WorldWideScience

Sample records for ambient pressure xps

  1. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Derek Robert [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  2. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    International Nuclear Information System (INIS)

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-01-01

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  3. Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation

    Science.gov (United States)

    Muneshwar, Triratna; Cadien, Ken

    2018-03-01

    In this article we compare x-ray photoelectron spectroscopy (XPS) measurements on bare- and capped- zirconium nitride (ZrN) films to investigate the effect of ambient sample oxidation on the detected bound O in the form of oxide ZrO2 and/or oxynitride ZrOxNy. ZrN films in both bare- and Al2O3/AlN capped- XPS samples were grown by plasma-enhanced atomic layer deposition (PEALD) technique using tetrakis dimethylamino zirconium (TDMAZr) precursor, forming gas (5% H2, rest N2) inductively coupled plasma (ICP), and as received research grade process gases under identical process conditions. Capped samples were prepared by depositing 1 nm thick PEALD AlN on ZrN, followed by additional deposition of 1 nm thick ALD Al2O3, without venting of ALD reactor. On bare ZrN sample at room temperature, spectroscopic ellipsometry (SE) measurements with increasing ambient exposure times (texp) showed a self-limiting surface oxidation with the oxide thickness (dox) approaching 3.7 ± 0.02 nm for texp > 120 min. In XPS data measured prior to sample sputtering (tsput = 0), ZrO2 and ZrOxNy were detected in bare- samples, whereas only ZrN and Al2O3/AlN from capping layer were detected in capped- samples. For bare-ZrN samples, appearance of ZrO2 and ZrOxNy up to sputter depth (dsput) of 15 nm in depth-profile XPS data is in contradiction with measured dox = 3.7 nm, but explained from sputtering induced atomic inter-diffusion within analyzed sample. Appearance of artifacts in the XPS spectra from moderately sputtered (dsput = 0.2 nm and 0.4 nm) capped-ZrN sample, provides an evidence to ion-bombardment induced modifications within analyzed sample.

  4. Densification of silica glass at ambient pressure

    International Nuclear Information System (INIS)

    Zheng Lianqing; An Qi; Fu Rongshan; Ni Sidao; Luo, S.-N.

    2006-01-01

    We show that densification of silica glass at ambient pressure as observed in irradiation experiments can be attributed to defect generation and subsequent structure relaxation. In our molecular dynamics simulations, defects are created by randomly removing atoms, by displacing atoms from their nominal positions in an otherwise intact glass, and by assigning certain atom excess kinetic energy (simulated ion implantation). The former forms vacancies; displacing atoms and ion implantation produce both vacancies and 'interstitials'. Appreciable densification is induced by these defects after equilibration of the defective glasses. The structural and vibrational properties of the densified glasses are characterized, displaying resembling features regardless of the means of densification. These results indicate that relaxation of high free-energy defects into metastable amorphous structures enriched in atomic coordination serves as a common mechanism for densification of silica glass at ambient pressure

  5. Improved Ambient Pressure Pyroelectric Ion Source

    Science.gov (United States)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  6. Ambient pressure photoemission spectroscopy of metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baikie, Iain D., E-mail: iain@kptechnology.ltd.uk; Grain, Angela C.; Sutherland, James; Law, Jamie

    2014-12-30

    Highlights: • Ambient pressure photoemission spectroscopy of metals. • Rastered photon energy scan overcomes inelastic scattering. • Relationship between photoemission threshold and contact potential difference. - Abstract: We describe a novel photoemission technique utilizing a traditional Kelvin probe as a detector of electrons/atmospheric ions ejected from metallic surfaces (Au, Ag, Cu, Fe, Ni, Ti, Zn, Al) illuminated by a deep ultra-violet (DUV) source under ambient pressure. To surmount the limitation of electron scattering in air the incident photon energy is rastered rather than applying a variable retarding electric field as is used with UPS. This arrangement can be applied in several operational modes: using the DUV source to determine the photoemission threshold (Φ) with 30–50 meV resolution and also the Kelvin probe, under dark conditions, to measure contact potential difference (CPD) between the Kelvin probe tip and the metallic sample with an accuracy of 1–3 meV. We have studied the relationship between the photoelectric threshold and CPD of metal surfaces cleaned in ambient conditions. Inclusion of a second spectroscopic visible source was used to confirm a semiconducting oxide, possibly Cu{sub 2}O, via surface photovoltage measurements with the KP. This dual detection system can be easily extended to controlled gas conditions, relative humidity control and sample heating/cooling.

  7. Bacterial decontamination using ambient pressure nonthermal discharges

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemical and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.

  8. Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present

    Science.gov (United States)

    Arble, Chris; Jia, Meng; Newberg, John T.

    2018-05-01

    Chemical interactions which occur at a heterogeneous interface between a gas and substrate are critical in many technological and natural processes. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental and chemical specific, with the ability to probe sample surfaces in the presence of a gas phase. In this review, we discuss the evolution of lab-based AP-XPS instruments, from the first development by Siegbahn and coworkers up through modern day systems. A comprehensive overview is given of heterogeneous experiments investigated to date via lab-based AP-XPS along with the different instrumental metrics that affect the quality of sample probing. We conclude with a discussion of future directions for lab-based AP-XPS, highlighting the efficacy for this in-demand instrument to continue to expand in its ability to significantly advance our understanding of surface chemical processes under in situ conditions in a technologically multidisciplinary setting.

  9. Ambient pressure sensitivity of microbubbles investigated through a parameter study

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2009-01-01

    Measurements on microbubbles clearly indicate a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations....... The behavior of two microbubbles corresponding to two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20...... found, although the reduction is not completely linear as a function of the ambient pressure....

  10. Simulation of microbubble response to ambient pressure changes

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    The theory on microbubbles clearly indicates a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations....... The behaviour of two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20 cycles driving pulse, a reduction...... is not completely linear as a function of the ambient pressure....

  11. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  12. Blast wave parameters at diminished ambient pressure

    Science.gov (United States)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  13. Spectroscopic studies of surface-gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    International Nuclear Information System (INIS)

    Rupprechter, Guenther; Weilach, Christian

    2008-01-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH 3 OH, CH 4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions

  14. XPS analysis for cubic boron nitride crystal synthesized under high pressure and high temperature using Li3N as catalysis

    International Nuclear Information System (INIS)

    Guo, Xiaofei; Xu, Bin; Zhang, Wen; Cai, Zhichao; Wen, Zhenxing

    2014-01-01

    Highlights: • The cBN was synthesized by Li 3 N as catalyst under high pressure and high temperature (HPHT). • The film coated on the as-grown cBN crystals was studied by XPS. • The electronic structure variation in the film was investigated. • The growth mechanism of cubic boron nitride crystal was analyzed briefly. - Abstract: Cubic boron nitride (cBN) single crystals are synthesized with lithium nitride (Li3N) as catalyst under high pressure and high temperature. The variation of electronic structures from boron nitride of different layers in coating film on the cBN single crystal has been investigated by X-ray photoelectron spectroscopy. Combining the atomic concentration analysis, it was shown that from the film/cBN crystal interface to the inner, the sp 2 fractions are decreasing, and the sp 3 fractions are increasing in the film at the same time. Moreover, by transmission electron microscopy, a lot of cBN microparticles are found in the interface. For there is no Li 3 N in the film, it is possible that Li 3 N first reacts with hexagonal boron nitride to produce Li 3 BN 2 during cBN crystals synthesis under high pressure and high temperature (HPHT). Boron and nitrogen atoms, required for cBN crystals growth, could come from the direct conversion from hexagonal boron nitride with the catalysis of Li 3 BN 2 under high pressure and high temperature, but not directly from the decomposition of Li 3 BN 2

  15. Alterations in MAST suit pressure with changes in ambient temperature.

    Science.gov (United States)

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  16. Superheated emulsions in neutron spectrometry by varying ambient pressure

    International Nuclear Information System (INIS)

    Das, Mala; Sawamura, Teruko

    2005-01-01

    The principle of present work lies on the dependence of the threshold neutron energy on the dimensionless quantity ''degree of metastability (ss)'' of superheated liquids. The response of the superheated emulsions consists of the drops of superheated liquid (C 2 Cl 2 F 4 , b.p. 3.77 deg. C) has been measured at different 'ss' by varying ambient pressure at different temperatures, in the presence of neutrons generated in Pb by a (γ,n) reaction from 45 MeV electron LINAC of Hokkaido University. To unfold the neutron energy spectrum, a relationship has been developed between the 'ss' of superheated liquids and the threshold neutron energy. The spectrum at the detector position has been calculated by the MCNP code and a comparison has been made with the experimental spectrum. The utilisation of 'ss' is more flexible as this relation can be applied to both positive and negative ambient pressures as well as at different ambient temperatures

  17. Superconducting Open-Framework Allotrope of Silicon at Ambient Pressure

    Science.gov (United States)

    Sung, Ha-Jun; Han, W. H.; Lee, In-Ho; Chang, K. J.

    2018-04-01

    Diamond Si is a semiconductor with an indirect band gap that is the basis of modern semiconductor technology. Although many metastable forms of Si were observed using diamond anvil cells for compression and chemical precursors for synthesis, no metallic phase at ambient conditions has been reported thus far. Here we report the prediction of pure metallic Si allotropes with open channels at ambient pressure, unlike a cubic diamond structure in covalent bonding networks. The metallic phase termed P 6 /m -Si6 can be obtained by removing Na after pressure release from a novel Na-Si clathrate called P 6 /m -NaSi6 , which is predicted through first-principles study at high pressure. We identify that both P 6 /m -NaSi6 and P 6 /m -Si6 are stable and superconducting with the critical temperatures of about 13 and 12 K at ambient pressure, respectively. The prediction of new Na-Si and Si clathrate structures presents the possibility of exploring new exotic allotropes useful for Si-based devices.

  18. Photoelectron spectroscopy under ambient pressure and temperature conditions

    International Nuclear Information System (INIS)

    Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.; Salmeron, Miquel

    2009-01-01

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  19. Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2010-01-01

    Local blood pressure measurements provide important information on the state of health of organs in the body and can be used to diagnose diseases in the heart, lungs, and kidneys. This paper presents an approach for investigating the ambient pressure sensitivity of a contrast agent using diagnostic...

  20. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bluhm, Hendrik, E-mail: hbluhm@lbl.gov [Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Selective oxidation of CH{sub 3}OH to CH{sub 2}O over a Cu foil has been studied by in situ gas phase XPS. • C1s and O1s spectra were used for identification of reagents and reaction products in a gas phase. • Catalytic data (conversions and reaction products yields) calculated from XPS spectra are in a good agreement with QMS results. • The possible reasons of the observed variations in reaction mechanism have been discussed. - Abstract: Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  1. Ambient pressure hydrometallurgical conversion of arsenic trioxide to crystalline scorodite

    Energy Technology Data Exchange (ETDEWEB)

    Debekaussen, R. [Corus Consulting and Technical Services, Delft (Netherlands); Droppert, D. [Solumet Inc., Montreal, PQ (Canada); Demopoulos, G. P. [McGill Univ., Dept. of Metallurgical Enginering, Montreal, PQ (Canada)

    2001-06-01

    Development of a novel process for the ambient pressure conversion of arsenic trioxide, a common, but extremely toxic by-product of the non-ferrous smelting industry, is described. The process consists of three main stages; (1) dissolution of arsenic trioxide, (2) oxidation of trivalent arsenic with the addition of hydrogen peroxide at 95 degree C, to pentavalent arsenic, and (3) step-wise precipitation of crystalline scorodite from highly concentrated arsenic containing solutions, by operating below a characteristics induction pH in the presence of seed material. The technical feasibility of the process has been confirmed by bench-scale testing of industrial flue dust material or acid plant effluents. 30 refs., 2 tabs., 5 figs.

  2. Reactor Design for CO2 Photo-Hydrogenation toward Solar Fuels under Ambient Temperature and Pressure

    Directory of Open Access Journals (Sweden)

    Chun-Ying Chen

    2017-02-01

    Full Text Available Photo-hydrogenation of carbon dioxide (CO2 is a green and promising technology and has received much attention recently. This technique could convert solar energy under ambient temperature and pressure into desirable and sustainable solar fuels, such as methanol (CH3OH, methane (CH4, and formic acid (HCOOH. It is worthwhile to mention that this direction can not only potentially depress atmospheric CO2, but also weaken dependence on fossil fuel. Herein, 1 wt % Pt/CuAlGaO4 photocatalyst was successfully synthesized and fully characterized by ultraviolet-visible light (UV-vis spectroscopy, X-ray diffraction (XRD, Field emission scanning electron microscopy using energy dispersive spectroscopy analysis (FE-SEM/EDS, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET, respectively. Three kinds of experimental photo-hydrogenation of CO2 in the gas phase, liquid phase, and gas-liquid phase, correspondingly, were conducted under different H2 partial pressures. The remarkable result has been observed in the gas-liquid phase. Additionally, increasing the partial pressure of H2 would enhance the yield of product. However, when an extra amount of H2 is supplied, it might compete with CO2 for occupying the active sites, resulting in a negative effect on CO2 photo-hydrogenation. For liquid and gas-liquid phases, CH3OH is the major product. Maximum total hydrocarbons 8.302 µmol·g−1 is achieved in the gas-liquid phase.

  3. Numerical study of ambient pressure for laser-induced bubble near a rigid boundary

    Science.gov (United States)

    Li, BeiBei; Zhang, HongChao; Han, Bing; Lu, Jian

    2012-07-01

    The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.

  4. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany); Kibies, Patrick; Frach, Roland; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund (Germany); Imoto, Sho, E-mail: sho.imoto@theochem.rub.de; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Suladze, Saba; Winter, Roland [Physikalische Chemie I, Technische Universität Dortmund, 44227 Dortmund (Germany)

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  5. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  6. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    International Nuclear Information System (INIS)

    Hölzl, Christoph; Horinek, Dominik; Kibies, Patrick; Frach, Roland; Kast, Stefan M.; Imoto, Sho; Marx, Dominik; Suladze, Saba; Winter, Roland

    2016-01-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  7. An in situ near-ambient pressure X-ray Photoelectron Spectroscopy study of Mn polarised anodically in a cell with solid oxide electrolyte

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; Amati, Matteo; Bocchetta, Patrizia; Dal Zilio, Simone; Knop-Gericke, Axel; Vesselli, Erik; Kiskinova, Maya

    2015-01-01

    This paper reports an in situ study of the anodic behavior of a model solid oxide electrolysis cell (SOEC) by means of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) combined with near edge X-ray absorption fine structure (NEXAFS) measurements. The focus is on the anodic surface chemistry of MnO x , a model anodic material already considered in cognate SOFC-related studies, during electrochemical operation in CO 2 , CO 2 /H 2 O and H 2 O ambients. The XPS and NEXAFS results we obtained, complemented by electrochemical measurements and SEM characterisation, reveal the chemical evolution of Mn under electrochemical control. MnO is the stable chemical form at open-circuit potential (OCP), while Mn 3 O 4 forms under anodic polarisation in all the investigated gas ambients. Carbon deposits are present on the Mn electrode at OCP, but they are readily oxidised under anodic conditions. Prolonged operation of the MnO x anode leads to pitting of the Mn films, damaging of the triple-phase boundary region and also to formation of discontinuities in the Mn patch. This is accompanied by chemical transformations of the electrolyte and formation of ZrC without impact on the surface chemistry of the Mn-based anode

  8. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years.

    Directory of Open Access Journals (Sweden)

    Qing Chen

    Full Text Available Several studies have suggested an association between ambient air temperature and blood pressure. However, this has not been reliably confirmed by longitudinal studies. Also, whether the reaction to temperature stimulation is modified by other factors such as antihypertensive medication is rarely investigated. The present study explores the relationship between ambient temperature and blood pressure, without and with antihypertensive medication, in a study of 1,831 hypertensive patients followed up for three years, in two or four weekly check ups, accumulating 62,452 follow-up records. Both baseline and follow-up blood pressure showed an inverse association with ambient temperature, which explained 32.4% and 65.6% of variation of systolic blood pressure and diastolic blood pressure (P<0.05 respectively. The amplitude of individual blood pressure fluctuation with temperature throughout a year (a 29 degrees centigrade range was 9.4/7.3 mmHg. Medication with angiotensin converting enzyme inhibitor benazepril attenuated the blood pressure fluctuation by 2.4/1.3 mmHg each year, though the inverse association of temperature and blood pressure remained. Gender, drinking behavior and body mass index were also found to modify the association between temperature and diastolic blood pressure. The results indicate that ambient temperature may negatively regulate blood pressure. Hypertensive patients should monitor and treat blood pressure more carefully in cold days, and it could be especially important for the males, thinner people and drinkers.

  9. Dependence of the subharmonic signal from contrast agent microbubbles on ambient pressure: A theoretical analysis.

    Science.gov (United States)

    Jiménez-Fernández, J

    2018-01-01

    This paper investigates the dependence of the subharmonic response in a signal scattered by contrast agent microbubbles on ambient pressure to provide quantitative estimations of local blood pressure. The problem is formulated by assuming a gas bubble encapsulated by a shell of finite thickness with dynamic behavior modeled by a nonlinear viscoelastic constitutive equation. For ambient overpressure compatible with the clinical range, the acoustic pressure intervals where the subharmonic signal may be detected (above the threshold for the onset and below the limit value for the first chaotic transition) are determined. The analysis shows that as the overpressure is increased, all harmonic components are displaced to higher frequencies. This displacement is significant for the subharmonic of order 1/2 and explains the increase or decrease in the subharmonic amplitude with ambient pressure described in previous works. Thus, some questions related to the monotonic dependence of the subharmonic amplitude on ambient pressure are clarified. For different acoustic pressures, quantitative conditions for determining the intervals where the subharmonic amplitude is a monotonic or non-monotonic function of the ambient pressure are provided. Finally, the influence of the ambient pressure on the subharmonic resonance frequency is analyzed.

  10. CO dissociation and CO hydrogenation on smooth and ion-bombarded Pd(1 1 1): SFG and XPS spectroscopy at mbar pressures

    Science.gov (United States)

    Rupprechter, G.; Kaichev, V. V.; Unterhalt, H.; Morkel, M.; Bukhtiyarov, V. I.

    2004-07-01

    The CO dissociation probability on transition metals is often invoked to explain the product distribution (selectivity) of catalytic CO hydrogenation. Along these lines, we have investigated CO adsorption and dissociation on smooth and ion-bombarded Pd(1 1 1) at pressures up to 1 mbar using vibrational sum frequency generation (SFG) and X-ray photoelectron spectroscopy (XPS). Under high pressure, CO adsorbate structures were observed that were identical to high-coverage structures in UHV. On ion-bombarded surfaces an additional species was detected which was attributed to CO bridge bonded to defect (low-coordinated) sites. On both surfaces, no indications of CO dissociation were found even after hours of 0.1 mbar CO exposure. However, exposing CO/H 2 mixtures to ion-bombarded Pd(1 1 1) produced carbonaceous deposits suggesting CH xO species as precursors for CO bond cleavage and that the formation of CH xO is facilitated by surface defects. The relevance of the observations for CO hydrogenation on Pd catalysts is discussed.

  11. CO dissociation and CO hydrogenation on smooth and ion-bombarded Pd(1 1 1): SFG and XPS spectroscopy at mbar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Rupprechter, G.; Kaichev, V.V.; Unterhalt, H.; Morkel, M.; Bukhtiyarov, V.I

    2004-07-31

    The CO dissociation probability on transition metals is often invoked to explain the product distribution (selectivity) of catalytic CO hydrogenation. Along these lines, we have investigated CO adsorption and dissociation on smooth and ion-bombarded Pd(1 1 1) at pressures up to 1 mbar using vibrational sum frequency generation (SFG) and X-ray photoelectron spectroscopy (XPS). Under high pressure, CO adsorbate structures were observed that were identical to high-coverage structures in UHV. On ion-bombarded surfaces an additional species was detected which was attributed to CO bridge bonded to defect (low-coordinated) sites. On both surfaces, no indications of CO dissociation were found even after hours of 0.1 mbar CO exposure. However, exposing CO/H{sub 2} mixtures to ion-bombarded Pd(1 1 1) produced carbonaceous deposits suggesting CH{sub x}O species as precursors for C---O bond cleavage and that the formation of CH{sub x}O is facilitated by surface defects. The relevance of the observations for CO hydrogenation on Pd catalysts is discussed.

  12. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  13. Non-invasive ambient pressure estimation using non-linear ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup

    Many attempts to find a non-invasive procedure to measure the blood pressure locally in the body have been made. This dissertation focuses on the approaches which utilize highly compressible ultrasound contrast agents as ambient pressure sensors. The literature within the topic has been reviewed...

  14. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil

    Science.gov (United States)

    Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice

    2004-01-01

    We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...

  15. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    Science.gov (United States)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High

  16. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  17. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, John T., E-mail: jnewberg@udel.edu; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia [Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Åhlund, John [Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  18. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Saveleva, Viktoriia A; Savinova, Elena R; Daletou, Maria K

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt 3 Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide. (paper)

  19. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    Science.gov (United States)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  20. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    Science.gov (United States)

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  1. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    Science.gov (United States)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  2. A reaction cell for ambient pressure soft x-ray absorption spectroscopy

    Science.gov (United States)

    Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.

    2018-05-01

    We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.

  3. The effect of ambient pressure on the evaporation rate of materials

    Science.gov (United States)

    Naumann, R. J.; Russell, W. M.

    1972-01-01

    A simple expression is obtained using a diffusion model for the effect of ambient pressure on the outgassing or evaporation rate of materials. The correctness of the expression is demonstrated by comparing the estimates from this expression with actual weight loss measurements. It is shown that the rate of mass loss is governed by the ratio of mean free path to the characteristic dimension of the surface in question.

  4. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    Science.gov (United States)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  5. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    Science.gov (United States)

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  6. In vitro measurement of ambient pressure changes using a realistic clinical setup

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    cosine tapered pulse with a center frequency of 4 MHz and an acoustic pressure of 485 kPa was used for excitation. 64 elements were used in receive and the RF data was filtered and beamformed before further processing. To compensate for variations in bubble response and to make the estimates more robust...... flexible offering completely arbitrary excitation and data acquisition, fast and accurate ambient pressure control, and precise timing. More importantly, it resembles a realistic clinical setup using a single array transducer for transmit and receive. The standard signal processing steps usually seen...

  7. Influence of ambient air pressure on impact pressure caused by breaking waves

    NARCIS (Netherlands)

    Moutzouris, C.

    1979-01-01

    Engineers are interested in the dynamics of the interface waterstructure. In case of breaking of water waves on a structure high positive and sometimes negative pressures of very short duration occur. Not only the maxima and minima of the pressures on the structure are important to a designing

  8. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  9. Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.

    2015-01-01

    Highlights: • New mathematical model for heat exchanger networks retrofit with pressure recovery. • Optimal heat and work integration applied to the retrofit of sub-ambient processes. • Streams pressure manipulation is used to enhance heat integration of the system. • Compressors and turbines can act on a coupling shaft and/or as stand-alone equipment. • Use of smaller amount of cold utilities, reducing significantly the operational costs. - Abstract: This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes

  10. Visualization of Gas Distribution in a Model AP-XPS Reactor by PLIF: CO Oxidation over a Pd(100 Catalyst

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    2017-01-01

    Full Text Available In situ knowledge of the gas phase around a catalyst is essential to make an accurate correlation between the catalytic activity and surface structure in operando studies. Although ambient pressure X-ray photoelectron spectroscopy (AP-XPS can provide information on the gas phase as well as the surface structure of a working catalyst, the gas phase detected has not been spatially resolved to date, thus possibly making it ambiguous to interpret the AP-XPS spectra. In this work, planar laser-induced fluorescence (PLIF is used to visualize the CO2 distribution in a model AP-XPS reactor, during CO oxidation over a Pd(100 catalyst. The results show that the gas composition in the vicinity of the sample measured by PLIF is significantly different from that measured by a conventional mass spectrometer connected to a nozzle positioned just above the sample. In addition, the gas distribution above the catalytic sample has a strong dependence on the gas flow and total chamber pressure. The technique presented has the potential to increase our knowledge of the gas phase in AP-XPS, as well as to optimize the design and operating conditions of in situ AP-XPS reactors for catalysis studies.

  11. Pulsed laser ablation of silicon with low laser fluence in a low-pressure of ammonia ambient

    International Nuclear Information System (INIS)

    Choo, Cheow-Keong; Tohara, Makoto; Enomoto, Kazuhiro; Tanaka, Katsumi

    2004-01-01

    Silicon was ablated by 532 nm wavelength of Nd:YAG laser in ammonia gas ambient. The influence of laser fluence and gas ambient pressures between 1.33x10 1 to 1.33x10 -5 Pa on the deposited compound was studied by in situ X-ray photoelectron spectroscopy and transmission Fourier transform infrared spectroscopy techniques. The results indicate that the deposited compound is composed of nonstoichiometric silicon nitride (SiN x , x=0-0.84). It has been shown that the composition of nitrogen to silicon is sensitive to the laser fluence; it increases with decreasing laser fluence. However, the ammonia gas ambient in these low pressures range had no influence on the composition of the deposited compound. The reaction of the ablated silicon with low-pressure ambient ammonia is proposed to be occurred on the substrate

  12. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    Science.gov (United States)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  13. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  14. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor

    International Nuclear Information System (INIS)

    Gurav, Jyoti L.; Rao, A. Venkateswara; Bangi, Uzma K.H.

    2009-01-01

    In the conventional ambient pressure drying of silica aerogels, tedious repetitive gel washing and solvent exchange steps (∼6 days) are involved. Therefore, in the present studies, we intended to reduce the processing time of TEOS based ambient pressure dried silica aerogels. Solvents such as methanol, hexane and Hexamethyldisilazane (HMDZ) as surface chemical modification agents have been used. To get good quality aerogels in terms of low density, high porosity, high contact angle and low volume shrinkage in less processing time, we varied MeOH/TEOS, HMDZ/TEOS molar ratios, oxalic acid (A) and NH 4 OH (B) concentrations and stirring time from 1 to 27.7, 0.34 to 2.1, 0 to 0.1 M, 0 to 2 M and 15 to 90 min respectively. The transparent and low-density aerogels were obtained for TEOS:MeOH:acidic H 2 O:basic H 2 O:HMDZ molar ratio of 1:16.5:0.81:0.50:0.681 respectively. The thermal stability and hydrophobicity have been confirmed with Thermogravimetric and Differential Thermal (TG-DT) analyses and Fourier Transform Infrared Spectroscopy. Microstructural study was carried out by Scanning Electron Microscopy (SEM)

  15. An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold

    Science.gov (United States)

    Jürgensen, Astrid; Raschke, Hannes; Esser, Norbert; Hergenröder, Roland

    2018-03-01

    The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO- and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source.

  16. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Surrey, Alexander, E-mail: a.surrey@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Schultz, Ludwig [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Rellinghaus, Bernd, E-mail: b.rellinghaus@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-04-15

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH{sub 2}, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  17. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    International Nuclear Information System (INIS)

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-01

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH_2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  18. A study on the macroscopic spray behavior and atomization characteristics of biodiesel and dimethyl ether sprays under increased ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jun; Park, Su Han [Graduate School of Hanyang University, 17 Haengdang-dong, Seoungdong-gu, Seoul 133-791 (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2010-03-15

    The aim of this work is to investigate the spray behaviors of biodiesel and dimethyl ether (DME) fuels using image processing and atomization performance analysis of the two fuel sprays injected through a common-rail injection system under various ambient pressure conditions in a high pressure chamber. In order to observe the biodiesel and DME fuel spray behaviors under various ambient pressures, the spray images were analyzed at various times after the start of energization using a visualization system consisting of a high speed camera and two metal halide light sources. In addition, a high pressure chamber that can withstand a pressure of 4 MPa was used for adjusting the ambient pressure. From the spray images, spray characteristics such as the spray tip penetration, cone angle, area, and contour plot at various light intensity levels were analyzed using image conversion processing. Also, the local Sauter mean diameters (SMD) were measured at various axial/radial distances from the nozzle tip by a droplet measuring system to compare the atomization performances of the biodiesel and DME sprays. The results showed that the ambient pressure had a significant effect on the spray characteristics of the fuels at the various experimental conditions. The spray tip penetration and spray area decreased as the ambient pressure increased. The contour plot of the biodiesel and DME sprays showed a high light intensity level in the center regions of the sprays. In addition, it was revealed that the atomization performance of the biodiesel spray was inferior to that of the DME spray at the same injection and ambient conditions. (author)

  19. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    Science.gov (United States)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  20. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T; Truscott, T. T.

    2016-01-01

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  1. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.

    2016-04-16

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  2. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    Science.gov (United States)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  3. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomiştilor Str. Nr. 409, 077125 Măgurele, Ilfov (Romania); Giurgiu, Liviu C. [University of Bucharest, Faculty of Physics, Atomistilor Str. Nr. 405, 077125 Măgurele (Romania); Stan, Cristina [Department of Physics, Politehnica University, 313 Splaiul Independenţei, RO-060042 Bucharest (Romania); Filinov, Vladimir; Lapitsky, Dmitry, E-mail: dmitrucho@yandex.ru; Deputatova, Lidiya; Syrovatka, Roman [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Str. 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  4. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    International Nuclear Information System (INIS)

    Mihalcea, Bogdan M.; Vişan, Gina T.; Ganciu, Mihai; Giurgiu, Liviu C.; Stan, Cristina; Filinov, Vladimir; Lapitsky, Dmitry; Deputatova, Lidiya; Syrovatka, Roman

    2016-01-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  5. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  6. Plasma-oxidation of Ge(100)-surfaces characterized by MIES, UPS and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Wegewitz, Lienhard; Dahle, Sebastian; Maus-Friedrichs, Wolfgang [Institut fuer Energieforschung und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany); Hoefft, Oliver; Endres, Frank [Institut fuer Mechanische Verfahrenstechnik, Technische Universitaet Clausthal, Arnold-Sommerfeld-Str. 6, 38678 Clausthal-Zellerfeld (Germany); Vioel, Wolfgang [HAWK Goettingen, Fakultaet Naturwissenschaften und Technik, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany)

    2011-07-01

    Cleaning and passivation of Germanium surfaces is of tremendous technological interest. Germanium has various applications, for example in complementary metal-oxide-semiconductor elements. It turned out to be difficult to prepare contamination free Germanium surfaces by methods of wet chemistry. Several attempts have been made preparing such surfaces by different plasma treatments. We report cleaning and passivation of Ge(100)-surfaces by dielectric barrier discharge plasma at ambient temperature in oxygen and in air studied by Metastable Induced Electron Spectroscopy (MIES) and Photoelectron Spectroscopy (UPS(He I) and XPS). The plasma treatment is carried out in a special high-vacuum chamber which operates up to ambient pressure and is directly connected to the ultra-high vacuum chamber including the analysis equipment. In summary the air plasma treatment as well as the oxygen plasma treatment result in contamination free GeO{sub 2} covered surfaces.

  7. Imaging XPS - a new technique

    International Nuclear Information System (INIS)

    Gurker, N.; Ebel, M.F.; Ebel, H.

    1983-01-01

    XPS imaging promises to be a powerful analytic tool because it enables specific information on both elements and bonding to be recorded on a two-dimensional distribution map. As far as the authors are aware, the only scanning XPS method to date which has been found to be practical is essentially a scanned-particle-beam method, like scanning AES, and it is only applicable to thin film specimens. This paper provides the basic ideas of a new imaging XPS technique based on a quite different concept. It will be applicable to any kind of specimen that can be analysed in a conventional XPS system. It makes use of the dispersion properties of a spherical condenser-type spectrometer and applies a two-dimensional electron detection device for decoding the energy and emission position of an analysed photoelectron. Experimental arrangement and theory of operation are presented. (author)

  8. Compensation for the Effects of Ambient Conditions on the Calibration of Multi-Capillary Pressure Drop Standards

    Directory of Open Access Journals (Sweden)

    Colard S

    2014-12-01

    Full Text Available Cigarette draw resistance and filter pressure drop (PD are both major physical parameters for the tobacco industry. Therefore these parameters must be measured reliably. For these measurements, specific equipment calibrated with PD transfer standards is used. Each transfer standard must have a known and stable PD value, such standards usually being composed of several capillary tubes associated in parallel. However, PD values are modified by ambient conditions during calibration of such standards, i.e. by temperature and relative humidity (RH of air, and atmospheric pressure. In order to reduce the influence of these ambient factors, a simplified model was developed for compensating the effects of ambient conditions on the calibration of multi-capillary PD standards.

  9. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure.

    Science.gov (United States)

    Hoffmann, Barbara; Luttmann-Gibson, Heike; Cohen, Allison; Zanobetti, Antonella; de Souza, Celine; Foley, Christopher; Suh, Helen H; Coull, Brent A; Schwartz, Joel; Mittleman, Murray; Stone, Peter; Horton, Edward; Gold, Diane R

    2012-02-01

    Diabetes increases the risk of hypertension and orthostatic hypotension and raises the risk of cardiovascular death during heat waves and high pollution episodes. We examined whether short-term exposures to air pollution (fine particles, ozone) and heat resulted in perturbation of arterial blood pressure (BP) in persons with type 2 diabetes mellitus (T2DM). We conducted a panel study in 70 subjects with T2DM, measuring BP by automated oscillometric sphygmomanometer and pulse wave analysis every 2 weeks on up to five occasions (355 repeated measures). Hourly central site measurements of fine particles, ozone, and meteorology were conducted. We applied linear mixed models with random participant intercepts to investigate the association of fine particles, ozone, and ambient temperature with systolic, diastolic, and mean arterial BP in a multipollutant model, controlling for season, meteorological variables, and subject characteristics. An interquartile increase in ambient fine particle mass [particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 μm (PM2.5)] and in the traffic component black carbon in the previous 5 days (3.54 and 0.25 μg/m3, respectively) predicted increases of 1.4 mmHg [95% confidence interval (CI): 0.0, 2.9 mmHg] and 2.2 mmHg (95% CI: 0.4, 4.0 mmHg) in systolic BP (SBP) at the population geometric mean, respectively. In contrast, an interquartile increase in the 5-day mean of ozone (13.3 ppb) was associated with a 5.2 mmHg (95% CI: -8.6, -1.8 mmHg) decrease in SBP. Higher temperatures were associated with a marginal decrease in BP. In subjects with T2DM, PM was associated with increased BP, and ozone was associated with decreased BP. These effects may be clinically important in patients with already compromised autoregulatory function.

  10. Technology qualification of an ambient pressure subsea cryogenic pipeline for offshore LNG loading and receiving terminals

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Afzal; Viteri, Martha; D' Angelo, Luis [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Prescott, Neal; Zhang, Jeff [Fluor Corporation, Irving, TX (Brazil)

    2009-07-01

    A project that deploys new technologies need to be confident that the technology can be implemented successfully and will perform reliably as designed. New technology is critical to industry, especially where such technology is a project enable without the existence of a backup solution, but also for projects where such technologies bring potential benefits such as technical, economic, schedule, and environmental improvements. DNV developed and has been implementing for many years a systematic, risk based technology qualification process as described in DNV RP-A203, qualification procedures for new technology. One of the major objectives of a formal technology qualification process is to ensure that risks are properly addressed. The DNV process includes several levels of technology qualification and review, starting with a statement of feasibility and concluding with a Certificate of Fitness for Service. Fluor Corporation (Fluor) has developed a new subsea cryogenic pipe-in-pipe configuration for offshore LNG loading and receiving terminals. The configuration uses a highly efficient thermal nano-porous insulation in the annular space between the inner and outer pipes. This material is kept in an ambient pressure environment, which is produced through sealing by metal bulkheads. The bulkheads transfer the contraction induced axial compression load on the inner cryogenic carrier pipe to the external jacket pipe. The resulting pipeline bundle is a structural element, which addresses the thermal contraction and expansion loads without the use of expansion bellows or ultra-low thermal contraction alloys. Fluor has followed the DNV technology qualification process to achieve the defined milestones therein which culminated in DNV issuing a certificate of fitness for service. Particular focus was put on the new aspects of the design. The certificate of fitness for service for the Fluor subsea LNG pipe technology provides project management with the confidence that this

  11. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang

    2018-03-20

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  12. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang; Wang, Libing; Badra, Jihad A.; Roberts, William L.; Fang, Tiegang

    2018-01-01

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  13. A hybrid Rankine cycle (HyRC) with ambient pressure combustion (APC)

    International Nuclear Information System (INIS)

    Wu, Lijun; Thimsen, David; Clements, Bruce; Zheng, Ligang; Pomalis, Richard

    2014-01-01

    The main losses in thermal power generation include heat in exhaust flue gas, heat rejected through steam condensation of low-pressure turbine, and exergy destruction in heat exchange process etc. To the extent that the heat losses are significantly greater in temperature than either air or water coolant resources, these losses also represent exergy losses which might be exploited to improve plant capacity and efficiency. This paper presents a hybrid Rankine cycle (HyRC) with an ambient pressure combustion (APC) boiler to address the recovery potential of these losses within the steam Rankine cycle (SRC). The APC–HyRC concept employs an organic Rankine cycle (ORC) to supplement SRC and to reduce cycle energy losses to the atmosphere since organic fluids are capable of lowering cycle condensation temperature when a very low temperature heat sink is available. The case studies based on a 399 MW SRC unit show that the APC–HyRC configurations have better thermodynamic performance than its base case SRC at a cycle condensation temperature of 30 °C and below. The best APC–HyRC configuration generates up to 14% more power than the baseline steam cycle which is a 5.45% increase in overall gross efficiency with a cycle condensation temperature at 4 °C. - Highlights: • A hybrid Rankine cycle with water and organic fluid is presented. • Heat losses in exhaust flue gas and exhaust steam are reduced. • Exergy losses in regeneration process are reduced. • Efficiency improvements are made to the conventional steam Rankine cycle. • Issues in design/construction of greenfield and repowering project are discussed

  14. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    KAUST Repository

    Grass, Michael E.; Karlsson, Patrik G.; Aksoy, Funda; Lundqvist, Måns; Wannberg, Björn; Mun, Bongjin S.; Hussain, Zahid; Liu, Zhi

    2010-01-01

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5° angular resolution at 24° acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. © 2010 American Institute of Physics.

  15. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    Science.gov (United States)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  16. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    Science.gov (United States)

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  17. 5 years of ambient pressure photoelectron spectroscopy (APPES) at the Swiss Light Source (SLS)

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Giorgia [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland); Giorgi, Javier B. [Department of Chemistry and Biomolecular Sciences, and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Green, Richard G. [Measurement Science and Standards, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Brown, Matthew A., E-mail: matthew.brown@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland)

    2017-04-15

    Highlights: • A review of the ongoing research using the APPES endstation of the Swiss Light Source is presented. • Research interests include the liquid-vapor, liquid-nanoparticle and vapor-solid interfaces. • An outlook to the next five years of research at the Swiss Light Source is presented. - Abstract: In March of 2012 an endstation dedicated to ambient pressure photoelectron spectroscopy (APPES) was installed at the Swiss Light Source (SLS) synchrotron radiation facility on the campus of the Paul Scherrer Institute (PSI). The endstation is mobile and operated at the vacuum ultraviolet (VUV), Surfaces/Interfaces: Microscopy (SIM) and Phoenix beamlines, which together afford a nearly continuous photon energy range from 5−8000 eV. This broad energy range is by far the widest available to a single currently operational APPES endstation. During its first five years of operation this endstation has been used to address challenging fundamental problems in the areas of soft-matter colloidal nanoscience, environmental science and energy storage—research that encompasses the liquid-nanoparticle, liquid-vapor (or vacuum) and solid-vapor interfaces. Here we present select highlights of these results and offer an outlook to the next five years of APPES research at the SLS.

  18. Effects of Biofuel and Variant Ambient Pressure on FlameDevelopment and Emissions of Gasoline Engine.

    Science.gov (United States)

    Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum

    2016-11-01

    There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.

  19. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  20. A Novel Environmental Route to Ambient Pressure Dried Thermal Insulating Silica Aerogel via Recycled Coal Gangue

    Directory of Open Access Journals (Sweden)

    Pinghua Zhu

    2016-01-01

    Full Text Available Coal gangue, one of the main hazardous emissions of purifying coal from coalmine industry, is rich in silica and alumina. However, the recycling of the waste is normally restricted by less efficient techniques and low attractive output; the utilization of such waste is still staying lower than 15%. In this work, the silica aerogel materials were synthesized by using a precursor extracted from recycled silicon-rich coal gangue, followed by a single-step surface silylation and ambient pressure drying. A low density (~0.19 g/cm3 nanostructured aerogel with a 3D open porous microstructure and high surface area (~690 m2/g was synthesized, which presents a superior thermal insulation performance (~26.5 mW·m−1·K−1 of a plane packed of 4-5 mm granules which was confirmed by transient hot-wire method. This study offers a new facile route to the synthesis of insulating aerogel material by recycling solid waste coal gangue and presents a potential cost reduction of industrial production of silica aerogels.

  1. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  2. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  3. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    International Nuclear Information System (INIS)

    Zhilyaev, A.P.; Sabirov, I.; Gonzalez-Doncel, G.; Molina-Aldareguia, J.; Srinivasarao, B.; Perez-Prado, M.T.

    2011-01-01

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  4. An experimental verification of the compensation of length change of line scales caused by ambient air pressure

    International Nuclear Information System (INIS)

    Takahashi, Akira; Miwa, Nobuharu

    2010-01-01

    Line scales are used as a working standard of length for the calibration of optical measuring instruments such as profile projectors, measuring microscopes and video measuring systems. The authors have developed a one-dimensional calibration system for line scales to obtain a lower uncertainty of measurement. The scale calibration system, named Standard Scale Calibrator SSC-05, employs a vacuum interferometer system for length measurement, a 633 nm iodine-stabilized He–Ne laser to calibrate the oscillating frequency of the interferometer laser light source and an Abbe's error compensation structure. To reduce the uncertainty of measurement, the uncertainty factors of the line scale and ambient conditions should not be neglected. Using the length calibration system, the expansion and contraction of a line scale due to changes in ambient air pressure were observed and the measured scale length was corrected into the length under standard atmospheric pressure, 1013.25 hPa. Utilizing a natural rapid change in the air pressure caused by a tropical storm (typhoon), we carried out an experiment on the length measurement of a 1000 mm long line scale made of glass ceramic with a low coefficient of thermal expansion. Using a compensation formula for the length change caused by changes in ambient air pressure, the length change of the 1000 mm long line scale was compensated with a standard deviation of less than 1 nm

  5. Synthesis of Fe3O4 nanostructures by backward plume deposition and influence of ambient gas pressure on their morphology

    International Nuclear Information System (INIS)

    Lin, J J; Mahmood, S; Zhang, T; Hassan, S M; White, T; Ramanujan, R V; Lee, P; Rawat, R S

    2007-01-01

    Iron oxide nanostructures with significantly fewer droplets were successfully synthesized by pulsed laser deposition using a special target-substrate geometry, which is coined backward plume deposition. The morphology of deposited nanostructures for backward plume deposition is found to be strongly controlled by the ambient gas pressure and changes from a thin film to an assemble of nanoclusters to nanoclusters with loosely bound floccule-like network with the increase in ambient gas pressure. The post-annealing considerably changes the structural properties of deposited materials, which were determined to be magnetite FCC-Fe 3 O 4 . It also causes the relaxation of long range stress in the film and hence leads to an increase in the saturation magnetization. The coercivity is found to decrease upon annealing due to the growth of randomly oriented Fe 3 O 4 nanocrystallite as well as the relaxation of internal stress

  6. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    Science.gov (United States)

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  7. Effects of ambient pressure on dynamics of near-nozzle diesel sprays studied by ultrafast x-radiography

    International Nuclear Information System (INIS)

    Cheong, S. K.; Liu, J.; Shu, D.; Wang, J.; Powell, C. F.; Experimental Facilities Division

    2004-01-01

    A time-resolved x-radiographic technique has been employed for measuring the fuel distribution close to a single-hole nozzle fitted in a high-pressure diesel injector. Using a monochromatic synchrotron x-ray beam, it is possible to perform quantitative x-ray absorption measurements and obtain two-dimensional projections of the mass of the fuel spray. We have completed a series of spray measurements in the optically dense, near-nozzle region (ml 15 mm from the nozzle orifice) under ambient pressures of 1, 2, and 5.2 bar Nd2 and 1 bar SFd6 at room temperature with injection pressures of 500 and 1000 bar. The focus of the measurements is on the dynamical behaviors of the fuel jets with an emphasis on their penetration in the near-nozzle region. Careful analysis of the time-resolved, x-radiographic data revealed that the spray penetration in this near-nozzle region was not significantly affected by the limited change of the ambient pressure. In addition, well-defined features of the spray, such as the leading and trailing edges, and fluctuations of fuel mass density in the spray body, allowed us to calculate the leading, trailing, and internal speeds of the sprays

  8. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    Directory of Open Access Journals (Sweden)

    Jagdish Narayan

    2016-02-01

    Full Text Available We report a direct conversion of hexagonal boron nitride (h-BN into pure cubic boron nitride (c-BN by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN. The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  9. Preparation of TiO sub 2 nanoparticles by pulsed laser ablation: Ambient pressure dependence of crystallization

    CERN Document Server

    Matsubara, M; Yamaki, T; Itoh, H; Abe, H

    2003-01-01

    Pulsed laser ablation (PLA) with a KrF excimer laser was used to prepare fine particles of titanium dioxide (TiO sub 2). The ablation in an atmosphere of Ar and O sub 2 (5:5) at total pressures of >= 1 Torr led to the formation of TiO sub 2 nanoparticles composed of anatase and rutile structures without any suboxides. The weight fraction of the rutile/anatase crystalline phases was dependent on the pressure of the Ar/O sub 2 gas. The TiO sub 2 nanoparticles had a spherical shape and their size, ranging from 10 and 14 nm, also appeared to be dependent on the ambient pressure. (author)

  10. Magnetic anisotropy of pure and doped YbInCu sub 4 compounds at ambient and high pressures

    CERN Document Server

    Mushnikov, N V; Rozenfeld, E V; Yoshimura, K; Zhang, W; Yamada, M; Kageyama, H

    2003-01-01

    The susceptibility and high-field magnetization of single-crystalline Yb sub 1 sub - sub x Y sub x InCu sub 4 (x = 0, 0.2 and 0.3) samples have been measured for different field orientations at ambient and high pressures. The compounds with x = 0 and 0.2 undergo a first-order valence transition from the intermediate-valence state to the trivalent state on increasing either temperature or magnetic field. The magnetization and susceptibility of these compounds have appreciable anisotropy in both states. The magnetic phase diagram of Yb sub 1 sub - sub x Y sub x InCu sub 4 determined at ambient pressure is also anisotropic, which is explained by the crystal-field calculations for the free Yb ion in the high-temperature phase. Moreover, the low-temperature magnetization process for x = 0.2 and 0.3 has been measured in low fields under high pressure; it shows anisotropic ferromagnetic ordering.

  11. Grain size increase in pentacene thin films prepared in low-pressure gas ambient

    International Nuclear Information System (INIS)

    Yokoyama, Takamichi; Park, Chang Bum; Nagashio, Kosuke; Kita, Koji; Toriumi, Akira

    2009-01-01

    We studied a mechanism of grain size increase (that is, island density decrease) in pentacene film prepared in hydrogen (H 2 ) ambient. The island densities of pentacene films prepared in helium and deuterium were lower than those of vacuum-deposited films. This indicates that the decrease in the island density was not due to the chemical interaction between H 2 and pentacene or the substrate surface. Furthermore, the temperature dependence of the island density indicates that there is no difference in the surface diffusion energy in a vacuum and in H 2 . We also improved mobility significantly in the pentacene thin film transistor fabricated on film grown in H 2 ambient on a chemically treated substrate.

  12. Structural, magnetic and superconducting phase transitions in CaFe2As2 under ambient and applied pressure

    International Nuclear Information System (INIS)

    Canfield, P.C.; Bud'ko, S.L.; Ni, N.; Kreyssig, A.; Goldman, A.I.; McQueeney, R.J.; Torikachvili, M.S.; Argyriou, D.N.; Luke, G.; Yu, W.

    2009-01-01

    At ambient pressure CaFe 2 As 2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low-temperature orthorhombic/antiferromagnetic phase upon cooling through T ∼ 170 K. With the application of pressure this phase transition is rapidly suppressed and by ∼0.35 GPa it is replaced by a first order phase transition to a low-temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ∼1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low-temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe 2 As 2 transforms when it is encased by a frozen media and enters into a low-temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.

  13. Synthetic lead bromapatite: X-ray structure at ambient pressure and compressibility up to about 20 GPa

    Science.gov (United States)

    Liu, Xi; Fleet, Michael E.; Shieh, Sean R.; He, Qiang

    2011-05-01

    Lead bromapatite [Pb10(PO4)6Br2] has been synthesized via solid-state reaction at pressures up to 1.0 GPa, and its structure determined by single-crystal X-ray diffraction at ambient temperature and pressure. The large bromide anion is accommodated in the c-axis channel by lateral displacements of structural elements, particularly of Pb2 cations and PO4 tetrahedra. The compressibility of bromapatite was also investigated up to about 20.7 GPa at ambient temperature, using a diamond-anvil cell and synchrotron X-ray radiation. The compressibility of lead bromapatite is significantly different from that of lead fluorapatite. The pressure-volume data of lead bromapatite ( P < 10 GPa) fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus ( K T ) of 49.8(16) GPa and first pressure derivative ( KT^' } ) of 10.1(10). If KT^' } is fixed at 4, the derived K T is 60.8(11) GPa. The relative difference of the bulk moduli of these two lead apatites is thus about 12%, which is about two times the relative difference of the bulk moduli (~5%) of the calcium apatites fluorapatite [Ca10(PO4)6F2], chlorapatite [Ca10(PO4)6Cl2] and hydroxylapatite [Ca10(PO4)6(OH)2]. Another interesting feature apparently related to the replacement of F by Br in lead apatite is the switch in the principle axes of the strain ellipsoid: the c-axis is less compressible than the a-axis in lead bromapatite but more compressible in lead fluorapatite.

  14. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure

    KAUST Repository

    Sarawade, Pradip; Shao, Godlistennamwel; Quang, Dangviet; Kim, Heetaik

    2013-01-01

    We studied the effects of various surfactants on the textural properties (BET surface area, pore size, and pore volume) of the silica aerogels prepared at an ambient pressure. A simple surface modification of silica gel prepared at an ambient pressure through hydrolysis and polycondensation of TEOS as asilica precursor was conducted using various structure directing agents. The treatment was found to induce a significant difference in the porosity of the silica aerogel. Highly porous silica aerogels with bimodal porous structures were prepared by modifying the surface of the silica wet-gel (alcogel) with trimethylchlorosilane (TMCS) in order to preserve its porosity. The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. In this work, a possible new type of highly porous hydrophobic silica aerogel with a bimodal porous structure is presented. A hydrophilic extremely porous (high surface area and large pore volume) silica aerogel was obtained by heating the as-synthesized hydrophobic silica aerogel at 400°C for 1 h. There was a significant effect of structure directing agent on the textural properties, such as specific surface area, pore size distribution and cumulative pore volume of the silicaaerogels. © 2013 Elsevier B.V. All rights reserved.

  15. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure

    KAUST Repository

    Sarawade, Pradip

    2013-12-01

    We studied the effects of various surfactants on the textural properties (BET surface area, pore size, and pore volume) of the silica aerogels prepared at an ambient pressure. A simple surface modification of silica gel prepared at an ambient pressure through hydrolysis and polycondensation of TEOS as asilica precursor was conducted using various structure directing agents. The treatment was found to induce a significant difference in the porosity of the silica aerogel. Highly porous silica aerogels with bimodal porous structures were prepared by modifying the surface of the silica wet-gel (alcogel) with trimethylchlorosilane (TMCS) in order to preserve its porosity. The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. In this work, a possible new type of highly porous hydrophobic silica aerogel with a bimodal porous structure is presented. A hydrophilic extremely porous (high surface area and large pore volume) silica aerogel was obtained by heating the as-synthesized hydrophobic silica aerogel at 400°C for 1 h. There was a significant effect of structure directing agent on the textural properties, such as specific surface area, pore size distribution and cumulative pore volume of the silicaaerogels. © 2013 Elsevier B.V. All rights reserved.

  16. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    Science.gov (United States)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  17. Crystal-field excitations in PrAl sub 3 and NdAl sub 3 at ambient and elevated pressure

    CERN Document Server

    Straessle, T; Rusz, J; Janssen, S; Juranyi, F; Sadykov, R; Furrer, A

    2003-01-01

    The crystal fields (CFs) of the binary rare-earth compounds PrAl sub 3 and NdAl sub 3 have been examined at ambient pressure by means of inelastic neutron scattering. The CF of the latter compound has also been measured under hydrostatic pressure (p = 0.84 GPa). The observed substantial changes of the CF under pressure are discussed within the framework of first-principles density functional theory calculations.

  18. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    Science.gov (United States)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  19. Real-time monitoring of BTEX in air via ambient-pressure MPI

    Science.gov (United States)

    Swenson, Orven F.; Carriere, Josef P.; Isensee, Harlan; Gillispie, Gregory D.; Cooper, William F.; Dvorak, Michael A.

    1998-05-01

    We have developed and begun to field test a very sensitive method for real-time measurements of single-ring aromatic hydrocarbons in ambient air. In this study, we focus on the efficient 1 + 1 resonance enhanced multiphoton ionization (REMPI) of the BTEX species in the narrow region between 266 and 267 nm. We particularly emphasize 266.7 nm, a wavelength at which both benzene and toluene exhibit a sharp absorbance feature and benzene and its alkylated derivatives all absorb. An optical parametric oscillator system generating 266.7 nm, a REMPI cell, and digital oscilloscope detector are mounted on a breadboard attached to a small cart. In the first field test, the cart was wheeled through the various rooms of a chemistry research complex. Leakage of fuel through the gas caps of cars and light trucks in a parking lot was the subject of the second field test. The same apparatus was also used for a study in which the performance of the REMPI detector and a conventional photoionization detector were compared as a BTEX mixture was eluted by gas chromatography. Among the potential applications of the methodology are on-site analysis of combustion and manufacturing processes, soil gas and water headspace monitoring, space cabin and building air quality, and fuel leak detection.

  20. Methane Storage in Biosilica-Supported Semiclathrates at Ambient Temperature and Pressure

    Science.gov (United States)

    Li, Liang; Wang, Suying; Wang, Weixing

    2018-01-01

    Two key issues regarding the use of clathrates and semiclathrates for practical gas storage and transport is the pressure-temperature stability of the material and very low formation kinetics. For many practical applications, the avoidance of cooling, gas overpressure, and mechanical mixing would be very desirable. Here, we show that biosilica supports from rice husks greatly enhance gases uptake kinetics in tetra-iso-amyl ammonium bromide semiclathrates without introducing complex mixing technologies. These systems show excellent thermal stability and good recyclability.

  1. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    Energy Technology Data Exchange (ETDEWEB)

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  2. Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Younesi, Reza; Guinel, Maxime J-F

    2014-01-01

    ) nanoparticles were synthesized using a simple and inexpensive low temperature and low pressure hydrothermal (HT) method. The precursor solution used for the HT process was prepared by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4 center dot 2H(2)O) at temperatures below 5 degrees C...... and then dissolved using oxalic acid. This HT process yielded tungstite (WO3 center dot H2O) nanoparticles with the orthorhombic structure. A heat treatment at temperatures at or above 300 degrees C resulted in a phase transformation to monoclinic WO3, while preserving the nanoparticles morphology. The production...

  3. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  4. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck (Austria)

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  5. Ambient Pressure Laser Desorption—Chemical Ionization Mass Spectrometry for Fast and Reliable Detection of Explosives, Drugs, and Their Precursors

    Directory of Open Access Journals (Sweden)

    René Reiss

    2018-06-01

    Full Text Available Fast and reliable information is crucial for first responders to draw correct conclusions at crime scenes. An ambient pressure laser desorption (APLD mass spectrometer is introduced for this scenario, which enables detecting substances on surfaces without sample pretreatment. It is especially useful for substances with low vapor pressure and thermolabile ones. The APLD allows for the separation of desorption and ionization into two steps and, therefore, both can be optimized separately. Within this work, an improved version of the developed system is shown that achieves limits of detection (LOD down to 500 pg while remaining fast and flexible. Furthermore, realistic scenarios are applied to prove the usability of this system in real-world issues. For this purpose, post-blast residues of a bomb from the Second World War were analyzed, and the presence of PETN was proven without sample pretreatment. In addition, the analyzable substance range could be expanded by various drugs and drug precursors. Thus, the presented instrumentation can be utilized for an increased number of forensically important compound classes without changing the setup. Drug precursors revealed a LOD ranging from 6 to 100 ng. Drugs such as cocaine hydrochloride, heroin, (3,4-methylendioxy-methamphetamine hydrochloride (MDMA hydrochloride, and others exhibit a LOD between 10 to 200 ng.

  6. Pressure-Induced Bandgap Optimization in Lead-Based Perovskites with Prolonged Carrier Lifetime and Ambient Retainability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Kong, Lingping [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Gong, Jue [Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb IL 60115 USA; Yang, Wenge [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Mao, Ho-kwang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Hu, Qingyang [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Liu, Zhenxian [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Schaller, Richard D. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439 USA; Zhang, Dongzhou [Hawai' i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Manoa, Honolulu HI 96822 USA; Xu, Tao [Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb IL 60115 USA

    2016-12-05

    Bond length and bond angle exhibited by valence electrons is essential to the core of chemistry. Using lead-based organic–inorganic perovskite compounds as an exploratory platform, it is demonstrated that the modulation of valence electrons by compression can lead to discovery of new properties of known compounds. Yet, despite its unprecedented progress, further efficiency boost of lead-based organic–inorganic perovskite solar cells is hampered by their wider bandgap than the optimum value according to the Shockley–Queisser limit. By modulating the valence electron wavefunction with modest hydraulic pressure up to 2.1 GPa, the optimized bandgap for single-junction solar cells in lead-based perovskites, for the first time, is achieved by narrowing the bandgap of formamidinium lead triiodide (HC(NH2)2PbI3) from 1.489 to 1.337 eV. Strikingly, such bandgap narrowing is partially retained after the release of pressure to ambient, and the bandgap narrowing is also accompanied with double-prolonged carrier lifetime. With First-principles simulation, this work opens a new dimension in basic chemical understanding of structural photonics and electronics and paves an alternative pathway toward better photovoltaic materials-by-design.

  7. Pressure-Induced Bandgap Optimization in Lead-Based Perovskites with Prolonged Carrier Lifetime and Ambient Retainability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Kong, Lingping [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Gong, Jue [Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb IL 60115 USA; Yang, Wenge [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Mao, Ho-kwang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Hu, Qingyang [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Liu, Zhenxian [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Schaller, Richard D. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439 USA; Zhang, Dongzhou [Hawai' i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Manoa, Honolulu HI 96822 USA; Xu, Tao [Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb IL 60115 USA

    2016-12-05

    Bond length and bond angle exhibited by valence electrons is essential to the core of chemistry. Using lead-based organic–inorganic perovskite compounds as an exploratory platform, it is demonstrated that the modulation of valence electrons by compression can lead to discovery of new properties of known compounds. Yet, despite its unprecedented progress, further efficiency boost of lead-based organic–inorganic perovskite solar cells is hampered by their wider bandgap than the optimum value according to the Shockley–Queisser limit. By modulating the valence electron wavefunction with modest hydraulic pressure up to 2.1 GPa, the optimized bandgap for single-junction solar cells in lead-based perovskites, for the first time, is achieved by narrowing the bandgap of formamidinium lead triiodide (HC(NH2)2PbI3) from 1.489 to 1.337 eV. Strikingly, such bandgap narrowing is partially retained after the release of pressure to ambient, and the bandgap narrowing is also accompanied with double-prolonged carrier lifetime. With First-principles simulation, this work opens a new dimension in basic chemical understanding of structural photonics and electronics and paves an alternative pathway toward better photovoltaic materials-by-design.

  8. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults

    Science.gov (United States)

    Keefe, Douglas H.; Hunter, Lisa L.; Feeney, M. Patrick; Fitzpatrick, Denis F.

    2015-01-01

    Procedures are described to measure acoustic reflectance and admittance in human adult and infant ears at frequencies from 0.2 to 8 kHz. Transfer functions were measured at ambient pressure in the ear canal, and as down- or up-swept tympanograms. Acoustically estimated ear-canal area was used to calculate ear reflectance, which was parameterized by absorbance and group delay over all frequencies (and pressures), with substantial data reduction for tympanograms. Admittance measured at the probe tip in adults was transformed into an equivalent admittance at the eardrum using a transmission-line model for an ear canal with specified area and ear-canal length. Ear-canal length was estimated from group delay around the frequency above 2 kHz of minimum absorbance. Illustrative measurements in ears with normal function are described for an adult, and two infants at 1 month of age with normal hearing and a conductive hearing loss. The sensitivity of this equivalent eardrum admittance was calculated for varying estimates of area and length. Infant-ear patterns of absorbance peaks aligned in frequency with dips in group delay were explained by a model of resonant canal-wall mobility. Procedures will be applied in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function. PMID:26723319

  9. Spray Characteristics of Pressure-swirl Nozzle at Different Ambient Pressures of Combustion Chamber%燃烧室背压对压力涡流喷嘴喷雾特性的影响

    Institute of Scientific and Technical Information of China (English)

    刘涛涛; 张武高; 陈晓玲; 顾根香; 郭晓宁; 黄震

    2011-01-01

    采用高速摄影技术、激光测粒仪和PIV测试技术系统试验研究了燃烧室背压对斯特林发动机压力涡流喷嘴喷雾形成过程、贯穿距离增长规律、喷雾锥角、液滴粒径和喷雾流场的影响.结果表明,燃烧室背压的增加使喷雾形状更加致密,贯穿距离的增加变缓,液滴平均速度增加,索特平均直径增加.当燃烧室背压大于1.0~1.5 MPa之间的一个临界值时,其对喷雾锥角没有影响,小于此临界值,燃烧室背压的增加会使喷雾锥角急剧降低.%The spray characteristics of pressure-swirl nozzle used in Stirling engine was studied by way of the experiment under high ambient pressures (up to 2. 8 Mpa). The high-speed video imaging technique, FAM ( Fraunhofer and Mie) laser drop size analyzer, and PIV (particle image velocimetry) test equipment were used for experimental measurements. Experimental results showed that the spray structure at higher ambient pressure was more compact. The vortex cloud was found at the leading edge at high ambient pressure. Spray cone angle was independent of ambient pressure after a value between 1.0 ~ 1. 5 Mpa. The Sauter mean diameter ( SMD) and the drop velocity became larger at high ambient pressure conditions. Finally, a vortex was found in the center of the spray and this region moved to the downstream of the spray as the ambient pressure increased.

  10. Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure

    Science.gov (United States)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C

  11. Investigation of hydrophobic substrates for solution residue analysis utilizing an ambient desorption liquid sampling-atmospheric pressure glow discharge microplasma.

    Science.gov (United States)

    Paing, Htoo W; Marcus, R Kenneth

    2018-03-12

    A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.

  12. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    Science.gov (United States)

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  13. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Hong, Wesley T.; Biegalski, Michael D.; Christen, Hans M.; Liu, Zhi; Bluhm, Hendrik; Shao-Horn, Yang

    2013-01-01

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  14. Microplasma-based flowing atmospheric-pressure afterglow (FAPA) source for ambient desorption-ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zeiri, Offer M.; Storey, Andrew P.; Ray, Steven J., E-mail: sjray2@buffalo.edu; Hieftje, Gary M.

    2017-02-01

    A new direct-current microplasma-based flowing atmospheric pressure afterglow (FAPA) source was developed for use in ambient desorption-ionization mass spectrometry. The annular-shaped microplasma is formed in helium between two concentric stainless-steel capillaries that are separated by an alumina tube. Current-voltage characterization of the source shows that this version of the FAPA operates in the normal glow-discharge regime. A glass surface placed in the path of the helium afterglow reaches temperatures of up to approximately 400 °C; the temperature varies with distance from the source and helium flow rate through the source. Solid, liquid, and vapor samples were examined by means of a time-of-flight mass spectrometer. Results suggest that ionization occurs mainly through protonation, with only a small amount of fragmentation and adduct formation. The mass range of the source was shown to extend up to at least m/z 2722 for singly charged species. Limits of detection for several small organic molecules were in the sub-picomole range. Examination of competitive ionization revealed that signal suppression occurs only at high (mM) concentrations of competing substances. - Highlights: • The first microplasma version of the FAPA source. • Current-voltage behavior reflects the behavior of a normal glow discharge. • Detection limits below 1 pmol for the classes of organic compounds studied over a wide mass range. • Mass spectra show limited fragmentation.

  15. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD.

    Science.gov (United States)

    Ge, Wanyin; Kawahara, Kenji; Tsuji, Masaharu; Ago, Hiroki

    2013-07-07

    We report ambient pressure chemical vapor deposition (CVD) growth of single-crystalline NbS2 nanosheets with controlled orientation. On Si and SiO2 substrates, NbS2 nanosheets grow almost perpendicular to the substrate surface. However, when we apply transferred CVD graphene on SiO2 as a substrate, NbS2 sheets grow laterally lying on the graphene. The NbS2 sheets show the triangular and hexagonal shapes with a thickness of about 20-200 nm and several micrometres in the lateral dimension. Analyses based on X-ray diffraction and Raman spectroscopy indicate that the NbS2 nanosheets are single crystalline 3R-type with a rhombohedral structure of R3m space group. Our findings on the formation of highly aligned NbS2 nanosheets on graphene give new insight into the formation mechanism of NbS2 and would contribute to the templated growth of various layered materials.

  16. A potential route to synthesize imporous MgB{sub 2} bulks by pretreatment of B powder at ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X F; Zhou, J D; Zhao, Y [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C H [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)], E-mail: yzhao@home.swjtu.edu.cn

    2009-04-15

    Imporous MgB{sub 2} bulks with a density of 1.82 g cm{sup -3} have been synthesized by pretreatment of B powder in an in situ solid-state reaction at ambient pressure. The results show that the MgB{sub 2} with B powder pretreatment has a significant improvement in J{sub c}, B{sub irr}, microstructure and intergranular coupling, but with no decrease of T{sub c}. At 20 K and 4 T, the J{sub c} is enhanced by 4 times by the pretreatment of the B powder. For the B pretreated MgB{sub 2}, the B{sub irr} at 20 K reaches 5 T and J{sub c} at 10 K and 6 T reaches 2200 A cm{sup -2}, compared to 4.2 T and 670 A cm{sup -2} for the B-not-pretreated MgB{sub 2}. It is argued that the small amounts of highly dispersed carbon in B powder may enhance the mobility of B particles during the reaction of B and Mg, which avoids the formation of voids in the positions of Mg particles.

  17. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  18. Long-Term Effects of Ambient PM2.5 on Hypertension and Blood Pressure and Attributable Risk Among Older Chinese Adults.

    Science.gov (United States)

    Lin, Hualiang; Guo, Yanfei; Zheng, Yang; Di, Qian; Liu, Tao; Xiao, Jianpeng; Li, Xing; Zeng, Weilin; Cummings-Vaughn, Lenise A; Howard, Steven W; Vaughn, Michael G; Qian, Zhengmin Min; Ma, Wenjun; Wu, Fan

    2017-05-01

    Long-term exposure to ambient fine particulate pollution (PM 2.5 ) has been associated with cardiovascular diseases. Hypertension, a major risk factor for cardiovascular diseases, has also been hypothesized to be linked to PM 2.5 However, epidemiological evidence has been mixed. We examined long-term association between ambient PM 2.5 and hypertension and blood pressure. We interviewed 12 665 participants aged 50 years and older and measured their blood pressures. Annual average PM 2.5 concentrations were estimated for each community using satellite data. We applied 2-level logistic regression models to examine the associations and estimated hypertension burden attributable to ambient PM 2.5 For each 10 μg/m 3 increase in ambient PM 2.5 , the adjusted odds ratio of hypertension was 1.14 (95% confidence interval, 1.07-1.22). Stratified analyses found that overweight and obesity could enhance the association, and consumption of fruit was associated with lower risk. We further estimated that 11.75% (95% confidence interval, 5.82%-18.53%) of the hypertension cases (corresponding to 914, 95% confidence interval, 453-1442 cases) could be attributable to ambient PM 2.5 in the study population. Findings suggest that long-term exposure to ambient PM 2.5 might be an important risk factor of hypertension and is responsible for significant hypertension burden in adults in China. A higher consumption of fruit may mitigate, whereas overweight and obesity could enhance this effect. © 2017 American Heart Association, Inc.

  19. Direct atmospheric pressure chemical ionization-tandem mass spectrometry for the continuous real-time trace analysis of benzene, toluene, ethylbenzene, and xylenes in ambient air.

    Science.gov (United States)

    Badjagbo, Koffi; Picard, Pierre; Moore, Serge; Sauvé, Sébastien

    2009-05-01

    Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1-2 microg/m(3) are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.

  20. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.

    Science.gov (United States)

    Gubin, D G; Weinert, D; Rybina, S V; Danilova, L A; Solovieva, S V; Durov, A M; Prokopiev, N Y; Ushakov, P A

    2017-01-01

    The aim of the present study was to investigate the impact of endogenous and exogenous factors for the expression of the daily rhythms of body temperature (BT), blood pressure (BP) and heart rate (HR). One hundred and seventy-three young adults (YA), 17-24 years old (y.o.), of both genders were studied under a modified constant-routine (CR) protocol for 26 h. Participants were assigned randomly to groups with different lighting regimens: CR-LD, n = 77, lights (>400 l×) on from 09:00 to 17:00 h and off (lights on (>400 l×) during the whole experimental session; CR-DD, n = 15, constant dim light (Blood Pressure Monitoring (ABPM) records from 27 YA (16-38 y.o.) and BT self-measurement data from 70 YA (17-30 y.o.) taken on ≥ 3 successive days at 08:00, 11:00, 14:00, 17:00, 20:00, 23:00 and 03:00 were available. The obtained daily patterns were different between Control and CR-DD groups, due to effects of activity, sleep and light. The comparison of Control and CR-LD groups allowed the effects of sleep and activity to be estimated since the lighting conditions were similar. The activity level substantially elevated SBP, but not DBP. Sleep, on the other hand, lowered the nighttime DBP, but has no effect on SBP. HR was affected both by activity and sleep. In accordance with previous studies, these results confirm that the steep BP increase in the morning is not driven by the circadian clock, but rather by sympathoadrenal factors related to awakening and corresponding anticipatory mechanisms. The effect on BT was not significant. To investigate the impact of light during the former dark time and darkness during the former light time, the CR-LL and CR-DD groups were each compared with the CR-LD group. Light delayed the evening decrease of BT, most likely via a suppression of the melatonin rise. Besides, it had a prominent arousal effect on SBP both in the former light and dark phases, a moderate effect on DBP and no effect on HR. Darkness induced decline in BT. BP

  1. Surface stabilized GMR nanorods of silver coated CrO2 synthesized via a polymer complex at ambient pressure

    Science.gov (United States)

    Biswas, S.; Singh, G. P.; Ram, S.; Fecht, H.-J.

    2013-08-01

    Stable anisotropic nanorods of surface modified CrO2 (˜18 nm diameter) with a correlated diamagnetic layer (2-3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr4+ ions by Ag atoms on the CrO2 surface (topotactic surface layer) via an etching reaction of a CrO2-polymer complex with Ag+ ions in hot water followed by heating the dried sample at 300-400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO2 such that it no longer converts to Cr2O3 in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO2 structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d5/2 and 3d3/2 X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (-) 7.6% at 77 K, than reported values in compacted CrO2 powders or composites. Such a large MR-value in the Coulomb blockade regime (<100 K) arises not only due to the suppressed spin flipping at low temperature but also from a spin dependent co-tunneling through an interlinked structure of silver and silver coated CrO2 nanorods.

  2. Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Favaro, Marco; Yang, Jinhui; Nappini, Silvia; Magnano, Elena

    2017-01-01

    Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3 O 4 /Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that the catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3 O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3 O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.

  3. Surface stabilized GMR nanorods of silver coated CrO2 synthesized via a polymer complex at ambient pressure

    International Nuclear Information System (INIS)

    Biswas, S.; Singh, G.P.; Ram, S.; Fecht, H.-J.

    2013-01-01

    Stable anisotropic nanorods of surface modified CrO 2 (∼18 nm diameter) with a correlated diamagnetic layer (2–3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr 4+ ions by Ag atoms on the CrO 2 surface (topotactic surface layer) via an etching reaction of a CrO 2 -polymer complex with Ag + ions in hot water followed by heating the dried sample at 300–400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO 2 such that it no longer converts to Cr 2 O 3 in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO 2 structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d 5/2 and 3d 3/2 X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (−) 7.6% at 77 K, than reported values in compacted CrO 2 powders or composites. Such a large MR-value in the Coulomb blockade regime ( 2 nanorods. - Highlights: • Synthesis and structural studies of a novel GMR material of Ag coated CrO 2 . • Tailoring useful GMR property in CrO 2 nanorods of controlled shape and anisotropy. • Enhanced GMR is explained in correlation to the surface structure of CrO 2 nanorods

  4. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying

    International Nuclear Information System (INIS)

    Bangi, Uzma K H; Rao, A Venkateswara; Rao, A Parvathy

    2008-01-01

    An in-depth investigation into the synthesis of hydrophobic silica aerogels prepared by the surface derivatization of wet gels followed by subsequent drying at ambient pressure is reported. The following sol-gel parameters were examined for their effect on the physical properties of the derived aerogels: number of gel washings with water, percentage of hexane or methanol in silylating mixture, molar ratio of tartaric acid: Na 2 SiO 3 , gel aging period, weight% of silica, trimethylchlorosilane (TMCS) percentage, and silylation period. These parameters were varied from 1 to 4, 0 to 100%, 0.27 to 1.2, 0 to 4 h, 1.5 to 8 wt.%, 20 to 40% and 6 to 24 h, respectively. The properties of hydrophobic silica aerogels synthesized by this new route were investigated in terms of bulk density, percentage volume shrinkage, percentage porosity, thermal conductivity and contact angle with water, and by Fourier transform infrared spectroscopy (FTIR). The as-prepared hydrophobic silica aerogels exhibited high temperature stability (up to approximately 435 0 C) as measured by thermogravimetric/differential thermal analysis (TGA-DTA). The optimal sol-gel parameters were found to be a molar ratio of Na 2 SiO 3 :H 2 O : tartaric acid : TMCS of 1 : 146.67 : 0.86 : 9.46, an aging period of 3 h, four washings with water in 24 h and the use of a 50% hexane- or methanol-based silylating mixture. Aerogels prepared with these optimal parameters were found to exhibit 50% optical transparency in the visible range, 84 kg m -3 density, 0.090 W mK -1 thermal conductivity, 95% porosity and a contact angle of 146 0 with water

  5. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure.

    Science.gov (United States)

    Wojnarowska, Z; Swiety-Pospiech, A; Grzybowska, K; Hawelek, L; Paluch, M; Ngai, K L

    2012-04-28

    The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M(")(f) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across T(g). The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below T(g). At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found

  6. Direct dissolution of g-level U metal and U-6 % Zr alloy bits by TBP-nitric acid adduct and in situ extraction at ambient pressures

    International Nuclear Information System (INIS)

    Shekhar Kumar; Bijendra Kumar; Gelatar, J.K.; Pranay Kumar Sinha; Alok Kumar Mishra; Kamachi Mudali, U.

    2016-01-01

    A study on direct dissolution of g-level metallic U and U-6 % Zr alloy bits by TBP-nitric acid adduct followed by in situ extraction at ambient pressures under batch and dynamic conditions was performed. The product organic solution was adjusted to 30 % TBP in dodecane and from it, U(VI) could be stripped quantitatively with 0.01 N nitric acid. Experimental results of the study are presented in this paper. (author)

  7. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun; Zhang, Sam; Huang Weimin

    2005-01-01

    TiNi films were prepared by co-sputtering TiNi and Ti targets. X-ray photoelectron spectroscopy (XPS) was employed to study surface chemistry of the films and interfacial structure of Si/TiNi system. Exposure of the TiNi film to the ambient atmosphere (23 deg. C and 80% relatively humidity) facilitated quick adsorption of oxygen and carbon on the surface. With time, carbon and oxygen content increased drastically at the surface, while oxygen diffused further into the layer. After a year, carbon content at the surface became as high as 65.57% and Ni dropped below the detection limit of XPS. Depth profiling revealed that significant inter-diffusion occurred between TiNi film and Si substrate with a layer of 90-100 nm. The detailed bond changes of different elements with depth were obtained using XPS and the formation of titanium silicides at the interface were identified

  8. Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples

    International Nuclear Information System (INIS)

    Salle, Beatrice; Cremers, David A.; Maurice, Sylvestre; Wiens, Roger C.

    2005-01-01

    Recently, there has been an increasing interest in the laser-induced breakdown spectroscopy (LIBS) technique for stand-off detection of geological samples for use on landers and rovers to Mars, and for other space applications. For space missions, LIBS analysis capabilities must be investigated and instrumental development is required to take into account constraints such as size, weight, power and the effect of environmental atmosphere (pressure and ambient gas) on flight instrument performance. In this paper, we study the in-situ LIBS method at reduced pressure (7 Torr CO 2 to simulate the Martian atmosphere) and near vacuum (50 mTorr in air to begin to simulate the Moon or asteroids' pressure) as well as at atmospheric pressure in air (for Earth conditions and comparison). Here in-situ corresponds to distances on the order of 150 mm in contrast to stand-off analysis at distance of many meters. We show the influence of the ambient pressure on the calibration curves prepared from certified soil and clay pellets. In order to detect simultaneously all the elements commonly observed in terrestrial soils, we used an Echelle spectrograph. The results are discussed in terms of calibration curves, measurement precision, plasma light collection system efficiency and matrix effects

  9. Surface stabilized GMR nanorods of silver coated CrO{sub 2} synthesized via a polymer complex at ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, S., E-mail: drsomnathbiswas@gmail.com [The LNM Institute of Information Technology, Jaipur-302031 (India); Singh, G.P. [Centre for Nanotechnology, Central University of Jharkhand, Ranchi-835205 (India); Ram, S. [Materials Science Centre, Indian Institute of Technology, Kharagpur-721302 (India); Fecht, H.-J. [Insitut für Micro-und Nanomaterialien, Universität Ulm, Albert Einstein Allee-47, Ulm, D-89081, and Forschungszentrum Karlsruhe, Institute of Nanotechnology, Karlsruhe, D-76021 (Germany)

    2013-08-15

    Stable anisotropic nanorods of surface modified CrO{sub 2} (∼18 nm diameter) with a correlated diamagnetic layer (2–3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr{sup 4+} ions by Ag atoms on the CrO{sub 2} surface (topotactic surface layer) via an etching reaction of a CrO{sub 2}-polymer complex with Ag{sup +} ions in hot water followed by heating the dried sample at 300–400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO{sub 2} such that it no longer converts to Cr{sub 2}O{sub 3} in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO{sub 2} structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d{sub 5/2} and 3d{sub 3/2} X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (−) 7.6% at 77 K, than reported values in compacted CrO{sub 2} powders or composites. Such a large MR-value in the Coulomb blockade regime (<100 K) arises not only due to the suppressed spin flipping at low temperature but also from a spin dependent co-tunneling through an interlinked structure of silver and silver coated CrO{sub 2} nanorods. - Highlights: • Synthesis and structural studies of a novel GMR material of Ag coated CrO{sub 2}. • Tailoring useful GMR property in CrO{sub 2} nanorods of controlled shape and anisotropy. • Enhanced GMR is explained in correlation to the surface structure of CrO{sub 2} nanorods.

  10. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lie, Zener Sukra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Kagawa, Kiichiro [Fukui Science Education Academy, Takagi Chuou 2 choume, Fukui 910-0804 (Japan); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia)

    2015-08-28

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  11. On calculating intensity from XPS spectra

    International Nuclear Information System (INIS)

    Vegh, Janos

    2006-01-01

    The intensity calculation is the basis for all quantitative applications of electron spectroscopy. Unfortunately, some misinterpreted terms are used and correctly interpreted terms are misused in the overwhelming majority of publications in XPS, including most textbooks as well as accepted and proposed standards. Due to this mistake the number of the detected electrons is given as having dimension of energy (?) and also the formulas for calculating the peak area and its standard deviation are wrong. Since in all other spectroscopic fields the number of the detected particles is dimensionless, continuing this practice leads to isolating XPS from both other measurement sciences and theory, because the measured total intensity in XPS is simply not comparable to the ones derived with other spectroscopic methods or theoretically. Therefore, the basic measuring processes and terms are critically reviewed and their physically correct interpretation is given. This interpretation reveals that the error is hidden in the incorrect interpretation of both the measurement process and the measured quantity. It is shown that through using the correct interpretation both the dimensions of the intensity calculated from electron spectroscopic measurements as well as the formulas related to the intensity and its standard deviation will agree with all other spectroscopic fields

  12. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  13. XPS - an essential tool in biomaterial research

    Energy Technology Data Exchange (ETDEWEB)

    StJohn, H.A.W.; Greisser, H.J. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC (Australia). Molecular Science

    1999-12-01

    Full text: Increased life expectancy has markedly enhanced the need for biomedical devices to combat life-threatening conditions (e.g., pacemakers, artificial blood vessels) or improve the quality of life (e.g., intraocular lenses, artificial ligaments, contact lenses). While the biomedical device industry has delivered remarkable benefits, many existing and emerging needs and applications are not adequately met with existing synthetic materials. Depending on the application, a biomaterial needs to meet a number of requirements to be `biocompatible`, such as appropriate mechanical properties, transparency, resistance to enzymatic degradation, and appropriate biological responses by the host environment. Surface science and surface analysis plays a key role in understanding and optimizing the molecular interfacial interactions between synthetic materials surfaces and biological media which lead to biological responses to implants. Many biological molecules such as proteins and lipids have surfactant activity and respond to interfaces on contact. Thus, an important part of achieving `biocompatibility` is to produce an appropriate surface chemical composition that avoids undesirable biological consequences triggered by biological molecules recognizing a `foreign` material interface. XPS surface analysis has proved uniquely suitable for studying several aspects of biomaterials. In order to interpret biological responses in terms of surface chemistry, it is essential that the surface be well characterized. However, for polymers this can be quite a challenge due to the inherent mobility of polymer chains. For instance, polyurethanes present a surface chemistry that differs from the `bulk` chemistry. It is often desirable to utilize a bulk material with desirable bulk properties and improve its biocompatibility by the application of a surface modification or a thin coating. XPS has been used to verify the intended coating chemistry and the uniformity of thin coatings. On

  14. XPS - an essential tool in biomaterial research

    International Nuclear Information System (INIS)

    StJohn, H.A.W.; Greisser, H.J.

    1999-01-01

    Full text: Increased life expectancy has markedly enhanced the need for biomedical devices to combat life-threatening conditions (e.g., pacemakers, artificial blood vessels) or improve the quality of life (e.g., intraocular lenses, artificial ligaments, contact lenses). While the biomedical device industry has delivered remarkable benefits, many existing and emerging needs and applications are not adequately met with existing synthetic materials. Depending on the application, a biomaterial needs to meet a number of requirements to be 'biocompatible', such as appropriate mechanical properties, transparency, resistance to enzymatic degradation, and appropriate biological responses by the host environment. Surface science and surface analysis plays a key role in understanding and optimizing the molecular interfacial interactions between synthetic materials surfaces and biological media which lead to biological responses to implants. Many biological molecules such as proteins and lipids have surfactant activity and respond to interfaces on contact. Thus, an important part of achieving 'biocompatibility' is to produce an appropriate surface chemical composition that avoids undesirable biological consequences triggered by biological molecules recognizing a 'foreign' material interface. XPS surface analysis has proved uniquely suitable for studying several aspects of biomaterials. In order to interpret biological responses in terms of surface chemistry, it is essential that the surface be well characterized. However, for polymers this can be quite a challenge due to the inherent mobility of polymer chains. For instance, polyurethanes present a surface chemistry that differs from the 'bulk' chemistry. It is often desirable to utilize a bulk material with desirable bulk properties and improve its biocompatibility by the application of a surface modification or a thin coating. XPS has been used to verify the intended coating chemistry and the uniformity of thin coatings. On

  15. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-11-01

    Full Text Available The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure and compositions (argon, nitrogen and helium on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  16. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    Science.gov (United States)

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  17. Investigations of the solid solution in the system SrI2-BaI2 at ambient pressures and at 2.0 GPa

    International Nuclear Information System (INIS)

    Beck, H.P.; Holley, C.; Limmer, A.

    1984-01-01

    The P,T,x-diagram of the system SrI 2 -BaI 2 has been investigated at ambient pressures and at 2.0 GPa. The amount of solid solution in the four structure types occuring in this system (SrI 2 - or PbCl 2 -ZrAs 2 -type with SrI 2 and PbCl 2 - or anti-Fe 2 P-type with BaI 2 ) differs considerably. Structural geometries belonging to the same PbCl 2 structure family show marked differences in their toleration to cation substitution. Solid solution is especially pronounced in the BaI 2 -rich phases which incorporate up to 60 mol-% Sr 2+ in the high pressure phase of BaI 2 . (author)

  18. Investigations of the solid solution in the system SrI/sub 2/-BaI/sub 2/ at ambient pressures and at 2. 0 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Beck, H.P.; Holley, C.; Limmer, A. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Anorganische Chemie)

    1984-09-01

    The P,T,x-diagram of the system SrI/sub 2/-BaI/sub 2/ has been investigated at ambient pressures and at 2.0 GPa. The amount of solid solution in the four structure types occuring in this system (SrI/sub 2/- or PbCl/sub 2/-ZrAs/sub 2/-type with SrI/sub 2/ and PbCl/sub 2/- or anti-Fe/sub 2/P-type with BaI/sub 2/) differs considerably. Structural geometries belonging to the same PbCl/sub 2/ structure family show marked differences in their toleration to cation substitution. Solid solution is especially pronounced in the BaI/sub 2/-rich phases which incorporate up to 60 mol-% Sr/sup 2 +/ in the high pressure phase of BaI/sub 2/.

  19. Synthesis under ambient pressure and tri-axial magnetic orientation in REBa2Cu4O8 (RE = Y, Sm, Eu, Gd, Dy, Ho, Er)

    International Nuclear Information System (INIS)

    Yamaki, M.; Horii, S.; Haruta, M.; Maeda, T.; Shimoyama, J.

    2011-01-01

    REBa 2 Cu 4 O 8 (RE124) was synthesized by a flux method in ambient pressure for RE = Y, Sm, Eu, Gd, Dy, Ho and Er. Tri-axial orientation of RE124 was achieved in a modulated rotating magnetic field of 10 T. Orientation axes in RE124 depended on the type of RE. Magnetization axes were determined from magnetic anisotropies of Cu and RE ions. We report the rare-earth (RE)-dependent magnetization axes of REBa 2 Cu 4 O 8 , which was synthesized by a flux method under ambient pressure, using powder samples tri-axially oriented in a modulated rotating magnetic field of 10 T. By optimizing the growth temperature and cooling rate, RE124 crystals were successfully grown for RE = Y, Sm, Eu, Gd, Dy, Ho, and Er. From the X-ray diffraction measurement, the magnetically oriented directions were largely dependent on the type of RE ions of RE124. However, the tri-axial magnetic anisotropies of RE124 could be qualitatively understood in terms of the magnitude relation between the single-ion magnetic anisotropy of RE 3+ ions and the magnetic anisotropy generated by the CuO 2 plane and Cu-O chain. For the practical use of this magneto-scientific process, the control of magnetization axes and tri-axial magnetic anisotropies through crystallochemical control is indispensable.

  20. Secondary electron measurement and XPS characterization of NEG coatings

    International Nuclear Information System (INIS)

    Sharma, R. K.; Sinha, Atul K.; Gupta, Nidhi; Nuwad, J.; Jagannath,; Gadkari, S. C.; Singh, M. R.; Gupta, S. K.

    2014-01-01

    Ternary alloy coatings of IVB and VB materials provide many of benefits over traditional material surfaces such as creation of extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption coefficient. XHV (pressure −10 mbar) is very useful to the study of surfaces of the material in as it is form, high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc.. Low secondary electron yield leads to very low multi-pacting utilizes to increase beam life time. In this paper preparation of the coatings and a study of secondary electron yield measurement after heating at different temperatures has been shown also results of their surface characterization based on shift in binding energy has been produced using the surface techniques XPS. Stoichiometry of the film was measured by Energy dispersive x-ray analysis (EDX)

  1. Phase formation in the (1-y)BiFeO{sub 3}-yBiScO{sub 3} system under ambient and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Salak, A.N., E-mail: salak@ua.pt [Department of Materials and Ceramic Engineering and CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Khalyavin, D.D., E-mail: dmitry.khalyavin@stfc.ac.uk [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pushkarev, A.V.; Radyush, Yu.V.; Olekhnovich, N.M. [Scientific-Practical Materials Research Centre of NAS of Belarus, P. Brovka Street, 19, 220072 Minsk (Belarus); Shilin, A.D.; Rubanik, V.V. [Institute of Technical Acoustics of NAS of Belarus, Lyudnikov Avenue, 13, 210023 Vitebsk (Belarus)

    2017-03-15

    Formation and thermal stability of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO{sub 3}) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO{sub 3}-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi{sub 2}O{sub 3}. Single-phase perovskite ceramics of the BiFe{sub 1-y}Sc{sub y}O{sub 3} composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2a{sub p}×√2a{sub p}×2√3a{sub p} superstructure (a{sub p} ~ 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2a{sub p}×4a{sub p}×2√2a{sub p}) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6a{sub p}×√2a{sub p}×√6a{sub p}) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively. - Graphical abstract: Formation of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system when y≥0.15 requires application of pressure of several GPa. The phases formed under high pressure: R3c (0.20≤y≤0.25), Pnma (0.30≤y≤0.60) and C2/c (y≥0.70) are metastable. - Highlights: • Maximal Fe-to-Sc substitution rate in Bi

  2. Solubility of perfumery and fragrance raw materials based on cyclohexane in 1-octanol under ambient and high pressures up to 900 MPa

    International Nuclear Information System (INIS)

    Domanska, Urszula; Morawski, Piotr; Piekarska, Maria

    2008-01-01

    The (solid + liquid) phase equilibria (SLE) of binary mixtures containing 1-octanol and fragrance raw materials based on cyclohexane were investigated. The systems {1-octanol (1) + cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA), or 2-cyclohexyl ethanol (2CE)(2)} have been measured by a dynamic method in wide range of temperatures from (220 to 320) K and ambient pressure. For all systems SLE diagrams were detected as eutectic mixtures with complete miscibility in the liquid phase. The experimental data were correlated by means of the Wilson and NRTL equations, utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Additionally, the SLE in binary mixture that contain {1-octanol (1) + CCA (2)} has been measured under very high pressures up to about 900 MPa at the temperature range from T = (303.15 to 353.15) K. The thermostatted apparatus for the measurements of transition pressures from the (liquid + solid) state was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high pressure experimental results obtained at isothermal conditions (p-x) were interpolated to more convenient T-x diagram. Data of the (pressure + temperature) composition relation at the high pressure (solid + liquid) phase equilibria was correlated by the polynomial based on the Yang model. The basic thermodynamic properties of pure substances viz. the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, and glass transition, have been determined by the differential scanning calorimetry (DSC)

  3. Solubility of perfumery and fragrance raw materials based on cyclohexane in 1-octanol under ambient and high pressures up to 900 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)], E-mail: ula@ch.pw.edu.pl; Morawski, Piotr; Piekarska, Maria [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2008-04-15

    The (solid + liquid) phase equilibria (SLE) of binary mixtures containing 1-octanol and fragrance raw materials based on cyclohexane were investigated. The systems {l_brace}1-octanol (1) + cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA), or 2-cyclohexyl ethanol (2CE)(2){r_brace} have been measured by a dynamic method in wide range of temperatures from (220 to 320) K and ambient pressure. For all systems SLE diagrams were detected as eutectic mixtures with complete miscibility in the liquid phase. The experimental data were correlated by means of the Wilson and NRTL equations, utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Additionally, the SLE in binary mixture that contain {l_brace}1-octanol (1) + CCA (2){r_brace} has been measured under very high pressures up to about 900 MPa at the temperature range from T = (303.15 to 353.15) K. The thermostatted apparatus for the measurements of transition pressures from the (liquid + solid) state was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high pressure experimental results obtained at isothermal conditions (p-x) were interpolated to more convenient T-x diagram. Data of the (pressure + temperature) composition relation at the high pressure (solid + liquid) phase equilibria was correlated by the polynomial based on the Yang model. The basic thermodynamic properties of pure substances viz. the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, and glass transition, have been determined by the differential scanning calorimetry (DSC)

  4. Surface functional group characterization using chemical derivatization X-ray photoelectron spectroscopy (CD-XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Jagst, Eda

    2011-03-18

    Chemical derivatization - X-ray photolectron spectroscopy (CD-XPS) was applied successfully in order to determine different functional groups on thin film surfaces. Different amino group carrying surfaces, prepared by spin coating, self-assembly and plasma polymerization, were successfully investigated by (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Amino groups were derivatized with the widely used primary amino group tags, pentafluorobenzaldehyde (PFB) and 4-(trifluoromethyl)-benzaldehyde (TFBA), prior to analysis. Primary amino group quantification was then carried out according to the spectroscopical data. Self-assembled monolayers (SAMs) of different terminal groups were prepared and investigated with XPS and spectra were compared with reference surfaces. An angle resolved NEXAFS measurement was applied to determine the orientation of SAMs. Plasma polymerized allylamine samples with different duty cycle, power and pressure values were prepared in order to study the effects of external plasma parameters on the primary amino group retention. CD-XPS was used to quantify the amino groups and experiments show, that the milder plasma conditions promote the retention of amino groups originating from the allylamine monomer. An interlaboratory comparison of OH group determination on plasma surfaces of polypropylene treated with oxygen plasma, was studied. The surfaces were investigated with XPS and the [OH] amount on the surfaces was calculated. (orig.)

  5. Variations in dark respiration and mitochondrial numbers within needles of Pinus radiata grown in ambient or elevated CO2 partial pressure

    International Nuclear Information System (INIS)

    Griffin, K. L.; Anderson, O. R.; Tissue, D. T.; Turnbull, M. H.; Whitehead, D.

    2004-01-01

    An experiment involving comparison of within-leaf variations in cell size, mitochondrial numbers and dark respiration in the most recently expanded tip, the mid-section and the base of needles of Pinus radiata grown for four years at ambient and elevated carbon dioxide partial pressure, is described. Results showed variation in mitochondrial numbers and respiration along the length of the needle, with the highest number of mitochondria per unit cytoplasm and the highest rate of respiration per unit leaf area at the base of the needle. Elevated carbon dioxide pressure caused the number of mitochondria per unit cytoplasm to double regardless of location (tip, basal or mid sections). Under these conditions, greatest mitochondrial density was observed at the tip. The mean size of mitochondria was not affected by either growth at elevated carbon dioxide pressure or by position on the needle. Respiration per unit leaf area at elevated carbon dioxide pressure was highest at the tip of needles, decreasing towards the middle and basal sections. The observed data supports the hypothesis that the highest number of mitochondria per unit area of cytoplasm occurs at the base of the needle, but does not support the hypothesis that the lowest rate of respiration also occurs at the base. It is suggested that the relationship that determines the association between structure and function in these needles is more complex than previously thought. 33 refs., 4 tabs., 1 fig

  6. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO2/Pt(1 1 1) inverse model catalyst

    Science.gov (United States)

    Rameshan, C.; Li, H.; Anic, K.; Roiaz, M.; Pramhaas, V.; Rameshan, R.; Blume, R.; Hävecker, M.; Knudsen, J.; Knop-Gericke, A.; Rupprechter, G.

    2018-07-01

    Due to the need of sustainable energy sources, methane dry reforming is a useful reaction for conversion of the greenhouse gases CH4 and CO2 to synthesis gas (CO  +  H2). Syngas is the basis for a wide range of commodity chemicals and can be utilized for fuel production via Fischer–Tropsch synthesis. The current study focuses on spectroscopic investigations of the surface and reaction properties of a ZrO2/Pt inverse model catalyst, i.e. ZrO2 particles (islands) grown on a Pt(1 1 1) single crystal, with emphasis on in situ near ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) during MDR reaction. In comparison to technological systems, model catalysts facilitate characterization of the surface (oxidation) state, surface adsorbates, and the role of the metal-support interface. Using XPS and infrared reflection absorption spectroscopy we demonstrated that under reducing conditions (UHV or CH4) the ZrO2 particles transformed to an ultrathin ZrO2 film that started to cover (wet) the Pt surface in an SMSI-like fashion, paralleled by a decrease in surface/interface oxygen. In contrast, (more oxidizing) dry reforming conditions with a 1:1 ratio of CH4 and CO2 were stabilizing the ZrO2 particles on the model catalyst surface (or were even reversing the strong metal support interaction (SMSI) effect), as revealed by in situ XPS. Carbon deposits resulting from CH4 dissociation were easily removed by CO2 or by switching to dry reforming conditions (673–873 K). Thus, at these temperatures the active Pt surface remained free of carbon deposits, also preserving the ZrO2/Pt interface.

  7. Electronic transport properties of MFe2As2 (M = Ca, Eu, Sr) at ambient and high pressures up to 20 GPa

    Science.gov (United States)

    Morozova, Natalia V.; Karkin, Alexander E.; Ovsyannikov, Sergey V.; Umerova, Yuliya A.; Shchennikov, Vladimir V.; Mittal, R.; Thamizhavel, A.

    2015-12-01

    We experimentally investigated the electronic transport properties of four iron pnictide crystals, namely, EuFe2As2, SrFe2As2, and CaFe2As2 parent compounds, and superconducting CaFe1.94Co0.06As2 at ambient and high pressures up to 20 GPa. At ambient pressure we examined the electrical resistivity, Hall and magnetoresistance effects of the samples in a temperature range from 1.5 to 380 K in high magnetic fields up to 13.6 T. In this work we carried out the first simultaneous investigations of the in-plane and out-of-plane Hall coefficients, and found new peculiarities of the low-temperature magnetic and structural transitions that occur in these materials. In addition, the Hall coefficient data suggested that the parent compounds are semimetals with a multi-band conductivity that includes hole-type and electron-type bands. We measured the pressure dependence of the thermoelectric power (the Seebeck effect) of these samples up to 20 GPa, i.e. across the known phase transition from the tetragonal to the collapsed tetragonal lattice. The high-pressure behavior of the thermopower of EuFe2As2 and CaFe2As2 showing the p-n sign inversions was consistent with the semimetal model described above. By means of thermopower, we found in single-crystalline CaFe2As2 direct evidence of the band structure crossover related to the formation of As-As bonds along the c-axis on the tetragonal → collapsed tetragonal phase transition near 2 GPa. We showed that this feature is distinctly observable only in high-quality samples, and already for re-pressurization cycles this crossover was strongly smeared because of the moderate deterioration of the sample. We also demonstrated by means of thermopower that the band structure crossover that should accompany the tetragonal → collapsed tetragonal phase transition in EuFe2As2 near 8 GPa is hardly visible even in high-quality single crystals. This behavior may be related to a gradual valence change of the Eu ions under pressure that leads to

  8. Water Adsorption on a-Fe2O3(0001) at Near Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumu

    2011-08-19

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {le} 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7} % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx} 4 x 10{sup -2} % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at {approx}15% RH and increases to 1.5 ML at 34% RH.

  9. Tl Cuprate Superconductors Studied by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, R. P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099 (United States); Siegal, M. P. [Sandia National Laboratories, Albuquerque, NM 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, NM 87185-1421 (United States); Ren, Z. F. [Department of Chemistry, State University of New York, Buffalo, NY 14260-3000 (United States); Lao, J. Y. [Department of Chemistry, State University of New York, Buffalo, NY 14260-3000 (United States); Wang, J. H. [Department of Chemistry, State University of New York, Buffalo, NY 14260-3000 (United States)

    1999-07-01

    XPS measurements on epitaxial thin films of the Tl cuprate superconductors Tl2Ba2CaCu2O8, Tl2Ba2Ca2Cu3O10, and Tl0.78Bi0.22Ba0.4Sr1.6Ca2Cu3O9-{delta} are presented. These data, together with previous measurements in this lab on Tl2Ba2CuO6-{delta} and TlBa2CaCu2O7-{delta}, comprise a comprehensive data set for comparison of Tl cuprates in which the number of Tl-O and Cu-O layers, and hence the chemical and electronic properties, vary. (c) 2000 American Vacuum Society.

  10. Tl Cuprate Superconductors Studied by XPS

    International Nuclear Information System (INIS)

    Vasquez, R. P.; Siegal, M. P.; Overmyer, D. L.; Ren, Z. F.; Lao, J. Y.; Wang, J. H.

    1999-01-01

    XPS measurements on epitaxial thin films of the Tl cuprate superconductors Tl2Ba2CaCu2O8, Tl2Ba2Ca2Cu3O10, and Tl0.78Bi0.22Ba0.4Sr1.6Ca2Cu3O9-δ are presented. These data, together with previous measurements in this lab on Tl2Ba2CuO6-δ and TlBa2CaCu2O7-δ, comprise a comprehensive data set for comparison of Tl cuprates in which the number of Tl-O and Cu-O layers, and hence the chemical and electronic properties, vary. (c) 2000 American Vacuum Society

  11. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  12. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Institute of Analytical Chemistry of the ASCR, v.v.i., Veveri 97, CZ-602 00 Brno (Czech Republic); Mester, Zoltan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Sturgeon, Ralph E., E-mail: Ralph.Sturgeon@nrc-cnrc.gc.ca [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-08-15

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  13. Two Regimes of Bandgap Red Shift and Partial Ambient Retention in Pressure-Treated Two-Dimensional Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States; Kong, Lingping [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States; Guo, Peijun [Center; Stoumpos, Constantinos C. [Department; Hu, Qingyang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Liu, Zhenxian [Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States; Cai, Zhonghou [Advanced; Gosztola, David J. [Center; Mao, Ho-kwang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States; Kanatzidis, Mercouri G. [Department; Schaller, Richard D. [Center; Department

    2017-10-09

    The discovery of elevated environmental stability in two-dimensional (2D) Ruddlesden–Popper hybrid perovskites represents a significant advance in low-cost, high-efficiency light absorbers. In comparison to 3D counterparts, 2D perovskites of organo-lead-halides exhibit wider, quantum-confined optical bandgaps that reduce the wavelength range of light absorption. Here, we characterize the structural and optical properties of 2D hybrid perovskites as a function of hydrostatic pressure. We observe bandgap narrowing with pressure of 633 meV that is partially retained following pressure release due to an atomic reconfiguration mechanism. We identify two distinct regimes of compression dominated by the softer organic and less compressible inorganic sublattices. Our findings, which also include PL enhancement, correlate well with density functional theory calculations and establish structure–property relationships at the atomic scale. These concepts can be expanded into other hybrid perovskites and suggest that pressure/strain processing could offer a new route to improved materials-by-design in applications.

  14. Specific features of an interaction between laser radiation and matter at high pressures of an ambient medium

    Energy Technology Data Exchange (ETDEWEB)

    Rykalin, N N; Uglov, A A; Nizametdinov, M M [AN SSSR, Moscow. Inst. Metallurgii

    1975-08-01

    Study of the development of a plasma cloud in the vicinity of the target in nitrogen has been performed. The mechanism of discharge propagation is discussed. Variations of physical characteristics of targets exposed to radiation are considered. Experimental data concerning interaction of a neodymium laser radiation with materials (metals, dielectrics) under high pressure are given. It is demonstrated that the environmental pressure increase over the range 30-100 atm with the flux density 10/sup 6/-10/sup 7/ w/cm/sup 2/ results in a nearly complete screening of the target by the plasma cloud. The primary mechanism of zone formation of the laser radiation absorption in a cold gas under high pressures near the target is thermal emission (when the evaporation is insignificant) and the breakdown in the vapours of the evaporated substance. The major mechanism of sustaining the plasma cloud at flux densities of 1-10 Mw/cm/sup 2/ is slow burning. It is noted that the periodic variation of brightness of plasma after the radiation effect on dielectrics has terminated can be associated with the energy production in a chemical reaction, the development of which is determined by the time of reaching the temperature that depends on the particle size. The target characteristics in the interaction zone are considered, which depend on the radiation flux density and the gas pressure in the chamber.

  15. Influence of deuterium content on tensile behavior of Zr-2.5Nb pressure tube material in the temperature range of ambient to 300 degC

    International Nuclear Information System (INIS)

    Bind, A.K.; Singh, R.N.; Chakravartty, J.K.; Dhandharia, Priyesh; Ghosh, Agnish; More, Nitin S.; Chhatre, A.G.; Vijayakumar, S.

    2011-08-01

    Tensile properties of autoclaved zirconium-2.5 wt. % niobium pressure tube material were evaluated by uniaxial tension tests at temperatures between 25 and 300 degC and under strain-rates of 1.075 x 10 -4 /s. Six number of Zr-2.5Nb alloy pressure tube spools of length 130 mm were obtained from pressure tube number 19-2557-2. Five spools were polished with abrasive paper to remove the oxide layer. These spools were gaseously charged with controlled amount of deuterium. The target deuterium concentrations were 25, 50, 75, 100 and 200 wppm of hydrogen equivalent. Ten samples were machined by EDM wire cutting from every spool. The tensile specimen axis was oriented along longitudinal direction of the tube. Metallographic examination of the deuterium charged samples suggested that the deuterides were predominantly circumferential deuterides. Analysis of tensile results showed that both yield and ultimate tensile strengths of this alloy decreased monotonically with increasing test temperatures. The tensile ductility decreased marginally with increase in test temperature from ambient to 300 degC. It was also observed that both strength and ductility appear to be unaffected by deuterium content at all temperatures, thereby suggesting that at least up to 200 wppm (Heq.) of deuterium tensile properties are not influenced by deuterium. (author)

  16. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  17. METEO-P/H: Measuring ambient pressure and relative humidity on the ExoMars 2020 landing site

    Science.gov (United States)

    Nikkanen, T. T.; Genzer, M.; Hieta, M.; Harri, A.-M.; Haukka, H.; Polkko, J.; Kynkäänniemi, T.

    2017-09-01

    Finnish Meteorological Institute (FMI) has designed and is in the process of building and testing a pressure and humidity measurement device for the ExoMars 2020 lander. The ExoMars 2020 mission consists of the Russian Roscosmos Surface Platform (SP) and the European Space Agency (ESA) Rover. The Surface Platform will perform the Entry, Descent and Landing for the lander combo and start stationary science operations after landing, while the Rover will drive off the SP to explore the landing site surroundings and soil. The FMI measurement device is installed on the Surface Platform to give continuous measurements from a stationary location. The METEO-P pressure device and METEO-H humidity device are part of the METEO meteorological science package, which also includes a thermometer and an anemometer from IKI, Russia, as well as the RDM Radiation and dust sensors, and the AMR magnetic field sensors from INTA, Spain.

  18. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  19. Effect of ambient pressure on the crystalline phase of nano TiO2 particles synthesized by a dc thermal plasma reactor

    International Nuclear Information System (INIS)

    Banerjee, I.; Karmakar, Soumen; Kulkarni, Naveen V.; Nawale, Ashok B.; Mathe, V. L.; Das, A. K.; Bhoraskar, S. V.

    2010-01-01

    The synthesis of nanoparticles of titanium dioxide (TiO 2 ) with varying percentages of anatase and rutile phases is reported. This was achieved by controlling the operating pressure in a transferred-arc, direct current thermal plasma reactor in which titanium vapors are evaporated, and then exposed to ambient oxygen. The average particle size remained around 15 nm in each case. The crystalline structure of the as-synthesized nanoparticles of TiO 2 was studied with X-ray diffraction analysis; whereas the particle morphology was investigated with the help of transmission electron microscopy. The precursor species responsible for the growth of these nanoparticles was studied with the help of optical emission spectroscopy. As inferred from the X-ray diffraction analysis, the relative abundance of anatase TiO 2 was found to be dominant when synthesized at 760 Torr, and the same showed a decreasing trend with decreasing chamber pressure. The study also reveals that anatase TiO 2 is a more effective photocatalytic agent in degrading methylene blue by comparison to its rutile phase.

  20. Multi-morphological growth of nano-structured In{sub 2}Se{sub 3} by ambient pressure triethylene glycol based solution syntheses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tongfei; Wang, Jian; Lai, Junyun; Zheng, Xuerong; Liu, Weiyan; Ji, Junna [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Liu, Hui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-10-15

    In{sub 2}Se{sub 3} nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized by a new, facile, ambient pressure triethylene glycol based solution chemical route using indium(III) chloride and selenium powder as precursors. The growing morphology, crystallization, chemical stoichiometry and light absorption property of the In{sub 2}Se{sub 3} products synthesized were characterized by TEM, HRTEM, FESEM, XRD, EDX and UV–vis–NIR measurements. Multi-morphological growth of the nano-structured In{sub 2}Se{sub 3} in triethylene glycol based solution syntheses with changed assisting agents and reaction styles was demonstrated. - Highlights: • Multimorphological growth of In{sub 2}Se{sub 3} was demonstrated based on solution chemistry. • A new, facile, low cost and fast air pressure TEG based solution process was used. • Nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized. • Morphology, crystallization, stoichiometry and light absorption was characterized. • Solution growth of β-In{sub 2}Se{sub 3} nanosheets was firstly reported by this submission.

  1. Effects of ambient conditions on the risk of pressure injuries in bedridden patients-multi-physics modelling of microclimate.

    Science.gov (United States)

    Zeevi, Tal; Levy, Ayelet; Brauner, Neima; Gefen, Amit

    2018-06-01

    Scientific evidence regarding microclimate and its effects on the risk of pressure ulcers (PU) remains sparse. It is known that elevated skin temperatures and moisture may affect metabolic demand as well as the mechanical behaviour of the tissue. In this study, we incorporated these microclimate factors into a novel, 3-dimensional multi-physics coupled model of the human buttocks, which simultaneously determines the biothermal and biomechanical behaviours of the buttocks in supine lying on different support surfaces. We compared 3 simulated thermally controlled mattresses with 2 reference foam mattresses. A tissue damage score was numerically calculated in a relevant volume of the model, and the cooling effect of each 1°C decrease of tissue temperature was deduced. Damage scores of tissues were substantially lower for the non-foam mattresses compared with the foams. The percentage tissue volume at risk within the volume of interest was found to grow exponentially as the average tissue temperature increased. The resultant average sacral skin temperature was concluded to be a good predictor for an increased risk of PU/injuries. Each 1°C increase contributes approximately 14 times as much to the risk with respect to an increase of 1 mmHg of pressure. These findings highlight the advantages of using thermally controlled support surfaces as well as the need to further assess the potential damage that may be caused by uncontrolled microclimate conditions on inadequate support surfaces in at-risk patients. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  2. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    Science.gov (United States)

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  3. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    Science.gov (United States)

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and ozone (O 3 ) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM 10 (50.0 μg/m 3 ) and O 3 (53.0 μg/m 3 ) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM 10 and 2.77 (95% CI, 1.94-3.95) for O 3 . Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM 10 and O 3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO 2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas

    International Nuclear Information System (INIS)

    Ma, Q.L.; Motto-Ros, V.; Lei, W.Q.; Boueri, M.; Bai, X.S.; Zheng, L.J.; Zeng, H.P.; Yu, J.

    2010-01-01

    Laser ablation in background gas implies supplementary complexities with respect to what happens in the vacuum. It is however essential to understand in detail the involved mechanisms for a number of applications requiring the ablation to be performed in an ambient gas at relative high pressure, such as pulsed-laser deposition, or laser-induced breakdown spectroscopy. In this paper, the expansion of a vapor plume ablated from an aluminum target into an argon gas at atmospheric pressure is experimentally investigated using time- and space-resolved emission spectroscopy. The obtained results provide a detailed description of the interplay between the vapor and the gas. The electron density, the temperature and the number densities (and therefore the partial pressures) of aluminum vapor and argon gas have been measured in and surrounding the vapor plume. Our observations show a confinement of the vapor plume by the gas, which is expected as predicted by the usual hydrodynamics models. The result is a plasma core with quite uniform distributions in electron density, temperature and number densities. Such plasma core presents an ideal emission source for spectroscopic applications. It is however evidenced by our observations that a large amount of argon is mixed into the aluminum plume in the plasma core, which invalidates in the experimental conditions that we used, the hydrodynamic 'piston' model where the background gas is pushed out by the shock wave surrounding the vapor plume. Instead, other mechanisms such as laser-supported detonation wave should play important roles in the early stage of the expansion of the plasma for the determination of its morphology at longer delays.

  5. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  6. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    Science.gov (United States)

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  7. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  8. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics

    Science.gov (United States)

    Zang, Xiaoling; Pérez, José J.; Jones, Christina M.; Monge, María Eugenia; McCarty, Nael A.; Stecenko, Arlene A.; Fernández, Facundo M.

    2017-08-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy.

  9. The influence of boron on the crystal structure and properties of mullite. Investigations at ambient, high-pressure, and high-temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Luehrs, Hanna

    2013-11-21

    Mullite is one of the most important synthetic compounds for advanced structural and functional ceramic materials. The crystal structure of mullite with the composition Al{sub 2}[Al{sub 2+2x}Si{sub 2-2x}]O{sub 10-x} can incorporate a large variety of foreign cations, including (amongst others) significant amounts of boron. However, no chemical or crystal structure analyses of boron-mullites (B-mullites) were available prior to this work, thus representing the key aspects of this thesis. Furthermore, the influence of boron on selected properties of mullite under ambient, high-temperature, and high-pressure conditions are addressed. Starting from a 3:2 mullite composition (Al{sub 4.5}Si{sub 1.5}O{sub 9.75}), the initial hypothesis for this study was a 1:1 isomorphous replacement of silicon by boron according to the coupled substitution mechanism: 2 Si{sup 4+} + O{sup 2-} → 2 B{sup 3+} + □. Based on a series of compounds synthesized from sol-gel derived precursors at ambient pressure and 1200 C, the formation conditions and physical properties of B-mullites were investigated. The formation temperature for B-mullites decreases with increasing boron-content, as revealed by thermal analyses. An anisotropic development of lattice parameters is observed: Whereas lattice parameters a and b only exhibit minor changes, a linear relationship between lattice parameter c and the amount of boron in the crystal structure was established, on the basis of prompt gamma activation analyses (PGAA) and Rietveld refinements. According to this relationship about 15% of the silicon in mullite can be replaced by boron yielding single-phase B-mullite. B-mullites with significantly higher (∝ factor 3) boron-contents in the mullite structure were also observed but the respective samples contain alumina impurities. Fundamental new details regarding the response of B-mullite to high-temperature and highpressure are presented in this thesis. On the one hand, long-term thermal stability at

  10. Quality of the blood pressure phenotype in the GEnotipo, Fenotipo y Ambiente de la hipertensión arterial en UruguaY (GEFA-HT-UY) study.

    Science.gov (United States)

    Luzardo, Leonella; Sottolano, Mariana; Lujambio, Inés; Robaina, Sebastián; Thijs, Lutgarde; da Rosa, Alicia; Krul, Nadia; Carusso, Florencia; Ríos, Ana C; Olascoaga, Alicia; Noboa, Oscar; Staessen, Jan A; Boggia, José

    2014-12-01

    In the ongoing GEnotipo, Fenotipo y Ambiente de la HiperTensión Arterial en UruguaY (GEFA-HT-UY) study, we applied standardized epidemiological methods to determine complex phenotypes including blood pressure (BP). In this report, we present the quality control of the conventionally measured BP. Three trained observers measured BP five times consecutively in the seated position at each of two home visits and one clinic visit according to the guidelines of the European Society of Hypertension. On 1 December 2013, 4379 single BP readings in 170 participants were available for analysis. Fewer BP readings than the five planned per contact occurred only at one home visit. Among observers, the frequency of identical consecutive readings for systolic or diastolic BP varied from 0 to 4.2%. The occurrence of odd readings ranged from 0.1 to 0.6%. Only 21.6% of the systolic and diastolic BP readings ended on zero (expected 20%). At home visits, there was a progressive decline in BP from the first to the fifth reading. The average of the five BP readings also decreased from the first to the second home visit (-5.63/-2.34 mmHg). Our study highlighted the necessity to implement a stringent quality control of the conventionally measured BP. The procedures set up in the GEFA-HT-UY study are resulting in a well-defined BP phenotype, which is consistent with that in other population studies.

  11. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Andrei C. Popescu

    2015-06-01

    Full Text Available Hard carbon thin films were synthesized on Si (100 and quartz substrates by the Pulsed Laser Deposition (PLD technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.

  12. To the issue of temperature-dependent behavior of standard molar volumes of components in the binary system (water + tetrahydrofuran) at ambient pressure

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.

    2014-01-01

    Graphical abstract: The standard molar volume of tetrahydrofuran (THF) in water, V THF ∘ (■), is a close-to-linear function of temperature and becomes increasingly appreciable with rising of the latter. Herewith the molar volume of pure THF, V THF (□), is retained to be larger, as compared to V THF ∘ , over all the temperature range studied. - Highlights: • Densities of aqueous THF at nine temperatures from (278.15 to 318.15) K were measured. • Temperature-dependent standard molar volumes of THF in water were calculated. • The analysis of excess standard molar volumes in the (water + THF) system was made. • The use of Redlich–Kister equation to obtain standard molar volumes is discussed. - Abstract: This report presents a comparative analysis of temperature-dependent data on density of both dilute aqueous solutions of tetrahydrofuran (THF) and dilute solutions of water in THF, as well as standard molar volumes of water or THF as a solute. For this purpose, new results on studying the volume-related properties of THF in a water-rich region at temperatures from (278.15 to 318.15) K, with a step of 5 K, and at the ambient pressure have been derived densimetrically. In discussion, some comments on previously published investigations, being related to temperature-dependent changes in the solution density and standard molar volumes of components of the system (water + THF), have been made

  13. Dimethyl methylphosphonate adsorption and decomposition on MoO2 as studied by ambient pressure x-ray photoelectron spectroscopy and DFT calculations

    Science.gov (United States)

    Head, Ashley R.; Tsyshevsky, Roman; Trotochaud, Lena; Yu, Yi; Karslıoǧlu, Osman; Eichhorn, Bryan; Kuklja, Maija M.; Bluhm, Hendrik

    2018-04-01

    Organophosphonates range in their toxicity and are used as pesticides, herbicides, and chemical warfare agents (CWAs). Few laboratories are equipped to handle the most toxic molecules, thus simulants such as dimethyl methylphosphonate (DMMP), are used as a first step in studying adsorption and reactivity on materials. Benchmarked by combined experimental and theoretical studies of simulants, calculations offer an opportunity to understand how molecular interactions with a surface changes upon using a CWA. However, most calculations of DMMP and CWAs on surfaces are limited to adsorption studies on clusters of atoms, which may differ markedly from the behavior on bulk solid-state materials with extended surfaces. We have benchmarked our solid-state periodic calculations of DMMP adsorption and reactivity on MoO2 with ambient pressure x-ray photoelectron spectroscopy studies (APXPS). DMMP is found to interact strongly with a MoO2 film, a model system for the MoO x component in the ASZM-TEDA© gas filtration material. Density functional theory modeling of several adsorption and decomposition mechanisms assist the assignment of APXPS peaks. Our results show that some of the adsorbed DMMP decomposes, with all the products remaining on the surface. The rigorous calculations benchmarked with experiments pave a path to reliable and predictive theoretical studies of CWA interactions with surfaces.

  14. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    Science.gov (United States)

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  15. Det ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Om begrebet "det ambiente", der beskriver, hvad der sker, når vi fornemmer baggrundsmusikkens diskrete beats, betragter udsigten gennem panoramavinduet eller tager 3D-brillerne på og læner os tilbage i biografsædet. Bogen analyserer, hvorfan ambiente oplevelser skabes, og hvilke konsekvenser det...

  16. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  17. Det Ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Det ambiente er iscenesættelsen af en karakteristisk sanseoplevelse, der er kendetegnet ved fornemmelsen af at være omgivet. I dag bliver begrebet om det ambiente mest anvendt i forbindelse med musikgenren ’ambient musik’. Det ambiente er dog ikke essentielt knyttet til det musikalske, men må...... forstås som et betydeligt bredere fænomen i den moderne æstetiske kultur, der spiller en væsentlig rolle i oplevelsen af moderne transportformer, arkitektur, film, lydkunst, installationskunst og digitale multimedieiscenesættelser. En forståelse af det ambiente er derfor centralt for forståelsen af en...... moderne æstetiseret oplevelseskultur i almindelighed. Da det ambiente ikke hidtil har været gjort til genstand for en mere indgående teoretisk behandling, er der dog stor usikkerhed omkring, hvad fænomenet overhovedet indebærer. Hovedformålet med Det ambiente – Sansning, medialisering, omgivelse er derfor...

  18. XPS and surface resistivity measurements of plasma - treated FEP co-polymer

    International Nuclear Information System (INIS)

    Pitrus, R.K.; Brack, N.; Liesegang, J.; Pigram, P.J.

    2002-01-01

    Full text: Fluorinated polymers such as fluorinated ethylene propylene (FEP) and poly(tetrafluoroethylene) (PTFE) play an important role in many applications due to their many desirable properties such as chemical resistivity, inertness, electrical stability and low dielectric constant; however, one disadvantage of fluorinated polymers is their extreme surface hydrophobicity. Previous studies show that plasma treatment will modify the surface by increasing the surface free energy and also offer a rapid and convenient method for pre-treating the polymers for many purposes. This paper, through resistivity and XPS (x-ray photoelectron spectroscopy) measurements, attempts to discover basic effects of such plasma treatment. Fluorinated ethylene propylene (FEP) co-polymer film of (0.05) mm thickness (obtained commercially) and with the following structure (CF 2 -CF 2 )-(CF(CF 3 )CF 2 )- was used. A suitable cleaning procedure was used to remove adventitious carbon from the surface. XPS has been used to study FEP film properties. The spectra of XPS were analyzed with the main focus on carbon and fluorine as they compose the elemental component of FEP film. A value of 2.05 was obtained for the F/C ratio, which is slightly higher than the theoretical F/C value estimated from the chemical structure of FEP (F/C 2). The clean film was then air plasma treated (pressure 10 -1 torr and power 30W) for various treatment times to produce a higher energy fluoropolymer surface. XPS studies investigated changes to the polymer surface and determined that oxidation occurs on the FEP surface. The oxidation reactions on the FEP surface form oxygen functional groups such as C-O and C=O groups. The results also show that the percentage of CF 2 and CF 3 in the co-polymer surface decreased with exposure time and the percentage of CF, C-C, C-O and C=O increased. There is a sharp decrease in F/C ratio and increase in O/C ratio. In addition to XPS, the resistivity of FEP-film was measured by a

  19. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  20. XPS investigations of tribofilms formed on CrN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mandrino, Djordje, E-mail: djordje.mandrino@imt.si; Podgornik, Bojan

    2017-02-28

    Highlights: • Formation of tribofilms from lubricant additives on CrN surfaces during tribological contact confirmed by XPS. • Chemistry & chemical state of tribofilms obtained by XPS. • Thin sulphate film forms at the top of sulphide tribofilm. • Final type of sulphide in tribolayer depends on additive chemistry and testing temperature. - Abstract: Action of lubrication additives in the case of uncoated steel surfaces, including the type and mechanism of tribofilm formation is well known and understood. However, contact type of tribofilms which might form under the tribological contact between CrN coated surfaces, remains more or less unexplored. The aim of this investigation was to study the type of tribofilms formed on the CrN coated steel samples subjected to lubricated reciprocating sliding contact under different contact conditions Contact surface and tribofilms formed were studied by X-ray Photoelectron Spectroscopy (XPS). Sample surfaces were first imaged by Scanning Electron Microscopy (SEM) to determine areas of tribofilm formation as well as areas not affected by tribological contact. In these areas survey and high resolution (HR) XPS measurements were performed to obtain information about surface chemistry and oxidation states of the constituent elements. It was found that differences between different samples, observed by the XPS measurements, may reflect differences in chemistry of tribofilms formed under different contact conditions.

  1. The hidden radiation chemistry in plasma modification and XPS analysis of polymer surfaces

    International Nuclear Information System (INIS)

    George, G.A.; Le, T.T.; Elms, F.M.; Wood, B.J.

    1996-01-01

    Full text: The surface modification of polymers using plasma treatments is being widely researched to achieve changes in the surface energetics and consequent wetting and reactivity for a range of applications. These include i) adhesion for polymer bonding and composite material fabrication and ii) biocompatibility of polymers when used as orthopedic implants, catheters and prosthetics. A low pressure rf plasma produces a variety of species from the introduced gas which may react with the surface of a hydrocarbon polymer, such as polyethylene. In the case of 0 2 and H 2 0, these species include oxygen atoms, singlet molecular oxygen and hydroxyl radicals, all of which may oxidise and, depending on their energy, ablate the polymer surface. In order to better understand the reactive species formed both in and downstream from a plasma and the relative contributions of oxidation and ablation, self-assembled monolayers of n-alkane thiols on gold are being used as well characterised substrates for quantitative X-ray photoelectron spectroscopy (XPS). The identification and quantification of oxidised carbon species on plasma treated polymers from broad, asymmetric XPS signals is difficult, so derivatisation is often used to enhance sensitivity and specificity. For example, trifluoroacetic anhydride (TFAA) selectively labels hydroxyl functionality. The surface analysis of a modified polymer surface may be confounded by high energy radiation chemistry which may occur during XPS analysis. Examples include scission of carbon-halogen bonds (as in TFM adducts), decarboxylation and main-chain polyene formation. The extent of free-radical chemistry occurring in polyethylene while undergoing XPS analysis may be seen by both ESR and FT-IR analysis

  2. Periodismo ambiental

    Directory of Open Access Journals (Sweden)

    Lucía Lemos

    2015-01-01

    Full Text Available Los periodistas toman el tema del medio ambiente cada vez más en serio. El uso de temas relacionados con el medio ambiente, debe estar ligado al análisis socio-económico y a las posibilidades de comunicación y educación de diferentes regiones del mundo. A continuación se presenta un resumen de la situación ambiental, las acciones de prensa y comunicación que se llevan a cabo en América Central (Panamá, El Salvador, Costa Rica y en Sudamérica Brasil,Colombia, Chile, México, y Perú. Se concluye en la necesidad de formar hábitos ecológicos. Los comunicadores deben presentar soluciones a los problemas, fomentar campañas comunes, compartir información y velar por el ambiente ambiente para que las generaciones futuras no tengan que perecer.

  3. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies

    International Nuclear Information System (INIS)

    Zougrou, I M; Katsikini, M; Pinakidou, F; Paloura, E C; Brzhezinskaya, M; Papadopoulou, L; Vlachos, E; Tsoukala, E

    2016-01-01

    Synchrotron radiation micro-X-Ray Fluorescence (μ-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L 2,3 -edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment. (paper)

  4. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  5. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  6. Ambient Utopia

    NARCIS (Netherlands)

    Heylen, Dirk K.J.; Bosse, Tibor

    2012-01-01

    his chapter presents an analysis of the ambitions that lie behind the concept of Ambient Intelligence as it is presented by the advocates and researchers working in the field. In particular it looks at the ideas regarding the forms of natural and intuitive forms of interaction that are envisaged –

  7. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Keywords. Porous silicon; passivation; palladium; oxidation; XPS. Abstract. Nano porous silicon (PS) was formed on -type monocrystalline silicon of 2–5 cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its ...

  8. XPS studies of the oxide formed on pure Ti

    International Nuclear Information System (INIS)

    Cremery, P.; David, D.; Beranger, G.; Oviedo, C.; Garcia, E.A.

    1980-01-01

    The XPS technique was used to study titanium samples oxidized at 200 ton of pure oxigen at different times and temperatures with the aim of producing variable oxide thicknesses. The thicknesses of different oxigen layers were determined by the nuclear reaction O 16 (d,p) O 17 *. (author) [pt

  9. Quantitative XPS analysis of thin iron-oxide films

    DEFF Research Database (Denmark)

    Graat, P.C.J.; Somers, Marcel A. J.

    1997-01-01

    Over the last decade Tougaard et al. (see e.g. Ref. 1) provided a formalism to calculate the contribution of inelastically scattered electrons to an XPS or AES spectrum. In that formalism it was assumed that the signal electrons move along straight lines to the surface. Recently, Werner et al. pr...

  10. Introduction to x-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Liesegang, J.; Pigram, P.J.

    1999-01-01

    Full text: XPS is one of several important surface analytical tools. Developed in Sweden in the 1960s, it was originally named by Kai Siegbahn as Electron Spectroscopy for Chemical Analysis or ESCA; and although it is the best method for non-invasively determining the elemental composition of the first 10 nm of any surface, modern XPS systems are capable of much more than elemental chemical analysis. High resolution photoelectron energy analysis (c. 0.2 eV) now permits easy identification of chemical state as well as concentration; angular variation of detection and depth profiling allow quantitative analysis as a function of depth below a sample surface; energy loss mechanisms may be studied; Auger peaks can be measured in an XPS system; and developments in the area of photoelectron imaging allow high resolution (c. 7 μm) mapping of the distribution of elements and their chemical states to be determined spatially on non-homogeneous surfaces. The workshop sessions will outline the link between the physics and chemistry of surfaces and the process of photoemission. The presentation will illustrate the features and capabilities of a newly acquired Kratos (UK) Axis Ultra XPS and Imaging System recently installed in the Centre for Materials and Surface Science at La Trobe University, and its capabilities regarding the foregoing issues. The first part of the presentation will outline the basics of XPS and the second part will illustrate its usefulness, and in particular, will illustrate the power of the instrumentation through the presentation of several applications of both fundamental and industrial significance. Copyright (1999) Australian X-ray Analytical Association Inc

  11. XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films

    International Nuclear Information System (INIS)

    Brundle, C.R.; Conti, Giuseppina; Mack, Paul

    2010-01-01

    This review discusses the development of X-ray photoelectron spectroscopy, XPS, used as a characterization and metrology method for ultra-thin films in the semiconductor wafer processing industry. After a brief explanation of how the relative roles of XPS and Auger electron spectroscopy, AES, have changed over the last 15 years or so in the semiconductor industry, we go into some detail as to what is implied by metrology, as opposed to characterization, for thin films in the industry, and then describe how XPS, and particularly angle resolved XPS, ARXPS, have been implemented as a metrology 'tool' for thickness, chemical composition, and non-destructive depth profiling, of transistor gate oxide material, a key requirement in front-end processing. We take a historical approach, dealing first with the early use for SiO 2 films on Si(1 0 0), then moving to silicon oxynitride, SiO x N y in detail, and finally and briefly HfO 2 -based material, which is used today in the most advanced devices (32 nm node).

  12. Efeito de estresse ambiental sobre a pressão arterial de trabalhadores Effect of environmental stress on blood pressure during the working journey

    Directory of Open Access Journals (Sweden)

    Renato Rocha

    2002-10-01

    Full Text Available OBJETIVO: Analisar o comportamento de pressão arterial (PA e a freqüência cardíaca (Fc de indivíduos ao longo da jornada de trabalho em dois ambientes com estresses ambientais distintos. MÉTODOS: Foram avaliados 46 funcionários, trabalhadores de uma indústria processadora de madeira, de Botucatu, SP, sendo 27 funcionários da linha de produção (esforço físico moderado-intenso, altas temperaturas e elevados níveis de ruído (G1, e 19 da administração (sem esforço físico, salas aclimatadas, baixos níveis de ruído (G2. Todos foram submetidos a avaliação antropométrica da composição corporal (obesidade e adiposidade e bioquímica do sangue (lipidemia e, adicionalmente, o registro da PA e da Fc em três momentos do turno de serviço: início, meio e fim. RESULTADOS: Houve semelhança na variação da PA entre G1 e G2, mas com maiores elevações de PA e Fc em G1. Os resultados mostraram grande variabilidade na resposta da PA, levando à subdivisão dos grupos G1 e G2 em respondedores (GR, aumento maior de 10% na PA média e não respondedores (GN. Os subgrupos GR e GN apresentaram semelhanças nos padrões antropométrico e bioquímico diferindo apenas na resposta pressórica e no caso do GR1 na história familiar de hipertensão. Comparando os subgrupos GR1 e GR2, foi constatado que os primeiros apresentaram maiores variações de PA e Fc que os segundos. CONCLUSÕES: A variação individual da resposta pressórica e da Fc conforme o tipo de estresse ambiental indica ser este um fator adicional a ser considerado na avaliação da pressão arterial e, talvez, na gênese da hipertensão arterial de operários.OBJECTIVE: To evaluate blood pressure (BP and heart rate (HR behavior in individuals during the working journey in two environments with different work stressors. METHODS: The study comprised 46 male individuals working in a wood processing factory in Botucatu, Brazil. Twenty seven (27.4±5.4 yrs, mean±SD worked in the

  13. Effects of structural modification via high-pressure annealing on solution-processed InGaO films and thin-film transistors

    International Nuclear Information System (INIS)

    Rim, You Seung; Choi, Hyung-Wook; Kim, Kyung Hwan; Kim, Hyun Jae

    2016-01-01

    We investigated the structural modification of solution-processed nanocrystalline InGaO films via high-pressure annealing and fabricated thin-film transistors. The grain size of InGaO films annealed in the presence of oxygen under high pressure was significantly changed compared the films annealed without high pressure ambient. The O1s XPS peak distribution of InGaO films annealed under high pressure at 350 °C showed a peak similar to that of the non-pressure annealed film at 500 °C. The high-pressure annealing process promoted the elimination of organic residues and dehydroxylation of the metal hydroxide (M–OH) complex. We confirmed the improved device performance of high-pressure annealed InGaO-based thin-film transistors owing to the reduction in charge-trap density. (paper)

  14. Surface studies on uranium monocarbide using XPS and SIMS

    International Nuclear Information System (INIS)

    Asuvathraman, R.

    1995-01-01

    The air-exposed surfaces of sintered and arc-melted UC samples were examined by XPS and SIMS. XPS results indicate that the surface is covered with a very thin layer of UO 2 mixed with free carbon, which would have formed along with the oxide during the reaction between UC and oxygen or moisture. From the SIMS depth profile of oxygen, the thickness of the oxide layer is found to be approximately 10 nm. The SIMS oxygen images of the surface as a function of etching time reveal that the surface of UC consists of a top layer of adsorbed moisture/oxygen; this contamination layer is followed by a layer containing uranium oxide, uranium hydroxide and free carbon and then grain boundary oxide and finally bulk UC. The behaviour of sintered and arc-melted samples is similar. ((orig.))

  15. XPS studies of nitrogen doping niobium used for accelerator applications

    Science.gov (United States)

    Yang, Ziqin; Lu, Xiangyang; Tan, Weiwei; Zhao, Jifei; Yang, Deyu; Yang, Yujia; He, Yuan; Zhou, Kui

    2018-05-01

    Nitrogen doping study on niobium (Nb) samples used for the fabrication of superconducting radio frequency (SRF) cavities was carried out. The samples' surface treatment was attempted to replicate that of the Nb SRF cavities, which includes heavy electropolishing (EP), nitrogen doping and the subsequent EP with different amounts of material removal. The surface chemical composition of Nb samples with different post treatments has been studied by XPS. The chemical composition of Nb, O, C and N was presented before and after Gas Cluster Ion Beam (GCIB) etching. No signals of poorly superconducting nitrides NbNx was found on the surface of any doped Nb sample with the 2/6 recipe before GCIB etching. However, in the depth range greater than 30 nm, the content of N element is below the XPS detection precision scope even for the Nb sample directly after nitrogen doping treatment with the 2/6 recipe.

  16. XPS quantification of the hetero-junction interface energy

    International Nuclear Information System (INIS)

    Ma, Z.S.; Wang Yan; Huang, Y.L.; Zhou, Z.F.; Zhou, Y.C.; Zheng Weitao; Sun, Chang Q.

    2013-01-01

    Highlights: ► Quantum entrapment or polarization dictates the performance of dopant, impurity, interface, alloy and compounds. ► Interface bond energy, energy density, and atomic cohesive energy can be determined using XPS and our BOLS theory. ► Presents a new and reliable method for catalyst design and identification. ► Entrapment makes CuPd to be a p-type catalyst and polarization derives AgPd as an n-type catalyst. - Abstract: We present an approach for quantifying the heterogeneous interface bond energy using X-ray photoelectron spectroscopy (XPS). Firstly, from analyzing the XPS core-level shift of the elemental surfaces we obtained the energy levels of an isolated atom and their bulk shifts of the constituent elements for reference; then we measured the energy shifts of the specific energy levels upon interface alloy formation. Subtracting the referential spectrum from that collected from the alloy, we can distil the interface effect on the binding energy. Calibrated based on the energy levels and their bulk shifts derived from elemental surfaces, we can derive the bond energy, energy density, atomic cohesive energy, and free energy at the interface region. This approach has enabled us to clarify the dominance of quantum entrapment at CuPd interface and the dominance of polarization at AgPd and BeW interfaces, as the origin of interface energy change. Developed approach not only enhances the power of XPS but also enables the quantification of the interface energy at the atomic scale that has been an issue of long challenge.

  17. Ambient diagnostics

    CERN Document Server

    Cai, Yang

    2014-01-01

    Part I. FundamentalsIntroductionWhat is Ambient Diagnostics?Diagnostic ModelsMultimedia IntelligenceCrowd SourcingSoft SensorsScience of SimplicityPersonal DiagnosesBasic AlgorithmsBasic ToolsSummaryProblemsTransformationEarly Discoveries of Heartbeat PatternsTransforms, Features, and AttributesSequential FeaturesSpatiotemporal FeaturesShape FeaturesImagery FeaturesFrequency Domain FeaturesMulti-Resolution FeaturesSummaryProblemsPattern RecognitionSimilarities and DistancesClustering MethodsClassification MethodsClassifier Accuracy MeasuresSummaryProblemsPart II. Multimedia IntelligenceSound RecognitionMicrophone AppsModern Acoustic Transducers (Microphones)Frequency Response CharacteristicsDigital Audio File FormatsHeart Sound SensingLung Sound SensingSnore MeterSpectrogram (STFT)Ambient Sound AnalysisSound RecognitionRecognizing Asthma SoundPeak ShiftFeature CompressionRegroupingNoise IssuesFuture ApplicationsSummaryProblemsColor SensorsColor SensingHuman Color VisionColor SensorsColor Matching ExperimentsC...

  18. SORCE XPS Level 3 Solar Spectral Irradiance 6-Hour Means V010

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) 6-Hour Data Product SOR3XPS6 contains solar XUV irradiances in the 0.1 to 27 nm range, as well...

  19. Development of accurate dimethyl sulphide primary standard gas mixtures at low nanomole per mole levels in high-pressure aluminium cylinders for ambient measurements

    Science.gov (United States)

    Eon Kim, Mi; Kang, Ji Hwan; Doo Kim, Yong; Lee, Dong Soo; Lee, Sangil

    2018-04-01

    Dimethyl sulphide (DMS) plays an important role in atmospheric chemistry and climate change. Ambient DMS is monitored in a global network and reported at sub-nanomole per mole (nmol/mol) levels. Developing traceable, accurate DMS standards at ambient levels is essential for tracking the long-term trends and understanding the role of DMS in the atmosphere. Gravimetrically prepared gas standards in cylinders are widely used for calibrating instruments. Therefore, a stable primary standard gas mixture (PSM) is required for traceable ambient DMS measurement at remote sites. In this study, to evaluate adsorption loss on the internal surface of the gas cylinder, 6 nmol mol-1 DMS gas mixtures were prepared in three types of aluminium cylinders: a cylinder without a special coating on its internal surface (AL), an Aculife IV  +  III-treated cylinder (AC), and an Experis-treated cylinder (EX). There was little adsorption loss on the EX cylinder, whereas there was substantial adsorption loss on the other two cylinders. The EX cylinder was used to prepare 0.5, 2, 5, and 7 nmol mol-1 DMS PSMs with relative expanded uncertainties of less than 0.4%. The DMS PSMs were analytically verified and consistent within a relative expanded uncertainty of less than 1.2%. The long-term stability of the 7 nmol mol-1 DMS PSM was assessed by tracking the ratio of the DMS to the internal standard, benzene. The results showed that the DMS was stable for about seven months and it was projected to be stable for more than 60 months within a relative expanded uncertainty of 3%.

  20. Charge compensation and binding energy referencing in XPS analysis

    International Nuclear Information System (INIS)

    Metson, J.B.

    1999-01-01

    Full text: The past decade has seen a number of significant advances in the capabilities of commercial X-ray Photoelectron spectrometers. Of note have been the near universal adoption of monochromatised X-ray sources, very useful advances in spatial resolution, particularly in spectroscopy, and radical developments in sample handling and automation. However one of the most significant advances has been the development of several relatively new concepts in charge compensation. Throughout the evolution of XPS, the ability to compensate for surface charging and accurately determine binding energies, particularly with electrically inhomogenous samples, has remained one of the most intractable problems. Beginning perhaps with the Kratos, 'in the lens' electrostatic mirror/electron source coupled with a magnetic snorkel lens, a number of concepts have been advanced which take a quite different conceptual approach to charge compensation. They differ in a number of quite fundamental ways to the electron flood type compensators widely used and absolutely essential with instruments based on monochromatised sources. The concept of the local return of secondary electrons to their point of emission, largely negates the problems associated with differential charging across different regions of the surface, and suggests the possibility of overcoming one of the central limitations of XPS, that is the inability to compare absolute binding energies of species in different electrical as well as chemical environments. The general status of charge compensation and the use of internal binding energy references in XPS will be reviewed, along with some practical examples of where these techniques work, and where there is clearly still room for further development. Copyright (1999) Australian X-ray Analytical Association Inc

  1. Applications Performance on NAS Intel Paragon XP/S - 15#

    Science.gov (United States)

    Saini, Subhash; Simon, Horst D.; Copper, D. M. (Technical Monitor)

    1994-01-01

    The Numerical Aerodynamic Simulation (NAS) Systems Division received an Intel Touchstone Sigma prototype model Paragon XP/S- 15 in February, 1993. The i860 XP microprocessor with an integrated floating point unit and operating in dual -instruction mode gives peak performance of 75 million floating point operations (NIFLOPS) per second for 64 bit floating point arithmetic. It is used in the Paragon XP/S-15 which has been installed at NAS, NASA Ames Research Center. The NAS Paragon has 208 nodes and its peak performance is 15.6 GFLOPS. Here, we will report on early experience using the Paragon XP/S- 15. We have tested its performance using both kernels and applications of interest to NAS. We have measured the performance of BLAS 1, 2 and 3 both assembly-coded and Fortran coded on NAS Paragon XP/S- 15. Furthermore, we have investigated the performance of a single node one-dimensional FFT, a distributed two-dimensional FFT and a distributed three-dimensional FFT Finally, we measured the performance of NAS Parallel Benchmarks (NPB) on the Paragon and compare it with the performance obtained on other highly parallel machines, such as CM-5, CRAY T3D, IBM SP I, etc. In particular, we investigated the following issues, which can strongly affect the performance of the Paragon: a. Impact of the operating system: Intel currently uses as a default an operating system OSF/1 AD from the Open Software Foundation. The paging of Open Software Foundation (OSF) server at 22 MB to make more memory available for the application degrades the performance. We found that when the limit of 26 NIB per node out of 32 MB available is reached, the application is paged out of main memory using virtual memory. When the application starts paging, the performance is considerably reduced. We found that dynamic memory allocation can help applications performance under certain circumstances. b. Impact of data cache on the i860/XP: We measured the performance of the BLAS both assembly coded and Fortran

  2. XANES and XPS studies of the reduction of ammonium paramolybdate

    International Nuclear Information System (INIS)

    Halada, G.P.; Clayton, C.R.

    1991-01-01

    in situ glancing-angle x-ray reflectivity experiments were performed on electrochemical reduction products formed in a dilute paramolybdate solution on a platinum electrode. These data were compared with x-ray photoelectron spectra which showed formation of simple molybdate, pentavalent and tetravalent species at increasingly negative potentials. X-ray absorption data demonstrated changes in edge position, pre-edge structure and edge height corresponding to reduction and subsequent growth of the reduction product film at a number of the potentials examined with XPS

  3. XPS Studies of LSCF Interfaces after Cell Testing

    Directory of Open Access Journals (Sweden)

    Gianfranco DiGiuseppe

    2018-01-01

    Full Text Available The motivation of this investigation is to explore the possibility of using the depth profile capability of XPS to study interfaces after SOFC button cell testing. The literature uses XPS to study various cathode materials but has devoted little to the understanding of various cathode interfaces especially after testing. In this work, an SOFC button cell is first tested, and then, the LSCF cathode, barrier layer, and electrolyte are sputtered away to study the behavior of different interfaces. This work has shown that some elements have moved into other layers of the SOFC cell. It is argued that the migration of the elements is partly due to a redeposition mechanism after atoms are sputtered away, while the rest is due to interdiffusion between the SDC and YSZ layers. However, additional work is needed to better understand the mechanism by which atoms move around at different interfaces. The cell electrochemical performance is also discussed in some details but is not the focus.

  4. Quantitative XPS analysis of high Tc superconductor surfaces

    International Nuclear Information System (INIS)

    Jablonski, A.; Sanada, N.; Suzuki, Y.; Fukuda, Y.; Nagoshi, M.

    1993-01-01

    The procedure of quantitative XPS analysis involving the relative sensitivity factors is most convenient to apply to high T c superconductor surfaces because this procedure does not require standards. However, a considerable limitation of such an approach is its relatively low accuracy. In the present work, a proposition is made to use for this purpose a modification of the relative sensitivity factor approach accounting for the matrix and the instrumental effects. The accuracy of this modification when applied to the binary metal alloys is 2% or better. A quantitative XPS analysis was made for surfaces of the compounds Bi 2 Sr 2 CuO 6 , Bi 2 Sr 2 CaCu 2 O 8 , and YBa 2 Cu 3 O Y . The surface composition determined for the polycrystalline samples corresponds reasonably well to the bulk stoichiometry. Slight deficiency of oxygen was found for the Bi-based compounds. The surface exposed on cleavage of the Bi 2 Sr 2 CaCu 2 O 8 single crystal was found to be enriched with bismuth, which indicates that the cleavage occurs along the BiO planes. This result is in agreement with the STM studies published in the literature

  5. Speciation of uranium after microbial action by XANES and XPS

    International Nuclear Information System (INIS)

    Dodge, C.J.; Francis, A.J.; Lu, F.; Halada, G.P.; Kagwade, S.V.; Clayton, C.R.

    1993-01-01

    The speciation of radionuclides and toxic metals in wastes subjected to microbial action is important in determining the extent of stabilization in a disposal environment. As part of an ongoing study, we investigated the reduction of uranium by a Clostridium sp. using X-ray absorption neat edge spectroscopy (XANES) at the National Synchrotron Light Source (NSLS) and X-ray photoelectron spectroscopy (XPS). XPS analysis of uranyl acetate containing hexavalent uranium exhibited a binding energy of 382.0eV at the U 4f 7/2 peak. The sample incubated in the presence of bacteria was shifted to lower binding energy (380.6eV), confirming the reduction of U 6+ to U 4+ at the bacterial surface. XANES analysis, using an electron yield detector, was performed at the M v absorption edge (3d-->5f). The absorption peak energy of the sample exhibited a shift from 3551.1eV to 3550.1eV which is higher than uranium metal (3549.6eV ) but lower than U 4+ (3550.4eV). This indicates the presence of U 3+ which is probably located beneath the surface within the biomass. Anaerobic bacterial treatment of wastes containing uranyl ion can result in the stabilization of uranium

  6. XPS investigation of copper corrosion in hydro-carbonate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Sieber, I.; Hildebrand, H.; Schmuki, P. [University Erlangen-Nuremberg, Martensstr.7, D-91058 Erlangen (Germany); Kaluzhina, S.A. [Voronezh State University, University Sq.1, 394006 Voronezh (Russian Federation)

    2004-07-01

    Problems of corrosion and effective methods of metal protection are still actual in the present days. Special interest is in copper material, which as basic component of heat exchanger constructions can corrode in contact with carbonate water. The intensity of the corrosion destruction depends on the carbon water concentration and thermal conditions in the system. The present paper provides new insights into the role of the HCO{sub 3}{sup -} - ions in the corrosion process of copper. Copper samples after anodic oxidation in 0.02 and 0.1 M NaHCO{sub 3} have been studied using XPS and SEM. The presence of carbonate compounds in the passive film in 0.1 M NaHCO{sub 3} was established by XPS analysis all over the surface. These compounds are responsible for the protective character of the passive film towards local destruction. In the 0.02 M NaHCO{sub 3} electrolyte carbonate compounds were not found at places of pit formation after multi-cycling of the sample. (authors)

  7. Modelamiento del Ambiente Térmico y Aéreo de un Galpón de Presión Negativa Tipo Túnel para Pollitos / Modeling of the Thermal Environments in Shed Negative Pressure Tunnel Type of Chicks

    Directory of Open Access Journals (Sweden)

    Robinson Osorio Hernández

    2013-12-01

    Full Text Available La optimización de los procesos productivos tiene granimportancia en el mundo actual debido al continuo desarrollo y avance. Con la finalidad de evaluar el desempeño productivo en el sector avícola, se hace necesaria la adecuación del ambiente interno de las instalaciones avícolas con técnicas que atiendan las exigencias de confort térmico con mayor eficiencia energética. En este trabajo, se evaluó el ambiente térmico interno de un galpón de presión negativa tipo túnel durante la primera fase de crecimiento de pollos de engorde. La evaluación de comportamiento térmico en este período fue realizada utilizando la dinámica de fluidos computacionales (CFD. El modelo computacional demostró ser una herramienta eficaz para el entendimiento y mejora de diseños bioclimáticos de ambientes internos de galpones avícolas. / The optimization of production processes hasgreat importance in the world due to the development andadvancement. In order to evaluate the productive performance in poultry production, it becomes necessary the indoor environmental adequacy of the poultry buildings by technologies that attend the requirements of thermal comfort with major energy efficiency. This study evaluated the thermal environment of a domestic shed of negative pressure tunnel type, during the first growth phase of broilers. The evaluation of the thermal behavior model during this period was made using the computational fluid dynamics (CFD. The computational model proved to be an effective tool forunderstanding and improving of bioclimatic designs of indoorenvironments to create this kind of sheds.

  8. Effect of injection pressure and ambient pressure on spray characteristics of pine oil-diesel blends%喷射压力及环境背压对松油-柴油混合燃料喷雾特性的影响

    Institute of Scientific and Technical Information of China (English)

    黄豪中; 史程; 张鹏; 王庆新; 刘庆生; 班智博

    2016-01-01

    为探究柴油/松油混合燃料的喷雾特性,基于高压可视化容弹试验台,通过高速摄影技术对掺松油的柴油混合燃料的喷雾过程进行试验研究,分析了喷射压力、背压和燃料物性的改变对喷雾宏观参数的影响。结果表明:混合燃料的喷雾贯穿距离先呈现一定程度的线性增长,然后增长幅度逐渐变小,喷雾锥角呈先减小再保持在一个相对稳定的数值趋势,但全程锥角变化不大;喷射压力从90 MPa升高至150 MPa,混合燃料的喷雾锥角和贯穿距离的平均增幅分别为9.2%和15%;背压从3 MPa增加到5 MPa,混合燃料的平均喷雾锥角增幅约2.6°,而贯穿距离降低11 mm左右,说明背压的改变对喷雾特性影响显著;将广安公式适当地修正可与混合燃料的贯穿距离相互吻合;向柴油中掺混一定比例的松油后,燃料的黏度降低,会引起喷雾锥角、贯穿距离和油束面积均小幅增大,增强燃料的油气混合。试验研究有助于改善柴油的雾化质量,可为柴油机代用燃料的筛选提供参考。%The fuel spray performance and atomization quality played a fundamental role in promoting the level of combustion efficiency and exhaust emissions in internal combustion engines. In order to achieve better atomizing mode of diesel, we conducted experiments to study the spray characteristics of diesel blending pine oil. A diesel/pine oil spray trial platform was constructed to carry out a visual constant volume chamber and the high-pressure common rail test bench. The high-speed photograph technique was applied to systematically investigate the spray process of blended fuel. The study was conducted under the pine oil blending ratios of with 0, 20%, 40% and 50%, respectively. Then, the influences of injection pressure, ambient pressure and fuel property on macroscopic spray parameters (including spray cone angle, spray penetration distance and fuel flow area

  9. Bubble formation occurs in insulin pumps in response to changes in ambient temperature and atmospheric pressure but not as a result of vibration.

    Science.gov (United States)

    Lopez, Prudence E; King, Bruce R; Goss, Peter W; Chockalingam, Ganesh

    2014-01-01

    Bubble formation in insulin pump giving sets is a common problem. We studied change in temperature, change in atmospheric pressure, and vibration as potential mechanisms of bubble formation. 5 Animas 2020 pumps with 2 mL cartridges and Inset II infusion systems, 5 Medtronic Paradigm pumps with 1.8 mL cartridge and Quickset and 3 Roche Accu-chek pumps with 3.15 mL cartridges were used. Temperature study: insulin pumps were exposed to a temperature change from 4°C to 37°C. Pressure study: insulin pumps were taken to an altitude of 300 m. Vibration study: insulin pumps were vigorously shaken. All were observed for bubble formation. Bubble formation was observed with changes in temperature and atmospheric pressure. Bubble formation did not occur with vibration. Changes in insulin temperature and atmospheric pressure are common and may result in bubble formation. Vibration may distribute bubbles but does not cause bubble formation.

  10. Systolic blood pressure of dogs at hospital and domestic environment Pressão arterial sistólica de cães nos ambientes hospitalar e doméstico

    Directory of Open Access Journals (Sweden)

    Frederico Aécio Carvalho Soares

    2012-07-01

    Full Text Available The measurement of blood pressure (BP is an important assessment of the cardiovascular system, being influenced by physical and pathological conditions. Certain situations of stress and anxiety during BP measurement can lead to elevated values in small animals, known in medicine as "white coat effect". The aim of this research was to compare systolic blood pressure (SBP measurement using Doppler ultrasonography in 45 adult healthy dogs in two environments, at a veterinary hospital and at home. Comparison of heart rate, serum concentrations of cortisol and glucose intended to help the evaluation of the stress level of the animals. The mean of SBP at the veterinary hospital was 154.7mmHg and it was significantly (PA medida da pressão arterial constitui uma importante avaliação do sistema cardiovascular, sendo influenciada por condições físicas e patológicas. Situações de estresse e ansiedade no momento da aferição podem causar valores de pressão sanguínea elevados, o que é conhecido na medicina humana como "efeito jaleco branco". O objetivo deste trabalho foi comparar os valores da pressão arterial sistólica (PAS pelo método Doppler em 45 cães em dois ambientes, o doméstico e o hospitalar. Além disso, foram comparadas as frequências cardíacas e concentrações séricas de glicose e cortisol nos dois ambientes, com o objetivo de auxiliar a avaliação o nível de estresse dos animais. A média de PAS observada no hospital foi de 154,7mmHg e foi significativamente superior que a observada em casa (136,3mmHg. Também foi observado que os valores de FC (média=122,7bpm e concentrações séricas de cortisol (mediana=4,5µg dL-1 e glicose (média=95,9mg dL-1 foram superiores (P<0,01 no ambiente hospitalar, quando comparados com os valores obtidos no lar dos animais (109,6bpm; 1,5µg dL-1 e 85,5mg dL-1, respectivamente. Assim, condições ambientais podem influenciar a PAS em cães, devido a fatores relacionados ao estresse.

  11. Characterization of carbonated serpentine using XPS and TEM

    International Nuclear Information System (INIS)

    Schulze, Roland K.; Hill, Mary Ann; Field, Robert D.; Papin, Pallas A.; Hanrahan, Robert J.; Byler, Darrin D.

    2004-01-01

    With the increasing concentration volume of carbon dioxide in the atmosphere, there has been an increasing interest in carbon dioxide sequestration. One method is to store the carbon dioxide in mineral form, reacting solution dissolved CO 2 to precipitate carbonates. In order to understand whether or not such an endeavor is feasible, the carbonation reaction must first be understood. In this study, the surface of ground serpentine, untreated, heat treated and following a carbonation experiment, has been characterized using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results indicate that the mechanism for the reaction involves dissolution of the serpentine through the formation of an amorphous phase and subsequent precipitation of magnesite. The rate limiting step appears to be the diffusion of Mg out of the amorphous phase

  12. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    Science.gov (United States)

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Björneholm, Olle

    2017-04-27

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied X-ray photoelectron spectroscopy (XPS) to study aqueous solutions of four amino acids, glycine, alanine, valine, and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidence that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interactions play a central role in cloud droplet formation, and they should be considered in climate models.

  13. Silicon (100)/SiO2 by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Silicon (100) wafers are ubiquitous in microfabrication and, accordingly, their surface characteristics are important. Herein, we report the analysis of Si (100) via X-ray photoelectron spectroscopy (XPS) using monochromatic Al K radiation. Survey scans show that the material is primarily silicon and oxygen, and the Si 2p region shows two peaks that correspond to elemental silicon and silicon dioxide. Using these peaks the thickness of the native oxide (SiO2) was estimated using the equation of Strohmeier.1 The oxygen peak is symmetric. The material shows small amounts of carbon, fluorine, and nitrogen contamination. These silicon wafers are used as the base material for subsequent growth of templated carbon nanotubes.

  14. XPS analysis of aluminosilicate microspheres bioactivity tested in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Todea, M.; Vanea, E. [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania); Bran, S. [University of Medicine and Pharmacy “Iuliu Haţieganu”, Department of Cranio-Maxillofacial Surgery, 400029 Cluj-Napoca (Romania); Berce, P. [Technical University of Cluj-Napoca, Faculty of Machine Building and National Centre of Rapid Prototyping, 400641 Cluj-Napoca (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania)

    2013-04-01

    The study aims to characterize surface properties of aluminosilicate microspheres incorporating yttrium, with potential biomedical applications. Micrometric particles of spherical shape were obtained by spray drying method. The behavior of aluminosilicate microspheres without yttrium and with yttrium was investigated under in vitro conditions, by seven days incubation in simulated body fluid (SBF). The surface elemental composition and the atomic environments on outermost layer of the microspheres, prior to and after incubation in SBF were evaluated by X-ray photoelectron spectroscopy (XPS) in order to investigate their bioactivity. The results were analyzed to underline the effect of yttrium addition on surface properties of the aluminosilicate microspheres and implicitly on the behavior of the samples in simulated body environments.

  15. An XPS [x-ray photoelectron spectroscopy] study of the sulfidation-regeneration cycle of a hydroprocessing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shang, D.Y.; Adnot, A.; Kaliaguine, S. (Laval Univ., Ste-Foy, PQ (Canada)); Chmielowiec, J. (Petro Canada Products Co., Mississauga, ON (Canada))

    1993-10-01

    The formation of sulfates in an industrial Ni-W hydroprocessing (HP) catalyst was investigated by x-ray photoelectron spectroscopy (XPS). A small fluidized bed test unit with on-line sampling device was constructed to simulate industrial sulfidation and oxyregeneration processes of HP catalysts. The results obtained show that the sulfates observed on the surface of sulfided catalysts are not formed during the sulfidation process. Two oxidation processes seem to be responsible for the formation of sulfates: one happens when the catalyst is exposed to air before it is properly cooled and the other is a slow conversion at ambient temperature. The two different processes might be associated to different sulfidic species formed during the sulfidation processes, with the sulfides in the bulk of catalyst particles being more easily oxidized than the ones on the external surface of the catalyst particles. The sulfate formed during the air oxidation of sulfided catalysts, as well as that after oxyregeneration, is not aluminum sulfate but nickel sulfate in both cases. XPS results also indicate that oxygenates in the feedstock are not directly involved in the sulfate formation. 18 refs., 9 figs., 6 tabs.

  16. Direct detection of benzene, toluene, and ethylbenzene at trace levels in ambient air by atmospheric pressure chemical ionization using a handheld mass spectrometer.

    Science.gov (United States)

    Huang, Guangming; Gao, Liang; Duncan, Jason; Harper, Jason D; Sanders, Nathaniel L; Ouyang, Zheng; Cooks, R Graham

    2010-01-01

    The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem.2006, 78, 5994-6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds' permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  17. 背压对喷油嘴断油过程中气体倒流现象的影响%Influence of Ambient Pressure on Gas Ingestion in Diesel Nozzle after End of Injection

    Institute of Scientific and Technical Information of China (English)

    文华; 王晨亮; MEDHAT Elkelawy; 姜光军

    2017-01-01

    For researching phenomena of the cavitation and the air ingestion in the nozzle under different ambient pressures,a visualization experiment with a transparent injector nozzle was carried out,which used the stroboscope,long-distance microscope,CCD camera,high-pressure spray chamber etc.The VOF method and the overset grid technology were used to simulate transient state flow in the spray orifice and the sac.The simulation results showed that the strong cavitation phenomenon would happen in the orifice and the sac of nozzle after the end of injection.The void volume of the cavitation bubble collapsing was filled with ingested air.And the cavitation volume was roughly equal to the ingested air volume based on the calculated data which can prove the conclusion.This showed that the cavitation collapse was the main cause of air ingestion.The cavitation collapse in the sac was a necessary condition for the ingestion air further flowing into the sac.And the smaller the cavitation area in the sac was,the less hot combustion gas was ingested into the sac.The cavitation number was proposed which represented the degree of cavitation in the nozzle after the end of injection.Further studies found that an increase in ambient pressure can cause the cavitation number to increase which led to the cavitation volume and the ingested air volume tend to decrease.And the cavitation number explained the influence of ambient pressure on.air ingestion,and this was consistent with the experiment and simulation results.%基于流体体积(VOF)模型和动态重叠网格技术对针阀关闭过程的喷油嘴内流场进行了瞬态模拟,分析发现在断油过程中,喷油嘴压力室和喷孔入口两个位置都会发生空化现象,与试验现象一致.计算得到的最大空化体积与倒流气体体积基本相等,说明空化溃灭是造成外部气体倒流的主要原因.压力室内的空化溃灭是引起倒流气体进一步流入压力室的必要条件.进一步从

  18. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  19. Ambient Volatility of Triethyl Phosphate

    Science.gov (United States)

    2017-08-01

    of materials is predictable using Raoult’s law. This report details the measurement of the effect of water vapor partial pressure on the volatility...empirical correlation taking into account nonideal behavior was developed to enable estimation of TEPO volatility at any combination of ambient...of the second component is expected to be one-half as much as in the absence of water vapor. Similarly, the measured volatility of the second

  20. Studies of irradiated zircaloy fuel sheathing using XPS

    International Nuclear Information System (INIS)

    Chan, P.K.; Irving, K.G.; Hocking, W.H.; Duclos, A.M.; Gerwing, A.F.

    1995-01-01

    The preliminary results reported here support the hypothesis that CANLUB graphite coating reduces the rate at which oxygen can react with fuel sheathing. X-ray photoelectron spectroscopic (XPS) characterization of Zircaloy sheathing obtained from extended-burnup Bruce-type elements (BDL-406-XY (555 MW.h/kgU) and BDL-406-AAH (731 MW.h/kgU)) irradiated in NRU indicates that CANLUB may reduce fuel sheath oxidation, and hence that fission-liberated oxygen may remain in the fuel. Chemical shifts in the Zr 3d spectra suggest that a stoichiometric (ZrO 2 ) oxide film was formed only on Zircaloy in direct contact with fuel. Particulate fuel adhering to the sheath was also determined to be systematically more oxidized on surfaces with CANLUB than on those without it. The unique association of tin on sheathing specimens with the non-CANLUB-coated specimens might also suggest that the tin had segregated from the sheathing. It must be emphasized that further experiments are required to better define the effect of CANLUB on fuel oxidation. (author). 14 refs., 1 tab., 3 figs

  1. The assessment of metal surface cleanliness by XPS

    CERN Document Server

    Scheuerlein, C

    2006-01-01

    The most commonly used quantity to characterize surface cleanliness through X-ray photoemission spectroscopy (XPS) measurements is the so-called relative atomic surface concentration of carbon (at.% C). We have investigated the relationship between at.% C values and the C 1s peak area on Cu and we find a nearly linear behaviour in the range 15–80 at.% C. Correction factors for the measured at.% C values that enable a comparison of the cleanliness level of different materials, notably Cu, Al and stainless steel, have been determined experimentally. The influence of the storage time and method on the degree of re-contamination of initially clean Cu has been examined. The carbon contamination on clean metallic Cu increases abruptly to some 20 at.% C upon air exposure and continues to increase with storage time in air. Storage in polymer bags can lead to up to 70 at.% C after 1 month, whereas storage in aluminium foil can preserve an acceptable surface cleanliness for a similar storage time.

  2. Studies of irradiated zircaloy fuel sheathing using XPS

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P K; Irving, K G [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Hocking, W H; Duclos, A M; Gerwing, A F [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    The preliminary results reported here support the hypothesis that CANLUB graphite coating reduces the rate at which oxygen can react with fuel sheathing. X-ray photoelectron spectroscopic (XPS) characterization of Zircaloy sheathing obtained from extended-burnup Bruce-type elements (BDL-406-XY (555 MW.h/kgU) and BDL-406-AAH (731 MW.h/kgU)) irradiated in NRU indicates that CANLUB may reduce fuel sheath oxidation, and hence that fission-liberated oxygen may remain in the fuel. Chemical shifts in the Zr 3d spectra suggest that a stoichiometric (ZrO{sub 2}) oxide film was formed only on Zircaloy in direct contact with fuel. Particulate fuel adhering to the sheath was also determined to be systematically more oxidized on surfaces with CANLUB than on those without it. The unique association of tin on sheathing specimens with the non-CANLUB-coated specimens might also suggest that the tin had segregated from the sheathing. It must be emphasized that further experiments are required to better define the effect of CANLUB on fuel oxidation. (author). 14 refs., 1 tab., 3 figs.

  3. Effects of XPS operational parameters on investigated sample surfaces

    International Nuclear Information System (INIS)

    Mrad, O.; Ismail, I.

    2013-04-01

    In this work, we studied the effects of the operating conditions of the xray photoelectron spectroscopy analysis technique (XPS) on the investigated samples. Firstly, the performances of the whole system have been verified as well as the accuracy of the analysis. Afterwards, the problem of the analysis of insulating samples caused by the charge buildup on the surface has been studied. The use of low-energy electron beam (<100 eV) to compensate the surface charge has been applied. The effect of X-ray on the samples have been assessed and was found to be nondestructive within the analysis time. The effect of low- and high-energy electron beams on the sample surface have been investigated. Highenergy electrons were found to have destructive effect on organic samples. The sample heating procedure has been tested and its effect on the chemical stat of the surface was followed. Finally, the ion source was used to determine the elements distribution and the chemical stat of different depths of the sample. A method has been proposed to determine these depths (author).

  4. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  5. An XPS study on ruthenium compounds and catalysts

    International Nuclear Information System (INIS)

    Bianchi, C.L.; Ragaini, V.; Cattania, M.G.

    1991-01-01

    The binding energy (BE) of the relevant peaks of several ruthenium compounds have been measured with a monochromatic small spot XPS. The BE of the 3d 5/2 level of ruthenium is in the range 279.91-282.88 eV. The variation of BE is due either to the variation of the oxidation state or to the different counter-ion. A series of catalysts with varying amounts of ruthenium supported on alumina and prepared using different precursors was also analyzed. The presence of more ruthenium species other than the metal was observed. On the basis of the values previously obtained on unsupported compounds, the species with higher BE were assigned to oxides. On all the samples prepared from RuCl 3 , an additional peak at a very high BE (283.79 eV) has been observed. This peak is related to the presence of chlorine on the surface: it is suggested that it is related to a charge transfer interaction. The influence of this species on the CO reactivity in the Fischer-Tropsch reaction is discussed. (orig.)

  6. Geochemistry of the Cigar Lake uranium deposit: XPS studies

    International Nuclear Information System (INIS)

    Sunder, S.; Cramer, J.J.; Miller, N.H.

    1996-01-01

    Samples of uranium ore from the Cigar Lake deposit in northern Saskatchewan, Canada, were analyzed using XPS. High-resolution spectra were recorded for the strongest bands of the major elements (U 4f, C 1 s, O 1 s, Pb 4 f, S 2 p, Cu 2 p, Fe 2 p, and the valence region (0-20 eV)) to obtain chemical state information for these samples. In general, the U VI /U IV ratio was very low, i.e., much less than 0.5, the threshold for the oxidative dissolution of UO 2 . The low values of the U VI /U IV ratio observed for samples from the Cigar Lake deposit indicate thermodynamic stability of the uranium ore in the reduced aqueous environment. Similarities between the disposal vault envisaged in the Canadian Nuclear Fuel Waste Management Program and the Cigar Lake deposit suggest that, if geochemical conditions in the vault were to be similar to those in the deposit, the long-term dissolution of UO 2 fuel would be very minimal. (orig.)

  7. The equivalent width as a figure of merit for XPS narrow scans

    International Nuclear Information System (INIS)

    Singh, Bhupinder; Velázquez, Daniel; Terry, Jeff; Linford, Matthew R.

    2014-01-01

    Highlights: • We introduce a new figure of merit for XPS narrow scans: the equivalent width (EW XPS ). • EW XPS is less subjective and involves lesser user bias than traditional peak fitting. • EW XPS is responsive to changes in chemical states of materials. • EW XPS could be used for quality control and comparing spectra from similar samples. • EW XPS has the potential to be part of an expert software system for machine interpretation of spectra. - Abstract: X-ray Photoelectron Spectroscopy (XPS) is a widely used surface analytical tool that provides information about the near surface regions of materials. And while indispensable for XPS data analysis, peak fitting of narrow scans is often a fairly subjective exercise. Herein we introduce the equivalent width (EW) as an additional and less subjective figure of merit for XPS narrow scans. We believe that this parameter will prove particularly useful for analyzing series of similar or nominally identical spectra, perhaps as a component of an expert software system for the machine interpretation of spectra. It also appears to be useful, shedding light on the chemical state of materials, when additional information about a sample is known. The EW XPS is simply defined as the area of a narrow scan divided by the height of the maximum of its peak envelope. To limit any ambiguity in EW XPS for a series of spectra, we may also list the peak position of the maximum of the envelope (PE max ). The potential usefulness and limitations of the EW XPS and PE max parameters are demonstrated by their application to the narrow scans of: (i) four sets of ozone-treated carbon nanotubes (EW XPS ∼ 2.11–2.16 eV for a Shirley background, and up to 2.88 eV for no background, PE max ∼ 284.4–284.5 eV), (ii) a series of silicon wafers with different oxide thicknesses (EW XPS ∼ 1.5–2.8 eV, PE max ∼ 99–103 eV), (iii) hydrogen-terminated silicon before and after derivatization with pentyl groups, and after annealing of

  8. The equivalent width as a figure of merit for XPS narrow scans

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupinder [Department of Chemistry and Biochemistry, C-100 BNSN, Brigham Young University, Provo, UT 84602 (United States); Velázquez, Daniel [Department of Physics, Illinois Institute of Technology, Chicago, IL 60616 (United States); Terry, Jeff, E-mail: terryj@iit.edu [Department of Physics, Illinois Institute of Technology, Chicago, IL 60616 (United States); Linford, Matthew R., E-mail: mrlinford@chem.byu.edu [Department of Chemistry and Biochemistry, C-100 BNSN, Brigham Young University, Provo, UT 84602 (United States)

    2014-12-15

    Highlights: • We introduce a new figure of merit for XPS narrow scans: the equivalent width (EW{sub XPS}). • EW{sub XPS} is less subjective and involves lesser user bias than traditional peak fitting. • EW{sub XPS} is responsive to changes in chemical states of materials. • EW{sub XPS} could be used for quality control and comparing spectra from similar samples. • EW{sub XPS} has the potential to be part of an expert software system for machine interpretation of spectra. - Abstract: X-ray Photoelectron Spectroscopy (XPS) is a widely used surface analytical tool that provides information about the near surface regions of materials. And while indispensable for XPS data analysis, peak fitting of narrow scans is often a fairly subjective exercise. Herein we introduce the equivalent width (EW) as an additional and less subjective figure of merit for XPS narrow scans. We believe that this parameter will prove particularly useful for analyzing series of similar or nominally identical spectra, perhaps as a component of an expert software system for the machine interpretation of spectra. It also appears to be useful, shedding light on the chemical state of materials, when additional information about a sample is known. The EW{sub XPS} is simply defined as the area of a narrow scan divided by the height of the maximum of its peak envelope. To limit any ambiguity in EW{sub XPS} for a series of spectra, we may also list the peak position of the maximum of the envelope (PE{sub max}). The potential usefulness and limitations of the EW{sub XPS} and PE{sub max} parameters are demonstrated by their application to the narrow scans of: (i) four sets of ozone-treated carbon nanotubes (EW{sub XPS} ∼ 2.11–2.16 eV for a Shirley background, and up to 2.88 eV for no background, PE{sub max} ∼ 284.4–284.5 eV), (ii) a series of silicon wafers with different oxide thicknesses (EW{sub XPS} ∼ 1.5–2.8 eV, PE{sub max} ∼ 99–103 eV), (iii) hydrogen-terminated silicon before

  9. Thermally Evaporated Iron (Oxide) on an Alumina Barrier Layer, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    We report the XPS characterization of a thermally evaporated iron thin film (6 nm) deposited on an Si/SiO_2/Al_2O_3 substrate using Al Ka X-rays. An XPS survey spectrum, narrow Fe 2p scan, narrow O 1s, and valence band scan are shown.

  10. XPS analysis of the activation process in non-evaporable getter thin films

    CERN Document Server

    Lozano, M

    2000-01-01

    The surface activation process of sputter-coated non-evaporable getter (NEG) thin films based on Ti-Zr and Ti-Zr-V alloys has been studied in situ by means of X-ray photoelectron spectroscopy. After exposure of the NEG thin films to ambient air they become reactivated after a thermal treatment in an ultrahigh vacuum. In our case the films are heated up to ~250 degrees C for 2 h in a base pressure of ~10/sup -9/ Torr. (18 refs).

  11. XPS utilization in the characterization of glycerol based polyesters; Utilizacao de XPS na caracterizacao de poliesteres a base de glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, M.M.; Miranda, C.S.; Pereira, R.; Ohara, L.; Bargiela, P.; Rocha, M.G.M.C.; Jose, N.M., E-mail: mgcr@ufba.b [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Inst. de Quimica

    2010-07-01

    X-ray photoelectron spectroscopy-XPS allows the determination of all elements of the periodical table, except hydrogen and helium, and is a very used technique for the polymers characterization, its spectra constitutes a 'fingerprint' of the material. Two samples of polymers were prepared from glycerol and fumaric acid and glycerol and terephthalic acid, with a molar ratio of 1:1 and 1:1.5. The general spectra show the presence of carbon and oxygen, the main components of the polymer. From the binding energies values of the C1s and O1s high resolution spectra it was possible to determine the carbon functional groups. Their concentration were determined and the presence of the aromatic carbon in the terephthalic polyesters was observed, and also similar proportions of aliphatic carbon and ester groups in the fumaric acid polyesters. For both polyesters, an amount of carboxyl group appears, indicating the terminal non-reacted groups. These results were confirmed qualitatively by FTIR. (author)

  12. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  13. α-MnO2 nanowires transformed from precursor δ-MnO2 by refluxing under ambient pressure: The key role of pH and growth mechanism

    International Nuclear Information System (INIS)

    Zhang Qin; Xiao Zhidong; Feng Xionghan; Tan Wenfeng; Qiu Guohong; Liu Fan

    2011-01-01

    α-MnO 2 nanowires were obtained by reflux treatment of precursor δ-MnO 2 in acidic medium under ambient pressure. The great effects of pH on the transformation of δ-MnO 2 to α-MnO 2 and the concentration of coexistent cations (K + , Mn 2+ ) was investigated in systematically designed experiments by using powder X-ray diffraction and atomic absorption spectrometry analysis. The specific surface area of the products could be simply controlled by adjusting the initial pH value of the suspension. The micro-morphologies during the transition process from the precursors to final products were characterized by SEM and TEM. A dissolution-recrystallization mechanism was proposed to describe the growth process of the one-dimensional nanowire. MnO x units or MnO 6 octahedra was formed firstly from the dissolution of outmost surfaces of δ-MnO 2 , followed by a rearrangement/crystallization to form one-dimensional α-MnO 2 nanowire. In addition, the time-dependent process of dissolution would take place gradually from the external to internal of the precursor.

  14. Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO_2 ambient gas

    International Nuclear Information System (INIS)

    Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Pardede, Marincan; Suyanto, Hery; Ramli, Muliadi; Marpaung, Alion Mangasi; Hedwig, Rinda; Lie, Zener Sukra; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Tjia, May On; Kagawa, Kiichiro

    2016-01-01

    An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO_2 ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positive relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.

  15. Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO{sub 2} ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Suyanto, Hery [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Marpaung, Alion Mangasi [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, 10 Rawamangun, Jakarta 13220 (Indonesia); Hedwig, Rinda [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Lie, Zener Sukra [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Kurniawan, Davy Putra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id; Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Kagawa, Kiichiro [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Fukui Science Education Academy, Takagi Chuo 2 chome, Fukui 910-0804 (Japan)

    2016-04-28

    An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO{sub 2} ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positive relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.

  16. Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites

    Energy Technology Data Exchange (ETDEWEB)

    Hueso, J. L.; Martinez-Martinez, D.; Cabalerro, Alfonso; Gonzalez-Elipe, Agustin Rodriguez; Mun, Bongjin Simon; Salmeron, Miquel

    2009-07-31

    We have studied the oxidation of carbon monoxide over a lanthanum substituted perovskite (La0.5Sr0.5CoO3-d) catalyst prepared by spray pyrolysis. Under the assumption of a first-order kinetics mechanism for CO, it has been found that the activation energy barrier of the reaction changes from 80 to 40 kJ mol-1 at a threshold temperature of ca. 320 oC. In situ XPS near-ambient pressure ( 0.2 torr) shows that the gas phase oxygen concentration over the sample decreases sharply at ca. 300 oC. These two observations suggest that the oxidation of CO undergoes a change of mechanism at temperatures higher than 300 oC.

  17. Manufactured Porous Ambient Surface Simulants

    Science.gov (United States)

    Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul

    2016-01-01

    The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).

  18. Impact of ambient environment on the electronic structure of CuPc/Au sample

    Science.gov (United States)

    Sinha, Sumona; Mukherjee, M.

    2018-02-01

    The performances of organic devices are crucially connected with their stability in the ambient environment. The impact of 24 h. Ambient environment exposure to the electronic structures of about 12 nm thick CuPc thin film on clean Au substrate have been studied employing UV photoemission spectroscopy technique. X-ray photoemission spectroscopy (XPS) was used to find out the origin of the change of the electronic structures in the sample with the exposure. The XPS study suggests that the oxidation occurs at the CuPc thin film. Due to the adsorption of oxygen in the CuPc film from the ambient air, charge carriers are formed within the CuPc film. Moreover, the XPS results imply that the CuPc film is sufficiently thinner for diffusing oxygen molecules through it and gets physically absorbed on Au substrate during the ambient exposure. Consequently, the hole injection barrier height of pristine CuPc film, grown on Au substrate, is reduced by about 0.50 eV and work-function of the pristine CuPc sample is enhanced by around 0.25 eV in the exposure. The findings will help to understand the mechanism that governs the degradation of performance of CuPc based devices in ambient environment.

  19. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  20. a near ambient pressure UV photoelectron spectroscopy

    Indian Academy of Sciences (India)

    Manoj Kumar Ghosalya

    2018-03-02

    Mar 2, 2018 ... UV photoelectron spectroscopy (NAP-UPS) investigations. MANOJ KUMAR ... gations led to various models of Ag-O2 interaction to explain its role in the .... charge lamp (for He I and He II excitations) are available as photon ...

  1. The future is 'ambient'

    Science.gov (United States)

    Lugmayr, Artur

    2006-02-01

    The research field of ambient media starts to spread rapidly and first applications for consumer homes are on the way. Ambient media is the logical continuation of research around media. Media has been evolving from old media (e.g. print media), to integrated presentation in one form (multimedia - or new media), to generating a synthetic world (virtual reality), to the natural environment is the user-interface (ambient media), and will be evolving towards real/synthetic undistinguishable media (bio-media or bio-multimedia). After the IT bubble was bursting, multimedia was lacking a vision of potential future scenarios and applications. Within this research paper the potentials, applications, and market available solutions of mobile ambient multimedia are studied. The different features of ambient mobile multimedia are manifold and include wearable computers, adaptive software, context awareness, ubiquitous computers, middleware, and wireless networks. The paper especially focuses on algorithms and methods that can be utilized to realize modern mobile ambient systems.

  2. XPS studies of short pulse laser interaction with copper

    International Nuclear Information System (INIS)

    Stefanov, P.; Minkovski, N.; Balchev, I.; Avramova, I.; Sabotinov, N.; Marinova, Ts.

    2006-01-01

    The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm 2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas. The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α') and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH) 2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air

  3. XPS, AES and laser raman spectroscopy: A fingerprint for a materials surface characterisation

    International Nuclear Information System (INIS)

    Zaidi Embong

    2011-01-01

    This review briefly describes some of the techniques available for analysing surfaces and illustrates their usefulness with a few examples such as a metal and alloy. In particular, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and laser Raman spectroscopy are all described as advanced surface analytical techniques. In analysing a surface, AES and XPS would normally be considered first, with AES being applied where high spatial resolution is required and XPS where chemical state information is needed. Laser Raman spectroscopy is useful for determining molecular bonding. A combination of XPS, AES and Laser Raman spectroscopy can give quantitative analysis from the top few atomic layers with a lateral spatial resolution of < 10 nm. (author)

  4. Speciation of uranium in minerals by Sem, Tem, μ-PIXE, XPS and XAFS

    International Nuclear Information System (INIS)

    Toshihiko Ohnuki; Hiroshi Isobe; Tomihiro Kamiya; Takuro Sakai; Takashi Murakami

    2001-01-01

    Many kinds of electromagnetic waves and particle beams are used as analytical probes for the investigation of uranium-mineralogy and speciation. The representatives of the probes are SEM, TEM, μ-PIRE, XPS and XAFS. Each of these analytical probes has its own advantages and disadvantages. We have performed studies to compare the advantages and disadvantages on the basis of the analysis of the distribution and speciation of U containing rock samples collected at the Koongarra uranium deposit, Australia. The spatial resolutions of the probes are in the order of TEM>SEM, μ-PIXE>XFAS, XPS. The lower detection limits of the probes are in the order of μ-PIXE< TEM, SEM< XFAS, XPS. Oxidation state of U was determined by XFAS and XPS. These results indicate that combination of the above probes can give us sufficient data on U speciation not only in natural rock samples but in solid samples obtained in the laboratory. (authors)

  5. Structural, photoluminescence and XPS properties of Tm3þ ions in ZnO nanostructures

    CSIR Research Space (South Africa)

    Kabongo, GL

    2017-07-01

    Full Text Available of photoluminescence (PL) spectroscopy. Finally, Tm 4d core level was detected in ZnO: 0.5 mol% Tm(sup3+) sample from high resolution X-Ray Photoelectron Spectroscopy (XPS) scan....

  6. Research and industrial application of x-ray photoelectron spectroscopy (XPS) in Malaysia

    International Nuclear Information System (INIS)

    Mohd Ambar Yarmo; Abd Razak Daud; Abdul Kariem Arof

    2000-01-01

    As a developing country, Malaysia is fully committed to research and development especially for industrial development. One of priority fields is advanced materials and surface analysis of such materials is an important aspect in research. Among the tools for surface science analysis is x-ray photoelectron spectroscopy (XPS) which can be considered new to this country. The industrial sector is also keen to solve their problems and developing their products using XPS. The microelectronic and electrical industries are interested in solving problems related to metal-metal joining , gold silica peeling, surface corrosion and surface coating. The glove industry uses XPS to solve problems due to staining and color fading of their products. Research conducted in universities and research institutes that mainly deal with catalysis, membranes for fuel cells, sensors, batteries, corrosion phenomena and interface interaction in coating finds XPS a useful technique for surface studies. Specific examples from various sectors will be presented in this paper. (Author)

  7. The use of XPS and i.r. spectroscopy in zinc mineral flotation studies

    International Nuclear Information System (INIS)

    Garbassi, F.; Morabini, A.; Cozza, C.

    1985-01-01

    In this work, XPS (X-ray photoelectron spectroscopy) is applied to the study of the interaction of dodecylamine acetate with smithsonite ZnCo 3 , in relation with the problem of flotation of the mineral. This study confirms that, in spite of ultra-high conditions during analysis XPS is a technique offering a very valuable contribution to the elucidation of mineral flotation problems

  8. Instrument-related geometrical factors affecting the intensity in XPS and ARXPS experiments

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Gomez, A., E-mail: aherrera@qro.cinvestav.mx [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Aguirre-Tostado, F.S. [Centro de Investigacion en Materiales Avanzados, Apodaca, Nuevo Leon 66600 (Mexico); Mani-Gonzalez, P.G.; Vazquez-Lepe, M.; Sanchez-Martinez, A.; Ceballos-Sanchez, O. [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Wallace, R.M. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Conti, G.; Uritsky, Y. [Applied Materials, Santa Clara, CA 95054 (United States)

    2011-11-15

    Highlights: {yields} Instrument geometrical-factors affecting the XPS angular dependence are described. {yields} The geometrical factors in XPS instruments are transferable to other systems. {yields} Practical protocols are presented for assessing the size of analysis area and volume. {yields} Practical protocols are presented for assessing the size of the X-ray beam spot. {yields} Practical protocols are described for assessing the manipulator's axis of rotation. - Abstract: The angular dependence of the X-ray photoelectron spectroscopy (XPS) signal is influenced not only by the electron take-off angle, but also by instrument-related geometrical factors. The XPS signal is, in fact, integrated over the overlap between the X-ray beam, the spectrometer analysis volume, and the sample surface. This overlap depends on the size and shape of the spectrometer analysis volume and X-ray beam, as well as on their relative orientation. In this paper it is described the models and protocols for the characterization of the parameters defining the geometry of an XPS instrument. The protocols include practical methods for assessing the spectrometer analysis area and the X-ray beam spot dimension. Simple systems consisting of flat and 'thick' gold films on silicon wafers were employed. The parameters found with those samples are transferable to other more complex systems since they are geometrical in nature. The method allows for the prediction of the actual intensity of XPS peaks, hence removing the need of normalizing the peak areas to the area of a determined substrate peak. The associated reduction of the uncertainty in half is of special importance since the quantitative analysis of angle-resolved XPS data could be very sensitive to noise. Two rotating and one non-rotating XPS instruments are described. Some examples of the applications of the method are also provided.

  9. Combined PIXE and XPS analysis on republican and imperial Roman coins

    International Nuclear Information System (INIS)

    Dacca, A.; Prati, P.; Zucchiatti, A.; Lucarelli, F.; Mando, P.A.; Gemme, G.; Parodi, R.; Pera, R.

    2000-01-01

    A combined PIXE and XPS analysis has been performed on a few Roman coins of the republican and imperial age. The purpose was to investigate via XPS the nature and extent of patina in order to be capable of extracting PIXE data relative to the coins bulk. The inclusion of elements from the surface layer, altered by oxidation and inclusion, is a known source of uncertainty in PIXE analyses of coins, performed to assess the composition and the provenance

  10. Pressure dependence of conductivity

    International Nuclear Information System (INIS)

    Bracewell, B.L.; Hochheimer, H.D.

    1993-01-01

    The overall objectives of this work were to attempt the following: (1) Measure the pressure dependence of the electrical conductivity of several quasi-one-dimensional, charge-density-wave solids, including measurements along various crystal directions. (2) Measure photocurrents in selected MX solids at ambient and elevated pressures. (3) Measure the resonance Raman spectra for selected MX solids as a function of pressure

  11. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States); PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Mendoza-Sanchez, Beatriz [CRANN, Chemistry School, Trinity College Dublin, Dublin (Ireland); Fernandez, Vincent [Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Veenstra, Rick [PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Dukstiene, Nijole [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Roberts, Adam [Kratos Analytical Ltd, Trafford Wharf Road, Wharfside, Manchester, M17 1GP (United Kingdom); Fairley, Neal [Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE (United Kingdom)

    2015-01-30

    Highlights: • We analyzed and modeled spectral envelopes of complex molybdenum oxides. • Molybdenum oxide films of varying valence and crystallinity were synthesized. • MoO{sub 3} and MoO{sub 2} line shapes from experimental data were created. • Informed amorphous sample model (IASM) developed. • Amorphous molybdenum oxide XPS envelopes were interpreted. - Abstract: Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  12. Licenciamento ambiental e sustentabilidade

    Directory of Open Access Journals (Sweden)

    Marcelo Macedo Valinhas

    2011-12-01

    Full Text Available A sustentabilidade está apoiada principalmente nas dimensões econômica, ambiental e social. No entanto, sem a dimensão política ela não se constrói. Um dos principais instrumentos de comando e controle da política nacional de meio ambiente, o licenciamento ambiental é um processo contínuo de gestão ambiental pública e privada. Analisou-se o processo de licenciamento ambiental como acoplamento estrutural entre os sistemas social, econômico e ambiental. Apesar da constatação de críticas aos mecanismos de comando e controle dos últimos anos, foi verificado que o Estado do Rio de Janeiro tem buscado integrar a política ambiental do Estado à gestão ambiental privada e que esta integração busca atender às demandas dos sistemas sociais e econômicos para as questões ambientais. Em linhas gerais, este caminho segue as estratégias e ações propostas na Agenda 21 brasileira.

  13. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Weber, W.; Rabaey, J.M.; Aarts, E.

    2005-01-01

    We briefly review the concept of ambient intelligence and discuss its relation with the domain of intelligent algorithms. By means of four examples of ambient intelligent systems, we argue that new computing methods and quantification measures are needed to bridge the gap between the class of

  14. Persuasion in Ambient Intelligence

    NARCIS (Netherlands)

    Kaptein, M.C.; Markopoulos, P.; Ruyter, de B.E.R.; Aarts, E.H.L.

    2010-01-01

    Although the field of persuasive technologies has lately attracted a lot of attention, only recently the notion of ambient persuasive technologies was introduced. Ambient persuasive technologies can be integrated into every aspect of life, and as such have greater persuasive power than the

  15. Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Paul M., E-mail: paul.dietrich@yahoo.de [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Glamsch, Stephan [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin (Germany); Ehlert, Christopher [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam (Germany); Lippitz, Andreas [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Kulak, Nora [Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin (Germany); Unger, Wolfgang E.S. [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany)

    2016-02-15

    Graphical abstract: - Highlights: • A synchrotron-based XPS method to analyze ultra-thin silane films is presented. • Specification and quantification of organic next to inorganic silicon is demonstrated. • Non-destructive chemical depth profiles of the silane monolayers were obtained. - Abstract: The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z{sub 95} of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) – inorganic (SiO{sub 2}/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS.

  16. Versatile technique for assessing thickness of 2D layered materials by XPS

    Science.gov (United States)

    Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C.; Fisher, Timothy S.; Voevodin, Andrey A.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.

  17. Comparative study of GeO{sub 2}/Ge and SiO{sub 2}/Si structures on anomalous charging of oxide films upon water adsorption revealed by ambient-pressure X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Daichi; Kawai, Kentaro; Morita, Mizuho; Arima, Kenta, E-mail: arima@prec.eng.osaka-u.ac.jp [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Oka, Hiroshi; Hosoi, Takuji; Watanabe, Heiji [Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Crumlin, Ethan J.; Liu, Zhi [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-09-07

    The energy difference between the oxide and bulk peaks in X-ray photoelectron spectroscopy (XPS) spectra was investigated for both GeO{sub 2}/Ge and SiO{sub 2}/Si structures with thickness-controlled water films. This was achieved by obtaining XPS spectra at various values of relative humidity (RH) of up to ∼15%. The increase in the energy shift is more significant for thermal GeO{sub 2} on Ge than for thermal SiO{sub 2} on Si above ∼10{sup −4}% RH, which is due to the larger amount of water molecules that infiltrate into the GeO{sub 2} film to form hydroxyls. Analyzing the origins of this energy shift, we propose that the positive charging of a partially hydroxylated GeO{sub 2} film, which is unrelated to X-ray irradiation, causes the larger energy shift for GeO{sub 2}/Ge than for SiO{sub 2}/Si. A possible microscopic mechanism of this intrinsic positive charging is the emission of electrons from adsorbed water species in the suboxide layer of the GeO{sub 2} film to the Ge bulk, leaving immobile cations or positively charged states in the oxide. This may be related to the reported negative shift of flat band voltages in metal-oxide-semiconductor diodes with an air-exposed GeO{sub 2} layer.

  18. Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: a re-evaluation of the effects of pH and chloride concentration

    Science.gov (United States)

    Murphy, P. J.; LaGrange, M. S.

    1998-11-01

    Previous work on gold chloride and hydroxide speciation in fluids has shown differences in opinion as to the relative importance of gold (I) and gold (III) species, as well as for the Raman peak assignments for the various species. In addition, previous experimental work has not been consistent with theoretical predictions either of the number or of the frequencies of the peaks in the Raman spectrum. In order to re-evaluate the effect of pH on Raman spectra and speciation, solutions containing gold (III) chloride were analysed by Raman spectroscopy at ambient temperature and pressure, over a range of pH from 1 to 11. Total gold concentrations were from 0.001 to 0.02 M, with total chloride concentrations of 0.004-0.5 M. The spectra obtained are consistent with the hydrolysis sequence of square-planar Au(III) complex ions [AuCl x(OH) 4-x] -, where x = 0-4. The Au-Cl stretching peaks obtained were 348/325 Rcm -1 for [AuCl 4] -, 348/335/325 Rcm -1 for [AuCl 3(OH)] -, 337/355 Rcm -1 for [AuCl 2(OH) 2] -, and 355 Rcm -1 for [AuCl(OH) 3] -. [Au(OH) 4] - probably occurred, alongside [AuCl(OH) 3] - at pH values above 11. A dark purplish-grey precipitate (Au(I)OH) formed at high pH values. No evidence for Au(I) species was found. The spectra are more consistent with theory than previous data and show the predicted number of peaks for Au-Cl and Au-OH stretches for each species. However, the peak frequencies do not fit precisely with the predictions of Tossell (1996), particularly for Au-OH stretches. Hydrolysis of the simple chloride species occurs at lower pH values than found previously, and both gold and chloride concentration were found to affect the pH ranges of stability for the various chloro-hydroxy species. Decreasing gold concentration resulted in hydrolysis occurring at lower pH values. This is especially important in the absence of excess chloride (ΣCl = 4ΣAu). Substantial hydrolysis occurred below pH = 4 for 0.02 M Au /0.08 M Cl -, and below pH = 2 for 0.001 M

  19. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St.C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-01-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells

  20. Round robin: Quantitative lateral resolution of PHI XPS microprobes Quantum 2000/Quantera SXM

    International Nuclear Information System (INIS)

    Scheithauer, Uwe; Kolb, Max; Kip, Gerard A.M.; Naburgh, Emile; Snijders, J.H.M.

    2016-01-01

    Highlights: • The quantitative lateral resolution of 7 PHI XPS microprobes has been estimated in a round robin. • An ellipsoidally shaped quartz crystal monochromatizes the Alkα radiation and refocuses it from the Al anode to the sample surface. • The long tail contributions of the X-ray beam intensity distribution were measured using a new and innovative approach. • This quantitative lateral resolution has a significantly larger value than the nominal X-ray beam diameter. • The quantitative lateral resolution follows a trend in time: The newer the monochromator so much the better the quantitative lateral resolution. - Abstract: The quantitative lateral resolution is a reliable measure for the quality of an XPS microprobe equipped with a focused X-ray beam. It describes the long tail contributions of the X-ray beam intensity distribution. The knowledge of these long tail contributions is essential when judging on the origin of signals of XPS spectra recorded on small-sized features. In this round robin test the quantitative lateral resolution of 7 PHI XPS microprobes has been estimated. As expected, the quantitative lateral resolution has significantly larger values than the nominal X-ray beam diameter. The estimated values of the quantitative lateral resolution follow a trend in time: the newer the monochromator of an XPS microprobe so much the better the quantitative lateral resolution.

  1. Round robin: Quantitative lateral resolution of PHI XPS microprobes Quantum 2000/Quantera SXM

    Energy Technology Data Exchange (ETDEWEB)

    Scheithauer, Uwe, E-mail: scht.uhg@googlemail.com [82008 Unterhaching (Germany); Kolb, Max, E-mail: max.kolb@airbus.com [Airbus Group Innovations, TX2, 81663 Munich (Germany); Kip, Gerard A.M., E-mail: G.A.M.Kip@utwente.nl [Universiteit Twente, MESA+ Nanolab, Postbus 217, 7500AE Enschede (Netherlands); Naburgh, Emile, E-mail: e.p.naburgh@philips.com [Materials Analysis, Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Snijders, J.H.M., E-mail: j.h.m.snijders@philips.com [Materials Analysis, Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands)

    2016-07-15

    Highlights: • The quantitative lateral resolution of 7 PHI XPS microprobes has been estimated in a round robin. • An ellipsoidally shaped quartz crystal monochromatizes the Alkα radiation and refocuses it from the Al anode to the sample surface. • The long tail contributions of the X-ray beam intensity distribution were measured using a new and innovative approach. • This quantitative lateral resolution has a significantly larger value than the nominal X-ray beam diameter. • The quantitative lateral resolution follows a trend in time: The newer the monochromator so much the better the quantitative lateral resolution. - Abstract: The quantitative lateral resolution is a reliable measure for the quality of an XPS microprobe equipped with a focused X-ray beam. It describes the long tail contributions of the X-ray beam intensity distribution. The knowledge of these long tail contributions is essential when judging on the origin of signals of XPS spectra recorded on small-sized features. In this round robin test the quantitative lateral resolution of 7 PHI XPS microprobes has been estimated. As expected, the quantitative lateral resolution has significantly larger values than the nominal X-ray beam diameter. The estimated values of the quantitative lateral resolution follow a trend in time: the newer the monochromator of an XPS microprobe so much the better the quantitative lateral resolution.

  2. A Comparison of Effects of Ambient Pressure on the Atomization Performance of Soybean Oil Methyl Ester and Dimethyl Ether Sprays Comparaison des effets de la pression ambiante sur l’atomisation en “spray” de methylester d’huile de soja et de dimethyléther

    Directory of Open Access Journals (Sweden)

    Kim H.J.

    2010-11-01

    Full Text Available The purpose of this study is the experimental investigation of Soybean oil Methyl Ester (SME and DiMethyl Ether (DME spray characteristics injected through the common-rail injection system under various ambient pressures. A high pressure chamber that can be pressurized up to 4 MPa was utilized for a change of ambient pressure. In order to compare the spray development and atomization characteristics, the images of SME and DME were obtained by using a high speed camera with two metal halide lamps under various ambient pressures in the spray chamber. From these spray images, the spray characteristics such as the spray penetration from the nozzle tip, maximum radial distance, and spray diameter were measured and analyzed. In addition, the Sauter Mean Diameter (SMD of two fuels under ambient pressure was analyzed using the droplet measuring system. It was revealed that the axial distance of spray from the nozzle tip of the SME spray is longer than that of DME spray under same injection condition. The axial penetration, maximum radial distance, and spray diameter decreased when the ambient pressure in the chamber increased. As the ambient pressure increased, the SMD decreased and the DME spray showed a superior atomization performance compared to the SME spray. Le but de cette étude est l’investigation expérimentale de l’effet de diverses pressions ambiantes sur les caractéristiques des sprays (issus d’un système "common rail" de methylester d’huile de soja (SME et de dimethyléther (DME. La pression ambiante dépend de la chambre et sa valeur la plus haute peut monter jusqu’à 4 MPa. Pour comparer le développement de spray et la caractéristique d’atomisation, des images de spray de SME et DME à différentes pression ambiantes sont obtenues avec une caméra à haute vitesse à deux lampes de métal halide. Les caractéristiques du spray, comme la pénétration, la distance radiale maximale et le diamètre de spray, sont mesur

  3. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  4. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  5. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Verhaegh, W.F.J.; Aarts, E.H.L.; Korst, J.H.M.

    2004-01-01

    In this chapter, we discuss the new paradigm for user-centered computing known as ambient intelligence and its relation with methods and techniques from the field of computational intelligence, including problem solving, machine learning, and expert systems.

  6. Direct formation of a polyamide on Ag(111): Joint XPS and STM studies

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Martin; Steinrueck, Hans-Peter; Gottfried, J. Michael [Lehrstuhl fuer Physikalische Chemie II, Universitaet Erlangen-Nuernberg (Germany); Schmitz, Christoph H.; Ikonomov, Julian; Sokolowski, Moritz [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn (Germany)

    2011-07-01

    The polymer poly(p-phenylene terephthalamide) (PPTA) was synthesized on Ag(111) by co-adsorption of the reactive monomer compounds terephthaloyl chloride (TPC) and p-phenylenediamine (PPD) at 300 K. The resulting adsorbate phases were characterised by photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). A detailed study of the chemical composition and morphology revealed a complex reaction mechanism, by which the formation of amide bonds leads to folded PPTA polymer chains. According to XPS, the chloride of the TPC precursor is not released as HCl as in the bulk reaction, but remains on the surface as chemisorbed Cl or AgCl. Further temperature-programmed XPS studies of pure TPC on Ag(111) reveal that the molecule decomposes already above 130 K, forming chemisorbed Cl (or AgCl) and a phenylene-dicarbonyl species, which is presumably stabilized by the substrate. The adsorbed chlorine partially desorbs above 800 K as molecular AgCl.

  7. XPS and NEXAFS analysis of dimethyl sulfide adsorbed on the Rh(PVP) nanoparticle surface

    International Nuclear Information System (INIS)

    Niwa, Hironori; Ogawa, Satoshi; Yagi, Shinya; Kutluk, Galif

    2010-01-01

    We have studied the adsorption reaction of dimethyl sulfide (DMS: (CH 3 ) 2 S) on the surface of Rh(PVP) nanoparticles by using AFM, XPS and NEXAFS techniques. The AFM images show the degree of dispersion of the Rh(PVP) nanoparticles depends on the amount of them. The in-situ XPS results indicate that the dissociation reaction of DMS into atomic S does not depend upon the existence of the Rh(PVP) nanoparticles. The NEXAFS results show that there is a strong chemical bonding between Rh(PVP) nanoparticle and atomic S. The ex-situ XPS results show the atomic S adsorbed on the Rh(PVP) nanoparticles partially desorb by exposing to the air. (author)

  8. Upgrade of the Surface Spectrometer at NEPOMUC for PAES, XPS and STM Investigations

    Science.gov (United States)

    Zimnik, S.; Lippert, F.; Hugenschmidt, C.

    2014-04-01

    The characterization of the elemental composition of surfaces is of great importance for the understanding of many surface processes, such as surface segregation or oxidation. Positron-annihilation-induced Auger Electron Spectroscopy (PAES) is a powerful technique for gathering information about the elemental composition of only the topmost atomic layer of a sample. The upgraded surface spectrometer at NEPOMUC (NEtron induced POsitron source MUniCh) enables a comprehensive surface analysis with the complementary techniques STM, XPS and PAES. A new X-ray source for X-ray induced photoelectron spectroscopy (XPS) was installed to gather additional information on oxidation states. A new scanning tunneling microscope (STM) is used as a complementary method to investigate with atomic resolution the surface electron density. The combination of PAES, XPS and STM allows the characterization of both the elemental composition, and the surface topology.

  9. XPS studies of ceramics with pyrochlore structure for radioactive wastes disposal

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Vukchevich, L.; Ivanov, K.E.; Utkin, I.O; Teterin, A. Yu.; Maslakov, K.I.; Yudintseva, T.S.; Yudintsev, S.V.; Stefanovsky, S.V.; Lapina, M.I. . E-mail address of corresponding author: vukas@rc.pmf.cg.ac.yu; Vukchevich, L.)

    2005-01-01

    X-ray photoelectron spectroscopy (XPS) study of ceramics CaThSn 2 O 7 and CaThZr 2 O 7 with pyrochlore structure used as matrixes for the disposal of long lived high level radioactive wastes was done. On the basis of the XPS parameters of the core and outer electrons in the binding energy range 0 - 1000 eV the oxidation states of the included metals were determined, quantitative elemental and ionic analysis was carried out and a conclusion on the monophaseness of the studied samples was drawn. The obtained data agree with the X-ray diffraction and scanning electron microscopy results. (author)

  10. Quantitative analysis of satellite structures in XPS spectra of gold and silver

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, N., E-mail: nipauly@ulb.ac.be [Université libre de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla, Univ. Sevilla – CSIC, av. Américo Vespucio 49, E-41092 Sevilla (Spain); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2016-10-15

    Highlights: • Accurate determination of the energy loss functions for Au and Ag. • Calculation of effective inelastic electron scattering cross sections for Au and Ag. • Convolution of these cross sections with varying model primary spectra F(E). • Variation of F(E) until a good agreement with experimental XPS spectra is reached. • Quantitative determination of Au 4f and Ag 3d characteristics. - Abstract: Identification of specific chemical states and local electronic environments at surfaces by X-ray photoelectron spectroscopy (XPS) is often difficult because it is not straightforward to quantitatively interpret the shape and intensity of shake-up structures that originate from the photoexcitation process. Indeed the shape and intensity of measured XPS structures are strongly affected by both extrinsic excitations due to electron transport out of the surface and intrinsic excitations induced by the sudden creation of the static core hole. These processes must be taken into account to quantitatively extract, from experimental XPS, the primary excitation spectrum of the considered transition which includes all effects that are part of the initial photo-excitation process, i.e. lifetime broadening, spin–orbit coupling, and multiplet splitting. It was previously shown [N. Pauly, S. Tougaard, F. Yubero, Surf. Sci. 620 (2014) 17] that both extrinsic and intrinsic excitations could be included in an effective energy-differential inelastic electron scattering cross section for XPS which is then convoluted with the primary excitation spectrum to model the full XPS spectrum. This method can thus be applied to determine the primary excitation spectrum from any XPS spectrum. We use this approach in the present paper to determine the Au 4f and Ag 3d photoemission spectra from pure metals. We observe that characteristic energy loss features of the XPS spectra are not only due to photoelectron energy losses. We thus prove the existence of a double shake-up process

  11. A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures.

    Science.gov (United States)

    Ganesan, K; Ghosh, Subrata; Gopala Krishna, Nanda; Ilango, S; Kamruddin, M; Tyagi, A K

    2016-08-10

    Defects in planar and vertically oriented nanographitic structures (NGSs) synthesized by plasma enhanced chemical vapor deposition (PECVD) have been investigated using Raman and X-ray photoelectron spectroscopy. While Raman spectra reveal the dominance of vacancy and boundary type defects respectively in vertical and planar NGSs, XPS provides additional information on vacancy related defect peaks in the C 1s spectrum, which originate from non-conjugated carbon atoms in the hexagonal lattice. Although an excellent correlation prevails between these two techniques, our results show that estimation of surface defects by XPS is more accurate than Raman analysis. Nuances of these techniques are discussed in the context of assessing defects in nanographitic structures.

  12. XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316 L

    International Nuclear Information System (INIS)

    Stefanov, P.; Marinova, T.

    2000-01-01

    The structure and composition of chromium oxide films formed on stainless steel by immersion in a chromium electrolyte have been studied by SEM and XPS. Cr 2 O 3 crystallites in the range 30-150 nm are fully developed and cover the whole surface. The chemical composition in the depth and the thickness of the oxide layer have been determined by XPS sputter profiles. The oxide film can be described within the framework of a double layer consisting of a thin outer hydrated layer and an inner layer of Cr 2 O 3 . (orig.)

  13. Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species

    Science.gov (United States)

    Johansson, Leena-Sisko; Saastamoinen, Tuomas

    1999-04-01

    We have investigated the interactions of an exopolymer-producing bacteria, Burkholderia sp. with polished AISI 304 stainless steel substrates using X-ray photoelectron spectroscopy (XPS). Steel coupons were exposed to the pure bacteria culture in a specially designed flowcell for 6 h during which the experiment was monitored in situ with an optical microscope. XPS results verified the formation of biofilm containing extracellular polymer on all the samples exposed to bacteria. Sputter results indicated that some ions needed for metabolic processes were trapped within the biofilm. Changes in the relative Fe concentration and Fe 2p peak shape indicated that also iron had accumulated into the biofilm.

  14. Research on the surface chemical behavior of uranium metal in hydrogen atmosphere by XPS

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Yu Yong; Zhao Zhengping

    2001-01-01

    The surface chemical behavior clean uranium metal in hydrogen atmosphere at 100 and 200 degree C is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa·s, and the U4f 7/2 binding energy of UH 3 is found to be 378.7 eV. The higher temperature (200 degree C) is beneficial to UH 3 formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO 2 , UH 3 and U after exposure to 174.2 Pa·s hydrogen

  15. Conversion electron Moessbauer and XPS study on the effect of polishing of a stainless steel sample

    International Nuclear Information System (INIS)

    Vertes, Cs.; Kuzmann, E.; Lakatos-Varsanyi, M.; Vertes, A.; Vass, G.; Romhanyi, K.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) and XPS has been used for the surface analysis of an 'X10CrNiTi 18/9 (DIN 1.7440)'-type stainless steel in order to determine the supposed structural and/or chemical changes in the surface layer caused by polishing. Both, CEMS and XPS results can be associated with the appearance of Fe nitride in the outer layer of steel samples after polishing, while no sing of nitrogen was detected in the bulk material. (author) 9 refs.; 3 figs.; 1 tab

  16. Thorough XPS analyses on overlithiated manganese spinel cycled around the 3V plateau

    Energy Technology Data Exchange (ETDEWEB)

    Grissa, R. [IPREM ECP − UMR CNRS 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau-Pyrénées, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Martinez, H., E-mail: herve.martinez@univ-pau.fr [IPREM ECP − UMR CNRS 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau-Pyrénées, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Cotte, S.; Galipaud, J.; Pecquenard, B. [CNRS, Université de Bordeaux, ICMCB–UPR 9048 and Bordeaux INP, 87 Avenue du Dr. Schweitzer, F-33600 Pessac (France); Cras, F.Le [CEA LETI, 17 rue des Martyrs, F-38054 Grenoble (France); Université Grenoble Alpes, F-38000 Grenoble (France)

    2017-07-31

    Highlights: • Mn2p XPS spectra of Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 < x < 0.25) fitted with reference samples. • XPS Mn mean oxidation states agrees with XRD structural study. • Li{sub 1.2}Mn{sub 1.8}O{sub 4} thin films cycled versus lithium arounds 3 V in liquid electrolyte. • Electrochemical results (over 20 cycles) related to Mn oxidation states evolution. • Irreversible capacity explained on the basis of XPS by active material delamination. - Abstract: Lithium-rich spinel Li{sub 1.2}Mn{sub 1.8}O{sub 4} thin film electrodes operated at 3 V/Li{sup +}/Li are studied by means of X-ray photoelectron spectroscopy (XPS), mainly on the basis of the evolution of the Mn2p XPS peak during the electrode cycling. The analysis of this core peak has long been debated in literature given its complex character. Based on manganese oxide references, MnO (Mn{sup 2+}), Mn{sub 2}O{sub 3}(Mn{sup 3+}) and Li{sub 2}MnO{sub 3}(Mn{sup 4+}), we propose a deconvolution method to identify each Mn oxidation state. This method is then used for the deconvolution of Mn2p XPS peaks of bulk lithium-rich spinels Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 ≤ x ≤ 0.25) for validation before proceeding to the study of cycled Li{sub 1.2}Mn{sub 1.8}O{sub 4} thin film electrodes. Electrochemical measurements exhibit significant capacity loss during the first cycle. Based on XPS analyses, this phenomenon could be explained by mechanical breakup of parts of the electrode. A stable behavior during subsequent cycles is then observed. The presence of Mn{sup 2+} species (XPS) at the most top surface of the electrode and the significant polarization observed during the discharge illustrate the kinetical limitation of the two-phase reaction, despite the reduced thickness of the electrode material.

  17. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  18. Data based ambient lighting control

    NARCIS (Netherlands)

    2012-01-01

    In controlling an ambient lighting element, a category of data being rendered by a host is identified, ambient lighting data associated with the identified category is retrieved, and the retrieved ambient lighting data is rendered in correspondence with the rendered data. The retrieved ambient

  19. XPS study of the passive layers formed on lead in aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Uchida, Miho; Okuwaki, Akitsugu

    1997-01-01

    The analysis of the lead surface immersed in aqueous nitrate solutions by X-ray photoelectron spectroscopy (XPS) shows the formation of passive oxide layer containing nitrogen compound. The oxide layer formed on the lead surface in aqueous ammonium nitrate solution was hydrolyzed and cracked. (author)

  20. Thermally Annealed Iron (Oxide) Thin Film on an Alumina Barrier Layer, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    Herein we show characterization of an Fe thin film on Al_2O_3 after thermal annealing under H_2 using Al Ka X-rays. The XPS survey spectrum, narrow Fe 2p scan, and valence band regions are presented. The survey spectrum shows aluminum signals due to exposure of the underlying Al_2O_3 film during Fe nanoparticle formation.

  1. Quantitative depth profiling of K-doped fullerene films using XPS and SIMS

    Czech Academy of Sciences Publication Activity Database

    Oswald, S.; Janda, Pavel; Dunsch, L.

    2003-01-01

    Roč. 141, 1-2 (2003), s. 79-85 E-ISSN 1436-5073 Institutional research plan: CEZ:AV0Z4040901 Keywords : XPS * SIMS * depth profiling * fullerenes * doping Subject RIV: CG - Electrochemistry Impact factor: 0.784, year: 2003

  2. PLA-PMMA blends: A study by XPS and ToF-SIMS

    International Nuclear Information System (INIS)

    Cossement, D.; Gouttebaron, R.; Cornet, V.; Viville, P.; Hecq, M.; Lazzaroni, R.

    2006-01-01

    This paper reports which are the possibilities of quantification by time of flight secondary ion mass spectrometry (ToF-SIMS) for some polymer blends. In order to assess the composition of the mixtures, we studied first different poly(L-lactide)/polymethylmethacrylate (PLA/PMMA) blends by X-ray photoelectron spectroscopy (XPS), this technique being quantitative. By XPS fitting of the C 1s level, we found a very good agreement of the measured concentrations with the initial compositions. Concerning ToF-SIMS data treatment, we used principal component analysis (PCA) on negative spectra allowing to discriminate one polymer from the other one. By partial least square regression (PLS), we found also a good agreement between the ToF-SIMS predicted and initial compositions. This shows that ToF-SIMS, in a similar way to XPS, can lead to quantitative results. In addition, the observed agreement between XPS (60-100 A depth analyzed) and ToF-SIMS (10 A depth analyzed) measurements show that there is no segregation of one of the two polymers onto the surface

  3. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Ižák, Tibor; Vretenár, V.; Kozak, Halyna; Holovský, Jakub; Artemenko, Anna; Hulman, M.; Skákalová, V.; Lee, D. S.; Kromka, Alexander

    2016-01-01

    Roč. 111, Jan (2016), s. 54-61 ISSN 0008-6223 R&D Projects: GA ČR GC15-22102J; GA MŠk(CZ) 7AMB14SK037 Institutional support: RVO:68378271 Keywords : diamond * carbon nanotubes * spectroscopy * Raman * FTIR * XPS Subject RIV: JI - Composite Materials Impact factor: 6.337, year: 2016

  4. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  5. XPS and electrochemical studies of the dissolution and passivation of molybdenum-implanted austenitic stainless steels

    International Nuclear Information System (INIS)

    De Vito, E.; Marcus, P.

    1993-01-01

    X-ray Photoelectron Spectroscopy (XPS) was used to investigate the chemical composition and the chemical states of the passive film formed on austenitic stainless steels (Fe-19Cr-10Ni (at.%)) which have been implanted with molybdenum (Mo + , 100 keV, 2.5 x 10 16 at./cm 2 ). Prior to passivation the implanted alloy was characterized by RBS (Rutherford Backscattering Spectroscopy) and XPS. Alloys with well-defined surface concentrations of molybdenum were prepared by ion sputtering the implanted alloy in the preparation chamber of the spectrometer, to a fixed point in the implantation profile. The samples were then transferred without air exposure to a glove box with inert gas in which the electrochemical measurements were performed. After passivation, return transfer of the passivated samples was done with the same transfer device to avoid exposure to air. In 0.5 M H 2 SO 4 , the anodic dissolution current density decreases with increasing Mo content on the alloy surface. Surface analysis by XPS showed that the surface is enriched with molybdenum in the Mo 4+ chemical state. The current density in the passive state is similar for both the non-implanted and the implanted alloys. Surface analysis by XPS showed that the passive film has a bilayer structure (inner oxide and outer hydroxide) and that the hydroxide layer present on the surface of the passive film is markedly enriched with molybdenum in the Mo 6+ chemical state. The XPS measurements indicate that the presence of molybdenum favors the formation of chromium hydroxide at the expense of chromium oxide. A significant enrichment of the alloyed (Cr, Ni) and implanted (Mo) elements was also observed in the metallic phase under the passive film. The possible mechanisms of the effect of molybdenum on the corrosion resistance of stainless steels are discussed in light of the obtained surface analytical results

  6. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  7. Comparison of the equivalent width, the autocorrelation width, and the variance as figures of merit for XPS narrow scans

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupinder [Department of Chemistry and Biochemistry, C-100 BNSN, Brigham Young University, Provo, UT 84602 (United States); Velázquez, Daniel; Terry, Jeff [Department of Physics, Illinois Institute of Technology, Chicago, IL 60616 (United States); Linford, Matthew R., E-mail: mrlinford@chem.byu.edu [Department of Chemistry and Biochemistry, C-100 BNSN, Brigham Young University, Provo, UT 84602 (United States)

    2014-12-15

    Highlights: • We apply the equivalent and autocorrelation widths and variance to XPS narrow scans. • This approach is complementary to traditional peak fitting methods. • It is bias free and responsive to subtle chemical changes in spectra. • It has the potential for machine interpretation of spectra and quality control. • It has the potential for analysis of complex spectra and tracking charging/artifacts. - Abstract: X-ray photoelectron spectroscopy (XPS) is widely used in surface and materials laboratories around the world. It is a near surface technique, providing detailed chemical information about samples in the form of survey and narrow scans. To extract the maximum amount of information about materials it is often necessary to peak fit XPS narrow scans. And while indispensable to XPS data analysis, even experienced practitioners can struggle with their peak fitting. In our previous publication, we introduced the equivalent width (EW{sub XPS}) as both a possible machine automated method, one that requires less expert judgment for characterizing XPS narrow scans, and as an approach that may be well suited for the analysis of complex spectra. The EW{sub XPS} figure of merit was applied to four different data sets. However, as previously noted, other width functions are also regularly employed for analyzing functions. Here we evaluate two other width functions for XPS narrow scan analysis: the autocorrelation width (AW{sub XPS}) and the variance (σ{sub XPS}{sup 2}). These widths were applied to the same four sets of spectra studied before: (a) four C 1s narrow scans of ozone-treated carbon nanotubes (CNTs) (EW{sub XPS}: ∼2.11–2.16 eV, AW{sub XPS}: ∼3.9–4.1 eV, σ{sub XPS}{sup 2}: ∼5.0–5.2 eV, and a modified form of σ{sub XPS}{sup 2}, denoted σ{sub XPS}{sup 2*}: ∼6.3–6.8 eV), (b) silicon wafers with different oxide thicknesses (EW{sub XPS}: ∼1.5–2.9 eV, AW{sub XPS}: ∼2.28–4.9, and σ{sub XPS}{sup 2}: ∼0.7–4.9 eV), (iii

  8. Indicadores de salud ambiental

    Directory of Open Access Journals (Sweden)

    Manuel Posada de la Paz

    2004-12-01

    Full Text Available Esta ponencia presenta una visión general del proyecto de Indicadores de Salud Ambiental, coordinado por la OMS a nivel internacional y liderado por el Centro de Investigación sobre el Síndrome del Aceite Tóxico y Enfermedades Raras (CISATER en España. En ella se describen los objetivos del proyecto, las gestiones realizadas y los resultados obtenidos durante la fase de viabilidad de este proyecto. El proyecto consiste en el establecimiento de un sistema de información sobre salud ambiental que permita desarrollar una vigilancia de los factores ambientales determinantes de los estados de salud, realizar comparaciones internacionales, elaborar políticas de acción, así como facilitar la comunicación con la ciudadanía. La OMS desarrolló una metodología para el desarrollo de estos indicadores dentro del marco conceptual de información ambiental DPSEEA (Fuerzas impulsoras, Presión, Estado, Exposición, Efecto, Acción y seleccionó un total de 55 indicadores (que incluyen 168 variables sobre 10 áreas de la salud ambiental. Durante la fase de viabilidad se predijo que podrían obtenerse el 89% de los indicadores. Sin embargo la recolección de los datos supuso muchas dificultades debido a la incompatibilidad de algunas variables en los sistemas de información españoles con las variables definidas por la OMS. A nivel de gestión del proyecto, la mayor dificultad radica en la disparidad de responsabilidades en materia de medio ambiente y salud entre las instituciones españolas. Además de la aportación técnica a la salud ambiental en España, un valor añadido de este proyecto ha sido el establecimiento de líneas de colaboración estrechas con los responsables de los diferentes Ministerios implicados.

  9. Chemical state analysis of conversion coatings by SR-XPS and TEY-XANES

    CERN Document Server

    Noro, H; Nagoshi, M

    2002-01-01

    Chromate coatings on galvanized steel have been studied by Synchrotron Radiation (SR) based techniques that include X-ray Photoelectron Spectroscopy (XPS) and Total-Electron-Yield X-ray Absorption Near Edge Structure (TEY-XANES). Non-destructive depth profiling of the coatings by SR-XPS reveals the enhancement of Cr sup 6 sup + in the outer surface. TEY-XANES spectroscopy based on simple specimen current measurement is demonstrated as an effective technique for analyzing chemical states of conversion coatings on general bulk substrates. The sampling depth of this technique, which exceeds several tens of nanometer, is determined by the penetration length of Auger electrons excited by X-ray and the inelastic mean free path of secondary electrons excited by inelastically scattered Auger electrons. The chemical states of phosphoric acid added chromate coatings are studied using this technique. The phosphoric acid is taken into the chromate coatings as partially changed into zinc and chromium phosphates, and the r...

  10. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Richard, M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France) and Laboratoires ANIOS, 59 260 Lille-Hellemmes (France)]. E-mail: marlene.richard@ec-lyon.fr; Le Mogne, Th. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Perret-Liaudet, A. [Hopital Neurologique de Lyon et INSERM U512, 69 394 Lyon (France); Rauwel, G. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); Criquelion, J. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); De Barros, M.I. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Cetre, J.C. [Unite d' Hygiene et d' Epidemiologie, Hopital de la Croix Rousse, 69 317 Lyon (France); Martin, J.M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France)

    2005-02-15

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed.

  11. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  12. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  13. APS- and XPS-investigations of vanadium, vanadium carbide and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, A M; Krause, U [Technische Univ. Muenchen (F.R. Germany). Inst. fuer Physikalische Chemie und Theoretische Chemie

    1975-11-01

    Soft X-ray appearance potential spectroscopy (APS) and X-ray photoelectron spectroscopy (XPS) have been used to study vanadium, vanadium carbide, and graphite. The chemical shifts for vanadium carbide with respect to metallic vanadium and graphite are compared for the two methods. The Csub(K) structure in APS and the valence band in XPS for vanadium carbide show good agreement with the band structure calculations of Neckel and co-workers. Using the band structure calculations of Painter et al. it is also shown how the multi-peak structure in the APS spectrum of graphite is possibly due to density of states effects. It would therefore appear that plasmon coupling plays only a minor role.

  14. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  15. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  16. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    International Nuclear Information System (INIS)

    Richard, M.; Le Mogne, Th.; Perret-Liaudet, A.; Rauwel, G.; Criquelion, J.; De Barros, M.I.; Cetre, J.C.; Martin, J.M.

    2005-01-01

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed

  17. Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope

    International Nuclear Information System (INIS)

    Escher, M.; Winkler, K.; Renault, O.; Barrett, N.

    2010-01-01

    The design and applications of an instrument for imaging X-ray photoelectron spectroscopy (XPS) are reviewed. The instrument is based on a photoelectron microscope and a double hemispherical analyser whose symmetric configuration avoids the spherical aberration (α 2 -term) inherent for standard analysers. The analyser allows high transmission imaging without sacrificing the lateral and energy resolution of the instrument. The importance of high transmission, especially for highest resolution imaging XPS with monochromated laboratory X-ray sources, is outlined and the close interrelation of energy resolution, lateral resolution and analyser transmission is illustrated. Chemical imaging applications using a monochromatic laboratory Al Kα-source are shown, with a lateral resolution of 610 nm. Examples of measurements made using synchrotron and laboratory ultra-violet light show the broad field of applications from imaging of core level electrons with chemical shift identification, high resolution threshold photoelectron emission microscopy (PEEM), work function imaging and band structure imaging.

  18. Pd adsorption on Si(1 1 3) surface: STM and XPS study

    International Nuclear Information System (INIS)

    Hara, Shinsuke; Yoshimura, Masamichi; Ueda, Kazuyuki

    2008-01-01

    Pd-induced surface structures on Si(1 1 3) have been studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In the initial process of the Pd adsorption below 0.10 ML, Pd silicide (Pd 2 Si) clusters are observed to form randomly on the surface. By increasing the Pd coverage to 0.10 ML, the clusters cover the entire surface, and an amorphous layer is formed. After annealing the Si(1 1 3)-Pd surface at 600 deg. C, various types of islands and chain protrusions appears. The agglomeration, coalescence and crystallization of these islands are observed by using high temperature (HT-) STM. It is also found by XPS that the islands correspond to Pd 2 Si structure. On the basis of these results, evolution of Pd-induced structures at high temperatures is in detail discussed

  19. Synchrotron radiation as a source for quantitative XPS: advantages and consequences

    International Nuclear Information System (INIS)

    Rosseel, T.M.; Carlson, T.A.; Negri, R.E.; Beall, C.E.; Taylor, J.W.

    1986-01-01

    Synchrotron radiation (SR) has a variety of properties which make it an attractive source for quantitative x-ray photoelectron spectroscopy (XPS). Among the most significant are high intensity and tunability. In addition, the intensity of the dispersed radiation is comparable to laboratory line sources. Synchrotron radiation is also a clean source, i.e., it will not contaminate the sample, because it operates under ultra-high vacuum conditions. We have used these properties to demonstrate the advantages of SR as a source for quantitative XPS. We have also found several consequences associated with this source which can either limit its use or provide unique opportunities for analysis and research. Using the tunability of SR, we have measured the energy dependence of the 3p photoionization cross sections of Ti, Cr, and Mn from 50 to 150 eV above threshold at the University of Wisconsin's Tantalus electron-storage ring

  20. XPS characterization of the anodic oxide film formed on uranium metal in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Guo Huanjun; Wang Qingfu; Zhao Zhengping; Zhong Yongqiang

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) is used to examine the anodic oxide film formed on uranium metal in 0.8 mol/L NaOH solution. The U4f 7/2 fitting spectra suggests that the anodic oxide film is composed of uranium trioxide and a small amount of UO 2+x . Under UHV condition, the U4f peak shifts to the lower binding energy, while a gradual increase in the intensity of U5f peak and the broad of U4f peak are also observed. All of these changes are due to reduction of uranium trioxide in the anodic oxide film. XPS quantitative analysis confirms the occurrence of reduction reaction

  1. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  2. Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion

    Czech Academy of Sciences Publication Activity Database

    Penttinen, N.; Hasoň, Stanislav; Silvennoinen, M.; Joska, L.; Silvennoinen, R.

    2012-01-01

    Roč. 285, č. 6 (2012), s. 965-968 ISSN 0030-4018 Grant - others:GA ČR(CZ) GAP108/10/1782 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : permittivity * XPS titanium * diffractive optical element-based sensor Subject RIV: BO - Biophysics Impact factor: 1.438, year: 2012

  3. XPS investigations on the UV-laser ablation mechanism of poly(ether imide)

    Energy Technology Data Exchange (ETDEWEB)

    Wambach, J; Kunz, T; Schnyder, B; Koetz, R; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    UV-Laser ablated samples of poly(ether imide) [Kapton{sup TM}] were studied with small-spot XPS. Applying fluences above the threshold level (0.167 J/cm{sup 2}) resulted in the expected behaviour of a decline of both nitrogen and oxygen. Below the threshold level a hint for an altered ablation mechanism was found. (author) 1 fig., 5 refs.

  4. Study of the local structure of binary surfaces by electron diffraction (XPS, LEED)

    OpenAIRE

    Gereová, Katarína

    2006-01-01

    Study of local structure of binary surface with usage of ultra-thin film of cerium deposited on a Pd (111) single-crystal surface is presented. X-ray photoelectron spectroscopy and diffraction (XPS, XPD), angle resolved UV photoemission spectroscopy (ARUPS) and low energy electron diffraction (LEED) was used for our investigations. LEED and X-ray excited photoemission intensities results represent a surface-geometrical structure. As well, mapping of ultra-violet photoelectron intensities as a...

  5. Investigation of CoPd alloys by XPS and EPES using the pattern recognition method

    Czech Academy of Sciences Publication Activity Database

    Lesiak, B.; Zemek, Josef; Jiříček, Petr; Jozwik, A.

    2007-01-01

    Roč. 428, - (2007), s. 190-196 ISSN 0925-8388 R&D Projects: GA ČR GA202/06/0459 Institutional research plan: CEZ:AV0Z10100521 Keywords : CoPd alloys * x-ray photoelectron spectroscopy (XPS) * elastic peak electron spectroscopy (EPES) * pattern recognition method * fuzzy k-nearest neighbour rule (fkNN) * quantitative analysis * surface segregation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2007

  6. Lead-silicate glass surface sputtered by an argon cluster ion beam investigated by XPS

    Czech Academy of Sciences Publication Activity Database

    Zemek, Josef; Jiříček, Petr; Houdková, Jana; Jurek, Karel; Gedeon, O.

    2017-01-01

    Roč. 469, Aug (2017), s. 1-6 ISSN 0022-3093 R&D Projects: GA MŠk LM2015088; GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : lead-silicate glass * XPS * BO * NBO * Argon duster ion beam sputtering * X-ray irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.124, year: 2016

  7. An XPS study of tarnishing of a gold mask from a pre-Columbian culture

    International Nuclear Information System (INIS)

    Bastidas, D.M.; Cano, E.; Gonzalez, A.G.; Fajardo, S.; Lleras-Perez, R.; Campo-Montero, E.; Belzunce-Varela, F.J.; Bastidas, J.M.

    2008-01-01

    The tarnishing originated on a hammered gold mask was analysed. Red tarnishing was observed after three years of storage in an indoor environment in the Gold Museum of Banco de la Republica, Bogota, Colombia. Silver sulphide (Ag 2 S) and silver sulphate (Ag 2 SO 4 ) compounds were identified as the origin of the tarnishing phenomenon, which is attributed to environmental contamination. Atomic absorption spectroscopy (AAS) and X-ray photoelectron spectroscopy (XPS) techniques were used

  8. Formation of titanium nitride layers on titanium metal: Results of XPS and AES investigations

    International Nuclear Information System (INIS)

    Moers, H.; Pfennig, G.; Klewe-Nebenius, H.; Penzhorn, R.D.; Sirch, M.; Willin, E.

    1988-09-01

    The reaction of titanium metal with gaseous nitrogen and ammonia at temperatures of 890 0 C leads to the formation of nitridic overlayers on the metallic substrate. The thicknesses of the overlayers increase with increasing reaction time. Under comparable conditions ammonia reacts much slower than nitrogen. XPS and AES depth profile analyses show continuous changes of the in-depth compositions of the overlayers. This can be interpreted in terms of a very irregular thickness of the overlayers, an assumption which is substantiated by local AES analyses and by the observation of a pronounced crystalline structure of the substrate after annealing pretreatment, which can give rise to locally different reaction rates. The depth profile is also influenced by the broad ranges of stability of the titanium nitride phases formed during the reaction. The quantitative analysis of the titanium/nitrogen overlayers by AES is difficult because of the overlap of titanium and nitrogen Auger peaks. In quantitative XPS analysis problems arise due to difficulties in defining Ti 2p peak areas. This work presents practical procedures for the quantitative evaluation by XPS and AES of nitridic overlayers with sufficient accuracy. (orig.) [de

  9. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    2016-06-01

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However, care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.

  10. GD-OES and XPS coupling: A new way for the chemical profiling of photovoltaic absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, Dimitri, E-mail: dimitri.mercier@uvsq.fr [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Bouttemy, Muriel; Vigneron, Jackie [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chapon, Patrick [HORIBA Jobin Yvon SAS, F-91165 Longjumeau (France); Etcheberry, Arnaud [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France)

    2015-08-30

    Highlights: • The coupling between GD-OES and XPS analysis is a promising way for fine characterization of thin layers. • Crater surface modifications obtained after GD-OES sputtering depend to the plasma gas. • Inversion of the gas flow improves the surface of the crater. • The modified layer is totally eliminated a few seconds after restarting GD-OES sputtering. - Abstract: In this paper, we examine the complementarity of Glow Discharge Optical Emission Spectroscopy (GD-OES) and X Ray Photoelectron Spectroscopy (XPS) for the realization of fine chemical depth profiling of photovoltaic absorbers using Cu(In,Ga)Se{sub 2} (CIGS) materials. The possibility to use sequentially these two techniques is discussed in this paper. We have evaluated the chemical modifications of the crater after GD-OES analyses which depend on the manner of finishing the plasma etching sequence; and we propose different ways to limit or eliminate this effect. For the moment, an intermediate step (wet chemical etching or weak sputtering) is required to obtain a CIGS phase in the crater. Finally, we have demonstrated the possibility to restart the GD-OES analyses of the materials after XPS quantification or GD-OES breaking without modifying the profile shape.

  11. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.

    Science.gov (United States)

    Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E

    2014-09-01

    The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.

  12. Surface chemical characterization of PM{sub 10} samples by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Atzei, Davide, E-mail: datzei@unica.it [Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari (Italy); Fantauzzi, Marzia; Rossi, Antonella [Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari (Italy); Fermo, Paola [Dipartimento di Chimica, Università degli Studi Milano, Via Golgi 19, I-20133 Milano (Italy); Piazzalunga, Andrea [Dipartimento di Chimica, Università degli Studi Milano, Via Golgi 19, I-20133 Milano (Italy); Dipartimento di Scienze dell’Ambiente e del territorio, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, I-20122 Milano (Italy); Valli, Gianluigi; Vecchi, Roberta [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy)

    2014-07-01

    Samples of particulate matter (PM) collected in the city of Milan during wintertime were analyzed by X-ray photoelectron spectroscopy (XPS), thermal optical transmittance (TOT), ionic chromatography (IC) and X-ray fluorescence (XRF) in order to compare quantitative bulk analysis and surface analysis. In particular, the analysis of surface carbon is here presented following a new approach for the C1s curve fitting aiming this work to prove the capability of XPS to discriminate among elemental carbon (EC) and organic carbon (OC) and to quantify the carbon-based compounds that might be present in the PM. Since surface of urban PM is found to be rich in carbon it is important to be able to distinguish between the different species. XPS results indicate that aromatic and aliphatic species are adsorbed on the PM surface. Higher concentrations of (EC) are present in the bulk. Also nitrogen and sulfur were detected on the surfaces and a qualitative and quantitative analysis is provided. Surface concentration of sulfate ion is equal to that found by bulk analysis; moreover surface analysis shows an additional signal due to organic sulfur not detectable by the other methods. Surface appears to be also enriched in nitrogen.

  13. Quantitative Surface Analysis by Xps (X-Ray Photoelectron Spectroscopy: Application to Hydrotreating Catalysts

    Directory of Open Access Journals (Sweden)

    Beccat P.

    1999-07-01

    Full Text Available XPS is an ideal technique to provide the chemical composition of the extreme surface of solid materials, vastly applied to the study of catalysts. In this article, we will show that a quantitative approach, based upon fundamental expression of the XPS signal, has enabled us to obtain a consistent set of response factors for the elements of the periodic table. In-depth spadework has been necessary to know precisely the transmission function of the spectrometer used at IFP. The set of response factors obtained enables to perform, on a routine basis, a quantitative analysis with approximately 20% relative accuracy, which is quite acceptable for an analysis of such a nature. While using this quantitative approach, we have developed an analytical method specific to hydrotreating catalysts that allows obtaining the sulphiding degree of molybdenum quite reliably and reproducibly. The usage of this method is illustrated by two examples for which XPS spectroscopy has provided with information sufficiently accurate and quantitative to help understand the reactivity differences between certain MoS2/Al2O3 or NiMoS/Al2O3-type hydrotreating catalysts.

  14. Soft X-ray-induced decomposition of amino acids: An XPS, mass spectrometry, and NEXAFS study

    International Nuclear Information System (INIS)

    Zubavichus, Yan; Fuchs, Oliver; Weinhardt, Lothar; Heske, Clemens; Umbach, Eberhard; Denlinger, Jonathan D.; Grunze, Michael

    2003-01-01

    Decomposition of five amino acids, alanine, serine, cysteine, aspartic acid, and asparagine, under irradiation with soft X-rays (magnesium Ka X-ray source) in ultra-high vacuum was studied by means of X-ray photoelectron spectrometry (XPS) and mass spectrometry. A comparative analysis of changes in XPS line shapes, stoichiometry and residual gas composition indicates that the molecules decompose by several pathways. Dehydration, decarboxylation, decarbonylation,deamination and desulfurization of pristine molecules accompanied by desorption of H2, H2O, CO2, CO, NH3and H2S are observed with rates depending on the specific amino acid. NEXAFS spectra of cysteine at the carbon, oxygen and nitrogen K-shell and sulfur L2,3 edges complement the XPS and mass spectrometry data and show that the exposure of the sample to an intense soft X-ray synchrotron beam results in the formation of C-C and C-N double and triple bonds. Qualitatively, the amino acids studied can be arranged in the following ascending order of radiation stability:serine< alanine< aspartic acid< cysteine< asparagine

  15. XPS and EPXMA investigation and chemical speciation of aerosol samples formed in LWR core melting experiments

    International Nuclear Information System (INIS)

    Moers, H.; Jenett, H.; Kaufmann, R.; Klewe-Nebenius, H.; Pfennig, G.; Ache, H.J.

    1985-09-01

    Aerosol samples consisting of fission products and elements of light water reactor structural materials were collected during simulating in a laboratory scale the heat-up phase of a core melt accident. The aerosol particles were formed in a steam atmosphere at temperatures between 1200 and 1900 0 C of the melting charge. The investigation of the samples by use of X-ray photoelectron spectroscopy (XPS) permitted the chemical speciation of the detected aerosol constituents silver, cadmium, indium, tellurium, iodine, and cesium. A comparison of the elemental analysis results obtained from XPS with those achieved from electron probe X-ray micro analysis (EPXMA) revealed that aerosol particle surface and aerosol particle bulk are principally composed of the same elements and that these compositions vary with release temperature. In addition, quantitative differences between the composition of surface and bulk have only been observed for those aerosol samples which were collected at higher melting charge temperatures. In order to obtain direct information on chemical species below the surface selected samples were argon ion bombarded. Changes in composition and chemistry were monitored by XPS, and the results were interpreted in light of the effects, which were observed when appropriate standard samples were sputtered. (orig.) [de

  16. XPS and NEXAFS study of tyrosine-terminated propanethiol assembled on gold

    CERN Document Server

    Petoral, R M

    2003-01-01

    Tyrosine-terminated propanethiol (TPT), tyrosine linked to 3-mercaptopropionic acid through an amide bond, is adsorbed to gold surfaces. The adsorbates are characterized by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). XPS is used to investigate the chemical binding and electronic structure of the monolayer. Strong molecular binding of the tyrosine derivative on the gold surface through the sulfur atom is attained. Angle-dependent XPS results shows that TPT molecules are oriented with the sulfur atoms molecularly oriented close to the gold surface and that the phenol moiety is oriented away from the gold surface. Average orientation of the adsorbate on gold is deduced using the NEXAFS results. It shows that the main molecular axis is tilted approximately 38 deg. relative to the Au surface normal. The ring plane of the phenol moiety exhibits a preferential orientation with an average tilt angle of the normal of the ring plane from the surfa...

  17. Medio ambiente urbano

    OpenAIRE

    Rodríguez-Chaves Mimbrero, Blanca

    2007-01-01

    El estudio  y análisis  de las interacciones  entre  ambiente  y desarrollo y  su inserción  en los procesos  de  planificación del crecimiento  social y económico  de  los  países  de América Latina, reviste especial interés para proponer alternativas de acción que  conduzcan  al  logro  de  una mejor  calidad de  vida.  El impacto  que las conferencias sobre  el  Medio Ambiente Humano Estocolmo (1972),  Cocoyoc  (1974) o de documentos como "Nuestro Futuro Común" o "Nuestra Propia Agenda" ha...

  18. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  19. Mass Spectrometry Imaging under Ambient Conditions

    Science.gov (United States)

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  20. MEIO AMBIENTE E DESENVOLVIMENTO

    Directory of Open Access Journals (Sweden)

    Suely Salgueiro Chacon

    2009-12-01

    Full Text Available O objetivo deste artigo é resgatar elementos para subsidiar uma reflexão crítica sobre o modelo de desenvolvimento econômico prevalente na sociedade e as relações com o meio ambiente, sob a ameaça que ronda o destino da espécie humana, conforme afirmação de Lovelock (2006, p. 20 sobre o conceito de desenvolvimento sustentável: “uma ideia adorável se a tivéssemos aplicado 200 anos atrás, quando havia um bilhão de pessoas no mundo. Agora é tarde demais. Não há mais espaço para nenhum tipo de desenvolvimento. A humanidade tem que regredir”. Este artigo apresenta a evolução do conceito de desenvolvimento econômico sob a ótica da sustentabilidade, e interliga temas como: o ambientalismo, aglutinador de distintos pensamentos sobre as relações entre a sociedade e a natureza; o movimento ambiental, a fundamentar a disseminação do conceito de desenvolvimento sustentável, e a gestão ambiental, abordada como prática orientada pelo conceito de desenvolvimento sustentável.

  1. Cohort study comparing prostate photovaporisation with XPS 180W and HPS 120W laser.

    Science.gov (United States)

    López, B; Capitán, C; Hernández, V; de la Peña, E; Jiménez-Valladolid, I; Guijarro, A; Pérez-Fernández, E; Llorente, C

    2016-01-01

    Prostate photovaporisation with Greenlight laser for the surgical treatment of benign prostate hyperplasia has rapidly evolve to the new XPS 180W. We have previously demonstrated the safety and efficacy of the HPS 120W. The aim of this study was to assess the functional and safety results, with a year of follow-up, of photovaporisation using the XPS 180W laser compared with its predecessor. A cohort study was conducted with a series of 191 consecutive patients who underwent photovaporisation between 1/2008 and 5/2013. The inclusion criteria were an international prostate symptom score (IPSS) >15 after medical failure, a prostate volume <80 cm(3) and a maximum flow <15 mL/s. We assessed preoperative and intraoperative variables (energy used, laser time and total surgical time), complications, catheter hours, length of stay and functional results (maximum flow, IPSS, prostate-specific antigen and prostate volume) at 3, 6 and 12 months. We analysed the homogeneity in preoperative characteristics of the 2 groups through univariate analysis techniques. The postoperative functional results were assessed through an analysis of variance of repeated measures with mixed models. A total of 109 (57.1%) procedures were performed using HPS 120W, and 82 (42.9%) were performed using XPS. There were no differences between the preoperative characteristics. We observed significant differences both in the surgical time and effective laser time in favour of the XPS system. This advantage was 11% (48 ± 15.7 vs. 53.8 ± 16.2, p<.05) and 9% (32.8 ± 11.7 vs. 36 ± 11.6, p<.05), respectively. There were no statistically significant differences in the rest of the analysed parameters. The technical improvements in the XPS 180W system help reduce surgical time, maintaining the safety and efficacy profile offered by the HPS 120W system, with completely superimposable results at 1 year of follow-up. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. XPS study of influence of exposure to air on thermal stability and kinetics of hydrogen decomposition of MgH{sub 2} films obtained by direct hydrogenation from gaseous phase of metallic Mg

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolsky, V.D., E-mail: dobersh@ipms.kiev.ua; Khyzhun, O.Y.; Sinelnichenko, A.K.; Ershova, O.G.; Solonin, Y.M.

    2017-02-15

    Highlights: • Air influence on thermal stability of MgH{sub 2} have been studied by XPS. • XPS spectra of MgH{sub 2} films obtained at different hydrogen pressures have been studied. • Changes in the chemical state of MgH{sub 2} films depending on time of exposure to air are analyzed. • Correlation exists between chemical surface condition of MgH{sub 2} films and their thermal stableness. • Process of hydrogen desorption from MgH{sub 2} films is studied using TDS for model samples. - Abstract: Mechanism of influence of exposure to air on thermal stability of MgH{sub 2} obtained by direct hydrogenation from the gas phase, the nature of the hydride sensitivity to the negative impact of air and the role of its surface chemical state have not been studied enough. The present article presents data of X-ray photoelectron spectroscopy (XPS) measurements of the Mg 2s, O 1s, C 1s core-level spectra of surface of hydride MgH{sub 2} films derived by gas phase hydrogenation of model samples of metallic Mg, and the evolution of changes in the chemical state of the surface of the hydride films depending on the time of exposure to air and formation conditions (hydrogen pressure and hydrogenation regime). Based on results of XPS, X-ray diffraction (XRD), and thermodesorption spectroscopy (TDS), the existence of a relationship (correlation) between chemical surface condition of hydride MgH{sub 2} films obtained at different hydrogen pressures (3.0 MPa and 11.5 MPa) and their thermal stableness and temperature of the beginning of hydride decomposition has been established.

  3. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  4. Electrospray soft-landing for the construction of non-covalent molecular nanostructures using charged droplets under ambient conditions.

    Science.gov (United States)

    Hou, Jian; Zheng, Qingna; Badu-Tawiah, Abraham K; Xiong, Caiqiao; Guan, Cuizhong; Chen, Suming; Nie, Zongxiu; Wang, Dong; Wan, Lijun

    2016-11-17

    An electrospray soft-landing (SL) technique was utilized to create 2D nano-networks on HOPG under ambient conditions. A 2,3,6,7,10,11-hexahydroxy-triphenylene close-packing structure was observed by STM instead of unorganized clusters, as well as amine and acid nanostructures. On C 18 H 37 NH 2 networks, C 18 H 37 NH 3 + was identified by XPS analysis revealing retaining of charges on the SL-modified surface.

  5. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  6. X-ray photoemission spectroscopy (XPS) study of uranium, neptunium and plutonium oxides in silicate-based glasses

    International Nuclear Information System (INIS)

    Lam, D.J.; Veal, B.W.; Paulikas, A.P.

    1982-11-01

    Using XPS as the principal investigative tool, we are in the process of examining the bonding properties of selected metal oxides added to silicate glass. In this paper, we present results of XPS studies of uranium, neptunium, and plutonium in binary and multicomponent silicate-based glasses. Models are proposed to account for the very diverse bonding properties of 6+ and 4+ actinide ions in the glasses

  7. Al2O3 e-Beam Evaporated onto Silicon (100)/SiO2, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Samha, Hussein; Linford, Matthew R.

    2013-09-25

    We report the XPS characterization of a thin film of Al2O3 (35 nm) deposited via e-beam evaporation onto silicon (100). The film was characterized with monochromatic Al Ka radiation. An XPS survey scan, an Al 2p narrow scan, and the valence band spectrum were collected. The Al2O3 thin film is used as a diffusion barrier layer for templated carbon nanotube (CNT) growth in the preparation of microfabricated thin layer chromatography plates.

  8. Dioxinas y medio ambiente

    Directory of Open Access Journals (Sweden)

    María Teresa Frejo Moya

    2011-12-01

    Full Text Available Con el término genérico dioxinas se designa al grupo de las dibenzo-p-dioxinas policloradas (PCDD y de los dibenzofuranos policlorados (PCDF, representantes típicos de los compuestos orgánicos persistentes (COPs. Se obtienen como productos secundarios no deseados de diversos procesos industriales en los que se emplea cloro en alguna de sus etapas. Las dioxinas han centrado en la última década una parte importante de la investigación médica en salud ambiental debido a su notable toxicidad, ya que son las sustancias químicas peligrosas más potentes creadas por el hombre, afectando al sistema nervioso e inmunitario, estando implicadas en la aparición de distintos tipos de cáncer y provocando la aparición de alteraciones hormonales, clasificándose actualmente como disruptores endocrinos. Por otra parte, su persistencia en el medio ambiente, resistencia a la degradación, bioacumulación y capacidad de transporte atmosférico entre las diversas fases medioambientales hace que sean considerados actualmente como compuestos peligrosos para el ser humano.

  9. Effects of Mn Ion Implantation on XPS Spectroscopy of GaN Thin Films

    Science.gov (United States)

    Majid, Abdul; Ahmad, Naeem; Rizwan, Muhammad; Khan, Salah Ud-Din; Ali, Fekri Abdulraqeb Ahmed; Zhu, Jianjun

    2018-02-01

    Gallium nitride (GaN) thin film was deposited onto a sapphire substrate and then implanted with 250 keV Mn ions at two different doses of 2 × 1016 ions/cm2 and 5 × 1016 ions/cm2. The as-grown and post-implantation-thermally-annealed samples were studied in detail using x-ray photoelectron spectroscopy (XPS). The XPS peaks of Ga 3 d, Ga 2 p, N 1 s, Mn 2 p and C 1 s were recorded in addition to a full survey of the samples. The doublet peaks of Ga 2 p for pure GaN were observed blue-shifted when compared with elemental Ga, and appeared further shifted to higher energies for the implanted samples. These observations point to changes in the bonds and the chemical environment of the host as a result of ion implantation. The results revealed broadening of the N 1 s peak after implantation, which is interpreted in terms of the presence of N-Mn bonds in addition to N-Ga bonds. The XPS spectra of Mn 2 p recorded for ion-implanted samples indicated splitting of Mn 2 p 1/2 and Mn 2 p 3/2 peaks higher than that for metallic Mn, which helps rule out the possibility of clustering and points to substitutional doping of Mn. These observations provide a framework that sheds light on the local environment of the material for understanding the mechanism of magnetic exchange interactions in Mn:GaN based diluted magnetic semiconductors.

  10. Combined DFT and XPS investigation of iodine anions adsorption on the sulfur terminated (001) chalcopyrite surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kui, E-mail: likui9606@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhao, Yaolin, E-mail: zhaoyaolin@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Peng, E-mail: zp32@qq.com [Sino Shaanxi Nuclear Industry Group, Xi’an 710100 (China); He, Chaohui, E-mail: hechaohui@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Deng, Jia, E-mail: djkokocase@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Ding, Shujiang, E-mail: dingsj@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Shi, Weiqun, E-mail: shiwq@ihep.ac.cn [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-12-30

    Highlights: • Metal surface sites of (001)-S surface of chalcopyrite show significant chemical affinity to iodide and iodate. • The energetically favorable active site is copper for iodide adsorption and iron for iodate adsorption, respectively. • Iodate undergoes a dissociative adsorption on the copper site of chalcopyrite surface. - Abstract: The adsorption of iodine anions (iodide and iodate) on the sulfur terminated (001) chalcopyrite surface has been systematically investigated combining first-principles calculations based on density functional theory (DFT) with X-ray photoelectron spectroscopy (XPS) measurements. Based on the total energy calculations and geometric optimization, the thermodynamically preferred site was copper atom for iodide adsorption and iron atom for iodate adsorption, respectively. In the case of Cu site mode, the iodate underwent a dissociative adsorption, where one I−O bond of iodate ion was broken and the dissociative oxygen atom adsorbed on the adjacent sulphur site. Projected density of states (PDOS) analysis further clarified the interaction mechanism between active sites of chalcopyrite surface and adsorbates. In addition, full-range XPS spectra qualitatively revealed the presence of iodine on chalcopyrite surface. High resolution XPS spectra of the I 3d peaks after adsorption verified the chemical environment of iodine. The binding energies of 618.8 eV and 623.5 eV for I 3d{sub 5/2} peaks unveiled that the adsorption of iodide and iodate ions on copper-iron sulfide minerals was the result of formation of low solubility metal iodides precipitate. Also two I 3d peaks with low intensity around 618 eV and 630 eV might be related to the inorganic reduction of iodate to iodide by reducing S{sup 2−} ion of chalcopyrite.

  11. XNAES and XPS studies on modification of SWCNTS upon gas-phase purification treatments

    International Nuclear Information System (INIS)

    Liang Xianqing; Wu Ziyu; Zhong Jun; Zhao Ting; Yao Peng; Ibrahim, K.; Qian Haijie

    2009-01-01

    A systematic characterization of single-walled carbon nanotubes (SWCNTs) after successive purification steps, including air oxidation at 350 degree C, hydrochloric acid etching and 600 degree C annealing in Ar, have been performed combining X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS). The results indicated that the modification degree of SWCNTs increased after the purification procedures, but decreased significantly by annealing in Ar. It also showed that the SWCNTs could bond with chlorine atoms during the hydrochloric acid etching and suggested this modification may be importance for the applications. (authors)

  12. Atomic and nuclear analytical methods. XRF, Moessbauer, XPS, NAA and ion-beam spectroscopic techniques

    International Nuclear Information System (INIS)

    Verma, H.R.

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Moessbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories. (orig.)

  13. Combined application of XANES and XPS to study oxygen species adsorbed on Ag foil

    CERN Document Server

    Bukhtiyarov, V I; Kaichev, V V; Knop-Gericke, A; Mayer, R W; Schloegl, R

    2001-01-01

    Adsorbed oxygen species realized in the course of ethylene epoxidation over polycrystalline silver have been characterized by X-ray absorption near the edge structure and X-ray photoelectron spectroscopy. Namely, the combined application of XANES and XPS in similar UHV conditions using the same sample allowed us to assign an XAS feature to the nucleophilic and electrophilic oxygen. This is of great significance, since these species are suggested to be included into the active center for ethylene epoxidation. The differences in the oxygen-silver bonding of these oxygen species are discussed.

  14. Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron Catalyst Nanoparticles, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Carbon nanotubes (CNTs) have unique chemical and physical properties. Herein, we report an XPS analysis of a forest of multiwalled CNTs using monochromatic Al Kα radiation. Survey scans show only one element: carbon. The carbon 1s peak is centered 284.5 eV. The C 1s envelope also shows the expected π → π* shake-up peak at ca. 291 eV. The valence band and carbon KVV Auger signals are presented. When patterned, the CNT forests can be used as a template for subsequent deposition of metal oxides to make thin layer chromatography plates.1-3

  15. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-12-01

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  16. XPS and Raman study of zinc containing silica microparticles loaded with insulin

    Energy Technology Data Exchange (ETDEWEB)

    Vanea, E.; Simon, V., E-mail: viorica.simon@phys.ubbcluj.ro

    2013-09-01

    Zinc–silica microparticles obtained by sol–gel method solely or by combining sol–gel chemistry with freeze-drying and spray-drying procedures were explored as potential insulin drug delivery carriers for their improved loading efficiency. Zinc containing silica hosts of different specific surface area and mean pore volume loaded with insulin under similar conditions were investigated by X-ray photoelectron spectroscopy (XPS) and confocal micro-Raman spectroscopy in order to assess the insulin adherence to these matrices and the biologically active state of the insulin after embedding.

  17. XPS response in the corrosion products analysis for copper exposed at clean air environment

    International Nuclear Information System (INIS)

    Mariaca, L.; Morcillo, M.; Feliu Jr, S.; Gonzalez, J.A.

    1998-01-01

    In this work is presented the obtained response for superficial analysis technique by X-ray photoelectron spectroscopy (XPS or ESCA), to determine the corrosion products formed during the copper exposure at environment without pollutants (clean air) at 50, 70 and 90 % of relative humidity at 35 Centigrade. One of the copper corrosion products most knew is Cu 2 O. This oxide is formed instantly to be exposed the copper at air. However in function of the exposure time and the relative humidity at it is exposed, the Cu 2 O oxide is transformed at Cu O and Cu(OH) 2 (Author)

  18. ISS Assessment of the Influence of Nonpore Surface in the XPS Analysis of Oil-Producing Reservoir Rocks

    Science.gov (United States)

    Leon; Toledo; Araujo

    1997-08-15

    The application of X-ray photoelectron spectroscopy (XPS) to oil-producing reservoir rocks is new and has shown that pore surface concentrations can be related to rock wettability. In the preparation of fresh fractures of rocks, however, some nonpore surface corresponding to the connection regions in the rocks is created and exposed to XPS. To assess the potential influence of this nonpore surface in the XPS analysis of rocks here we use ion scattering spectroscopy (ISS), which has a resolution comparable to the size of the pores, higher than that of XPS, with an ion gun of He+ at maximum focus. Sample charging effects are partially eliminated with a flood gun of low energy electrons. All the ISS signals are identified by means of a formula which corrects any residual charging on the samples. Three rock samples are analyzed by XPS and ISS. The almost unchanged ISS spectra obtained at different points of a given sample suggest that the nonpore surface created in the fracture process is negligibly small, indicating that XPS data, from a larger surface spot, represents the composition of true pore surfaces. The significant changes observed in ISS spectra from different samples indicate that ISS is sample specific. Copyright 1997Academic Press

  19. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  20. Types for BioAmbients

    Directory of Open Access Journals (Sweden)

    Sara Capecchi

    2010-02-01

    Full Text Available The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues. Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour.

  1. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    Science.gov (United States)

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  2. Reforma constitucional y ambiente

    Directory of Open Access Journals (Sweden)

    Teodoro Bustamante

    2013-09-01

    Full Text Available América Latina está atravesada por una ola de reformas constitucionales. Sus causas, las expectativas que ellas despiertan, los riesgos que se han asociado al proceso de lucha política en su entorno, son temas de un análisis fundamentalmente político; pero hay algunos aspectos en los cuales ese debate tiene una directa repercusión sobre el tema ambiental. En el caso del Ecuador, esto se refleja en el hecho de que una de las innovaciones que se proponen, se refieren a una nueva forma de abordar los temas ambientales, básicamente se establecen Derechos de la Naturaleza.

  3. XPS and μ-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Armyanov, S., E-mail: armyanov@ipc.bas.bg [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Stankova, N.E.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Valova, E.; Kolev, K.; Georgieva, J. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Steenhaut, O.; Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research Group, SURF “Electrochemical and Surface Engineering” (Belgium)

    2015-10-01

    Data about the chemical status of poly(dimethylsiloxane) (PDMS) after nanosecond Q-switched Nd:YAG laser treatment with near infrared, visible and ultraviolet radiation are presented. The μ-Raman spectroscopy analyses reveal as irradiation result a new sharp peak of crystalline silicon. In addition, broad bands appear assigned to D band of amorphous carbon and G band of microcrystalline and polycrystalline graphite. The μ-Raman spectra are variable taken in different inspected points in the trenches formed by laser treatment. The XPS surface survey spectra indicate the constituent elements of PDMS: carbon, oxygen and silicon. The spectra of detail XPS scans illustrate the influence of the laser treatment. The position of Si 2p peaks of the treated samples is close to the value of non-treated except that irradiated by 1064 nm 66 pulses, which is shifted by 0.9 eV. Accordingly, a shift by 0.4 eV is noticed of the O 1s peak, which reflects again a stronger oxidation of silicon. The curve fitting of Si 2p and O 1s peaks after this particular laser treatment shows the degree of conversion of organic to inorganic silicon that takes place during the irradiation.

  4. Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences

    Science.gov (United States)

    Vinnichenko, M.; Chevolleau, Th; Pham, M. T.; Poperenko, L.; Maitz, M. F.

    2002-11-01

    Surface modification of austenitic stainless steel (SS) 316L after incubation in growing cell cultures and cell-free media as control has been studied. The following treatments were applied: mouse fibrosarcoma cells L929 for 3 and 7 days, polymorphonuclear neutrophils for 3 and 7 days and human osteosarcoma cells SAOS-2 for 7 and 14 days. Cells were enzymatically removed in all cases. The modified surfaces were probed in comparison with untreated ones by means of spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS shows the appearance of the peak of bonded nitrogen at 400.5 eV characteristic for adsorbed proteins on the surface for each type of cells and for the cell-free medium. Migration of Ni in the adsorbed layer is observed in all cases for samples after the cell cultures. The protein layer thickness is ellipsometrically determined to be within 2.5-6.0 nm for all treated samples with parameterization of its optical constants in Cauchy approach. The study showed that for such biological treatments of the SS the protein layer adsorption is the dominating process in the first 2 weeks, which could play a role in the process of corrosion by complex forming properties with metal ions.

  5. Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences

    International Nuclear Information System (INIS)

    Vinnichenko, M.; Chevolleau, Th.; Pham, M.T.; Poperenko, L.; Maitz, M.F.

    2002-01-01

    Surface modification of austenitic stainless steel (SS) 316L after incubation in growing cell cultures and cell-free media as control has been studied. The following treatments were applied: mouse fibrosarcoma cells L929 for 3 and 7 days, polymorphonuclear neutrophils for 3 and 7 days and human osteosarcoma cells SAOS-2 for 7 and 14 days. Cells were enzymatically removed in all cases. The modified surfaces were probed in comparison with untreated ones by means of spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS shows the appearance of the peak of bonded nitrogen at 400.5 eV characteristic for adsorbed proteins on the surface for each type of cells and for the cell-free medium. Migration of Ni in the adsorbed layer is observed in all cases for samples after the cell cultures. The protein layer thickness is ellipsometrically determined to be within 2.5-6.0 nm for all treated samples with parameterization of its optical constants in Cauchy approach. The study showed that for such biological treatments of the SS the protein layer adsorption is the dominating process in the first 2 weeks, which could play a role in the process of corrosion by complex forming properties with metal ions

  6. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Dec, Weronika [Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna Street 27, 43-200 Pszczyna (Poland); Mosiałek, Michał; Socha, Robert P. [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Jaworska-Kik, Marzena [Department of Biopharmacy, Medical University of Silesia, Jedności Street 8, 41-200 Sosnowiec (Poland); Simka, Wojciech [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland); Michalska, Joanna, E-mail: joanna.k.michalska@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland)

    2017-07-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  7. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Iu.G., E-mail: yugmor@hotmail.com [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Academician Osipyan Street 8, Chernogolovka, Moscow Region 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Academician Osipyan Street 8, Chernogolovka, Moscow Region 142432 (Russian Federation); Ortega, D., E-mail: daniel.ortega@imdea.org [Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco 28049, Madrid (Spain); Mafina, M.-K., E-mail: m.k.mafina@qmul.ac.uk [School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 231, London E1 4NS (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-06-05

    Highlights: • Levitation-jet aerosol synthesis of Zn particles capped by ZnO nanoparticles (NPs). • TEM, XRD, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between unit-cell volume of crystal lattice and maximum magnetization. - Abstract: Spherical zinc particles ranging from 42 to 760 nm in average size and capped with plate-like zinc oxide particles of 10–30 nm in sizes have been prepared by levitation-jet aerosol synthesis through condensation of zinc vapor in an inert/oxidizer gas flow. The nanoparticles have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), BET measurements, ultra violet visible (UV–vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, X-ray electron spectroscopy (XPS), superconducting quantum interference device (SQUID), and vibrating-sample magnetometer (VSM). Magnetic and XRD data indicate that the observed ferromagnetic ordering related to the changes in unit-cell volume of Zn in the Zn/ZnO interface of the nanoparticles. These results are in good correlation with the optical measurements data.

  8. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  9. XPS/STM study of model bimetallic Pd–Au/HOPG catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-03-30

    Graphical abstract: - Highlights: • The model Pd–Au/HOPG catalysts preparation has been studied by XPS and STM. • Model “core–shell” type Pd–Au/HOPG catalysts with different Pd/Au ratios were prepared. • Heating of the “core–shell” Pd–Au/HOPG samples up to 400 °C leads to alloy formation. • Contribution of parameters controlling the properties of Pd–Au alloyed particles has been discussed. - Abstract: The preparation of model bimetallic Pd–Au/HOPG catalysts has been investigated using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, model “core–shell” type Pd–Au/HOPG catalysts with similar particle size distribution (5–8 nm), but with different densities of particle locations on the HOPG surface and Pd/Au atomic ratios are prepared. Further, their thermal stability is studied within a temperature range of 50–500 °C at UHV conditions. It has been shown that annealing the model catalysts at a temperature range of 300–400 °C leads to formation of Pd–Au alloyed particles. Enhancement of heating temperature up to 500 °C results in sintering of bimetallic nanoparticles. Contribution of different parameters controlling the properties of Pd–Au alloyed particles has been discussed.

  10. The effect of particle-hole interaction on the XPS core-hole spectrum

    International Nuclear Information System (INIS)

    Ohno, Masahide; Sjoegren, Lennart

    2004-01-01

    How the effective particle-hole interaction energy, U, or the polarization effect on a secondary electron in a final two-hole one-particle (2h1p) state created by the Coster-Kronig (CK) transition can solely affect the density of the CK particle states and consequently the core-hole spectral function, is discussed. The X-ray photoelectron spectroscopy (XPS) core-hole spectrum is predominantly governed by the unperturbed initial core-hole energy relative to the zero-point energy. At the latter energy, the real part of the initial core-hole self-energy becomes zero (no relaxation energy shift) and the imaginary part (the lifetime broadening) approximately maximizes. The zero-point energy relative to the double-ionization threshold energy is governed by the ratio of U relative to the bandwidth of the CK continuum. As an example, we study the 5p XPS spectra of atomic Ra (Z=88), Th (Z=90) and U (Z=92). The spectra are interpreted in terms of the change in the unperturbed initial core-hole energy relative to the zero-point energy. We explain why in general an ab initio atomic many-body calculation can provide an overall good description of solid-state spectra predominantly governed by the atomic-like localized core-hole dynamics. We explain this in terms of the change from free atom to metal in both U and the zero-point energy (self-energy)

  11. Rondorfite-type structure — XPS and UV–vis study

    Energy Technology Data Exchange (ETDEWEB)

    Dulski, M., E-mail: mateusz.dulski@smcebi.edu.pl [Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzow (Poland); A.Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Bilewska, K., E-mail: kbilewska@us.edu.pl [A.Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1a, 41-500 Chorzow (Poland); Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice (Poland); Wojtyniak, M., E-mail: marcin.wojtyniak@us.edu.pl [Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzow (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1a, 41-500 Chorzow (Poland); Szade, J., E-mail: jacek.szade@us.edu.pl [A.Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1a, 41-500 Chorzow (Poland); Kusz, J., E-mail: joachim.kusz@us.edu.pl [A.Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Nowak, A., E-mail: ana.maria.nowak@gmail.com [A.Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1a, 41-500 Chorzow (Poland); Wrzalik, R., E-mail: roman.wrzalik@us.edu.pl [A.Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1a, 41-500 Chorzow (Poland); and others

    2015-10-15

    Highlights: • Structural and spectroscopic characterization of chlorosilicate mineral, rondorfite. • Characterization of main photoemission lines and valence band spectra. • The study of color origin’s using UV–vis spectroscopy. • Analysis of structural changes in context of origin of natural fluorescence. • Discussion of a new application possibilities of analyzed mineral - Abstract: This paper focuses on X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy of two different (green, orange) rondorfite samples. The differences in the sample color originate from various O/Cl ratios. The orange color was found to be related either to the isomorphic substitution of Fe{sup 3+}/Al{sup 3+} for Mg{sup 2+}, the presence of atypical [MgO{sub 4}] tetrahedrons in crystal structure or electronegativity of the sample. The tetrahedron is known to be very prone to accumulation of impurities and substitute atoms. Moreover, the XPS data showed tetrahedrally coordinated Mg{sup 2+} and isomorphic substitution of Al{sup 3+}/Fe{sup 3+} for Mg{sup 2+}, which influences local disordering and the point defects density and distribution. Non-equilibrium chlorine positions inside the crystal cages as well as Ca-Cl bonds have also been found. The XPS measurements as a function of temperature indicate occurrence of a structural transformation at about 770 K which is accompanied by a rotation of silicate tetrahedra within magnesiosilicate pentamer and luminescence disappearance.

  12. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  13. An XPS round robin investigation on analysis of wood pulp fibres and filter paper

    Science.gov (United States)

    Johansson, Leena-Sisko; Campbell, J. M.; Fardim, Pedro; Hultén, Anette Heijnesson; Boisvert, Jean-Philippe; Ernstsson, Marie

    2005-06-01

    X-ray photoelectron spectroscopy (XPS) has been applied to pulp and paper research for decades. However, there has been no attempt to standardise or even systematically compare experimental and analysis procedures, even though it is known that fibrous, nature-derived and insulating fibre materials pose remarkable challenges to reliable surface analysis. The experimental problems are mainly linked with neutralisation, energy resolution, contamination and X-ray induced degradation. We have tested applicability, reliability and reproducibility of XPS analysis on real pulp samples with varying lignin and extractives contents in a small round robin investigation. We also tested the instrumental set-ups with an acetone-extracted filter paper, used as a reference sample. The data, collected at four different laboratories with state-of-the-art instruments indicate that reproducible results can be obtained, despite minor differences in experimental and analysis procedures. However, we found that a specified sample handling procedure and limited X-ray exposure are crucial for reproducible, reliable data. Based on the round robin data we recommend dose restricted monochromatic measurements, a cellulosic in situ reference and a consistent sample handling procedure. The data confirms that a paper-based reference material and the correlation of high-resolution C 1s data with O/C atomic ratios can be used in testing instruments and experimental set-ups for pulp and paper materials.

  14. Formation of complexes between functionalized chitosan membranes and copper: A study by angle resolved XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jurado-López, Belén [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Vieira, Rodrigo Silveira [Chemical Engineering Department, Universidade Federal do Ceará, UFC, 60455-760 Fortaleza, CE (Brazil); Rabelo, Rodrigo Balloni; Beppu, Marisa Masumi [School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13081-970 Campinas, SP (Brazil); Casado, Juan [Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Rodríguez-Castellón, Enrique, E-mail: castellon@uma.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain)

    2017-01-01

    Chitosan is a biopolymer with potential applications in various fields. Recently, it has been used for heavy metals removal like copper, due to the presence of amino and hydroxyl groups in its structure. Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents, such as iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. These membranes were used for copper adsorption and the formed complexes were characterized. Thermal and crystalline properties of chitosan membranes were studied by TG-DCS and X-ray diffraction. Raman, XPS and FT-IR data confirmed that copper is linked to the modified chitosan membranes by the amino groups. The oxidation state of copper-chitosan membranes were also studied by angle resolved XPS, and by UV–Vis diffuse reflectance spectroscopy. - Highlights: • Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents. • The chelating agent were iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. • The functionalized membranes were used for copper adsorption and studied by ARXPS, Raman, TG-DCS, FT-IR and XRD. • Spectroscopic data confirmed that copper is linked to the modified chitosan membranes by the amino groups.

  15. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    International Nuclear Information System (INIS)

    Dec, Weronika; Mosiałek, Michał; Socha, Robert P.; Jaworska-Kik, Marzena; Simka, Wojciech; Michalska, Joanna

    2017-01-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  16. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    International Nuclear Information System (INIS)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C.

    2016-01-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  17. Rotary friction welding of dissimilar joints and bonding interface characterization by EDX and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Eder Paduan; Dollinger, Christian Avila [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil); Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Toledo, Rafael Cardoso; Piorino Neto, Francisco; An, Chen Ying, E-mail: eder.padua@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Welding of dissimilar materials has been a challenge to engineering. The study and development of new union processes that meet the requirements of projects in the aerospace, nuclear and aviation sector are of great importance to the scientific and productive means. The Rotary friction welding process (RFW) is a process of union that occurs in the solid state, without occurrence of fusion between the parties, and that have like the main bonding mechanisms the diffusion and mechanical mixture. This work has as objective the obtaining of dissimilar joints involving AA 6351-T6 alloy and stainless steel AISI 304l for applications in the aerospace area. The joints obtained by RFW who had procedures and qualified welding process have undergone the techniques of Energy Dispersive X-Ray Spectroscopy (EDX) and X-Ray Photoelectron Spectroscopy (XPS) for analysis of the bonding interface. Were obtained joints with superior mechanical properties the AA 6351-T6 alloy, with the fracture occurring in aluminum away from the bonding interface. The analyses carried out by EDX and XPS have shown the occurrence of interdiffusion among the main elements of the materials involved. The Rotary friction welding process proved to be a great method for obtaining of joints between dissimilar materials that are not possible by fusion welding processes. (author)

  18. Rotary friction welding of dissimilar joints and bonding interface characterization by EDX and XPS

    International Nuclear Information System (INIS)

    Alves, Eder Paduan; Dollinger, Christian Avila; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Toledo, Rafael Cardoso; Piorino Neto, Francisco; An, Chen Ying

    2016-01-01

    Full text: Welding of dissimilar materials has been a challenge to engineering. The study and development of new union processes that meet the requirements of projects in the aerospace, nuclear and aviation sector are of great importance to the scientific and productive means. The Rotary friction welding process (RFW) is a process of union that occurs in the solid state, without occurrence of fusion between the parties, and that have like the main bonding mechanisms the diffusion and mechanical mixture. This work has as objective the obtaining of dissimilar joints involving AA 6351-T6 alloy and stainless steel AISI 304l for applications in the aerospace area. The joints obtained by RFW who had procedures and qualified welding process have undergone the techniques of Energy Dispersive X-Ray Spectroscopy (EDX) and X-Ray Photoelectron Spectroscopy (XPS) for analysis of the bonding interface. Were obtained joints with superior mechanical properties the AA 6351-T6 alloy, with the fracture occurring in aluminum away from the bonding interface. The analyses carried out by EDX and XPS have shown the occurrence of interdiffusion among the main elements of the materials involved. The Rotary friction welding process proved to be a great method for obtaining of joints between dissimilar materials that are not possible by fusion welding processes. (author)

  19. EXAFS and XPS Study of Rutile-Type Difluorides of First-Row Transition Metals

    International Nuclear Information System (INIS)

    Murai, Kei-ichiro; Suzuki, Yohei; Moriga, Toshihiro; Yoshiasa, Akira

    2007-01-01

    Although most rutile-type difluorides (MnF2, CoF2 and NiF2) have a positive thermal expansion coefficient, FeF2 has a negative thermal expansion (NTE) along the c-axis in the high temperature region. In this study, we give an explanation of that behavior with Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Photoelectron Spectroscopy (XPS) techniques. From EXAFS results, it has become apparent that the length of the share-edge (Fe-Fe) of FeF6 octahedra increased with the rise of temperature in the high temperature region. We have revealed that the force constant between nearest neighbor atoms (Fe-F) was much larger than that between second-nearest neighbor atoms (Fe-Fe) in FeF2. In XPS measurements, it was discovered that the peak of F 1s of FeF2 was located at the lowest binding energy position as compared to that of other difluorides. This means that the charge density around the F atom in FeF2 was higher than that in other difluorides. It follows from this that the share-edge repulsive force in FeF2 is larger than that in other difluorides. On account of the large repulsive force and the large force constant between nearest neighbor atoms, Fe atoms are attracted to share-edge with the rise of temperature

  20. Wettability and XPS analyses of nickel–phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    International Nuclear Information System (INIS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K.L.; Morelle, J.M.; Etcheberry, A.; Chalumeau, L.

    2013-01-01

    Electroless nickel-high-phosphorus Ni–P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni–P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni–P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni–P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni–P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni–P surface preparation has been established. The sessile drop method can

  1. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Science.gov (United States)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  2. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  3. Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S. [Department of Chemistry, University of North Texas, Denton, Texas 76203-5017 (United States); Nelin, Connie J. [Consulting and Services, 6008 Maury' s Trail, Austin, Texas 78730 (United States); Ilton, Eugene S. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2013-12-28

    A rigorous study is presented of the physical processes related to X-Ray photoelectron spectroscopy, XPS, in the 4f level of U oxides, which, as well as being of physical interest in themselves, are representative of XPS in heavy metal oxides. In particular, we present compelling evidence for a new view of the screening of core-holes that extends prior understandings. Our analysis of the screening focuses on the covalent mixing of high lying U and O orbitals as opposed to the, more common, use of orbitals that are nominally pure U or pure O. It is shown that this covalent mixing is quite different for the initial and final, core-hole, configurations and that this difference is directly related to the XPS satellite intensity. Furthermore, we show that the high-lying U d orbitals as well as the U(5f) orbital may both contribute to the core-hole screening, in contrast with previous work that has only considered screening through the U(5f) shell. The role of modifying the U-O interaction by changing the U-O distance has been investigated and an unexpected correlation between U-O distance and XPS satellite intensity has been discovered. The role of flourite and octahedral crystal structures for U(IV) oxides has been examined and relationships established between XPS features and the covalent interactions in the different structures. The physical views of XPS satellites as arising from shake processes or as arising from ligand to metal charge transfers are contrasted; our analysis provides strong support that shake processes give a more fundamental physical understanding than charge transfer. Our theoretical studies are based on rigorous, strictly ab initio determinations of the electronic structure of embedded cluster models of U oxides with formal U(VI) and U(IV) oxidation states. Our results provide a foundation that makes it possible to establish quantitative relationships between features of the XPS spectra and materials properties.

  4. Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides

    Science.gov (United States)

    Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.

    2013-12-01

    A rigorous study is presented of the physical processes related to X-Ray photoelectron spectroscopy, XPS, in the 4f level of U oxides, which, as well as being of physical interest in themselves, are representative of XPS in heavy metal oxides. In particular, we present compelling evidence for a new view of the screening of core-holes that extends prior understandings. Our analysis of the screening focuses on the covalent mixing of high lying U and O orbitals as opposed to the, more common, use of orbitals that are nominally pure U or pure O. It is shown that this covalent mixing is quite different for the initial and final, core-hole, configurations and that this difference is directly related to the XPS satellite intensity. Furthermore, we show that the high-lying U d orbitals as well as the U(5f) orbital may both contribute to the core-hole screening, in contrast with previous work that has only considered screening through the U(5f) shell. The role of modifying the U-O interaction by changing the U-O distance has been investigated and an unexpected correlation between U-O distance and XPS satellite intensity has been discovered. The role of flourite and octahedral crystal structures for U(IV) oxides has been examined and relationships established between XPS features and the covalent interactions in the different structures. The physical views of XPS satellites as arising from shake processes or as arising from ligand to metal charge transfers are contrasted; our analysis provides strong support that shake processes give a more fundamental physical understanding than charge transfer. Our theoretical studies are based on rigorous, strictly ab initio determinations of the electronic structure of embedded cluster models of U oxides with formal U(VI) and U(IV) oxidation states. Our results provide a foundation that makes it possible to establish quantitative relationships between features of the XPS spectra and materials properties.

  5. Investigation of ambient temperature on the performance of GE-F5 gas turbine

    International Nuclear Information System (INIS)

    Ghazikhani, M.; Taffazoli, D.; Manshori, N.

    2002-01-01

    The role of ambient temperature in determining the performance of GE-F5 gas turbine is analysed by investigating the Shirvan gas turbine power plant 10 MW , 15 MW and 20 MW power output. These parameters have been brought as a function of ambient temperature. The results show when ambient temperature increases 1 deg C, The compressor pressure decreases about 20 k Pa, compressor outlet temperature increases about 1.13 deg C and exhaust temperature increases about 2.5 deg C. It is revealed that variations are due to decreasing the efficiency of compressor and less due to mass flow rate of air reduction as ambient temperature increases at constant power output. The results shows cycle efficiency reduces 3% with increasing 50 of ambient temperature, also the m increases as ambient temperature increase for constant turbine work. These are also because of reducing the compressor efficiency as ambient temperature increases

  6. Validating Firewalls in Mobile Ambients

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Hansen, René Rydhof

    1999-01-01

    The ambient calculus is a calculus of computation that allows active processes (mobile ambients) to move between sites. A firewall is said to be protective whenever it denies entry to attackers not possessing the required passwords. We devise a polynomial time algorithm for rejecting proposed...

  7. A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.

    Science.gov (United States)

    Chen, Guocun

    The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0

  8. Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etching

    International Nuclear Information System (INIS)

    Iatsunskyi, Igor; Kempiński, Mateusz; Nowaczyk, Grzegorz; Jancelewicz, Mariusz; Pavlenko, Mykola; Załęski, Karol; Jurga, Stefan

    2015-01-01

    Highlights: • Porous silicon/TiO 2 nanocomposites have been investigated. • Morphology and chemical composition of PSi/TiO 2 nanocomposites were established. • Valence-band XPS maximums for PSi/TiO 2 nanocomposites were found and analyzed. - Abstract: PSi/TiO 2 nanocomposites fabricated by atomic layer deposition (ALD) and metal-assisted chemical etching (MACE) were investigated. The morphology and phase structure of PSi/TiO 2 nanocomposites were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) with an energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The mean size of TiO 2 nanocrystals was determined by TEM and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical elemental composition by observing the behavior of the Ti 2p, O 1s and Si 2p lines. TEM, Raman spectroscopy and XPS binding energy analysis confirmed the formation of TiO 2 anatase phase inside the PSi matrix. The XPS valence band analysis was performed in order to investigate the modification of PSi/TiO 2 nanocomposites electronic structure. Surface defects states of Ti 3+ at PSi/TiO 2 nanocomposites were identified by analyzing of XPS valence band spectra

  9. Characterization of the natural ambient sound environment : Measurements in open agricultural grassland

    NARCIS (Netherlands)

    Boersma, HF

    The audibility of manmade sound in a natural environment is affected because of masking by ambient sound. In this report results are presented of measurements of the level and spectral composition of natural ambient sound. The statistical L-95 level was determined, i.e., the sound pressure level

  10. Study of gadolinia-doped ceria solid electrolyte surface by XPS

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2009-01-01

    Gadolinia-doped ceria (CGO) is an important material to be used as electrolyte for solid oxide fuel cell for intermediate temperature operation. Ceria doped with 10 mol% gadolinia (Ce 0.9 Gd 0.1 O 1.95 ) was prepared by conventional solid state synthesis and found to be single phase by room temperature X-ray diffraction (XRD). The chemical states of the surface of the prepared sample were analyzed by X-ray photoelectron spectroscopy (XPS). Though Gd was present in its characteristic chemical state, Ce was found in both Ce 4+ and Ce 3+ states. Presence of Ce 3+ state was ascribed to the differential yield of oxygen atoms in the sputtering process

  11. Heat capacity measurements and XPS studies on uranium-lanthanum mixed oxides

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Mittal, V.K.; Babu, R.; Senapati, Abhiram; Bera, Santanu; Nagarajan, K.

    2011-01-01

    Research highlights: → Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. → Enthalpy increment measurements were carried out on the above solid solution using high temperature drop calorimetry in the temperature range 800-1800 K. → Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). → The anomalous increase in the heat capacity is attributed to certain thermal excitation process namely Frenkel pair defect of oxygen. → From the XPS investigation, it is observed that the O/M ratio at the surface is higher than that to the bulk. → In uranium rich mixed oxide samples, the surface O/M is greater than 2 whereas that in La rich mixed oxides, it is less than 2, though the bulk O/M in all the samples are less than 2. - Abstract: Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. Enthalpy increment measurements were carried out on the above solid solutions using high temperature drop calorimetry in the temperature range 800-1800 K. Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). Oxygen to metal ratios of (U 1-y La y )O 2±x were estimated from the ratios of different chemical states of U present in the sample. Anomalous increase in the heat capacity is observed for (U 1-y La y )O 2±x (y = 0.4, 0.6 and 0.8) with onset temperatures in the range of 1000-1200 K. The anomalous increase in the heat capacity is attributed to certain thermal excitation process, namely, Frenkel pair defect of oxygen. The heat capacity value of (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) at 298 K are 65.3, 64.1, 57.7, 51.9 J K -1 mol -1 , respectively. From the XPS investigations

  12. Corrosion behaviour of Ni in aprotic solvents an electrochemical, XPS and AFM study

    International Nuclear Information System (INIS)

    Bellucci, F.; Monetta, T.; Capobianco, G.; Deganello, A.; Glisenti, A.; Moretti, G.

    1998-01-01

    Electrochemical and X-ray photoelectron spectroscopic (XPS) techniques have been used to study the passivation of nickel in 0.1 M H 2 SO 4 DMF and ACN solutions with different water content. Electrochemical results indicate the anodic formation of a thin, poor protective layer and the possibility of salt precipitation onto the metallic surface. ARXPS results indicate that while in the anodic film formed in DMF, Ni(OH) 2 constitute the superficial component under which a discontinuous layer of NiO and NiSO 4 is present. Ni(OH) 2 and NiSO 4 are the more superficial constituents in the passivation layer formed in ACN, while NiO becomes prevalent in the underlying layers. AFM images show that in both the solvents the sample surface is very dishomogeneous with flakes and fractures. (orig.)

  13. Novel immobilizations of an adhesion peptide on the TiO2 surface: An XPS investigation

    International Nuclear Information System (INIS)

    Iucci, G.; Dettin, M.; Battocchio, C.; Gambaretto, R.; Bello, C. Di; Polzonetti, G.

    2007-01-01

    The covalent attachment of an adhesive peptide, reproducing the 351-359 sequence of human vitronectin, to oxidized titanium surfaces was investigated by XPS spectroscopy. The peptide enhances osteoblast adhesion to titanium, the most used biomaterial for implants and prostheses. Core level spectra of the TiO 2 surface and of the biomimetic surface were investigated. Novel selective covalent immobilization of (351-359) HVP was carried out by treatment of the TiO 2 surface with (3-aminopropyl) triethoxysilane, glutaric anhydride and a side chain protected peptide sequence presenting only a free terminal amino group, followed by side chain deprotection. An alternative strategy for covalent attachment consists in photoactivation of physisorbed (351-359) HVP directly on the TiO 2 surface; samples were incubated with HVP solution and subsequently irradiated with UV light. A comparison with the results previously obtained for non-selective HVP immobilization will be discussed

  14. XPS and AES investigations of the adhesive bonding properties of thin titanium coatings

    International Nuclear Information System (INIS)

    Moers, H.; Mohr, J.; Klewe-Nebenius, H.; Pfennig, G.

    1988-07-01

    The bonding properties of PMMA-microstructures on Ti-coated Cu-substrates after an oxidative treatment in alkaline hydrogenperoxide solution were investigated. In order to clarify the basic mechanism, surface analytical investigations by XPS-, AES-, and depth profile measurements have been performed. It was demonstrated that for optimum bonding a TiO 2 surface layer of ca. 30 nm thickness is necessary. Chemical effects as well as a mechanical bonding with open grain boundary structures (dimensions in the μm-range) could be ruled out as bonding mechanisms. A mechanical interlocking of the polymer with micropores (dimensions in the nm-range) of the oxidic overlayer is adopted as the most probable bonding mechanism. (orig.)

  15. InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description.

    Science.gov (United States)

    Virieux, Héloïse; Le Troedec, Marianne; Cros-Gagneux, Arnaud; Ojo, Wilfried-Solo; Delpech, Fabien; Nayral, Céline; Martinez, Hervé; Chaudret, Bruno

    2012-12-05

    Advanced (1)H, (13)C, and (31)P solution- and solid-state NMR studies combined with XPS were used to probe, at the molecular scale, the composition (of the core, the shell, and the interface) and the surface chemistry of InP/ZnS core/shell quantum dots prepared via a non-coordinating solvent strategy. The interface between the mismatched InP and ZnS phases is composed of an amorphous mixed oxide phase incorporating InPO(x) (with x = 3 and predominantly 4), In(2)O(3), and InO(y)(OH)(3-2y) (y = 0, 1). Thanks to the analysis of the underlying reaction mechanisms, we demonstrate that the oxidation of the upper part of the InP core is the consequence of oxidative conditions brought by decarboxylative coupling reactions (ketonization). These reactions occur during both the core preparation and the coating process, but according to different mechanisms.

  16. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis

    Directory of Open Access Journals (Sweden)

    Jinxing Deng

    2017-04-01

    Full Text Available To understand the electrochemical capacity fading of the polyaniline (PANI electrodes in supercapacitors, for the first time, their chemical structure change during electrochemical cycles was traced with XPS analysis after the HCl doped PANI electrodes were subjected to the cyclic voltammetry test in 1.0 M H2SO4 electrolyte for different cycle numbers. The results showed that the chlorine disappeared in the electrode surface, while the surface element contents of sulfur and oxygen increased with the electrochemical cycles increased. It demonstrated that the hydrolytic degradation of the PANI chains and exchange of dopant occurred during the electrochemical cycling, causing the fading in the mechanical and electrochemical performance of the PANI electrodes. This understanding should lead to better design of the conductive polymer-based energy storage devices.

  17. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    Science.gov (United States)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  18. XPS and TEM study of W-DLC/DLC double-layered film

    International Nuclear Information System (INIS)

    Takeno, Takanori; Komiyama, Takao; Miki, Hiroyuki; Takagi, Toshiyuki; Aoyama, Takashi

    2009-01-01

    A double-layered film of tungsten-containing diamond-like carbon (W-DLC) and DLC, (W-DLC)/DLC, was investigated. A film of 1.6 μm in thickness was deposited onto silicon substrate. The investigate double-layered coating was deposited by using the combination of PECVD and co-sputtering of tungsten metal target. Structure, interface and chemical bonding state of the investigated film were analyzed by Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). From the results of the analyses, the structure of double-layered film is that amorphous phase of carbon is continued from DLC to W-DLC and tungsten metal clusters are dispersed in W-DLC layer.

  19. XPS studies of SiO2 surface layers formed by oxygen ion implantation into silicon

    International Nuclear Information System (INIS)

    Schulze, D.; Finster, J.

    1983-01-01

    SiO 2 surface layers of 160 nm thickness formed by 16 O + ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO 2 . There is no evidence for Si or SiO/sub x/ (0 2 and Si is similar to that of thin grown oxide layers. Only its thickness is somewhat larger than in thermal oxide

  20. Study on the surface reaction of uranium metal in hydrogen atmosphere with XPS

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1998-01-01

    The surface reactions of uranium metal in hydrogen atmosphere at 25 degree C and 200 degree C and effects of temperature and carbon monoxide to the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between H 2 and uranium metal at 25 degree C leads to the further oxidation of surface layer of metal due to traces of water vapor. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing exposure to H 2 in the initial stages. The U4f 7/2 binding energy of UH 3 has been found to be 378.6 eV. Investigation indicates carbon monoxide inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmosphere

  1. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.

    Science.gov (United States)

    Fantauzzi, Marzia; Licheri, Cristina; Atzei, Davide; Loi, Giovanni; Elsener, Bernhard; Rossi, Giovanni; Rossi, Antonella

    2011-10-01

    In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action. © Springer-Verlag 2011

  2. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Omran, Mamdouh, E-mail: mamdouh.omran@oulu.fi [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); Fabritius, Timo [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A. [Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); El-Aref, Mortada; Elmanawi, Abd El-Hamid [Geology Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-08-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe{sub 2}O{sub 3} and P{sub 2}O{sub 5} contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe{sup 3+}) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases.

  3. Colloidal diatomite, radionickel, and humic substance interaction: a combined batch, XPS, and EXAFS investigation.

    Science.gov (United States)

    Sheng, Guodong; Shen, Runpu; Dong, Huaping; Li, Yimin

    2013-06-01

    This work determined the influence of humic acid (HA) and fulvic acid (FA) on the interaction mechanism and microstructure of Ni(II) onto diatomite by using batch experiments, X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) methods. Macroscopic and spectroscopic experiments have been combined to see the evolution of the interaction mechanism and microstructure of Ni(II) in the presence of HA/FA as compared with that in the absence of HA/FA. The results indicated that the interaction of Ni(II) with diatomite presents the expected solution pH edge at 7.0, which is modified by addition of HA/FA. In the presence of HA/FA, the interaction of Ni(II) with diatomite increased below solution pH 7.0, while Ni(II) interaction decreased above solution pH 7.0. XPS analysis suggested that the enrichment of Ni(II) onto diatomite may be due to the formation of (≡SO)2Ni. EXAFS results showed that binary surface complexes and ternary surface complexes of Ni(II) can be simultaneously formed in the presence of HA/FA, whereas only binary surface complexes of Ni(II) are formed in the absence of HA/FA, which contribute to the enhanced Ni(II) uptake at low pH values. The results observed in this work are important for the evaluation of Ni(II) and related radionuclide physicochemical behavior in the natural soil and water environment.

  4. The use of a quartz crystal microbalance as an analytical tool to monitor particle/surface and particle/particle interactions under dry ambient and pressurized conditions: a study using common inhaler components.

    Science.gov (United States)

    Turner, N W; Bloxham, M; Piletsky, S A; Whitcombe, M J; Chianella, I

    2016-12-19

    Metered dose inhalers (MDI) and multidose powder inhalers (MPDI) are commonly used for the treatment of chronic obstructive pulmonary diseases and asthma. Currently, analytical tools to monitor particle/particle and particle/surface interaction within MDI and MPDI at the macro-scale do not exist. A simple tool capable of measuring such interactions would ultimately enable quality control of MDI and MDPI, producing remarkable benefits for the pharmaceutical industry and the users of inhalers. In this paper, we have investigated whether a quartz crystal microbalance (QCM) could become such a tool. A QCM was used to measure particle/particle and particle/surface interactions on the macroscale, by additions of small amounts of MDPI components, in the powder form into a gas stream. The subsequent interactions with materials on the surface of the QCM sensor were analyzed. Following this, the sensor was used to measure fluticasone propionate, a typical MDI active ingredient, in a pressurized gas system to assess its interactions with different surfaces under conditions mimicking the manufacturing process. In both types of experiments the QCM was capable of discriminating interactions of different components and surfaces. The results have demonstrated that the QCM is a suitable platform for monitoring macro-scale interactions and could possibly become a tool for quality control of inhalers.

  5. Salud ambiental: conceptos y actividades

    Directory of Open Access Journals (Sweden)

    Gonzalo A. Ordóñez

    2000-03-01

    Full Text Available La finalidad del trabajo es aportar información y propuestas conceptuales que faciliten la tarea de quienes tienen a su cargo la sistematización institucional de la salud ambiental. Se hace un análisis de la noción de "ambiente" para la cual se sugiere una definición, y se examina el lugar de la salud ambiental en el contexto de los problemas ambientales y sus vertientes "verde" y "azul". Se examinan denominaciones equivalentes de salud ambiental y se introducen los servicios de salud ambiental. Se proporcionan varias definiciones y se da la oficial de salud ambiental adoptada por la OMS en Sofía, Bulgaria (1993. A continuación se transcriben las áreas básicas que a la salud ambiental le han asignado diversas organizaciones o reuniones, como la OPS, la OMS, el Programa 21 y otros. A partir de aquí se construye un repertorio bastante completo de áreas y subáreas y se encuentra que todos los listados son, en realidad, una reunión asistemática de tres tipos de constituyentes: determinantes (factores o hechos de la realidad física, procesos (conjuntos de intervenciones y funciones (conjuntos de acciones de gestión, los cuales pueden enfocarse matricialmente y llevan a individualizar actividades de los servicios de salud ambiental. Se proponen unas reglas de operación que permiten, en una especie de álgebra, construir expresiones para especificar con precisión las actividades y sus agregados. De este modo se logra disponer de un lenguaje simbólico común que puede ayudar a la intercomunicación, enseñanza e investigación en el ámbito de la salud ambiental.

  6. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    Science.gov (United States)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  7. Study of electron beam effects on surfaces using x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS)

    International Nuclear Information System (INIS)

    Gettings, M.; Coad, J.P.

    1976-02-01

    Discrepancies in the surface analyses of oxidised or heavily contaminated materials have been observed between X-ray Photoelectron Spectroscopy (XPS) and techniques using electron beams (primarily Auger Electron Spectroscopy (AES)). These discrepancies can be ascribed to the influence of the primary electron beam and to illustrate the various types of electron effects different materials were analysed using XPS and Secondary Ion Mass Spectroscopy (SIMS) before and after large area electron bombardment. The materials used included chrome and stainless steels, nickel, platinum, glass and brass. (author)

  8. Calculation Of Pneumatic Attenuation In Pressure Sensors

    Science.gov (United States)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  9. Spectroscopic analysis of Zirconium plasma in different ambient and optimizing conditions for nanoclusters formation

    International Nuclear Information System (INIS)

    Yadav, Dheerendra; Thareja, Raj K.

    2010-01-01

    The laser produced zirconium plasma has been studied by emission spectroscopy and fast photography using intensified charged coupled device at different ambient pressures of nitrogen (0.1, 1.0 and 10 mbar). Formation of zirconium clusters are arising at ambient pressure of 1.0 mbar at the plume periphery due to the chemical reactions between the plasma plume and the ambient and confirmed using optical emission spectroscopy. The optimum parameters for existence cluster formation are reported. The ZrN clusters are deposited on silicon substrate and characterized by AFM, XRD and EDAX techniques. (author)

  10. Ambient Noise in an Urbanized Tidal Channel

    Science.gov (United States)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  11. XPS investigations of ruthenium deposited onto representative inner surfaces of nuclear reactor containment buildings

    Energy Technology Data Exchange (ETDEWEB)

    Mun, C. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Prevention des Accidents Majeurs (DPAM), Centre de Cadarache, BP3-13115 Saint-Paul-lez-Durance (France)]. E-mail: christian.mun@irsn.fr; Ehrhardt, J.J. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy University-405, rue de Vandoeuvre 54600 Villers-les-Nancy (France)]. E-mail: ehrhardt@lcpe.cnrs-nancy.fr; Lambert, J. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy University-405, rue de Vandoeuvre 54600 Villers-les-Nancy (France); Madic, C. [Commissariat a l' Energie Atomique (CEA), Direction de l' Energie Nucleaire, Centre de Saclay, 91191 Gif-sur-Yvette Cedex (France)]. E-mail: charles.madic@cea.fr

    2007-07-15

    In the case of a hypothetical severe accident in a nuclear power plant, interactions of gaseous RuO{sub 4} with reactor containment building surfaces (stainless steel and epoxy paint) could possibly lead to a black Ru-containing deposit on these surfaces. Some scenarios include the possibility of formation of highly radiotoxic RuO{sub 4}(g) by the interactions of these deposits with the oxidizing medium induced by air radiolysis, in the reactor containment building, and consequently dispersion of this species. Therefore, the accurate determination of the chemical nature of ruthenium in the deposits is of the high importance for safety studies. An experiment was designed to model the interactions of RuO{sub 4}(g) with samples of stainless steel and of steel covered with epoxy paint. Then, these deposits have been carefully characterised by scanning electron microscopy (SEM/EDS), electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The analysis by XPS of Ru deposits formed by interaction of RuO{sub 4}(g), revealed that the ruthenium is likely to be in the IV oxidation state, as the shapes of the Ru 3d core levels are very similar with those observed on the RuO{sub 2}.xH{sub 2}O reference powder sample. The analysis of O 1s peaks indicates a large component attributed to the hydroxyl functional groups. From these results, it was concluded that Ru was present on the surface of the deposits as an oxyhydroxide of Ru(IV). It has also to be pointed out that the presence of 'pure' RuO{sub 2}, or of a thin layer of RuO{sub 3} or Ru{sub 2}O{sub 5}, coming from the decomposition of RuO{sub 4} on the surface of samples of stainless steel and epoxy paint, could be ruled out. These findings will be used for further investigations of the possible revolatilisation phenomena induced by ozone.

  12. XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels

    International Nuclear Information System (INIS)

    Marcus, P.; Bussell, M.E.

    1992-01-01

    Austenitic stainless steels (304-type) have been implanted with nitrogen ions in order to investigate the effects of implanted nitrogen on their electrochemical behaviour and on the nature of the passive film formed on the steels in acid (0.5M H 2 SO 4 ). Alloys with two nitrogen doses have been prepared (2.5x10 16 and 2x10 17 N atoms/cm 2 ). The implanted alloys have been characterized by 15 N-NRA (nuclear reaction analysis) and XPS (X-ray photoelectron spectroscopy). Alloy surfaces with well-defined N concentrations were prepared, prior to the electrochemical measurements, by argon-ion sputtering of the implanted material for a fixed time in order to reach a well-defined point on the nitrogen depth profile. The samples were then transferred without exposure to air to an electrochemical cell mounted in an inert gas glove box. The implanted nitrogen modifies the electrochemical behaviour of the alloy. The anodic dissolution in the active state is enhanced, and the current density in the passive state is increased. Surface analysis of the alloys by XPS after passivation shows that implanted nitrogen is enriched on the surface during dissolution and passivation of the alloys. The process by which N is enriched on the surface is anodic segregation, which was first observed and characterized for S on Ni and Ni-Fe alloys. The passive films formed on both the unimplanted and implanted alloys have a bilayer structure with an inner oxide layer and an outer hydroxide layer, but on the nitrogen-implanted alloy, a chromium nitride phase is formed at the expense of the chromium oxide. After passivation of the implanted alloys, three chemical states of nitrogen are detected in the N 1s spectrum. The high binding energy (399.4 eV) peak corresponds to a nitrogen species located on the surface of the passive film, which is produced by reaction of the implanted nitrogen with the solution. (orig./WL)

  13. Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2011-01-01

    Highlights: → The current study demonstrates a comprehensive study for Cysteine + Cu(II) ions as an efficient inhibitor as demonstrated by EIS, XPS and potentiodynamic polarization measurements, in addition to traditional weight loss measurements. → The novelty of the current work originates from the combined use of an eco-friendly compound (i.e., cysteine) with a minute amount of copper ions (in the micro molar range) as a corrosion inhibitor for low carbon steel in acidic medium. To this end, cysteine shows only moderate inhibition ca. 60% for iron which jumps up to more than 95% in the presence of micro molar range of Cu(II) ions. → Cysteine-Cu(II) blends are found superior to benzotriazole (BTAH)-Cu(II) blends in terms of their long-term stability in addition to the avoidance of the use of the well-reported highly toxic BTAH. - Abstract: This study addresses the enhancing effect of copper ions on the inhibition efficiency (IE) of cysteine (an eco-friendly compound) against the corrosion of iron in 0.5 M sulphuric acid. Electrochemical impedance spectroscopy (EIS) data revealed a significant increase in the polarization resistance (R p ) of the iron/solution interface in the presence of cysteine and Cu(II) ions instead of cysteine alone. That is, IE of 95% is obtained in the presence of 5 mM cysteine and 25 μM Cu(II) ions, compared to 66% in absence of Cu(II) ions. Moreover, electrochemical polarization measurements indicate that cysteine and Cu(II) ions blends act as mixed-type inhibitors for the corrosion of iron. The formation of Cu(I)-cysteinate complex and/or cysteine SAM at Cu atop the iron surface (as evident from X-ray photoelectron spectroscopy (XPS)) blocks the underlying iron surface and imparts a pronounced protection against its corrosion. IE of cysteine-Cu(II) blend remains effectively unchanged with immersion time indicating its high stability in the used acidic medium.

  14. Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study

    Czech Academy of Sciences Publication Activity Database

    Siokou, A.; Ravani, F.; Karakalos, S.; Frank, Otakar; Kalbáč, Martin; Galiotis, C.

    2011-01-01

    Roč. 257, č. 23 (2011), s. 9785-9790 ISSN 0169-4332 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400911 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * XPS * EELS Subject RIV: CG - Electrochemistry Impact factor: 2.103, year: 2011

  15. A comparative study of Mg and Pt contacts on semi-insulating GaAs: electrical and XPS characterization

    Czech Academy of Sciences Publication Activity Database

    Dubecký, F.; Kindl, Dobroslav; Hubík, Pavel; Mičušík, M.; Dubecký, M.; Boháček, P.; Vanko, G.; Gombia, E.; Nečas, V.; Mudroň, J.

    2017-01-01

    Roč. 395, Feb (2017), s. 131-135 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : semi-insulating GaAs * metal -semiconductor contact * interface * work function * electron transport * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  16. Cryogenic XPS study of fast-frozen sulfide minerals: Flotation-related adsorption of n-butyl xanthate and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Mikhlin, Yuri, E-mail: yumikh@icct.ru [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk 660036 (Russian Federation); Karacharov, Anton; Tomashevich, Yevgeny [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk 660036 (Russian Federation); Shchukarev, Andrey [Department of Chemistry, Umeå University, Umeå SE-901 87 (Sweden)

    2016-01-15

    Highlights: • Mineral/aqueous solution interfaces were studied with quasi in situ cryo-XPS. • Dibutyl dixanthogen was the major xanthate adsorption product on pyrite. • Dixanthogen and minor cuprous xanthate were uptaken by chalcopyrite. • Xanthate was chemisorbed at PbS. • Ice-repellent character of hydrophobic particles caused charging effects in XPS. - Abstract: Cryogenic XPS of wet particulate samples separated via centrifugation and fast-frozen allows quasi in situ examination of solid surfaces, adsorbates, and reaction products, largely preventing the loss both of volatiles and hydrated species at mineral/water interfaces. Here, the cryo-XPS has been applied to characterize the surfaces and interfacial layers of natural pyrite (FeS{sub 2}), chalcopyrite (CuFeS{sub 2}), and galena (PbS) in solutions of a common flotation collector, potassium n-butyl xanthate (KBX), in conjunction with zeta-potential measurement. It was found, in particular, that dibutyl dixanthogen was the major adsorbate at pyrite in 0.1 mM KBX and 10 mM KBX solutions; dixanthogen and cuprous xanthate in the next stage were formed on chalcopyrite, and predominant chemisorbed butyl xanthate was present at galena, including in 10 mM KBX solution. The results may suggest that the production of dixanthogens at the interface has been underestimated while the quantities of surface metal xanthates could be over evaluated in previous studies. Pronounced differential charging effects were observed in the XPS experiment for the samples moderately hydrophobized by the xanthate treatment; we proposed that the effect was due to electrically isolated mineral particles with hydrophobic and ice-repellent surfaces, which retained, however, some frozen water islets.

  17. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, M C; Payne, B P; McIntryre, N S [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Hart, B R; Lau, L Wm [Surface Science Western, Room G1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Grosvenor, A P [Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Smart, R StC [ACeSSS, Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: biesingr@uwo.ca

    2008-03-15

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available.

  18. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    International Nuclear Information System (INIS)

    Biesinger, M C; Payne, B P; McIntryre, N S; Hart, B R; Lau, L Wm; Grosvenor, A P; Smart, R StC

    2008-01-01

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available

  19. SEM, Scanning Auger and XPS characterization of chemically pretreated Ti surfaces intended for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pisarek, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)], E-mail: marcinp@ichf.edu.pl; Lewandowska, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Roguska, A. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Janik-Czachor, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2007-07-15

    Titanium is known as a biocompatible metal characterized by biological and corrosion immunity and good mechanical properties, including a high fracture toughness. In a variety of environments, this metal undergoes 'natural' oxidation which determine its resistance to corrosion. It can also be exposed to chemical treatments in acidic or alkaline solutions which 'enforces' chemical and morphological changes of Ti surface. Those methods, if well controlled, may increase the effective Ti surface area, making it more biocompatible. However, the morphological and chemical factors responsible for their interactions with biological cells are still not well known. The aim of this work was to compare surface chemical and morphological changes introduced by commonly used aqueous NaOH pretreatment with those occurring in a new 'piranha' acidic solution. Particular attention was paid to possible changes which may be decisive for the biocompatibility of the Ti-elements subjected to these surface modifications. Surface analytical techniques such as Auger electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) combined with Ar{sup +} ion sputtering allowed us to investigate in detail the chemical composition of Ti oxide layers. SEM examinations provided morphological characterization of the surface of Ti samples. The results revealed large difference in morphology of Ti surfaces pretreated with different procedures whereas only minor difference in the chemistry of the surfaces were detected.

  20. Study of the temperature dependent nitrogen retention in tungsten surfaces by XPS-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plank, Ulrike [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Fakultaet fuer Physik der Ludwig-Maximilians-Universitaet Muenchen, Schellingstrasse 4, D-80799 Muenchen (Germany); Meisl, Gerd; Hoeschen, Till [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2016-07-01

    To reduce the power load on the divertor of fusion experiments, nitrogen (N) is puffed into the plasma. As a side effect, nitrogen gets implanted into the tungsten (W) walls of the reactor and forms nitride layers. Their formation and, therefore, the N accumulation in W showed an unexpected temperature dependence in previous experiments. To study the nitrogen retention, we implanted N ions with an energy of 300 eV into W and observed the evolution of the surface composition by X-ray photoelectron spectroscopy (XPS). We find that the N content does not change when the sample is annealed up to 800 K after implantation at lower temperatures. In contrast, the N concentration decreases with increasing implantation temperature. At 800 K implantation temperature, the N saturation level is about 5 times lower compared to 300 K implantation. A possible explanation for this difference is an enhanced diffusion during ion bombardment due to changes in the structure or in the chemical state of the tungsten nitride system. Ongoing tungsten nitride erosion experiments shall help to clarify whether the strong temperature dependence is the result of enhanced diffusion or of phase changes.

  1. XPS and XANES studies of biomimetic composites based on B-type nano-hydroxyapatite

    Science.gov (United States)

    Goloshchapov, D. L.; Gushchin, M. S.; Kashkarov, V. M.; Seredin, P. V.; Ippolitov, Y. A.; Khmelevsky, N. O.; Aksenenko, A. Yu.

    2018-06-01

    The paper presents an investigation of the local atomic structure of nanocrystalline carbonate-substituted hydroxyapatite (CHAP) contained in biomimetic composites - analogues of intact human tooth tissues. Using the XPS technique, the presence of impurity Mg and F atoms and structurally bound carbon in CHAP, at the concentrations typical of apatite enamel and dentine was determined. The XANES method was used to study the changes occurring in P L2,3 spectra of biocomposites with CHAP, depending on the percentage of the amino acid matrix. The appearance of maxima in the spectra of XANES P L2,3 near 135.7 eV for the samples with the composition of amino acid complex/hydroxyapatite - 5/95, 25/75 and the splitting of a broad peak of 146.9 eV in the spectrum of a biocomposite with a composition of 40/60 indicates at the interaction of molecular complex of amino acids with atomic environment of phosphorus. This fact can be used in the fundamental medicine for synthesizing of new biomaterials in dentistry.

  2. XPS analysis of PE and EVA samples irradiated at different γ-doses

    Science.gov (United States)

    Dorey, Samuel; Gaston, Fanny; Marque, Sylvain R. A.; Bortolotti, Benjamin; Dupuy, Nathalie

    2018-01-01

    The principal plastic materials used for the fluid contact and storage in the biopharmaceutical industry are mainly made up of semi-crystalline polymers, polyolefins, PVC, Siloxane and PET. The polyethylene (PE) and the polypropylene (PP) are often used as fluid contact in multi-layer materials like films. As one sterilisation way of single-use plastic devices used in medical and pharmaceutical fields can take place via γ-irradiation, the effect of sterilization on plastics must be investigated. The irradiation process leads to the production of radicals, which can generate changes in the polymer structure and on the polymer surface. It is well known that the presence of oxygen with free radicals precede the generation of peroxide species so called ROS (reactive oxygen species) which are highly reactive. The purpose of this work is to investigate the γ-rays impact on the surface of PE (polyethylene) and EVA (polyethylene vinyl alcohol) based films when ionized at different doses. X-ray Photoelectron Spectroscopy (XPS) was applied to determine the surface compositions of the polymers to highlight the different chemical moieties generated during the γ-irradiation process and to monitor the potential presence of the ROS.

  3. An XPS study of pulsed plasma polymerised allyl alcohol film growth on polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Lucy [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Bismarck, Alexander [Department of Chemical Engineering, Polymer and Composite Engineering (PaCE) Group, Imperial College London, London SW7 2AZ (United Kingdom); Lee, Adam F. [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Wilson, Darren [Smith and Nephew Research Centre, York Science Park, Heslington, York YO10 5DF (United Kingdom); Wilson, Karen [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom)]. E-mail: kw13@york.ac.uk

    2006-09-30

    The growth of highly functionalised poly allyl alcohol films by pulsed plasma polymerisation of CH{sub 2} =CHCH{sub 2}OH on biomedical grade polyurethane has been followed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Film thickness is observed to increase approximately linearly with plasma modification time, suggesting a layer-by-layer growth mode of poly allyl alcohol. Water contact angle measurements reveal the change in the surface free energy of wetting decreases linearly with plasma modification up to the monolayer point after which a constant limiting value of -24 mJ m{sup -2} was attained. Films prepared at 20 W plasma power with a duty cycle of 10 {mu}s:500 {mu}s exhibit a high degree of hydroxyl (-OH) retention with minimal fragmentation of the monomer observed. Increasing the plasma power up to 125 W is found to improve -OH retention at the expense of ether formation generating films close to the monomer stoichiometry. Duty cycle plays an important role in controlling both film composition and thickness, with longer off times increasing -OH retention, while longer on times enhance allyl alcohol film growth.

  4. Electronic state of cerium-based catalysts studied by spectroscopic methods (XPS, XAS)

    International Nuclear Information System (INIS)

    Le Normand, F.; Bernhardt, P.; Hilaire, L.; Kili, K.; Maire, G.; Krill, G.

    1987-01-01

    X-ray Photoelectron Spectroscopy (XPS) of the 3d core level of cerium and X-ray Absorption Spectroscopy (XAS) of the L III absorption edge of cerium have been used to study Pd/CeO 2 , Pd-Ce/γAl 2 O 3 and Ce/γAl 2 O 3 catalysts. The oxidation state of cerium was found to decrease with decreasing amounts of cerium on the surface. It was quite close to III for very low contents of cerium (2-3%). For higher cerium contents the oxidation state was nearer to IV but differences between the two methods were found, owing to the fact that XAS is a volume sensitive probe. The oxidation state of cerium was also lower for Pd-Ce/γAl 2 O 3 than for Ce/γAl 2 O 3 , suggesting the formation of Ce III OCl, chlorine coming from the precursor salt of palladium. 15 refs.; 5 figs.; 1 table

  5. X ray photoelectron spectroscopy (XPS) analysis of Photosensitive ZrO2 array

    Science.gov (United States)

    Li, Y.; Zhao, G.; Zhu, R.; Kou, Z.

    2018-03-01

    Based on organic zirconium source as the starting material, by adding chemical modifiers which are made up with photosensitive ZrO2 sol. A uniformed ZrO2 array dot was fabricated with a mean diameter of around 800 nm. By using UV-vis spectra and X-ray photoelectron spectroscopy analysis method, studies the photosensitive ZrO2 gel film of photochemical reaction process and the photosensitive mechanism, to determine the zirconium atom centered chelate structure, reaction formed by metal chelate Zr atom for the center, and to establish the molecular model of the chelate. And studied the ultraviolet light in the process of the variation of the XPS spectra, Zr3d5/2 to 184.9 eV corresponding to the binding energy of the as the combination of state peak gradually reduce; By combining with the status of Zr-O peak gradually increase; The strength of the peak is gradually decline. This suggests that in the process of ultraviolet light photo chemical reaction happened. This study is of great significance to the micro fabrication of ZrO2 array not only to the memory devices but also to the optical devices.

  6. XPS STRUCTURE ANALYSIS OF TiN/TiC BILAYERS PRODUCED BY PULSED VACUUM ARC DISCHARGE

    Directory of Open Access Journals (Sweden)

    ELISABETH RESTREPO PARRA

    2010-01-01

    Full Text Available se crecieron bicapas de TiN/TiC sobre sustratos de acero inoxidable 304 usando un sistema de deposición física de vapor asistida por plasma en forma de arco pulsado a dos diferentes temperaturas del sustrato (50º C y150º C. Para el análisis de la composición química se empleó la técnica de la espectroscopía de fotoelectrones de rayos X (XPS. Se observó el comportamiento de las líneas Ti2p, N1s y C1s. Los análisis de energía de enlace confirmaron la conformación de TiN y TiC. Los picos C1s y Ti2p sufrieron un corrimiento a medida que se incrementó el tiempo de esputtering, revelando contaminación debido a la presencia de hidrocarburos. Además, los perfiles de profundidad de las bicapas de TiN/TiC mostraron que las películas crecidas a una temperatura de 150 ° C tienen una capa de TiN más gruesa que las muestras crecidas a 50º C. El nitrógeno se difundió en la capa de TiC y el carbón en la capa de TiN para ambas temperaturas.

  7. XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts

    Science.gov (United States)

    Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.

    1993-01-01

    The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.

  8. RBS and XPS analyses of the composite calcium phosphate coatings for biomedical applications

    International Nuclear Information System (INIS)

    Ide-Ektessabi, Ari; Yamaguchi, Tetsuro; Tanaka, Yoshikazu

    2005-01-01

    The calcium phosphate coatings on metallic implants are widely used for biomedical applications. The calcium phosphate coatings require mechanical strength, strong adhesion to the metallic implants, chemical stability and low dissolution into the human body fluid for stable functioning in the corrosive environment of the human body. In this study, a novel approach for improving the calcium phosphate coatings is utilized by adding trace metallic element into the coatings. We focused on teeth enamel, which is the hardest calcium phosphate tissue in the human body. Zn concentration increases exponentially from the interior to the surface of the enamel. As the Zn concentration increases, so the local hardness increases. Our previous studies suggest that Zn has influence on the hardness and other properties of enamel, calcium phosphate tissue. Calcium phosphate coatings doped with Zn was fabricated and characterized. The atomic composition and chemical state were investigated by using Rutherford backscattering spectroscopy (RBS) and X-ray photoelectron spectrometer (XPS), respectively. Scratch test was also carried out for measuring the adhesion of the coatings

  9. XPS and XAES measurements on trapped rare gases in transition metals

    International Nuclear Information System (INIS)

    Baba, Y.; Yamamoto, H.; Sasaki, T.A.

    1992-01-01

    Electronic structures of rare gases implanted in various transition metals have been investigated by means of an X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy (XAES). The Auger-parameter method is applied to the evaluation of electronic relaxation energy of rare gas atoms due to the surrounding metal potential. The extra-atomic relaxation energy of four kinds of rare gases (Ne, Ar, Kr, Xe) in the same metal matrix (Ti) increases with the atomic mass of the rare gases. On the other hand, the extra-atomic relaxation energy of the same rare gas (Xe) in different metal matrices ranges from 3.0 eV (in Mo). These values increase with the number of d-electrons in the metals. This tendency and the absolute values of the relaxation energies are in good agreement with those calculated for 3d transition metals referenced to their gas-phase values. Based on these results, it is concluded that the energetically implanted rare gases are trapped at the substitution site in the metal lattice as an isolated atom, and the trapped atoms feel the surrounding metal potential. It is also made clear that the potential affecting the implanted atom is d-like, and the relaxation energy of the implanted rare gas during the photoemission process is almost equal to those of the metal itself. (orig.)

  10. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  11. A Versatile Integrated Ambient Ionization Source Platform

    Science.gov (United States)

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-01

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.

  12. Simulated reaction of formaldehyde and ambient atmospheric particulate matter using a chamber

    Institute of Scientific and Technical Information of China (English)

    Yueyue Chen; Jia Liu; Jing Shang; Tong Zhu

    2017-01-01

    The reaction of HCHO with Beijing winter's real ambient particulate matter (PM) inside a 3.3 m3 Teflon Chamber was conducted in this study.NO2,O3 and H2O gases were removed from the ambient aerosol before entering into the chamber.The decays of HCHO were monitored (acetylacetone spectrophotometry method) during the reactions at different PM number concentrations (Na) and relative humidities (RHs),and the formed particulate formate was detected by IC and XPS techniques.The results showed that when RH was 10%-15%,the decay rate of HCHO in the chamber was higher with the existence of PM from relatively clean days (with number concentration (Na) < 200,000 particle/L,0.35-22.5 μm) compared to dirty days (Na > 200,000 particle/L,0.35-22.5 μm).When RH increased to 30%-45%,PM can hardly have significant influences on the decay of HCHO.The formations of formate on the reacted PM were consistent with the HCHO decay rates at different ambient PM Na and RH conditions.This is a first study related to the "real" ambient PM reacted with HCHO and suggested that in the clean and low RH days,PM could be an effective medium for the conversion of HCHO to formate.

  13. Conhecimento, interdisciplinaridade e Psicologia Ambiental

    Directory of Open Access Journals (Sweden)

    Ombretta Romice

    2005-01-01

    Full Text Available Responde às questões - como os métodos da Psicologia Ambiental devem ser discutidos em um enquadramento interdisciplinar; a Psicologia Ambiental pede alguma abordagem metodológica especial; como a intervenção ambiental é determinada pela interdisciplinaridade; quais são estas disciplinas e como elas se relacionam entre si - baseando-se em experiências profissionais como orientador em um projeto com comunidade, com habitação popular e exclusão social em vários países da Europa, e como consultora. Conclui que as abordagens usadas pelas diferentes profissões são muito separadas, e que apenas metas comuns não são suficientes, sendo também necessários um treino conjunto e identidade de valores.

  14. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A.; Galtayries, A.; Zanna, S.; Klein, L.; Maurice, V.; Jolivet, P.; Foucault, M.; Combrade, P.; Scott, P.; Marcus, P

    2004-09-15

    The early stages of passivation in high temperature water of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM). The samples (polycrystal Ni-16Cr-9Fe (wt. %) and single crystal Ni-17Cr-7Fe (1 1 1)) have been exposed for short time periods (0.4-8.2 min) to high temperature (325 deg. C) and high pressure water, under controlled hydrogen pressure, in a microautoclave designed to transfer the samples from and to the XPS spectrometer without air exposure. In the early stages of oxidation of the alloy (0.4-4 min), an ultra-thin oxide layer (about 1 nm) is formed, which consists of chromium oxide (Cr{sub 2}O{sub 3}), according to the Cr 2p{sub 3/2} core level spectrum. An outer layer of Cr(OH){sub 3} with a very small amount of Ni(OH){sub 2} is also revealed by the Cr 2p{sub 3/2}, Ni 2p{sub 3/2}, and O 1s core level spectra. At this early stage, there is a temporary blocking of the growth of Cr{sub 2}O{sub 3}. For longer exposures (4-8 min), the Cr{sub 2}O{sub 3} inner layer becomes thicker, at the expense of the outer Cr(OH){sub 3} layer. This implies the transport of Cr and Ni through the oxide layer, and release of Ni{sup 2+} in the solution. The structure of the ultra-thin oxide film formed on a single crystal Ni-17Cr-7Fe(1 1 1) alloy was analysed by STM in the constant current mode; STM images reveal that, in the early stages of oxidation, the oxide is crystalline, and the observed structure is consistent with the hexagonal structure of the oxygen sub-lattice in the basal plane (0 0 0 1) of {alpha}-Cr{sub 2}O{sub 3}.

  15. Near-ambient solid polymer fuel cell

    Science.gov (United States)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  16. Ambient cosmology and spacetime singularities

    International Nuclear Information System (INIS)

    Antoniadis, Ignatios; Cotsakis, Spiros

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)

  17. Ambient cosmology and spacetime singularities

    CERN Document Server

    Antoniadis, Ignatios

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.

  18. [XPS analysis of beads formed by fuse breaking of electric copper wire].

    Science.gov (United States)

    Wu, Ying; Meng, Qing-Shan; Wang, Xin-Ming; Gao, Wei; Di, Man

    2010-05-01

    The in-depth composition of beads formed by fuse breaking of the electric copper wire in different circumstances was studied by XPS with Ar+ ion sputtering. In addition, the measured Auger spectra and the calculated Auger parameters were compared for differentiation of the substances of Cu and Cu2O. Corresponding to the sputtering depth, the molten product on a bead induced directly by fuse breaking of the copper wire without cover may be distinguished as three portions: surface layer with a drastic decrease in carbon content; intermediate layer with a gentle change in oxygen content and gradually diminished carbon peak, and consisting of Cu2O; transition layer without Cu2O and with a rapid decrease in oxygen content. While the molten product on a bead formed by fuse breaking of the copper wire after its insulating cover had been burned out may be distinguished as two portions: surface layer with carbon content decreasing quickly; subsurface layer without Cu2O and with carbon and oxygen content decreasing gradually. Thus, it can be seen that there was an obvious interface between the layered surface product and the substrate for the first type of bead, while as to the second type of bead there was no interface. As a result, the presence of Cu2O and the quantitative results can be used to identify the molten product on a bead induced directly by fuse breaking of the copper wire without cover and the molten product on a bead formed by fuse breaking of the cupper wire after its insulating cover had been burned out, as a complementary technique for the judgments of fire cause.

  19. Characterization study of native oxides on GaAs(100) surface by XPS

    Science.gov (United States)

    Feng, Liu; Zhang, Lian-dong; Liu, Hui; Gao, Xiang; Miao, Zhuang; Cheng, Hong-chang; Wang, Long; Niu, Sen

    2013-08-01

    In order to know more about the surface state of GaAs(100) epitaxial wafer during a storage period of two years, the XPS analysis was carried out four times on the surface, respectively polished by chemical etching, stored in desiccator for half a year, one year and two years. The results indicated that even after cleaned by proper etchant solutions, the fresh surface was slightly oxidized with Ga2O3, As2O3 and organic contaminant. The epi-wafer was always exposed to air during the storage period, so more and more oxides turned out. The mixed oxide layer comprised of C-OR, COOR, Ga2O3, As2O3 and As2O5 appeared after only half a year. In the ageing process of two years, the oxide types of gallium or arsenic did not change with stable content of Ga2O3 and remarkably fluctuating relative contents of As2O3 and As2O5. Based on the intensity ratio of Ga 3d-Ga2O3 to Ga 3d-GaAs, the thickness of oxide layer was estimated. The oxide layer generated after chemical polishing was very thin, just only 0.435nm thick, and then it grew rapidly, approximately 1.822nm after one year while almost no change any more subsequently. It was indicated that after the epi-wafer was stored for one year, because of volatile As2O3 or As2O5, there remained a large amount of Ga2O3 in oxide layer, which prevented the reactions between bulk material and oxide layer with oxygen. So native oxide layer plays a role as passive film to protect epi-wafer against the environment during a long storage period.

  20. Raman and XPS characterization of vanadium oxide thin films with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ureña-Begara, Ferran, E-mail: ferran.urena@uclouvain.be [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium); Crunteanu, Aurelian [XLIM Research Institute, UMR 7252, CNRS/Université de Limoges, Limoges (France); Raskin, Jean-Pierre [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium)

    2017-05-01

    Highlights: • Comprehensive study of the oxidation of VO{sub 2} thin films from R.T. up to 550 °C. • Phase changes and mixed-valence vanadium oxides formed during the oxidation process. • Reported Raman and XPS signatures for each vanadium oxide. • Monitoring of the current and resistance evolution at the surface of the films. • Oxidation model describing the evolution of the vanadium oxides and phase changes. - Abstract: The oxidation mechanisms and the numerous phase transitions undergone by VO{sub 2} thin films deposited on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates when heated from room temperature (R.T.) up to 550 °C in air are investigated by Raman and X-ray photoelectron spectroscopy. The results show that the films undergo several intermediate phase transitions between the initial VO{sub 2} monoclinic phase at R.T. and the final V{sub 2}O{sub 5} phase at 550 °C. The information about these intermediate phase transitions is scarce and their identification is important since they are often found during the synthesis of vanadium dioxide films. Significant changes in the film conductivity have also been observed to occur associated to the phase transitions. In this work, current and resistance measurements performed on the surface of the films are implemented in parallel with the Raman measurements to correlate the different phases with the conductivity of the films. A model to explain the oxidation mechanisms and phenomena occurring during the oxidation of the films is proposed. Peak frequencies, full-width half-maxima, binding energies and oxidation states from the Raman and X-ray photoelectron spectroscopy experiments are reported and analyzed for all the phases encountered in VO{sub 2} films prepared on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates.

  1. XPS and SIMS characterisation of TiOxNy solar absorber films

    International Nuclear Information System (INIS)

    Metson, J.B.; Prince, K.E.; Bittar, A.; Tornquist, J.

    1999-01-01

    Full text: TiO x N y thin films have useful properties as selective solar absorbers when used in tandem with a collector substrate. Such films are transparent across a reasonable window of the solar spectrum, but have low thermal emissivity. They are however limited by their thermal stability under the typical operating conditions they experience. In this study, TiO x N y films have been deposited on Si and Cu substrates using ion beam assisted deposition. The films are amorphous and x and y were controlled by altering the O 2 /N 2 ratio in the gas source. After annealing at temperatures of 200 - 400 deg C, films have been depth profiled using Secondary Ion Mass Spectrometry. Profiles reveal the degradation of the film by migration of the substrate atoms through the films, to the sample surface. In general, films with x 1 show improved stability, ultimately at the expense of a reduced transmission window. Thermal stability is also improved by the use of diffusion barriers either at the substrate film interface or at the surface of the film. However contrary to previous suggestions, the degradation mechanism involves the formation not of an oxide at the film surface but a phase which is nitrogen rich. The nature of this phase, formed by diffusion of the substrate atoms, has been investigated by X-ray photoelectron spectroscopy (XPS). These investigations reveal very complex behaviour in the early stages of film failure, with an almost intact TiO x N y layer surviving, but being progressively buried by the growth of the reaction layer at the film surface. Copyright (1999) Australian X-ray Analytical Association Inc

  2. XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Robin, E-mail: r.simpson@surrey.ac.uk [The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey (United Kingdom); Thermo Scientific, East Grinstead (United Kingdom); White, Richard G. [Thermo Scientific, East Grinstead (United Kingdom); Watts, John F.; Baker, Mark A. [The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey (United Kingdom)

    2017-05-31

    Highlights: • Ion beam induced oxide reduction from monatomic and gas cluster ion beam exposure are compared. • Lower relative level of preferential sputtering is shown in gas cluster ion beam depth profiling. • A lack of “steady state” is observed in gas cluster ion beam depth profiles of tantalum pentoxide. • Possible mechanisms behind the observed results, including temperature effects are proposed. - Abstract: In recent years, gas cluster ion beams (GCIB) have become the cutting edge of ion beam technology to sputter etch organic materials in surface analysis. However, little is currently known on the ability of argon cluster ions (Ar{sub n}{sup +}) to etch metal oxides and other technologically important inorganic compounds and no depth profiles have previously been reported. In this work, XPS depth profiles through a certified (European standard BCR-261T) 30 nm thick Ta{sub 2}O{sub 5} layer grown on Ta foil using monatomic Ar{sup +} and Ar{sub 1000}{sup +} cluster ions have been performed at different incident energies. The preferential sputtering of oxygen induced using 6 keV Ar{sub 1000}{sup +} ions is lower relative to 3 keV and 500 eV Ar{sup +} ions. Ar{sup +} ions exhibit a steady state O/Ta ratio through the bulk oxide but Ar{sub 1000}{sup +} ions show a gradual decrease in the O/Ta ratio as a function of depth. The depth resolution and etch rate is substantially better for the monatomic beam compared to the cluster beam. Higher O concentrations are observed when the underlying Ta bulk metal is sputtered for the Ar{sub 1000}{sup +} profiles compared to the Ar{sup +} profiles.

  3. High pressure injection of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  4. TERCEIRO SETOR E MEIO AMBIENTE

    OpenAIRE

    MELO, MARINA FÉLIX DE

    2012-01-01

    Objetivamos discutir, brevemente, como têm se dado as discussões sobre o Terceiro Setor brasileiro e, particularmente, sobre as ONGs que atuam em defesa do meio ambiente, levantando questionamentos acerca das limitações enfrentadas pelo Terceiro Setor neste contexto

  5. La crisis del medio ambiente

    Directory of Open Access Journals (Sweden)

    Juan Carlos Quintero Vélez

    2013-07-01

    Full Text Available Este artículo, introducción al tema del medio ambiente, pretende proporcionar conceptos básicos para analizar y dimensionar el impacto que genera el hombre sobre los sistemas que soportan la vida. Para entender estos problemas, es indispensable partir de un análisis básico de la relación entre el hombre actual, su medio ambiente, sus necesidades y sus actividades. El autor revisa los antecedentes, las causas y las consecuencias de la crisis ambiental internacional, e intenta dar explicación a la problemática nacionalen este campo, y establecer los puntos más críticos en Colombia. Finalmente, con base en los parámetros establecidos por el gobierno, se presenta el concepto de“desarrollo sostenible" como modelo que interrelaciona los procesos económicos, sociales y tecnológicos con el medio ambiente.

  6. The persuasiveness of ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Markopoulos, P.; Ruyter, de B.E.R.; Petkovic, M.; Jonker, W.

    2007-01-01

    Ambient intelligence (AmI) is a novel concept for embedded computing that builds on the large-scale integration of electronic devices into peoples’ surroundings and the ubiquitous availability of digital information to the users of such environments. The concept however is not only concerned with

  7. Ambient intelligence : visualising the future

    NARCIS (Netherlands)

    Aarts, E.H.L.

    2005-01-01

    Ambient Intelligence systems are aimed at making user-system interaction and content consumption a truly positive experience. The endless search for nifty information visualisation mechanism to squeeze yet one more piece of information onto a visual display is surpassed by the challenge to embed

  8. Nanomaterials vs Ambient Ultrafine Particles

    DEFF Research Database (Denmark)

    Stone, Vicki; Miller, Mark R.; Clift, Martin J. D.

    2017-01-01

    BACKGROUND: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology ...

  9. Abstract Interpretation of Mobile Ambients

    DEFF Research Database (Denmark)

    Hansen, René Rydhof; Jensen, J. G.; Nielson, Flemming

    1999-01-01

    We demonstrate that abstract interpretation is useful for analysing calculi of computation such as the ambient calculus (which is based on the p-calculus); more importantly, we show that the entire development can be expressed in a constraint-based formalism that is becoming exceedingly popular...

  10. Shape analysis for Mobile Ambients

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    2000-01-01

    The ambient calculus is a calculus of computation that allows active processes to move between sites. We present an analysis inspired by state-of-the-art pointer analyses that safety and accurately predicts which processes may turn up at what sites during the execution of a composite system. The ...... are flexible and scale up to general tree structures admitting powerful restructuring operations....

  11. Ambient intelligence, ethics and privacy

    NARCIS (Netherlands)

    Hoof, van J.; Kort, H.S.M.; Markopoulos, P.; Soede, M.

    2007-01-01

    Networked and ubiquitous information and communication technologies (ICTs) and ambient intelligence are increasingly used in the home environment to facilitate independent living for older adults. These systems collect and disperse a high volume of personal data, which is used for assistance and

  12. Construindo cidadania ambiental na escola

    Directory of Open Access Journals (Sweden)

    Cibele Schwanke

    2014-03-01

    Full Text Available http://dx.doi.org/10.5007/1807-0221.2013v10n16p14 O forte componente transversal da Educação Ambiental possibilita sua inserção em vários espaços e níveis de escolaridade. No ensino fundamental, constitui-se em uma importante ferramenta para criar espaços que permitam a abordagem de temáticas socioambientais atuais, de forma crítica e participativa. O presente trabalho tem como objetivo apresentar o Projeto Construindo Cidadania Ambiental, executado por bolsistas do Grupo PET - Conexões Gestão Ambiental em unidades escolares, explicitando sua filosofia de implantação e resultados obtidos até o momento. Verifica-se que sua natureza interdisciplinar e integrada permite uma efetiva interação com o corpo docente e discente da escola, bem como permite a prática de uma educação ambiental crítica e transformadora.

  13. The determination of acid-base properties of polymer surfaces by XPS: Present status and future prospects

    International Nuclear Information System (INIS)

    Chehimi, M.M.; Delamar, M.; Shahidzadeh-Ahmadi, N.; Arefi-Khonsari, F.; Amouroux, J.; Watts, J.F.

    1996-01-01

    The use of the molecular probe technique in conjunction with X-ray photoelectron spectroscopy (XPS) for the assessment of acid-base properties of polymer surfaces is reviewed. The method is based on the determination of the concentration and chemical shifts of Lewis acids (bases) sorbed in polymers of basic (acidic) character. In the case of chloroform (Lewis acid) sorbed in polymers of Lewis basic character, C12p binding energy is linearly correlated with ΔH AB , the heat of acid-base complex formation chloroform-polymer. This relationship has been used to determine the acid-base properties of poly(phenylene oxide), a homopolymer, and ammonia plasma-treated polypropylene. This work shows that XPS can now indeed be used to quantitatively assess the acid-base properties of modified polymer surfaces and perhaps be extended to map acid-base properties of polymer surfaces at the micron or submicron scale. copyright 1996 American Institute of Physics

  14. Growth of TiC films by Pulsed Laser Evaporation (PLE) and characterization by XPS and AES

    International Nuclear Information System (INIS)

    Rist, O.; Murray, P.T.

    1991-01-01

    Thin films of TiC with a thickness of some 100 nm have been grown on Si(100) substrates by Pulsed Laser Evaporation (PLE). Advantages of PLE in comparison with more conventional growth methods e.g. PVD or CVD are reported. The feasibility of growing stoichiometric thin films of TiC by PLE was investigated. These films produced have been analysed in situ by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). XPS results and Auger sputter depht profiles indicate that the films grown between RT and 500degC are stoichiometric TiC. Film/substrate interdiffusion is observed at 600degC substrate temperature and higher. (orig.)

  15. XPS study of U, UNi5, UCu5 and UNisub(0.5)Cusub(4.5)

    International Nuclear Information System (INIS)

    Grohs, H.; Hoechst, H.; Steiner, P.; Huefner, S.; Buschow, K.H.J.

    1980-01-01

    Core and valence band spectra of U metal and the intermetallic compounds UNi 5 , UCu 5 and UNisub(0.5)Cusub(4.5) have been measured by X-ray excited photoelectron spectroscopy (XPS). The data indicate that in UNi 5 the configuration is 5f 3 , and in UCu 5 and UNisub(0.5)Cusub(4.5) a mixed valence configuration with fewer 5f electrons than in UNi 5 is present. (author)

  16. XPS and SIMS study of aluminium native oxide modifications induced by Q-switched Nd :YAG laser treatment

    CSIR Research Space (South Africa)

    Barnier, V

    2006-04-01

    Full Text Available with fluences between 0.7 and 1.7 J/cm2, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) revealed thermal oxidation with an increase of the oxide-layer thickness for 0.7–1.3 J/cm2. Above a threshold at about 1.3 J/cm2 the oxide...

  17. Use of XPS to clarify the Hall coefficient sign variation in thin niobium layers buried in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Demchenko, Iraida N., E-mail: demch@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland); Lisowski, Wojciech [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Syryanyy, Yevgen [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland); Melikhov, Yevgen [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland); School of Engineering, Cardiff University, Newport Rd., Cardiff, CF24 3AA (United Kingdom); Zaytseva, Iryna; Konstantynov, Pavlo [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland); Chernyshova, Maryna [Institute of Plasma Physics and Laser Microfusion, Hery Street 23, 01-497 Warsaw (Poland); Cieplak, Marta Z. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland)

    2017-03-31

    Highlights: • HR XPS spectra of Nb 3d, Si 2p, O 1s were probed for Si/Nb/Si trilayers prepared by magnetron sputtering to clarify the Hall coefficient variation as a function of Nb layer thickness. • Strong boundary scattering, enhanced by the presence of silicon ions in the layer close to the interface/s is a main factor leading to sign change of the Hall coefficient. • Theoretical concentration/depth profile as a function of sputtering determined by SESSA after optimization of the model system gives good agreement with experiment. - Abstract: Si/Nb/Si trilayers formed with 9.5 and 1.3 nm thick niobium layer buried in amorphous silicon were prepared by magnetron sputtering and studied using XPS depth-profile techniques in order to investigate the change of Hall coefficient sign with thickness. The analysis of high-resolution (HR) XPS spectra revealed that the thicker layer sample has sharp top interface and metallic phase of niobium, thus holes dominate the transport. In contrast, the analysis indicates that the thinner layer sample has a Nb-rich mixed alloy formation at the top interface. The authors suggest that the main effect leading to a change of sign of the Hall coefficient for the thinner layer sample (which is negative contrary to the positive sign for the thicker layer sample) may be related to strong boundary scattering enhanced by the presence of silicon ions in the layer close to the interface/s. The depth-profile reconstruction was performed by SESSA software tool confirming that it can be reliably used for quantitative analysis/interpretation of experimental XPS data.

  18. Positive XPS binding energy shift of supported Cu{sub N}-clusters governed by initial state effects

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Peredkov, S. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); Al-Hada, M. [Department of Physics, College of Education and Linguistics, University of Amran (Yemen); Neeb, M., E-mail: matthias.neeb@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Eberhardt, W. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); DESY, Center for Free Electron Laser Science (CFEL), Notkestr. 85, 22607 Hamburg (Germany)

    2014-01-01

    Highlights: • Size dependent initial and final state effects of mass-selected deposited clusters. • Initial state effect dominates positive XPS shift in supported Cu-clusters. • Size dependent Coulomb correlation shift in the Auger final state of Cu cluster. • Size-dependent Auger parameter analysis. • Positive XPS shift differs from negative surface core level shift in crystalline copper. - Abstract: An initial state effect is established as origin for the positive 2p core electron binding energy shift found for Cu{sub N}-clusters supported by a thin silica layer of a p-doped Si(1 0 0) wafer. Using the concept of the Auger parameter and taking into account the usually neglected Coulomb correlation shift in the Auger final state (M{sub 4,5}M{sub 4,5}) it is shown that the initial state shift is comparable to the measured XPS shift while the final state relaxation shift contributes only marginally to the binding energy shift. The cluster results differ from the negative surface core-level shift of crystalline copper which has been explained in terms of a final state relaxation effect.

  19. Study on the surface chemical properties of UV excimer laser irradiated polyamide by XPS, ToF-SIMS and CFM

    International Nuclear Information System (INIS)

    Yip, Joanne; Chan, Kwong; Sin, Kwan Moon; Lau, Kai Shui

    2002-01-01

    Polyamide (nylon 6) was irradiated by a pulsed ultraviolet (UV) excimer laser with a fluence below its ablation threshold. Chemical modifications on laser treated nylon were studied by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (Tof-SIMS) and chemical force microscopy (CFM). XPS study provides information about changes in chemical composition and the chemical-state of atom types on the fiber surface. The high sensitivity of ToF-SIMS to the topmost layers was used to detect crosslinking after the laser treatment. Gold-coated AFM tips modified with -COOH terminated self-assembled alkanethiol monolayers (SAMs) were used to measure adhesion forces on the untreated and laser treated samples. XPS results revealed that the irradiated samples have higher oxygen content than prior to laser irradiation. Tof-SIMS analysis illustrated that carbonyl groups in nylon 6 decrease significantly but hydroxyl groups increase after low-fluence laser irradiation. The adhesion force measurements by CFM showed spatial distribution of hydroxyl groups on nylon 6 after the laser treatment

  20. XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Oktay, Serkan; Kahraman, Zafer; Urgen, Mustafa; Kazmanli, Kursat, E-mail: kursat@itu.edu.tr

    2015-02-15

    Graphical abstract: - Highlights: • The (Ti,Re)N coating (8 ± 1.9 at.% Re) consisted of TiN and ReNx (x > 1.33) phases. • TiO{sub 2} provided low friction coefficient to TiN coating at 150 °C. • Re addition to TiN drastically dropped the friction coefficients to 0.17–0.22. • Re{sub 2}O{sub 7} provided very low friction coefficient to (Ti,Re)N coating. • Re addition to TiN improved the wear behavior. - Abstract: TiN and (Ti,Re)N coatings were deposited on high-speed-steel substrates by a hybrid coating system composed of cathodic arc PVD and magnetron sputtering techniques. In order to keep rhenium content low (8 ± 1.9 at.%) in the coating, magnetron sputtering technique was utilized to evaporate rhenium. The (Ti,Re)N coating consisted of TiN and ReN{sub x} (x > 1.33) phases. The hardness of TiN and (Ti,Re)N were 31 GPa and 29 GPa ( ± 2 GPa), respectively. Tribological behaviors of the samples were tested against Al{sub 2}O{sub 3} balls at 21 °C (RT) and 150 °C (HT) by reciprocating wear technique. The tribolayers were analyzed by XPS technique. Friction coefficients of TiN were 0.56, 0.35 for 21 °C and 150 °C tests, respectively. Rhenium addition to TiN drastically dropped the friction coefficients to 0.22 and 0.17 for RT and HT samples. Rhenium addition also improved the wear resistance of the coating at both test temperatures. For TiN, main oxide component of the tribolayers was Ti{sub 2}O{sub 3} for RT tests and TiO{sub 2} for HT tests. The oxide layer formed on (Ti,Re)N were the mixture of TiO{sub 2}, Ti−O−N, ReO{sub 2} and Re{sub 2}O{sub 7} for both test temperatures. Re{sub 2}O{sub 7} provided very low friction coefficient to (Ti,Re)N. The findings are consistent with the crystal chemistry approach.

  1. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  2. Ambient Seismic Imaging of Hydraulically Active Fractures at km Depths

    Science.gov (United States)

    Malin, P. E.; Sicking, C.

    2017-12-01

    Streaming Depth Images of ambient seismic signals using numerous, densely-distributed, receivers have revealed their connection to hydraulically active fractures at 0.5 to 5 km depths. Key for this type of imaging is very high-fold stacking over both multiple receives and periods of a few hours. Also important is suppression of waveforms from fixed, repeating sources such as pumps, generators, and traffic. A typical surface-based ambient SDI survey would use a 3D seismic receiver grid. It would have 1,000 to 4,000 uniformly distributed receivers at a density of 50/km2over the target. If acquired by borehole receivers buried 100 m deep, the density can be dropped by an order of magnitude. We show examples of the acquisition and signal processing scenarios used to produce the ambient images. (Sicking et al., SEG Interpretation, Nov 2017.) While the fracture-fluid source connection of SDI has been verified by drilling and various types of hydraulic tests, the precise nature of the signal's origin is not clear. At the current level of observation, the signals do not have identifiable phases, but can be focused using P wave velocities. Suggested sources are resonances of pressures fluctuations in the fractures, or small, continuous, slips on fractures surfaces. In either case, it appears that the driving mechanism is tectonic strain in an inherently unstable crust. Solid earth tides may enhance these strains. We illustrate the value of the ambient SDI method in its industrial application by showing case histories from energy industry and carbon-capture-sequestration projects. These include ambient images taken before, during, and after hydraulic treatments in un-conventional reservoirs. The results show not only locations of active fractures, but also their time responses to stimulation and production. Time-lapse ambient imaging can forecast and track events such as well interferences and production changes that can result from nearby treatments.

  3. IC design challenges for ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Roovers, R.L.J.

    2003-01-01

    The vision of ambient intelligence opens a world of unprecedented experiences: the interaction of people with electronic devices is changed as contextual awareness, natural interfaces and ubiquitous availability of information are realized. We analyze the consequences of the ambient intelligence

  4. Historical Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in...

  5. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a.... In addition, chemicals that are likely to be gases at ambient temperatures and which have low water... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more...

  6. Tipologia para a contabilidade ambiental

    Directory of Open Access Journals (Sweden)

    Nazlhe Faride Chein Schekaiban

    2007-06-01

    Full Text Available Este artigo revê a visão, as propostas e o desenvolvimento da contabilidade ambiental, refletindo sobre suas implicações, com a finalidade de descobrir e encontrar sua importância e situação. Para se chegar a esse resultado foi preciso realizar uma revisão epistemológica moldada e processo reflexivo de sustentabilidade e da aproximação ao usuário, da percepção da realidade contábil no México e da gerência interna das organizações. As conclusões mostram a contabilidade ambiental no México fora da re-alidade operativa do modelo contábil regional, aumentando a importância de se criar uma cultura capaz de examinar o controle da missão deste tipo de contabilidade.

  7. Responsabilidades municipales en materia ambiental

    Directory of Open Access Journals (Sweden)

    Ignacio Pichardo Pagaza

    2009-01-01

    Este trabajo reflexiona en torno a las responsabilidades que la Constitución política impone de manera exclusiva a los municipios y que por su naturaleza tienen efectos directos en el medio ambiente. Se alude aquí a los servicios de agua po ta ble, drenaje, saneamiento, tratamiento de aguas residuales, disposición de residuos sólidos, rastros, panteones y mercados. Ahora son los desafíos ambientales de la autoridad municipal, por lo que deben ser también sus prioridades. Si esos servicios no se atienden oportuna y técnicamente la población sufrirá, se deteriorará gravemente el medio ambiente y disminuirá la calidad de la vida de la comunidad.

  8. Ambiente psicologico en las organizaciones

    Directory of Open Access Journals (Sweden)

    Damarcy Cortés Baracaldo

    2002-01-01

    Full Text Available El talento humano en las organizaciones se ha convertido en las ultimas decadas en un recurso que se administra de acuerdo al estilo de liderazgo del jefe, lo que implica una marcada relación hacia la tarea, hacia las relaciones con el personal o una combinación de estas dos, que desencadenan en un ambiente psicológico exclusive en cada organización.

  9. Haciendas Locales y Medio Ambiente

    OpenAIRE

    Rozas Valdés, José Andrés

    1997-01-01

    Junto a los medios puramente administrativos orientados a la protección del medio ambiente, cada día adquieren mayor protagonismo los que pueden adoptarse desde el ámbito del derecho financiero, del ingreso y gasto públicos. El trabajo se ha estructurado en cuatro apartados: aguas, residuos sólidos, polución atmosférica y contaminación acústica.

  10. H:\\PMKER 25(2)\\PDF 25(2)\\BAN KOFFI.xps

    African Journals Online (AJOL)

    AISA

    L.R., Montville T.J. (Eds.). Food Microbiology-. Fundamentals and frontiers. ASM Press,. Washington, D.C., pp. 721 -733. Timbie D. J., Sechrist L. and P. G. Keeney. 1978. Application of high pressure liquid chromatography to the study of variables affecting theobromine and caffeine concentrations in cocoa beans. J Food Sci.

  11. Formation of carboxy- and amide-terminated alkyl monolayers on silicon(111) investigated by ATR-FTIR, XPS, and X-ray scattering: Construction of photoswitchable surfaces

    DEFF Research Database (Denmark)

    Rück-Braun, Karola; Petersen, Michael Åxman; Michalik, Fabian

    2013-01-01

    -FTIR and XPS studies of the fulgimide samples revealed closely covered amide-terminated SAMs. Reversible photoswitching of the headgroup was read out by applying XPS, ATR-FTIR, and difference absorption spectra in the mid-IR. In XPS, we observed a reversible breathing of the amide/imide C1s and N1s signals......We have prepared high-quality, densely packed, self-assembled monolayers (SAMs) of carboxy-terminated alkyl chains on Si(111). The samples were made by thermal grafting of methyl undec-10-enoate under an inert atmosphere and subsequent cleavage of the ester functionality to disclose the carboxylic...... zigzag-like substitution pattern for the ester- and carboxy-terminated monolayer. Hydrolysis of the remaining H-Si(111) bonds at the surface furnished HO-Si(111) groups according to XPS and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) studies. The amide-terminated alkyl...

  12. Effect of molecular weight and density of ambient gas on shock wave in laser-induced surface nanostructuring

    International Nuclear Information System (INIS)

    Guo Liying; Wang Xinwei

    2009-01-01

    This paper presents the results of molecular dynamics studies about the shock wave during laser-induced surface nanostructuring. A quasi-three dimensional model is constructed to study systems consisting of over 2 million atoms. Detailed studies are carried out about the shock wave front and Mach number, evolution of plume and ambient gas interaction zone, and energy exchange between the ambient gas and plume. Under an ambience of lower pressure or lighter molecular mass, the plume affects a larger area while the strength of the shock wave front is weaker. With the same ambient pressure, the ablated material features the same kinetic energy at the late stage regardless of the molecular weight of the ambient gas. The same conclusion holds for the energy increase of the ambient gas as well. When the ambient pressure is reduced, more kinetic energy is carried out by the ablated material while less energy is transferred to the ambient gas. It is observed that heavier ambient gas could bounce back the ablated material to the target surface.

  13. A comparative study of Mg and Pt contacts on semi-insulating GaAs: Electrical and XPS characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dubecký, F., E-mail: elekfdub@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Kindl, D.; Hubík, P. [Institute of Physics CAS, v.v.i., Cukrovarnická 10, CZ-16200 Prague (Czech Republic); Mičušík, M. [Polymer Institute, SAS, Dúbravská cesta 9, Bratislava, SK-84541 (Slovakia); Dubecký, M. [Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, CZ-70103 Ostrava 1 (Czech Republic); Boháček, P.; Vanko, G. [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Gombia, E. [IMEM-CNR, Parco area delle Scienze 37/A, Parma, I-43010 (Italy); Nečas, V. [Faculty of Electrical Engineering and Information Technology, SUT, Ilkovičova 3, Bratislava, SK-81219 (Slovakia); Mudroň, J. [Department of Electronics, Academy of Armed Forces, Demänová 393, Liptovský Mikuláš, SK-03106 (Slovakia)

    2017-02-15

    Highlights: • Explored were diodes with full-area low/high work function metal contacts on semi-insulating GaAs (S). • The Mg-S-Mg diode is promising for radiation detectors for its low high-field current. • The XPS analysis of Mg-S interface shows presence of MgO instead of Mg metal. - Abstract: We present a comparative study of the symmetric metal-SI GaAs-metal (M-S-M) diodes with full-area contacts on both device sides, in order to demonstrate the effect of contact metal work function in a straightforward way. We compare the conventional high work function Pt contact versus the less explored low work function Mg contact. The Pt-S-Pt, Mg-S-Mg and mixed Mg-S-Pt structures are characterized by the current-voltage measurements, and individual Pt-S and Mg-S contacts are investigated by the X-ray photoelectron spectroscopy (XPS). The transport measurements of Mg-S-Pt structure show a significant current decrease at low bias while the Mg-S-Mg structure shows saturation current at high voltages more than an order of magnitude lower with respect to the Pt-S-Pt reference. The phenomena observed in Mg-containing samples are explained by the presence of insulating MgO layer at the M-S interface, instead of the elementary Mg, as confirmed by the XPS analysis. Alternative explanations of the influence of MgO layer on the effective resistance of the structures are presented. The reported findings have potential applications in M-S-M sensors and radiation detectors based on SI GaAs.

  14. Temperature dependent structural, luminescent and XPS studies of CdO:Ga thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Moholkar, A.V.; Agawane, G.L.; Sim, Kyu-Ung; Kwon, Ye-bin; Choi, Doo Sun; Rajpure, K.Y.; Kim, J.H.

    2010-01-01

    Research highlights: → The CdO:Ga thin films seems an alternative to traditional TCO materials used in photovoltaic applications. This work deals the effect of deposition temperature on sprayed CdO:Ga films with respect to the structural, luminescent and XPS studies. → The crystalline quality of the GCO films improves with deposition temperature. → The oxygen vacancies are responsible for n-type conductivity and green emission. → The minimum resistivity, highest carrier concentration and mobility are 1.9 x 10 -4 Ω cm, 11.7 x 10 21 cm -3 and 27.64 cm 2 V -1 s -1 , respectively. - Abstract: The structural, compositional, photoluminescent and XPS properties of CdO:Ga thin films deposited at temperatures ranging from 275 to 350 o C, using spray pyrolysis are reported. X-ray diffraction characterization of as-deposited GCO thin films reveals that films are of cubic structure with a (2 0 0) preferred orientation. The crystalline quality of the GCO films improves and the grain size increases with deposition temperature. The EDS analyses confirm oxygen deficiency present in the film and are responsible for n-type conductivity. The photoluminescence spectra demonstrated that the green emission peaks of CdO thin films are centered at 482 nm. The relative intensity of these peaks is strongly dependent on the deposition temperature. Oxygen vacancies are dominant luminescent centers for green emission in CdO thin films. The XPS measurement shows the presence of Cd, Ga, O and C elements and confirms that CdO:Ga films are cadmium-rich.

  15. An IR and XPS spectroscopy assessment of the physico-chemical surface properties of alumina–YAG nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Spina, Giulia; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it; Palmero, Paola, E-mail: paola.palmero@polito.it; Montanaro, Laura

    2013-12-16

    Well-dispersed nano-crystalline transition alumina suspensions were mixed with yttrium chloride aqueous solutions, with the aim of producing by spray-drying Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite powders of increasing YAG vol.%. Two samples were prepared, with different Y content, corresponding to 5 and 20 YAG vol.%, respectively. Both samples were then treated at either 600 or 1150 °C. The obtained powders were characterized by X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infra Red (FT-IR) spectroscopy and compared to three reference samples: commercial nano-crystalline transition alumina, YAG and Y{sub 2}O{sub 3}. YAG powders were obtained by co-precipitation route whereas Y{sub 2}O{sub 3} powders were yielded by spray-drying of a yttrium chloride aqueous solution. Modification of physico-chemical properties of the surface of alumina nanoparticles were assessed by combining XPS and FT-IR spectroscopies. On the basis of the results obtained, a possible model is proposed for the structure of the obtained composites, in which Y basically reacts with more acidic hydroxyls of alumina, by forming Y-rich surface grains, the extension of which depends on the thermal treatment. - Highlights: • Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite nanopowders were prepared by spray drying. • Combined XPS and IR spectroscopy: effective tools to study surface modifications. • Y reacts with more acidic hydroxyls at alumina surface. • Y-rich surface grains form: their extension depends on the thermal treatment.

  16. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    Science.gov (United States)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  17. XPS study on the electronic structure of hydrided Ti-V, Ti-Nb and Ti-Mo alloys

    International Nuclear Information System (INIS)

    Tanaka, Kazuhide; Aoki, Hiromasa

    1989-01-01

    Effects of hydrogenation on the core and valence electronic structures of β(bcc)-stabilized Ti-25at%V, Ti-50at%Nb and Ti-20at%Mo alloys are studied with XPS technique using monochromatized Al K α radiation. Small but uniform binding-energy shifts are observed upon hydrogenation for all the core spectra measured. Their valence-band spectra are significantly distorted, providing an evidence of the formation of metal-hydrogen bonding bands in these Ti alloys. Interrelations between the core binding-energy shifts and the valence-band distortion are discussed. (orig.)

  18. Investigation of the CANLUB/sheath interface in CANDU fuel at extended burnup by XPS and SEM/WDX

    International Nuclear Information System (INIS)

    Hocking, W.H.; Behnke, R.; Duclos, A.M.; Gerwing, A.F.; Chan, P.K.

    1997-01-01

    A systematic investigation of the fuel-sheath interface in CANDU fuel as a function of extended burnup has been undertaken by XPS and SEM/WDX analysis. Adherent deposits of UO 2 and fission products, including Cs, Ba, Rb, I, Te, Cd and possibly Ru, have been routinely identified on CANLUB coated and bare Zircaloy surfaces. Some trends in the distribution and chemistry of key fission products have begun to emerge. Several potential mechanisms for degradation of the CANLUB graphite layer at high burnup have been practically excluded. New evidence of carbon relocation within the fuel element and limited reaction with excess oxygen has also been obtained. (author)

  19. Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp. dwc-1 as investigated by FTIR, TEM and XPS

    International Nuclear Information System (INIS)

    Changsong Zhao; Congcong Ding; Jiali Liao; Jijun Yang; Yuanyou Yang; Jun Tang; Ning Liu; Qun Sun

    2016-01-01

    In this paper, TEM-EDX, FTIR, XPS, PIXE, and EPBS were employed to identify the uranium biosorption behavior and the potential mechanism on cells of Geotrichum sp. dwc-1, isolated from soils. These results displayed that the biosorption behavior was greatly dependent on pH and uranium was absorbed by bounding to amino, phosphate as well as carboxyl functional groups. Uranium biosorption behavior on Geotrichum sp. dwc-1 involves bioaccumulation, electrostatic interaction and ion exchange process. This work throws further light on potential fungal roles these mechanisms for elemental recovery and bioremediation. (author)

  20. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology

    International Nuclear Information System (INIS)

    Zhu, Xiangdong; Yang, Shijun; Wang, Liang; Liu, Yuchen; Qian, Feng; Yao, Wenqing; Zhang, Shicheng; Chen, Jianmin

    2016-01-01

    Antibiotic mycelial fermentation residues (AMFRs), which are emerging solid pollutants, have been recognized as hazardous waste in China since 2008. Nitrogen (N), which is an environmental sensitivity element, is largely retained in AMFR samples derived from fermentation substrates. Pyrolysis is a promising technology for the treatment of solid waste. However, the outcomes of N element during the pyrolysis of AMFRs are still unknown. In this study, the conversion of N element during the pyrolysis of AMFRs was tracked using XPS (X-ray photoelectron spectroscopy) and online TG-FTIR-MS (Thermogravimetry-Fourier transform infrared-Mass spectrometry) technology. In the AMFR sample, organic amine-N, pyrrolic-N, protein-N, pyridinic-N, was the main N-containing species. XPS results indicated that pyrrolic-N and pyridinic-N were retained in the AMFR-derived pyrolysis char. More stable species, such as N-oxide and quaternary-N, were also produced in the char. TG-FTIR-MS results indicated that NH_3 and HCN were the main gaseous species, and their contents were closely related to the contents of amine-N and protein-N, and pyrrolic-N and pyridinic-N of AMFRs, respectively. Increases in heating rate enhanced the amounts of NH_3 and HCN, but had less of an effect on the degradation degree of AMFRs. N-containing organic compounds, including amine-N, nitrile-N and heterocyclic-N, were discerned from the AMFR pyrolysis process. Their release range was extended with increasing of heating rate and carbon content of AMFR sample. This work will help to take appropriate measure to reduce secondary pollution from the treatment of AMFRs. - Highlights: • Hazardous AMFR material was treated by slow pyrolysis reaction. • TG-FTIR-MS were used to study the N conversion for pyrolysis gas and bio-oil. • NH_3 and HCN were observed as the main N-containing gas species. • XPS were used to study the N conversion for pyrolysis char. • Stable species, such as N-oxide and quaternary-N, were

  1. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  2. An Auger and XPS survey of cerium active corrosion protection for AA2024-T3 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Uhart, A. [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Ledeuil, J.B. [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Université de Toulouse, UPS-INP-CNRS, Institut Carnot CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France); Gonbeau, D. [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Dupin, J.C., E-mail: dupin@univ-pau.fr [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Bonino, J.P.; Ansart, F. [Université de Toulouse, UPS-INP-CNRS, Institut Carnot CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France); Esteban, J. [Messier-Bugatti-Dowty, Etablissement de Molsheim, 3, rue Antoine de St Exupéry, 67129 Molsheim (France)

    2016-12-30

    Graphical abstract: Coupled SAM/SEM survey of cerium inhibitor migration towards corrosion pits in a conversion coating over AA2024-T3 substrate. - Highlights: • XPS evidenced the proximity of the inhibitor with the surface AA2024 alloy. • Cerium conversion coatings with [Ce] = 0.1 M offer the best corrosion resistance. • SAM shown the migration of Ce + III entities towards the corrosion pits or crevices. • High resolution analyses (Auger) connecting the nano-scale order with the chemical distribution.

  3. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions

    International Nuclear Information System (INIS)

    Mesquita, Thiago J.; Chauveau, Eric; Mantel, Marc; Nogueira, Ricardo P.

    2013-01-01

    The objective of this work is to study the effect of Mo additions on film passive properties of three different stainless steels (SS) types (austenitic, ferritic and duplex alloys). A comparison between Mo containing (3 wt% Mo) and free Mo (0 wt% Mo) grades of highly controlled laboratory heats was done considering their passive film formed in different aggressive conditions, from neutral to alkaline pH. The presence of oxidized Mo on the passive layer was confirmed by X-ray photoelectron Spectroscopy (XPS). The presence of Mo within the passive film improved the passivity breakdown potential for the duplex and ferritic SS, but seemed to have no effect for austenitic SS.

  4. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Thiago J., E-mail: thiago.mesquita@ugitech.com [Ugitech Research Center, Avenue Paul Girod, 73403 Ugine Cedex (France); Chauveau, Eric; Mantel, Marc [Ugitech Research Center, Avenue Paul Girod, 73403 Ugine Cedex (France); Nogueira, Ricardo P. [LEPMI UMR 5279 CNRS – Grenoble INP–Université de Savoie–Université Joseph Fourier BP 75, 38402 St Martin d’Hères (France)

    2013-04-01

    The objective of this work is to study the effect of Mo additions on film passive properties of three different stainless steels (SS) types (austenitic, ferritic and duplex alloys). A comparison between Mo containing (3 wt% Mo) and free Mo (0 wt% Mo) grades of highly controlled laboratory heats was done considering their passive film formed in different aggressive conditions, from neutral to alkaline pH. The presence of oxidized Mo on the passive layer was confirmed by X-ray photoelectron Spectroscopy (XPS). The presence of Mo within the passive film improved the passivity breakdown potential for the duplex and ferritic SS, but seemed to have no effect for austenitic SS.

  5. In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films

    Science.gov (United States)

    Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek

    2017-12-01

    A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.

  6. XPS Analysis of Ni and Oxygen in Single-Sintered SrTiO3 Multifunction Ceramic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    XPS analyses have been performed to investigate the chemical conditions of Ni and oxygen on grain surfaces in single-sintered SrTiO3 capacitor-varistor ceramic doped with Nb2O5 and NiO. It is ascertained that Ni is in form of Ni2+ ions, which substitute for Ti4+ ions on grain surfaces during the oxidizing annealing. Moreover, it is confirmed that three kinds of chemically adsorbed oxygen such as O2-, O- and O~ are formed on grain surfaces. It is proposed that these behaviors contribute greatly to the generation of multiple types of grain boundary acceptor states in the ceramic.

  7. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Holly J. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, MS 39762 (United States)], E-mail: hjp2@msstate.edu; Schulz, Kirk H. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, MS 39762 (United States); Bumgardner, Joel D. [Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152 (United States); Walters, Keisha B. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, MS 39762 (United States)

    2008-05-30

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  8. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    International Nuclear Information System (INIS)

    Martin, Holly J.; Schulz, Kirk H.; Bumgardner, Joel D.; Walters, Keisha B.

    2008-01-01

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  9. XPS study on the surface reaction of uranium metal in H2 and H2-CO atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1996-04-01

    The surface reactions of uranium metal in H 2 and H 2 -CO atmospheres and the effects of temperature and CO on the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between commercial H 2 and uranium metal at 25 degree C leads mainly to the further oxidation of surface layer of metal due to traces of water vapour. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing the exposure of H 2 . Investigation indicates CO inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmospheres. (13 refs., 10 figs.)

  10. XPS and GDOES Characterization of Porous Coating Enriched with Copper and Calcium Obtained on Tantalum via Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Krzysztof Rokosz

    2016-01-01

    Full Text Available XPS and GDOES characterizations of porous coatings on tantalum after Plasma Electrolytic Oxidation (PEO at 450 V for 3 minutes in electrolyte containing concentrated (85% phosphoric acid with calcium nitrate and copper (II nitrate are described. Based on the obtained data, it may be concluded that the PEO coating consists of tantalum (Ta5+, calcium (Ca2+, copper (Cu2+  and Cu+, and phosphates (PO43-. It has to be pointed out that copper and calcium are distributed throughout the volume. The authors also propose a new model of PEO, based on the derivative of GDOES signals with sputtering time.

  11. Maquinas virtuais em ambientes seguros

    OpenAIRE

    Arthur Bispo de Castro

    2006-01-01

    Resumo: Desde o início da computação a idéia de máquinas virtuais vem sendo aplicada para estender o multiprocessamento, multi-programação e multi-acesso, tornando os sistemas multi-ambiente. O contínuo aumento no poder de processamento dos computadores fez com que máquinas muito rápidas estivessem ao alcance de qualquer usuário, surgindo PCs com processamento, espaço em disco e memória suficiente para comportar mais de um sistema compartilhando o mesmo hardware. Basicamente, o objetivo das m...

  12. educación ambiental

    Directory of Open Access Journals (Sweden)

    Fernando Ojeda Barceló

    2008-01-01

    Full Text Available Las Tecnologías de la Información y Comunicación (TICs pueden constituir una herramienta de primer orden para la Educación Ambiental para la Sostenibilidad (EApS, pero todavía existe cierta reticencia por parte de educadores ambientales a hacer un uso de ellas de forma habitual. El objetivo fundamental de este trabajo es ofrecer una revisión del estado de la cuestión tanto a nivel nacional como internacional e intentar hacer una propuesta didáctica de trabajo colaborativo a través de Internet para estudiantes de secundaria.

  13. Pediatria ambiental: um tema emergente

    Directory of Open Access Journals (Sweden)

    Patricia M. Valenzuela

    2011-04-01

    Full Text Available OBJETIVO: Revisar os artigos mais relevantes sobre a pediatria ambiental, seus efeitos potenciais para a saúde e, especialmente, seus avanços na prevenção. FONTES DOS DADOS: Foi realizada uma pesquisa utilizando as bases de dados MEDLINE/PubMed e SciELO. Foram revisados artigos de 1990 a 2010, além de capítulos de livros relacionados à pediatria ambiental. SÍNTESE DOS DADOS: Há uma variedade significativa de fatores que tornam as crianças altamente vulneráveis à exposição a riscos ambientais, associados principalmente ao consumo comparativamente maior de água, comida e ar por parte da criança, em relação ao seu peso corporal. De acordo com a Organização Mundial de Saúde, mais de 3 milhões de crianças menores de 5 anos morrem devido a doenças relacionadas ao meio ambiente. Aproximadamente 30-40% das doenças pediátricas estão relacionadas a fatores ambientais. As crianças estão constantemente expostas a vários riscos ambientais para a saúde, dentre os quais se destacam: água contaminada, falta de condições adequadas de saneamento, poluição do ar, vetores de doenças, perigos químicos, injúrias e acidentes. CONCLUSÕES: Atualmente, os pediatras são desafiados a tratar das necessidades de saúde ligadas à pediatria ambiental. A história pediátrica deve ser mais abrangente, acrescentando-se questões pontuais que ajudem a identificar potenciais riscos ambientais. A conscientização e o entendimento sobre os efeitos nocivos das várias condições ambientais e o conhecimento sobre as medidas de prevenção relacionadas resultarão em intervenções oportunas e adequadas que melhorarão a saúde e o desenvolvimento das nossas crianças.

  14. Blood pressure

    Science.gov (United States)

    Normal blood pressure is important for proper blood flow to the body's organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  15. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study.

    Directory of Open Access Journals (Sweden)

    Danni Zheng

    Full Text Available Rates of acute intracerebral hemorrhage (ICH increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2 participants on an hourly timescale.INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset and elevated systolic blood pressure (SBP, 150-220 mmHg assigned to intensive (target SBP <140 mmHg or guideline-recommended (SBP <180 mmHg BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs and 95% CI.Low ambient temperature (≤10°C was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99-1.91 for 10°C, 1.92 (1.31-2.81 for 0°C, 3.13 (1.89-5.19 for -10°C, and 5.76 (2.30-14.42 for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses.Exposure to low ambient temperature within several hours increases the risk of ICH.ClinicalTrials.gov NCT00716079.

  16. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study

    Science.gov (United States)

    Zheng, Danni; Arima, Hisatomi; Sato, Shoichiro; Gasparrini, Antonio; Heeley, Emma; Delcourt, Candice; Lo, Serigne; Huang, Yining; Wang, Jiguang; Stapf, Christian; Robinson, Thompson; Lavados, Pablo; Chalmers, John; Anderson, Craig S.

    2016-01-01

    Background Rates of acute intracerebral hemorrhage (ICH) increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) participants on an hourly timescale. Methods INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset) and elevated systolic blood pressure (SBP, 150–220 mmHg) assigned to intensive (target SBP <140 mmHg) or guideline-recommended (SBP <180 mmHg) BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs) and 95% CI. Results Low ambient temperature (≤10°C) was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99–1.91) for 10°C, 1.92 (1.31–2.81) for 0°C, 3.13 (1.89–5.19) for -10°C, and 5.76 (2.30–14.42) for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses. Conclusions Exposure to low ambient temperature within several hours increases the risk of ICH. Trial Registration ClinicalTrials.gov NCT00716079 PMID:26859491

  17. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1985-01-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous 85 Kr air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where 85 Kr was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State-of-the-art 85 Dr sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of 85 Kr

  18. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1984-10-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous krypton-85 air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where krypton-85 was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State of the art krypton-85 sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of krypton-85. 3 references, 3 figures, 1 table

  19. Characterization of Sr2+ uptake on natural minerals of kaolinite and magnesite using XRPD, SEM/EDS, XPS, and DRIFT

    International Nuclear Information System (INIS)

    Shahwan, T.; Erten, H.N.

    2005-01-01

    The sorption behavior of Sr 2+ ions on natural minerals rich in kaolinite and magnesite was studied using SEM/EDS, XPS, XRPD, AAS/AES and DRIFT techniques. Quantitative analysis of the XPS data shows that magnesite is more effective in Sr 2+ uptake than kaolinite. DRIFT spectra and XRPD patterns indicate that the structures of both minerals were not affected upon Sr 2+ sorption. Intercalation of DMSO in kaolinite lamellae aiming at increasing the interlayer space did not significantly enhance the sorption capacity of the clay towards Sr 2+ probably due to the lack of a negative charge on the accessible sites. EDS mapping indicated that while the sorbed Sr is equally distributed on surface of natural kaolinite, it was associated - to a larger extent - with the regions richer in Mg in the case of natural magnesite. Comparing the uptake mechanisms of natural magnesite with that of pure MgCO 3 , it was seen that while natural magnesite sorbed Sr 2+ mainly through an ion exchange type mechanism, the formation of SrCO 3 coprecipitate was detected on the surface of the MgCO 3 at higher loadings. (orig.)

  20. Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS)

    International Nuclear Information System (INIS)

    Santamaria, M.; Di Quarto, F.; Zanna, S.; Marcus, P.

    2007-01-01

    A detailed investigation of the initial film grown on mechanically polished Mg electrodes has been carried out by ex situ X-ray Photoelectron Spectroscopy (XPS) and in situ Photocurrent Spectroscopy (PCS), allowing to reach a detailed picture of the passive layer structure. The XPS data show that the films formed soon after mechanical treatment and immersion in aqueous electrolyte have a bilayer structure, consisting of an ultra-thin MgO inner layer (∼2.5 nm) and a Mg(OH) 2 external layer. The thickness of the Mg(OH) 2 layer is a function of immersion time and solution temperature. After mechanical treatment and immersion in aqueous solution at room temperature, the MgO/Mg(OH) 2 layer in some area of electrodes is so thin to allow an electron photoemission process from the Mg Fermi level to the electrolyte conduction band. Only internal photoemission processes are evidenced for Mg electrodes aged in NaOH at 80 deg. C, due the formation of a thicker Mg(OH) 2 layer. From anodic photocurrent spectra an optical band gap of ∼4.25 eV has been estimated for Mg(OH) 2 , lower with respect to the optical gap of the corresponding anhydrous counterpart

  1. The influence of oxygen adsorption on the NEXAFS and core-level XPS spectra of the C60 derivative PCBM

    International Nuclear Information System (INIS)

    Brumboiu, Iulia Emilia; Eriksson, Olle; Brena, Barbara; Ericsson, Leif; Hansson, Rickard; Moons, Ellen

    2015-01-01

    Fullerenes have been a main focus of scientific research since their discovery due to the interesting possible applications in various fields like organic photovoltaics (OPVs). In particular, the derivative [6,6]-phenyl-C 60 -butyric acid methyl ester (PCBM) is currently one of the most popular choices due to its higher solubility in organic solvents compared to unsubstituted C 60 . One of the central issues in the field of OPVs is device stability, since modules undergo deterioration (losses in efficiency, open circuit voltage, and short circuit current) during operation. In the case of fullerenes, several possibilities have been proposed, including dimerization, oxidation, and impurity related deterioration. We have studied by means of density functional theory the possibility of oxygen adsorption on the C 60 molecular moiety of PCBM. The aim is to provide guidelines for near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) measurements which can probe the presence of atomic or molecular oxygen on the fullerene cage. By analysing several configurations of PCBM with one or more adsorbed oxygen atoms, we show that a joint core level XPS and O1s NEXAFS investigation could be effectively used not only to confirm oxygen adsorption but also to pinpoint the bonding configuration and the nature of the adsorbate

  2. XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices

    Science.gov (United States)

    Myers, Matthew; Khir, Farah Liyana Muhammad; Home, Michael A.; Mennell, Christopher; Gillbanks, Jeremy; Tadich, Anton; Baker, Murray V.; Nener, Brett D.; Parish, Giacinta

    2018-03-01

    We report on a study using a combination of XPS/NEXAFS and conductivity measurements to develop a fundamental understanding of how dipolar molecules interact with the heterostructure device surface and affect the device conductivity of AlGaN/GaN heterostructure-based transistors. In such structures, which are increasingly being investigated for chemical and biological sensing, a 2-dimensional electron gas spontaneously forms at the layer interface that is sensitive to the charge characteristics of the exposed surface. Glycine, chosen for this study because it is the simplest of the amino acids and is known to form a zwitterionic configuration when stabilized through intermolecular interactions, was evaporated under ultra-high vacuum conditions onto the device surface and subsequently both XPS/NEXAFS and conductivity measurements were conducted. NEXAFS spectra show a preferential orientation for the Glycine molecules on the surface and evidence for both neutral and zwitterionic species on the surface. In situ conductivity measurements suggest that the negatively charged carboxylate group is closest to the surface. These results are a unique and pivotal contribution to the previous and at times conflicting literature on the zwitterionic nature of Glycine.

  3. An AFM and XPS study of corrosion caused by micro-liquid of dilute sulfuric acid on stainless steel

    International Nuclear Information System (INIS)

    Wang Rongguang

    2004-01-01

    Micro-liquid of dilute sulfuric acid deposited on SUS304 steel surface were observed with the ac non-contact mode of an atomic force microscopy (AFM), and the detail of the corrosion process caused by them was investigated with the contact mode of the AFM, X-ray photoelectron spectroscopy (XPS) and wavelength dispersive X-ray spectroscopy (WDXS). As a result, even not applying bias voltages between the tip of the cantilever and the specimen, micro-liquid of sulfuric acid can be successfully imaged using the ac non-contact mode of AFM. Two shapes of micro-acid, i.e., micro-droplets and micro-films, were found to co-exist on the specimen surface. On areas covered by micro-films of acid, only small corrosion product particles appeared and no corrosion pits were found. Beneath micro-droplets, corrosion reaction continue to produce pits until they were all consumed to form a corrosion product (mainly iron oxides) with almost the same shape with the droplet. The total corrosion reaction time was speculated to be between 690 and 1500 ks. The corrosion product formed from micro-droplets was believed to be a process of accumulating small corrosion product particles from the liquid/substrate interface to the surface of the formerly produced corrosion product. The XPS and WDXS analysis also supports the above results

  4. Surface modification of pyrolyzed carbon fibres by cyclic voltammetry and their characterization with XPS and dye adsorption

    International Nuclear Information System (INIS)

    Georgiou, P.; Walton, J.; Simitzis, J.

    2010-01-01

    Commercial carbon fibres were pyrolyzed up to 1000 deg. C and were then electrochemically treated by cyclic voltammetry in aqueous electrolyte solutions of H 2 SO 4 , in two potential sweep ranges: a narrow region, N, and a wide region, W, avoiding and including water decomposition, respectively. The anodic and cathodic peaks were correlated with oxide formation and their partial reduction, respectively. The nature of oxygen containing groups on the fibre surfaces was determined by XPS. Wide scan spectra and high energy resolution spectra were recorded through the C 1s, O 1s, N 1s and S 2p photoelectron regions. The ability of the fibres to adsorb methylene blue and alizarin yellow dyes from their aqueous solutions indicates the presence of electron acceptor or donor groups on the fibres, respectively. The carbon fibres were classified into two categories. The first includes electrochemically untreated and treated in the N region, and the second those treated in the W region. The high oxygen concentration and effective dye adsorption on the carbon fibres in the second category indicates that their surfaces were effectively modified. The adsorption of dyes on carbon fibres constitutes a complementary method to XPS for an indirect estimation of oxygen and other groups present on the carbon fibre surfaces.

  5. XPS Spectra Analysis of Ti2+, Ti3+ Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles

    Science.gov (United States)

    Chinh, Vu Duc; Broggi, Alessandra; Di Palma, Luca; Scarsella, Marco; Speranza, Giorgio; Vilardi, Giorgio; Thang, Pham Nam

    2018-04-01

    TiO2-SiO2 mixed oxides have been prepared by the sol-gel technique from tetrabutyl orthotitanate and tetraethyl orthosilicate. The prepared materials were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, nitrogen physisorption, Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS). The results indicate that the TiO2-SiO2 mixed oxides have a large surface area and a nanoscale size. FT-IR spectra show that Ti atoms are bonded to silica by oxygen bridging atoms in Ti-O-Si bonds. The titanium valence states in TiO2-SiO2 mixed oxides were investigated by XPS, and their spectra report the presence of Ti2+ and Ti3+ cations for high silica concentration, suggesting the formation of oxygen vacancies. The photocatalytic activity of the prepared materials has been evaluated for the photodegradation of methylene blue (MB). The mixed oxides were activated by means of a UV light source, and the concentration of MB was monitored by UV-Vis spectroscopy. The synthesized TiO2-SiO2 shows significantly higher MB removal efficiency in comparison with that of the commercial TiO2 Degussa, P25.

  6. Influence of oxygen incorporation on the defect structure of GaN microrods and nanowires. An XPS and CL study

    International Nuclear Information System (INIS)

    Guzmán, G; Herrera, M; Silva, R; Vásquez, G C; Maestre, D

    2016-01-01

    We report a cathodoluminescence (CL) and x-ray photoelectron spectroscopy (XPS) study of the influence of oxygen incorporation on the defect structure of GaN microrods and nanowires. The micro- and nanostructures were synthesized by a thermal evaporation method, which enables us to incorporate oxygen at different concentrations by varying the growth temperature. HR-TEM measurements revealed that oxygen generates stacking fault defects and edge dislocations along the GaN nanowires. Amorphous GaO x N y compounds were segregated on the surface of the nanowires. XPS, XRD and CL measurements suggests that the microrods and nanowires were composed of amorphous oxynitride compounds at their surface and GaN at their inner region. CL measurements revealed that the nanostructures generated an emission of 2.68 eV that increased in intensity proportionally to their oxygen content. We have attributed this emission to electronic transitions between donor substitutional-oxygen (O N ) and acceptor interstitial-oxygen (O i ) state levels. (paper)

  7. XPS\\KOUADIO KOUASSI.xps

    African Journals Online (AJOL)

    HP Pro 2000

    éclaircie dans les impénétrables régénérations de chêne. Dans la forêt tropicale guyanaise, Guitet et al. (2009) ont montré que l'application mixte des éclaircies sélective et systématique a permis une forte croissance en diamètre des tiges des ...

  8. Polymorphism of a polymer precursor: metastable glycolide polymorph recovered via large scale high-pressure experiments

    DEFF Research Database (Denmark)

    Hutchison, Ian B.; Delori, Amit; Wang, Xiao

    2015-01-01

    Using a large volume high-pressure press a new polymorph of an important precursor for biomedical polymers was isolated in gram quantities and used to seed crystallisation experiments at ambient pressure....

  9. Pressurized waterproof case electronic device

    KAUST Repository

    Berumen, Michael L.

    2013-01-31

    A pressurized waterproof case for an electronic device is particularly adapted for fluid-tight containment and operation of a touch-screen electronic device or the like therein at some appreciable water depth. In one example, the case may be formed as an enclosure having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touchscreen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein to slightly greater than ambient in order to prevent the external water pressure from bearing against the transparent membrane and pressing it against the touch screen, thereby precluding operation of the touch screen device within the case. The pressurizing system may include a small gas cartridge or may be provided from an external source.

  10. Pressurized transient otoacoustic emissions measured using click and chirp stimuli.

    Science.gov (United States)

    Keefe, Douglas H; Patrick Feeney, M; Hunter, Lisa L; Fitzpatrick, Denis F; Sanford, Chris A

    2018-01-01

    Transient-evoked otoacoustic emission (TEOAE) responses were measured in normal-hearing adult ears over frequencies from 0.7 to 8 kHz, and analyzed with reflectance/admittance data to measure absorbed sound power and the tympanometric peak pressure (TPP). The mean TPP was close to ambient. TEOAEs were measured in the ear canal at ambient pressure, TPP, and fixed air pressures from 150 to -200 daPa. Both click and chirp stimuli were used to elicit TEOAEs, in which the incident sound pressure level was constant across frequency. TEOAE levels were similar at ambient and TPP, and for frequencies from 0.7 to 2.8 kHz decreased with increasing positive and negative pressures. At 4-8 kHz, TEOAE levels were larger at positive pressures. This asymmetry is possibly related to changes in mechanical transmission through the ossicular chain. The mean TEOAE group delay did not change with pressure, although small changes were observed in the mean instantaneous frequency and group spread. Chirp TEOAEs measured in an adult ear with Eustachian tube dysfunction and TPP of -165 daPa were more robust at TPP than at ambient. Overall, results demonstrate the feasibility and clinical potential of measuring TEOAEs at fixed pressures in the ear canal, which provide additional information relative to TEOAEs measured at ambient pressure.

  11. Effect of the annealing ambient on the electrical characteristics of the amorphous InGaZnO thin film transistors.

    Science.gov (United States)

    Huang, Yu-Chih; Yang, Po-Yu; Huang, Hau-Yuan; Wang, Shui-Jinn; Cheng, Huang-Chung

    2012-07-01

    The influence of the thermal annealing on the amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) under different ambient gases has been systematically addressed. The chemical bonding states and transfer characteristics of a-IGZO TFTs show evident dependence on the annealing ambient gas. For the a-IGZO TFTs in the oxygen ambient annealing at 250 degrees C for 30 mins exhibited a maximum field effect mobility (max muFE) of 9.36 cm2/V x s, on/off current ratio of 6.12 x 10(10), and a subthreshold slope (SS) of 0.21 V/decade. Respectively, the as-deposited ones without annealing possess a max muFE of 6.61 cm2/V x s, on/off current ratio of 4.58 x 10(8), and a SS of 0.46 V/decade. In contrast, the a-IGZO TFTs annealed at 250 degrees C for 30 mins in the nitrogen ambient would be degraded to have a max muFE of 0.18 cm2/V x s, on/off current ratio of 2.22 x 10(4), and a SS of 7.37 V/decade, corresponding. It is attributed to the content of the oxygen vacancies, according the x-ray photoelectron spectroscopy (XPS) analyze of the three different samples.

  12. Below-Ambient and Cryogenic Thermal Testing

    Science.gov (United States)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  13. Det ambientes fænomenologi

    DEFF Research Database (Denmark)

    Walther-Hansen, Mads

    2014-01-01

    Det ambiente: sansning, medialisering, omgivelse er et aktuelt og ambitiøst værk. Bogen skildrer hvordan ambiente fænomener har fået en stigende betydning i den moderne verden, og redegør for måden hvorpå det ambiente virker ind på hele vores oplevelseskultur. Det er en levende, uprætentiøs og frem...

  14. Ambient temperature signalling in plants.

    Science.gov (United States)

    Wigge, Philip A

    2013-10-01

    Plants are exposed to daily and seasonal fluctuations in temperature. Within the 'ambient' temperature range (about 12-27°C for Arabidopsis) temperature differences have large effects on plant growth and development, disease resistance pathways and the circadian clock without activating temperature stress pathways. It is this developmental sensing and response to non-stressful temperatures that will be covered in this review. Recent advances have revealed key players in mediating temperature signals. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) has been shown to be a hub for multiple responses to warmer temperature in Arabidopsis, including flowering and hypocotyl elongation. Changes in chromatin state are involved in transmitting temperature signals to the transcriptome. Determining the precise mechanisms of temperature perception represents an exciting goal for the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Trapping of cubic ZnO nanocrystallites at ambient conditions

    DEFF Research Database (Denmark)

    Decremps, F.; Pellicer-Porres, J.; Datchi, F.

    2002-01-01

    Dense powder of nanocrystalline ZnO has been recovered at ambient conditions in the metastable cubic structure after a heat treatment at high pressure (15 GPa and 550 K). Combined x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) experiments have been performed to probe both long......-range order and local crystallographic structure of the recovered sample. Within uncertainty of these techniques (about 5%), all the crystallites are found to adopt the NaCl structure. From the analysis of XRD and XAS spectra, the cell volume per chemical formula unit is found to be 19.57(1) and 19...

  16. Corona discharge ion mobility spectrometry at reduced pressures

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2004-01-01

    Ion mobility spectrometers (IMSs) normally operate at ambient pressure. In this work an IMS cell has been designed and constructed to allow the pressure to be reduced inside the IMS cell. In this cell, corona discharge was employed as the ionization source. Reducing pressure affected both the discharge and the performance of the IMS. The discharge current was observed to increase with reducing pressure while the ignition potential decreased. The ion current received at the collector plate was also increased about 50 times when the pressure was reduced from ambient pressure to 15 Torr. The higher ion current can lead to an extended dynamic range. IMS spectra were recorded at various pressures and the results show that the drift times shift perfectly linear with pressure. This suggests that unlike temperature, pressure correction for ion mobility spectra is as simple as multiplying the drift times by a factor of 760/P

  17. An XPS study of bromine in methanol etching and hydrogen peroxide passivation treatments for cadmium zinc telluride radiation detectors

    International Nuclear Information System (INIS)

    Babar, S.; Sellin, P.J.; Watts, J.F.; Baker, M.A.

    2013-01-01

    Highlights: ► CdZnTe single crystal etched in bromine-in-methanol and passivated in H 2 O 2 . ► XPS depth used to accurately determine enriched Te layer and TeO 2 thickness. ► For 0.2 and 2.0 (v/v) % bromine-in-methanol treatments, enriched Te layer thickness determined to be 1.3 and 1.8 nm, respectively. ► After passivation in 30 wt.% H 2 O 2 , the oxide thickness varies between 1.0 and 1.25 nm depending on the calculation method. - Abstract: The performance of single crystal CdZnTe radiation detectors is dependent on both the bulk and the surface properties of the material. After single crystal fabrication and mechanical polishing, modification of the surface to remove damage and reduce the surface leakage current is generally achieved through chemical etching followed by a passivation treatment. In this work, CdZnTe single crystals have been chemically etched using a bromine in methanol (BM) treatment. The BM concentrations employed were 0.2 and 2.0 (v/v) % and exposure times varied between 5 and 120 s. Angle resolved XPS and sputter depth profiling has been employed to characterize the surfaces for the different exposure conditions. A Te rich surface layer was formed for all exposures and the layer thickness was found to be independent of exposure time. The enriched Te layer thickness was accurately determined by calibrating the sputter rate against a CdTe layer of known thickness. For BM concentrations of 0.2 (v/v) % and 2 (v/v) %, the Te layer thickness was determined to be 1.3 ± 0.2 and 1.8 ± 0.2 nm, respectively. The BM etched surfaces have subsequently been passivated in a 30 wt.% H 2 O 2 solution employing exposure time of 15 s. The oxide layer thickness has been calculated using two standard XPS methodologies, based on the Beer–Lambert expression. The TeO 2 thickness calculated from ARXPS data are slightly higher than the thickness obtained by the simplified Beer–Lambert expression. For BM exposures of 30–120 s followed by a passivation

  18. Commentary on differential-pressure measurements at high reference pressures

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.; Noyes, R.P.

    1981-01-01

    Some practical approaches to the difficult problems in calibrating and implementing differential-pressure measurements are discussed. The data presented were gathered several years ago in separate investigations. An attempt is made to compare the results of these investigations to the common mode concept as described by Peter K. Stein in his publication, The Measurement of Differential Quantities - Problems and Approaches. Although one of these investigations involed a 10,000- to 20,000-psi reference-pressure gas measured at an ambient temperature and the other a classic /sup Δ/P flow measurement of cryogenic temperature, the problems encountered were the same

  19. Quantitative analysis of Fe and Co in Co-substituted magnetite using XPS: The application of non-linear least squares fitting (NLLSF)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongmei, E-mail: hmliu@gig.ac.cn [CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 (China); Wei, Gaoling [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650 (China); Xu, Zhen [School of Materials Science and Engineering, Central South University, Changsha, 410012 (China); Liu, Peng; Li, Ying [CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China)

    2016-12-15

    Highlights: • XPS and Auger peak overlapping complicates Co-substituted magnetite quantification. • Disrurbance of Auger peaks was eliminated by non-linear least squares fitting. • Fitting greatly improved the accuracy of quantification for Co and Fe. • Catalytic activity of magnetite was enhanced with the increase of Co substitution. - Abstract: Quantitative analysis of Co and Fe using X-ray photoelectron spectroscopy (XPS) is of important for the evaluation of the catalytic ability of Co-substituted magnetite. However, the overlap of XPS peaks and Auger peaks for Co and Fe complicate quantification. In this study, non-linear least squares fitting (NLLSF) was used to calculate the relative Co and Fe contents of a series of synthesized Co-substituted magnetite samples with different Co doping levels. NLLSF separated the XPS peaks of Co 2p and Fe 2p from the Auger peaks of Fe and Co, respectively. Compared with a control group without fitting, the accuracy of quantification of Co and Fe was greatly improved after elimination by NLLSF of the disturbance of Auger peaks. A catalysis study confirmed that the catalytic activity of magnetite was enhanced with the increase of Co substitution. This study confirms the effectiveness and accuracy of the NLLSF method in XPS quantitative calculation of Fe and Co coexisting in a material.

  20. Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects

    International Nuclear Information System (INIS)

    Lui, S.L.; Cheung, N.H.

    2003-01-01

    When performing laser-induced plasma spectroscopy for elemental analysis, the sensitivity could be significantly enhanced if the plume was resonantly rekindled by a dye laser pulse. The extent of the enhancement was found to depend on the ambient gas. Air, nitrogen, helium, argon and xenon at pressures ranging from vacuum to 1 bar were investigated. In vacuum, the analyte signal was boosted because of reduced cooling, but it soon decayed as the plume freely expanded. By choosing the right ambient gas at the right pressure, the expanding plume could be confined as well as thermally insulated to maximize the analyte signal. For instance, an ambient of 13 mbar xenon yielded a signal-to-noise ratio of 110. That ratio was 53 when the pellet was ablated in air, and decreased further to 5 if the dye laser was tuned off resonance