal (SCC) dynamics and one time constant accounting for a central process, known as velocity storage mechanism (VSM). Parameters were constrained by requiring equal SCC time constant and VSM time constant for SPV and PRV. The gains weighting the two exponential functions were free to change. SPV were accurately fitted (variance-accounted-for: 0.85 ± 0.10) and PRV (variance-accounted-for: 0.86 ± 0.07), showing that SPV and PRV curve differences can be explained by a greater relative weight of VSM in PRV compared with SPV (twofold for yaw, threefold for pitch). These results support our hypothesis that self-motion perception after angular velocity steps is be driven by the same central vestibular processes as reflexive eye movements and that no additional mechanisms are required to explain the perceptual dynamics.

  13. Time and motion, experiment M151. [human performance and space flight stress

    Science.gov (United States)

    Kubis, J. F.; Elrod, J. T.; Rusnak, R.; Mcbride, G. H.; Barnes, J. E.; Saxon, S. C.

    1973-01-01

    Astronaut work performance during the preparation and execution of experiments in simulated Skylab tests was analyzed according to time and motion in order to evaluate the efficiency and consistency of performance (adaptation function) for several different types of activity over the course of the mission; to evaluate the procedures to be used by the same experiment in Skylab; to generate characteristic adaptation functions for later comparison with Skylab data; and to examine astronaut performance for any behavioral stress due to the environment. The overall results indicate that the anticipated adaptation function was obtained both for individual and for averaged data.

  14. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.

    Science.gov (United States)

    Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad

    2016-02-01

    Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.

  15. Ambulatory thyroidectomy: A multistate study of revisits and complications

    OpenAIRE

    Orosco, RK; Lin, HW; Bhattacharyya, N

    2015-01-01

    © 2015 American Academy of Otolaryngology - Head and Neck Surgery Foundation. Objective. Determine rates and reasons for revisits after ambulatory adult thyroidectomy. Study Design. Cross-sectional analysis of multistate ambulatory surgery and hospital databases. Setting. Ambulatory surgery data from the State Ambulatory Surgery Databases of California, Florida, Iowa, and New York for calendar years 2010 and 2011. Subjects and Methods. Ambulatory thyroidectomy cases were linked to state ambul...

  16. Recognizing human actions by learning and matching shape-motion prototype trees.

    Science.gov (United States)

    Jiang, Zhuolin; Lin, Zhe; Davis, Larry S

    2012-03-01

    A shape-motion prototype-based approach is introduced for action recognition. The approach represents an action as a sequence of prototypes for efficient and flexible action matching in long video sequences. During training, an action prototype tree is learned in a joint shape and motion space via hierarchical K-means clustering and each training sequence is represented as a labeled prototype sequence; then a look-up table of prototype-to-prototype distances is generated. During testing, based on a joint probability model of the actor location and action prototype, the actor is tracked while a frame-to-prototype correspondence is established by maximizing the joint probability, which is efficiently performed by searching the learned prototype tree; then actions are recognized using dynamic prototype sequence matching. Distance measures used for sequence matching are rapidly obtained by look-up table indexing, which is an order of magnitude faster than brute-force computation of frame-to-frame distances. Our approach enables robust action matching in challenging situations (such as moving cameras, dynamic backgrounds) and allows automatic alignment of action sequences. Experimental results demonstrate that our approach achieves recognition rates of 92.86 percent on a large gesture data set (with dynamic backgrounds), 100 percent on the Weizmann action data set, 95.77 percent on the KTH action data set, 88 percent on the UCF sports data set, and 87.27 percent on the CMU action data set.

  17. Redesigning ambulatory care business processes supporting clinical care delivery.

    Science.gov (United States)

    Patterson, C; Sinkewich, M; Short, J; Callas, E

    1997-04-01

    The first step in redesigning the health care delivery process for ambulatory care begins with the patient and the business processes that support the patient. Patient-related business processes include patient access, service documentation, billing, follow-up, collection, and payment. Access is the portal to the clinical delivery and care management process. Service documentation, charge capture, and payment and collection are supporting processes to care delivery. Realigned provider networks now demand realigned patient business services to provide their members/customers/patients with improved service delivery at less cost. Purchaser mandates for cost containment, health maintenance, and enhanced quality of care have created an environment where every aspect of the delivery system, especially ambulatory care, is being judged. Business processes supporting the outpatient are therefore being reexamined for better efficiency and customer satisfaction. Many health care systems have made major investments in their ambulatory care environment, but have pursued traditional supporting business practices--such as multiple access points, lack of integrated patient appointment scheduling and registration, and multiple patient bills. These are areas that are appropriate for redesign efforts--all with the customer's needs and convenience in mind. Similarly, setting unrealistic expectations, underestimating the effort required, and ignoring the human elements of a patient-focused business service redesign effort can sabotage the very sound reasons for executing such an endeavor. Pitfalls can be avoided if a structured methodology, coupled with a change management process, are employed. Deloitte & Touche Consulting Group has been involved in several major efforts, all with ambulatory care settings to assist with the redesign of their business practices to consider the patient as the driver, instead of the institution providing the care.

  18. Postoperative pain management following ambulatory anesthesia: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Schug SA

    2015-01-01

    Full Text Available Stephan A Schug,1,2 Chandani Chandrasena2 1School of Medicine and Pharmacology, The University of Western Australia, Perth, Australia; 2Department of Anesthesia and Pain Medicine, Royal Perth Hospital, Perth, WA, Australia Abstract: Worldwide, there is an increasing trend toward performing more and more complex surgery in an ambulatory setting, partially driven by economic considerations. Provision of appropriate pain relief is still often inadequate in this setting; poor pain control and adverse effects of opioids provided for pain control are common reasons for readmission, with human and economic consequences. Therefore, improved analgesia after ambulatory surgery is an important goal; appropriate strategies include identification of at-risk patients, provision of multimodal analgesia, and early use of rescue strategies. Multimodal analgesia is based on the combined use of multiple medications or techniques for pain control, which have different mechanisms of action or act on different sites at the pain pathways. Thereby, such an approach improves analgesia, reduces opioid requirements, and reduces adverse effects of opioids. Important components of multimodal analgesia are nonopioids (acetaminophen and anti-inflammatory drugs, corticosteroids, and alpha-2-delta modulators (gabapentin, pregabalin, but most importantly the use of local and regional anesthesia techniques. Here, the use of adjuvants is one way to increase the duration of pain relief, but, increasingly, continuous peripheral nerve blocks via catheters are used in ambulatory patients, too. Finally, the planning of discharge medications needs a balancing act between the requirements for provision of good analgesia and the risk of opioids going out into the community. Keywords: ambulatory surgery, short-stay surgery, multimodal analgesia, nonopioids, local anesthetics, regional anesthesia

  19. Polynomial analysis of ambulatory blood pressure measurements

    NARCIS (Netherlands)

    Zwinderman, A. H.; Cleophas, T. A.; Cleophas, T. J.; van der Wall, E. E.

    2001-01-01

    In normotensive subjects blood pressures follow a circadian rhythm. A circadian rhythm in hypertensive patients is less well established, and may be clinically important, particularly with rigorous treatments of daytime blood pressures. Polynomial analysis of ambulatory blood pressure monitoring

  20. Measuring the educational environment in ambulatory settings

    Directory of Open Access Journals (Sweden)

    Arnoldo Riquelme

    2015-04-01

    Conclusions: The 50-item ACLEEM inventory is a multidimensional and valid instrument requiring only 15 respondents for reliable results. We recommend using it to measure the EE in the ambulatory postgraduate Spanish-speaking programs.

  1. Ambulatory blood pressure monitoring - comparison with office ...

    African Journals Online (AJOL)

    ambulatory blood pressure recordings in private practice ... position according to established guidelines. ... white-coat effect was defined as a difference of at least 20 .... patients with hypertension: Importance of blood pressure response to ...

  2. Ambulatory care visits by Taiwanese dentists

    Directory of Open Access Journals (Sweden)

    Ying-Hwa Su

    2013-06-01

    Conclusion: There were inequalities in risks of ambulatory care use among Taiwan's dentists. Further studies should be conducted to investigate the causes responsible for the observed geographic and institutional variations in the risk of morbidity among dentists in Taiwan.

  3. Ambulatory cleft lip surgery: A value analysis.

    Science.gov (United States)

    Arneja, Jugpal S; Mitton, Craig

    2013-01-01

    Socialized health systems face fiscal constraints due to a limited supply of resources and few reliable ways to control patient demand. Some form of prioritization must occur as to what services to offer and which programs to fund. A data-driven approach to decision making that incorporates outcomes, including safety and quality, in the setting of fiscal prudence is required. A value model championed by Michael Porter encompasses these parameters, in which value is defined as outcomes divided by cost. To assess ambulatory cleft lip surgery from a quality and safety perspective, and to assess the costs associated with ambulatory cleft lip surgery in North America. Conclusions will be drawn as to how the overall value of cleft lip surgery may be enhanced. A value analysis of published articles related to ambulatory cleft lip repair over the past 30 years was performed to determine what percentage of patients would be candidates for ambulatory cleft lip repair from a quality and safety perspective. An economic model was constructed based on costs associated with the inpatient stay related to cleft lip repair. On analysis of the published reports in the literature, a minority (28%) of patients are currently discharged in an ambulatory fashion following cleft lip repair. Further analysis suggests that 88.9% of patients would be safe candidates for same-day discharge. From an economic perspective, the mean cost per patient for the overnight admission component of ambulatory cleft surgery to the health care system in the United States was USD$2,390 and $1,800 in Canada. The present analysis reviewed germane publications over a 30-year period, ultimately suggesting that ambulatory cleft lip surgery results in preservation of quality and safety metrics for most patients. The financial model illustrates a potential cost saving through the adoption of such a practice change. For appropriately selected patients, ambulatory cleft surgery enhances overall health care value.

  4. Methods for Motion Correction Evaluation Using 18F-FDG Human Brain Scans on a High-Resolution PET Scanner

    DEFF Research Database (Denmark)

    Keller, Sune H.; Sibomana, Merence; Olesen, Oline Vinter

    2012-01-01

    Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstr......Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias...... in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Methods: Two scans with minor motion and 5 with major motion (as reported...... (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. Results: The results...

  5. A rotary multimodal hybrid energy harvesting device powered by human motion

    Science.gov (United States)

    Larkin, Miles R.

    This thesis presents a novel hybrid multimodal energy harvesting device consisting of an unbalanced rotary disk that supports two transduction methods, piezoelectric and electromagnetic. The device generates electrical energy from oscillatory motion either orthogonal or parallel to the rotary axis to power electronic devices. Analytical models of the device were developed, from which numerical simulations were performed for several different generator sizes. Two prototypes, 180 mm and 100 mm in diameter, respectively, were fabricated and characterized experimentally with a modal shaker. The 180 mm prototype generated 120 mW from the electromagnetic system at 5 Hz and 0.8g, and 4.23 mW from the piezoelectric system at 20.2 Hz and 0.4g excitation acceleration. Finally, the power generation capabilities of the two prototypes were compared to other similar devices.

  6. Using Temporal Covariance of Motion and Geometric Features via Boosting for Human Fall Detection.

    Science.gov (United States)

    Ali, Syed Farooq; Khan, Reamsha; Mahmood, Arif; Hassan, Malik Tahir; Jeon, And Moongu

    2018-06-12

    Fall induced damages are serious incidences for aged as well as young persons. A real-time automatic and accurate fall detection system can play a vital role in timely medication care which will ultimately help to decrease the damages and complications. In this paper, we propose a fast and more accurate real-time system which can detect people falling in videos captured by surveillance cameras. Novel temporal and spatial variance-based features are proposed which comprise the discriminatory motion, geometric orientation and location of the person. These features are used along with ensemble learning strategy of boosting with J48 and Adaboost classifiers. Experiments have been conducted on publicly available standard datasets including Multiple Cameras Fall ( with 2 classes and 3 classes ) and UR Fall Detection achieving percentage accuracies of 99.2, 99.25 and 99.0, respectively. Comparisons with nine state-of-the-art methods demonstrate the effectiveness of the proposed approach on both datasets.

  7. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator

    International Nuclear Information System (INIS)

    Renaud, Michael; Fiorini, Paolo; Van Hoof, Chris; Van Schaijk, Rob

    2009-01-01

    Vibration energy harvesters can replace batteries and serve as clean and renewable energy sources in low-consumption wireless applications. Harvesters delivering sufficient power for sensors operating in an industrial environment have been developed, but difficulties are encountered when the devices to be powered are located on the human body. In this case, classical harvester designs (resonant systems) are not adapted to the low-frequency and high-amplitude characteristics of the motion. For this reason, we propose in this paper an alternative design based on the impact of a moving mass on piezoelectric bending structures. A model of the system is presented and analysed in order to determine the parameters influencing the device performances in terms of energy harvesting. A prototype of the impact harvester is experimentally characterized: for a generator occupying approximately 25 cm 3 and weighing 60 g, an output power of 47 µW was measured across a resistive load when the device was rotated by 180° each second. 600 µW were obtained for a 10 Hz frequency and 10 cm amplitude linear motion. Further optimization of the piezoelectric transducer is possible, allowing a large increase in these values, bringing the power density for the two cases respectively to 10 and 120 µW cm −3

  8. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator

    Science.gov (United States)

    Renaud, Michael; Fiorini, Paolo; van Schaijk, Rob; van Hoof, Chris

    2009-03-01

    Vibration energy harvesters can replace batteries and serve as clean and renewable energy sources in low-consumption wireless applications. Harvesters delivering sufficient power for sensors operating in an industrial environment have been developed, but difficulties are encountered when the devices to be powered are located on the human body. In this case, classical harvester designs (resonant systems) are not adapted to the low-frequency and high-amplitude characteristics of the motion. For this reason, we propose in this paper an alternative design based on the impact of a moving mass on piezoelectric bending structures. A model of the system is presented and analysed in order to determine the parameters influencing the device performances in terms of energy harvesting. A prototype of the impact harvester is experimentally characterized: for a generator occupying approximately 25 cm3 and weighing 60 g, an output power of 47 µW was measured across a resistive load when the device was rotated by 180° each second. 600 µW were obtained for a 10 Hz frequency and 10 cm amplitude linear motion. Further optimization of the piezoelectric transducer is possible, allowing a large increase in these values, bringing the power density for the two cases respectively to 10 and 120 µW cm-3.

  9. Measuring interdependence in ambulatory care.

    Science.gov (United States)

    Katerndahl, David; Wood, Robert; Jaen, Carlos R

    2017-04-01

    Complex systems differ from complicated systems in that they are nonlinear, unpredictable and lacking clear cause-and-effect relationships, largely due to the interdependence of their components (effects of interconnectedness on system behaviour and consequences). The purpose of this study was to demonstrate the potential for network density to serve as a measure of interdependence, assess its concurrent validity and test whether the use of valued or binary ties yields better results. This secondary analysis used the 2010 National Ambulatory Care Medical Survey to assess interdependence of 'top 20' diagnoses seen and medications prescribed for 14 specialties. The degree of interdependence was measured as the level of association between diagnoses and drug interactions among medications. Both valued and binary network densities were computed for each specialty. To assess concurrent validity, these measures were correlated with previously-derived valid measures of complexity of care using the same database, adjusting for diagnosis and medication diversity. Partial correlations between diagnosis density, and both diagnosis and total input complexity, were significant, as were those between medication density and both medication and total output complexity; for both diagnosis and medication densities, adjusted correlations were higher for binary rather than valued densities. This study demonstrated the feasibility and validity of using network density as a measure of interdependence. When adjusted for measure diversity, density-complexity correlations were significant and higher for binary than valued density. This approach complements other methods of estimating complexity of care and may be applicable to unique settings. © 2015 John Wiley & Sons, Ltd.

  10. Ambulatory heart rate is underestimated when measured by an Ambulatory Blood Pressure device

    NARCIS (Netherlands)

    Vrijkotte, T.G.M.; de Geus, E.J.C.

    1999-01-01

    Objective: To test the validity of ambulatory heart rate (HR) assessment with a cuff ambulatory blood pressure (ABP) monitor. Design: Cross-instrument comparison of HR measured intermittently by a cuff ABP monitor (SpaceLabs, Redmond, Washington, USA), with HR derived from continuous

  11. Ambulatory heart rate is underestimated when measured by an ambulatory blood pressure device

    NARCIS (Netherlands)

    Vrijkotte, T. G.; de Geus, E. J.

    2001-01-01

    To test the validity of ambulatory heart rate (HR) assessment with a cuff ambulatory blood pressure (ABP) monitor. Cross-instrument comparison of HR measured intermittently by a cuff ABP monitor (SpaceLabs, Redmond, Washington, USA), with HR derived from continuous electrocardiogram (ECG) recordings

  12. Ambulatory heart rate is underestimated when measured by an ambulatory blood pressure device

    NARCIS (Netherlands)

    Vrijkotte, T.G.M.; de Geus, E.J.C.

    2001-01-01

    Objective: To test the validity of ambulatory heart rate (HR) assessment with a cuff ambulatory blood pressure (ABP) monitor. Design: Cross-instrument comparison of HR measured intermittently by a cuff ABP monitor (SpaceLabs, Redmond, Washington, USA), with HR derived from continuous

  13. Analysis of Golf Swing Motion and Applied Loads on the Human Body Using Soft-Golf TM Club

    International Nuclear Information System (INIS)

    Kwak, Ki Young; So, Ha Ju; Kim, Sung Hyeon; Kim, Dong Wook; Kim, Nam Gyun

    2011-01-01

    The purpose of this study was to analyze the kinetic effect of Soft-golf TM instrument on the human body structure. To analyze the kinetic effect of Soft-golf TM instrument, Golf swing using Soft-golf TM instrument and regular golf instrument was captured. And then Upper limbs and lumbar joint torques was calculated via computer simulation. Five man participated this study. Subjects performed golf swing using a regular golf and Soft-golf TM instrument. Golf swing motion was captured using three position sensor, active infrared LED maker and force plate. Golf swing model was generated and simulated using ADAMS/LifeMOD program. As a results, joint torque during Soft-golf swing were lower than regular golf swing. Thus soft-golf swing have joint load lower than regular golf swing and contribute to reduce joint injury

  14. Estimation of Seismic Ground Motions and Attendant Potential Human Fatalities from Scenario Earthquakes on the Chishan Fault in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu

    2017-01-01

    Full Text Available The purpose of this study is to estimate maximum ground motions in southern Taiwan as well as to assess potential human fatalities from scenario earthquakes on the Chishan active faults in this area. The resultant Shake Map patterns of maximum ground motion in a case of Mw 7.2 show the areas of PGA above 400 gals are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan, as shown in the regions inside the yellow lines in the corresponding figure. Comparing cities with similar distances located in Tainan, Kaohsiung, and Pingtung to the Chishan fault, the cities in Tainan area have relatively greater PGA and PGV, due to large site response factors in Tainan area. Furthermore, seismic hazards in terms of PGA and PGV in the vicinity of the Chishan fault are not completely dominated by the Chishan fault. The main reason is that some areas located in the vicinity of the Chishan fault are marked with low site response amplification values from 0.55 - 1.1 and 0.67 - 1.22 for PGA and PGV, respectively. Finally, from estimation of potential human fatalities from scenario earthquakes on the Chishan active fault, it is noted that potential fatalities increase rapidly in people above age 45. Total fatalities reach a high peak in age groups of 55 - 64. Another to pay special attention is Kaohsiung City has more than 540 thousand households whose residences over 50 years old. In light of the results of this study, I urge both the municipal and central governments to take effective seismic hazard mitigation measures in the highly urbanized areas with a large number of old buildings in southern Taiwan.

  15. Two eyes, one vision: binocular motion perception in human visual cortex

    NARCIS (Netherlands)

    Barendregt, M.

    2016-01-01

    An important aspect of human vision is the fact that it is binocular, i.e. that we have two eyes. As a result, the brain nearly always receives two slightly different images of the same visual scene. Yet, we only perceive a single image and thus our brain has to actively combine the binocular visual

  16. Finite element analysis of high modal dynamic responses of a composite floor subjected to human motion under passive live load

    Directory of Open Access Journals (Sweden)

    Arash Behnia

    Full Text Available Light weight and long span composite floors are common place in modern construction. A critical consequence of this application is undesired vibration which may cause excessive discomfort to occupants. This work investigates the composite floor vibration behavior of an existing building based on a comprehensive study of high modal dynamic responses, the range of which has been absent in previous studies and major analytical templates, of different panels under the influence of loads induced by human motion. The resulting fundamental natural frequency and vibration modes are first validated with respect to experimental and numerical evidences from literature. Departing from close correlation established in comparison, this study explores in detail the effects of intensity of passive live load as additional stationary mass due to crowd jumping as well as considering human structure interaction. From observation, a new approach in the simulation of passive live load through the consideration of human structure interaction and human body characteristics is proposed. It is concluded that higher vibration modes are essential to determine the minimum required modes and mass participation ratio in the case of vertical vibration. The results indicate the need to consider 30 modes of vibration to obtain all possible important excitations and thereby making third harmonic of load frequency available to excite the critical modes. In addition, presence of different intensities of passive live load on the composite floor showed completely different behavior in each particular panel associated with load location of panel and passive live load intensity. Furthermore, implementing human body characteristics in simulation causes an obvious increase in modal damping and hence better practicality and economical presentation can be achieved in structural dynamic behavior.

  17. Histaminergic and cholinergic neuron systems in the impairment of human thermoregulation during motion sickness.

    Science.gov (United States)

    Nobel, Gerard; Tribukait, Arne; Mekjavic, Igor B; Eiken, Ola

    2010-05-31

    Motion sickness (MS) exaggerates body cooling during cold-water immersion. The aim of the present study was to investigate whether such MS-induced predisposition to hypothermia is influenced by two anti-MS drugs: the histamine-receptor blocker dimenhydrinate (DMH) and the muscarine-receptor blocker scopolamine (Scop). Nine healthy male subjects were immersed in 15 degrees C water for a maximum of 90min in five conditions: (1) control (CN): no medication, no MS provocation; (2) MS-control (MS-CN): no medication, MS provocation; (3) MS-placebo (MS-P): placebo DMH and placebo Scop, MS provocation; (4) MS-DMH: DMH and placebo Scop, MS provocation; (5) MS-Scop: Scop and placebo DMH, MS provocation. MS was induced by use of a rotating chair. Throughout the experiments rectal temperature (T(re)), the difference in temperature between the non-immersed right forearm and third finger (T(ff)) as an index of peripheral vasoconstriction, and oxygen uptake (VO(2)) as a measure of shivering thermogenesis, were recorded. DMH and Scop were similarly efficacious in ameliorating nausea. The fall in T(re) was greater in the MS-CN and MS-P conditions than in the CN condition. DMH, but not Scop, prevented the MS-induced increase in body-core cooling. MS attenuated the cold-induced vasoconstriction, an effect which was fully prevented by DMH but only partially by Scop. MS provocation did not affect VO(2) in any condition. The results suggest that the MS-induced predisposition to hypothermia is predominantly mediated by histaminergic mechanisms and that DMH might be useful in conjunction with maritime accidents or other scenarios where exposure to cold and MS are imminent features. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Recent progress of flexible and wearable strain sensors for human-motion monitoring

    Science.gov (United States)

    Ge, Gang; Huang, Wei; Shao, Jinjun; Dong, Xiaochen

    2018-01-01

    With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable, are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end. Project supported by the NNSF of China (Nos. 61525402, 61604071), the Key University Science Research Project of Jiangsu Province (No. 15KJA430006), and the Natural Science Foundation of Jiangsu Province (No. BK20161012).

  19. Ambulatory phlebectomy at radiologic outpatient clinic

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chang Jin; Kang, Sung Gwon; Choi, Sang Il [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Lee, Whal; Chung, Jin Wook; Park, Jae Hyung [Seoul National University, Medical College, Seoul (Korea, Republic of)

    2007-03-15

    To evaluate safety, efficacy, and patient's satisfaction of an ambulatory phlebectomy, performed at a radiology outpatient clinic. Between 2003 and 2006, an ambulatory phlebectomy was performed in 12 patients. Endovenous radiofrequency ablation was performed through a venotomy. The venotomy was ligated after RF ablation, and the ambulatory phlebectomy was performed. The patients visited the radiology outpatient clinic one day, one week, and 2 months after the procedure. The improvement in the clinical symptoms, cosmetic change in varicosity, and the procedure related complications were evaluated. The patient's satisfaction was evaluated using a 5-grade scale. RF ablation through a venotomy was performed successfully in all 12 patients. On average, 4.5 incisions were made, and 12.5 cm of varicosity had been removed. The mean procedure time was one hour and forty minutes. The complications of the ambulatory phlebectomy were bruising in one patient, and skin pigmentation in another. The complications associated with RF ablation were a hard palpable vein in 7 patients, numbness in 7 patients, and skin pigmentation along the vein in 2 patients. Follow-up duplex sonography was performed at 2 months after the procedure, showed complete occlusion in all 12 patients. The clinical symptoms had improved in 11 patients, and the varicosity disappeared cosmetically in 11 patients. An ambulatory phlebectomy, combined with RF ablation of the greater saphenous vein, can be performed safely and effectively at a radiology outpatient clinic.

  20. Ambulatory phlebectomy at radiologic outpatient clinic

    International Nuclear Information System (INIS)

    Yoon, Chang Jin; Kang, Sung Gwon; Choi, Sang Il; Lee, Whal; Chung, Jin Wook; Park, Jae Hyung

    2007-01-01

    To evaluate safety, efficacy, and patient's satisfaction of an ambulatory phlebectomy, performed at a radiology outpatient clinic. Between 2003 and 2006, an ambulatory phlebectomy was performed in 12 patients. Endovenous radiofrequency ablation was performed through a venotomy. The venotomy was ligated after RF ablation, and the ambulatory phlebectomy was performed. The patients visited the radiology outpatient clinic one day, one week, and 2 months after the procedure. The improvement in the clinical symptoms, cosmetic change in varicosity, and the procedure related complications were evaluated. The patient's satisfaction was evaluated using a 5-grade scale. RF ablation through a venotomy was performed successfully in all 12 patients. On average, 4.5 incisions were made, and 12.5 cm of varicosity had been removed. The mean procedure time was one hour and forty minutes. The complications of the ambulatory phlebectomy were bruising in one patient, and skin pigmentation in another. The complications associated with RF ablation were a hard palpable vein in 7 patients, numbness in 7 patients, and skin pigmentation along the vein in 2 patients. Follow-up duplex sonography was performed at 2 months after the procedure, showed complete occlusion in all 12 patients. The clinical symptoms had improved in 11 patients, and the varicosity disappeared cosmetically in 11 patients. An ambulatory phlebectomy, combined with RF ablation of the greater saphenous vein, can be performed safely and effectively at a radiology outpatient clinic

  1. Molecular Dynamics Simulations of the STAS Domains of Rat Prestin and Human Pendrin Reveal Conformational Motions in Conserved Flexible Regions

    Directory of Open Access Journals (Sweden)

    Alok K. Sharma

    2014-02-01

    Full Text Available Background: Molecular dynamics (MD simulations provide valuable information on the conformational changes that accompany time-dependent motions in proteins. The reported crystal structure of rat prestin (PDB 3LLO is remarkable for an α1-α2 inter-helical angle that differs substantially from those observed in bacterial STAS domains of SulP anion transporters and anti-sigma factor antagonists. However, NMR data on the rat prestin STAS domain in solution suggests dynamic features at or near the α1-α2 helical region (Pasqualetto et al JMB, 2010. We therefore performed a 100 ns 300K MD simulation study comparing the STAS domains of rat prestin and (modeled human pendrin, to explore possible conformational flexibility in the region of the α1 and α2 helices. Methods: The conformation of the loop missing in the crystal structure of rat prestin STAS (11 amino acids between helix α1 and strand β3 was built using Modeller. MD simulations were performed with GROMACSv4.6 using GROMOS96 53a6 all-atom force field. Results: A subset of secondary structured elements of the STAS domains exhibits significant conformational changes during the simulation time course. The conformationally perturbed segments include the majority of loop regions, as well as the α1 and α2 helices. A significant decrease in the α1-α2 inter-helical angle observed across the simulation trajectory leads to closer helical packing at their C-termini. The end-simulation conformations of the prestin and pendrin STAS domains, including their decreased α1-α2 inter-helical angles, resemble more closely the packing of corresponding helices in the STAS structures of bacterial SulP transporters Rv1739c and ychM, as well as those of the anti-sigma factor antagonists. Several structural segments of the modeled human pendrin STAS domain exhibit larger atomic motions and greater conformational deviations than the corresponding regions of rat prestin, predicting that the human pendrin STAS

  2. Open source platform for collaborative construction of wearable sensor datasets for human motion analysis and an application for gait analysis.

    Science.gov (United States)

    Llamas, César; González, Manuel A; Hernández, Carmen; Vegas, Jesús

    2016-10-01

    Nearly every practical improvement in modeling human motion is well founded in a properly designed collection of data or datasets. These datasets must be made publicly available for the community could validate and accept them. It is reasonable to concede that a collective, guided enterprise could serve to devise solid and substantial datasets, as a result of a collaborative effort, in the same sense as the open software community does. In this way datasets could be complemented, extended and expanded in size with, for example, more individuals, samples and human actions. For this to be possible some commitments must be made by the collaborators, being one of them sharing the same data acquisition platform. In this paper, we offer an affordable open source hardware and software platform based on inertial wearable sensors in a way that several groups could cooperate in the construction of datasets through common software suitable for collaboration. Some experimental results about the throughput of the overall system are reported showing the feasibility of acquiring data from up to 6 sensors with a sampling frequency no less than 118Hz. Also, a proof-of-concept dataset is provided comprising sampled data from 12 subjects suitable for gait analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ambulatory care registered nurse performance measurement.

    Science.gov (United States)

    Swan, Beth Ann; Haas, Sheila A; Chow, Marilyn

    2010-01-01

    On March 1-2, 2010, a state-of-the-science invitational conference titled "Ambulatory Care Registered Nurse Performance Measurement" was held to focus on measuring quality at the RN provider level in ambulatory care. The conference was devoted to ambulatory care RN performance measurement and quality of health care. The specific emphasis was on formulating a research agenda and developing a strategy to study the testable components of the RN role related to care coordination and care transitions, improving patient outcomes, decreasing health care costs, and promoting sustainable system change. The objectives were achieved through presentations and discussion among expert inter-professional participants from nursing, public health, managed care, research, practice, and policy. Conference speakers identified priority areas for a unified practice, policy, and research agenda. Crucial elements of the strategic dialogue focused on issues and implications for nursing and inter-professional practice, quality, and pay-for-performance.

  4. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition.

    Science.gov (United States)

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-04

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  5. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition

    Science.gov (United States)

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-01

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  6. Peritonitis Due to Roseomonas fauriae in a Patient Undergoing Continuous Ambulatory Peritoneal Dialysis

    Science.gov (United States)

    Bibashi, Evangelia; Sofianou, Danai; Kontopoulou, Konstantina; Mitsopoulos, Efstathios; Kokolina, Elisabeth

    2000-01-01

    Roseomonas is a newly described genus of pink-pigmented, nonfermentative, gram-negative bacteria that have been recognized as a cause of human infections. Roseomonas fauriae is a species rarely isolated from clinical specimens. We report the first known case of peritonitis caused by R. fauriae in a patient receiving continuous ambulatory peritoneal dialysis. PMID:10618142

  7. 78 FR 56711 - Health Insurance Exchanges; Application by the Accreditation Association for Ambulatory Health...

    Science.gov (United States)

    2013-09-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Medicare & Medicaid Services [CMS-9953-PN] Health Insurance Exchanges; Application by the Accreditation Association for Ambulatory Health Care To Be... Federal Register announcing the result of our determination. (Health Insurance Exchanges; Application by...

  8. 78 FR 54842 - Medicare and Medicaid Programs: Hospital Outpatient Prospective Payment and Ambulatory Surgical...

    Science.gov (United States)

    2013-09-06

    ... millions) (2) change (3) Total $3,625 1% Eye and ocular adnexa 1,496 -3 Digestive system 743 8 Nervous... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Medicare & Medicaid Services 42 CFR Parts 405...: Hospital Outpatient Prospective Payment and Ambulatory Surgical Center Payment Systems and Quality...

  9. Lubrication of the Human Anklejoint in Walking with the Synovial Fluid Filtrated by the Cartilage with the Surface Zone Worn-out:Steady Pure Sliding Motion

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Miroslav

    1999-01-01

    Roč. 32, č. 10 (1999), s. 1059-1069 ISSN 0021-9290 Keywords : biphasic articular cartilage * biphasic synovial fluid * boooundary lubrication * human ankle joint * sliding motion Subject RIV: FI - Traumatology, Orthopedics Impact factor: 1.536, year: 1999

  10. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    Science.gov (United States)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  11. Perceptual learning of motion direction discrimination with suppressed and unsuppressed MT in humans: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Benjamin Thompson

    Full Text Available The middle temporal area of the extrastriate visual cortex (area MT is integral to motion perception and is thought to play a key role in the perceptual learning of motion tasks. We have previously found, however, that perceptual learning of a motion discrimination task is possible even when the training stimulus contains locally balanced, motion opponent signals that putatively suppress the response of MT. Assuming at least partial suppression of MT, possible explanations for this learning are that 1 training made MT more responsive by reducing motion opponency, 2 MT remained suppressed and alternative visual areas such as V1 enabled learning and/or 3 suppression of MT increased with training, possibly to reduce noise. Here we used fMRI to test these possibilities. We first confirmed that the motion opponent stimulus did indeed suppress the BOLD response within hMT+ compared to an almost identical stimulus without locally balanced motion signals. We then trained participants on motion opponent or non-opponent stimuli. Training with the motion opponent stimulus reduced the BOLD response within hMT+ and greater reductions in BOLD response were correlated with greater amounts of learning. The opposite relationship between BOLD and behaviour was found at V1 for the group trained on the motion-opponent stimulus and at both V1 and hMT+ for the group trained on the non-opponent motion stimulus. As the average response of many cells within MT to motion opponent stimuli is the same as their response to non-directional flickering noise, the reduced activation of hMT+ after training may reflect noise reduction.

  12. Aristotle, Motion, and Rhetoric.

    Science.gov (United States)

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of…

  13. Mechanical properties and motion of the cupula of the human semicircular canal.

    Science.gov (United States)

    Selva, Pierre; Oman, Charles M; Stone, Howard A

    2009-01-01

    The mathematical model for the dynamics of the cupula-endolymph system of the inner ear semicircular canal, as elaborated by numerous investigators, remains a foundational tool in all of vestibular physiology. Most models represent the cupula as a linear spring-like element of stiffness K=DeltaP/DeltaV, where DeltaV is the volume displaced upon application of a pressure difference DeltaP. The parameter K directly influences the long time constant of the cupula-endolymph system. Given estimates of K based on experiments, we use thick and thin bending membrane theory, and also finite-element simulations based on more realistic cupula morphologies, to estimate the human cupula's Young's modulus E approximately 5.4 Pa. We show that for a model morphology, thick bending membrane theory and finite-element predictions are in good agreement, and conclude that the morphology of the attachment of the cupula to the slope of the crista should not greatly influence the volume displacement. We note, however, that other biological materials with very low E are hydrogels that have significant viscoelastic properties. Experiments to directly measure E and investigate potential viscoelastic behavior ultimately may be needed. In addition, based on experimental images we study two other different shapes for the cupula and quantify their impact on the deflection of the cupula. We also use a three-dimensional finite-element model to analyze both the shear strain distribution and its time evolution near the sensory epithelium. We conclude that stimulation of sensory hair cells probably begins at the centre of the crista and spreads toward the periphery of the cupula and down the sides of the crista. Thus, spatio-temporal variations in the shearing stimulus are predicted to impact subsequent transduction and encoding. Finally, modeling the fluid-filled vertical channels believed to lie within the cupula, we investigate the impact of different tube diameters on the transverse displacement

  14. Side effects of ambulatory blood pressure monitoring.

    NARCIS (Netherlands)

    Steen, M.S. van der; Lenders, J.W.M.; Thien, Th.

    2005-01-01

    OBJECTIVE: To study the experiences and complaints of patients who underwent 24 h blood pressure monitoring. METHODS: Two groups of hypertensive patients of a tertiary outpatient clinic were asked to fill in a nine-item questionnaire about the side effects of ambulatory blood pressure monitoring

  15. Ambulatory Care Skills: Do Residents Feel Prepared?

    Directory of Open Access Journals (Sweden)

    Denise Bonds

    2002-10-01

    Full Text Available Objective: To determine resident comfort and skill in performing ambulatory care skills. Methods: Descriptive survey of common ambulatory care skills administered to internal medicine faculty and residents at one academic medical center. Respondents were asked to rate their ability to perform 12 physical exam skills and 6 procedures, and their comfort in performing 7 types of counseling, and obtaining 6 types of patient history (4 point Likert scale for each. Self-rated ability or comfort was compared by gender, status (year of residency, faculty, and future predicted frequency of use of the skill. Results: Residents reported high ability levels for physical exam skills common to both the ambulatory and hospital setting. Fewer felt able to perform musculoskeletal, neurologic or eye exams easily alone. Procedures generally received low ability ratings. Similarly, residents’ comfort in performing common outpatient counseling was also low. More residents reported feeling very comfortable in obtaining history from patients. We found little variation by gender, year of training, or predicted frequency of use. Conclusion: Self-reported ability and comfort for many common ambulatory care skills is low. Further evaluation of this finding in other training programs is warranted.

  16. Clinical Assessment Applications of Ambulatory Biosensors

    Science.gov (United States)

    Haynes, Stephen N.; Yoshioka, Dawn T.

    2007-01-01

    Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…

  17. Ambulatory Measurement of Ground Reaction Forces

    NARCIS (Netherlands)

    Veltink, Peter H.; Liedtke, Christian; Droog, Ed

    2004-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. It is the purpose of this study to show the feasibility of ambulatory measurement of ground reaction forces using two six degrees of freedom sensors mounted under the shoe. One

  18. Can information technology improve my ambulatory practice ...

    African Journals Online (AJOL)

    eHealth is the use of information and communication technologies for health. mHealth is the use of mobile technology in health. As with all information technology (IT), advances in development are rapidly taking place. The application of such technology to individual ambulatory anaesthesia practice should improve the ...

  19. Regional anesthesia techniques for ambulatory orthopedic surgery.

    LENUS (Irish Health Repository)

    O'Donnell, Brian D

    2012-02-03

    PURPOSE OF REVIEW: The purpose of this review is to present advances in the use of regional anesthetic techniques in ambulatory orthopedic surgery. New findings regarding the use of both neuraxial anesthesia and peripheral nerve block are discussed. RECENT FINDINGS: Neuraxial anesthesia: The use of short-acting local anesthetic agents such as mepivacaine, 2-chloroprocaine, and articaine permits rapid onset intrathecal anesthesia with early recovery profiles. Advantages and limitations of these agents are discussed.Peripheral nerve block: Peripheral nerve blocks in limb surgery have the potential to transform this patient cohort into a truly ambulatory, self-caring group. Recent trends and evidence regarding the benefits of regional anesthesia techniques are presented.Continuous perineural catheters permit extension of improved perioperative analgesia into the ambulatory home setting. The role and reported safety of continuous catheters are discussed. SUMMARY: In summary, shorter acting, neuraxial, local anesthetic agents, specific to the expected duration of surgery, may provide superior recovery profiles in the ambulatory setting. A trend towards more peripheral and selective nerve blocks exists. The infrapatellar block is a promising technique to provide analgesia following knee arthroscopy. Improved analgesia seen in the perioperative period can be safely and effectively extended to the postoperative period with the use of perineural catheters.

  20. Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration

    Science.gov (United States)

    Wei, David Wei; Deegan, Anthony J.; Wang, Ruikang K.

    2017-06-01

    When using optical coherence tomography angiography (OCTA), the development of artifacts due to involuntary movements can severely compromise the visualization and subsequent quantitation of tissue microvasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation. We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of the corrected images are evaluated and compared with those of the original images, further validating the effectiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative and quantitative assessment of the OCTA images of scanned tissue beds.

  1. Predicting recovery at home after Ambulatory Surgery

    Directory of Open Access Journals (Sweden)

    Ayala Guillermo

    2011-10-01

    Full Text Available Abstract The correct implementation of Ambulatory Surgery must be accompanied by an accurate monitoring of the patient post-discharge state. We fit different statistical models to predict the first hours postoperative status of a discharged patient. We will also be able to predict, for any discharged patient, the probability of needing a closer follow-up, or of having a normal progress at home. Background The status of a discharged patient is predicted during the first 48 hours after discharge by using variables routinely used in Ambulatory Surgery. The models fitted will provide the physician with an insight into the post-discharge progress. These models will provide valuable information to assist in educating the patient and their carers about what to expect after discharge as well as to improve their overall level of satisfaction. Methods A total of 922 patients from the Ambulatory Surgery Unit of the Dr. Peset University Hospital (Valencia, Spain were selected for this study. Their post-discharge status was evaluated through a phone questionnaire. We pretend to predict four variables which were self-reported via phone interviews with the discharged patient: sleep, pain, oral tolerance of fluid/food and bleeding status. A fifth variable called phone score will be built as the sum of these four ordinal variables. The number of phone interviews varies between patients, depending on the evolution. The proportional odds model was used. The predictors were age, sex, ASA status, surgical time, discharge time, type of anaesthesia, surgical specialty and ambulatory surgical incapacity (ASI. This last variable reflects, before the operation, the state of incapacity and severity of symptoms in the discharged patient. Results Age, ambulatory surgical incapacity and the surgical specialty are significant to explain the level of pain at the first call. For the first two phone calls, ambulatory surgical incapacity is significant as a predictor for all

  2. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    Science.gov (United States)

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.

    Science.gov (United States)

    Maffei, Vincenzo; Macaluso, Emiliano; Indovina, Iole; Orban, Guy; Lacquaniti, Francesco

    2010-01-01

    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM.

  4. Custom-designed motion-based games for older adults: a review of literature in human-computer interaction

    OpenAIRE

    Gerling, Kathrin; Mandryk, Regan

    2014-01-01

    Many older adults, particularly persons living in senior residences and care homes, lead sedentary lifestyles, which reduces their life expectancy. Motion-based video games encourage physical activity and might be an opportunity for these adults to remain active and engaged; however, research efforts in the field have frequently focused on younger audiences and little is known about the requirements and benefits of motion-based games for elderly players. In this paper, we present an overview ...

  5. Beyond the clinic: redefining hospital ambulatory care.

    Science.gov (United States)

    Rogut, L

    1997-07-01

    Responding to changes in health care financing, government policy, technology, and clinical judgment, and the rise of managed care, hospitals are shifting services from inpatient to outpatient settings and moving them into the community. Institutions are evolving into integrated delivery systems, developing the capacity to provide a continuum of coordinated services in an array of settings and to share financial risk with physicians and managed care organizations. Over the past several years, hospitals in New York City have shifted considerable resources into ambulatory care. In their drive to expand and enhance services, however, they face serious challenges, including a well-established focus on hospitals as inpatient centers of tertiary care and medical education, a heavy reliance upon residents as providers of medical care, limited access to capital, and often inadequate physical plants. In 1995, the United Hospital Fund awarded $600,000 through its Ambulatory Care Services Initiative to support hospitals' efforts to meet the challenges of reorganizing services, compete in a managed care environment, and provide high-quality ambulatory care in more efficient ways. Through the initiative, 12 New York City hospitals started projects to reorganize service delivery and build an infrastructure of systems, technology, and personnel. Among the projects undertaken by the hospitals were:--broad-based reorganization efforts employing primary care models to improve and expand existing ambulatory care services, integrate services, and better coordinate care;--projects to improve information management, planning and testing new systems for scheduling appointments, registering patients, and tracking ambulatory care and its outcomes;--training programs to increase the supply of primary care providers (both nurse practitioners and primary care physicians), train clinical and support staff in the skills needed to deliver more efficient and better ambulatory care, prepare staff

  6. Patient Satisfaction with Kimbrough Ambulatory Care Center

    Science.gov (United States)

    1997-02-01

    few are going to opt to change health plans. 14. SUBJECT TERMS PATIENT SATISFACTION; CONSUMER SATISFACTION; SURVEY 15. NUMBER OF PAGES 57 16...to address is overall patient satisfaction with Kimbrough’s current health care system. I surveyed customers on: how satisfied or dissatisfied they...research project was designed to determine how satisfied customers are with Kimbrough Ambulatory Care Center. A patient satisfaction survey developed by

  7. The evolution of ambulatory ECG monitoring.

    Science.gov (United States)

    Kennedy, Harold L

    2013-01-01

    Ambulatory Holter electrocardiographic (ECG) monitoring has undergone continuous technological evolution since its invention and development in the 1950s era. With commercial introduction in 1963, there has been an evolution of Holter recorders from 1 channel to 12 channel recorders with increasingly smaller storage media, and there has evolved Holter analysis systems employing increasingly technologically advanced electronics providing a myriad of data displays. This evolution of smaller physical instruments with increasing technological capacity has characterized the development of electronics over the past 50 years. Currently the technology has been focused upon the conventional continuous 24 to 48 hour ambulatory ECG examination, and conventional extended ambulatory monitoring strategies for infrequent to rare arrhythmic events. However, the emergence of the Internet, Wi-Fi, cellular networks, and broad-band transmission has positioned these modalities at the doorway of the digital world. This has led to an adoption of more cost-effective strategies to these conventional methods of performing the examination. As a result, the emergence of the mobile smartphone coupled with this digital capacity is leading to the recent development of Holter smartphone applications. The potential of point-of-care applications utilizing the Holter smartphone and a vast array of new non-invasive sensors is evident in the not too distant future. The Holter smartphone is anticipated to contribute significantly in the future to the field of global health. © 2013.

  8. Motion Learning Based on Bayesian Program Learning

    Directory of Open Access Journals (Sweden)

    Cheng Meng-Zhen

    2017-01-01

    Full Text Available The concept of virtual human has been highly anticipated since the 1980s. By using computer technology, Human motion simulation could generate authentic visual effect, which could cheat human eyes visually. Bayesian Program Learning train one or few motion data, generate new motion data by decomposing and combining. And the generated motion will be more realistic and natural than the traditional one.In this paper, Motion learning based on Bayesian program learning allows us to quickly generate new motion data, reduce workload, improve work efficiency, reduce the cost of motion capture, and improve the reusability of data.

  9. Acupuncture in ambulatory anesthesia: a review

    Directory of Open Access Journals (Sweden)

    Norheim AJ

    2015-09-01

    Full Text Available Arne Johan Norheim,1 Ingrid Liodden,1 Terje Alræk1,2 1National Research Center in Complementary and Alternative Medicine (NAFKAM, Department of Community Medicine, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, 2The Norwegian School of Health Sciences, Institute of Acupuncture, Kristiania University College, Oslo, NorwayBackground: Post-anesthetic morbidities remain challenging in our daily practice of anesthesia. Meta-analyses and reviews of acupuncture and related techniques for postoperative nausea and vomiting (POVN and postoperative vomiting (POV show promising results while many clinicians remain skeptical of the value of acupuncture. Given the interest in finding safe non-pharmacological approaches toward postoperative care, this body of knowledge needs to be considered. This review critically appraises and summarizes the research on acupuncture and acupressure in ambulatory anesthesia during the last 15 years.Methods: Articles were identified through searches of Medline, PubMed, and Embase using the search terms “acupuncture” or “acupuncture therapy” in combination with “ambulatory anesthesia” or “ambulatory surgery” or “day surgery” or “postoperative”. A corresponding search was done using “acupressure” and “wristbands”. The searches generated a total of 104, 118, and 122 references, respectively.Results: Sixteen studies were included; eight studies reported on acupuncture and eight on acupressure. Nine studies found acupuncture or acupressure effective on primary endpoints including postoperative nausea and vomiting, postoperative pain, sore throat, and emergence agitation. Four studies found acupuncture had a similar effect to antiemetic medication.Conclusion: Overall, the studies were of fairly good quality. A large proportion of the reviewed papers highlights an effect of acupuncture or acupressure on postoperative morbidities in an ambulatory setting

  10. Research on Three-dimensional Motion History Image Model and Extreme Learning Machine for Human Body Movement Trajectory Recognition

    Directory of Open Access Journals (Sweden)

    Zheng Chang

    2015-01-01

    Full Text Available Based on the traditional machine vision recognition technology and traditional artificial neural networks about body movement trajectory, this paper finds out the shortcomings of the traditional recognition technology. By combining the invariant moments of the three-dimensional motion history image (computed as the eigenvector of body movements and the extreme learning machine (constructed as the classification artificial neural network of body movements, the paper applies the method to the machine vision of the body movement trajectory. In detail, the paper gives a detailed introduction about the algorithm and realization scheme of the body movement trajectory recognition based on the three-dimensional motion history image and the extreme learning machine. Finally, by comparing with the results of the recognition experiments, it attempts to verify that the method of body movement trajectory recognition technology based on the three-dimensional motion history image and extreme learning machine has a more accurate recognition rate and better robustness.

  11. Ambulatory anesthesia: optimal perioperative management of the diabetic patient

    Directory of Open Access Journals (Sweden)

    Polderman JAW

    2016-05-01

    Full Text Available Jorinde AW Polderman, Robert van Wilpe, Jan H Eshuis, Benedikt Preckel, Jeroen Hermanides Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands Abstract: Given the growing number of patients with diabetes mellitus (DM and the growing number of surgical procedures performed in an ambulatory setting, DM is one of the most encountered comorbidities in patients undergoing ambulatory surgery. Perioperative management of ambulatory patients with DM requires a different approach than patients undergoing major surgery, as procedures are shorter and the stress response caused by surgery is minimal. However, DM is a risk factor for postoperative complications in ambulatory surgery, so should be managed carefully. Given the limited time ambulatory patients spend in the hospital, improvement in management has to be gained from the preanesthetic assessment. The purpose of this review is to summarize current literature regarding the anesthesiologic management of patients with DM in the ambulatory setting. We will discuss the risks of perioperative hyperglycemia together with the pre-, intra-, and postoperative considerations for these patients when encountered in an ambulatory setting. Furthermore, we provide recommendations for the optimal perioperative management of the diabetic patient undergoing ambulatory surgery. Keywords: diabetes mellitus, perioperative period, ambulatory surgery, insulin, complications, GLP-1 agonist, DPP-4 inhibitor

  12. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.

    Science.gov (United States)

    La Scaleia, Barbara; Zago, Myrka; Lacquaniti, Francesco

    2015-09-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. Copyright © 2015 the American Physiological Society.

  13. List-Mode PET Motion Correction Using Markerless Head Tracking: Proof-of-Concept With Scans of Human Subject

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sullivan, Jenna M.; Mulnix, Tim

    2013-01-01

    A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely...... on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with $^{11}{\\rm C}$-racolopride on the high resolution research tomograph (HRRT) PET...... in contrast recovery of small structures....

  14. Optimization-based human motion prediction using an inverse-inverse dynamics technique implemented in the AnyBody Modeling System

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi; Andersen, Michael Skipper; de Zee, Mark

    2012-01-01

    derived from the detailed musculoskeletal analysis. The technique is demonstrated on a human model pedaling a bicycle. We use a physiology-based cost function expressing the mean square of all muscle activities over the cycle to predict a realistic motion pattern. Posture and motion prediction...... on a physics model including dynamic effects and a high level of anatomical realism. First, a musculoskeletal model comprising several hundred muscles is built in AMS. The movement is then parameterized by means of time functions controlling selected degrees of freedom of the model. Subsequently......, the parameters of these functions are optimized to produce an optimum posture or movement according to a user-defined cost function and constraints. The cost function and the constraints are typically express performance, comfort, injury risk, fatigue, muscle load, joint forces and other physiological properties...

  15. Prevalence, Treatment, and Control Rates of Conventional and Ambulatory Hypertension Across 10 Populations in 3 Continents.

    Science.gov (United States)

    Melgarejo, Jesus D; Maestre, Gladys E; Thijs, Lutgarde; Asayama, Kei; Boggia, José; Casiglia, Edoardo; Hansen, Tine W; Imai, Yutaka; Jacobs, Lotte; Jeppesen, Jørgen; Kawecka-Jaszcz, Kalina; Kuznetsova, Tatiana; Li, Yan; Malyutina, Sofia; Nikitin, Yuri; Ohkubo, Takayoshi; Stolarz-Skrzypek, Katarzyna; Wang, Ji-Guang; Staessen, Jan A

    2017-07-01

    Hypertension is a major global health problem, but prevalence rates vary widely among regions. To determine prevalence, treatment, and control rates of hypertension, we measured conventional blood pressure (BP) and 24-hour ambulatory BP in 6546 subjects, aged 40 to 79 years, recruited from 10 community-dwelling cohorts on 3 continents. We determined how between-cohort differences in risk factors and socioeconomic factors influence hypertension rates. The overall prevalence was 49.3% (range between cohorts, 40.0%-86.8%) for conventional hypertension (conventional BP ≥140/90 mm Hg) and 48.7% (35.2%-66.5%) for ambulatory hypertension (ambulatory BP ≥130/80 mm Hg). Treatment and control rates for conventional hypertension were 48.0% (33.5%-74.1%) and 38.6% (10.1%-55.3%) respectively. The corresponding rates for ambulatory hypertension were 48.6% (30.5%-71.9%) and 45.6% (18.6%-64.2%). Among 1677 untreated subjects with conventional hypertension, 35.7% had white coat hypertension (23.5%-56.2%). Masked hypertension (conventional BP hypertension rates. Higher social and economic development, measured by the Human Development Index, was associated with lower rates of conventional and ambulatory hypertension. In conclusion, high rates of hypertension in all cohorts examined demonstrate the need for improvements in prevention, treatment, and control. Strategies for the management of hypertension should continue to not only focus on preventable and modifiable risk factors but also consider societal issues. © 2017 American Heart Association, Inc.

  16. Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers

    Science.gov (United States)

    Mannini, Andrea; Sabatini, Angelo Maria

    2010-01-01

    The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series. PMID:22205862

  17. Flexible and Compressible PEDOT:PSS@Melamine Conductive Sponge Prepared via One-Step Dip Coating as Piezoresistive Pressure Sensor for Human Motion Detection.

    Science.gov (United States)

    Ding, Yichun; Yang, Jack; Tolle, Charles R; Zhu, Zhengtao

    2018-05-09

    Flexible and wearable pressure sensor may offer convenient, timely, and portable solutions to human motion detection, yet it is a challenge to develop cost-effective materials for pressure sensor with high compressibility and sensitivity. Herein, a cost-efficient and scalable approach is reported to prepare a highly flexible and compressible conductive sponge for piezoresistive pressure sensor. The conductive sponge, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)@melamine sponge (MS), is prepared by one-step dip coating the commercial melamine sponge (MS) in an aqueous dispersion of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Due to the interconnected porous structure of MS, the conductive PEDOT:PSS@MS has a high compressibility and a stable piezoresistive response at the compressive strain up to 80%, as well as good reproducibility over 1000 cycles. Thereafter, versatile pressure sensors fabricated using the conductive PEDOT:PSS@MS sponges are attached to the different parts of human body; the capabilities of these devices to detect a variety of human motions including speaking, finger bending, elbow bending, and walking are evaluated. Furthermore, prototype tactile sensory array based on these pressure sensors is demonstrated.

  18. Multifunctional devices based on SnO2@rGO-coated fibers for human motion monitoring, ethanol detection, and photo response

    Science.gov (United States)

    Mi, Qing; Wang, Qi; Zang, Siyao; Chai, Zhaoer; Zhang, Jinnan; Ren, Xiaomin

    2018-05-01

    In this study, we developed a multifunctional device based on SnO2@rGO-coated fibers utilizing plasma treatment, dip coating, and microwave irradiation in sequence, and finally realized highly sensitive human motion monitoring, relatively good ethanol detection, and an obvious photo response. Moreover, the high level of comfort and compactness derived from highly elastic and comfortable fabrics contributes to the long-term availability and test accuracy. As an attempt at multifunctional integration of smart clothing, this work provides an attractive and relatively practical research direction.

  19. [A new human machine interface in neurosurgery: The Leap Motion(®). Technical note regarding a new touchless interface].

    Science.gov (United States)

    Di Tommaso, L; Aubry, S; Godard, J; Katranji, H; Pauchot, J

    2016-06-01

    Currently, cross-sectional imaging viewing is used in routine practice whereas the surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). This type of contact results in a risk of lack of aseptic control and causes loss of time. The recent appearance of devices such as the Leap Motion(®) (Leap Motion society, San Francisco, USA) a sensor which enables to interact with the computer without any physical contact is of major interest in the field of surgery. However, its configuration and ergonomics produce key challenges in order to adapt to the practitioner's requirements, the imaging software as well as the surgical environment. This article aims to suggest an easy configuration of the Leap Motion(®) in neurosurgery on a PC for an optimized utilization with Carestream(®) Vue PACS v11.3.4 (Carestream Health, Inc., Rochester, USA) using a plug-in (to download at: https://drive.google.com/?usp=chrome_app#folders/0B_F4eBeBQc3ybElEeEhqME5DQkU) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. New antithrombotic agents in the ambulatory setting.

    Science.gov (United States)

    Gibbs, Neville M; Weightman, William M; Watts, Stephen A

    2014-12-01

    Many patients presenting for surgical or other procedures in an ambulatory setting are taking new antiplatelet or anticoagulant agents. This review assesses how the novel features of these new agents affect the management of antithrombotic therapy in the ambulatory setting. There have been very few studies investigating the relative risks of continuing or ceasing new antithrombotic agents. Recent reviews indicate that the new antithrombotic agents offer greater efficacy or ease of administration but are more difficult to monitor or reverse. They emphasize the importance of assessing the bleeding risk of the procedure, the thrombotic risk if the agent is ceased, and patient factors that increase the likelihood of bleeding. The timing of cessation of the agent, if required, depends on its pharmacokinetics and patients' bleeding risks. Patients at high risk of thrombotic complications may require bridging therapy. Once agreed upon, the perioperative plan should be made clear to all involved. As there are few clinical studies to guide management, clinicians must make rational decisions in relation to continuing or ceasing new antithrombotic agents. This requires knowledge of their pharmacokinetics, and a careful multidisciplinary assessment of the relative thrombotic and bleeding risks in individual patients.

  1. Channel Selection and Feature Projection for Cognitive Load Estimation Using Ambulatory EEG

    Directory of Open Access Journals (Sweden)

    Tian Lan

    2007-01-01

    Full Text Available We present an ambulatory cognitive state classification system to assess the subject's mental load based on EEG measurements. The ambulatory cognitive state estimator is utilized in the context of a real-time augmented cognition (AugCog system that aims to enhance the cognitive performance of a human user through computer-mediated assistance based on assessments of cognitive states using physiological signals including, but not limited to, EEG. This paper focuses particularly on the offline channel selection and feature projection phases of the design and aims to present mutual-information-based techniques that use a simple sample estimator for this quantity. Analyses conducted on data collected from 3 subjects performing 2 tasks (n-back/Larson at 2 difficulty levels (low/high demonstrate that the proposed mutual-information-based dimensionality reduction scheme can achieve up to 94% cognitive load estimation accuracy.

  2. Achieving the AAAs of Ambulatory Care: Aptitude, Appeal, and Appreciation

    Science.gov (United States)

    Rybolt, Ann H.; Staton, Lisa J.; Panda, Mukta; Jones, Roger C.

    2009-01-01

    Background In the current health care environment more patient care has moved from in-hospital care to the ambulatory primary care settings; however, fewer internal medicine residents are pursuing primary care careers. Barriers to residents developing a sense of competency and enjoyment in ambulatory medicine include the complexity of practice-based systems, patients with multiple chronic diseases, and the limited time that residents spend in the outpatient setting. Objective In an effort to accelerate residents' ambulatory care competence and enhance their satisfaction with ambulatory practice, we sought to change the learning environment. Interns were provided a series of intensive, focused, ambulatory training sessions prior to beginning their own continuity clinic sessions. The sessions were designed to enable them to work confidently and effectively in their continuity clinic from the beginning of the internship year, and it was hoped this would have a positive impact on their perception of the desirability of ambulatory practice. Methods Improvement needs assessment after a performance, so we developed a structured, competency-based, multidisciplinary curriculum for initiation into ambulatory practice. The curriculum focused on systems-based practice, patient safety, quality improvement, and collaborative work while emphasizing the importance of continuity of care and long-term doctor-patient relationships. Direct observation of patient encounters was done by an attending physician to evaluate communication and physical examination skills. Systems of care commonly used in the clinic were demonstrated. Resources for practice-based learning were used. Conclusion The immersion of interns in an intensive, hands-on experience using a structured ambulatory care orientation curriculum early in training may prepare the intern to be a successful provider and learner in the primary care ambulatory setting. PMID:21975724

  3. Ambulatory Arterial Stiffness Indexes in Cushing's Syndrome.

    Science.gov (United States)

    Battocchio, Marialberta; Rebellato, Andrea; Grillo, Andrea; Dassie, Francesca; Maffei, Pietro; Bernardi, Stella; Fabris, Bruno; Carretta, Renzo; Fallo, Francesco

    2017-03-01

    Long-standing exposure to endogenous cortisol excess is associated with high cardiovascular risk. The aim of our study was to investigate arterial stiffness, which has been recognized as an independent predictor of adverse cardiovascular outcome, in a group of patients with Cushing's syndrome. Twenty-four patients with Cushing's syndrome (3 males, mean age 49±13 years; 20 pituitary-dependent Cushing's disease and 4 adrenal adenoma) underwent 24-h ambulatory blood pressure monitoring (ABPM) and evaluation of cardiovascular risk factors. The Ambulatory Arterial Stiffness Index (AASI) and symmetric AASI (sAASI) were derived from ABPM tracings. Cushing patients were divided into 8 normotensive (NOR-CUSH) and 16 hypertensive (HYP-CUSH) patients, and were compared with 8 normotensive (NOR-CTR) and 16 hypertensive (HYP-CTR) control subjects, matched for demographic characteristics, 24-h ABPM and cardiometabolic risk factors. The AASI and sAASI indexes were significantly higher in Cushing patients than in controls, either in the normotensive (p=0.048 for AASI and p=0.013 for sAASI) or in the hypertensive (p=0.004 for AASI and p=0.046 for sAASI) group. No difference in metabolic parameters was observed between NOR-CUSH and NOR-CTR or between HYP-CUSH and HYP-CTR groups. AASI and sAASI were both correlated with urinary cortisol in patients with endogenous hypercortisolism (Spearman's rho=0.40, p=0.05, and 0.61, p=0.003, respectively), while no correlation was found in controls. Both AASI and sAASI are increased in Cushing syndrome, independent of BP elevation, and may represent an additional cardiovascular risk factor in this disease. The role of excess cortisol in arterial stiffness has to be further clarified. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Use of intravoxel incoherent motion diffusion-weighted imaging in identifying the vascular and avascular zones of human meniscus.

    Science.gov (United States)

    Guo, Tan; Chen, Juan; Wu, Bing; Zheng, Dandan; Jiao, Sheng; Song, Yan; Chen, Min

    2017-04-01

    To investigate the hypothesis that the intravoxel incoherent motion (IVIM) diffusion-weighted imaging may depict microcirculation of meniscus and the perfusion changes in meniscal disorder. Fifty patients received diffusion-weighted MRI with multiple b-values ranging from 0 to 400 s/mm 2 . The four horns of the menisci were divided into normal, degenerated, and torn groups. IVIM parameters including perfusion fraction (f), pseudo-diffusion coefficient (D*), true diffusion coefficient (D), and the product of f and D* (f D*) of normal meniscal red zone and white zone were derived and compared for microcirculation changes of normal, degenerated, and torn posterior horn of the medial meniscus (PMM). The parameters between red and white zones among the groups were compared. Significant differences were considered when P meniscus and the perfusion changes in meniscal disorder. 3 J. Magn. Reson. Imaging 2017;45:1090-1096. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Development of Quality Metrics in Ambulatory Pediatric Cardiology.

    Science.gov (United States)

    Chowdhury, Devyani; Gurvitz, Michelle; Marelli, Ariane; Anderson, Jeffrey; Baker-Smith, Carissa; Diab, Karim A; Edwards, Thomas C; Hougen, Tom; Jedeikin, Roy; Johnson, Jonathan N; Karpawich, Peter; Lai, Wyman; Lu, Jimmy C; Mitchell, Stephanie; Newburger, Jane W; Penny, Daniel J; Portman, Michael A; Satou, Gary; Teitel, David; Villafane, Juan; Williams, Roberta; Jenkins, Kathy

    2017-02-07

    The American College of Cardiology Adult Congenital and Pediatric Cardiology (ACPC) Section had attempted to create quality metrics (QM) for ambulatory pediatric practice, but limited evidence made the process difficult. The ACPC sought to develop QMs for ambulatory pediatric cardiology practice. Five areas of interest were identified, and QMs were developed in a 2-step review process. In the first step, an expert panel, using the modified RAND-UCLA methodology, rated each QM for feasibility and validity. The second step sought input from ACPC Section members; final approval was by a vote of the ACPC Council. Work groups proposed a total of 44 QMs. Thirty-one metrics passed the RAND process and, after the open comment period, the ACPC council approved 18 metrics. The project resulted in successful development of QMs in ambulatory pediatric cardiology for a range of ambulatory domains. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Pros and cons of the ambulatory surgery center joint venture.

    Science.gov (United States)

    Giannini, Deborah

    2008-01-01

    If a physician group has determined that it has a realistic patient base to establish an ambulatory surgery center, it may be beneficial to consider a partner to share the costs and risks of this new joint venture. Joint ventures can be a benefit or liability in the establishment of an ambulatory surgery center. This article discusses the advantages and disadvantages of a hospital physician-group joint venture.

  7. Computerized adaptive testing--ready for ambulatory monitoring?

    DEFF Research Database (Denmark)

    Rose, Matthias; Bjørner, Jakob; Fischer, Felix

    2012-01-01

    Computerized adaptive tests (CATs) have abundant theoretical advantages over established static instruments, which could improve ambulatory monitoring of patient-reported outcomes (PROs). However, an empirical demonstration of their practical benefits is warranted.......Computerized adaptive tests (CATs) have abundant theoretical advantages over established static instruments, which could improve ambulatory monitoring of patient-reported outcomes (PROs). However, an empirical demonstration of their practical benefits is warranted....

  8. Ambulatory laparoscopic minor hepatic surgery: Retrospective observational study.

    Science.gov (United States)

    Gaillard, M; Tranchart, H; Lainas, P; Tzanis, D; Franco, D; Dagher, I

    2015-11-01

    Over the last decade, laparoscopic hepatic surgery (LHS) has been increasingly performed throughout the world. Meanwhile, ambulatory surgery has been developed and implemented with the aims of improving patient satisfaction and reducing health care costs. The objective of this study was to report our preliminary experience with ambulatory minimally invasive LHS. Between 1999 and 2014, 172 patients underwent LHS at our institution, including 151 liver resections and 21 fenestrations of hepatic cysts. The consecutive series of highly selected patients who underwent ambulatory LHS were included in this study. Twenty patients underwent ambulatory LHS. Indications were liver cysts in 10 cases, liver angioma in 3 cases, focal nodular hyperplasia in 3 cases, and colorectal hepatic metastasis in 4 cases. The median operative time was 92 minutes (range: 50-240 minutes). The median blood loss was 35 mL (range: 20-150 mL). There were no postoperative complications or re-hospitalizations. All patients were hospitalized after surgery in our ambulatory surgery unit, and were discharged 5-7 hours after surgery. The median postoperative pain score at the time of discharge was 3 (visual analogue scale: 0-10; range: 0-4). The median quality-of-life score at the first postoperative visit was 8 (range: 6-10) and the median cosmetic satisfaction score was 8 (range: 7-10). This series shows that, in selected patients, ambulatory LHS is feasible and safe for minor hepatic procedures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    Science.gov (United States)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  10. Ambulatory blood pressure monitoring (ABPM) in nonagenarians.

    Science.gov (United States)

    Formiga, Francesc; Ferrer, Assumpta; Sobrino, Javier; Coca, Antonio; Riera, Antoni; Pujol, Ramón

    2009-01-01

    The objective of the study is to investigate ambulatory blood pressure monitoring (ABPM) in a sample of Spanish nonagenarians. We also analyzed the misdiagnosis of hypertension and investigated blood pressure (BP) control in treated hypertensive nonagenarians. Twenty-four-hour ABPM was undertaken in a group of 42 nonagenarians. The 24-h mean, daytime BP, nighttime BP and heart rate (HR) were extracted from the ABPM. Sociodemographic data, the ability to perform basic daily activities, measured by the Barthel index (BI) or instrumental activities revealed by the Lawton and Brody index (LI), cognition, and comorbidity were evaluated. Thirty-one subjects were receiving antihypertensive drug treatment. Twenty-four hour, daytime and sleeping pressures averaged 130/65, 131/68 and 128/63mmHg, respectively. Seventeen (40.5%) of the 42 patients had a daytime BP of 135/85 or higher. In terms of the BP pattern, 8 (19%) subjects were dippers, 19 (45%) non-dippers, and 15 (36%) were risers. Five (45.46%) out of 11 patients with no evidence of hypertension (normotensive patients) had a daytime BP of 135/85 or higher. The mean daytime BP was 135/85 or higher in 12 (38.7%) out of 31 nonagenarians who had previously received therapy for hypertension. In, conclusion a high prevalence of hypertension, misdiagnosis and inadequate BP control was found in nonagenarians treated for hypertension.

  11. Usability Testing of Two Ambulatory EHR Navigators.

    Science.gov (United States)

    Hultman, Gretchen; Marquard, Jenna; Arsoniadis, Elliot; Mink, Pamela; Rizvi, Rubina; Ramer, Tim; Khairat, Saif; Fickau, Keri; Melton, Genevieve B

    2016-01-01

    Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design. To understand if redesigning an EHR-based navigation tool with clinician input improved user performance and satisfaction. A usability evaluation was conducted to compare two versions of a redesigned ambulatory navigator. Participants completed tasks for five patient cases using the navigators, while employing a think-aloud protocol. The tasks were based on Meaningful Use (MU) requirements. The version of navigator did not affect perceived workload, and time to complete tasks was longer in the redesigned navigator. A relatively small portion of navigator content was used to complete the MU-related tasks, though navigation patterns were highly variable across participants for both navigators. Preferences for EHR navigation structures appeared to be individualized. This study demonstrates the importance of EHR usability assessments to evaluate group and individual performance of different interfaces and preferences for each design.

  12. [Ambulatory blood pressure monitoring for hypertension diagnosis?

    Science.gov (United States)

    Gijón Conde, T; Banegas, J R

    2017-01-01

    The early and accurate diagnosis of hypertension is essential given its importance in the development of cardiovascular disease. The boundaries between normal blood pressure (BP) and hypertension are arbitrary and based on the benefits of treating exceeding those of not treating. Conventional BP measurement at the clinic only offers information of a particular time and presents multiple biases dependent on inherent variability of BP and measurement technique itself. Multiple studies have demonstrated the prognosis superiority in the development of cardiovascular disease of ambulatory blood pressure monitoring (ABPM), allows detection of white coat hypertension, avoiding overdiagnosis and overtreatment, and the detection of patients with masked hypertension who are at risk of underdetection and undertreatment. ABPM also assess nightime BP and circadian variability, providing additional prognostic value. ABPM is recognized in the diagnosis of hypertension in 2011 British NICE Guidelines, very argued at the 2013 European Society of Hypertension guidelines, and recommended in the US Preventive Services Task Force in 2015, 2016 Canadian Guidelines and the 2016 Spanish Program of Preventive Activities and Health Promotion (PAPPS). Its generalization is likely to be only a matter of time. Copyright © 2017 Sociedad Española de Hipertension-Liga Española para la Lucha de la Hipertensión Arterial (SEH-LELHA). Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors

    NARCIS (Netherlands)

    de Vries, W.H.; Veeger, H.E.J.; Baten, C.T.M.; Helm, F.C.

    2009-01-01

    Background: Ambulatory 3D orientation estimation with Inertial Magnetic Sensor Units (IMU's) use the earth magnetic field. The magnitude of distortion in orientation in a standard equipped motion lab and its effect on the accuracy of the orientation estimation with IMU's is addressed. Methods:

  14. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors.

    NARCIS (Netherlands)

    Vries, W.H. de; Veeger, H.E.; Baten, C.T.; Helm, F.C.T. van der

    2009-01-01

    BACKGROUND: Ambulatory 3D orientation estimation with Inertial Magnetic Sensor Units (IMU's) use the earth magnetic field. The magnitude of distortion in orientation in a standard equipped motion lab and its effect on the accuracy of the orientation estimation with IMU's is addressed. METHODS:

  15. Cuff inflation during ambulatory blood pressure monitoring and heart rate

    Directory of Open Access Journals (Sweden)

    Mia Skov-Madsen

    2008-11-01

    Full Text Available Mia Skov-Madsen, My Svensson, Jeppe Hagstrup ChristensenDepartment of Nephrology, Aarhus University Hospital, Aalborg, DenmarkIntroduction: Twenty four-hour ambulatory blood pressure monitoring is a clinically validated procedure in evaluation of blood pressure (BP. We hypothesised that the discomfort during cuff inflation would increase the heart rate (HR measured with 24-h ambulatory BP monitoring compared to a following HR measurement with a 24-h Holter monitor.Methods: The study population (n = 56 were recruited from the outpatient’s clinic at the Department of Nephrology, Aalborg Hospital, Aarhus University Hospital at Aalborg, Denmark. All the patients had chronic kidney disease (CKD. We compared HR measured with a 24-h Holter monitor with a following HR measured by a 24-h ambulatory BP monitoring.Results: We found a highly significant correlation between the HR measured with the Holter monitor and HR measured with 24-h ambulatory blood pressure monitoring (r = 0.77, p < 0.001. Using the Bland-Altman plot, the mean difference in HR was only 0.5 beat/min during 24 hours with acceptable limits of agreement for both high and low HR levels. Dividing the patients into groups according to betablocker treatment, body mass index, age, sex, angiotensin-converting enzyme inhibitor treatment, statins treatment, diuretic treatment, or calcium channel blocker treatment revealed similar results as described above.Conclusion: The results indicate that the discomfort induced by cuff inflation during 24-h ambulatory BP monitoring does not increase HR. Thus, 24-h ambulatory BP monitoring may be a reliable measurement of the BP among people with CKD.Keywords: ambulatory blood pressure monitoring, Holter monitoring, heart rate, chronic kidney disease, hypertension

  16. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions

    Science.gov (United States)

    Huang, Ying; Zhao, Yunong; Wang, Yang; Guo, Xiaohui; Zhang, Yangyang; Liu, Ping; Liu, Caixia; Zhang, Yugang

    2018-03-01

    Strain sensors used as flexible and wearable electronic devices have improved prospects in the fields of artificial skin, robotics, human-machine interfaces, and healthcare. This work introduces a highly stretchable fiber-based strain sensor with a laminated structure made up of a graphene nanoplatelet layer and a carbon black/single-walled carbon nanotube synergetic conductive network layer. An ultrathin, flexible, and elastic two-layer polyurethane (PU) yarn substrate was successively deposited by a novel chemical bonding-based layered dip-coating process. These strain sensors demonstrated high stretchability (˜350%), little hysteresis, and long-term durability (over 2400 cycles) due to the favorable tensile properties of the PU substrate. The linearity of the strain sensor could reach an adjusted R-squared of 0.990 at 100% strain, which is better than most of the recently reported strain sensors. Meanwhile, the strain sensor exhibited good sensibility, rapid response, and a lower detection limit. The lower detection limit benefited from the hydrogen bond-assisted laminated structure and continuous conductive path. Finally, a series of experiments were carried out based on the special features of the PU strain sensor to show its capacity of detecting and monitoring tiny human motions.

  17. Ambulatory blood pressure profiles in familial dysautonomia.

    Science.gov (United States)

    Goldberg, Lior; Bar-Aluma, Bat-El; Krauthammer, Alex; Efrati, Ori; Sharabi, Yehonatan

    2018-02-12

    Familial dysautonomia (FD) is a rare genetic disease that involves extreme blood pressure fluctuations secondary to afferent baroreflex failure. The diurnal blood pressure profile, including the average, variability, and day-night difference, may have implications for long-term end organ damage. The purpose of this study was to describe the circadian pattern of blood pressure in the FD population and relationships with renal and pulmonary function, use of medications, and overall disability. We analyzed 24-h ambulatory blood pressure monitoring recordings in 22 patients with FD. Information about medications, disease severity, renal function (estimated glomerular filtration, eGFR), pulmonary function (forced expiratory volume in 1 s, FEV1) and an index of blood pressure variability (standard deviation of systolic pressure) were analyzed. The mean (± SEM) 24-h blood pressure was 115 ± 5.6/72 ± 2.0 mmHg. The diurnal blood pressure variability was high (daytime systolic pressure standard deviation 22.4 ± 1.5 mmHg, nighttime 17.2 ± 1.6), with a high frequency of a non-dipping pattern (16 patients, 73%). eGFR, use of medications, FEV1, and disability scores were unrelated to the degree of blood pressure variability or to dipping status. This FD cohort had normal average 24-h blood pressure, fluctuating blood pressure, and a high frequency of non-dippers. Although there was evidence of renal dysfunction based on eGFR and proteinuria, the ABPM profile was unrelated to the measures of end organ dysfunction or to reported disability.

  18. Study of cyclic and steady particle motion in a realistic human airway model using phase-Doppler anemometry

    Science.gov (United States)

    Jedelský, Jan; Lízal, František; Jícha, Miroslav

    2012-04-01

    Transport and deposition of particles in human airways has been of research interest for many years. Various experimental methods such as constant temperature anemometry, particle image velocimetry and laser-Doppler based techniques were employed for study of aerosol transport in the past. We use Phase-Doppler Particle Analyser (P/DPA) for time resolved size and velocity measurement of liquid aerosol particles in a size range 1 to 8 μm. The di-2ethylhexyl sabacate (DEHS) particles were produced by condensation monodisperse aerosol generator. A thin-wall transparent model of human airways with non-symmetric bifurcations and non-planar geometry containing parts from throat to 3rd-4th generation of bronchi was fabricated for the study. Several cyclic (sinusoidal) breathing regimes were simulated using pneumatic breathing mechanism. Analogous steady-flow regimes were also investigated and used for comparison. An analysis of the particle velocity data was performed with aim to gain deeper understanding of the transport phenomena in the realistic bifurcating airway system. Flows of particles of different sizes in range 1 - 10 μm was found to slightly differ for extremely high Stokes numbers. Differences in steady and cyclic turbulence intensities were documented in the paper. Systematically higher turbulence intensity was found for cyclic flows and mainly in the expiration breathing phase. Negligible differences were found for behaviour of different particle size classes in the inspected range 1 to 8 μm. Possibility of velocity spectra estimation of air flow using the P/DPA data is discussed.

  19. Study of cyclic and steady particle motion in a realistic human airway model using phase-Doppler anemometry

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Transport and deposition of particles in human airways has been of research interest for many years. Various experimental methods such as constant temperature anemometry, particle image velocimetry and laser-Doppler based techniques were employed for study of aerosol transport in the past. We use Phase-Doppler Particle Analyser (P/DPA for time resolved size and velocity measurement of liquid aerosol particles in a size range 1 to 8 μm. The di-2ethylhexyl sabacate (DEHS particles were produced by condensation monodisperse aerosol generator. A thin-wall transparent model of human airways with non-symmetric bifurcations and non-planar geometry containing parts from throat to 3rd-4th generation of bronchi was fabricated for the study. Several cyclic (sinusoidal breathing regimes were simulated using pneumatic breathing mechanism. Analogous steady-flow regimes were also investigated and used for comparison. An analysis of the particle velocity data was performed with aim to gain deeper understanding of the transport phenomena in the realistic bifurcating airway system. Flows of particles of different sizes in range 1 – 10 μm was found to slightly differ for extremely high Stokes numbers. Differences in steady and cyclic turbulence intensities were documented in the paper. Systematically higher turbulence intensity was found for cyclic flows and mainly in the expiration breathing phase. Negligible differences were found for behaviour of different particle size classes in the inspected range 1 to 8 μm. Possibility of velocity spectra estimation of air flow using the P/DPA data is discussed.

  20. Performance measurement for ambulatory care: moving towards a new agenda.

    Science.gov (United States)

    Roski, J; Gregory, R

    2001-12-01

    Despite a shift in care delivery from inpatient to ambulatory care, performance measurement efforts for the different levels in ambulatory care settings such as individual physicians, individual clinics and physician organizations have not been widely instituted in the United States (U.S.). The Health Plan Employer Data and Information Set (HEDIS), the most widely used performance measurement set in the U.S., includes a number of measures that evaluate preventive and chronic care provided in ambulatory care facilities. While HEDIS has made important contributions to the tracking of ambulatory care quality, it is becoming increasingly apparent that the measurement set could be improved by providing quality of care information at the levels of greatest interest to consumers and purchasers of care, namely for individual physicians, clinics and physician organizations. This article focuses on the improvement opportunities for quality performance measurement systems in ambulatory care. Specific challenges to creating a sustainable performance measurement system at the level of physician organizations, such as defining the purpose of the system, the accountability logic, information and reporting needs and mechanisms for sustainable implementation, are discussed.

  1. Transitioning the RN to Ambulatory Care: An Investment in Orientation.

    Science.gov (United States)

    Allen, Juliet Walshe

    2016-01-01

    Registered nurses (RNs) struggle when transitioning from the inpatient setting to the outpatient clinical environment because it results in a diverse skill-set shift. The RN, considered an outpatient revenue source, experiences a decrease in peer-to-peer relationships, changes in leadership responsibilities, and changes in workgroup dynamics (supervision of unlicensed clinical personnel who function under the direction of the physician, not the RN). Ambulatory organizations find themselves implementing clinical orientation programs that may not delineate the attributes of the RN. This diminishes their value while emphasizing the unlicensed technical skill set. Creating a core RN orientation program template is paramount for the transition of the RN to the ambulatory setting. The literature reveals several areas where improving the value of the RN will ultimately enhance recruitment and retention, patient care outcomes, and leverage the RN role within any organization. Eleven 30-minute in-depth telephone interviews were conducted in addition to 4 nurse observations to explore the lived experience of the RN in ambulatory care. The findings disclosed an overarching theme of nurse isolation and offered insightful underpinnings for the nurse leader as ambulatory growth continues and nurse leaders further endorse the RN presence in the ambulatory setting.

  2. Advances in the use of intravenous techniques in ambulatory anesthesia

    Directory of Open Access Journals (Sweden)

    Eng MR

    2015-07-01

    Full Text Available Matthew R Eng,1 Paul F White1,2 1Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 2White Mountain Institute, The Sea Ranch, CA, USA Summary statement: Advances in the use of intravenous techniques in ambulatory anesthesia has become important for the anesthesiologist as the key perioperative physician in outpatient surgery. Key techniques and choices of anesthetics are important in accomplishing fast track goals of ambulatory surgery. Purpose of review: The anesthesiologist in the outpatient environment must focus on improving perioperative efficiency and reducing recovery times while accounting for patients' well-being and safety. This review article focuses on recent intravenous anesthetic techniques to accomplish these goals. Recent findings: This review is an overview of techniques in intravenous anesthesia for ambulatory anesthesia. Intravenous techniques may be tailored to accomplish outpatient surgery goals for the type of surgical procedure and individual patient needs. Careful anesthetic planning and the application of the plans are critical to an anesthesiologist's success with fast-track ambulatory surgery. Conclusion: Careful planning and application of intravenous techniques are critical to an anesthesiologist's success with fast-track ambulatory surgery. Keywords: intravenous anesthesia, outpatient anesthesia, fast-track surgery

  3. Patient satisfaction and positive patient outcomes in ambulatory anesthesia

    Directory of Open Access Journals (Sweden)

    Shah U

    2015-04-01

    Full Text Available Ushma Shah, David T Wong, Jean Wong Department of Anesthesia, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada Abstract: Most surgeries in North America are performed on an ambulatory basis, reducing health care costs and increasing patient comfort. Patient satisfaction is an important outcome indicator of the quality of health care services incorporated by the American Society of Anesthesiologists (ASA. Patient satisfaction is a complex concept that is influenced by multiple factors. A patient's viewpoint and knowledge plays an influential role in patient satisfaction with ambulatory surgery. Medical optimization and psychological preparation of the patient plays a pivotal role in the success of ambulatory surgery. Postoperative pain, nausea, and vomiting are the most important symptoms for the patient and can be addressed by multimodal drug regimens. Shared decision making, patient–provider relationship, communication, and continuity of care form the main pillars of patient satisfaction. Various psychometrically developed instruments are available to measure patient satisfaction, such as the Iowa Satisfaction with Anesthesia Scale and Evaluation du Vecu de I'Anesthesie Generale, but none have been developed specifically for ambulatory surgery. The ASA has made recommendations for data collection for patient satisfaction surveys and emphasized the importance of reporting the data to the Anesthesia Quality Institute. Future research is warranted to develop a validated tool to measure patient satisfaction in ambulatory surgery. Keywords: patient, satisfaction, anesthesia, outcomes, questionnaire, perspectives

  4. Displacement of the medial meniscus within the passive motion characteristics of the human knee joint: an RSA study in human cadaver knees.

    NARCIS (Netherlands)

    Tienen, T. van; Buma, P.; Scholten, J.G.; Kampen, A. van; Veth, R.P.H.; Verdonschot, N.J.J.

    2005-01-01

    The objective of this study was to validate an in vitro human cadaver knee-joint model for the evaluation of the meniscal movement during knee-joint flexion. The question was whether our model showed comparable meniscal displacements to those found in earlier meniscal movement studies in vivo.

  5. Motion sensing energy controller

    International Nuclear Information System (INIS)

    Saphir, M.E.; Reed, M.A.

    1984-01-01

    A moving object sensing processor responsive to slowly varying motions of a human being or other moving object in a zone of interest employs high frequency pulse modulated non-visible radiation generated by a radiation generating source, such as an LED, and detected by a detector sensitive to radiation of a preselected wavelength which generates electrical signals representative of the reflected radiation received from the zone of interest. The detectorsignals are processed to normalize the base level and remove variations due to background level changes, and slowly varying changes in the signals are detected by a bi-polar threshold detector. The control signals generated by the threshold detector in response to slowly varying motion are used to control the application of power to a utilization device, such as a set of fluoroescent lights in a room, the power being applied in response to detection of such motion and being automatically terminated in the absence of such motion after a predetermined time period established by a settable incrementable counter

  6. Ambulatory surgery centers best practices for the 90s.

    Science.gov (United States)

    Hoover, J A

    1994-05-01

    Outpatient surgery will be the driving force in the continued growth of ambulatory care in the 1990s. Providing efficient, high-quality ambulatory surgical services should therefore be a priority among healthcare providers. Arthur Andersen conducted a survey to discover best practices in ambulatory surgical service. General success characteristics of best performers were business-focused relationships with physicians, the use of clinical protocols, patient convenience, cost management, strong leadership, teamwork, streamlined processes and efficient design. Other important factors included scheduling to maximize OR room use; achieving surgical efficiencies through reduced case pack assembly errors and equipment availability; a focus on cost capture rather than charge capture; sound materiel management practices, such as standardization and vendor teaming; and the appropriate use of automated systems. It is important to evaluate whether the best practices are applicable to your environment and what specific changes to your current processes would be necessary to adopt them.

  7. Characteristics and significance of ischemia detected by ambulatory electrocardiographic monitoring

    International Nuclear Information System (INIS)

    Nabel, E.G.; Rocco, M.B.; Selwyn, A.B.

    1987-01-01

    Ambulatory electrocardiographic (ECG) monitoring of ischemia in patients with coronary artery disease (CAD) provides a new technique for the assessment of ischemic activity and the evaluation of therapies outside of the hospital. Numerous studies have demonstrated that the majority of patients with CAD have episodes of symptomatic and asymptomatic ST segment depression during routine daily activities. Rubidium-82 positron-emission tomographic studies have provided evidence for decreased myocardial perfusion during these episodes of ST segment depression. The prognostic importance of asymptomatic ischemia has been shown in patients with unstable angina to be a marker for early unfavorable cardiac events. Preliminary results suggest a poorer outcome for those patients with chronic stable angina who show episodes of ischemia as well. Ambulatory monitoring studies suggest that total ischemic activity may be underestimated by conventional testing. Whether all ischemic activity detected by ambulatory monitoring requires treatment awaits further study. 69 references

  8. Abordagem ambulatorial do nutricionista em anemia hemolítica Nutritional ambulatory approach in hemolytic anemia

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Vieira

    1999-04-01

    Full Text Available Descreve a atuação do nutricionista em ambulatório de Hematologia Pediátrica em um hospital escola e relata as condutas dietéticas necessárias na abordagem de crianças com anemia hemolítica com e sem sobrecarga de ferro, e também as atitudes mais freqüentes dos familiares em relação à alimentação desses pacientes.The Authors describe the performance of the Dietitian in a Pediatric Hematology Ambulatory. They emphasize the necessary dietetic procedures for adequate management of children with hemolytic anemia, with and without iron overload. Furthermore, they approach the family's attitude towards the patient's nutrition.

  9. 76 FR 66929 - Medicare and Medicaid Programs; The American Association for Accreditation of Ambulatory Surgery...

    Science.gov (United States)

    2011-10-28

    ...] Medicare and Medicaid Programs; The American Association for Accreditation of Ambulatory Surgery Facilities... receipt of a deeming application from the American Association for Accreditation of Ambulatory Surgery... of Ambulatory Surgery Facilities (AAAASF's) request for deeming authority for RHCs. This notice also...

  10. The direct, not V1-mediated, functional influence between the thalamus and middle temporal complex in the human brain is modulated by the speed of visual motion.

    Science.gov (United States)

    Gaglianese, A; Costagli, M; Ueno, K; Ricciardi, E; Bernardi, G; Pietrini, P; Cheng, K

    2015-01-22

    The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypassing the V1, through a direct pathway. We aimed at elucidating whether this direct route between LGN and hMT+ represents a 'fast lane' reserved to high-speed motion, as proposed previously, or it is merely involved in processing motion information irrespective of speeds. We evaluated functional magnetic resonance imaging (fMRI) responses elicited by moving visual stimuli and applied connectivity analyses to investigate the effect of motion speed on the causal influence between LGN and hMT+, independent of V1, using the Conditional Granger Causality (CGC) in the presence of slow and fast visual stimuli. Our results showed that at least part of the visual motion information from LGN reaches hMT+, bypassing V1, in response to both slow and fast motion speeds of the perceived stimuli. We also investigated whether motion speeds have different effects on the connections between LGN and functional subdivisions within hMT+: direct connections between LGN and MT-proper carry mainly slow motion information, while connections between LGN and MST carry mainly fast motion information. The existence of a parallel pathway that connects the LGN directly to hMT+ in response to both slow and fast speeds may explain why MT and MST can still respond in the presence of V1 lesions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  12. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  13. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  14. Ambulatory blood pressure monitoring in clinical trials with antihypertensive agents

    NARCIS (Netherlands)

    A.H. van den Meiracker (Anton)

    1995-01-01

    textabstractAmbulatory blood pressure monitoring (ABPM) is being used increasingly for the evaluation of antihypertensive agents in clinical trials. In this brief review several aspects of ABPM are discussed. In particular, attention is paid to the extent to which ABPM is subject to a placebo

  15. Speak Up: Help Prevent Errors in Your Care: Ambulatory Care

    Science.gov (United States)

    ... Your Care Ambulatory Care To prevent health care errors, patients are urged to... SpeakUP TM Everyone has a ... he or she has confused you with another patient. P ay attention to the ... for their identification (ID) badges. • Notice whether your caregivers have washed ...

  16. Ambulatory Blood Pressure Monitoring in Clinical Practice: A Review

    Science.gov (United States)

    Viera, Anthony J.; Shimbo, Daichi

    2016-01-01

    Ambulatory blood pressure monitoring offers the ability to collect blood pressure readings several times an hour across a 24-hour period. Ambulatory blood pressure monitoring facilitates the identification of white-coat hypertension, the phenomenon whereby certain individuals who are not on antihypertensive medication show elevated blood pressure in a clinical setting but show non-elevated blood pressure averages when assessed by ambulatory blood pressure monitoring. Additionally, readings can be segmented into time windows of particular interest, e.g., mean daytime and nighttime values. During sleep, blood pressure typically decreases, or dips, such that mean sleep blood pressure is lower than mean awake blood pressure. A non-dipping pattern and nocturnal hypertension are strongly associated with increased cardiovascular morbidity and mortality. Approximately 70% of individuals dip ≥10% at night, while 30% have non-dipping patterns, when blood pressure remains similar to daytime average, or occasionally rises above daytime average. The various blood pressure categorizations afforded by ambulatory blood pressure monitoring are valuable for clinical management of high blood pressure since they increase accuracy for diagnosis and the prediction of cardiovascular risk. PMID:25107387

  17. Challenges to Safe Injection Practices in Ambulatory Care.

    Science.gov (United States)

    Anderson, Laura; Weissburg, Benjamin; Rogers, Kelli; Musuuza, Jackson; Safdar, Nasia; Shirley, Daniel

    2017-05-01

    Most recent infection outbreaks caused by unsafe injection practices in the United States have occurred in ambulatory settings. We utilized direct observation and a survey to assess injection practices at 31 clinics. Improper vial use was observed at 13 clinics (41.9%). Pharmacy support and healthcare worker education may improve injection practices. Infect Control Hosp Epidemiol 2017;38:614-616.

  18. [Comparative analysis of efficiency indicators in ambulatory surgery].

    Science.gov (United States)

    Rodríguez Ortega, María; Porrero Carro, José Luis; Aranaz Andrés, Jesús María; Castillo Fe, María José; Alonso García, María Teresa; Sánchez-Cabezudo Díaz-Guerra, Carlos

    2017-05-25

    To find comparative elements for quality control in major ambulatory surgery (MAS) units. Descriptive and comparative study of the Ambulatory Care Index (AI) and Substitution Index (SI) in the Santa Cristina Hospital Surgery Service (Madrid, Spain) compared to Key Indicators (KI) of the National Health Service (NHS). 7,817 MAS procedures (between 2006 and 2014) were analysed. The average annual AI was 54%, higher (p <0.0001) than «ambulatory surgery» KI. The hernia outpatient procedures (average 72%) were also superior to the national KI (p <0.0001), but ambulatory haemorrhoidectomy (average 33.6%) was clearly lower (p <0.0001). KI of the NHS are useful and allow to establish a proper development in the global AI and hernia outpatient surgery with opportunities for improvement in haemorrhoidectomy. Their collection should be careful, not including minor surgeries. Also, their usefulness could be increased if data was broken down by speciality and by complexity. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Feasibility of ambulatory, continuous 24-hour finger arterial pressure recording

    NARCIS (Netherlands)

    Imholz, B. P.; Langewouters, G. J.; van Montfrans, G. A.; Parati, G.; van Goudoever, J.; Wesseling, K. H.; Wieling, W.; Mancia, G.

    1993-01-01

    We tested Portapres, an innovative portable, battery-operated device for the continuous, noninvasive, 24-hour ambulatory measurement of blood pressure in the finger. Portapres is based on Finapres, a stationary device for the measurement of finger arterial pressure. Systems were added to record

  20. Quality of life in automated and continuous ambulatory peritoneal dialysis

    NARCIS (Netherlands)

    Michels, Wieneke M.; van Dijk, Sandra; Verduijn, Marion; le Cessie, Saskia; Boeschoten, Elisabeth W.; Dekker, Friedo W.; Krediet, Raymond T.; Apperloo, A. J.; Bijlsma, J. A.; Boekhout, M.; Boer, W. H.; van der Boog, P. J. M.; Büller, H. R.; van Buren, M.; de Charro, F. Th; Doorenbos, C. J.; van den Dorpel, M. A.; van Es, A.; Fagel, W. J.; Feith, G. W.; de Fijter, C. W. H.; Frenken, L. A. M.; Grave, W.; van Geelen, J. A. C. A.; Gerlag, P. G. G.; Gorgels, J. P. M. C.; Huisman, R. M.; Jager, K. J.; Jie, K.; Koning-Mulder, W. A. H.; Koolen, M. I.; Kremer Hovinga, T. K.; Lavrijssen, A. T. J.; Luik, A. J.; van der Meulen, J.; Parlevliet, K. J.; Raasveld, M. H. M.; van der Sande, F. M.; Schonck, M. J. M.; Schuurmans, M. M. J.; Siegert, C. E. H.; Stegeman, C. A.; Stevens, P.; Thijssen, J. G. P.; Valentijn, R. M.; Vastenburg, G. H.; Verburgh, C. A.; Vincent, H. H.; Vos, P. F.

    2011-01-01

    Despite a lack of strong evidence, automated peritoneal dialysis (APD) is often prescribed on account of an expected better quality of life (QoL) than that expected with continuous ambulatory peritoneal dialysis (CAPD). Our aim was to analyze differences in QoL in patients starting dialysis on APD

  1. Clinical value of ambulatory blood pressure: evidence and limits.

    Science.gov (United States)

    Mancia, Giuseppe; Verdecchia, Paolo

    2015-03-13

    This article reviews the clinical value of ambulatory blood pressure (BP) vis-à-vis the traditional BP measurements taken in the physician's office or in the hospital. Mention is initially made that longitudinal studies conducted in the general population or in hypertensive cohorts have shown that ambulatory BP provides a more accurate prediction of outcome than office BP. Namely, that (1) the risk of cardiovascular events increases in a less steep fashion with office than with 24-hour mean BP, (2) the 24-hour BP-dependent prediction is maintained after adjustment for office BP values, and (3) among individuals with normal office BP, those with increased ambulatory BP (masked hypertension) have an increased prevalence of organ damage, a more frequent unfavorable metabolic profile and a higher risk of new onset sustained hypertension, diabetes mellitus, and cardiovascular events than those with normal ambulatory BP. It is further mentioned, however, that more recently similar observations have been made for individuals with high office but normal ambulatory BP (white coat hypertension) suggesting a complementary role of out-of-office and office BP values in the determination of patients' prognosis. The evidence in favor of an independent prognostic value also of some within 24-hour BP phenomena (night BP reduction or absolute values, short-term BP variations, and morning BP surge) is then critically appraised for its elements of strength and weakness. Finally, whether the clinical advantages of ambulatory BP make this approach necessary for all patients with hypertension is discussed. The conclusion is that this is at present still premature because crucial evidence pro or against routine use of this approach in untreated and treated hypertensives is not yet available. It will be crucial for future studies to determine whether, compared with a treatment guided by office BP, a treatment tailored on ambulatory BP allows to improve prevention or regression of organ

  2. Ambulatory activity monitoring: Progress in measurement of activity, posture, and specific motion patterns in daily life

    NARCIS (Netherlands)

    J.B.J. Bussmann (Hans); U.W. Ebner-Priemer (Ulrich); J. Fahrenberg (Jochen)

    2009-01-01

    textabstractBehavior is central to psychology in almost any definition. Although observable activity is a core aspect of behavior, assessment strategies have tended to focus on emotional, cognitive, or physiological responses. When physical activity is assessed, it is done so mostly with

  3. Energy Through Motion: An Activity Intervention for Cancer-Related Fatigue in an Ambulatory Infusion Center
.

    Science.gov (United States)

    Abbott, Linda; Hooke, Mary Catherine

    2017-10-01

    Cancer-related fatigue (CRF) occurs in most people with cancer undergoing chemotherapy. Physical activity (PA) is safe and effective in reducing CRF in people with cancer. 
. This project involved the implementation and evaluation of a three-month PA program to maintain or improve CRF and quality of life.
. Activity trackers and resistance bands were provided to participants. Verbal instruction, printed material, activity videos, and text messages were used in this program. Participants completed a fatigue assessment; self-reported PA measure; and measure of attitudes, beliefs, and knowledge about sustaining regular PA pre- and postimplementation.
. 51 patients enrolled in the study, and 39 completed the program. Participants' fatigue did not worsen significantly during the three months, and self-reported activity levels increased, but not significantly. The activity tracker, text messages, and personal connection with nursing staff were reported to be helpful.

  4. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  5. Preliminary study of percutaneous nephrolithotomy on an ambulatory basis.

    Science.gov (United States)

    El-Tabey, Magdy Ahmed; Abd-Allah, Osama Abdel-Wahab; Ahmed, Ahmed Sebaey; El-Barky, Ehab Mohammed; Noureldin, Yasser Abdel-Sattar

    2013-02-01

    Preliminary study to assess the feasibility and safety of percutaneous nephrolithotomy (PCNL) as an ambulatory procedure. Between February 2011 and September 2012, 84 patients with renal calculi fulfilling the inclusion criteria were admitted to the Urology Department of Benha University Hospitals for PCNL. All patients were subjected to a full medical history, clinical, laboratory and radiological examinations. Tubeless PCNLs were done in the supine position, and an antegrade double-J stent was inserted. Operative time and intraoperative complications were recorded. Postoperatively, the hematocrit value, postoperative pain and analgesics, need of blood transfusion, stone-free rate, and length of hospital stay were recorded. Stable patients that could be safely discharged within 24 hours after surgery were considered ambulatory. All cases of tubeless PCNL were successfully done and no cases converted to open surgery. The overall stone-free rate was 91.7%, the mean postoperative pain score measured by the visual analog scale was 4.4 ± 1.2, the mean overall hematocrit deficit was 4.8 ± 2.2% and the mean hospital stay was 33.4 ± 17.5 hours. Ambulatory PCNL was accomplished in 60 out of 84 patients (71.4%) and double-J stents were removed 7-10 days postoperatively. In the non-ambulatory cases, double-J stents were removed after auxillary procedures were done according to each case. PCNL can be safely done on an ambulatory basis under strict criteria, but further studies are needed to confirm and expand these findings.

  6. Ambulatory blood pressure monitoring: Is 24 hours necessary?

    Science.gov (United States)

    Vornovitsky, Michael; McClintic, Benjamin R; Beck, G Ronald; Bisognano, John D

    2013-01-01

    The variability of blood pressure (BP) makes any single measurement a poor indicator of a patient's true BP. Multiple studies have confirmed the superiority of ambulatory BP measurements over clinic BP measurements in predicting cardiovascular risk; however, this method presents the problem of patient acceptance as it causes frequent arm discomfort and sleep disturbance. We hypothesized that 6 h of daytime BP measurements would result in slightly higher BP readings, yet reveal similar clinical decision making when compared to 24 h of BP measurements. The source for writing this article was a retrospective analysis of 30 patients who underwent ambulatory BP monitoring. Data obtained included: age, sex, ethnicity, baseline medical problems, medications, laboratory values, reason given for ordering 24-h ambulatory BP measurements, ambulatory BP measurements, and a subsequent decision to change medication. The average BP of the 24-h measurements was 127/75 mm Hg and the average BP of the 6-h daytime measurements was 131/79 mm Hg (SD 15, p = 0.009). Twenty-six out of 30 patients were at goal or pre-hypertensive. Two out of 30 patients had stage 1 hypertension and 2 out of 30 patients had stage 2 hypertension. Thirteen out of 30 patients had nocturnal dipping. Twelve out of 30 patients had a change in medication, but those changes were not associated with the presence or absence of nocturnal dipping (p = 0.5) or other factors beyond mean BP. Although there was a statistically significant, 4 mm Hg systolic difference between 24-h and 6-h average BP readings, there was no evidence that this difference led to changes in clinical management. The presence or absence of nocturnal dipping was not associated with a change in medication. We conclude that 6-h daytime ambulatory BP measurements provide sufficient information to guide clinical decision making without the problems of patient acceptance, arm discomfort, and sleep disturbance associated with 24-h BP measurements.

  7. Management of comorbidities in ambulatory anesthesia: a review

    Directory of Open Access Journals (Sweden)

    Dabu-Bondoc S

    2015-06-01

    Full Text Available Susan Dabu-Bondoc, Kirk Shelley Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, USAAbstract: Advances in medical science now allow people with significant medical issues to live at home. As the outpatient population ages and surgical techniques advance, the ambulatory anesthesiologist has to be prepared to handle these “walking wounded”. The days of restricting ambulatory surgery procedures to American Society of Anesthesiologists class 1 and 2 patients are rapidly fading into the past. To remain competitive and economically viable, the modern ambulatory surgery center needs to expand its practice to include patients with medical comorbidities. In an environment where production and economic pressures exist, maintaining safety and good outcomes in high-risk patients for ambulatory surgery can be arduous. Adding to the complexity of this challenge is the rapid evolution of the therapeutic approaches to a variety of medical issues. For example, there has been a significant increase in the number and types of insulin a diabetic patient might be prescribed in recent years. In the case of the patient with coronary artery disease, the variety of both drug and nondrug eluding stents or new antithrombotic agents has also increased the complexity of perioperative management. Complex patients need careful, timely, and team-based preoperative evaluation by an anesthesia provider who is knowledgeable of outpatient care. Optimizing comorbidities preoperatively is a crucial initial step in minimizing risk. This paper will examine a number of common medical issues and explore their impact on managing outpatient surgical procedures.Keywords: ambulatory surgery, medical comorbidities, diabetes, coronary artery disease, respiratory disease, obesity

  8. The ten successful elements of an ambulatory care center.

    Science.gov (United States)

    Watkins, G

    1997-01-01

    Experts in healthcare predict that in the future, over 80% of all care will be provided either in the home or ambulatory care centers. How radiology facilities position themselves for this shifting market is critical to their long-term success, even though it appears there are endless opportunities for providing care in this atmosphere. The ten most critical elements that healthcare providers must address to ensure their preparedness are discussed. Location is critical, particularly since patients no longer want to travel to regional medical centers. The most aggressive providers are building local care centers to serve specific populations. Ambulatory care centers should project a high tech, high touch atmosphere. Patient comfort and the appeal of the overall environment must be considered. Centers need to focus on their customers' needs in multiple areas of care. A quick and easy registration process, providing dressing gowns in patient areas, clear billing functions--these are all important areas that centers should develop. Physicians practicing in the ambulatory care center are key to its overall success and can set the tone for all staff members. Staff members must be friendly and professional in their work with patients. The hours offered by the center must meet the needs of its client base, perhaps by offering evening and weekend appointments. Keeping appointments on schedule is critical if a center wants satisfied customers. It's important to identify the target before developing your marketing plan. Where do your referrals come from? Look to such sources as referring physicians, managed care plans and patients themselves. Careful billing is critical for survival in the ambulatory care world. Costs are important and systems that can track cost per exam are useful. Know your bottom line. Service remains the central focus of all successful ambulatory care center functions.

  9. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  10. Ambulatory Surgical Center (ASC) Payment System

    Data.gov (United States)

    U.S. Department of Health & Human Services — This file contains a summary of service utilization by ASC supplier and is derived from 2011 ASC line item level data, updated through June 2012, that is, line items...

  11. An overview of anesthetic procedures, tools, and techniques in ambulatory care

    Directory of Open Access Journals (Sweden)

    Messieha Z

    2015-01-01

    Full Text Available Zakaria Messieha Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA Abstract: Ambulatory surgical and anesthesia care (ASAC, also known as Same Day Surgery or Day Care in some countries, is the fastest growing segment of ambulatory surgical and anesthesia care. Over 50 million ambulatory surgical procedures are conducted annually comprising over 60% of all anesthesia care with an impressive track record of safety and efficiency. Advances in ambulatory anesthesia care have been due to newer generation of inhalation and intravenous anesthetics as well as airway management technology and techniques. Successful ambulatory anesthesia care relies on patient selection, adequate facilities, highly trained personnel and quality improvement policies and procedures. Favoring one anesthetic technique over the other should be patient and procedure-specific. Effective management of post-operative pain as well as nausea and vomiting are the final pieces in assuring success in ambulatory anesthesia care. Keywords: ambulatory anesthesia, out-patient anesthesia, Day-Care anesthesia

  12. From aviation to medicine: applying concepts of aviation safety to risk management in ambulatory care.

    Science.gov (United States)

    Wilf-Miron, R; Lewenhoff, I; Benyamini, Z; Aviram, A

    2003-02-01

    The development of a medical risk management programme based on the aviation safety approach and its implementation in a large ambulatory healthcare organisation is described. The following key safety principles were applied: (1). errors inevitably occur and usually derive from faulty system design, not from negligence; (2). accident prevention should be an ongoing process based on open and full reporting; (3). major accidents are only the "tip of the iceberg" of processes that indicate possibilities for organisational learning. Reporting physicians were granted immunity, which encouraged open reporting of errors. A telephone "hotline" served the medical staff for direct reporting and receipt of emotional support and medical guidance. Any adverse event which had learning potential was debriefed, while focusing on the human cause of error within a systemic context. Specific recommendations were formulated to rectify processes conducive to error when failures were identified. During the first 5 years of implementation, the aviation safety concept and tools were successfully adapted to ambulatory care, fostering a culture of greater concern for patient safety through risk management while providing support to the medical staff.

  13. From aviation to medicine: applying concepts of aviation safety to risk management in ambulatory care

    Science.gov (United States)

    Wilf-Miron, R; Lewenhoff, I; Benyamini, Z; Aviram, A

    2003-01-01

    

 The development of a medical risk management programme based on the aviation safety approach and its implementation in a large ambulatory healthcare organisation is described. The following key safety principles were applied: (1) errors inevitably occur and usually derive from faulty system design, not from negligence; (2) accident prevention should be an ongoing process based on open and full reporting; (3) major accidents are only the "tip of the iceberg" of processes that indicate possibilities for organisational learning. Reporting physicians were granted immunity, which encouraged open reporting of errors. A telephone "hotline" served the medical staff for direct reporting and receipt of emotional support and medical guidance. Any adverse event which had learning potential was debriefed, while focusing on the human cause of error within a systemic context. Specific recommendations were formulated to rectify processes conducive to error when failures were identified. During the first 5 years of implementation, the aviation safety concept and tools were successfully adapted to ambulatory care, fostering a culture of greater concern for patient safety through risk management while providing support to the medical staff. PMID:12571343

  14. Motion sickness: a negative reinforcement model.

    Science.gov (United States)

    Bowins, Brad

    2010-01-15

    Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.

  15. Differences between clinical "snap-shot" and "real-life" assessments of lumbar spine alignment and motion - What is the "real" lumbar lordosis of a human being?

    Science.gov (United States)

    Dreischarf, Marcel; Pries, Esther; Bashkuev, Maxim; Putzier, Michael; Schmidt, Hendrik

    2016-03-21

    The individual lumbar lordosis and lumbar motion have been identified to play an important role in pathogenesis of low back pain and are essential references for preoperative planning and postoperative evaluation. The clinical "gold-standard" for measuring lumbar lordosis and its motion are radiological "snap-shots" taken while standing and during upper-body flexion and extension. The extent to which these clinically assessed values characterise lumbar alignment and its motion in daily life merits discussion. A non-invasive measurement-system was employed to measure lumbar lordosis and lumbar motion in 208 volunteers (age: 20-74yrs; ♀/♂: 115/93). For an initial short-term measurement, comparable with the clinical "snap-shot", lumbar lordosis and its motion were assessed while standing and during flexion and extension. Subsequently, volunteers were released to their daily lives while wearing the device, and measurements were performed during the following 24h. The average lumbar lordosis during 24h (8.0°) differed significantly from the standardised measurement while standing (33.3°). Ranges of motion were significantly different throughout the day compared to standing measurements. The influence of the factors age and gender on lordosis and its motion resulted in conflicting results between long- and short-term-measurements. In conclusion, results of short-term examinations differ considerably from the average values during real-life. These findings might be important for surgical planning and increase the awareness of the biomechanical challenges that spinal structures and implants face in real-life. Furthermore, long-term assessments of spinal alignment and motion during daily life can provide valid data on spinal function and can reveal the importance of influential factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  17. Cognitive assessment on elderly people under ambulatory care

    Directory of Open Access Journals (Sweden)

    Bruna Zortea

    2015-04-01

    Full Text Available Objective: to evaluate the cognitive state of elderly people under ambulatory care and investigating the connection between such cognitive state and sociodemographic variables, health conditions, number of and adhesion to medicine. Methods: transversal, exploratory, and descriptive study, with a quantitative approach, realized with 107 elderly people under ambulatory care in a university hospital in southern Brazil, in november, 2013. The following variables were used: gender, age, civil status, income, schooling, occupation, preexisting noncommunicable diseases, number and type of prescribed medications, adhesion, mini-mental state examination score, and cognitive status. Data was analyzed through inferential and descriptive statistics. Results: the prevalence of cognitive deficit was of 42.1% and had a statistically significant connection to schooling, income, civil status, hypertension, and cardiopathy. Conclusion: nurses can intervene to avoid the increase of cognitive deficit through an assessment of the elderly person, directed to facilitative strategies to soften this deficit.

  18. Ambulatory blood pressure monitoring for hypertension in general practice.

    OpenAIRE

    Taylor, R S; Stockman, J; Kernick, D; Reinhold, D; Shore, A C; Tooke, J E

    1998-01-01

    Ambulatory blood pressure monitoring (ABPM) is being increasingly used in general practice. There is at present little published evidence regarding the clinical utility of ABPM in the care of patients with established hypertension in this setting. We examined this issue by undertaking ABPM in a group of patients with established hypertension. 40 patients (aged 33-60 years) currently being treated for hypertension were randomly selected from a general practice list and underwent a single 24-ho...

  19. Differences in Treatment of Chlamydia trachomatis by Ambulatory Care Setting.

    Science.gov (United States)

    Pearson, William S; Gift, Thomas L; Leichliter, Jami S; Jenkins, Wiley D

    2015-12-01

    Chlamydia trachomatis (CT) is the most commonly reported sexually transmitted infection (STI) in the US and timely, correct treatment can reduce CT transmission and sequelae. Emergency departments (ED) are an important location for diagnosing STIs. This study compared recommended treatment of CT in EDs to treatment in physician offices. Five years of data (2006-2010) were analyzed from the National Ambulatory Medical Care Survey, and the National Hospital Ambulatory Medical Care Surveys (NHAMCS), including the Outpatient survey (NHAMCS-OPD) and Emergency Department survey (NHAMCS-ED). All visits with a CT diagnosis and those with a diagnosis of unspecified venereal disease were selected for analysis. Differences in receipt of recommended treatments were compared between visits to physician offices and emergency departments using Chi square tests and logistic regression models. During the 5 year period, approximately 3.2 million ambulatory care visits had diagnosed CT or an unspecified venereal disease. A greater proportion of visits to EDs received the recommended treatment for CT compared to visits to physician offices (66.1 vs. 44.9 %, p < .01). When controlling for patients' age, sex and race/ethnicity, those presenting to the ED with CT were more likely to receive the recommended antibiotic treatment than patients presenting to a physician's office (OR 2.16; 95 % CI 1.04-4.48). This effect was attenuated when further controlling for patients' expected source of payment. These analyses demonstrate differences in the treatment of CT by ambulatory care setting as well as opportunities for increasing use of recommended treatments for diagnosed cases of this important STI.

  20. Improving adherence to the Epic Beacon ambulatory workflow.

    Science.gov (United States)

    Chackunkal, Ellen; Dhanapal Vogel, Vishnuprabha; Grycki, Meredith; Kostoff, Diana

    2017-06-01

    Computerized physician order entry has been shown to significantly improve chemotherapy safety by reducing the number of prescribing errors. Epic's Beacon Oncology Information System of computerized physician order entry and electronic medication administration was implemented in Henry Ford Health System's ambulatory oncology infusion centers on 9 November 2013. Since that time, compliance to the infusion workflow had not been assessed. The objective of this study was to optimize the current workflow and improve the compliance to this workflow in the ambulatory oncology setting. This study was a retrospective, quasi-experimental study which analyzed the composite workflow compliance rate of patient encounters from 9 to 23 November 2014. Based on this analysis, an intervention was identified and implemented in February 2015 to improve workflow compliance. The primary endpoint was to compare the composite compliance rate to the Beacon workflow before and after a pharmacy-initiated intervention. The intervention, which was education of infusion center staff, was initiated by ambulatory-based, oncology pharmacists and implemented by a multi-disciplinary team of pharmacists and nurses. The composite compliance rate was then reassessed for patient encounters from 2 to 13 March 2015 in order to analyze the effects of the determined intervention on compliance. The initial analysis in November 2014 revealed a composite compliance rate of 38%, and data analysis after the intervention revealed a statistically significant increase in the composite compliance rate to 83% ( p < 0.001). This study supports a pharmacist-initiated educational intervention can improve compliance to an ambulatory, oncology infusion workflow.

  1. Ambulatory surgery for the patient with breast cancer: current perspectives

    Directory of Open Access Journals (Sweden)

    Pek CH

    2016-08-01

    Full Text Available Chong Han Pek,1 John Tey,2 Ern Yu Tan1 1Department of General Surgery, 2Department of Anaesthesiology, Intensive Care and Pain Medicine, Tan Tock Seng Hospital, Singapore, Singapore Abstract: Ambulatory breast cancer surgery is well accepted and is the standard of care at many tertiary centers. Rather than being hospitalized after surgery, patients are discharged on the day of surgery or within 23 hours. Such early discharge does not adversely affect patient outcomes and has the added benefits of better psychological adjustment for the patient, economic savings, and a more efficient utilization of health care resources. The minimal care needed post-discharge also means that the caregiver is not unduly burdened. Unplanned conversions to inpatient admission and readmission rates are low. Wound complications are infrequent and no issues with drain care have been reported. Because the period of postoperative observation is short and monitoring is not as intensive, ambulatory surgery is only suitable for low-risk procedures such as breast cancer surgery and in patients without serious comorbidities, where the likelihood of major perioperative events is low. Optimal management of pain, nausea, and vomiting is essential to ensure a quick recovery and return to normal function. Regional anesthesia such as the thoracic paravertebral block has been employed to improve pain control during the surgery and in the immediate postoperative period. The block provides excellent pain relief and reduces the need for opiates, which also consequently reduces the incidence of nausea and vomiting. The increasing popularity of total intravenous anesthesia with propofol has also helped reduce the incidence of nausea and vomiting in the postoperative period. Ambulatory surgery can be safely carried out in centers where there is a well-designed workflow to ensure proper patient selection, counseling, and education, and where patients and caregivers have easy access to

  2. Ambulatory Melanoma Care Patterns in the United States

    International Nuclear Information System (INIS)

    Ji, A. L.; Davis, S. A.; Feldman, S. R.; Fleischer, A. B.; Baze, M. R.; Feldman, S. R.; Feldman, S. R.; Fleischer, A. B.

    2013-01-01

    To examine trends in melanoma visits in the ambulatory care setting. Methods. Data from the National Ambulatory Medical Care Survey (NAMCS) from 1979 to 2010 were used to analyze melanoma visit characteristics including number of visits, age and gender of patients, and physician specialty. These data were compared to US Census population estimates during the same time period. Results. The overall rate of melanoma visits increased (ρ< 0.0001) at an apparently higher rate than the increase in population over this time. The age of patients with melanoma visits increased at approximately double the rate (0.47 year per interval year, ρ< 0.0001) of the population increase in age (0.23 year per interval year). There was a nonsignificant(ρ=0.19) decline in the proportion of female patients seen over the study interval. Lastly, ambulatory care has shifted towards dermatologists and other specialties managing melanoma patients and away from family/internal medicine physicians and general/plastic surgeons. Conclusions. The number and age of melanoma visits has increased over time with respect to the overall population, mirroring the increase in melanoma incidence over the past three decades. These trends highlight the need for further studies regarding melanoma management efficiency

  3. Pathway to Best Practice in Spirometry in the Ambulatory Setting.

    Science.gov (United States)

    Peracchio, Carol

    2016-01-01

    Spirometry performed in the ambulatory setting is an invaluable tool for diagnosis, monitoring, and evaluation of respiratory health in patients with chronic lung disease. If spirometry is not performed according to American Thoracic Society (ATS) guidelines, unnecessary repeated testing, increased expenditure of time and money, and increased patient and family anxiety may result. Two respiratory therapists at Mission Health System in Asheville, NC, identified an increase in patients arriving at the pulmonary function testing (PFT) laboratories with abnormal spirometry results obtained in the ambulatory setting. These abnormal results were due to incorrect testing procedure, not chronic lung disease. Three training methods were developed to increase knowledge of correct spirometry testing procedure in the ambulatory setting. The therapists also created a plan to educate offices that do not perform spirometry on the importance and availability of PFT services at our hospital for the population of patients with chronic lung disease. Notable improvements in posttraining test results were demonstrated. The education process was evaluated by a leading respiratory expert, with improvements suggested and implemented. Next steps are listed.

  4. Ambulatory blood pressure and adherence monitoring: diagnosing pseudoresistant hypertension.

    Science.gov (United States)

    Burnier, Michel; Wuerzner, Gregoire

    2014-01-01

    A small proportion of the treated hypertensive population consistently has a blood pressure greater than 140/90 mm Hg despite a triple therapy including a diuretic, a calcium channel blocker, and a blocker of the renin-angiotensin system. According to guidelines, these patients have so-called resistant hypertension. The prevalence of this clinical condition is higher in tertiary than primary care centers and often is associated with chronic kidney disease, diabetes, obesity, and sleep apnea syndrome. Exclusion of pseudoresistant hypertension using ambulatory or home blood pressure monitoring is a crucial step in the investigation of patients with resistant hypertension. Thus, among the multiple factors to consider when investigating patients with resistant hypertension, ambulatory blood pressure monitoring should be performed very early. Among other factors to consider, physicians should investigate patient adherence to therapy, assess the adequacy of treatment, exclude interfering factors, and, finally, look for secondary forms of hypertension. Poor adherence to therapy accounts for 30% to 50% of cases of resistance to therapy depending on the methodology used to diagnose adherence problems. This review discusses the clinical factors implicated in the pathogenesis of resistant hypertension with a particular emphasis on pseudoresistance, drug adherence, and the use of ambulatory blood pressure monitoring for the diagnosis and management of resistant hypertension.

  5. The demand for ambulatory mental health services from specialty providers.

    Science.gov (United States)

    Horgan, C M

    1986-01-01

    A two-part model is used to examine the demand for ambulatory mental health services in the specialty sector. In the first equation, the probability of having a mental health visit is estimated. In the second part of the model, variations in levels of use expressed in terms of visits and expenditures are examined in turn, with each of these equations conditional on positive utilization of mental health services. In the second part of the model, users are additionally grouped into those with and without out-of-pocket payment for services. This specification accounts for special characteristics regarding the utilization of ambulatory mental health services: (1) a large part of the population does not use these services; (2) of those who use services, the distribution of use is highly skewed; and (3) a large number of users have zero out-of-pocket expenditures. Cost-sharing does indeed matter in the demand for ambulatory mental health services from specialty providers; however, the decision to use mental health services is affected by the level of cost-sharing to a lesser degree than is the decision regarding the level of use of services. The results also show that price is only one of several important factors in determining the demand for services. The lack of significance of family income and of being female is notable. Evidence is presented for the existence of bandwagon effects. The importance of Medicaid in the probability of use equations is noted. PMID:3721874

  6. Improving outpatient access and patient experiences in academic ambulatory care.

    Science.gov (United States)

    O'Neill, Sarah; Calderon, Sherry; Casella, Joanne; Wood, Elizabeth; Carvelli-Sheehan, Jayne; Zeidel, Mark L

    2012-02-01

    Effective scheduling of and ready access to doctor appointments affect ambulatory patient care quality, but these are often sacrificed by patients seeking care from physicians at academic medical centers. At one center, Beth Israel Deaconess Medical Center, the authors developed interventions to improve the scheduling of appointments and to reduce the access time between telephone call and first offered appointment. Improvements to scheduling included no redirection to voicemail, prompt telephone pickup, courteous service, complete registration, and effective scheduling. Reduced access time meant being offered an appointment with a physician in the appropriate specialty within three working days of the telephone call. Scheduling and access were assessed using monthly "mystery shopper" calls. Mystery shoppers collected data using standardized forms, rated the quality of service, and transcribed their interactions with schedulers. Monthly results were tabulated and discussed with clinical leaders; leaders and frontline staff then developed solutions to detected problems. Eighteen months after the beginning of the intervention (in June 2007), which is ongoing, schedulers had gone from using 60% of their registration skills to over 90%, customer service scores had risen from 2.6 to 4.9 (on a 5-point scale), and average access time had fallen from 12 days to 6 days. The program costs $50,000 per year and has been associated with a 35% increase in ambulatory volume across three years. The authors conclude that academic medical centers can markedly improve the scheduling process and access to care and that these improvements may result in increased ambulatory care volume.

  7. Management of abnormal uterine bleeding – focus on ambulatory hysteroscopy

    Directory of Open Access Journals (Sweden)

    Kolhe S

    2018-03-01

    Full Text Available Shilpa Kolhe Ambulatory Gynaecology Unit, Royal Derby Hospital, Derby, UK Abstract: The rapid evolution in ambulatory hysteroscopy (AH has transformed the approach to diagnose and manage abnormal uterine bleeding (AUB. The medical management in primary care remains the mainstay for initial treatment of this common presentation; however, many women are referred to secondary care for further evaluation. To confirm the diagnosis of suspected intrauterine pathology, the traditional diagnostic tool of day case hysteroscopy and dilatation and curettage in a hospital setting under general anesthesia is now no longer required. The combination of ultrasound diagnostics and modern AH now allows thorough evaluation of uterine cavity in an outpatient setting. Advent of miniature hysteroscopic operative systems has revolutionized the ways in which clinicians can not only diagnose but also treat menstrual disorders such as heavy menstrual bleeding, intermenstrual bleeding and postmenopausal bleeding in most women predominantly in a one-stop clinic. This review discussed the approach to manage women presenting with AUB with a focus on the role of AH in the diagnosis and treatment of this common condition in an outpatient setting. Keywords: abnormal uterine bleeding, ambulatory hysteroscopy, endometrial polyps, one-stop clinic, vaginoscopic approach

  8. Biofilm antifungal susceptibility of Candida urine isolated from ambulatory patients

    Directory of Open Access Journals (Sweden)

    Débora da Luz Becker

    2016-07-01

    Full Text Available Background and Objectives: the association between the biofilm formations an antifungal resistance has been suggested to be an important factor in the pathogenesis of several Candida species. Besides, studies have included invasive candidiasis from hospitalized patients; however there are few studies that evaluated the species distribution, antifungal susceptibility and biofilm formation of Candida species isolated from ambulatory patients. Thus, the aim of this study was to evaluate whether biofilm producing contributes to antifungal resistance in Candida isolates from urine sample obtained from ambulatory patients. Methods: During one year, 25 urine samples positive for yeast were collected, stored and plated on agar supplemented with chloramphenicol and Sabouread left at room temperature for 5 days for subsequent: 52% (13/25 were C. albicans, 36% (9/25 C. tropicalis, 8% (2/25 C. krusei and 4% (1/25 C. parapsilosis. Results: The ability to form biofilm was detected in 23 (92% of the yeast studied and 15.4% (2/13 of C. albicans were fluconazole (FLU and ketoconazole (KET resistant, while 11.1% (1/9 of C. tropicalis were ketoconazole resistant and were anidulafungin (ANI non-susceptible. Conclusion: our results showed the high capacity for biofilm formation among Candida isolates from ambulatory patients.

  9. Ambulatory orthopaedic surgery patients' knowledge with internet-based education.

    Science.gov (United States)

    Heikkinen, Katja; Leino-Kilpi, H; Salanterä, S

    2012-01-01

    There is a growing need for patient education and an evaluation of its outcomes. The aim of this study was to compare ambulatory orthopaedic surgery patients' knowledge with Internet-based education and face-to-face education with a nurse. The following hypothesis was proposed: Internet-based patient education (experiment) is as effective as face-to-face education with a nurse (control) in increasing patients' level of knowledge and sufficiency of knowledge. In addition, the correlations of demographic variables were tested. The patients were randomized to either an experiment group (n = 72) or a control group (n = 75). Empirical data were collected with two instruments. Patients in both groups showed improvement in their knowledge during their care. Patients in the experiment group improved their knowledge level significantly more in total than those patients in the control group. There were no differences in patients' sufficiency of knowledge between the groups. Knowledge was correlated especially with patients' age, gender and earlier ambulatory surgeries. As a conclusion, positive results concerning patients' knowledge could be achieved with the Internet-based education. The Internet is a viable method in ambulatory care.

  10. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  11. Visual-vestibular interaction in motion perception

    NARCIS (Netherlands)

    Hosman, Ruud J A W; Cardullo, Frank M.; Bos, Jelte E.

    2011-01-01

    Correct perception of self motion is of vital importance for both the control of our position and posture when moving around in our environment. With the development of human controlled vehicles as bicycles, cars and aircraft motion perception became of interest for the understanding of vehicle

  12. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  13. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  14. Infection Prevention and Control in Pediatric Ambulatory Settings.

    Science.gov (United States)

    Rathore, Mobeen H; Jackson, Mary Anne

    2017-11-01

    Since the American Academy of Pediatrics published its statement titled "Infection Prevention and Control in Pediatric Ambulatory Settings" in 2007, there have been significant changes that prompted this updated statement. Infection prevention and control is an integral part of pediatric practice in ambulatory medical settings as well as in hospitals. Infection prevention and control practices should begin at the time the ambulatory visit is scheduled. All health care personnel should be educated regarding the routes of transmission and techniques used to prevent the transmission of infectious agents. Policies for infection prevention and control should be written, readily available, updated every 2 years, and enforced. Many of the recommendations for infection control and prevention from the Centers for Disease Control and Prevention for hospitalized patients are also applicable in the ambulatory setting. These recommendations include requirements for pediatricians to take precautions to identify and protect employees likely to be exposed to blood or other potentially infectious materials while on the job. In addition to emphasizing the key principles of infection prevention and control in this policy, we update those that are relevant to the ambulatory care patient. These guidelines emphasize the role of hand hygiene and the implementation of diagnosis- and syndrome-specific isolation precautions, with the exemption of the use of gloves for routine diaper changes and wiping a well child's nose or tears for most patient encounters. Additional topics include respiratory hygiene and cough etiquette strategies for patients with a respiratory tract infection, including those relevant for special populations like patients with cystic fibrosis or those in short-term residential facilities; separation of infected, contagious children from uninfected children when feasible; safe handling and disposal of needles and other sharp medical devices; appropriate use of personal

  15. Exoskeleton Motion Control for Children Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    Cristina Ploscaru

    2016-06-01

    Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.

  16. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  17. Biological Motion Perception in Autism

    Directory of Open Access Journals (Sweden)

    J Cusack

    2011-04-01

    Full Text Available Typically developing adults can readily recognize human actions, even when conveyed to them via point-like markers placed on the body of the actor (Johansson, 1973. Previous research has suggested that children affected by autism spectrum disorder (ASD are not equally sensitive to this type of visual information (Blake et al, 2003, but it remains unknown why ASD would impact the ability to perceive biological motion. We present evidence which looks at how adolescents and adults with autism are affected by specific factors which are important in biological motion perception, such as (eg, inter-agent synchronicity, upright/inverted, etc.

  18. Motion Transplantation Techniques: A Survey

    NARCIS (Netherlands)

    van Basten, Ben; Egges, Arjan

    2012-01-01

    During the past decade, researchers have developed several techniques for transplanting motions. These techniques transplant a partial auxiliary motion, possibly defined for a small set of degrees of freedom, on a base motion. Motion transplantation improves motion databases' expressiveness and

  19. Parents' satisfaction with pediatric ambulatory anesthesia in northeast of Thailand.

    Science.gov (United States)

    Boonmak, Suhattaya; Boonmak, Polpun; Pothiruk, Kittawan; Hoontanee, Nattakhan

    2009-12-01

    Study the satisfaction of parents with ambulatory anesthesia and associated factors, including characteristics of the patients and their parents. This was a prospective, descriptive, observation study. The authors included children who were scheduled for ambulatory anesthetic service between birth and 14 years of age and attended at Srinagarind Hospital, Khon Kaen, Thailand. The authors excluded patients whose parents could not be reached by telephone. Before anesthesia, the authors recorded the patients and parents' characteristics, level of information perception (pre-, peri- and post-anesthesia and complications). After anesthesia, the anesthesia technique and any complications were recorded. The day after anesthesia, the authors made phone calls to the patients to record the parents' satisfaction score (viz, of overall, pre-, peri- and post-anesthesia care, and information about the level of patient care at home), and any anesthesia related complications. Ninety-two patients and their parents were included in the present study. Overall parents 'satisfaction with the anesthesia service was 96.7% (i.e., 89/92) (95% CI 90.8-99.3). Parents' satisfaction with pre- and peri-anesthesia care was 100% (95% CI 96.1-100) and 97.9% (95% CI 92.4-99.7), respectively. Parents' satisfaction with the PACU care and information of patient care at home was 96.7% (95% CI 90.8-99.3) and 91.3% (95% CI 83.6-96.2), respectively. Associated factors where parents were dissatisfied included PACU care satisfaction (i.e., relative risk 22.5 (95% CI 3.2-158)) and patient care information at home (i.e., relative risk 13.3 (95% CI 1.3-136.0)). The present study showed a high level of parents' satisfaction. Parents' dissatisfaction associated with PACU care and information about post anesthesia care at home. Additionally information on parents' characteristics provides invaluable data for improving pediatric ambulatory anesthesia in Srinagarind Hospital.

  20. AMBULATORY BLOOD PRESSURE PATTERNS IN CHILDREN WITH CHRONIC KIDNEY DISEASE

    Science.gov (United States)

    Samuels, Joshua; Ng, Derek; Flynn, Joseph T.; Mitsnefes, Mark; Poffenbarger, Tim; Warady, Bradley A.; Furth, Susan

    2012-01-01

    Ambulatory blood pressure monitoring (ABPM) is the best method of detecting abnormal blood pressure (BP) in patients with chronic kidney disease (CKD), whose hypertension may be missed with office BP measurements. We report ABPM findings in 332 children 1 year after entry in the Chronic Kidney Disease in Children (CKiD) cohort study. All subjects underwent casual and ambulatory BP measurement. BP was categorized based on casual and ABPM results into normal, white coat, masked, and ambulatory hypertension. Only half of the subjects had a normal ABPM. BP load was elevated (>25%) in 52% (n= 172) while mean BP was elevated in 32% (n= 105). In multivariate analysis, those using an ACE inhibitor (ACEi) were 89% more likely to have a normal ABPM than those who did not report using an ACEi (OR: 1.89, 95%CI: 1.17, 3.04). For every 20% faster decline in annualized GFR change, the odds of an abnormal ABPM increased 26% (OR: 1.26, 95%CI: 0.97, 1.64; p= 0.081). A 2.25 fold increase in urine protein:creatinine ratio annualized change was associated with a 39% higher odds of an abnormal ABPM (OR: 1.39, 95%CI: 1.06, 1.82; p= 0.019). Abnormalities on ABPM are common in children with CKD, and are strongly associated with known risk factors for end stage renal disease. Individuals on ACEi were less likely to have abnormal ABPM, suggesting a possible therapeutic intervention. ABPM should be used to monitor risk and guide therapy in children with CKD. PMID:22585950

  1. Social support and ambulatory blood pressure in older people.

    Science.gov (United States)

    Sanchez-Martínez, Mercedes; López-García, Esther; Guallar-Castillón, Pilar; Cruz, Juan J; Orozco, Edilberto; García-Esquinas, Esther; Rodríguez-Artalejo, Fernando; Banegas, José R

    2016-10-01

    Social support has been associated with greater nocturnal decline (dipping) in blood pressure (BP) in younger and middle-aged individuals. However, it is uncertain if aggregated measures of social support are related to ambulatory SBP in older adults, where high SBP is frequent and clinically challenging. We studied 1047 community-living individuals aged at least 60 years in Spain. Twenty-four-hour ambulatory BP was determined under standardized conditions. Social support was assessed with a seven-item questionnaire on marital status, cohabitation, frequency of contact with relatives, or with friends and neighbors, emotional support, instrumental support, and outdoor companionship. A social support score was built by summing the values of the items that were significantly associated with SBP variables, such that the higher the score, the better the support. Participants' mean age was 71.7 years (50.8% men). Being married, cohabiting, and being accompanied when out of home were the support items significantly associated with SBP variables. After adjustment for sociodemographic (age, sex, education), behavioral (BMI, alcohol, tobacco, salt consumption, physical activity, Mediterranean diet score), and clinical variables [sleep quality, mental stress, comorbidity, BP medication, and ambulatory BP levels and heart rate (HR)], one additional point in the social support score built with the abovementioned three support variables, was associated with a decrease of 0.93 mmHg in night-time SBP (P = 0.039), totaling 2.8 mmHg decrease for a score of 3 vs. 0. The three-item social support score was also inversely associated with the night/day SBP ratio (β = -0.006, P = 0.010). In older adults, social support is independently associated with lower nocturnal SBP and greater SBP dipping. Further research is needed in prospective studies to confirm these results.

  2. Measuring hot flash phenomenonology using ambulatory prospective digital diaries

    Science.gov (United States)

    Fisher, William I.; Thurston, Rebecca C.

    2016-01-01

    Objective This study provides the description, protocol, and results from a novel prospective ambulatory digital hot flash phenomenon diary. Methods This study included 152 midlife women with daily hot flashes who completed an ambulatory electronic hot flash diary continuously for the waking hours of 3 consecutive days. In this diary, women recorded their hot flashes and accompanying characteristics and associations as the hot flashes occurred. Results Self-reported hot flash severity on the digital diaries indicated that the majority of hot flashes were rated as mild (41.3%) or moderate (43.7%). Severe (13.1%) and very severe (1.8%) hot flashes were less common. Hot flash bother ratings were rated as mild (43%), or moderate (33.5%), with fewer hot flashes reported bothersome (17.5%) or very bothersome (6%). The majority of hot flashes were reported as occurring on the on the face (78.9%), neck (74.7%), and chest (61.3%). Prickly skin was reported concurrently with 32% of hot flashes, 7% with anxiety and 5% with nausea. A novel finding, 38% of hot flashes were accompanied by a premonitory aura. Conclusion A prospective electronic digital hot flash diary allows for a more precise quantitation of hot flashes while overcoming many of the limitations of commonly employed retrospective questionnaires and paper diaries. Unique insights into the phenomenology, loci and associated characteristics of hot flashes were obtained using this device. The digital hot flash phenomenology diary is recommended for future ambulatory studies of hot flashes as a prospective measure of the hot flash experience. PMID:27404030

  3. Nutritional status of adults participating in ambulatory rehabilitation.

    Science.gov (United States)

    Kaur, Supreet; Miller, Michelle D; Halbert, Julie; Giles, Lynne C; Crotty, Maria

    2008-01-01

    To assess the overall nutritional status of older adults participating in ambulatory rehabilitation and determine its association with relevant outcomes including physical function and quality of life. Cross-sectional. Ambulatory rehabilitation service in the Southern region of Adelaide, Australia. A total of 229 participants recruited as part of a RCT between June 2005 and June 2006, stroke (n=83), elective orthopedic procedure (n=44) and other medical condition (n=102). Nutritional status was measured using Mini Nutritional Assessment (MNA), Simplified Nutrition Appetite Questionnaire (SNAQ) and Body Mass Index. Functional performance was assessed using the Modified Barthel Index (MBI) and quality of life was measured using the Short Form-36 (SF-36). Sixty-three percent of participants were malnourished or at risk of malnutrition according to the MNA and a third had a risk of >or= 5% weight loss in the subsequent six months, according to the SNAQ. Participants with a diagnosis other than stroke or elective orthopedic procedure were the most vulnerable, with 53% (n=74/140) classified as at risk of malnutrition or malnourished and a longer length of stay in hospital. Functional performance was no different for participants assessed as at risk of malnutrition or malnourished compared to the well nourished, but the SF-36 mental component score was significantly higher for those who were well nourished (p=0.003). Findings emphasise the magnitude of the malnutrition problem in ambulatory rehabilitation settings. Further research is required to evaluate the resource implications against expected benefits of providing nutrition interventions at this point.

  4. Ambulatory surgery with chloroprocaine spinal anesthesia: a review

    Directory of Open Access Journals (Sweden)

    Ghisi D

    2015-11-01

    Full Text Available Daniela Ghisi, Stefano Bonarelli Department of Anaesthesia and Postoperative Intensive Care, Istituto Ortopedico Rizzoli, Bologna, Italy Abstract: Spinal anesthesia is a reliable and safe technique for procedures of the lower extremities. Nevertheless, some of its characteristics may limit its use for ambulatory surgery, including delayed ambulation, risk of urinary retention, and pain after block regression. The current availability of short-acting local anesthetics has renewed interest for this technique also in the context of short- and ultra-short procedures. Chloroprocaine (CP is an amino-ester local anesthetic with a very short half-life. It was introduced and has been successfully used for spinal anesthesia since 1952. Sodium bisulfite was then added as a preservative after 1956. The drug was then abandoned in the 1980s for several reports of neurological deficits in patients receiving accidentally high doses of intrathecal CP during epidural labor analgesia. Animal studies have proven the safety of the preservative-free formulation, which has been extensively evaluated in volunteer studies as well as in clinical practice with a favorable profile in terms of both safety and efficacy. In comparison with bupivacaine, 2-chloroprocaine (2-CP showed faster offset times to end of anesthesia, unassisted ambulation, and discharge from hospital. These findings suggests that 2-CP may be a suitable alternative to low doses of long-acting local anesthetics in ambulatory surgery. Its safety profile also suggests that 2-CP could be a valid substitute for intrathecal short- and intermediate-acting local anesthetics, such as lidocaine and mepivacaine – often causes of transient neurological symptoms. In this context, literature suggests a dose ranging between 30 and 60 mg of 2-CP for procedures lasting 60 minutes or less, while 10 mg is considered the no-effect dose. The present review describes recent evidence about 2-CP as an anesthetic agent for

  5. Ambulatory anesthesia and postoperative nausea and vomiting: predicting the probability

    Directory of Open Access Journals (Sweden)

    Hegarty AT

    2016-08-01

    Full Text Available Aoife T Hegarty,1 Muiris A Buckley,1 Conan L McCaul1–3 1Department of Anaesthesia, The Rotunda Hospital, 2Mater Misericordiae University Hospital, 3School of Medicine and Medical Science, University College Dublin, Dublin, Ireland Abstract: Nausea and vomiting are distinctly unpleasant symptoms that may occur after surgery and anesthesia, and high priority is given to their prevention by patients. Research in this area is plentiful and has focused on event prediction and pharmacological prophylaxis but despite this, postoperative nausea and vomiting (PONV typically occurs in 20%–30% of patients in contemporary practice. Prediction of postoperative and postdischarge nausea and vomiting is particularly important in the ambulatory surgical population as these symptoms may occur following discharge from hospital and continue for up to one week when access to antiemetic therapies is limited. Many of the existing predictive scoring systems are based on data from inpatient populations and limited to the first 24 hours after surgery. Scoring systems based on data from ambulatory surgical populations to predict PONV are only moderately good. The best-performing systems in ambulatory patients are those of Sinclair and Sarin with an area under the receiver operating characteristic curve of 0.78 and 0.74, respectively, but are limited by the short duration of follow-up and a greater emphasis on nausea than vomiting. Given that the ability to predict both PONV and postdischarge nausea and vomiting is clearly limited, emphasis has been placed on prophylactic strategies that incorporate antiemetic medication, intravenous hydration, and nonnarcotic analgesia. PONV has been reduced to <10% in institutions using multimodal approaches. Scoring systems may facilitate “risk tailoring” in which patient risk profile is used as a stratification method for pharmacointervention. Keywords: postoperative nausea and vomiting, prediction, antiemetics, anesthesia

  6. Attention and apparent motion.

    Science.gov (United States)

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  7. Challenges in pediatric ambulatory anesthesia: kids are different.

    Science.gov (United States)

    Collins, Corey E; Everett, Lucinda L

    2010-06-01

    The care of the child having ambulatory surgery presents a specific set of challenges to the anesthesia provider. This review focuses on areas of clinical distinction that support the additional attention children often require, and on clinical controversies that require providers to have up-to-date information to guide practice and address parental concerns. These include perioperative risk; obstructive sleep apnea; obesity; postoperative nausea and vomiting; neurocognitive outcomes; and specific concerns regarding common ear, nose, and throat procedures. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Acute effect on ambulatory blood pressure from aerobic exercise

    DEFF Research Database (Denmark)

    Lund Rasmussen, Charlotte; Nielsen, Line; Linander Henriksen, Marie

    2018-01-01

    session among female cleaners. METHODS: Twenty-two female cleaners were randomised to a cross-over study with a reference and an aerobic exercise session. Differences in 24-h, work hours, leisure time, and sleep ambulatory blood pressure (ABP) were evaluated using repeated measure 2 × 2 mixed...... of 1.5 mmHg (p = 0.03) were found after the aerobic exercise session. During leisure time, the systolic ABP was lowered by 1.7 mmHg (p = 0.04) and the diastolic ABP was unaltered. During sleep, the systolic and diastolic ABP was unaltered. CONCLUSION: A single aerobic exercise session lowered 24-h...

  9. Cardiac autonomic modulation by estrogen in female mice undergoing ambulatory monitoring and in vivo electrophysiologic testing.

    Science.gov (United States)

    Saba, Samir; Shusterman, Vladimir; Usiene, Irmute; London, Barry

    2004-04-01

    Estrogen is an important modulator of cardiovascular risk, but its mechanism of action is not fully understood. We investigated the effect of ovariectomy and its timing on the cardiac electrophysiology in mice. Thirty female mice (age 18.8 +/- 3.1 weeks) underwent in vivo electrophysiologic testing before and after autonomic blockade. Fifteen mice were ovariectomized prepuberty (PRE) and ten postpuberty (POST), 2 weeks prior to electrophysiologic testing. Five age-matched sham-operated female mice (Control) served as controls. A subset of 13 mice (5 PRE, 3 POST, and 5 Controls) underwent 24-hour ambulatory monitoring. With ambulatory monitoring, the average (668 +/- 28 vs 769 +/- 52 b/min, P = 0.008) and minimum (485 +/- 47 vs 587 +/- 53 b/min, P = 0.02) heart rates were significantly slower in the ovariectomized mice (PRE and POST groups) compared to the Control group. At baseline electrophysiologic testing, there were no significant differences among the ovariectomized and intact mice in any of the measured parameters. With autonomic blockade, the Control group had a significantly larger change (delta) in the atrioventricular (AV) nodal Wenckebach (AVW) periodicity (deltaAVW = 11.3 +/- 2.9 vs 2.1 +/- 7.3 ms, P = 0.05) and functional refractory period (deltaFRP = 11.3 +/- 2.1 vs 1.25 +/- 6.8 ms, P = 0.02) compared to the ovariectomized mice. These results were not altered by the time of ovariectomy (PRE vs POST groups). Our results suggest that estrogen modulates the autonomic inputs into the murine sinus and AV nodes. These findings, if replicated in humans, might underlie the observed clustering of certain arrhythmias around menstruation and explain the higher incidence of arrhythmias in men and postmenopausal women.

  10. Antroduodenal manometry: 24-hour ambulatory monitoring versus short-term stationary manometry in patients with functional dyspepsia

    NARCIS (Netherlands)

    Jebbink, R. J.; vanBerge-Henegouwen, G. P.; Akkermans, L. M.; Smout, A. J.

    1995-01-01

    OBJECTIVES: To examine the interdigestive and postprandial antroduodenal motility patterns of patients with functional dyspepsia using prolonged ambulatory antroduodenal manometry and to compare these findings with conventional stationary manometry. METHODS: Prolonged ambulatory and short-term

  11. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  12. Motion compensated digital tomosynthesis

    NARCIS (Netherlands)

    van der Reijden, Anneke; van Herk, Marcel; Sonke, Jan-Jakob

    2013-01-01

    Digital tomosynthesis (DTS) is a limited angle image reconstruction method for cone beam projections that offers patient surveillance capabilities during VMAT based SBRT delivery. Motion compensation (MC) has the potential to mitigate motion artifacts caused by respiratory motion, such as blur. The

  13. [Considerations on local-regional anesthesia for ambulatory tooth extractions in patients with heart disease].

    Science.gov (United States)

    Debernardi, G; Borgogna, E

    1975-01-01

    Ambulatory dental extraction was performed on 150 patients with various forms of heart disease. No serious complications were noted with an anaesthetic without vasoconstriction (plain 3% carbocaine). The prior history was carefully studied and pressure values were determined. It is felt that heart disease does not form an absolute contraindication to ambulatory dental extraction.

  14. Increased systolic ambulatory blood pressure and microalbuminuria in treated and non-treated hypertensive smokers

    DEFF Research Database (Denmark)

    Sørensen, Kaspar; Kristensen, Kjeld S; Bang, Lia E

    2004-01-01

    The primary aim of the present study was to evaluate the impact of smoking status on both clinic and ambulatory blood pressure (BP) and heart rate (HR) by using 24-h ambulatory BP monitoring in treated and non-treated hypertensive smokers and non-smokers. A secondary aim was to evaluate...

  15. The Use of the Ambulatory Arterial Stiffness Index in Patients Suspected of Secondary Hypertension

    NARCIS (Netherlands)

    Verbakel, J.R.; Adiyaman, A.; Kraayvanger, N.; Dechering, D.G.; Postma, C.T.

    2016-01-01

    The ambulatory arterial stiffness index (AASI) is a marker of arterial stiffness and is derived from ambulatory 24-h blood pressure registration. We studied whether the AASI could be used as a predictive factor for the presence of renal artery stenosis (RAS) in patients with a suspicion of secondary

  16. Ambulatory gait analysis in stroke patients using ultrasound and inertial sensors

    NARCIS (Netherlands)

    Weenk, D.; van Meulen, Fokke; van Beijnum, Bernhard J.F.; Veltink, Petrus H.

    2014-01-01

    Objective ambulatory assessment of movements of patients is important for an optimal recovery. In this study an ambulatory system is used for assessing gait parameters in stroke patients. Ultrasound range estimates are fused with inertial sensors using an extended Kalman filter to estimate 3D

  17. Reproducibility of blood pressure variation in older ambulatory and bedridden subjects.

    Science.gov (United States)

    Tsuchihashi, Takuya; Kawakami, Yasunobu; Imamura, Tsuyoshi; Abe, Isao

    2002-06-01

    We investigated the influence of ambulation on the reproducibility of circadian blood pressure variation in older nursing home residents. Ambulatory blood pressure monitoring was performed twice in 37 older nursing home residents. Nursing home in Japan. Subjects included 18 ambulatory nursing home residents who had no limitation on physical activity and 19 bedridden residents who did not participate in physical activity. Twenty-four-hour, daytime, and nighttime blood pressure levels and their variability. The 24-hour and daytime variability of systolic blood pressure (SBP) was significantly greater in ambulatory than in bedridden subjects, whereas nighttime variability was similar. Significant correlations in SBP averaged for the whole day, daytime, and nighttime were observed between the two examinations in ambulatory (r =.80-.83) and bedridden (r =.83-.91) subjects, but the variabilities of SBP for the whole day and during the daytime of the first measurement were correlated with those of the second measurement in bedridden (r =.67 and r =.47, respectively) but not in ambulatory (r =.39 and r =.28, respectively) subjects. Significant correlations were found between the nocturnal SBP changes at two occasions in both ambulatory (r =.50) and bedridden (r =.51) subjects, but the dipper versus nondipper profiles, defined as reduction in SBP of greater than 10% versus not, showed low reproducibility in ambulatory subjects; five ambulatory (28%) and one bedridden (5%) subjects showed divergent profiles between the two examinations. The reproducibility of blood pressure variation in nursing home residents is influenced by ambulation.

  18. Ambulatory versus home versus clinic blood pressure: the association with subclinical cerebrovascular diseases: the Ohasama Study.

    Science.gov (United States)

    Hara, Azusa; Tanaka, Kazushi; Ohkubo, Takayoshi; Kondo, Takeo; Kikuya, Masahiro; Metoki, Hirohito; Hashimoto, Takanao; Satoh, Michihiro; Inoue, Ryusuke; Asayama, Kei; Obara, Taku; Hirose, Takuo; Izumi, Shin-Ichi; Satoh, Hiroshi; Imai, Yutaka

    2012-01-01

    The usefulness of ambulatory, home, and casual/clinic blood pressure measurements to predict subclinical cerebrovascular diseases (silent cerebrovascular lesions and carotid atherosclerosis) was compared in a general population. Data on ambulatory, home, and casual/clinic blood pressures and brain MRI to detect silent cerebrovascular lesions were obtained in 1007 subjects aged ≥55 years in a general population of Ohasama, Japan. Of the 1007 subjects, 583 underwent evaluation of the extent of carotid atherosclerosis. Twenty-four-hour, daytime, and nighttime ambulatory and home blood pressure levels were closely associated with the risk of silent cerebrovascular lesions and carotid atherosclerosis (all Ppressure values were simultaneously included in the same regression model, each of the ambulatory blood pressure values remained a significant predictor of silent cerebrovascular lesions, whereas home blood pressure lost its predictive value. Of the ambulatory blood pressure values, nighttime blood pressure was the strongest predictor of silent cerebrovascular lesions. The home blood pressure value was more closely associated with the risk of carotid atherosclerosis than any of the ambulatory blood pressure values when home and one of the ambulatory blood pressure values were simultaneously included in the same regression model. The casual/clinic blood pressure value had no significant association with the risk of subclinical cerebrovascular diseases. Although the clinical indications for ambulatory blood pressure monitoring and home blood pressure measurements may overlap, the clinical significance of each method for predicting target organ damage may differ for different target organs.

  19. 42 CFR 419.31 - Ambulatory payment classification (APC) system and payment weights.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Ambulatory payment classification (APC) system and... Outpatient Services § 419.31 Ambulatory payment classification (APC) system and payment weights. (a) APC... of resource use into APC groups. Except as specified in paragraph (a)(2) of this section, items and...

  20. The long-term effect of ambulatory oxygen in normoxaemic COPD patients

    DEFF Research Database (Denmark)

    Ringbaek, Thomas; Martinez, Gerd; Lange, Peter

    2013-01-01

    To study the long-term benefits of ambulatory oxygen (AO) in combination with pulmonary rehabilitation (PR) in chronic obstructive pulmonary disease (COPD) patients experiencing exertional desaturation.......To study the long-term benefits of ambulatory oxygen (AO) in combination with pulmonary rehabilitation (PR) in chronic obstructive pulmonary disease (COPD) patients experiencing exertional desaturation....

  1. Adopting Ambulatory Breast Cancer Surgery as the Standard of Care in an Asian Population

    Directory of Open Access Journals (Sweden)

    Yvonne Ying Ru Ng

    2014-01-01

    Full Text Available Introduction. Ambulatory surgery is not commonly practiced in Asia. A 23-hour ambulatory (AS23 service was implemented at our institute in March 2004 to allow more surgeries to be performed as ambulatory procedures. In this study, we reviewed the impact of the AS23 service on breast cancer surgeries and reviewed surgical outcomes, including postoperative complications, length of stay, and 30-day readmission. Methods. Retrospective review was performed of 1742 patients who underwent definitive breast cancer surgery from 1 March 2004 to 31 December 2010. Results. By 2010, more than 70% of surgeries were being performed as ambulatory procedures. Younger women (P<0.01, those undergoing wide local excision (P<0.01 and those with ductal carcinoma-in situ or early stage breast cancer (P<0.01, were more likely to undergo ambulatory surgery. Six percent of patients initially scheduled for ambulatory surgery were eventually managed as inpatients; a third of these were because of perioperative complications. Wound complications, 30-day readmission and reoperation rates were not more frequent with ambulatory surgery. Conclusion. Ambulatory breast cancer surgery is now the standard of care at our institute. An integrated workflow facilitating proper patient selection and structured postoperativee outpatient care have ensured minimal complications and high patient acceptance.

  2. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  3. Exit from Synchrony in Joint Improvised Motion.

    Directory of Open Access Journals (Sweden)

    Assi Dahan

    Full Text Available Motion synchrony correlates with effective and well-rated human interaction. However, people do not remain locked in synchrony; Instead, they repeatedly enter and exit synchrony. In many important interactions, such as therapy, marriage and parent-infant communication, it is the ability to exit and then re-enter synchrony that is thought to build strong relationship. The phenomenon of entry into zero-phase synchrony is well-studied experimentally and in terms of mathematical modeling. In contrast, exit-from-synchrony is under-studied. Here, we focus on human motion coordination, and examine the exit-from-synchrony phenomenon using experimental data from the mirror game paradigm, in which people perform joint improvised motion, and from human tracking of computer-generated stimuli. We present a mathematical mechanism that captures aspects of exit-from-synchrony in human motion. The mechanism adds a random motion component when the accumulated velocity error between the players is small. We introduce this mechanism to several models for human coordinated motion, including the widely studied HKB model, and the predictor-corrector model of Noy, Dekel and Alon. In all models, the new mechanism produces realistic simulated behavior when compared to experimental data from the mirror game and from tracking of computer generated stimuli, including repeated entry and exit from zero-phase synchrony that generates a complexity of motion similar to that of human players. We hope that these results can inform future research on exit-from-synchrony, to better understand the dynamics of coordinated action of people and to enhance human-computer and human-robot interaction.

  4. Non-linear methods for the quantification of cyclic motion

    OpenAIRE

    Quintana Duque, Juan Carlos

    2016-01-01

    Traditional methods of human motion analysis assume that fluctuations in cycles (e.g. gait motion) and repetitions (e.g. tennis shots) arise solely from noise. However, the fluctuations may have enough information to describe the properties of motion. Recently, the fluctuations in motion have been analysed based on the concepts of variability and stability, but they are not used uniformly. On the one hand, these concepts are often mixed in the existing literature, while on the other hand, the...

  5. Office blood pressure or ambulatory blood pressure for the prediction of cardiovascular events

    DEFF Research Database (Denmark)

    Mortensen, Rikke Nørmark; Gerds, Thomas Alexander; Jeppesen, Jørgen Lykke

    2017-01-01

    Aims: To determine the added value of (i) 24-h ambulatory blood pressure relative to office blood pressure and (ii) night-time ambulatory blood pressure relative to daytime ambulatory blood pressure for 10-year person-specific absolute risks of fatal and non-fatal cardiovascular events. Methods...... and results: A total of 7927 participants were included from the International Database on Ambulatory blood pressure monitoring in relation to Cardiovascular Outcomes. We used cause-specific Cox regression to predict 10-year person-specific absolute risks of fatal and non-fatal cardiovascular events....... Discrimination of 10-year outcomes was assessed by time-dependent area under the receiver operating characteristic curve (AUC). No differences in predicted risks were observed when comparing office blood pressure and ambulatory blood pressure. The median difference in 10-year risks (1st; 3rd quartile) was -0...

  6. Ambulatory intravenous ceftriaxone in paediatric A&E: a useful alternative to hospital admission?

    Science.gov (United States)

    Smith, Jennifer K; Alexander, Saji; Abrahamson, Ed

    2011-10-01

    Treatment of children with intravenous ceftriaxone on an ambulatory basis is described. This allows a child to remain at home, but also be reviewed regularly when attending the Emergency Department for antibiotics. Indications for, and length of, treatment and laboratory parameters were recorded. Also, a survey of children's parents was undertaken to ascertain opinions regarding ambulatory treatment. 36 patients were treated with ambulatory ceftriaxone over 4 months. Indications included fever without focus, tonsillitis, periorbital cellulitis, urinary tract infection, petechial rash and lymphadenitis. Median duration of treatment was 2.3 days. There was no occult bacteraemia but five positive urine cultures. There was one failure of treatment with subsequent admission for alternative intravenous antibiotics. Parental opinion favours ambulatory treatment, with 94% of parents acknowledging they would choose it again in similar circumstances. Cost analysis favours ambulatory treatment based on predicted costs of a similar length of inpatient stay.

  7. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  8. The comprehensive care project: measuring physician performance in ambulatory practice.

    Science.gov (United States)

    Holmboe, Eric S; Weng, Weifeng; Arnold, Gerald K; Kaplan, Sherrie H; Normand, Sharon-Lise; Greenfield, Sheldon; Hood, Sarah; Lipner, Rebecca S

    2010-12-01

    To investigate the feasibility, reliability, and validity of comprehensively assessing physician-level performance in ambulatory practice. Ambulatory-based general internists in 13 states participated in the assessment. We assessed physician-level performance, adjusted for patient factors, on 46 individual measures, an overall composite measure, and composite measures for chronic, acute, and preventive care. Between- versus within-physician variation was quantified by intraclass correlation coefficients (ICC). External validity was assessed by correlating performance on a certification exam. Medical records for 236 physicians were audited for seven chronic and four acute care conditions, and six age- and gender-appropriate preventive services. Performance on the individual and composite measures varied substantially within (range 5-86 percent compliance on 46 measures) and between physicians (ICC range 0.12-0.88). Reliabilities for the composite measures were robust: 0.88 for chronic care and 0.87 for preventive services. Higher certification exam scores were associated with better performance on the overall (r = 0.19; pmeasures and by sampling feasible numbers of patients for each condition. © Health Research and Educational Trust.

  9. Developments in ambulatory surgery in orthopedics in France in 2016.

    Science.gov (United States)

    Hulet, C; Rochcongar, G; Court, C

    2017-02-01

    Under the new categorization introduced by the Health Authorities, ambulatory surgery (AS) in France now accounts for 50% of procedures, taking all surgical specialties together. The replacement of full hospital admission by AS is now well established and recognized. Health-care centers have learned, in coordination with the medico-surgical and paramedical teams, how to set up AS units and the corresponding clinical pathways. There is no single model handed down from above. The authorities have encouraged these developments, partly by regulations but also by means of financial incentives. Patient eligibility and psychosocial criteria are crucial determining factors for the success of the AS strategy. The surgeons involved are strongly committed. Feedback from many orthopedic subspecialties (shoulder, foot, knee, spine, hand, large joints, emergency and pediatric surgery) testify to the rise of AS, which now accounts for 41% of all orthopedic procedures. Questions remain, however, concerning the role of the GP in the continuity of care, the role of innovation and teaching, the creation of new jobs, and the attractiveness of AS for surgeons. More than ever, it is the patient who is "ambulatory", within an organized structure in which surgical technique and pain management are well controlled. Not all patients can be eligible, but the AS concept is becoming standard, and overnight stay will become a matter for medical and surgical prescription. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Development of quality metrics for ambulatory pediatric cardiology: Chest pain.

    Science.gov (United States)

    Lu, Jimmy C; Bansal, Manish; Behera, Sarina K; Boris, Jeffrey R; Cardis, Brian; Hokanson, John S; Kakavand, Bahram; Jedeikin, Roy

    2017-12-01

    As part of the American College of Cardiology Adult Congenital and Pediatric Cardiology Section effort to develop quality metrics (QMs) for ambulatory pediatric practice, the chest pain subcommittee aimed to develop QMs for evaluation of chest pain. A group of 8 pediatric cardiologists formulated candidate QMs in the areas of history, physical examination, and testing. Consensus candidate QMs were submitted to an expert panel for scoring by the RAND-UCLA modified Delphi process. Recommended QMs were then available for open comments from all members. These QMs are intended for use in patients 5-18 years old, referred for initial evaluation of chest pain in an ambulatory pediatric cardiology clinic, with no known history of pediatric or congenital heart disease. A total of 10 candidate QMs were submitted; 2 were rejected by the expert panel, and 5 were removed after the open comment period. The 3 approved QMs included: (1) documentation of family history of cardiomyopathy, early coronary artery disease or sudden death, (2) performance of electrocardiogram in all patients, and (3) performance of an echocardiogram to evaluate coronary arteries in patients with exertional chest pain. Despite practice variation and limited prospective data, 3 QMs were approved, with measurable data points which may be extracted from the medical record. However, further prospective studies are necessary to define practice guidelines and to develop appropriate use criteria in this population. © 2017 Wiley Periodicals, Inc.

  11. Blood Pressure Measurement: Clinic, Home, Ambulatory, and Beyond

    Science.gov (United States)

    Drawz, Paul E.; Abdalla, Mohamed; Rahman, Mahboob

    2014-01-01

    Blood pressure has traditionally been measured in the clinic setting using the auscultory method and a mercury sphygmomanometer. Technological advances have led to improvements in measuring clinic blood pressure and allowed for measuring blood pressures outside the clinic. This review outlines various methods for evaluating blood pressure and the clinical utility of each type of measurement. Home blood pressures and 24 hour ambulatory blood pressures have improved our ability to evaluate risk for target organ damage and hypertension related morbidity and mortality. Measuring home blood pressures may lead to more active participation in health care by patients and has the potential to improve blood pressure control. Ambulatory blood pressure monitoring enables the measuring nighttime blood pressures and diurnal changes, which may be the most accurate predictors of risk associated with elevated blood pressure. Additionally, reducing nighttime blood pressure is feasible and may be an important component of effective antihypertensive therapy. Finally, estimating central aortic pressures and pulse wave velocity are two of the newer methods for assessing blood pressure and hypertension related target organ damage. PMID:22521624

  12. Effects of health information exchange adoption on ambulatory testing rates.

    Science.gov (United States)

    Ross, Stephen E; Radcliff, Tiffany A; Leblanc, William G; Dickinson, L Miriam; Libby, Anne M; Nease, Donald E

    2013-01-01

    To determine the effects of the adoption of ambulatory electronic health information exchange (HIE) on rates of laboratory and radiology testing and allowable charges. Claims data from the dominant health plan in Mesa County, Colorado, from 1 April 2005 to 31 December 2010 were matched to HIE adoption data on the provider level. Using mixed effects regression models with the quarter as the unit of analysis, the effect of HIE adoption on testing rates and associated charges was assessed. Claims submitted by 306 providers in 69 practices for 34 818 patients were analyzed. The rate of testing per provider was expressed as tests per 1000 patients per quarter. For primary care providers, the rate of laboratory testing increased over the time span (baseline 1041 tests/1000 patients/quarter, increasing by 13.9 each quarter) and shifted downward with HIE adoption (downward shift of 83, prates or imputed charges in either provider group. Ambulatory HIE adoption is unlikely to produce significant direct savings through reductions in rates of testing. The economic benefits of HIE may reside instead in other downstream outcomes of better informed, higher quality care.

  13. Pain Management in Ambulatory Surgery—A Review

    Directory of Open Access Journals (Sweden)

    Jan G. Jakobsson

    2014-07-01

    Full Text Available Day surgery, coming to and leaving the hospital on the same day as surgery as well as ambulatory surgery, leaving hospital within twenty-three hours is increasingly being adopted. There are several potential benefits associated with the avoidance of in-hospital care. Early discharge demands a rapid recovery and low incidence and intensity of surgery and anaesthesia related side-effects; such as pain, nausea and fatigue. Patients must be fit enough and symptom intensity so low that self-care is feasible in order to secure quality of care. Preventive multi-modal analgesia has become the gold standard. Administering paracetamol, NSIADs prior to start of surgery and decreasing the noxious influx by the use of local anaesthetics by peripheral block or infiltration in surgical field prior to incision and at wound closure in combination with intra-operative fast acting opioid analgesics, e.g., remifentanil, have become standard of care. Single preoperative 0.1 mg/kg dose dexamethasone has a combined action, anti-emetic and provides enhanced analgesia. Additional α-2-agonists and/or gabapentin or pregabalin may be used in addition to facilitate the pain management if patients are at risk for more pronounced pain. Paracetamol, NSAIDs and rescue oral opioid is the basic concept for self-care during the first 3–5 days after common day/ambulatory surgical procedures.

  14. An elective course on current concepts in adult ambulatory care.

    Science.gov (United States)

    Vincent, Ashley H; Weber, Zachary A

    2014-12-15

    To design and evaluate a doctor of pharmacy course exploring disease states commonly encountered in ambulatory care, while applying literature to clinical practice and promoting a continual learning mindset. This elective incorporated a learner-centered teaching approach. Each week, 2 groups of students were assigned a clinical trial to present to their peers. The focus was on clinical application and impact, rather than literature evaluation. A social networking group on Facebook was used to expose students to pharmacy information outside the classroom. Student grades were determined by multiple activities: presentations, participation and moderation of the Facebook group, class participation, quiz scores, and quiz question development. Course evaluations served as a qualitative assessment of student learning and perceptions, quizzes were the most objective assessment of student learning, and presentation evaluations were the most directed assessment of course goals. This elective was an innovative approach to teaching ambulatory care that effectively filled a curricular void. Successful attainment of the primary course goals and objectives was demonstrated through course evaluations, surveys, and quiz and presentation scores.

  15. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  16. Curves from Motion, Motion from Curves

    Science.gov (United States)

    2000-01-01

    De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a

  17. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  18. Ambulatory oxygen: why do COPD patients not use their portable systems as prescribed? A qualitative study

    Directory of Open Access Journals (Sweden)

    Fenwick Angela

    2011-02-01

    Full Text Available Abstract Background Patients with COPD on long term oxygen therapy frequently do not adhere to their prescription, and they frequently do not use their ambulatory oxygen systems as intended. Reasons for this lack of adherence are not known. The aim of this study was to obtain in-depth information about perceptions and use of prescribed ambulatory oxygen systems from patients with COPD to inform ambulatory oxygen design, prescription and management. Methods A qualitative design was used, involving semi-structured face-to-face interviews informed by a grounded theory approach. Twenty-seven UK community-dwelling COPD patients using NHS prescribed ambulatory systems were recruited. Ambulatory oxygen systems comprised cylinders weighing 3.4 kg, a shoulder bag and nasal cannulae. Results Participants reported that they: received no instruction on how to use ambulatory oxygen; were uncertain of the benefits; were afraid the system would run out while they were using it (due to lack of confidence in the cylinder gauge; were embarrassed at being seen with the system in public; and were unable to carry the system because of the cylinder weight. The essential role of carers was also highlighted, as participants with no immediate carers did not use ambulatory oxygen outside the house. Conclusions These participants highlighted previously unreported problems that prevented them from using ambulatory oxygen as prescribed. Our novel findings point to: concerns with the lack of specific information provision; the perceived unreliability of the oxygen system; important carer issues surrounding managing and using ambulatory oxygen equipment. All of these issues, as well as previously reported problems with system weight and patient embarrassment, should be addressed to improve adherence to ambulatory oxygen prescription and enhance the physical and social benefits of maintaining mobility in this patient group. Increased user involvement in both system development

  19. Linearized motion estimation for articulated planes.

    Science.gov (United States)

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  20. Effect of ambulatory medicine tutorial on clinical performance of 5th year medical students.

    Science.gov (United States)

    Phisalprapa, Pochamana; Pandejpong, Denla

    2013-02-01

    The present study provided a group learning activity called "Ambulatory Medicine Tutorial-AMT" for 5th year medical students in order to facilitate learning experience at ambulatory setting and to improve medical students' clinical performance. This research aimed specifically to study the effect of AMT. Two groups of twenty 5th-year medical students were enrolled during their ambulatory medicine blocks. Each medical student was assigned to have 8 ambulatory sessions. AMT was assigned to one group while the other group only used conventional learning activity. At the end of the present study, total internal medicine scores, patient satisfaction surveys, and data on average time spent on each clinical encounter were collected and compared. The AMT group received a higher total internal medicine score as compared to the conventional group (76.2 +/- 3.6 vs. 72.9 +/- 2.8, p = 0.003). The AMT group could reduce average time spent on each clinical encounter within their first-6 ambulatory sessions while the conventional group could acquire the same skill later in their last 2 ambulatory sessions. There was no significant difference found on comparing patient satisfaction scores between the 2 groups. AMT helped improving medical students' outcomes as shown from higher total internal medicine score as well as quicker improvement during real-life clinical encounters, AMT could be a good alternative learning activity for medical students at ambulatory setting.

  1. Dynamics of Change in Human-Driven and Natural Systems: Fast Forward, Slow Motion, Same Movie? A Case Study from Plant Protection

    Directory of Open Access Journals (Sweden)

    Didier Andrivon

    2012-03-01

    Full Text Available Evolutionary biology and evolutionary ecology deal with change in species and ecosystems over time, and propose mechanisms to explain and predict these. In particular, they look for generic elements that will drive any organism or phylum to adaptive changes or to extinction. This paper, using examples from the field of plant protection against pests and diseases, shows that the patterns of change observed in natural and in human-driven systems are comparable, and proposes that their similarities result from the same mechanisms operating at different paces. Human-driven systems can thus be seen simply as ‘fast-forward’ versions of natural systems, making them tractable tools to test and predict elements from evolutionary theory. Conversely, the convergence between natural and human-driven systems opens opportunities for a more widespread use of evolutionary theory when analyzing and optimizing any human-driven system, or predicting its adaptability to changing conditions.

  2. Ambulatory Blood Pressure Monitoring – Clinical Practice Recommendations

    Directory of Open Access Journals (Sweden)

    Katalin Mako

    2016-09-01

    Full Text Available Ambulatory blood pressure monitoring (ABPM became a subject of considerable scientific interest. Due to the increasing use of the ABPM in everyday clinical practice it is important that all the users have a correct knowledge on the clinical indications, the methodology of using the device including some technical issues and the interpretation of results. In the last years several guidelines and position papers have been published with recommendations for the monitoring process, reference values, for clinical practice and research. This paper represents a summary of the most important aspects related to the use of ABPM in daily practice, being a synthesis of recommendations from the recent published guidelines and position papers. This reference article presents the practical and technical issues of ABPM, the use of this method in special situations, the clinical interpretation of measured values including the presentation of different ABPM patterns, derived parameters, the prognostic significance and the limitations of this method.

  3. Ambulatory Surgery Centers and Prices in Hospital Outpatient Departments.

    Science.gov (United States)

    Carey, Kathleen

    2017-04-01

    Specialty providers claim to offer a new competitive benchmark for efficient delivery of health care. This article explores this view by examining evidence for price competition between ambulatory surgery centers (ASCs) and hospital outpatient departments (HOPDs). I studied the impact of ASC market presence on actual prices paid to HOPDs during 2007-2010 for four common surgical procedures that were performed in both provider types. For the procedures examined, HOPDs received payments from commercial insurers in the range of 3.25% to 5.15% lower for each additional ASC per 100,000 persons in a market. HOPDs may have less negotiating leverage with commercial insurers on price in markets with high ASC market penetration, resulting in relatively lower prices.

  4. Acceptance of Ambulatory Laparoscopic Cholecystectomy in Central Switzerland.

    Science.gov (United States)

    Widjaja, Sandra P; Fischer, Henning; Brunner, Alexander R; Honigmann, Philipp; Metzger, Jürg

    2017-11-01

    Currently, most patients undergoing laparoscopic cholecystectomy (LC) in Switzerland are inpatients for 2-3 days. Due to a lack of available hospital beds, we asked whether day-case surgery would be an option for patients in central Switzerland. The questions of acceptability of outpatient LC and factors contributing to the acceptability thus arose. Hundred patients suffering from symptomatic cholecystolithiasis, capable of communicating in German, and between 18 and 65 years old, were included. Patients received a pre-operative questionnaire on medical history and social situation when informed consent on surgery and participation in the study was obtained. Exclusion criteria were patients suffering from acute cholecystitis or any type of cancer; having a BMI >40 kg/m 2 ; needing conversion to open cholecystectomy or an intraoperative drainage; and non-German speakers. Surgery was performed laparoscopically. Both surgeon and patient filled in a postoperative questionnaire. The surgeon's questionnaire listed medical and technical information, and the patients' questionnaire listed medical information, satisfaction with the treatment and willingness to be released on the same day. These data from both questionnaires were grouped into social and medical factors and analysed on their influence upon willingness to accept an ambulatory procedure. No outpatient follow-up apart from checking for readmission to our hospital within 1 month after discharge was performed. Of the 100 participants, one-third was male. More than two-thirds were Swiss citizens. Only one participant was ineligible for rapid release evaluation due to need of a drainage. Among the social factors contributing to the acceptability of ambulatory care, we found nationality to be relevant; Swiss citizens preferred an inpatient procedure, whereas non-Swiss citizens were significantly more willing to return home on the same day. Household size, sex and age did not correlate with a preference for

  5. Motivators for physical activity among ambulatory nursing home older residents.

    Science.gov (United States)

    Chen, Yuh-Min; Li, Yueh-Ping

    2014-01-01

    The purpose of this study was to explore self-identified motivators for regular physical activity among ambulatory nursing home older residents. A qualitative exploratory design was adopted. Purposive sampling was performed to recruit 18 older residents from two nursing homes in Taiwan. The interview transcripts were analyzed by qualitative content analysis. Five motivators of physical activity emerged from the result of analysis: eagerness for returning home, fear of becoming totally dependent, improving mood state, filling empty time, and previously cultivated habit. Research on physical activity from the perspectives of nursing home older residents has been limited. An empirically grounded understanding from this study could provide clues for promoting and supporting lifelong engagement in physical activity among older residents. The motivators reported in this study should be considered when designing physical activity programs. These motivators can be used to encourage, guide, and provide feedback to support older residents in maintaining physical activity.

  6. Is aerobic workload positively related to ambulatory blood pressure?

    DEFF Research Database (Denmark)

    Korshøj, Mette; Clays, Els; Lidegaard, Mark

    2016-01-01

    workload and ambulatory blood pressure (ABP) are lacking. The aim was to explore the relationship between objectively measured relative aerobic workload and ABP. METHODS: A total of 116 cleaners aged 18-65 years were included after informed consent was obtained. A portable device (Spacelabs 90217......) was mounted for 24-h measurements of ABP, and an Actiheart was mounted for 24-h heart rate measurements to calculate relative aerobic workload as percentage of relative heart rate reserve. A repeated-measure multi-adjusted mixed model was applied for analysis. RESULTS: A fully adjusted mixed model...... of measurements throughout the day showed significant positive relations (p ABP and 0.30 ± 0.04 mmHg (95 % CI 0.22-0.38 mmHg) in diastolic ABP. Correlations between...

  7. Correction of time resolution of an ambulatory cardiac monitor (VEST)

    International Nuclear Information System (INIS)

    Kumita, Shin-ichiro; Nishimura, Tsunehiko; Hayashida, Kohei; Uehara, Toshiisa

    1990-01-01

    Using ambulatory cardiac monitor (VEST) at exercise study, its time resolution is very important factor. We evaluated the time resolution of VEST using pulsate cardiac baloon phantom. Four analysis were carried out; no smoothing (NS) method, 3 points smoothing (3S) method, short sampling interval (SS) method, and digital filter (DF) method. By comparison of |ΔEF| (|EF:HR120-EF: HR60|) among 4 analysis methods, |ΔEF| by DF method was significant small (NS:3.58±3.01, 3S: 4.46±0.95, SS: 3.35±3.26, DF: 1.11±1.28%). We conclude that correction of time resolution by digital filter is necessary when we use VEST during exercise. (author)

  8. Bidirectional peritoneal transport of albumin in continuous ambulatory peritoneal dialysis

    DEFF Research Database (Denmark)

    Joffe, P; Henriksen, Jens Henrik Sahl

    1995-01-01

    The present study was undertaken in order to assess bidirectional peritoneal kinetics of albumin after simultaneous i.v. and i.p. injection of radioiodinated albumin tracers (125I-RISA and 131I-RISA) in eight clinically stable uraemic patients undergoing continuous ambulatory peritoneal dialysis...... (CAPD). The plasma volume, intravascular albumin mass (IVM), and overall extravasation rate of albumin were not significantly different from that found in healthy controls. Albumin flux from the plasma into the peritoneal cavity was 3.71 +/- 0.82 (SD) mumol/h, which was only 3% of the overall...... extravasation rate (137 +/- 52 mumol/h). Albumin flux from the peritoneal cavity into the plasma was substantially lower (0.22 +/- 0.07 mumol/h, P peritoneal accumulation of the albumin from plasma over 4 h was 14 +/- 3.2 mumol, which was significantly lower than the intraperitoneal albumin...

  9. Ambulatory major surgery of benign tumors of the thyroid gland

    International Nuclear Information System (INIS)

    Luzardo Silveira, Ernesto Manuel; Eirin Aranno, Juana Elisa

    2011-01-01

    A descriptive and prospective study on the practice of ambulatory major surgery to eliminate benign tumours of the thyroid gland, was carried out in the General Surgery Service of 'Dr. Joaquin Castillo Duany' Teaching Clinical Surgical Hospital in Santiago de Cuba during the years 1996-2008, both included, through a previous clinical evaluation of 74 patients in the Endocrinology Outpatient Department, where it was decided that they could definitely have a surgical treatment. The female sex, the age groups from 31 to 45 years, the hemithyroidectomy as surgical technique, acupuncture as analgesic procedure and the follicular adenoma as cytohistological result prevailed in the case material. Mild complications occurred in 5 members of the sample, but recovery was absolute in all, so that even 72 of them were discharged before the 24 hours. Due to its good acceptance, this surgical method is beneficial for patient and hospital institutions.(author)

  10. Reproducibility of the ambulatory arterial stiffness index in hypertensive patients

    DEFF Research Database (Denmark)

    Dechering, D.G.; Steen, M.S. van der; Adiyaman, A.

    2008-01-01

    BACKGROUND: We studied the repeatability of the ambulatory arterial stiffness index (AASI), which can be computed from 24-h blood pressure (BP) recordings as unity minus the regression slope of diastolic on systolic BP. METHODS: One hundred and fifty-two hypertensive outpatients recruited...... in Nijmegen (mean age = 46.2 years; 76.3% with systolic and diastolic hypertension) and 145 patients enrolled in the Systolic Hypertension in Europe (Syst-Eur) trial (71.0 years) underwent 24-h BP monitoring at a median interval of 8 and 31 days, respectively. We used the repeatability coefficient, which...... were approximately 30%. Differences in AASI between paired recordings were correlated with differences in the goodness of fit (r2) of the AASI regression line as well as with differences in the night-to-day BP ratio. However, in sensitivity analyses stratified for type of hypertension, r2, or dipping...

  11. Ambulatory Care Visits to Pediatricians in Taiwan: A Nationwide Analysis

    Directory of Open Access Journals (Sweden)

    Ling-Yu Yang

    2015-11-01

    Full Text Available Pediatricians play a key role in the healthy development of children. Nevertheless, the practice patterns of pediatricians have seldom been investigated. The current study analyzed the nationwide profiles of ambulatory visits to pediatricians in Taiwan, using the National Health Insurance Research Database. From a dataset that was randomly sampled one out of every 500 records among a total of 309,880,000 visits in 2012 in the country, 9.8% (n = 60,717 of the visits were found paid to pediatricians. Children and adolescents accounted for only 69.3% of the visits to pediatricians. Male pediatricians provided 80.5% of the services and the main workforces were those aged 40–49 years. The most frequent diagnoses were respiratory tract diseases (64.7% and anti-histamine agents were prescribed in 48.8% of the visits to pediatricians. Our detailed results could contribute to evidence-based discussions on health policymaking.

  12. Challenges of pain control and the role of the ambulatory pain specialist in the outpatient surgery setting.

    Science.gov (United States)

    Vadivelu, Nalini; Kai, Alice M; Kodumudi, Vijay; Berger, Jack M

    2016-01-01

    Ambulatory surgery is on the rise, with an unmet need for optimum pain control in ambulatory surgery centers worldwide. It is important that there is a proportionate increase in the availability of acute pain-management services to match the rapid rise of clinical patient load with pain issues in the ambulatory surgery setting. Focus on ambulatory pain control with its special challenges is vital to achieve optimum pain control and prevent morbidity and mortality. Management of perioperative pain in the ambulatory surgery setting is becoming increasingly complex, and requires the employment of a multimodal approach and interventions facilitated by ambulatory surgery pain specialists, which is a new concept. A focused ambulatory pain specialist on site at each ambulatory surgery center, in addition to providing safe anesthesia, could intervene early once problematic pain issues are recognized, thus preventing emergency room visits, as well as readmissions for uncontrolled pain. This paper reviews methods of acute-pain management in the ambulatory setting with risk stratification, the utilization of multimodal interventions, including pharmacological and nonpharmacological options, opioids, nonopioids, and various routes with the goal of preventing delayed discharge and unexpected hospital admissions after ambulatory surgery. Continued research and investigation in the area of pain management with outcome studies in acute surgically inflicted pain in patients with underlying chronic pain treated with opioids and the pattern and predictive factors for pain in the ambulatory surgical setting is needed.

  13. An analysis of risk factors and adverse events in ambulatory surgery

    Directory of Open Access Journals (Sweden)

    Kent C

    2014-06-01

    Full Text Available Christopher Kent, Julia Metzner, Laurent BollagDepartment of Anesthesiology and Pain Medicine, University of Washington Medical Center, Seattle, WA, USAAbstract: Care for patients undergoing ambulatory procedures is a broad and expanding area of anesthetic and surgical practice. There were over 35 million ambulatory surgical procedures performed in the US in 2006. Ambulatory procedures are diverse in both type and setting, as they span the range from biopsies performed under local anesthesia to intra-abdominal laparoscopic procedures, and are performed in offices, freestanding ambulatory surgery centers, and ambulatory units of hospitals. The information on adverse events from these varied settings comes largely from retrospective reviews of sources, such as quality-assurance databases and closed malpractice claims. Very few if any ambulatory procedures are emergent, and in comparison to the inpatient population, ambulatory surgical patients are generally healthier. They are still however subject to most of the same types of adverse events as patients undergoing inpatient surgery, albeit at a lower frequency. The only adverse events that could be considered to be unique to ambulatory surgery are those that arise out of the circumstance of discharging a postoperative patient to an environment lacking skilled nursing care. There is limited information on these types of discharge-related adverse events, but the data that are available are reviewed in an attempt to assist the practitioner in patient selection and discharge decision making. Among ambulatory surgical patients, particularly those undergoing screening or cosmetic procedures, expectations from all parties involved are high, and a definition of adverse events can be expanded to include any occurrence that interrupts the rapid throughput of patients or interferes with early discharge and optimal patient satisfaction. This review covers all types of adverse events, but focuses on the more

  14. Motion and relativity

    CERN Document Server

    Infeld, Leopold

    1960-01-01

    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  15. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  16. Development of quality metrics for ambulatory pediatric cardiology: Infection prevention.

    Science.gov (United States)

    Johnson, Jonathan N; Barrett, Cindy S; Franklin, Wayne H; Graham, Eric M; Halnon, Nancy J; Hattendorf, Brandy A; Krawczeski, Catherine D; McGovern, James J; O'Connor, Matthew J; Schultz, Amy H; Vinocur, Jeffrey M; Chowdhury, Devyani; Anderson, Jeffrey B

    2017-12-01

    In 2012, the American College of Cardiology's (ACC) Adult Congenital and Pediatric Cardiology Council established a program to develop quality metrics to guide ambulatory practices for pediatric cardiology. The council chose five areas on which to focus their efforts; chest pain, Kawasaki Disease, tetralogy of Fallot, transposition of the great arteries after arterial switch, and infection prevention. Here, we sought to describe the process, evaluation, and results of the Infection Prevention Committee's metric design process. The infection prevention metrics team consisted of 12 members from 11 institutions in North America. The group agreed to work on specific infection prevention topics including antibiotic prophylaxis for endocarditis, rheumatic fever, and asplenia/hyposplenism; influenza vaccination and respiratory syncytial virus prophylaxis (palivizumab); preoperative methods to reduce intraoperative infections; vaccinations after cardiopulmonary bypass; hand hygiene; and testing to identify splenic function in patients with heterotaxy. An extensive literature review was performed. When available, previously published guidelines were used fully in determining metrics. The committee chose eight metrics to submit to the ACC Quality Metric Expert Panel for review. Ultimately, metrics regarding hand hygiene and influenza vaccination recommendation for patients did not pass the RAND analysis. Both endocarditis prophylaxis metrics and the RSV/palivizumab metric passed the RAND analysis but fell out during the open comment period. Three metrics passed all analyses, including those for antibiotic prophylaxis in patients with heterotaxy/asplenia, for influenza vaccination compliance in healthcare personnel, and for adherence to recommended regimens of secondary prevention of rheumatic fever. The lack of convincing data to guide quality improvement initiatives in pediatric cardiology is widespread, particularly in infection prevention. Despite this, three metrics were

  17. An efficient and effective teaching model for ambulatory education.

    Science.gov (United States)

    Regan-Smith, Martha; Young, William W; Keller, Adam M

    2002-07-01

    Teaching and learning in the ambulatory setting have been described as inefficient, variable, and unpredictable. A model of ambulatory teaching that was piloted in three settings (1973-1981 in a university-affiliated outpatient clinic in Portland, Oregon, 1996-2000 in a community outpatient clinic, and 2000-2001 in an outpatient clinic serving Dartmouth Medical School's teaching hospital) that combines a system of education and a system of patient care is presented. Fully integrating learners into the office practice using creative scheduling, pre-rotation learning, and learner competence certification enabled the learners to provide care in roles traditionally fulfilled by physicians and nurses. Practice redesign made learners active members of the patient care team by involving them in such tasks as patient intake, histories and physicals, patient education, and monitoring of patient progress between visits. So that learners can be active members of the patient care team on the first day of clinic, pre-training is provided by the clerkship or residency so that they are able to competently provide care in the time available. To assure effective education, teaching and learning times are explicitly scheduled by parallel booking of patients for the learner and the preceptor at the same time. In the pilot settings this teaching model maintained or improved preceptor productivity and on-time efficiency compared with these outcomes of traditional scheduling. The time spent alone with patients, in direct observation by preceptors, and for scheduled case discussion was appreciated by learners. Increased satisfaction was enjoyed by learners, teachers, clinic staff, and patients. Barriers to implementation include too few examining rooms, inability to manipulate patient appointment schedules, and learners' not being present in a teaching clinic all the time.

  18. [Day hospital in internal medicine: A chance for ambulatory care].

    Science.gov (United States)

    Grasland, A; Mortier, E

    2018-04-16

    Internal medicine is an in-hospital speciality. Along with its expertise in rare diseases, it shares with general medicine the global care of patients but its place in the ambulatory shift has yet to be defined. The objective of our work was to evaluate the benefits of an internal medicine day-hospital devoted to general medicine. Named "Centre Vi'TAL" to underline the link between the city and the hospital, this novel activity was implemented in order to respond quickly to general practitioners having difficulties to synthesize their complex patients or facing diagnostic or therapeutic problems. Using preferentially email for communication, the general practitioners can contact an internist who is committed to respond on the same day and take over the patient within 7 days if day-hospital is appropriate for his condition. The other patients are directed either to the emergency department, consultation or full hospitalization. In 14 months, the center has received 213 (144 women, 69 men) patients, mean age 53.6, addressed by 88 general practitioners for 282 day-hospital sessions. Requests included problem diagnoses (n=105), synthesis reviews for complex patients (n=65), and treatment (n=43). In the ambulatory shift advocated by the authorities, this experience shows that internal medicine should engage in the recognition of day-hospital as a place for diagnosis and synthesis reviews connected with the city while leaving the general practitioners coordinator of their patient care. This activity of synthesis in day-hospital is useful for the patients and efficient for our healthcare system. Copyright © 2018 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  19. Clinical productivity of primary care nurse practitioners in ambulatory settings.

    Science.gov (United States)

    Xue, Ying; Tuttle, Jane

    Nurse practitioners are increasingly being integrated into primary care delivery to help meet the growing demand for primary care. It is therefore important to understand nurse practitioners' productivity in primary care practice. We examined nurse practitioners' clinical productivity in regard to number of patients seen per week, whether they had a patient panel, and patient panel size. We further investigated practice characteristics associated with their clinical productivity. We conducted cross-sectional analysis of the 2012 National Sample Survey of Nurse Practitioners. The sample included full-time primary care nurse practitioners in ambulatory settings. Multivariable survey regression analyses were performed to examine the relationship between practice characteristics and nurse practitioners' clinical productivity. Primary care nurse practitioners in ambulatory settings saw an average of 80 patients per week (95% confidence interval [CI]: 79-82), and 64% of them had their own patient panel. The average patient panel size was 567 (95% CI: 522-612). Nurse practitioners who had their own patient panel spent a similar percent of time on patient care and documentation as those who did not. However, those with a patient panel were more likely to provide a range of clinical services to most patients. Nurse practitioners' clinical productivity was associated with several modifiable practice characteristics such as practice autonomy and billing and payment policies. The estimated number of patients seen in a typical week by nurse practitioners is comparable to that by primary care physicians reported in the literature. However, they had a significantly smaller patient panel. Nurse practitioners' clinical productivity can be further improved. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ambulatory blood pressure monitoring in healthy children with parental hypertension.

    Science.gov (United States)

    Alpay, Harika; Ozdemir, Nihal; Wühl, Elke; Topuzoğlu, Ahmet

    2009-01-01

    The aim of this study was to compare ambulatory blood pressure monitoring (ABPM) parameters in offspring with at least one hypertensive parent (HP) to offspring with normotensive parents (NP) and to determine whether gender of parent or child might influence the association between parental hypertension and blood pressure (BP). Eighty-nine healthy children (mean age 11.1 +/- 3.9 years) with HP and 90 controls (mean age 10.5 +/- 3.1 years) with NP were recruited. Age, gender, and height did not differ between the two groups, whereas children of HP had higher weight, body mass index (BMI), and waist circumference compared with healthy controls. No difference was found in casual BP between the two groups. In contrast, during ABPM daytime and nighttime mean systolic and diastolic BP and mean arterial pressure (MAP) standard deviation scores (SDS) were significantly elevated in children with HP. The mean percentage of nocturnal BP decline (dipping) was not significantly different between the two groups. Children with hypertensive mothers had higher daytime systolic and MAP SDS than controls; no such difference was detected for children with hypertensive fathers. Daytime systolic and MAP SDS were significantly elevated in boys with HP compared with boys with NP but failed to be significant in girls. Multiple linear regression analysis showed that parental history of hypertension (B = 0.29) and BMI (B = 0.03) were independently correlated with increase of daytime MAP SDS. Early changes in ambulatory BP parameters were present in healthy children of HP. BP in HP offspring was influenced by the gender of the affected parent and the offspring.

  1. Redesigning the regulatory framework for ambulatory care services in New York.

    Science.gov (United States)

    Chokshi, Dave A; Rugge, John; Shah, Nirav R

    2014-12-01

    Policy Points: The landscape of ambulatory care services in the United States is rapidly changing on account of payment reform, primary care transformation, and the rise of convenient care options such as retail clinics. New York State has undertaken a redesign of regulatory policy for ambulatory care rooted in the Triple Aim (better health, higher-quality care, lower costs)-with a particular emphasis on continuity of care for patients. Key tenets of the regulatory approach include defining and tracking the taxonomy of ambulatory care services as well as ensuring that convenient care options do not erode continuity of care for patients. While hospitals remain important centers of gravity in the health system, services are increasingly being delivered through ambulatory care. This shift to ambulatory care is giving rise to new delivery structures, such as retail clinics and urgent care centers, as well as reinventing existing ambulatory care capacity, as seen with the patient-centered medical home model and the movement toward team-based care. To protect the public's interests, oversight of ambulatory care services must keep pace with these rapid changes. With this purpose, in January 2013 the New York Public Health and Health Planning Council undertook a redesign of the regulatory framework for the state's ambulatory care services. This article describes the principles undergirding the framework as well as the regulatory recommendations themselves. We explored and analyzed the regulation of ambulatory care services in New York in accordance with the available gray and peer-reviewed literature and legislative documents. The deliberations of the Public Health and Health Planning Council informed our review. The vision of high-performing ambulatory care should be rooted in the Triple Aim (better health, higher-quality care, lower costs), with a particular emphasis on continuity of care for patients. There is a pressing need to better define the taxonomy of ambulatory

  2. Ambulatory surgery and anaesthesia in HUKM, a teaching hospital in Malaysia: the first two years experience.

    Science.gov (United States)

    Norsidah, A M; Yahya, N; Adeeb, N; Lim, A L

    2001-03-01

    Ambulatory or day care surgery is still in its infancy in this part of the world. Our newly built university affiliated hospital started its Day Surgery Centre in February 1998. It is the first multidisciplinary ambulatory surgery centre in a teaching hospital in the country. It caters for Orthopaedic surgery, Urology, Plastic surgery, Otorhinolaryngology, General surgery, Paediatric surgery and Ophthalmology. We have done 2,604 cases and our unanticipated admission rate is less than 2%. There has been no major morbidity or mortality. The problems of setting up a multidisciplinary ambulatory centre in a teaching hospital are discussed.

  3. Smoothing of respiratory motion traces for motion-compensated radiotherapy.

    Science.gov (United States)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera "as is." Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS2 algorithms. The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the exception of the FP5000 and the

  4. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    International Nuclear Information System (INIS)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS 2 algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the

  5. Control of a virtual ambulation influences body movement and motion sickness

    Directory of Open Access Journals (Sweden)

    Hagstrom Jens

    2011-12-01

    Full Text Available Drivers typically are less susceptible to motion sickness than passengers. The influence of vehicle control has theoretical implications for the etiology of motion sickness, and has practical implications for the design of virtual environments. In the present study, participants either controlled or did not control a nonvehicular virtual avatar (i.e., an ambulatory character in a console video game. We examined the incidence of motion sickness and patterns of movement of the head and torso as participants either played or watched the game. Motion sickness incidence was lower when controlling the virutal avatar than when watching an avatar that was controlled by someone else. Patterns of head and torso movement differed between particpants who did and did not control the avatar. Indepenently, patterns of movement differed between participants who reported motion sickness and those who did not. The results suggest that motion sickness is influenced by control of stimulus motion, whether that motion arises from a vehicle or from any other source. We consider implications for the design of humancomputer interfaces.

  6. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  7. Temporal logic motion planning

    CSIR Research Space (South Africa)

    Seotsanyana, M

    2010-01-01

    Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...

  8. Integration Method of Emphatic Motions and Adverbial Expressions with Scalar Parameters for Robotic Motion Coaching System

    Science.gov (United States)

    Okuno, Keisuke; Inamura, Tetsunari

    A robotic coaching system can improve humans' learning performance of motions by intelligent usage of emphatic motions and adverbial expressions according to user reactions. In robotics, however, method to control both the motions and the expressions and how to bind them had not been adequately discussed from an engineering point of view. In this paper, we propose a method for controlling and binding emphatic motions and adverbial expressions by using two scalar parameters in a phase space. In the phase space, variety of motion patterns and verbal expressions are connected and can be expressed as static points. We show the feasibility of the proposing method through experiments of actual sport coaching tasks for beginners. From the results of participants' improvements in motion learning, we confirmed the feasibility of the methods to control and bind emphatic motions and adverbial expressions, as well as confirmed contribution of the emphatic motions and positive correlation of adverbial expressions for participants' improvements in motion learning. Based on the results, we introduce a hypothesis that individually optimized method for binding adverbial expression is required.

  9. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  10. The value of registered nurses in ambulatory care settings: a survey.

    Science.gov (United States)

    Mastal, Margaret; Levine, June

    2012-01-01

    Ambulatory care settings employ 25% of the three million registered nurses in the United States. The American Academy of Ambulatory Care Nursing (AAACN) is committed to improving the quality of health care in ambulatory settings, enhancing patient outcomes, and realizing greater health care efficiencies. A survey of ambulatory care registered nurses indicates they are well positioned to lead and facilitate health care reform activities with organizational colleagues. They are well schooled in critical thinking, triage, advocating for patients, educating patients and families, collaborating with medical staff and other professionals, and care coordination. The evolving medical home concept and other health care delivery models reinforces the critical need for registered nurses to provide chronic disease management, care coordination, health risk appraisal, care transitions, health promotion, and disease prevention services. Recommendations are offered for organizational leaders, registered nurses, and AAACN to utilize nursing knowledge and skills in the pursuit of leading change and advancing health.

  11. Applications of Phase-Based Motion Processing

    Science.gov (United States)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  12. Psychophysical evidence for auditory motion parallax.

    Science.gov (United States)

    Genzel, Daria; Schutte, Michael; Brimijoin, W Owen; MacNeilage, Paul R; Wiegrebe, Lutz

    2018-04-17

    Distance is important: From an ecological perspective, knowledge about the distance to either prey or predator is vital. However, the distance of an unknown sound source is particularly difficult to assess, especially in anechoic environments. In vision, changes in perspective resulting from observer motion produce a reliable, consistent, and unambiguous impression of depth known as motion parallax. Here we demonstrate with formal psychophysics that humans can exploit auditory motion parallax, i.e., the change in the dynamic binaural cues elicited by self-motion, to assess the relative depths of two sound sources. Our data show that sensitivity to relative depth is best when subjects move actively; performance deteriorates when subjects are moved by a motion platform or when the sound sources themselves move. This is true even though the dynamic binaural cues elicited by these three types of motion are identical. Our data demonstrate a perceptual strategy to segregate intermittent sound sources in depth and highlight the tight interaction between self-motion and binaural processing that allows assessment of the spatial layout of complex acoustic scenes.

  13. DYNAMIC MAGNIFICATION OF BIOMECHANICAL SYSTEM MOTION

    Directory of Open Access Journals (Sweden)

    A. E. Pokatilov

    2017-01-01

    Full Text Available Methods for estimation of dynamic magnification pertaining to motion in biomechanics have been developed and approbаted in the paper. It has been ascertained that widely-used characteristics for evaluation of motion influence on mechanisms and machinery such as a dynamic coefficient and acceleration capacity factor become irrelevant while investigating human locomotion under elastic support conditions. The reason is an impossibility to compare human motion in case when there is a contact with elastic and rigid supports because while changing rigidity of the support exercise performing technique is also changing. In this case the technique still depends on a current state of a specific sportsman. Such situation is observed in sports gymnastics. Structure of kinematic and dynamic models for human motion has been investigated in the paper. It has been established that properties of an elastic support are reflected in models within two aspects: in an explicit form, when models have parameters of dynamic deformation for a gymnastic apparatus, and in an implicit form, when we have numerically changed parameters of human motion. The first part can be evaluated quantitatively while making comparison with calculations made in accordance with complete models. For this reason notions of selected and complete models have been introduced in the paper. It has been proposed to specify models for support and models of biomechanical system that represent models pertaining only to human locomotor system. It has been revealed that the selected models of support in kinematics and dynamics have structural difference. Kinematics specifies only parameters of elastic support deformation and dynamics specifies support parameters in an explicit form and additionally in models of human motion in an explicit form as well. Quantitative estimation of a dynamic motion magnification in kinematics and dynamics models has been given while using computing experiment for grand

  14. Patient satisfaction and acceptability: a journey through an ambulatory gynaecology clinic in the West of Ireland

    LENUS (Irish Health Repository)

    Uzochukwu, I

    2016-06-01

    Ambulatory Gynaecology allows a “see-and-treat” approach to managing gynaecological conditions, providing a more streamlined, integrated care pathway than the traditional gynaecology clinic and inpatient care model. This study was designed to assess patient satisfaction and acceptability of Ambulatory Gynaecology services in Mayo University Hospital, Castlebar, Ireland. It also provided for feedback from patients as to how the service might be improved. \\r\

  15. The clinical utility of ambulatory blood pressure monitoring (ABPM): a review.

    Science.gov (United States)

    Harianto, Harry; Valente, Michael; Hoetomo, Soenarno; Anpalahan, Mahesan

    2014-01-01

    The current evidence suggests that ambulatory blood pressure monitoring (ABPM) should be an integral part of the diagnosis and management of hypertension. However, its uptake in routine clinical practice has been variable. This paper reviews the current evidence for the role of ABPM in clinical practice, including in hypotensive disorders and in specific comorbidities. It further discusses the clinical significance of abnormal ambulatory blood pressure patterns and hypertensive syndromes such as white coat, masked and resistant hypertension.

  16. Ambulatory care pavilion takes its place out front by solving multiple needs.

    Science.gov (United States)

    Saukaitis, C A

    1994-09-01

    In sum, this structure exemplifies the fact that high-tech tertiary care medical centers can be user-friendly to the ambulatory health care consumer by serving their routine needs conveniently and efficiently. Says Gerald Miller, president of Crozer-Chester: "The ambulatory care pavilion has enabled Crozer to successfully and efficiently merge physicians' offices with institutional-based services and inpatient services. We are pleased with how the pavilion positions our medical center for the next century.

  17. Watsu approach for improving spasticity and ambulatory function in hemiparetic patients with stroke.

    Science.gov (United States)

    Chon, Seung Chul; Oh, Duck Won; Shim, Jae Hun

    2009-06-01

    This study reports the effect of Watsu as rehabilitation method for hemiparetic patients with stroke. Watsu consisted of 40 treatment sessions for 8 weeks, delivered underwater or at water surface level, it applied in three patients. Outcome measures included tools for assessing spasticity and ambulatory function. All patients showed decreased scores in the TAS and RVGA after Watsu application. Watsu was helpful in controlling spasticity and improving ambulatory function of the patients with hemiparesis.

  18. Age-specific differences between conventional and ambulatory daytime blood pressure values

    DEFF Research Database (Denmark)

    Conen, David; Aeschbacher, Stefanie; Thijs, Lutgarde

    2014-01-01

    Mean daytime ambulatory blood pressure (BP) values are considered to be lower than conventional BP values, but data on this relation among younger individuals ... population-based cohorts. We compared individual differences between daytime ambulatory and conventional BP according to 10-year age categories. Age-specific prevalences of white coat and masked hypertension were calculated. Among individuals aged 18 to 30, 30 to 40, and 40 to 50 years, mean daytime BP...

  19. Falls in ambulatory individuals with spinal cord injury : incidence, risk factors and perceptions of falls

    OpenAIRE

    Jørgensen, Vivien

    2016-01-01

    Background: Falls in ambulatory individuals with chronic spinal cord injury (SCI) are common and may have adverse consequences. Little and inconclusive research has been done in this population, and there is a need for more knowledge in order to develop prevention strategies appropriate for this population. Aim: The overall aim of this thesis was to study the incidence of and identify the risk factors for recurrent (>2) and injurious falls in ambulatory individuals with SCI...

  20. Active ambulatory care management supported by short message services and mobile phone technology in patients with arterial hypertension.

    Science.gov (United States)

    Kiselev, Anton R; Gridnev, Vladimir I; Shvartz, Vladimir A; Posnenkova, Olga M; Dovgalevsky, Pavel Ya

    2012-01-01

    The use of short message services and mobile phone technology for ambulatory care management is the most accessible and most inexpensive way to transition from traditional ambulatory care management to active ambulatory care management in patients with arterial hypertension (AH). The aim of this study was to compare the clinical efficacy of active ambulatory care management supported by short message services and mobile phone technology with traditional ambulatory care management in AH patients. The study included 97 hypertensive patients under active ambulatory care management and 102 patients under traditional ambulatory care management. Blood pressure levels, body mass, and smoking history of patients were analyzed in the study. The duration of study was 1 year. In the active ambulatory care management group, 36% of patients were withdrawn from the study within a year. At the end of the year, 77% of patients from the active care management group had achieved the goal blood pressure level. That was more than 5 times higher than that in the traditional ambulatory care management group (P mobile phone improves the quality of ambulatory care of hypertensive patients. Copyright © 2012 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  1. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.

    Science.gov (United States)

    Iwamoto, Masami; Nakahira, Yuko

    2015-11-01

    Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics.

  2. Challenges of pain control and the role of the ambulatory pain specialist in the outpatient surgery setting

    Directory of Open Access Journals (Sweden)

    Vadivelu N

    2016-06-01

    Full Text Available Nalini Vadivelu,1 Alice M Kai,2 Vijay Kodumudi,3 Jack M Berger4 1Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, 2Stony Brook University School of Medicine, Stony Brook, NY, 3Department of Molecular and Cell Biology, College of Liberal Arts and Sciences, University of Connecticut, Storrs, CT, 4Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA Abstract: Ambulatory surgery is on the rise, with an unmet need for optimum pain control in ambulatory surgery centers worldwide. It is important that there is a proportionate increase in the availability of acute pain-management services to match the rapid rise of clinical patient load with pain issues in the ambulatory surgery setting. Focus on ambulatory pain control with its special challenges is vital to achieve optimum pain control and prevent morbidity and mortality. Management of perioperative pain in the ambulatory surgery setting is becoming increasingly complex, and requires the employment of a multimodal approach and interventions facilitated by ambulatory surgery pain specialists, which is a new concept. A focused ambulatory pain specialist on site at each ambulatory surgery center, in addition to providing safe anesthesia, could intervene early once problematic pain issues are recognized, thus preventing emergency room visits, as well as readmissions for uncontrolled pain. This paper reviews methods of acute-pain management in the ambulatory setting with risk stratification, the utilization of multimodal interventions, including pharmacological and nonpharmacological options, opioids, nonopioids, and various routes with the goal of preventing delayed discharge and unexpected hospital admissions after ambulatory surgery. Continued research and investigation in the area of pain management with outcome studies in acute surgically inflicted pain in patients with underlying chronic pain treated with

  3. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    Science.gov (United States)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  4. Emergent risk factors associated with eyeball loss and ambulatory vision loss after globe injuries.

    Science.gov (United States)

    Hyun Lee, Seung; Ahn, Jae Kyoun

    2010-07-01

    The objective of this study was to evaluate risk factors associated with eyeball loss and ambulatory vision loss on emergent examination of patients with ocular trauma. We reviewed the medical records of 1,875 patients hospitalized in a single tertiary referral center between January 2003 and December 2007. Emergent examinations included a history of trauma, elapsed time between injury and hospital arrival, visible intraocular tissues, and initial visual acuity (VA) using a penlight. The main outcome measures were ocular survival and ambulatory vision survival (>20/200) at 1 year after trauma using univariate and multivariate regression analysis. The ocular trauma scores were significantly higher in open globe injuries than in closed globe injuries (p eyeball loss. Elapsed time more than 12 hours and visible intraocular tissues were the significant risk factors associated with ambulatory vision loss. The most powerful predictor of eyeball loss and ambulatory vision loss was eyeball rupture. In closed globe injuries, there were no significant risk factors of eyeball loss, whereas initial vision less than LP and the presence of relative afferent pupillary defect were the significant risk factors associated with ambulatory vision loss. An initial VA less than LP using a penlight, a history of golf ball injury, and elapsed time more than 12 hours between ocular trauma and hospital arrival were associated with eyeball loss and ambulatory vision loss. Physicians should bear these factors in mind so that they can more effectively counsel patients with such injuries.

  5. Relationship between systemic hemodynamics and ambulatory blood pressure level are sex dependent.

    Science.gov (United States)

    Alfie, J; Waisman, G D; Galarza, C R; Magi, M I; Vasvari, F; Mayorga, L M; Cámera, M I

    1995-12-01

    Sex-related differences in systemic hemodynamics were analyzed by means of cardiac index and systemic vascular resistance according to the level of daytime ambulatory blood pressure. In addition, we assessed the relations between ambulatory blood pressure measurements and systemic hemodynamics in male and female patients. We prospectively included 52 women and 53 men referred to our unit for evaluation of arterial hypertension. Women and men were grouped according to the level of daytime mean arterial pressure: or = 110 mm Hg. Patients underwent noninvasive evaluation of resting hemodynamics (impedance cardiography) and 24-hour ambulatory blood pressure monitoring. Compared with women men with lower daytime blood pressure had a 12% higher systemic vascular resistance index (P = NS) and a 14% lower cardiac index (P < .02), whereas men with higher daytime blood pressure had a 25% higher vascular resistance (P < .003) and a 21% lower cardiac index (P < .0004). Furthermore, in men systemic vascular resistance correlated positively with both daytime and nighttime systolic and diastolic blood pressures, whereas cardiac index correlated negatively only with daytime diastolic blood pressure. In contrast, women did not exhibit any significant correlation between hemodynamic parameters and ambulatory blood pressure measurements. In conclusion, sex-related differences in systemic hemodynamics were more pronounced in the group with higher daytime hypertension. The relations between systemic hemodynamics and ambulatory blood pressure level depended on the sex of the patient. In men a progressive circulatory impairment underlies the increasing level of ambulatory blood pressure, but this was not observed in women.

  6. Comparison of ambulatory blood pressure monitoring and office blood pressure measurements in obese children and adolescents.

    Science.gov (United States)

    Renda, Rahime

    2018-04-01

    Obesity in adults has been related to hypertension and abnormal nocturnal dipping of blood pressure, which are associated with poor cardiovascular and renal outcomes. Here, we aimed to resolve the relationship between the degree of obesity, the severity of hypertension and dipping status on ambulatory blood pressure in obese children. A total 72 patients with primary obesity aged 7 to 18 years (mean: 13.48 ± 3.25) were selected. Patients were divided into three groups based on body mass index (BMİ) Z-score. Diagnosis and staging of ambulatory hypertension based on 24-h blood pressure measurements, obtained from ambulatory blood pressure monitoring. Based on our ambulatory blood pressure data, 35 patients (48.6%) had hypertension, 7 (20%) had ambulatory prehypertension, 21 (60%) had hypertension, and 7 patients (20%) had severe ambulatory hypertension. There was a significant relationship between severity of hypertension and the degree of obesity (p lood pressure results and loads were similar between groups. Diastolic and mean arterial blood pressure levels during the night, diastolic blood pressure loads, and heart rate during the day were significantly higher in Group 3 (p lood pressure at night, mean arterial pressure at night, diastolic blood pressure loads and heart rate at day. Increase in BMI Z-score does not a significant impact on daytime blood pressure and nocturnal dipping status.

  7. Relationships of muscle strength and bone mineral density in ambulatory children with cerebral palsy.

    Science.gov (United States)

    Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y

    2012-02-01

    This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.

  8. Unanticipated hospital admission in pediatric patients with congenital heart disease undergoing ambulatory noncardiac surgical procedures.

    Science.gov (United States)

    Yuki, Koichi; Koutsogiannaki, Sophia; Lee, Sandra; DiNardo, James A

    2018-05-18

    An increasing number of surgical and nonsurgical procedures are being performed on an ambulatory basis in children. Analysis of a large group of pediatric patients with congenital heart disease undergoing ambulatory procedures has not been undertaken. The objective of this study was to characterize the profile of children with congenital heart disease who underwent noncardiac procedures on an ambulatory basis at our institution, to determine the incidence of adverse cardiovascular and respiratory adverse events, and to determine the risk factors for unscheduled hospital admission. This is a retrospective study of children with congenital heart disease who underwent noncardiac procedures on an ambulatory basis in a single center. Using the electronic preoperative anesthesia evaluation form, we identified 3010 patients with congenital heart disease who underwent noncardiac procedures of which 1028 (34.1%) were scheduled to occur on an ambulatory basis. Demographic, echocardiographic and functional status data, cardiovascular and respiratory adverse events, and reasons for postprocedure admission were recorded. Univariable analysis was conducted. The unplanned hospital admission was 2.7% and univariable analysis demonstrated that performance of an echocardiogram within 6 mo of the procedure and procedures performed in radiology were associated with postoperative admission. Cardiovascular adverse event incidence was 3.9%. Respiratory adverse event incidence was 1.8%. Ambulatory, noncomplex procedures can be performed in pediatric patients with congenital heart disease and good functional status with a relatively low unanticipated hospital admission rate. © 2018 John Wiley & Sons Ltd.

  9. Wrist ambulatory monitoring system and smart glove for real time emotional, sensorial and physiological analysis.

    Science.gov (United States)

    Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A

    2004-01-01

    Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.

  10. Artificial Gravity with Ergometric Exercise Training Improves Cardiovascular Function in Ambulatory Men

    Science.gov (United States)

    Sun, Xi-Qing; Zhu, Chao; Shang, Shu; Yao, Yong-Jie

    2008-06-01

    The necessity of preventing physiological deconditioning in astronauts exposed to long-term space flights is well known. Artificial gravity training via short-arm centrifugation as a countermeasure to microgravity has been considered for many years. However, an optimal duration, level and rate of exposure to artificial gravity have not yet been determined. The purpose of the present study was to investigate the cardiovascular effects of three weeks of intermittent artificial gravity with ergometric exercise training on normal ambulatory men. During 3 weeks experiment, eight healthy male subjects received alternate +1 to +2 Gz (at the foot) short-arm centrifuge training with 30 W ergometric exercise for 30 min per day. Cardiac function, heart rate variability, heart rate and blood pressure were measured before and after training. Stroke volume and total peripheral resistance increased significantly after 3 weeks training, compared with the pre-training baseline. Left ventricular ejection time (LVET) and ejection fraction increased significantly after 3 weeks training, while heart rate, the ratio of pre-ejection period to LVET, and the ratio of low frequency to high frequency power decreased significantly after 3 weeks training. These results suggest that three weeks short-arm centrifuge training with ergometric exercise could improve human cardiac systolic and pumping functions, and increase cardiac vagal modulation.

  11. Adverse Effects with Ambulatory Intravenous Immunoglobulin Administration in Adult Patients with Common Variable Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Karen Alicia Rodríguez-Mireles

    2014-06-01

    Full Text Available Background: Common variable immunode ciency (CVID is the most frequent symptomatic primary immunodeficiency, affecting 1:25,000- 75,000 people. It is characterized by the absence or decrease antibody production. Treatment for CVID consists on human immunoglobulin administration, and the intravenous route is the most common route for administration, at 400-800 mg/kg of weight every 3-4 weeks. Adverse effects associated with intravenous immunoglobulin (IVIg use occur in 25% of all infusions, with severe adverse reactions presenting in less than 1% of all patients. Acute renal failure can occur as a severe adverse reaction, which presents 1-10 days after starting IVIg treatment. In our center we implemented an ambulatory scheme for IVIg administration, which allows its administration in an average of 3 hours, without severe adverse effects. Objectives: To describe adverse effects and to evaluate the frequency of renal failure secondary to ambulatory IVIg administration in patients with common variable immunode ciency. Material and method: A descriptive and prospective study was done including adult patients con de nitive diagnosis of common variable immunodeficiency, receiving IVIg at replacement dose every 3 weeks. All patients were evaluated with clinical exploration, somatometry, serum creatinine, albumin and urea determination, 24 hours creatinine clearance, glomerular ltration rate with CKD-EPI, and immediate renal function associated with accumulated IVIg. Results were analyzed with descriptive statistics. Results: We determined adverse effects in 25 patients with common variable immunode ciency (15 women and 10 men, average age 36.7 years, during a 10 months period (January-September 2013. During this period 284 IVIg infusions were administered using our scheme, frequency of adverse effects were 12.9%, with 5.2% of early adverse effects and 7.7% late adverse effects, all being mild to moderate, in some cases required analgesic and

  12. A novel algorithm to separate motion artifacts from photoplethysmographic signals obtained with a reflectance pulse oximeter.

    Science.gov (United States)

    Yao, Jianchu; Warren, Steve

    2004-01-01

    Pulse oximeters are mainstays for acquiring blood oxygen saturation in static environments such as hospital rooms. However, motion artifacts prevent their broad in wearable, ambulatory environments. To this end, we present a novel algorithm to separate the motion artifacts from plethysmographic data gathered by pulse oximeters. This algorithm, based on the Beer-Lambert law, requires photoplethysmographic data acquired at three excitation wavelengths. The algorithm can calculate venous blood oxygen saturation (SvO2) as well as arterial blood oxygen saturation (SaO2). Preliminary results indicate that the extraction of the venous signal, which is assumed to be most affected by motions, is successful with data acquired from a reflectance-mode sensor.

  13. Toying with Motion.

    Science.gov (United States)

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  14. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  15. Travelers' Health: Motion Sickness

    Science.gov (United States)

    ... sickness, especially when pregnant, menstruating, or on hormones. Race/ethnicity—Asians may be more susceptible to motion ... it, sitting in the front seat of a car or bus, sitting over the wing of an ...

  16. Dizziness and Motion Sickness

    Science.gov (United States)

    ... that extends into the inner ear can completely destroy both the hearing and equilibrium function of that ... motion sickness: •Do not read while traveling •Avoid sitting in the rear seat •Do not sit in ...

  17. Motion Sickness: First Aid

    Science.gov (United States)

    ... com. Accessed July 29, 2017. Priesol AJ. Motion sickness. https://www.uptodate.com/content/search. Accessed July 29, 2017. Brunette GW, et al. CDC Health Information for International Travel 2018. New York, N. ...

  18. Análisis y clasificación de las urgencias hospitalarias mediante los Ambulatory Patient Groups Analysis and classification of hospital emergencies through Ambulatory Patient Groups

    Directory of Open Access Journals (Sweden)

    A. Conesa

    2003-12-01

    Full Text Available Objetivo: Describir la factibilidad y el resultado de la aplicación del sistema Ambulatory Patient Groups (APG a la casuística atendida en los servicios de urgencias de seis hospitales del área de Barcelona. Métodos: Confección de un conjunto mínimo básico de datos específico para urgencias (CMBDAU. Obtención de las variables necesarias en una muestra aleatoria de visitas atendidas, a partir de los informes de asistencia correspondientes. Aplicación del sistema APG a los episodios seleccionados. Resultados: Se ha codificado y agrupado en APG un total de 11.188 visitas de urgencias. Quince diagnósticos identifican el 25% de los episodios. El 50% de los procedimientos de urgencias son exploraciones complementarias sencillas. Quince APG agrupan el 50% de la casuística atendida en urgencias. Conclusiones: El CMBDAU es válido para describir la casuística de urgencias y su agrupación en APG proporciona resultados consistentes e interpretables. La aplicación generalizada de sistemas como los APG en urgencias requiere una validación previa en nuestro entorno de los valores de peso norteamericanos. También debe valorarse la disponibilidad de recursos técnicos y humanos suficientes para garantizar la calidad y la continuidad de un registro de estas características.Aim: To assess the feasibility and results of application of Ambulatory Patient Groups (APG patient's classification system to the case-mix of patients seen at the Emergency Departments (ED of 6 Barcelona metropolitan area hospitals. Methods: Development of a minimum discharge data set specific for the Emergency Departments (CMBDAU. Gathering of relevant variables from a random sample of patients seen at the ED using the ED discharge reports. Use of the APG classification system to those episodes. Results: A total of 11.188 episodes were codified and grouped with the APG system. Fifteen diagnostics identified 25% of all episodes. Nearly 50% of all procedures performed at the

  19. Quantitative electromyography in ambulatory boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Verma, Sumit; Lin, Jenny; Travers, Curtis; McCracken, Courtney; Shah, Durga

    2017-12-01

    This study's objective was to evaluate quantitative electromyography (QEMG) using multiple-motor-unit (multi-MUP) analysis in Duchenne muscular dystrophy (DMD). Ambulatory DMD boys, aged 5-15 years, were evaluated with QEMG at 6-month intervals over 14 months. EMG was performed in the right biceps brachii (BB) and tibialis anterior (TA) muscles. Normative QEMG data were obtained from age-matched healthy boys. Wilcoxon signed-rank tests were performed. Eighteen DMD subjects were enrolled, with a median age of 7 (interquartile range 7-10) years. Six-month evaluations were performed on 14 subjects. QEMG showed significantly abnormal mean MUP duration in BB and TA muscles, with no significant change over 6 months. QEMG is a sensitive electrophysiological marker of myopathy in DMD. Preliminary data do not reflect a significant change in MUP parameters over a 6-month interval; long-term follow-up QEMG studies are needed to understand its role as a biomarker for disease progression. Muscle Nerve 56: 1361-1364, 2017. © 2017 Wiley Periodicals, Inc.

  20. Marginal ambulatory teaching cost under varying levels of service utilization.

    Science.gov (United States)

    Panton, D M; Mushlin, A I; Gavett, J W

    1980-06-01

    The ambulatory component of residency training jointly produces two products, namely, training and patient services. In costing educational programs of this type, two approaches are frequently taken. The first considers the total costs of the educational program, including training and patient services. These costs are usually constructed from historical accounting records. The second approach attempts to cost the joint products separately, based upon estimates of future changes in program costs, if the product in question is added to or removed from the program. The second approach relates to typical decisions facing the managers of medical centers and practices used for teaching purposes. This article reports such a study of costs in a primary-care residency training program in a hospital outpatient setting. The costs of the product, i.e., on-the-job training, are evaluated using a replacement-cost concept under different levels of patient services. The results show that the cost of the product, training, is small at full clinical utilization and is sensitive to changes in the volume of services provided.

  1. Parent assessment of medical student skills in ambulatory pediatrics

    Directory of Open Access Journals (Sweden)

    Erika Persson

    2013-09-01

    Full Text Available Background: Partnership with parents is a vital part of pediatric medical education, yet few studies have examined parent attitudes towards learners in pediatric settings. Methods: Questionnaires were used to determine parent and student assessment of professional and clinical skills (primary outcome and parent attitudes towards 3rd year medical students (secondary outcome at the University of Alberta. Chi Square, Kendall’s Tau and Kappa coefficients were calculated to compare parent and student responses in 8 areas: communication, respect, knowledge, listening, history taking, physical examination, supervision, and overall satisfaction. Results: Overall satisfaction with medical student involvement by parents was high: 56.7% of all parents ranked the encounter as ‘excellent’. Areas of lesser satisfaction included physician supervision of students. Compared to the parent assessment, students tended to underrate many of their skills, including communication, history taking and physical exam. There was no relationship between parent demographics and their attitude to rating any of the students’ skills. Conclusions: Parents were satisfied with medical student involvement in the care of their children. Areas identified for improvement included increased supervision of students in both history taking and physical examination. This is one of the largest studies examining parent attitudes towards pediatric students. The results may enhance undergraduate curriculum development and teaching in pediatric ambulatory clinics and strengthen the ongoing partnership between the community and teaching clinics.

  2. Utilization of lean management principles in the ambulatory clinic setting.

    Science.gov (United States)

    Casey, Jessica T; Brinton, Thomas S; Gonzalez, Chris M

    2009-03-01

    The principles of 'lean management' have permeated many sectors of today's business world, secondary to the success of the Toyota Production System. This management method enables workers to eliminate mistakes, reduce delays, lower costs, and improve the overall quality of the product or service they deliver. These lean management principles can be applied to health care. Their implementation within the ambulatory care setting is predicated on the continuous identification and elimination of waste within the process. The key concepts of flow time, inventory and throughput are utilized to improve the flow of patients through the clinic, and to identify points that slow this process -- so-called bottlenecks. Nonessential activities are shifted away from bottlenecks (i.e. the physician), and extra work capacity is generated from existing resources, rather than being added. The additional work capacity facilitates a more efficient response to variability, which in turn results in cost savings, more time for the physician to interact with patients, and faster completion of patient visits. Finally, application of the lean management principle of 'just-in-time' management can eliminate excess clinic inventory, better synchronize office supply with patient demand, and reduce costs.

  3. The use of ambulatory assessment in smoking cessation.

    Science.gov (United States)

    Vinci, Christine; Haslam, Aaron; Lam, Cho Y; Kumar, Santosh; Wetter, David W

    2018-08-01

    Ambulatory assessment of smoking behavior has greatly advanced our knowledge of the smoking cessation process. The current article first provides a brief overview of ecological momentary assessment for smoking cessation and highlights some of the primary advantages and scientific advancements made from this data collection method. Next, a discussion of how certain data collection tools (i.e., smoking topography and carbon monoxide detection) that have been traditionally used in lab-based settings are now being used to collect data in the real world. The second half of the paper focuses on the use of wearable wireless sensors to collect data during the smoking cessation process. Details regarding how these sensor-based technologies work, their application to newer tobacco products, and their potential to be used as intervention tools are discussed. Specific focus is placed on the opportunity to utilize novel intervention approaches, such as Just-In-Time Adaptive Interventions, to intervene upon smoking behavior. Finally, a discussion of some of the current challenges and limitations related to using sensor-based tools for smoking cessation are presented, along with suggestions for future research in this area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The content of hope in ambulatory patients with colon cancer.

    Science.gov (United States)

    Beckman, Emily S; Helft, Paul R; Torke, Alexia M

    2013-01-01

    Although hope is a pervasive concept in cancer treatment, we know little about how ambulatory patients with cancer define or experience hope. We explored hope through semistructured interviews with ten patients with advanced (some curable, some incurable) colon cancer at one Midwestern, university-based cancer center. We conducted a thematic analysis to identify key concepts related to patient perceptions of hope. Although we did ask specifically about hope, patients also often revealed their hopes in response to indirect questions or by telling stories about their cancer experience. We identified four major themes related to hope: 1) hope is essential, 2) a change in perspective, 3) the content of hope, and 4) communicating about hope. The third theme, the content of hope, included three subthemes: a) the desire for normalcy, b) future plans, and c) hope for a cure. We conclude that hope is an essential concept for patients undergoing treatment for cancer as it pertains to their psychological well-being and quality of life, and hope for a cure is not and should not be the only consideration. In a clinical context, the exploration of patients' hopes and aspirations in light of their cancer diagnosis is important because it provides a frame for understanding their goals for treatment. Exploration of the content of patients' hope can not only help to illuminate misunderstandings but also clarify how potential treatments may or may not contribute to achieving patients' goals.

  5. Ambulatory EHR functionality: a comparison of functionality lists.

    Science.gov (United States)

    Drury, Barbara M

    2006-01-01

    There is a proliferation of lists intended to define and clarify the functionality of an ambulatory electronic health record system. These lists come from both private and public entities and vary in terminology, granularity, usability, and comprehensiveness. For example, functionality regarding a problem list includes the following possible definitions: * "Create and maintain patient-specific problem lists," from the HL7 Electronic Health Record Draft Standard for Trial Use. * "Provide a flexible mechanism for retrieval of encounter information that can be organized by diagnosis, problem, problem type," from the Bureau of Primary Health Care. * "The system shall associate encounters, orders, medications and notes with one or more problems," from the Certification Commission on Health Information Technology. * "Displays dates of problems on problem list," from COPIC Insurance Co. * "Shall automatically close acute problems using an automated algorithm," from the Physicians Foundations HIT Subcommittee. This article will compare the attributes of these five electronic health record functionality lists and their usefulness to different audiences-clinicians, application developers and payers.

  6. CT features of peritonitis associated with continuous ambulatory peritoneal dialysis

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji Young; Byun, Jae Young; Lee, Sang Hoon; Kwon, Tae Ahn; Kim, Yeon Kil; Kim, Young Ok; Song, Kyung Sup [The Catholic Univ. of Korea College of Medicine, Seoul (Korea, Republic of)

    1999-01-01

    To evaluate the CT findings of peritonitis associated with continuous ambulatory peritoneal dialysis(CAPD). We retrospectively analyzed CT scans of 14 symptomatic patients with peritonitis after CAPD. Diffuse abdominal pain was present in 11, fever in two, and abdominal mass with vomiting in one. The mean duration of CAPD ranged from 10 months to 5 years(mean : 3.9 years). On abdominal CT, we evaluated the presence and location of ascites, bowel wall thickening, cocoon formation, the pattern of enhancement of peritoneal thickening, the presence of calcifications in the peritoneum, and mesenteric and omental change. On enhanced CT, multiloculated ascites was observed in all cases(n=14) ; it was located mainly in the pelvic cavity with small multi-loculated fluid collections in the peritoneal cavity(n=13), including the lesser sac(n=3). In one patient, ascites was located in the space between the greater omentum and anterior peritoneal surface. CT showed ileus in 12 cases, small bowel wall thickening in 11, and cocoon formation in five. Uneven but smooth thickening of the peritoneum, with contrast enhancement, was seen in eight cases, and in five of these, peritoneal thickening was more prominent in the anterior peritoneum. Other findings included reticular opacity in two cases, hematoma of the rectus muscle in one, and umbilical hernia in one. Multiloculated fluid collection, ileus, small bowel wall thickening, uneven but smooth peritoneal thickening, and cocoon formation appear to be CT features of CAPD peritonitis.

  7. CT features of peritonitis associated with continuous ambulatory peritoneal dialysis

    International Nuclear Information System (INIS)

    Yun, Ji Young; Byun, Jae Young; Lee, Sang Hoon; Kwon, Tae Ahn; Kim, Yeon Kil; Kim, Young Ok; Song, Kyung Sup

    1999-01-01

    To evaluate the CT findings of peritonitis associated with continuous ambulatory peritoneal dialysis(CAPD). We retrospectively analyzed CT scans of 14 symptomatic patients with peritonitis after CAPD. Diffuse abdominal pain was present in 11, fever in two, and abdominal mass with vomiting in one. The mean duration of CAPD ranged from 10 months to 5 years(mean : 3.9 years). On abdominal CT, we evaluated the presence and location of ascites, bowel wall thickening, cocoon formation, the pattern of enhancement of peritoneal thickening, the presence of calcifications in the peritoneum, and mesenteric and omental change. On enhanced CT, multiloculated ascites was observed in all cases(n=14) ; it was located mainly in the pelvic cavity with small multi-loculated fluid collections in the peritoneal cavity(n=13), including the lesser sac(n=3). In one patient, ascites was located in the space between the greater omentum and anterior peritoneal surface. CT showed ileus in 12 cases, small bowel wall thickening in 11, and cocoon formation in five. Uneven but smooth thickening of the peritoneum, with contrast enhancement, was seen in eight cases, and in five of these, peritoneal thickening was more prominent in the anterior peritoneum. Other findings included reticular opacity in two cases, hematoma of the rectus muscle in one, and umbilical hernia in one. Multiloculated fluid collection, ileus, small bowel wall thickening, uneven but smooth peritoneal thickening, and cocoon formation appear to be CT features of CAPD peritonitis

  8. Profiling outcomes of ambulatory care: casemix affects perceived performance.

    Science.gov (United States)

    Berlowitz, D R; Ash, A S; Hickey, E C; Kader, B; Friedman, R; Moskowitz, M A

    1998-06-01

    The authors explored the role of casemix adjustment when profiling outcomes of ambulatory care. The authors reviewed the medical records of 656 patients with hypertension, diabetes, or chronic obstructive pulmonary disease (COPD) receiving care at one of three Department of Veterans Affairs medical centers. Outcomes included measures of physiological control for hypertension and diabetes, and of exacerbations for COPD. Predictors of poor outcomes, including physical examination findings, symptoms, and comorbidities, were identified and entered into regression models. Observed minus expected performance was described for each site, both before and after casemix adjustment. Risk-adjustment models were developed that were clinically plausible and had good performance properties. Differences existed among the three sites in the severity of the patients being cared for. For example, the percentage of patients expected to have poor blood pressure control were 35% at site 1, 37% at site 2, and 44% at site 3 (P Casemix-adjusted measures of performance were different from unadjusted measures. Sites that were outliers (P Casemix adjustment models can be developed for outpatient medical conditions. Sites differ in the severity of patients they treat, and adjusting for these differences can alter judgments of site performance. Casemix adjustment is necessary when profiling outpatient medical conditions.

  9. Ambulatory anesthetic care in pediatric tonsillectomy: challenges and risks

    Directory of Open Access Journals (Sweden)

    Collins C

    2015-11-01

    Full Text Available Corey Collins Massachusetts Eye and Ear Infirmary, Department of Anesthesiology, Harvard Medical School, Boston, MA, USA Abstract: Pediatric tonsillectomy is a common surgery around the world. Surgical indications are obstructive sleep apnea and recurrent tonsillitis. Despite the frequency of tonsillectomy in children, most aspects of perioperative care are supported by scant evidence. Recent guidelines provide important recommendations although clinician adherence or awareness of published guidance is variable and inconsistent. Current guidelines establish criteria for screening children for post-tonsillectomy observation, though most are based on low-grade evidence or consensus. Current recommendations for admission are: age <3 years; significant obstructive sleep apnea; obesity; and significant comorbid medical conditions. Recent reports have challenged each criterion and recommend admission criteria that are based on clinically relevant risks or observed clinical events such as adverse respiratory events in the immediate recovery period. Morbidity and mortality are low though serious complications occur regularly and may be amenable to improvements in postoperative monitoring, improved analgesic regimens, and parental education. Careful consideration of risks attributable to individual patients is vital to determine overall suitability for ambulatory discharge. Keywords: adverse airway events, complications, guidelines, mortality, OSA, pediatric anesthesia

  10. Visual Motion Perception

    Science.gov (United States)

    1991-08-15

    displace- ment limit for motion in random dots," Vision Res., 24, 293-300. Pantie , A. & K. Turano (1986) "Direct comparisons of apparent motions...Hicks & AJ, Pantie (1978) "Apparent movement of successively generated subjec. uve figures," Perception, 7, 371-383. Ramachandran. V.S. & S.M. Anstis...thanks think deaf girl until world uncle flag home talk finish short thee our screwdiver sonry flower wrCstlir~g plan week wait accident guilty tree

  11. Coupled transverse motion

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs

  12. Childhood astrovirus-associated diarrhea in the ambulatory setting in a Public Hospital in Cordoba city, Argentina

    Directory of Open Access Journals (Sweden)

    Giordano Miguel O.

    2004-01-01

    Full Text Available Human astroviruses have been increasingly identified as important agents of diarrheal disease in children. However, the disease burden of astrovirus infection is still incompletely assessed. This paper reports results on the epidemiological and clinical characteristics of astrovirus-associated diarrhea, as well as the impact of astrovirus infection on the ambulatory setting at a Public Hospital in Córdoba city, Argentina. From February 2001 through January 2002, 97 randomly selected outpatient visits for diarrhea among children 0.05. According to our estimation about one out of seventy-four children in this cohort would be assisted annually for an astroviral-diarrheal episode in the Public Hospital and one out of eight diarrheal cases could be attributed to astrovirus infection. Astrovirus is a common symptomatic infection in pediatric outpatient visits in the public hospital in the study area, contributing 12.37% of the overall morbidity from diarrhea.

  13. Motion sickness, stress and the endocannabinoid system.

    Directory of Open Access Journals (Sweden)

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  14. Subtle Motion Analysis and Spotting using the Riesz Pyramid

    OpenAIRE

    Arango , Carlos ,; Alata , Olivier; Emonet , Rémi; Legrand , Anne-Claire; Konik , Hubert

    2018-01-01

    International audience; Analyzing and temporally spotting motions which are almost invisible to the human eye might reveal interesting information about the world. However, detecting these events is difficult due to their short duration and low intensities. Taking inspiration from video magnification techniques, we design a workflow for analyzing and temporally spotting subtle motions based on the Riesz pyramid. In addition, we propose a filtering and masking scheme that segments motions of i...

  15. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Science.gov (United States)

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  16. Relationship Between 24-Hour Ambulatory Blood Pressure and Cognitive Function in Community-Living Older Adults: The UCSD Ambulatory Blood Pressure Study.

    Science.gov (United States)

    Conway, Kyle S; Forbang, Nketi; Beben, Tomasz; Criqui, Michael H; Ix, Joachim H; Rifkin, Dena E

    2015-12-01

    Twenty-four-hour ambulatory blood pressure (BP) patterns have been associated with diminished cognitive function in hypertensive and very elderly populations. The relationship between ambulatory BP patterns and cognitive function in community-living older adults is unknown. We conducted a cross-sectional study in which 24-hour ambulatory BP, in-clinic BP, and cognitive function measures were obtained from 319 community-living older adults. The mean age was 72 years, 66% were female, and 13% were African-American. We performed linear regression with performance on the Montreal Cognitive Assessment (MoCA) as the primary outcome and 24-hour BP patterns as the independent variable, adjusting for age, sex, race/ethnicity, education, and comorbidities. Greater nighttime systolic dipping (P = 0.046) and higher 24-hour diastolic BP (DBP; P = 0.015) were both significantly associated with better cognitive function, whereas 24-hour systolic BP (SBP), average real variability, and ambulatory arterial stiffness were not. Higher 24-hour DBP and greater nighttime systolic dipping were significantly associated with improved cognitive function. Future studies should examine whether low 24-hour DBP and lack of nighttime systolic dipping predict future cognitive impairment. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Diagnósticos de enfermagem em pacientes com o Vírus da Imunodeficiência Humana/ Síndrome da Imunodeficiência Adquirida em assistência ambulatorial Diagnósticos de enfermería en pacientes con el Virus de la Inmunodeficiencia Humana/Síndrome de la Inmunodeficiencia Adquirida en asistencia de ambulatorio Nursing diagnoses in patients with Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome in outpatient care

    Directory of Open Access Journals (Sweden)

    Gilmara Holanda da Cunha

    2010-01-01

    Full Text Available OBJETIVO: Identificar diagnósticos de enfermagem em portadores de Vírus da Imunodeficiência Humana/ Síndrome da Imunodeficiência Adquirida (HIV/AIDS em assistência ambulatorial. MÉTODOS: Estudo transversal e descritivo realizado por meio da aplicação de um questionário com referencial na Teoria do Autocuidado de Orem. A amostra foi de 51 pacientes atendidos no ambulatório de um hospital público na cidade de Fortaleza-CE. RESULTADOS: Foram identificados 17 diagnósticos de enfermagem, destacando-se risco de infecção, disfunção sexual, déficit no autocuidado para alimentação e controle ineficaz do regime terapêutico. CONCLUSÃO: Os diagnósticos de enfermagem obtidos identificaram os principais problemas apresentados pelos portadores de HIV/AIDS, verificando déficits no autocuidado e em educação em saúde. O estudo contribuiu para que as intervenções de enfermagem sejam adequadas e direcionadas às necessidades existentes.OBJETIVO: Identificar diagnósticos de enfermería en portadores del Virus de la Inmunodeficiencia Humana/Síndrome de la Inmunodeficiencia Adquirida (HIV/SIDA en asistencia de ambulatorio. MÉTODOS: Estudio transversal y descriptivo realizado por medio de la aplicación de un cuestionario basado en la Teoría del Auto-cuidado de Orem. La muestra fue de 51 pacientes atendidos en el ambulatorio de un hospital público en la ciudad de Fortaleza-CE. RESULTADOS: Fueron identificados 17 diagnósticos de enfermería, destacándose: riesgo de infección, disfunción sexual, déficit en el auto-cuidado para alimentación y control ineficaz del régimen terapéutico. CONCLUSIÓN: Los diagnósticos de enfermería obtenidos identificaron los principales problemas presentados por los portadores de HIV/SIDA, verificándose déficits en el auto-cuidado y en la educación en salud. El estudio contribuye para que las intervenciones de enfermería sean adecuadas y dirigidas a las necesidades existentes.OBJECTIVE: To

  18. Human engineering

    International Nuclear Information System (INIS)

    Yang, Seong Hwan; Park, Bum; Gang, Yeong Sik; Gal, Won Mo; Baek, Seung Ryeol; Choe, Jeong Hwa; Kim, Dae Sung

    2006-07-01

    This book mentions human engineering, which deals with introduction of human engineering, Man-Machine system like system design, and analysis and evaluation of Man-Machine system, data processing and data input, display, system control of man, human mistake and reliability, human measurement and design of working place, human working, hand tool and manual material handling, condition of working circumstance, working management, working analysis, motion analysis working measurement, and working improvement and design in human engineering.

  19. UMCE-FM: Untethered Motion Capture Evaluation for Flightline Maintenance Support

    National Research Council Canada - National Science Library

    Kider, Jr., Joseph T; Stocker, Catherine R; Badler, Norman I

    2008-01-01

    .... The primary objective was to determine the potential of untethered motion capture capabilities for real-time human subject motion capture and performance data collection with full-scale physical props...

  20. Preparing for the primary care clinic: an ambulatory boot camp for internal medicine interns

    Science.gov (United States)

    Esch, Lindsay M.; Bird, Amber-Nicole; Oyler, Julie L.; Lee, Wei Wei; Shah, Sachin D.; Pincavage, Amber T.

    2015-01-01

    Introduction Internal medicine (IM) interns start continuity clinic with variable ambulatory training. Multiple other specialties have utilized a boot camp style curriculum to improve surgical and procedural skills, but boot camps have not been used to improve interns’ ambulatory knowledge and confidence. The authors implemented and assessed the impact of an intern ambulatory boot camp pilot on primary care knowledge, confidence, and curricular satisfaction. Methods During July 2014, IM interns attended ambulatory boot camp. It included clinically focused case-based didactic sessions on common ambulatory topics as well as orientation to the clinic and electronic medical records. Interns anonymously completed a 15-question pre-test on topics covered in the boot camp as well as an identical post-test after the boot camp. The interns were surveyed regarding their confidence and satisfaction. Results Thirty-eight interns participated in the boot camp. Prior to the boot camp, few interns reported confidence managing common outpatient conditions. The average pre-test knowledge score was 46.3%. The average post-test knowledge score significantly improved to 76.1% (pinterns reported that the boot camp was good preparation for clinics and 97% felt that the boot camp boosted their confidence. Conclusions The ambulatory boot camp pilot improved primary care knowledge, and interns thought it was good preparation for clinic. The ambulatory boot camp was well received and may be an effective way to improve the preparation of interns for primary care clinic. Further assessment of clinical performance and expansion to other programs and specialties should be considered. PMID:26609962